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Geological structures are by nature inaccessible to direct observation. This can cause difficulties in
applications where a spatially explicit representation of such structures is required, in particular when
modelling fluid migration in geological formations. An increasing trend in recent years has been to use
analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the
geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site
deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the
lack of access to well-documented analog data. In this paper we present comprehensive analog data sets
which characterize sedimentary structures from important groundwater hosting formations in Germany
and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties
and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider
community to implement analog approaches for characterizing reservoir and aquifer formations.
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Background & Summary
Sedimentary reservoirs exhibit a rich diversity of composition and topology of internal structures, with
physical and chemical properties varying significantly in space. As a result, the description of flow and
transport processes can be challenging, affecting subsequent understanding of groundwater contaminant
transport, geothermal circulations, hydrocarbon migration in reservoirs or carbon storage and
sequestration processes. To date, highly parameterized numerical models are the most general tools to
gain insights into processes taking place in the subsurface1,2. Often a limited number of boreholes are the
only direct observations, and the space between these sparse measurements needs to be filled by
interpolation. Additional information is sometimes available from hydrogeological, hydrochemical and
geophysical field investigation, but the resolution of such field measurements rarely reaches that of
numerical models. For instance, contaminant transport processes in aquifers generally require a
resolution at the sub-meter scale, which is not accomplished by standard field testing3–5. Since transport
models are most influenced by geological heterogeneity, they inevitably carry substantial uncertainty.

Natural analogs have proven invaluable to palliate the lack of data prevalent in many cases6–12. The
underlying principle is simple: we learn from exposed geological formations to describe hidden ones,
assuming that subsurface system and analog share similar properties. More specifically, the geological
patterns learned from analogs can be used to constrain geostatistical models of spatial continuity13–16. At
the same time, detailed analog models facilitate surrogate analysis of specific flow and transport
processes17–20 and enable cost-effective testing of new field techniques in virtual but realistic systems21–23.
Despite the appeal of the analog approach, it is not widely used in geological or hydrogeological
modelling. The main reason is the lack of free and publicly accessible databases2,24. Creating digitized
high resolution characterizations by detailed mapping of archetypal outcrops is time consuming25.
Moreover, such mapping only provides two-dimensional (2-D) analogs, while flow and transport
modelling often requires three-dimensional (3-D) characterization. Therefore, it can be difficult to find a
representative 3-D analog for a given site. Ideally a freely accessible repository of type locations would
exist, spanning a broad range of characteristic subsurface environments. Here, we take a first step in this
direction.

Solutions that have been proposed to develop 3-D analogs include the combination of point
measurements, outcrop data and geophysical surveys7,26. Additionally, strong research efforts have been
dedicated to developing advanced geostatistical techniques that are able to extract information from
spatially distributed and incomplete data15,27,28. Such methods can be used to generate unconditional
realizations of spatially distributed geological parameter fields, which serve as realistic but location-
independent representations of the subsurface. Ensembles of multiple such realizations can be used for
quantifying uncertainty when modelling a given sedimentary system29,30.

In this work, we present multiple realizations of two different sedimentary analogs. We chose a
moderately heterogeneous fluvial-aeolian deposit of the upper part of the Pirambóia Formation (Triassic)
of south-eastern Brazil31, and a highly heterogeneous fluvio-glacial braided river sediment from the
Pleistocene in the upper Rhine valley of southern Germany32. These analogs were mapped independently,
but by following a similar procedure: In order to obtain 3-D images, multiple outcrop cross sections were
sequentially mapped and digitized during ongoing excavation in gravel pits.

We focus on a range of different geological, physical and chemical properties, with the purpose of
developing genuine portrayals of the selected sedimentary blocks at the sub-decimetre scale. These
properties are associated with sets of facies types specific to each analog. Such facies represent the smallest
homogenized units and therefore do not represent up-scaled values. Mapping their distribution on each
outcrop results in a digitized facies mosaic. These mosaics allow for visualizing the sedimentary structures
in the vertical outcrops, and the 3-D spatial changes are captured by combining all mapped cross-sections
at a site. By sharing multiple realizations of both analogs, we open the door for any kind of stochastic flow
and transport modelling in those types of geological environments. The analogs can serve as benchmarks
for different levels of hydraulic, hydrochemical and thermal heterogeneity.

Methods
Definition of facies types
Four different facies types are distinguished in the analogs. These address sedimentological,
hydrogeological, chemical and geothermal criteria:

- Lithofacies: represents a subdivision of a stratigraphical unit, which stems from a distinct deposition
event or environment11,33.

- Hydrofacies: denotes a quasi-homogeneous unit that can be described by characteristic hydraulic
properties33,34.

- Chemofacies: classifies units with same chemical attributes35–37.
- Thermofacies: subdivides units according to homogeneous or homogenized thermal properties38,39.

The facies types represent mappable clusters of the selected gravel bodies, at a minimum resolution of
half a decimetre. They are determined based on a hierarchical approach: initially, lithofacies were
predefined after sedimentological analysis at the site, including outcrops in the vicinity of the same
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depositional environments11. The lithofacies represent the basic categories. These are further
distinguished for defining hydrofacies units, when hydraulic properties reveal significant internal
variability. This is especially the case when sediment grains show grading, or when a predefined
lithofacies assembles small-scale interbedded strata. The hydrofacies-based classification is not further
subdivided. This means chemical and thermal properties are estimated for the hydrofacies classes, which
yields specific chemo- and thermofacies.

This hierarchical approach is chosen for several reasons. First, the different facies properties are often
correlated. For instance, lithologically typical grain sizes result in similar hydraulic and thermal
properties, and lithocomponents specific to a lithological strata often share similar chemical
properties40,41. Second, consistent classification of different facies types simplifies their combined
implementation in numerical models. Third, a crucial argument is the practicability of mapping, which is
much easier when hierarchical classes are distinguished. This applies especially to field sampling and
laboratory measurements31. Finally, qualitative classification guided by principal lithofacies types may
lead to different hydro-, chemo- or thermofacies of sometimes similar quantitative properties. Therefore
the presented classification offers the highest possible resolution, and depending on the model application
facies types characterized by similar parameter values may be merged.

Field and laboratory work
Both analog data sets are reconstructed rectangular blocks of unconsolidated sediments, which are
mapped by several (5–6) outcrop cross sections in the field and supported by laboratory measurements
(Fig. 1). Each data gathering campaign took around six months, synchronized with the mining activities
in the sand and gravel pits. The fluvial-glacial sediments of the Rhine valley were excavated close to the
town of Herten (Herten-analog) in the summer of 199911,32, and the fluvio-aolian deposits in Brazil close
to the town of Descalvado (Descalvado-analog) in 201131 (Table 1). Outcrop photographs are shown in
Fig. 2. Both case studies were mainly motivated from hydrogeology: the young Rhine gravels host among
the most productive aquifers in central Europe, and the Brazilian Pirambóia formation belongs to those
sequences that store the most important groundwater reservoir in South America, the Guarani Aquifer
system (GAS). The original descriptions of highly resolved hydraulic and hydrochemical heterogeneity
and earlier interpolated blocks hence served as aquifer analogs in several previous groundwater modelling
and model inversion studies17,19,20,22,28,42,43. For instance, Maji and Sudicky42 implemented the Herten
analog in a numerical flow and transport model with decimetre-grid resolution to examine the solution of
dense nonaqueous phase liquids (DNAPL) in sedimentary aquifers. Werth, et al.17 demonstrated with
one Herten cross section, how contaminant mixing and flow focusing is controlled by typical sedimentary
structures. Kowalsky, et al.23, Jiménez, et al.43 and Hu, et al.22 chose Herten profiles for developing and
validating new geophysical and tomographical field investigation techniques. In these studies, the analog
served to set up a realistic but computer-based virtual aquifer. In comparison to experiments in the field,
computer experiments are less costly and, more importantly, can be validated using a reference where all
hydraulic, thermal or chemical details are known. Our work offers new 3-D realizations of the Herten-
analog, for the first time 3-D interpolations of the Descalvado-analog and a combined resolution of four
different facies types. To our knowledge, there are currently no analog datasets publicly available with
comparable multiple parameter characterizations of such sediment bodies.

The field and laboratory work for the Herten analog is described in detail in Bayer, et al.32 In total, six
parallel and equidistant cross sections of 16 m× 7 m were mapped at 2 m steps. The lithofacies
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Figure 1. Workflow from field data collection to generation of three-dimensional aquifer analog realizations

with litho-, hydro-, chemo- and thermofacies.
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classification follows the suggestions by Heinz and Aigner44, and four different categories are
distinguished (Table 2) according to dominant grain size, sorting and texture. For systematic grouping,
abbreviations denoting the structural and textural properties such as major grain sizes (e.g., ‘G’ for gravely
and ‘S’ for sand) were chosen. Two of the lithofacies classes (well sorted gravel GS-x, well sorted sand S-x)
are equivalent to hydrofacies categories, reflecting that hydraulic properties show only minor variations
within the lithologically defined units. This is not the case for the alternating gravel, as well as for the
poorly sorted, matrix supported gravel lithofacies. For the latter, a cobble-rich and a sand-rich
hydrofacies is subdivided. The alternating gravel lithofacies shows great internal variations in the
hydraulic properties, and thus it is split up into five different hydrofacies categories. These delineate
interchanging, typically cross-bedded gravel sequences. They are among the most striking features in the
cross sections, with small-scale variations and interbedded highly permeable open framework gravels
(cGcg,o, sGcg,o). Bayer, et al.32 also distinguish six up-scaled architectural layers (or wedges) to combine
lithofacies of the same depositional regimes. The alternating sequences mainly form the central share of
the block, whereas continuous and relatively regular layers of gravel represent the top and bottom parts.

Höyng, et al.31 present a comprehensive report of the field campaigns, the laboratory measurements
and the derived cross sections of the Descalvado-analog. The lateral width of the examined outcrop walls
is 28 m and thus longer than that for the Herten-analog, given a similar vertical size (Table 1). Only three
parallel profiles were mapped, however, at greater spacing of 3.5 m. These profiles are complemented by
the two perpendicular lateral faces, which deliver a true 3-D picture of the structure. A fence diagram
with the orientation of all five profiles is given by Höyng, et al.31, but no interpolated 3-D models have so
far been constructed. Equivalent to the Herten case, five lithofacies are distinguished, four of these are
sand dominated and one represents clay intraclasts (Table 3). Three of these lithofacies are further
subdivided due to internal variability of grain sizes, and thus in total nine different hydrofacies are

Herten Descalvado

Depositional environment fluvio-glacial fluvial-aeolian

Location Southern Germany (Rhine valley) South-eastern Brazil

Formation Würm late-glacial stage (Pleistocene) Piramboia (Trias)

Age ca. 15.000 y 250−145 my (GAS)

Time of mapping 1999 2011

Size of sediment block 16 m× 7 m× 10 m 28 m× 5.8 m× 7 m

Volume of sediment block 1120 m3 1136.8 m3

Cross sections 6, in parallel 3, in parallel; 2, perpendicular

Maximum number of facies 10 9

Additional measurements Ground penetrating radar (GPR) N/A

Table 1. Site conditions, geology and properties of Herten and Descalvado analogs.

5 m

Descalvado

Herten

Figure 2. Outcrop photographs of Descalvado (a) and Herten (b) profiles taken at the gravel pits during

excavation.
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derived. In the entire mapped sediment block, three major architectural elements can be distinguished:
the quasi homogeneous basis with well sorted medium to very fine aeolian sands (Sp), the more
heterogeneous central part with cross-bedded coarse sand and gravel (SGt), and on top a laterally
continuous layer of trough cross-bedded fine to medium sand facies (St). So in both analogs, highest
variability is found in the centre.

For the distinction and characterization of the different hydrofacies types, hydraulic conductivity and
porosity values were determined using undisturbed samples collected in the field. The porosity was
derived by direct measurement in the laboratory, using multiple samples of each hydrofacies. In order to
obtain hydraulic conductivity values, different methods have been used at both sites. Directly measured
laboratory values are considered most reliable. At the Herten site, the hydraulic conductivities were
determined as mean values of repeated flowmeter measurements. The samples of the ten different Herten
facies were collected at adjacent gravel pits, with outcrops from similar fluvial deposits of glacial origin
from the alpine region (Triassic, Jurassic, Creataceous and Tertiary rock formations). For the Descalvado,
only the Fm facies was examined by laboratory permeameter testing. When no directly measured
laboratory value is available, empirical estimates are chosen. For each individual facies, repeated sieving of
multiple samples combined with a laser diffraction method was applied to derive grain size distributions.
These were utilized in the empirical Kozeny-Carman, Beyer, Panda and Lake and USBR formula11,31,32,45

to estimate specific hydraulic conductivity values. The methods used for each individual hydrofacies are
reported in detail in Bayer, et al.32 and Höyng, et al.31

Chemical heterogeneity is rarely reported for analogs, and it may be used to describe a broad range of
variable chemical characteristics such as mineral composition, carbon content, etc. The selected

No. Code Lithofacies Hydrofacies Chemofacies Thermofacies

Hydrofacies,
Chemofacies,
Thermofacies

% Litho-
facies

Description Hydraulic
conductivity (m/s)

Porosity (− ) Organic carbon
content, fOC,S

(mg/g)

Organic carbon
content, fOC,H

(mg/g)

Thermal conductivity,
water saturated

(W/m K)

Volumetric heat
capacity, water

saturated (MJ/m3K)

0 Gcm 0.92 Gcm poorly sorted, matrix supported gravel 2.5 ×10 − 4± 2.1 × 10− 4 0.17± 0.07 0.64 0.33 3.23± 0.47 2.42± 0.15

1 cGcm 13.82 Gcm poorly sorted, matrix supported gravel 2.3 × 10− 4± 2.1 × 10− 4 0.15± 0.01 0.64 0.33 3.37± 0.07 2.38± 0.02

2 sGcm 15.12 Gcm poorly sorted, matrix supported gravel 6.1 × 10− 5± 5.9 × 10− 5 0.13± 0.04 0.39 0.33 3.53± 0.29 2.34± 0.08

3 Gcg,o 3.80 Gcg,a alternating gravel 2.6 × 10− 2± 2.3 × 10− 2 0.26± 0.02 0.44 0.35 2.66± 0.11 2.63± 0.04

4 cGcg,o 26.21 Gcg,a alternating gravel 1.3 × 10− 1± 7.4 × 10− 2 0.26± 0.02 0.42 0.35 2.64± 0.11 2.63± 0.04

5 sGcg,o 27.10 Gcg,a alternating gravel 9.5 × 10− 2± 6.5 × 10− 3 0.23± 0.02 0.44 0.35 2.82± 0.13 2.56± 0.05

6 sGcm,b 0.35 Gcg,a alternating gravel 4.3 × 10− 5± 1.8 × 10− 5 0.22± 0.02 0.46 0.33 2.92± 0.14 2.53± 0.05

7 fGcm,b 6.06 Gcg,a alternating gravel 6.0 × 10− 7± 2.0 × 10− 7 0.2± 0.02 0.46 0.33 3.08± 0.13 2.49± 0.04

8 GS-x 5.26 GS-x well sorted gravel (and coarse sand) 2.3 × 10− 3± 4.5 × 10− 4 0.27± 0.07 0.59 0.29 2.71± 0.40 2.62± 0.15

9 S-x 1.35 S-x pure, well-sorted sand 1.4 × 10− 4± 5.0 × 10− 5 0.36± 0.04 0.43 0.19 2.38± 0.21 2.78± 0.08

Table 2. Facies types and parameters of Herten analog.

No. Code Lithofacies Hydrofacies Chemo-facies Thermofacies

Hydrofacies,
Chemofacies,
Thermofacies

% Litho-
facies

Description Hydraulic
conductivity (m/s)

Porosity (− ) Fe(III)
content (mg/g)

Thermal conductivity,
water saturated

(W/m K)

Volumetric heat
capacity, water

saturated (MJ/m3K)

1 SGt,c 29.12 SGt Trough-cross-bedded sand and gravel 3.0 ×10− 4± 9.9 × 10− 5 0.32± 0.04 0.17± 0.05 2.66± 0.24 2.67± 0.09

2 SGt,m 1.72 SGt Trough-cross-bedded sand and gravel 9.4 × 10− 5± 6.6 × 10− 5 0.32± 0.04 0.36± 0.23 2.66± 0.24 2.67± 0.09

3 Sp,f 34.97 Sp Planar-cross-bedded aeolian sand 1.6 × 10− 4± 1.7 × 10− 5 0.25± 0.05 1.86± 0.22 3.12± 0.35 2.51± 0.11

4 Sh/Sp,m1 8.84 Sh/Sp Horizontally laminated to planar
cross-stratified sand

1.4 × 10− 3± 6.9 × 10− 5 0.33± 0.05 0.19± 0.05 2.61± 0.29 2.69± 0.11

5 Sh/Sp,m2 1.33 Sh/Sp Horizontally laminated to planar
cross-stratified sand

7.8 × 10− 5± 3.1 × 10− 5 0.33± 0.05 0.08± 0.03 2.61± 0.35 2.69± 0.13

6 St,m1 5.31 St Trough-cross-bedded sand 6.0 × 10− 5± 2.9 × 10− 5 0.29± 0.04 1.79± 0.65 2.85± 0.25 2.60± 0.09

7 St,m2 9.52 St Trough-cross-bedded sand 2.5 × 10− 5± 1.3 × 10− 5 0.29± 0.05 5.08± 0.59 2.85± 0.32 2.60± 0.11

8 St,f 9.16 St Trough-cross-bedded sand 6.2 × 10− 6± 5.3 × 10− 6 0.24± 0.05 10.70± 1.35 3.19± 0.36 2.49± 0.11

9 Fm 0.03 Fm Massive clay intraclasts 7.8 × 10− 8± 4.2 × 10− 8 0.29± 0.03 57.47± 15.09 1.90± 0.10 3.00± 0.05

Table 3. Facies types and parameters of Descalvado analog (note: organic carbon content was below detection

limit of 0.04 mg/g).
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chemofacies types of both analogs refer to different properties. At Herten, it is the organic carbon
content, which is a main determinant of sorption capacity. For the Descalvado, which represents a more
mature and quasi carbon free sediment, the iron content (Fe(III)) was examined. Sediment bound iron is
abundant in most sediments, and Fe(III) is relevant, for instance, as a solid phase electron acceptor
during degradation of organic contaminants in aquifers.

For the Herten facies types, in great detail the specific mineral and organic carbon content for given
grain size ranges were determined40,45. Carbon contents are available only for four facies (Gcm, Gcm,b,
Gcg,o, S-x), whereas sieve curves were measured for all ten. In order to extrapolate to the other facies, the
carbon content values from the most similar measured lithofacies were adopted, that is, data from Gcm
was used for cGcm and sGcm, data from S-x for GS-x, data from Gcm,b for fGcm,b, and data from Gcg,o
for cGcg,o, sGcg,o. Summing up the grain size-specific carbon allows obtaining the total organic carbon
mass fraction (foc, mg/g) as a parameter characterizing chemofacies. Since no carbon measurements were
carried out at the Herten site, we list in Table 2 those from two related sites: foc,S is based on an outcrop
close to the town of Singen and foc,H from one located in the vicinity of the village of Hüntwangen. The
carbon content of the latter shows only little variability, whereas foc,S spans a broader range. Since the
same categories are used as for the hydrofacies, differences between some chemofacies are not significant,
and thus these may be pooled in four or six major classes.

The Fe(III) content of the nine different Descalvado facies types was determined by laboratory testing
of three samples per facies. For this, 0.5 g of sediment was filled in 58 ml serum bottles (triplicate of each
sample). After adding 25 ml 0.5 M HCl, the samples were put on a shaker table for 1 h to dissolve
amorphous and poorly crystalline Fe phases. Crystalline Fe was extracted by adding 6 M HCl to the
sample and incubation for 24 h in a 70 °C water bath. The dissolved Fe(II) and Fe(III) were determined in
the liquid phase by ferrozine assay. The purple-coloured ferrozine complex was quantified spectro-
phometrically at 562 nm using a microtiter plate reader (FlashScan 550; Analytik Jena, Jena, Germany).
The concentrations of Fe(III) were determined by the difference between Fe(II) and Fe(total).
Amorphous and poorly crystalline Fe phases could not be quantified because concentrations did not
reach measurable levels (>10 μM). The presented solid Fe(III) oxides refer to highly crystalline phases
(i.e., goethite).

The thermofacies are characterized by thermal conductivity (KT, W/mK) and specific heat capacity
(cP, MJ/m3 K). These parameters are estimated indirectly based on the volumetric fractions of mineral
components and porosity. The Herten facies mineral components (Quarz, Feldspar, Calcite) are
determined with the same samples as used for the chemofacies characterization40,45. For these minerals,
tabularized thermal properties are available46. Assuming water saturated conditions, the bulk thermal
facies properties can be approximated by the geometric mean (KT) and the arithmetic mean (cP) of the
individual components46,47. The same indirect method was used for the Descalvado case. The more
mature sediment of this analog is assumed to be dominated by quartz. In the field, only minor local
occurrence of calcite was found. As a rough approximation for the quartz arenitic facies48 of the
Descalvado analog, the feldspar content is assumed to be 1/10 of that of quartz, which is a ratio reported
for similar sediments46.

Geostatistical modelling
Ensembles of multiple 3-D realizations of the Herten and the Descalvado analogs (Fig. 3) are obtained by
multiple-point statistics (MPS) simulation49,50. MPS is a collection of geostatistical simulation tools that
are specifically aimed at representing complex connected structures and curvilinear patterns. To apply
MPS, a training image is normally required, i.e., a conceptual model of heterogeneity that has the same
dimensionality as the domain to be modelled. For example, to simulate a 3-D domain with MPS, one
normally needs a full 3-D training image. Comunian, et al.51 proposed a technique, named sequential 2-D
simulation with conditioning data (s2Dcd), which relaxes the aforementioned requirement and allows the
MPS simulation of 3-D domains using 2-D training images only. The lack of information is compensated
by additional hypothesis about the symmetry of the 3-D simulation domain. In practice, the 3-D
simulation domain is filled by a sequence of 2-D MPS simulations, performed alternatively along the
directions where a 2-D training image is available. At each 2-D simulation step, all voxels simulated in the
previous steps that cross the current 2-D simulation sub-domain are considered as conditioning data. By
this, all 2-D sections in all directions are reconstructed in such a way that they are coherent with each
other and also consistent with the structures in the training image. Here the 2-D training images are the
facies distributions mapped for the two analogs along perpendicular vertical outcrops, and the 2-D MPS
simulations are performed with the MPS simulation engine impala52.

Data Records
For both analogs, we provide the results obtained with three MPS simulation settings. The first simulation
setting consists of a model domain of the same size as the available mapped outcrops (320 × 200 × 140
voxels of 5 cm side for the Herten-analog; 280 × 70 × 58 voxels of 10 cm size for the Descalvado-analog),
where the outcrops themselves are used as conditioning data to constrain the simulation. In the second
setting, the same grid dimensions are used, but without considering the outcrops as conditioning data.
For each of these two simulation settings, 100 equiprobable realizations are obtained by changing the
simulation random seed. MPS uses the random numbers generated by a computer for the facies
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simulation and for the choice of the sequential simulation path. Using another random seed for each
realization allows obtaining different stochastic simulations that are representative of the geological
uncertainty. For the third simulation setting only one realization per analog is provided, that is a grid of
size 1000 × 1000 × 140 for the Herten analog, and a grid of size 420 × 420 × 58 for the Descalvado analog.

Technical Validation
The presented high resolution data sets exhibit several sources of uncertainty and inaccuracy, associated
with each working step (Fig. 1). The sources may be grouped as those associated with mapping and facies
assignment, those stemming from measurement inaccuracy, those related with parameter estimation and
those originating from the geostatistical simulation procedure.

Mapping, measurement and parameter estimation techniques
During mapping, facies types have been allocated by visual inspection of the outcrop wall and of outcrop
photos. Even though the structural and textural properties, as well as the colours, were characteristic for
the different facies, there is always a risk of misallocation. If possible, the mapped sequences have been
validated by sedimentological analysis and comparison to other outcrop analogs44. This was crucial for
obtaining sedimentologically plausible reconstructions. When several perspectives were available, such as
for the Descalvado, consistency of the mapped facies mosaics was scrutinized at the intersections of
perpendicular profiles.

The facies types were distinguished based on the principle that they present quasi-homogeneous units
for the given scale of mapping (>5 cm). However, within facies types, there always remains a certain
natural variability. In order to account for this variability and to arrive at robust parameter values,
measurements of porosity, hydraulic conductivity, organic carbon and iron were all repeated several
times with multiple samples per facies11,31,32,34,40,53. The detected value ranges are reflected for the listed
parameters in Tables 2 and 3.

When no direct measurements were conducted, parameter values were estimated based on empirical
calculations and by utilizing values reported for neighbouring sites. Empirical calculations were applied
for hydraulic conductivity estimation. Since the applied standardized formula are only approximate, they
were either utilized for plausibility checking (Herten32) or the derived values were successfully validated
through in-situ flowmeter measurements (Descalvado31). No thermal measurements were conducted, and
the given ranges are propagated uncertainties of the porosity. The chemofacies for the Herten analog are
based on carbon measurements in two different adjacent gravel pits. Mean site-specific values of both pits
are listed in Table 2 in order to highlight the spatial variability of the chemofacies types. However, this
also shows that the regional hydrofacies-based classification may be suitable to also categorize chemo-
and thermofacies at one site, but transferability to another site is in this case limited.

Geostatistical simulation
The ensembles of 3-D realizations are validated using visual inspection and in terms of lithofacies
proportions, total connectivity and intrinsic connectivity indicators54,55. The visual inspection allows
evaluating the reliability and the geological realism of the simulated 3-D domains. A direct comparison of
the proportions of the facies mapped in the field and the proportions of the lithofacies reproduced in the

Descalvado Herten

7 m

7 m

16 m

10 m

28 m5.8 m

Hydrofacies codes Hydrofacies codes

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 90

Z

YX

Figure 3. Visualization of two exemplary realizations for Descalvado and Herten aquifer analogs with colour

coding of the facies types (see Tables 2 and 3).
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3-D simulations is another important criterion to evaluate the simulations. A direct comparison of the
connectivity indicators computed on the 2-D outcrops with the indicators computed on the 3-D
simulations would be difficult to interpret. Therefore, while some preliminary tests are performed to
compare the connectivity indicators of the 2-D datasets and 2-D MPS simulations, in the data repository
we only attach the mean, the median and the standard deviation of the ensembles of 3-D s2Dcd
simulations.

Usage Notes
The ensembles of 3D realization of the Herten and the Descalvado analogs are uploaded in compressed
format (zip) in the Open Access library PANGAEA (www.pangaea.de, (Data Citation 1)). For the first
two simulation settings (conditional and unconditional simulations with domain sizes delimited by the
datasets) 100 separate files (one for each realization) are provided for each analog and for each simulation
setting. Only one file per analog is provided for the third simulation setting, which is for simulations of
domains extended beyond the volumes delimited by the mapped outcrops. The files are provided in the
Visualisation ToolKit (VTK, www.vtk.org) structured grid format, which can easily be read with the open
source visualisation platform Paraview, freely downloadable (www.paraview.org), and which is described
in detail in the VTK user’s guide56. The VTK files are provided in the ASCII format, with a header that
contains a straightforward description of the size of the grid and its spacing (in meters). After the header,
the facies codes are reported in a unique column starting from the values with lower x value, then lower y
value, and then z. By simply changing the header, the files can be converted into the GSLIB file format (or
simplified GeoEAS57), or read by mathematical libraries and scripting languages such as Python, Matlab
or Mathematica in a straightforward manner. The README file attached to the data set includes a
description of the workflow required for the conversion from VTK to other formats using a text editor,
Python, Matlab/Octave or the bash shell. For each outcrop section, in addition to the VTK files, a VTI
(VTK ImageData) file is provided to allow for direct visualization of the spatial variability of the
hydraulic, thermal and chemical properties.
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