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Abstract 10 

The most common frauds, carried out in different points of the fish and fish 11 

product supply chain, concern the substitution of valuable species with cheaper 12 

ones, and the selling of frozen-thawed products as fresh fish. The aim of this work 13 

was to investigate the possibility of using infrared spectroscopy as a rapid and 14 

easy tool for the identification of valuable species (i.e. red mullet and plaice) 15 

substitution with cheaper ones (i.e. Atlantic mullet and flounder). Moreover, the 16 

discrimination power of the spectroscopic techniques in identifying fresh and 17 

frozen-thawed fillets of Atlantic mullet was studied. The use of suitable 18 

chemometric strategies (Linear Discriminant Analysis, LDA; Soft Independent 19 

Modeling of Class Analogy, SIMCA) allowed to clearly distinguish Atlantic 20 

mullet fillets from those of the more valuable red mullet. In particular, LDA gave 21 

a 100% correct classification, and with SIMCA a sensitivity higher than 70% and 22 

a specificity of 100% were calculated. Good results were obtained also for plaice 23 

and flounder fillet discrimination, as well as for the recognition of Atlantic mullet 24 

fresh fillets from the frozen-thawed ones, even if with SIMCA some false 25 

positives were generated. 26 

 27 

Keywords: Authentication, fish, IR spectroscopy, LDA, SIMCA 28 

 29 

Abbreviations: AM, Atlantic mullet; AM-FT, frozen-thawed Atlantic mullet 30 

fillets; ATR, attenuated total reflectance; d1, first derivative; FL, flounder; FT, 31 

Fourier transform; IR, infrared; LDA, Linear Discriminant Analysis; MIR, mid 32 
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infrared; MSC, multiplicative scatter correction; NIR, near infrared; PCA, 33 

Principal Component Analysis; PL, plaice; RM, red mullet; SIMCA, Soft 34 

Independent Modeling of Class Analogy; SNV, standard normal variate.  35 
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1. Introduction 36 

In the last decades, consumers’ request for fish and fish products has greatly 37 

increased, mainly due to the nutritional properties of these products. As a 38 

consequence, commercial exchanges and import/export activities have raised 39 

throughout the world, originating increased sanitary risks and commercial frauds, 40 

closely connected with the perishable nature and the economic value of fish and 41 

seafood. The most common frauds, carried out in different points of the supply 42 

chain, concern the substitution of valuable species with cheaper ones, and the 43 

selling of frozen-thawed products as fresh fish (Uddin et al., 2005). A portion of 44 

the mislabeling occurs unintentionally, because fish species identities may be 45 

easily mistaken or due to different vernacular names used for the same fish 46 

species in different regions. However, for certain species and products, fish 47 

substitution may be intentional, because of their differing values. Appearance, 48 

taste and texture of many fish species are similar, therefore it is frequently 49 

difficult to identify a species, especially if prepared in fillet form for consumption 50 

(Buck, 2010). From 2010 to 2012, in the USA the analysis of more than 1,200 51 

samples collected from 674 retail outlets in 21 states to determine if they were 52 

honestly labeled revealed that one-third of the seafood samples were mislabeled, 53 

according to U.S. Food and Drug Administration guidelines (Oceana, 2013). 54 

Cawthorn, Steinman and Witthuhn (2012) reported that, on a total of 257 fish 55 

samples collected over a two-year period (2008-2010) in four provinces of South 56 

Africa, 9% samples from wholesalers and 31% from retailers were identified as 57 

different species to the ones indicated at the point of sale.  58 
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Freezing is a common practice used to prolong fish storage over long periods. It is 59 

effective in protecting fish against microbial deterioration, but physico-chemical 60 

and sensory properties of the product are modified. Thus, the consumer perception 61 

of thawed fish is inferior to that of the fresh material and this is reflected in the 62 

price it realizes. As a consequence, a number of frozen fish are thawed in fish 63 

shops, stored on ice, and sold as unfrozen fish without being labeled as such 64 

(Uddin et al., 2005). 65 

Several analytical methods can help in the identification of species substitution 66 

and frozen products sold as fresh: electrophoretic, antibody, DNA, and enzymatic 67 

techniques (Arvanitoyannis, Tsitsika, & Panagiotaki, 2005). However, these 68 

techniques are time, cost, and reagent demanding and require highly skilled 69 

operators. Therefore, interest in spectroscopic techniques is continuously growing, 70 

due to high specificity, convenience, quick response, and being non-destructive, 71 

non-invasive, and cost effective. In the seafood sector, spectroscopic techniques 72 

have been used to assess composition and quality and they have shown great 73 

potential for the detection of pathogens, foreign contamination, protein structure 74 

changes, lipid oxidation, and for spoilage monitoring (Cheng et al., 2013). As 75 

regards food authenticity, to the best of our knowledge, no papers report the use of 76 

infrared (IR) spectroscopy for fresh fish species authentication. Only Dalle Zotte 77 

et al. (2013) applied near infrared spectroscopy to the genetic strain authentication 78 

of raw and cooked freeze-dried rainbow trout fillets. A preliminary work of 79 

O’Brien, Hulse, Pfeifer and Siesler (2013) aiming at distinguishing superior from 80 

lower quality fish species by using a microNIR spectrometer has been published 81 
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as technical note. However, the number of tested samples is really too little 82 

(maximum 7 for fish species) to draw reliable conclusions. Also the applicability 83 

of IR spectroscopy to the discrimination between fresh and frozen-thawed fish 84 

samples is little studied (Ottavian, Fasolato, Facco, & Barolo, 2013; Uddin et al., 85 

2005; Uddin & Okazaki, 2004). For the authentication of other food products, 86 

good potential of IR spectroscopy was already demonstrated (Alamprese, Casale, 87 

Sinelli, Lanteri, & Casiraghi, 2013; Kurz, Leitenberger, Carle, & Schieber, 2010; 88 

Lerma-García, Ramis-Ramos, Herrero-Martínez, & Simó-Alfonso, 2010; Sinelli 89 

et al., 2010; Reid, O’Donnell, & Downey, 2006). 90 

Thus, the aim of this work was to investigate the possibility of using infrared (IR) 91 

spectroscopy as a rapid and easy tool for the identification of valuable fish species 92 

(i.e. red mullet and plaice) substitution with cheaper ones (i.e. Atlantic mullet and 93 

flounder). Moreover, the discrimination power of the spectroscopic techniques in 94 

fresh and frozen-thawed fillets of Atlantic mullet was studied. 95 

 96 

2. Materials and methods 97 

2.1 Materials 98 

Industrially prepared fish fillets analyzed by IR spectroscopy for species 99 

authentication and discrimination between fresh and frozen-thawed samples are 100 

reported in Table 1. Samples were obtained by different producers. Fresh fillets 101 

were stored in ice inside a cold room (4°C) until the analyses, for a maximum of 102 

two days. The frozen fillets were stored at -18°C up to two months and before 103 

analyses they were thawed at 4°C for 48 hours. 104 
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 105 

2.2 IR spectroscopy 106 

The near infrared (NIR) spectra were recorded (12 cm-1 resolution; 64 scans both 107 

for background and samples) on the flesh side of the whole fillet previously 108 

conditioned at room temperature, by using a Fourier transform (FT)-NIR 109 

spectrometer (MPA, Bruker Optics, Ettlingen, Germany) fitted both with an 110 

integrating sphere (spectral range: 12500-3750 cm-1) and an optical fiber (spectral 111 

range: 11000-4400 cm-1). 112 

Before mid infrared (MIR) analysis, two fish fillets at a time were minced without 113 

skin, using a heavy duty blender (Waring Laboratory, Torrington, CT) for 20 s at 114 

the highest speed. Spectra were then acquired (4000-700 cm-1; 4 cm-1 resolution; 115 

16 scans both for background and samples) at room temperature, by means of an 116 

FT-IR spectrometer (VERTEX 70, Bruker Optics, Ettlingen, Germany) equipped 117 

with an attenuated total reflectance (ATR) cell. 118 

All spectra were collected in duplicate, by the software OPUS v. 6.5 (Bruker 119 

Optics, Ettlingen, Germany). 120 

 121 

2.3 Data analysis 122 

Replicates of spectral data were averaged, standardized by different pretreatments 123 

(MSC, multiplicative scatter correction, or SNV, standard normal variate, alone or 124 

coupled with first or second derivatives) (Barnes, Dhanoa, & Lister, 1989; 125 

Martens, Jensen, & Geladi, 1983; Savitzky & Golay, 1964), and processed with 126 

Principal Component Analysis (PCA; Cowe & McNicol, 1985). FT-NIR spectra 127 
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acquired by the integrating sphere and the optical fiber were also smoothed 128 

(moving average with segment size of fifteen and twenty-one, respectively) before 129 

pretreatments. First and second derivatives were calculated by Savitzky-Golay 130 

algorithm, with second-order smoothing polynomials through thirty-one points. 131 

After selection of thirty features by the algorithm SELECT (Forina, Lanteri, 132 

Casale, & Cerrato Oliveros, 2007; Kowalski & Bender, 1976) implemented in the 133 

V-Parvus package (Forina et al., 2008), two different classification techniques 134 

were applied: Linear Discriminant Analysis (LDA; Massart et al., 1997) and Soft 135 

Independent Modeling of Class Analogy (SIMCA; Wold & Sjostrom, 1977). LDA 136 

is a probabilistic classification technique which classifies each sample in the 137 

category with the highest value of a-posteriori probability. The terms in the 138 

delimiter equation are the squared Mahalanobis distances from the category 139 

centroids. With SIMCA, classification is obtained on the basis of the distance of 140 

the object to be classified from the class models: each object is assigned to the 141 

class for which the Simca distance was minimum. The mathematical model of the 142 

category is based on the principal components of the category. The limit of the 143 

class model in the inner space is defined by the number of significant components 144 

obtained by double-cross validation. 145 

Classification models were validated using three different external test sets, 146 

randomly created, each containing about 30% of the spectra used for the analysis. 147 

Objects were divided between training and prediction set, by using a random 148 

number generation routine implemented in the V-Parvus package. 149 
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Data elaboration was performed by using the software The Unscrambler X (v. 150 

10.2, Camo Software AS, Oslo, Norway) and the V-Parvus package. 151 

 152 

3. Results and discussion 153 

3.1 Spectra interpretation 154 

In order to eliminate the noisiest and the least informative regions, spectral ranges 155 

were reduced as follows: 10900-3750 cm-1 for FT-NIR spectra acquired by means 156 

of the integrating sphere; 3700-2640 and 2250-1000 cm-1 for FT-IR spectra. No 157 

reduction was necessary for NIR data collected by the optical fiber. Some 158 

examples of the averaged reduced spectra are shown in Fig. 1. FT-NIR spectra 159 

were dominated by the absorption bands of water (5200 cm-1; 6900 cm-1, first 160 

overtone of OH; 10200 cm-1, second overtone of OH) and C-H aliphatic group 161 

(5560 cm-1 and 8300 cm-1, first and second overtone of stretching respectively). In 162 

the FT-IR spectra, besides C-H group (absorbing in the regions 1000-1500 cm-1 163 

and 2800-3000 cm-1), also amines play an important role (1550 and 1640 cm-1, 164 

amine I; 3300 cm-1, amine II) (Workman & Weyer, 2008; Williams & Norris, 165 

2002). 166 

The averaged spectra were smoothed and eventually standardized by different pre-167 

treatments (MSC or SNV alone or coupled with first or second derivative), before 168 

the chemometric analyses (see § 2.3). For the sake of brevity, only the best results 169 

obtained for each thesis will be shown. 170 

 171 

3.2 Species identification 172 
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A preliminary FT-NIR and FT-IR data examination was performed by PCA. In 173 

the case of mullets, a good sample distinction on the basis of species was 174 

observed (Fig. 2) for all spectroscopy techniques used; the best results were 175 

obtained with the optical fiber data. The explained variance was 98% considering 176 

the first two PCs of FT-NIR data acquired by the sphere (Fig. 2a), 79% in the case 177 

of PC 1 and 3 of FT-NIR data obtained by the optical fiber (Fig. 2b), and 70% for 178 

the first and the third PC of FT-IR data (Fig. 3c). In the plaice-flounder (PL-FL) 179 

comparison, instead, score plots were a bit more confusing. The best separation of 180 

the two species was obtained with FT-IR data, pre-treated by MSC, on the plane 181 

of first two PCs (Fig. 2f). 182 

The species authentication study was at first dealt with a classification-183 

discriminant approach, applying the LDA to the IR data. This method is able to 184 

determine to which pre-defined class a sample belongs. Since for LDA the 185 

number of samples must be higher than the number of variables, the analysis was 186 

performed using the 30 variables with the largest classification weight, selected by 187 

means of the algorithm SELECT (Kowalski & Bender, 1976; Forina, Lanteri, 188 

Casale, & Cerreto Oliveros, 2007) implemented in the V-Parvus package. The 189 

LDA results were validated using three different external test sets, each composed 190 

of 30% of the spectra used for the analysis, randomly selected. 191 

The discrimination between red mullet (RM) and Atlantic mullet (AM) gave a 192 

100% correct classification percentage in prediction, irrespective the 193 

spectroscopic technique considered. Optimal results were obtained also for PL 194 

and FL, with percentages of correct classification in prediction higher than 92%, 195 
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88%, and 100% with integrating sphere, optical fiber and FT-IR data, 196 

respectively. Selected features were mainly associated to the O-H bond of water, 197 

to the C-H methyl of fatty acid aliphatic chains and to N-H from amines and 198 

amides (Workman & Weyer, 2008), thus reflecting the different composition of 199 

the two species. 200 

The species authentication problem was then faced by means of a class-modeling 201 

strategy. This approach is more appropriate than classification-discriminant 202 

techniques in addressing most questions of authenticity (Di Egidio, Oliveri, 203 

Woodcock, & Downey, 2011). Spectral data were thus used for SIMCA, a class-204 

modeling method aiming at establishing if a sample X, which claims to belong to 205 

a certain species, does actually belong to that species. For comparison’s sake, also 206 

in this case, only the thirty wavenumbers with the highest classification weights 207 

were used. Models were obtained with 7 PCs and they were validated as for the 208 

LDA models, using the same external test sets. 209 

As shown in Table 2, the best model for mullet species identification was obtained 210 

using the selected features of the smoothed FT-NIR spectra collected with the 211 

fiber-optic: in prediction, a sensitivity higher than 70% and a specificity of 100% 212 

were calculated (p<0.05). Sensitivity refers to the percentage of objects in the 213 

external prediction set known to belong to the modeled class which are correctly 214 

accepted by the model developed using the objects in the calibration set. 215 

Specificity is the percentage of objects in the external prediction set which do not 216 

belong to the modeled class and which are correctly rejected by the model 217 

developed using objects in the calibration set (Di Egidio et al., 2011). As shown 218 
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by the Cooman’s plot reported in Fig. 3, the model of the AM class (the vertical 219 

rectangle on the left) did not accept any object of the RM class, as well as the 220 

model of the RM class (the horizontal rectangle on the bottom) did not accept any 221 

sample of the AM class, in accordance with the average calculated 100% 222 

specificity value of the two classes. Only few samples (those in the big upper 223 

square) were not accepted by any of the two class models, resulting in a 224 

satisfactory average sensitivity value. 225 

Less good results were obtained applying SIMCA to plaice and flounder 226 

discrimination (Table 3). However, due to the high severity of this class-modeling 227 

methods, results are acceptable. FT-IR spectroscopy showed the best 228 

discrimination power, with a prediction ability higher than 83% and a specificity 229 

of 100%. The low sensitivity calculated for the external test set no. 1 and 3 means 230 

that about half of the validation samples of each class (i.e. 8-10 samples) was 231 

rejected by the corresponding model. Thus, the model generated some false 232 

negatives. In our opinion, this is a less dangerous error in an authentication issue 233 

than false positive creation. False negatives could in fact be further analyzed by 234 

means of more sensitive techniques, while false positive would be considered as 235 

authentic samples, without any other examination. 236 

 237 

3.3 Fresh and frozen-thawed fillet discrimination 238 

Fresh and frozen-thawed fillet discrimination was studied considering only 239 

Atlantic mullets. As for species authentication, also in this case the data sets were 240 

firstly examined by performing PCA (data not shown). Sample distribution on the 241 
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first two PCs plane appeared quite confused, with no clear separation between the 242 

two kinds of samples, notwithstanding an explained variance range of 75-99%. 243 

The best separation of fresh fillets from frozen-thawed samples was observed 244 

using FT-NIR smoothed data collected by the optical-fiber. 245 

The classification-discriminant approach (LDA) gave optimal results, with a 246 

prediction ability of 100% for frozen-thawed (AM-FT) fillets and higher than 247 

97.2% for the fresh ones (AM). In this case, the thirty selected variables mainly 248 

referred to the O-H bond of water in FT-NIR data, and also to amines and 249 

carboxylic acids in FT-IR data (Workman & Weyer, 2008).  250 

In the class modeling (SIMCA) of fresh and frozen fillets, carried out with the 251 

same conditions used for species authentication, the best results were achieved 252 

with the selected variables of the MSC pre-treated FT-IR spectra: specificity and 253 

sensitivity values in prediction were higher than 95% and 60%, respectively 254 

(Table 4). As already observed for PL-FL comparison, also in this case some false 255 

negatives were generated. In fact, in the Cooman’s plot reported in Fig. 4, referred 256 

to the External Test Set 2, some samples (those in the big upper square) were not 257 

accepted by any of the models, according to the sensitivity values obtained. As it 258 

can be seen, samples are distributed along the axes of the two class models, 259 

instead of being localized far from the origin of the axes as happened for red 260 

mullet vs. Atlantic mullet fillets. A few fresh samples (those in the small square 261 

on the bottom) were accepted not only by the model of AM, but also by the model 262 

of AM-FT. 263 

 264 
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Conclusion 265 

The potential for IR spectroscopy to rapidly and easily identify commercial frauds 266 

in fish marketing was demonstrated. In particular, the use of suitable chemometric 267 

strategies allowed to clearly distinguish Atlantic mullet fillets from those of the 268 

more valuable red mullet. Good results were obtained also for plaice and flounder 269 

fillets discrimination, as well as for the recognition of Atlantic mullet fresh fillets 270 

from the frozen-thawed ones. 271 

FT-IR spectroscopy showed a better classification ability both for species and 272 

fresh/thawed fillet identification, but it needs a sample preparation although 273 

simple. On the other hand, NIR spectroscopy, implemented in portable 274 

instruments, could be a valid pre-screening technique, in order to verify the 275 

authenticity of fish fillets. 276 

Consumer protection against adulterations and fraudulent claims would be thus 277 

improved by the possibility of examining a high number of samples in a short 278 

time. Moreover, commercial customers could use IR instruments in order to test 279 

their suppliers. In case of a suspected fraud, more sophisticated analyses could be 280 

carried out in order to legally assess the fraudulent claims. The actual models 281 

could be improved, considering the different sources of sample variability and the 282 

interests of the food chain actors involved in fish authentication. 283 

 284 
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Figure captions 374 

Fig. 1. Examples of reduced IR spectra obtained from the different fish samples: 375 

RM, red mullet; AM, Atlantic mullet; PL, plaice; FL, flounder; AM-FT, frozen-376 

thawed Atlantic mullet. a) FT-NIR integrating sphere; b) FT-NIR optical fiber; c) 377 

FT-IR.  378 

 379 

Fig. 2. Score plots of IR data. Red mullet (RM) vs. Atlantic mullet (AM): a) 380 

smoothed FT-NIR data acquired by integrating sphere; b) SNV pre-treated FT-381 

NIR data acquired by optical-fiber; c) FT-IR data, pre-treated by SNV and first 382 

derivative. Plaice (PL) vs. flounder (FL): d) FT-NIR data acquired by integrating 383 

sphere, pre-treated by SNV; e) FT-NIR data acquired by optical-fiber, pre-treated 384 

by SNV and first derivative; f) MSC pre-treated FT-IR data. 385 

 386 

Fig. 3. Red mullet (RM) vs. Atlantic mullet (AM): Cooman’s plot obtained from 387 

the 30 selected features of the smoothed FT-NIR spectra collected with the fiber-388 

optic (external test set no. 3). ●, RM samples of the calibration set; ○, RM 389 

samples of the external prediction set; ▲, AM samples of the calibration set; ∆, 390 

AM samples of the external prediction set. 391 

 392 

Fig. 4. Atlantic mullet fresh fillets (AM) vs. Atlantic mullet frozen-thawed fillets 393 

(AM-FT): Cooman’s plot obtained from the 30 selected features of the MSC pre-394 

treated FT-IR spectra (external test set no. 2). ■, AM-FT samples of the 395 
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calibration set; □, AM-FT samples of the external prediction set; ▲, AM samples 396 

of the calibration set; ∆, AM samples of the external prediction set. 397 
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Table 1. 

Samples of fresh and frozen-thawed fillets analyzed by IR spectroscopy. 

Code Species Trivial name Status No. of fillets 

RM Mullus surmuletus Red mullet Fresh 132 

AM Pseudupeneus prayensis Atlantic mullet Fresh 165 

PL Pleuronectes platessa Plaice Fresh 124 

FL Platichthys flesus flesus Flounder Fresh 134 

AM-FT Pseudupeneus prayensis Atlantic mullet Frozen-thawed 180 
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Table 2. 

Results in prediction of SIMCA applied to IR spectral data for mullet species 

identification (red mullet vs. Atlantic mullet). 

Data External 
Test Set 

Classification 
ability (%) 

Prediction 
ability (%) 

Sensitivity 
(%) 

Specificity 
(%) 

FT-NIR 
integrating 
sphere - 
smoothed 

1 99.50 96.88 70.83 100 

2 99.50 97.87 69.15 100 

3 99.49 97.00 72.00 100 

FT-NIR 
optical fiber 
- smoothed 

1 100 100 70.11 100 

2 100 98.86 72.73 100 

3 100 98.84 80.23 100 

FT-IR – 
SNV+d1 

1 100 91.67 56.25 100 

2 100 91.58 51.58 100 

3 100 94.95 55.56 100 

SNV, standard normal variate; d1, first derivative. 
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Table 3. 

Results in prediction of SIMCA applied to IR spectral data for plaice and flounder 

discrimination. 

Data External 
Test Set 

Classification 
ability (%) 

Prediction 
ability (%) 

Sensitivity 
(%) 

Specificity 
(%) 

FT-NIR 
integrating 
sphere - 
SNV 

1 77.97 73.08 70.51 73.08 

2 84.95 81.16 66.67 84.05 

3 80.81 78.31 84.34 73.49 

FT-NIR 
optical fiber 
– SNV+d1 

1 79.46 78.07 75.34 75.34 

2 84.97 75.29 72.94 64.71 

3 79.33 67.09 74.68 68.35 

FT-IR – 
MSC 

1 98.96 93.94 51.52 100 

2 100 89.47 73.68 100 

3 98.91 83.78 45.95 100 

SNV, standard normal variate; d1, first derivative; MSC, multiplicative scatter 
correction 
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Table 4. 

Results in prediction of SIMCA applied to IR spectral data for fresh and frozen-

thawed Atlantic mullet fillet discrimination. 

Data External 
Test Set 

Classification 
ability (%) 

Prediction 
ability (%) 

Sensitivity 
(%) 

Specificity 
(%) 

FT-NIR 
integrating 
sphere - 
MSC 

1 93.33 88.12 73.27 77.23 

2 93.88 89.58 70.83 75.00 

3 94.96 88.35 68.93 77.67 

FT-NIR 
optical fiber 
– smoothed 

1 88.19 86.11 85.19 57.41 

2 92.59 82.35 88.24 60.78 

3 87.34 87.04 88.89 60.19 

FT-IR – 
MSC 

1 98.28 97.78 64.44 95.56 

2 98.20 98.04 70.59 100 

3 98.20 88.24 60.78 100 

MSC, multiplicative scatter correction 
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HIGHLIGHTS 

• Application of NIR and MIR spectroscopy to fish fillet authentication 

• Use of two different classification approaches: LDA and SIMCA 

• Discrimination of valuable fish species from the cheaper ones gave good results 

• Recognition of fresh fillets from the frozen-thawed ones was possible 

• NIR and MIR spectroscopy is a valid pre-screening tool in fish authentication 

 


