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1. Epigenetics and neuronal function 

Emerging evidence indicates that post-transcriptional gene regulation is necessary for neuronal 

functions at several levels: by increasing proteome diversity through alternative splicing, or by 

enabling activity-dependent regulation of mRNA localization, translation or degradation in the 

dendrite (Ule and Darnell, 2006). Since our phenotype is the product of continuous gene–

environment interactions, environmentally regulated intracellular signals constantly modulate 

gene transcription in order to obtain cellular plasticity. The capacity to mastermind such 

adaptation to circumstances relies on the possibility of neurons and glia to change their genomic 

structure in a replication independent manner (Fig. 1). A great number of accumulating 

evidences suggests that there is much more than DNA sequence that permits the brain to 

reorganize itself, and one way that such phenotypic plasticity can be established is through 

epigenetic mechanisms (Borrelli et al, 2008). Epigenetics refers to heritable changes in gene 

expression that are unrelated to variation in DNA sequence (Meaney et al, 2010).  In the brain, 

where most neurons are post-mitotic, epigenetic represents the molecular interface mediating 

interactions between gene and environment and regulates complex functions such cognition, 

behaviour and language. The epigenome has therefore a homeostatic role, that is at the base of 

the transcritional plasticity that translate environmental stimuli into morphological and functional 

changes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 The epigenetic interface. Epigenetic states lie at the interface between environmental signals and genome, 
serving to govern dynamic changes in transcriptional activity through extra- and intra-cellular mediators. In a 
multistep process, the epigenetic template attracts specific effectors that determine the responsivity of specific 
genomic regions to environmentally induced intracellular signaling pathways, thus leading to more stable effects on 
the potential of transcriptional activation and variation in neural function (color-graded region) (from Vasquero et al, 
2003) 
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On the other hand, for the same reason the epigenome is vulnerable and chronic or strong acute 

insults of different origin for instance metabolic or stress factors, can stably modify the 

epigenetic asset generating the so called epigenetic “scars” that could have a pathogenic 

relevance. For al the above reasons, epi-pharmacological manipulation of chromatin remodeling 

pathways could be a novel approach in the treatment of several human disorders.  

 

1.2 Histone modifications 

The N-terminal tails of histones contain flexible and highly basic 15-30 aa-long sequences that 

are generally conserved across eukaryotic organisms and it is well established that they act as 

substrates for several types of post-translational modifications, including acetylation, 

methylation, ADP-ribosylation, ubiquitylation, and phosphorylation (Fig. 2) (Vasquero et al, 

2003). Histone modifications are proposed to affect chromosome function through at least two 

distinct mechanisms. The first mechanism suggests that modifications may alter the electrostatic 

charge of the histone, causing structural changes or alteration of its DNA binding affinity. The 

second mechanism proposes that these modifications represent binding sites for protein 

recognition modules, such as the bromodomains or chromodomains, that bind acetylated lysines 

or methylated lysine, respectively (Cosgrove et al, 2004).  
 
 
1.3 Histone H3 post translational modifications (PTM) 

At the level of N-terminal tail of H3 a great number of PTMs have been identified: serine and 

threonine residues are well-known phospho-acceptor sites, while lysine and arginine residues 

have multiple choices of post-translational modification possibilities (Fig. 2).  Lysine residues 

can be mono-, di-, or trimethylated at the z-amine in vivo. Recent genomic-scale analysis of 

histone modifications allows for general correlations between different H3K4 methylation states, 

their genomic loci, and gene expression levels. The emerging consensus is that high levels of 

H3K4 trimethylation are associated with the 5' regions of virtually all active genes and that there 

is a strong positive correlation between this modification, transcription rates, active polymerase 

II occupancy, and histone acetylation.  
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Fig 2  Schematic diagram of the covalent post-translational modifications (PTMs) of the histone H3 N-terminal tail.  
The different Histone H3 modifications are indicated (P, phosphorylation, shown in orange; Ub, ubiquitylation, 
shown in purple; Ac, acetylation, shown in blue; S, sumoylation, shown in yellow; N, neddylation, shown in pink). 
Methylation (Me) is shown on top, with green and red indicating the methyl marks that are associated with 
activation or repression, respectively.  

 
 

2 HISTONE DEMETHYLASE LSD1/KDM1 
 

2.1 Flavin-dependent histone demethylases 

The discovery of Lysine Specific Demethylase 1 (LSD1) introduced a new concept in the field of 

the histone methylation, clearing the way for the idea that histone demethylation is possible. 

After LSD1 finding, many studies have been done and mechanisms for direct histone 

demethylase reactions have been proposed. Depending on the catalysis reaction, histone 

demethylases are subdivided in two main families: Flavin-dependent histone demethylases and 

Jumonji domain-containing demethylases (Culhane et al, 2007). As shown in figure 3, the 

Flavin-dependent histone demethylases, cause the oxidative cleavage of the C-N methyl group 

bond, coupling it with a two-electron reduction of the Flavin Adenine Dinucleotide (FAD) 

cofactor. This reaction produces an imine intermediate that is then non-enzymatically 

hydrolyzed. The methyl group is released as formaldehyde. This proteins exhibit specificity in 

the Lysine substrate, indeed they preferentially demethylate mono- and di-methyl Lysines. Since 

LSD1 is a good model for this protein family, their structure and function will be discussed later 

(Culhane etal, 2007). 
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Fig 3 Catalytic mechanisms of FAD-dependent demethylase enzymes.  
The FAD-dependent demethylation of Lys-4 of histone H3 proceeds through the hydrolysis of an iminium ion 
following a two-electron oxidation of the amine by the flavin. R, ribosyl adenine dinucleotide (from Culhane et al, 
2007) 
 

 

2.2 Lysin Specific Demethylase 1 

Lysine Specific Demethylase 1 (LSD1, also named KMD1A or AOF2), is a flavin-dependent 

histone demethylases, that specifically acts on mono- or dimethylated lysine 4 on histone 3 

(H3K4).  Its function is predominantly related to gene repression, in fact it is required for 

downregulation of neuronal genes in non-neuronal cells. LSD1 demethylases function can also 

be related to different biological processes, such as development, cancer and neurological 

disorders.  The human LSD1 protein is 852 aa long and consists of different domains (Fig. 4):  

− N-terminal domain, composed of the SWIRM domain (involved in proteins interactions) 

and of an unstructured region made of linear motifs that might represent functional sites 

responsible for the association of LSD1 with different transcriptional protein complexes; 

− C-terminal amine oxidase domain (AOD), composed of a substrate-binding portion and a 

FAD-binding portion. The enzyme active site is located between these two regions;  

− “Tower Domain”, made of two long antiparallel α- helices that project away from the 

globular AOD. This domain provides the interface for CoREST binding. 

 
 

The histone tail adopts a folded conformation when bound to the enzyme and slides into the 

substrate-binding domain cavity, establishing a network of specific interactions with the active 

site residues. These interactions are important to correctly position the Lys4 in front of the FAD 

(Mosammaparast and Shi, 2010; Forneris et al, 2009). The LSD1 core complex contains LSD1, 

the proteins HDAC1, HDAC2 and CoREST. CoREST is a co-repressor protein that binds the 

neuronal Responsive Element RE1 Silencing Transcription factor (REST). Indeed LSD1 
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complex is recruited by REST through the direct binding to CoREST, resulting in the repression 

of neuronal genes in non-neuronal cells. The presence of CoREST in the complex is also 

important for the substrate binding and recognition:  the C-terminal SANT domain of CoREST 

facilitates the association with chromatin by directly interacting with DNA. HDAC 1 and 2 

deacetylate histone H3, allowing the binding of CoREST to the nucleosome and the LSD1 

recruitment. Thus, the presence of HDAC1 and 2 suggests a coordinate modification of histone 

tails (Foster et al, 2010). Even if the active site of LSD1 is large enough to accommodate also 

H3K4me3, LSD1 demethylates only mono-or dimethylated H3K4, suggesting that the methyl 

state selectivity is not structurally inhibited but is chemically constrained, as predicted by its 

enzymatic mechanism. Some studies demonstrated that certain H3 tail modifications (such as 

acetylation on Lys 9 or phosphorylation on Ser 10) affect LSD1 activity, suggesting that LSD1 

could act after the addiction or removal of other charge-altering histones modifications. 

Moreover, these findings suggest also that LSD1 complex is capable to read the histone code.  

It has also been demonstrated that LSD1 complex function is not limited to REST-regulated 

neuronal genes, but it can be extended to other contexts. Thus, LSD1 can either repress or 

activate target genes through interacting with a variety of co-factors. For instance, there are some 

evidences that LSD1 can demethylate H3K9me2/me1, with an activating function. Indeed, it has 

been demonstrated that LSD1 directly binds the androgen receptor, and in this molecular 

complex is able to demethylate H3K9, functioning as a transcription activator. Anyway, it is still 

unclear how LSD1 changes its demethylase specificity when it engages different interacting 

partners Mosammaparast and Shi, 2010. It's a given that LSD1 also interacts with other proteins, 

including Carboxyl-terminal binding protein (CtBP), HMG domain containing protein BRAF35 

and PHD-finger containing protein BHC80 (Foster et al, 2010). These proteins can enhance the 

HDAC1-2 activity, adding further regulatory steps to the LSD1 activity (Lee et al, 2005).   

 

2.3 Neuronal LSD1 isoform: expression and activity  

 

Given the central role of LSD1 in chromatin remodeling, in my laboratory the process of LSD1 

alternative splicing was investigated in order to find out an additional mechanism of LSD1 

regulation. This approach led to the discovery of 4 different LSD1 splicing isoforms (Fig. 4), 

deriving from combinatorial retention of two alternative exons: exon E2a and exon E8a. E2a is 

60-bp-long and encodes for 20 aa, whereas the E8a is 12-bp-long and is translated into 4 aa with 
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sequence Asp-Thr-Val-Lys (Zibetti et al, 2010). 

 
 
 
 
 
 
 
 
Fig. 4 Structure of the four LSD1 variants: single or double inclusion of two alternatively spliced exons, E2a and 
E8a, generates 4 different mammalian specific splicing variants (from Zibetti at al, 2010) 
 
 
The inclusion of the two exons does not alter the reading frame and results in a protein of 876 aa. 

In this isoform, the amino acids coded by the exon E2a localize between the N-terminal 

disordered region and the SWIRM domain; whereas the four residues of the exon E8a 

immediately precede the CoREST-binding tower domain, which is inserted within the amine 

oxidase domain (Fig. 5). Both the two alternatively spliced introns present a very high 

conservation degree between human and mouse, a typical feature of alternatively spliced exons.  

Fig. 5 Genomic organization of human LSD1 gene 
Schematic representation of the human LSD1 protein domains together with its exons ranging from 1 to 19; asterisks 
indicate the location of annotated alternative exons (E2a and E8a). Different colors indicate functional domains. N-
terminal unstructured region coded by exons 1–2, SWIRM domain coded by exons 2– 4, the SWIRM-oxidase 
connector coded by exon 5, the amine oxidase domain coded by exons 6–9 and exons 13–19, and the tower domain 
coded by exons 10 –12 (from Zibetti at al, 2010)  
 

 

The isoforms containing exon E2a are ubiquitously expressed, as the wild type isoform is, 

whereas the isoform containing the sole exon E8a is restricted to the nervous system. Finally, the 

LSD1-E2a/8a isoform is expressed both in human brain and testis. It is interesting to note that 

while the E2a isoform is present in different species, such as lizard, chicken and mammals, the 

E8a isoforms are expressed only in mammals. Moreover, while the epigenetic factors are mostly 

ubiquitous, LSD1-E8a is one of the very few factors restricted exclusively to neurons. All the 4 

splicing variants retain the ability to generate functional proteins and to form an active complex 

with CoREST and HDAC1-2. Biochemical in vitro assays using histone H3 peptides as substrate 

revealed that all three LSD1 isoforms bound to CoREST can demethylate Lys4 of histone H3 
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with a catalytic efficiency virtually identical to that displayed by wild type LSD1. Such 

unchanged enzymatic activity and substrate specificity is supported by a very similar three-

dimensional structure, indeed even in the presence of exon E2a the N-terminal region of LSD1 

remains unstructured, at least in the crystalline state. Also the overall conformation of LSD1-E8a 

is very similar to that of the native protein, since the neurospecific E8a residues Asp-Thr-Val-

Lys form a sort of protrusion that emerges from the amino-ossidase domain of the protein but 

doesn't contact the histone peptide and CoREST (Fig. 6). From a functional point of view, the 

presence of the neuronal mini-exon E8a determines a significantly reduced repression of the 

Luciferase reporter gene activity (Zibetti et al, 2010). Moreover it was demonstrated that a fine 

balance of LSD1 isoforms allows differentiating neurons to acquire a proper morphology. 

Indeed, the expression of LSD1 splice variants is dynamically regulated during mammalian brain 

development and synaptic maturation, in particular during the perinatal stages. At early all the 

splicing isoforms are detectable, but the preponderal ones are LSD1 and LSD1-E2a. During the 

perinatal window, however, a rapid inversion of the proportions occurs, with a notable increase 

of the neuronal exon E8a containing isoforms and a decrease of the exon E2a isoforms. Exon 

E8a expression increases concomitantly with early stages of synaptogenesis, suggesting its 

implication during morphogenesis, possibly regulating the proper timing of neurite maturation. 

Nevertheless, after day P7, all LSD1 isoforms reach comparable levels, as it is possible to detect 

in adult mouse brain. Thus, LSD1 expression profile suggests a possible implication of 

neurospecific E8a-containing isoforms in neuronal development. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Structure of neuroLSD1 
splice variant/CoREST in 
complex with H3 peptide  

Ribbon diagram of the structure. 
NeuroLSD1 is in blue, CoREST 
in red, and the peptide in green. 
The FAD cofactor is shown as a 
yellow ball-and-stick. The final 
model consists of residues 171–
836 of LSD1, residues 308–440 
of CoREST, and residues 1–16 of 
pLys4Met peptide. The insertion 
site of E8a (residues Asp369A-
Thr369B-Val369C-Lys369D) is 
highlighted 
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2.4 The balance of LSD1/neuroLSD1 in the brain 

Because inclusion of E8a is a neurorestricted event, its functions within CNS were initially been 

inferred by relating its expression profile to peculiar stages of neuronal differentiation (Zibetti et 

al, 2010). Time course analysis of the relative amount of each LSD1 splice isoform was 

performed by rqf-PCR in rat cortical tessues (which represent a suitable model of neuronal 

maturation) collected at several developmental stages. This analysis demonstrated an increase in 

neuro-LSD1 isoform between E18.5 and P1 compared to LSD1 and showed that this ratio 

remains stable along subsequent stages of development (Fig. 7). A parallel analysis showed that 

several synaptic markers arise during the perinatal window with a progressive increase over 

developmental stages, indicating that the inclusion frequency of E8a increases concomitantly 

with early stages of synaptogenesis. 

 
Fig. 7  LSD1 splicing analysis in a rat cortical neuron maturation system (From Zibetti at al, 2010) 

 

 

LSD1 expression profile suggested immediatly a possible implication of neurospecific E8a-

containing isoforms in neuronal development. To test this hypothesis, the expression of LSD1 

isoforms within rat cortical neurons was perturbed in a developmental window important for 

synaptic maturation. To infer the function of LSD1 isoforms within neurons, they were knocked 

down differentially by generating short hairpin RNAs (shRNAs) specific for either neurospecific 

exon E8a or the splice junction between exon E8 and E9, which is shared among ubiquitous 

LSD1 isoforms (Zibetti et al, 2010). Phenotypic traits that describe neuronal morphogenesis 

during in vitro maturation, including cumulative neurite length, the number of branches, and 

neurite, were evaluated. The knockdown of ubiquitous isoforms ensued no effect when compared 
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with control according to cumulative neurite arborization, branch count, and neurite	  width.	  

Conversely, the silencing of neurospecific isoforms altered neurite morphogenesis by eliciting a 

significant decrease of the cumulative neurite arborization (Fig. 8D), a reduced number of 

secondary branches (Fig. 8E), and a reduced average neurite width (Fig. 8F). Furthermore neurite 

morphogenesis after overexpressing LSD1 neurospecific isoforms was evaluated, because this 

was expected to exert opposite effects to those observed during knockdown experiments. 

Although the knockdown of neurospecific LSD1 isoforms delays neurite morphogenesis, 

overexpression of the same seems to anticipate features that normally arise at later stages under 

physiological conditions. Therefore only the change in the amount of neurospecific NeuroLSD1 

isoform is able to alter neurite morphogenesis in terms of cumulative neurite arborization, 

number of secondary branches and average neurite width (Zibetti et al, 2010). 

 

 

 

  

Fig. 8 Effect of neurospecific or 
ubiquitous LSD1 knockdown 
by shRNAs on neurite 
morphology in rat cortical 
neurons (from Zibetti et al, 
2010) 
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3 UNDERSTANDING LSD1 NEUROSPECIFIC ALTERNATIVE SPLICING 
 

The dynamically regulated expression of neuro-LSD1 within neuronal maturation and its 

implication in neuronal morphogenesis, suggested an important role for LSD1/neuroLSD1 

balance in the CNS. This address the studies intended to understand the basis of neurospecific 

LSD1 splicing in vivo and its reliance on neuronal activity. 

 

3.1 NeuroLSD1 splicing variant is transiently downregulated during neuronal activation 

To understand whether in adult brain LSD1/neuroLSD1 ratio could be dynamically regulated in 

response to experience, different paradigms of neuronal activation were used (Rusconi et al, 

2014). The pilocarpine-induced status epilepticus (PISE) entails strong activation of hippocampal 

circuitry. 5-week-old C57BL/6 mice with pilocarpine (i.p.) were treated using strandard 

procedures and behavioral observations addressing status epilepticus (SE), number, and severity 

of seizures were performed, in parallel with LSD1 splicing isoform quantification obtained by 

relative quantity fluorescence RT-PCR (rqfRT-PCR). It was observed an activity-dependent 

downregulation restricted to exon E8a splicing. Such change in the relative levels of the LSD1 

isoforms was transient and by 24 h neuroLSD1 and LSD1 isoform levels were similar to controls 

(Fig. 9). 

 

 

 

Fig. 9 Neuronal activation in vivo induces 
LSD1 exon E8a splicing downregulation. 
PISE was elicited in 5-week-old C57BL/6 
mice. Seven or 24 h after the onset of status 
epilepticus hippocampal RNA was analyzed 
(n=10 mice per condition) and compared 
with control condition (from Rusconi et al, 
2014) 
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3.2 NOVA1 and nSR100 participate in the regulation of exon E8a splicing 

Since in a previous in vivo study aimed at the identification of NOVA splicing regulatory 

network, LSD1 exon E8a has been reported to be physically associated with NOVA proteins 

(Zhang et al, 2010), in our laboratory we had tried to provide mechanistic evidence that NOVA1 

regulates LSD1 neurospecific alternative splicing (Rusconi et al, 2014).  These experiments took 

advantage from Minigene assay, an assay to assess alternative splicing in cells. In order to 

identify the splicing regulatory elements in pre-mRNA and the proteins that bind these elements, 

minigenes are constructed that contain the alternatively spliced region and flanking genomic 

regions. 

 

 

 

 
Fig.10 Schematic representation of the splicing vector pBS II KS with its multiple cloning site. In the minigene the 
exon 8a together with its intronic regions upstream and downstream (for about 800 bp) was cloned. NdeI cloning 
site was used for cloning.  
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The use of a minigene (MG) reporter assays, in wich 800 bp fragment including exon E8a and 

the highly conserved flanking intronic regions (hLSD1- MG800) was cloned, allowed to 

understand the role of NOVA1 in regulating LSD1 spicing in SH-SY5Y and HeLa cells. 

Figure 11 shows how by cotransfecting hLSD1-MG800 along with increasing amount of 

NOVA1 we obtained a dose-dependent increasein exon E8a inclusion frequency in SH-SY5Y 

cells and no exon E8a inclusion in HeLa cells, even at the highest dose. Consistently with its 

ability to bind LSD1 transcripts (Zhang et al. 2010), NOVA1 actively participates in the 

regulation of exon E8a splicing. 
 

 
 

The level of NOVA protein in hippocampus of mice treated with PISE, was analyzed, to 

understand if NOVA1 could be responsible for the decrease in exon E8a splicing inclusion 

triggered by PISE. As shown in figure 13, upon PISE, global NOVA1 protein levels and mRNA 

were reduced by about 30%, suggesting that hippocampal NOVA transcription is sensitive to 

electrical activity and is downregulated in response to PISE. Altogether, these findings suggest 

that, NOVA1 downregulation in response to PISE could account for the concomitant reduction 

of exon E8a inclusion frequency into LSD1 mature transcripts. 

 

 

 

Fig. 11 NOVA1 regulates exon E8a 
splicing inclusion (from Rusconi et 
al, 2014)  
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NOVA1 is able to modulate exon E8a inclusion into MG-derived transcripts in a neuronal 

context but it is not sufficient to trigger splicing inclusion in HeLa cells. This suggests that 

NOVA1 is not directly responsible for restricting exon E8a splicing to the nervous system. In 

order to identify cis-acting elements regulating tissue-specific alternative splicing of LSD1 

transcripts, a deletion analysis was performed. Deletion of the 450 bp located at the 3′ resulted in 

a dramatic increase of exon E8a inclusion in SH-SY5Y (up to 70% of the mature MG 

transcripts), indicating the presence of a strong negative cis-acting element within the removed 

fragment. A palindromic 21-bp element containing the reverse complement of exon E8a was 

identified by computer-assisted analysis of the deleted region. This palindrome is 100% 

conserved among mammals and maps about 300 bp downstream of exon E8a. Given its perfect 

complementarity to exon E8a, at the pre-mRNA stage, this region could trap the mini-exon and 

its donor and acceptor splicing sites into a perfect 21-bp-long double-stranded RNA structure 

(Fig. 13) hampering the splicing process. 

 

 

 
Fig.13 Representation of the palindromic 12 base-pair core sequence  

 

 

Fig 12 NOVA1 mRNA expression level from 
treated and control mice (from Rusconi et al, 
2014) 
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Consistently, deletion of the 12-bp core sequence complementary to exon E8a from the 

palindrome resulted in a massive increase of exon E8a inclusion (85% of total MG transcripts). 

These data suggest that the palindromic element acts as a cis-silencer of exon E8a splicing in 

neuronal cells. However, as removal of this element was not sufficient to allow exon E8a 

inclusion in HeLa cells, it was postulated that, besides NOVA1, another neurospecific 

transacting factor is required to trigger E8a splicing.  Among a subset of tissue-specific RNA 

binding factors (Braunschweig et al. 2013), namely nPTB, RB-FOX1, SAM68, and nSR100, 

only SR protein nSR100 (also known as SRRM4) was able to drive exon E8a inclusion in non-

neuronal cells, not only into MG hLSD1-MG800 transcripts, but also into endogenous LSD1 

transcripts, in a dose dependent manner, indicating nSR100 as necessary and sufficient factor to 

regulate LSD1 neurospecific splicing.   SR proteins are so called because of their proteic domain 

rich in serine “S” and arginine “R” (Raj et al, 2011). From literature it is known that the 

interaction between nSR100 and pre-mRNAs is necessary for exon inclusion and it is mediated 

by conserved UGC motifs downstream the exon splicing acceptor site regulated by nSR100 

(Nakano et al., 2012). A 12 bp sequence UGCUGC it has been identified downstream exon 8a. It 

is necessary for nSR100 binding and 100% conserved in mammals. Moreover the insertion of 

only one nucleotide in the consensus sequence of nRS100 (MG800-mut in figure 14) completely 

abolishes not only the effect of nSR100 on exon 8a inclusion, but also the basal inclusion 

observed in SH-SY5Y cells, when nSR100 is not overespressed (Fig. 14). This suggested that the 

basal inclusion of exon 8a in MG ttanscripts is due to the low level of expression of nSR100 

observed in SH-SY5Y cells. 
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Fig. 14  nSR100 is the principal neurospecific splicing factor responsible of the regulation of the neuroLSD1 
expression in neuronal cells. A, nSR100 promots the inclusion of the exon 8a in transcripts derived from minigene 
hLSD1-MG800 in a dose dependent manner in SH-SY5Y cells; in hLSD1-MG800-Mut exon 8a inclusion is 
abrogated. B, nSR100 promotes di per se neurospecific splicing in HeLa cells and the level of endogenous LSD1 
mRNA in SH-SY5Y. Bars represent error standard, **p≤0,001 Student “t” test. (from Rusconi, 2014) 
 
 

These results collectively indicate nSR100 as the necessary and sufficient factor regulating LSD1 

neurospecific splicing. There are therefore 3 key elements responsible for regulating expression 

of neuroLSD1 in neuronal cells: a palindromic cis-acting negative regulator and 2 trans-acting 

neurospecific splicing factors, nSR100 and NOVA1 (Rusconi et al, 2014).  NOVA1 and nSR100 

cooperate to bind LSD1 pre-mRNAs. Furthermore, performing co-immunoprecipitation 

experiments using overexpressed HA-NOVA1 and Flag-nSR100, the 2 proteins were found as 

part of the same splicing regulating complex (Fig. 15).  Taken together, these results indicate that 

nSR100 and NOVA1 and the cis-acting palindrome cooperate in restricting neuroLSD1 

expression to the nervous system. 
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Fig. 15 Schematic model recapitulating exon E8a splicing regulation by cis- and trans-acting factors. In non-
neuronal cells where neurospecific splicing factors are absent, exon E8a is never included. In neuronal cells, 
NOVA1 and nSR100 binding to LSD1 pre-mRNA promote splicing inclusion but have to counteract palindrome 
annealing to exon E8a in order to expose E8a donor and acceptor splicing sites. In neuronal cells, the presence of the 
palindrome ensure a fine balance between neuronal and non-neuronal isoforms: for instance, in P60 mouse 
hippocampus, the ratio between neuronal and non-neuronal isoforms is, respectively, 60% and 40%. In non-neuronal 
cells, palindrome represents an intrinsic safe lock mechanism to avoid aberrant E8a splicing inclusion 
 

 

3.3 Generation of neuroLSD1-null mice 

The generation in our laboratory of a gene targeting mutant mouse line specifically ablating exon 

E8a (neuroLSD1KO), was an important tool in order to understand the physiologic relevance of 

exon E8a in normal and pathological responses in the CNS. The characterization of 

neuroLSD1KO mice was illustrated in the work of Rusconi et al, 2014. Figure 16 shows that 

brains lacking neuroLSD1 retain LSD1 expression and display normal morphology. Animals 

were healthy and did not show any alteration of the vital parameters: weight, dimensions, and 

fertility were unaffected by the mutation and no morphological defects were detected. 



Introduction 

 
 

22 

 
Fig. 16 Brains lacking neuroLSD1 retain LSD1 expression and display normal morphology. (A) Schematic 
representation of mouse LSD1 gene. (B) Exon E8a deletion strategy: targeting construct and mutated allele are 
shown. (C) PCR genotyping with primers F1, R1, and R2 on a representative litter of neuroLSD1 +/−. (D) rqfRT-
PCR analysis of hippocampal RNA from wild-type, heterozygous, and knockout animals. (E–I) Brain 
cytoarchitectural analysis of wild-type and knockout adult mice. (E) Photomicrographs of thionin-stained vibratome 
sections; a, a′, coronal section at the level of frontal cortex and anterior olfactory nuclei; b, b′, coronal section at the 
level of somatosensory cortex, hippocampus, and diencephalon; c, c′, sagittal section of cerebellum; d, d′, transverse 
section of spinal cord. Scale bars=1.3 µm for a–b′; 1.9 µm for c–d′. 
 
 

Immunohistochemistry showed a normal pattern of labeling with anti-GFAP (glial fibrillar acid 

protein, a marker of astrocytes), indicating absence of astroglial activation (Fig. 17F). 

Immunohistochemistry showed a normal pattern of labeling with anti- NeuN (neuronal nuclear 

antigen, a pan-neuronal marker), indicating absence of abnormalities in neuronal distribution and 

density (Fig. 17G). In the hippocampus, the immunostaining for the calcium binding protein 

Calretinin was normal (Fig. 17H), whereas a weaker immunostaining for the calcium binding 

protein Calbindin was evident in the hippocampus dentate gyrus and CA3 of neuroLSD1KO mice 

compared with wild-type littermates (Fig. 18I). Immunohistochemical localization of LSD1 

using a pan-LSD1 antibody showed an identical pattern and intensity of labelling in all brain 

sections of wild-type and neuroLSD1KO mice analyzed. Finally, also the immunoreactivity for 

the LSD1 dimethylated substrates H3K4 and H3K9 was unaffected in neuroLSD1KO mice 

compared with wild-type littermates (Rusconi et al, 2014).  
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Figure 17. Brains lacking neuroLSD1 retain LSD1 expression and display normal morphology. (F) Immunostaining 
for GFAP in the hippocampus;  G=granule cell layer of dentate gyrus; Scale bar=160 μm. (G) Immunostaining for 
NeuN in the cerebral cortex a, a′ and cerebellum b, b′. Scale bars=370 μm. (H) Immunostaining for calretinin in 
the hippocampus; a, a′; b–b′, labeled neurons are in the hilus (h) and subgranular zone (arrowheads) and labeled 
terminals form a band in the inner molecular layer (asterisks); Scale bars=940 μm for a, a′; 370 μm for b, b. (I) 
Immunostaining for Calbindin in the hippocampus; a, a′; G=granule cell layer, M=molecular layer of dentate 
gyrus; asterisks denotes mossy fibers in the hilus. Low power inserts show the mossy fibers projections to the CA3 
region (arrows); Scale bars=170 μm, inserts 600 μm. 
 

 

In the light of these data, the aim of my project was to understand the molecular mechanism at 

the basis of the different function of neuroLSD1 in the mammalian CNS and to identify new 

transcription factors that recruit LSD1 to specific gene promoters in the brain in order to regulate 

transcription of specific target genes.  
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Plasmids 

Gal4-LSD1 and cGal4-neuroLSD1 containing the full length cDNAs were generated by PCR and 

cloned into pSG424- vector. The HA-LSD1, HA-neuroLSD1, and the E. coli expression 

plasmids have been described (Zibetti et al. 2010). Thr369bAla, Thr369bAsp, and Lys661Ala 

mutants where obtained by site-specific mutagenesis using the QuikChange II Site-Directed 

Mutagenesis Kits (Stratagene, La Jolla, CA, USA). For lentiviral transduction, HA-fused LSD1 

and neuroLSD1Thr369bAsp cDNAs were generated by PCR using pCGN-vectors as templates 

and cloned into lentiviral transfer vector C-FUW in the AscI and HpaI sites. All plasmids were 

sequenced. 

 

Animals 

Animals were obtained from Charles River, Calco, Italy. All the animal treatments followed the 

guidelines established by the Italian Council on Animal Care and were approved by the Italian 

Government decree No. 27/2010 being in compliance with the ARRIVE guidelines. All efforts 

were made to minimize the number of subjects used and their suffering. Immunopurification of 

LSD1 from brain extract and in situ digestion and mass spectrometry. Total protein extracts were 

obtained from post-natal day 1 rat brains (Charles River) lysed in immunoprecipitation (IP) 

buffer (10% glycerol, 0.5 mM EDTA, 0.5% Triton-X100, 1 mM phenylmethylsulfonyl fluoride), 

and 19 Protease Inhibitors Cocktail, (Sigma-Aldrich, St. Louis, MO, USA). Two milligram of 

cellular extract were reacted with 2.5 lg of rabbit polyclonal anti-LSD1 antibody (AbCam, 

Cambridge, UK) overnight rocking at 4°C. The immunoprecipitates were collected with Protein 

G Agarose (Invitrogen, Carlsbad, CA, USA). After incubation, the beads were washed four times 

with the IP buffer. The immunoprecipitates were then eluted with 1x sodium dodecyl sulfate 

Sample buffer and separated on 1D polyacrylamide. Following mass compatible silver staining, 

the protein band at 110 KDa band corresponding to the LSD1 molecular weight excised, 

destained with 50% acetonitrile in ammonium bicarbonate 0.1 M (40 min at 25°C), dried in a 

Speed Vac, soaked with ammonium bicarbonate 0.1 M, reduced and derivatized by 

iodoacetamide, and digested overnight with trypsin sequencing grade (Roche, Monza, Italy) at 

37°C (Pastori et al. 2010). The in gel tryptic digest was extracted with 50% acetonitrile in 0.1% 

trifluoroacetic acid. Digested aliquots were removed and subjected to a desalting/concentration 

step on a lZipTipC18 (Millipore, Bedford, MA, USA) using 40% CH3CN in 0.1% trifluoroacetic 

acid as eluent before MALDI analysis usingan Autoflex III instrument (Bruker Daltonics, 
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Bremen, Germany). For protein identification, the Biotools software (Bruker Daltonics, Milano, 

Italy) was used to search the NCBI protein Data Bank by setting carbamidomethylation as fixed 

modification and by setting oxidation (M), phosphorylation (Ser, Thr and Tyr), and deamidation 

(Asn and Gln) as variable modifications. Two missed cleavages were allowed. Peptide quality 

scores were derived by processing against decoy shuffled databases. 

 

Stable cell lines 

HA-tagged human LSD1 or neuroLSD1 cDNAs (Zibetti et al. 2010) or neuroLSD1-Thr369bAsp 

or neuroLSD1-Thr369bAla were transfected into HeLa cells together with pPURO (Clontech 

Takara-Bio, Mountain View, CA, USA). Stable clones were selected against Puromycine (0.5 

lg/mL) and screen for HA expression. 

 

Immunoprecipitation and HDAC activity assay 

Immunoprecipitation experiments were performed as previously reported (Battaglioli et al. 

2002). HeLa cells or cortical neurons were harvested in IP buffer (10% glycerol NaCl 150 mM, 

imidazole 10 mM, 0.5 mM EDTA 0.5% Triton-X100, dithiothreitol 0.5 mM) supplemented with 

1 mM phenylmethylsulfonyl fluoride and 1x Protease Inhibitors Cocktail and 1x Phosphatase 

Inhibitor Cocktail (Roche). 0.5 mg of cellular extract were reacted and collected with HA-

conjugated Agarose beads (Santa Cruz, Santa Cruz, CA, USA). After incubation, the beads were 

washed four times with IP buffer. The immunoprecipitates were then eluted with 1x sodium 

dodecyl sulfate Sample buffer and analyzed using western Blot. Quantification was performed 

using ImageJ software (ImageJ 1.43u National Institute of Health, Washington, DC, USA). 

Immunoprecipitates with 5 lg of the monoclonal anti-HA antibody (Santa Cruz) obtained from 2 

mg of total cell extracts were tested for their histone deacetylate activity (Active Motif, Carlsbad, 

CA, USA). Immunoprecipitates collected using Dynabeads (Invitrogen) were incubated for 60 

min with a short peptide substrate containing an acetylated lysine residue that can be 

deacetylated by Class I, II, and IV HDAC enzymes. Once the substrate is deacetylated, the lysine 

reacts with the developing solution and releases a fluorescent product measured using a 

fluorescent plate reader with an excitation wavelength of 340–60 nm and emission wavelength of 

440–465 nm. We performed developing reaction for 10 min. Histone deacetylase activity was 

normalized for immunoprecipitation efficiency on western blot using an anti-HA antibody and 

expressed as fold over the mock condition. The reaction was read using a microplate reader 
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Wallac 1420 VICTOR3 V (Perkin Elmer, Waltham, MA, USA). 

 

Lentiviral infections 

HA-LSD1 and Ha-neuroLSD1-T369bD were subcloned into the lentiviral transfer vector FUW 

which contains the ubiquitin promoter (Lois et al. 2002). The preparation of the lentivirus vectors 

has been previously described (Naldini et al. 1996; Lois et al. 2002). Neurons were infected after 

4 days in vitro (DIV4) and analyzed on DIV8.  

 

Total RNA extraction and RT-PCR analysis 

Total RNA was isolated using the Trizol reagent (Sigma- Aldrich), and the purified RNA was 

treated with RNase-free DNase set (Qiagen, Valencia, CA, USA) to remove any residual DNA.  

Quantitative RT-PCR analysis was performed on an iQ5 Real-Time PCR Detection System 

(Biorad, Hercules, CA, USA) using the iScriptTM two-Step RT-PCR Kit with SYBR_ Green 

(Biorad). The relative expression of the investigated genes was quantified after normalization 

against ribosomal protein SA (RPSA) and glyceraldehyde-3- phosphate dehydrogenase 

(GAPDH). RT-PCR was performed with BioTaq DNA Polymerase (Boline, London, UK). 

 

Primers 

Cloning primers: 

cFUW-LSD1 Fw GCGTTAAGCGGACCATGGCTTCTAGCCTATCCTTA 

cFUW-LSD1 Rv CCGGGCGCGCCTCACATGCTTGGGGACTGCTGTGC 

hLSD1-Thr/Asp Fw CAAGCTGACGATGTCAAGGTTCCT 

hLSD1-Thr/Asp Rv AGGAACCTTGACAGCGTCAGCTTG 

hLSD1-Thr/Ala Fw CAAGCTGACGCTGTTCAAGGTTCCT 

hLSD1-Thr/Ala Rv AGGAACCTTGACAGCGTCAGCTTG 

 

 

Primers for splicing quantification 

Human-LSD1 Fw GTGAGCCTGAAGAACCATCG (E2) or 

Fw GAAAAGGAAACTATGTAGC (E8) 

Human-LSD1 Rv CTACCATTTCATCTTTCTCTTTAGG 

Mouse-LSD1 Fw AGTGAGCCGGAAGAGCCGTCTG (E2) or 
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Fw GAAAAGGAAACTATGTAGC (E8) 

Mouse-LSD1 Rv CTACCATTTCATCTTTTTCTTTTGG 

Primers for mice genotyping 

P3 Fw ACGCGTCGACTCTTCAGTGCTTTCTCACTCCCA 

P6 Rv ATAGTTTAGCGGCCGCCCTCTATTTTCTGAGCAGCC 

PB Rv CAGCTGGGGCTCGACTAGAGCTTGC 

 

Primers for semiquantitative RT-PCR 

Actine Fw ACC TGG CCG TCA GGC AGC TC 

Actine Rv CCG AGC GTG GCT ACA GCT TC 

 

Primers for RealTime qPCR (rat) 

mRPSA Fw ACCCAGAGGAGATTGAGAAGG 

mRPSA Rv TGGGGAACTGCTGGATGGGC 

GAPDH Fw GGAAACCCATCACCATCTTCC 

GAPDH Rv GAAGGGGCGGAGATGATGACC 

CK5R1 Fw AGCCCTTCCTGGTGGAGAG 

CK5R1 Rv AAGTCAGAGAACACTTGTGTG 

EGR1 Fw TTCAATCCTCAAGGGGAGC 

EGR1 Rv AACCGGGTAGTTTGGCTGGGA 

c-FOS Fw CTGCAGCCAAGTGCCGGAAT 

c-FOS Rv TTGGCAATCTCGGTCTGCAAC 

PCTAIRE Fw TCGTGTTCCAGTCTGATCTCC 

PCTAIRE Rv TCGTGTTCCAGTCTGATCTCC 

GRIN1 Fw GGTGGCTGTGATGCTGTAC 

GRIN1 Rv TCCTCCTCCTCACTGTTCAC 

PSD95 Fw CAAGATCCTGGCGGTCAAC 

PSD95 Rv CGTCATATGTGTTCTTCAGGG 

 

Primers for ChIP analysis (mouse) 

c-FOS Fw TCAGAGTTGGCTGCAGCCGGC 

c-FOS Rv GCGTGTAGGATTTCGGAGATG 
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Cdkl4 Fw ACCACAGAACTCCCGAGAGACC 

Cdkl4 Rev GGTGATGGATGGAAGGTAACC 

EGR1-CTRL- Fw GGCCTGGGTCACAGACCTAC 

EGR1-CTRL- Rv CTTCTGTGTACCCAGCACCTG 

Egr1 Fw GGCCTGGGTCACAGACCTAC 

Egr1 Rv CTTCTGTGTACCCAGCACCTG 

 

Cortical neuron cultures and immunostaining 

Cortical neuron cultures were prepared from embryonic day 18 (E18–E19) rat brain (Charles 

River) as previously described (Romorini et al. 2004), plated on 18 mm diameter cover slips, and 

grown on 12-well plastic tissue culture plates (Iwaki; Bibby Sterilin, Staffordshire, UK). The 

neurons were transfected using calcium phosphate precipitation (transfection efficiency 1%). 

Cells were fixed with a phosphate- buffered saline solution containing 4% paraformaldehyde for 

10 min. Cells were incubated anti-HA (1 : 100 sc80; Santa Cruz) for 3 h at 23°C in gelatin 

dilution buffer (30 mM phosphate buffer, pH 7.4, containing 0.2% gelatin, 0.5% Triton X-100, 

and 0.8 M NaCl), followed by FITC-conjugated secondary antibodies (Jackson Laboratories, Bar 

Harbor, ME, USA) for 1 h. The images were acquired using a Zeiss LSM5 510 laser-scanning 

confocal microscope (Oberkochen, Germany, generously donated by Fondazione Monzino) at 

63x magnification, and an Axioplan fluorescent microscope at 259 magnification. 

 

Spine analysis 

Labelled transfected neurons were chosen randomly for quantification from four coverslips from 

three independent experiments for each construct. Fluorescent images were acquired with a Zeiss 

510 confocal microscope, using a 60X objective with sequential acquisition setting at 1,240 X 

1,240 pixel resolution. Image data were a z series projection of about 5–8 images, each averaged 

4 times and taken at 0.7 µm depth intervals. Morphometric measurements were made with 

NeuronStudio software. All measurements are given as mean standard error of the mean (s.e.m.). 

 

Reporter gene assays 

Cortical neurons were cultured and transfected at DIV4 using calcium phosphate precipitation. 

5xUAS-TK-LUC reporter plasmid (Chen et al. 1998) was used at the indicated molar ratio 

relative to the expression plasmids pGal4-LSD1, pGal4- neuroLSD1, and mutants. Control 
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experiments were carried out by using equivalent molar amounts of pGal4 empty vectors. DNA 

was kept constant by adding pBSIIKS (Stratagene) in every experiment; pRL-TK-vector 

(Promega, Madison, MI, USA) reporter vector was co-transfected to normalize for transfection 

efficiency. The luciferase reporter activity was determined with the Dual-Luciferase reporter 

assay system (Promega) according to the manufacturer’s instructions. For each construct, the 

values of Firefly luciferase were normalized over Renilla luciferase (both expressed as relative 

luminescent units). The activity of each construct was expressed as a percentage of the promoter-

less plasmid pGal4-vector. 

 

Biochemical assays and structural analysis of theThr369bAsp phospho-mimetic mutant 

Recombinant neuroLSD1/CoREST proteins were expressed in E. coli and purified following the 

same protocols used for the expression and purification of wild-type LSD1/CoREST (Zibetti et 

al. 2010). Likewise, the enzymatic activities were measured as described (Forneris et al. 2007). 

Crystals of Thr369bAsp LSD1/CoREST were grown at 20°C by hanging- drop vapor diffusion 

method by mixing equal volumes of protein samples with reservoir solutions containing 1.2 M 

sodium/potassium tartrate and 100 mM N-(2-acetamido) iminodiacetic acid, pH 6.5 (Forneris et 

al. 2007). Crystals were flash cooled in liquid nitrogen and data collections were performed at 

the beam-lines of the European Synchrotron Radiation Facility and of the Swiss Light Source. 

Data processing and crystallographic refinements were performed using programs of the CCP4 

package (Winn et al. 2011). The crystallographic statistics are the following: resolution, 3.1 _A; 

number of unique reflections, 44180; Rmerge, 0.102 (0.601 in the highest resolution shell); 

multiplicity 4.5 (4.1); Rfactor and Rfree of the refined model, 0.209 and 0.226; root-mean-square 

deviation for bond-lengths and bondangles, 0.005 _A and 0.91°. 

 

Chromatin immunoprecipitation  

Hippocampi of 8 weeks old mice have been dissected and rapidly incubated in 1% formaldehyde 

for 15 minutes at RT for cross-linking purposes then transferred in 0.125 M glycine for 10 

minutes and homogenized in lysis buffer (10 mM Tris- HCl pH 8; 1 mM EDTA, 0.5 mM EGTA, 

100 mM NaCl, 0.1 % Na-deoxy-cholate, 0.5% N-laurylsarcosine) containing protease inhibitors 

and PMSF 0.2 mM. Lysates were sonicated twice with a Bandeline Electronic Sonicator for 30 

seconds at 30% power to generate fragments with an average length of ~500-200 bp, as 

determined empirically by agarose gel electrophoresis of the fragmented chromatin sample. 
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Immunoprecipitation was performed overnight with 200 µl of sonicated chromatin in 600 µl of 

lysis buffer containing Triton 1%, PMSF 0.2 mM and 1.2 µg of anti-MeCP2 pAb (SIGMA, Saint 

Louis, USA). A sample without antibody (mock) was included as a control. The samples were 

then incubated with protein G Dynabeads (Invitrogen Corporation, Carlsbad, CA) at 4°C for 2 

hours. After immunoprecipitation, the mock supernatant was kept apart as input sample. The 

beads were washed sequentially at 4°C (for 7 minutes each) with 800 µl of low salt buffer (0.1% 

SDS, 2mM EDTA, 1% Triton, 20mM Tris-HCl pH 8, 150 mM NaCl), high salt buffer (0.1% 

SDS, 2mM EDTA, 1% Triton, 20mM Tris-HCl pH 8, 500 mM NaCl and TE buffer (10 mM 

Tris-HCl pH 8, 1 mM EDTA pH 8.0), then again with low salt buffer and with high salt buffer. 

At the end the beads were washed with TE-NaCl buffer (10 mMTris-HCl, 1 mM EDTA, 50 mM 

NaCl). Elution was performed in 100µl of fresh elution buffer (1% SDS, 0.1 M NaHCO3). 

Cross-linking was reversed overnight at 65°C. After cross-link reversal, 240 µg of Ribonuclase A 

(SIGMA, Saint Louis, USA) were added to each samples to completely eliminate the RNA and 

the samples were incubated for 40 minutes at 37°C. 

The samples were then digested with 20 µg of proteinase K (SIGMA, Saint Louis, USA) for 1 

hour at 56°C, and DNA was recovered by standard methods in 20 µl of 10 mM Tris-HCl pH 8. 

Promoters were analyzed by quantitative real-time PCR using 1 µl of each immunoprecipitated 

samples and 1 µl of the input 1:100 dilution. Real time PCR was carried out using iTaq Universal 

SyberGreen Supermix (Biorad) with a iQ5 (Biorad) according to manufacturer’s instructions. 

The primers used in the PCR real-time reaction are listed in the primers section. ChIP experiment 

data result from at least three independent experiments, and all quantitative real-time PCR 

experiments were performed in duplicate. Relative proportions of immunoprecipitated DNA 

were determined based on the threshold cycle (Ct) value for each PCR reaction. In order to 

control for variation between ChIP fractions, for every gene promoter studied, a ΔCt value was 

calculated for each sample by subtracting the Ct value for the input (Ct Input) from the Ct value 

for the immunoprecipitated sample (Ct antibody or Ct mock). Because the input DNA fraction 

represents only 1% of the total material, the Ct Input value was first adjusted for this dilution 

factor by subtracting 6.644 cycles (Log2 of 100). Data were then plotted as fold enrichment over 

mock. 
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1 PHYSIOLOGICAL RELEVANCE OF LSD1/neuroLSD1 SPLICING 
RATIO IN NEURONS 

 
 
1.1 Exon E8a coded Thr369b can be phosphorylated in the brain 
 

Three-dimensional crystal structure analysis of recombinant LSD1/CoREST proteins indicated 

that the four additional amino acids of exon E8a form a loop protruding out of the protein surface 

on the rim of the active site cleft. Importantly, such a loop appeared to be fully accessible for 

possible post-translational modifications (PTM) (Zibetti et al. 2010). For consistency with the 

previous publications and with numbering scheme used for the coordinates deposited with the 

Protein Data Bank, we shall number the four residues of the exon E8a, inserted between Ala369 

and Val370, as Asp369a- Thr369b-Val369c-Lys369d. We scanned the 856 amino acid long 

neuroLSD1 variant using NetPhos v2.0 software (http:// www.cbs.dtu.dk/services/NetPhos) to 

identify putative phosphorylation sites. Thr369b coded by exon E8a was predicted as a high-

score potential site of phosphorylation (Fig. 19a). In order to verify this prediction, rat brain 

tissues collected at P1, when neuronal neuroLSD1 protein is highly expressed, were used to 

immuno-isolate LSD1 complexes with a pan- LSD1 antibody. Immunocomplexes were separated 

by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and the 110 KDa band 

corresponding to LSD1 was processed for mass spectrometry. The analysis indicated the 

presence of LSD1 peptides containing phosphorylated and non-phosphorylated exon E8a (Fig. 

19b and c). Moreover, Tyr363 was also phosphorylated, in line with its very high predicted 

phosphorylation score (Fig. 19a and b). 
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Fig 19  Lysine-Specific Demethylase 1 (LSD1)-8a Thr369b coded by exon E8a can be phosphorylated in the brain.  
(a) Probability plot of phosphorylation sites was computed on NetPhos v.2.0 software spanning through the 856 
amino-acid long NeuroLSD1 compared to conventional LSD1. (b) Mass spectrometry analysis of LSD1 
immunopurified from post-natal day 1 rat brain revealed peptides containing phosphorylated and non-
phosphorylated exon E8a. The presence of one phosphate group leads to an increase in mass of 80 units 
(Thr,Ser,Tyr) or a decrease of 18 units because of the loss of the phosphate and a water molecule (Thr, Ser). The 
molecular weights are given as monoisotopic mass. Cys_CAM indicates the presence of a carbamidomethylated 
Cys residue because of the derivatization of the protein by iodoacetamide as described in Methods. (c) Spectrum of 
the peptide 360–369 in phosphorylated (1725.10) and non-phosphorylated (1566.04) state. (d) Thr369b position is 
indicated relatively to exons and functional domains in hLSD1. 
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1.2 Phosphorylation of Thr369b induces CoREST, HDAC1, and HDAC2 
disassembly 
 

1.2.1 Generation of Hela cells stably expressing HA-tagged LSD1 isoforms and mutants  

To study the effect of Thr369b phosphorylation on protein activity, we decided to generate two 

different mutants of neuroLSD1, the first called neuroLSD1-Thr369bAsp (T/D), carrying 

Threonine 369b substitution with Aspartate (Thr369bAsp) and costituting the phospho-mimetic 

form, and the second called neuroLSD1-T369bA (T/A), carrying Threonine 369b substitution 

with Alanine, and costituting the phospho-defective mutant.  

Proteic phosphorylation is a simple and reversible post-tradutional modification, that controls a 

large amount of cellular processes.  It is a covalent modification that entails the transfer of the γ

-phospate of a donor molecule as ATP or GTP to alcholic or phenolic aminoacidic residues. 

Phospho group introduces in the protein a negative charge with a large steric obstruction. This 

causes a riorganization of the bindings in the ternary stucture of the protein. As shown in figure 

20, threonine residue has a OH group that can be phosphorilated, the aspartate residue has a 

negative charge that mimics the phosphorylation, while the lateral chian of the Alanine residue is 

characterized by a non-nucleophile, methylic group that cannot be phosphorylated.  

 

 

 

 
 
Fig 20  Structural formula of the four aminoacids threonine, phosphothreonine, aspartic acid and alanine and scheme 
of the mutations of threonine T369bD and T369bA	   
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To study the effects of these mutants we chose to stably transfect them in Hela cells. We chose to 

generate HeLa cells mainly because of the experimental manipulability of the cell type when 

performing biochemical studies. We produce Hela cells stably expressing LSD1, neuroLSD1, 

neuroLSD1T/D and neuroLSD1-T/A. Figure 21B shows the experimental plan of the generation 

of the clones stably expressing mutant proteins. This proteins are fused with HA epitope to allow 

protein immunoprecipitation and further experiments. 

To generate stable cells, the plasmids of interest are cotransfected with the pPUR plasmid, 

carrying the puromycine resistance. Clones able to survive in puromycine selective medium, are 

then screen for HA expression. We finally chose clones expressing similar level of protein. 

Figure 22 shows the HA screening for Hela expressing LSD1 and neuroLSD1 but the same 

strategy was used to generate and choose TD and TA clones.  
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Fig 21 generation of HeLa cell lines stably expressing different HA-tagged LSD1 splicing varants. a) Schematic 
representation of pCGN plasmids containing Thr/Asp and Thr/Ala LSD1 mutants. Electropherograms of the 
mutated sequences are shown. b) Experimental plan of HeLa cells stable tranfection with pCGN-neuroLSD1-TD 
or pCGN-neuroLSD1-TA and screening using western blot. Cells integrating no plasmids or only LSD1 
containing plasmids, are not able to survive after first selection step in puromycine. Cells integrating in their own 
genome pPUR plasmid carrying the puromycine gene can survive and are submitted to the second screening 
step, the expression analysis for HA using anti-HA antibody.  
  

A 

B 
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Fig 22 Expression analysis of stably transfected Hela clones  

 

1.2.2 Coimmunoprecipitation analysis  

Using anti-HA conjugated agarose beads, we isolated LSD1 complexes in protein extracts 

obtained from HeLa clones, each stably expressing HA-LSD1, HA-neuroLSD1 and mutants. As 

mock condition, we used HeLa clones stably expressing the HA-tag from the pCGN empty 

vector. To test whether the structural alteration induced by the phospho-mimetic mutation affects 

its ability to recruit CoREST, HDAC1 and HDAC2, we performed immunoprecipitation assays 

using HeLa cells expressing HA-tagged LSD1, neuroLSD1, or the phosphomimetic NeuroLSD1-

Thr369bAsp as well as phospho-defective NeuroLSD1-Thr369bAla mutants. 

In accordance with previously published data (Zibetti et al. 2010), LSD1 and neuroLSD1 

immunocomplexes were found to contain similar amounts of CoREST, HDAC1, and HDAC2 

(Fig. 23a, b; LSD1 vs. NeuroLSD1: CoREST 1 ± 0.23 vs. 0.68 ± 0.16; HDAC1 1 ± 0.08 vs. 0.81 

± 0.03; HDAC2 1 ± 0.04 vs. 1.08 ± 0.04). Remarkably, the immunocomplexes isolated by the 

phospho-mimetic neuroLSD1-Thr369bAsp mutant showed almost complete lack of the three co-

repressors when compared to either NeuroLSD1 or LSD1 (Fig. 23a, b; neuroLSD1-Thr369bAsp 

vs. neuroLSD1: CoREST 0.17 ± 0.04 vs. 0.68 ± 0.16; HDAC1 0.11 ± 0.01 vs. 0.81 ± 0.03; 

HDAC2 0.25 ± 0.1 vs. 1.08 ± 0.04, p < 0.05; NeuroLSD1- Thr369bAsp vs. LSD1: CoREST 0.17 

± 0.04 vs. 1 ± 0.23, p < 0.01; HDAC1 0.11 ± 0.01 vs. 1 ± 0.08, p < 0.05; HDAC2 0.25 ± 0.1 vs. 1 

± 0.04; p < 0.05). Conversely, the phospho-defective mutant neuroLSD1-Thr369bAla did not 

show differential association with corepressors, compared to neuroLSD1 (Fig. 23a, b; 

neuroLSD1-Thr369bAla vs. neuroLSD1: CoREST 0.71 ± 0.09 vs. 0.68 ± 0.16; HDAC1 0.82 ± 

0.003 vs. 0.81 ± 0.03; HDAC2 0.85 ± 0.003 vs. 1.08 ± 0.04). These quantifications derived from 

at least three independent experiments with two independent HeLa clones for each isoform or 

mutant. To confirm that phosphomimetic NeuroLSD1-Thr369bAsp mutant is unable to assemble 

CoREST/HDAC1/2 corepressor complex, we used anti-HA conjugated agarose beads to isolate 

STABLY TRANSFECTED HELA CELLS!

Selection by HA expression!

#2 #6 #10 #16 #23 

HA!
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#2 #3 #18 #19 #111 

EMANUELA TOFFOLO!

Working clones with similar expression levels!



Results 

 
 

39 

LSD1 complexes from protein extracts obtained from primary cortical neurons, virally 

transduced with HA-tagged LSD1, or the phosphomimetic neuroLSD1-Thr369bAsp mutant. As 

for HeLa cells, we found that also neuronal neuroLSD1-Thr366bAsp immunocomplexes 

contained largely reduced amounts of Co-REST, and HDAC2 (Fig. 23c).  

 
 

 

 
 

 
 
 
 
 
 
 
 
 

Fig 23  Phosphorylation of Thr369b induces CoREST, 
HDAC1 and HDAC2 detachment from neuroLSD1 (a) 
HA-immunocomplexes from HeLa clones stably 
expressing, HA-LSD1, HA-neuroLSD1, HA-neuroLSD1-
Thr369bAsp, and HA-neuroLSD1-Thr369bAla, probed 
with the indicated antibodies. (b) Quantification of co-
immunoprecipitated factors normalized for 
immunoprecipitation efficiency, expressed as ratio of 
LSD1. Mean values SEM. Statistical analysis revealed 
significant differences (*p < 0.05, **p < 0.01 vs. LSD1; #p 
< 0.05 vs. NeuroLSD1). (c) HA-immunocomplexes from 
rat cortical neurons virally transduced with HA-LSD1 or 
HA-NeuroLSD1-Thr369bAsp, probed with the indicated 
antibodies. The asterisk indicates the 55 KDa band of 
HDAC2. The slower migrating is a non-specific band. 
Mean values ± SEM. Statistical analysis revealed 
significant differences (**p < 0.01 vs. Vector; #p < 0.05 
vs. NeuroLSD1). Kruskal Wallis one-way ANOVA 
followed by Dunn’s post hoc test. 
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1.2.3 Phosphorylation of Thr369b reduces associated deacetylase activity 

Given the possibility that other deacetylases might still be present in the neuroLSD1-

Thr369bAsp complex or might be de novo recruited, we measured residual deacetylase activity 

in HeLa cells. We use a fluorescent HDAC Assay kit (Active Motif), an easy and sensitive assay 

that utilizes a short peptide as substrate that contains an acetylated lysine residue that can be 

deacetylated by Class I, II e IV HDAC enzymes. Once the substrate is deacetylated, the lysine 

residue reacts with the developing solution and releases the fluorophore from the substrate 

resulting in a fluorescent product that can be easely measured using a fluorescent plate reader 

with an excitation wavelenght of 340-360 nm and emission wavelenght of 440-465 nm. We 

started from 2mg of proteins from Hela cells stably expressing LSD1, neuroLSD1, 

neuroLSD1T369bD and from Hela cells stably transfected with the pCGN-HA vector (mock 

condition), and we immunoprecipitated them with anti-HA antibody. Using anti-HA conjugated 

agarose beads, we isolated LSD1 complexes and we tested the HDAC activity associated.  

We found that residual enzymatic activity bound to HA-neuroLSD1-TD was comparable to the 

mock condition and reduced compared to LSD1 and neuroLSD1 (Fig. 24; Mock vs. LSD1 1 vs. 

15.3 ± 3.5; p < 0.01; Mock vs. NeuroLSD1 1 vs. 7.8 ± 1.5; Mock vs. neuroLSD1T/D: 1 vs. 1.9 ± 

0.5, p < 0.05). Note that the difference in HDAC activity associated to neuroLSD1 showed a 

tendency towards reduction compared to LSD1. We cannot exclude that, at least in part, 

overexpressed neuroLSD1 could be phosphorylated in HeLa cells being responsible for partial 

loss of HDAC activity. 

These results strongly suggest that the presence of the phospho-mimetic mutation renders 

NeuroLSD1 unable to recruit any deacetylase activity. In this regard, it should be noticed that a 

short fragment of human CoREST (residues 308–440) is able to bind in vitro the phospho-

mimetic LSD1-8a mutant (Fig. 19) indicating either that full-length CoREST is required to be 

disassembled, or that in the cellular context, an additional factor is recruited by the 

phosphorylated loop leading to CoREST displacement. 
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1.3 Phosphorylation of Thr369b alters the local threedimensional structure of 
NeuroLSD1 
 
In collaboration with the group of Andrea Mattevi, recombinant NeuroLSD1-Thr369bAsp was 

tandem-affinity purified with CoREST (amino acids 308–440) (Forneris et al. 2007) and its 

enzymatic properties were evaluated by measuring in vitro demethylase activity using a 21 

amino acid monomethylated H3-Lys4 peptide as substrate. We observed no large alterations in 

the enzymatic functional properties as gathered from the comparison of kcat and Km values 

(Table 1). We also solved the crystal structure of the mutant protein complex, which indicated no 

significant overall (including the active site) conformational changes Gly367), with respect to 

wild-type NeuroLSD1/CoREST (Fig. 24a and b). The room-mean-square deviation calculated 

from the superposition of the two structures is 0.61 Å for 667 Cα atoms. However, the mutation 

causes a significant alteration in the area surrounding the exon site. In particular, the loop of the 

Thr369bAsp mutant is shifted up to 5.1 Å (for Cα atom of Gly367 remaining fully solvent-

exposed. Furthermore, the adjacent a-helix 721–735 also moves by 1.1 Å. These local 

conformational changes most likely reflect the altered electrostatics associated with presence of 

the negatively charged Asp side-chain in place of a Thr. They can be especially relevant in light 

of the hypothesis that exon E8a and the phosphorylation site may influence in vivo the 

interaction of the phosphorylated protein with its corepressors CoREST, HDAC1, and HDAC2 

Fig 25 Histone deacetylase assay 
Histone deacetylase activity associated to immunocomplexes 
from HeLa cells, normalized for immunoprecipitation efficiency, 
expressed as ratio of mock condition. Mean values ± SEM. 
Statistical analysis revealed significant differences (**p < 0.01 
vs. Vector; #p < 0.05 vs. NeuroLSD1). Kruskal–Wallis one-way 
ANOVA followed by Dunn’s post hoc test. 
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or may be instrumental to the generation of a properly structured site for recognition of one or 

more unknown protein partners.  

 
Table 1 Kinetic parameters of the LSD1 and NeuroLSD1 mutants 
 

kcat (min±1)a    Km (µM)a 
 
LSD1d+CoRESTc    7.35 ± 0.28b    5.12 ±1.04b 

neuroLSD1d + CoRESTc   5.19 ± 0.48    4.55 ± 1.65 

neuroLSD1-T369bDd+CoRESTc  2.44 ± 0.04    3.50 ± 0.30 

LSD1-K661Ad +CoRESTc   Inactive      – 

neuroLSD1-K661Ad +CoRESTc  Inactive      – 

neuroLSD1- T369bA-K661Ad+CoRESTc  Inactive      – 

 
aSteady-state kinetic parameters were determined as previously described using a 21 amino acid 
monomethylated H3-Lys4 peptide (Forneris et al. 2005b). bData taken from Forneris et al. 2007 (Forneris 
et al. 2007). cCoREST from aa 308 to 440. dLSD1 from aa 171–840 
 
 

 
 
 
 
Fig. 24 Structure. (a) Overall crystal structure of neuroLSD1–CoREST Thr369bAsp mutant solved at 3.1 Å 
resolution (PDB entry 4bay). Mutant NeuroLSD1 (residues 171–840) is colored in blue, whereas CoREST 
(residues 308–440) in red. The FAD cofactor is shown as yellow ball-and-stick. The insertion site of E8a (residues 
Asp369a- Thr369b-Val369c-Lys369d) and the site of mutation Thr369bAsp is outlined by a circle. (b) The 
superposition of the neuroLSD1/CoREST (colored in yellow; PDB entry 2XOL) and neuroLSD1-Thr369bAsp/ 
CoREST (blue) three-dimensional structures highlights the local conformational change in the residues 
surrounding the Thr369bAsp mutation. Generated with CCP4 mg (Winn et al. 2011). 
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 1.4 Phosphorylation of neuroLSD1 Thr369b modulates transcriptional 
repression in neurons 
 

1.4.1 Functional assay 

The primary known function of LSD1 is to repress transcription through an epigenetic 

mechanism based on both histone H3-Lys4 demethylation and recruitment of HDAC1/2 (Shi et 

al. 2004; Forneris et al. 2005a; Lee et al. 2006a). Consistently, both LSD1 and NeuroLSD1 are 

capable to repress transcription in neurons. We therefore tested whether phosphorylation, 

releasing the interaction with HDAC1/2 as well as with CoREST, could hamper the ability of 

NeuroLSD1 to function as a corepressor in neurons where neuroLSD1 is physiologically 

expressed. We generated Gal4-neuroLSD1 mutants (Thr369bAsp and Thr369bAla) mimicking a 

phosphorylated and unphosphorylated status, and evaluated their repressive strength on the basis 

of the 5X-UAS-TK-Luc reporter gene expression in rat cortical neurons. In each experiment, the 

promoter activity was measured as luciferase activity normalized over a co-transfected renilla 

reporter. Repressive strength was inferred through luciferase reduction upon normalization over 

the promoter activity in the presence of the Gal4 empty vector (Fig 25a, b).  Thr369bAsp 

phospho-mimetic mutation was found to cause loss of repressive activity compared to 

neuroLSD1 (Fig. 25a; LSD1- 8a-Thr369bAsp vs. neuroLSD1 at 1 : 1 molar ratio 92.45 ± 4.56 vs. 

74.49 ± 9.35, p < 0.05), becoming similar to the Gal4 empty vector. Conversely, Thr369bAla 

mutation caused a significant increase in repressive activity compared to neuroLSD1 (Fig. 25a 

neuroLSD1-Thr369bAla vs. NeuroLSD1 at 1 : 1 molar ratio 53.64 ± 4.23 vs. 74.49 ± 9.35, p < 

0.001. These data suggest that phosphorylation of Thr369b reduces repressive activity of 

neuronal neuroLSD1. 
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Fig 25  Repressive activity of LSD1s isoforms is modulated by phosphorylation. (A) LSD1 isoforms and mutants 
fused to Gal4 wereassayed for their ability to repress the 5xUAS-TK-LUC reporter gene in rat cortical neurons at 
different reporter:repressor molar ratios (1 : 1 and 1 : 2). The luciferase activity normalized on the co-transfected 
renilla reporter is expressed as a percentage of the Gal4 empty vector. Mean values ± SEM. Statistical analys 
revealed significant differences (***p < 0.001 vs. Gal4-Vector; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. 
NeuroLSD1). One-way ANOVA followed by Newman– Keuls’ post hoc test. (B) Protein expression levels of LSD1 
isoforms and mutant proteins used. 
 
 
 
1.4.2  Phosphorylation of NeuroLSD1 modulates gene transcription 
 
To further verify this notion, we infected cortical neurons with lentiviral vectors carrying HA-

LSD1, HA-neuroLSD1- Thr369bAsp, HA-neuroLSD1-Thr369bAla, or green fluorescent protein 

(mock condition) at DIV4 and we analyzed the effect of isoforms over-expression on 

transcription of selected known HDAC2 brain targets. Indeed, brain HDAC2 plays a central role 

as negative regulator of complex processes such as memory formation and neuronal maturation 

(Guan et al. 2009). Total RNA was analyzed at DIV8 by qRT-PCR. We probed genes involved 

in neuronal maturation and morphology (CDK5R1 and PCTAIRE), neuronal function (GRIN1, 

PSD95) and two immediate early genes involved in plasticity c-FOS and EGR1, which has 

already been validated as LSD1 direct target outside the nervous system (Lee et al. 2006b). 

Transcriptional activity is described as fold gene expression normalized to the housekeeping 

gene RPSA, relative to mock condition (Fig. 26; similar results were obtained normalizing gene 

expression to GAPDH as housekeeping, not shown). These experiments gave a clear indication 

about the opposite effect exerted by phospho-defective and phospho-mimetic mutants. 

A B 
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neuroLSD1-Thr369bAla negatively modulated gene transcription, whereas neuroLSD1-

Thr369bAsp over-expression induced up-regulation of the same genes, behaving as a dominant 

negative isoform. These data are consistent with the reporter gene assays and provide 

physiological evidence of the phosphorylation role in regulating neuronal morphogenesis 

through the modulation of morphogenesis-related genes.  

 

 

 
 
Fig 26  RNA transcripts from cortical neurons after viral transduction with mock, LSD1, neuroLSD1-Thr369bAsp, 
and neuroLSD1-Thr369bAla for indicated genes (Cdk5R1, EGR1, c-FOS, PCTAIRE, Grin1, PSD95) were 
quantified by reverse-transcription qPCR. Transcript levels were normalized to RPSA and expressed as the fold 
expression relative to mock. Pooled data show mean ± SEM. Statistical analysis revealed significant differences 
(**p < 0.01, ***p < 0.001 vs. LSD1; #p < 0.05 vs. Vector; §p < 0.05, §§p < 0.01 vs. NeuroLSD1-Thr369bAsp). 
Kruskal Wallis one-way ANOVA followed by Dunn’s post hoc test.  
 

 

1.4.3  Phosphorylation of Thr369b drives morphogenesis in cortical neurons 

We previously demonstrated that the presence of exon E8a provides LSD1 with the ability to 

modulate neurite morphology (Zibetti et al. 2010). On these bases, we asked whether 

phosphorylation regulates maturation in rat cortical neurons. Based on immunofluorescence and 

quantitative protein measurements, all enzyme variants over-expressed in cortical neurons 

showed nuclear localization and similar levels of expression (Figs. 27a, b). In line with previous 

findings (Zibetti et al. 2010), the neurospecific NeuroLSD1 but not LSD1 had a significant effect 

on neuronal maturation as evaluated by cumulative neurite length (Fig. 27a and c; mock vs. 

neuroLSD1, 909 ± 128 lm vs. 1740 ± 64 lm, p < 0.001) and the number of neurite branches (Fig. 
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30a and d; mock vs. NeuroLSD1, 6.6 ± 1.1 vs. 14.9 ± 1.2, p < 0.001). The phospho-mimetic 

mutant (Thr369bAsp) showed a further tendency to enhance morphogenic effect of neuroLSD1 

on cumulative neurite length (Fig. 27a and c; neuroLSD1 vs. LSD1- 8a-Thr369bAsp, 1740 ± 64 

µm vs. 1935 ± 50.7 µm) and number of neurite branches (Fig. 27a and d; neuroLSD1 vs. 

neuroLSD1-Thr369bAsp 14.9 ± 0.7 vs. 17.8 ± 1.2). On the contrary, the phospho-defective 

mutation Thr369bAla abolished the pro-maturation effect played by neuroLSD1, as no statistical 

difference could be found when comparing mock conditions with neuroLSD1-Thr369bAla (Fig. 

27a and c, neuroLSD1-Thr369bAla vs. mock, 889 ± 45 vs. 909 ± 128 µm; Fig. 27a and d, 

neuroLSD1-Thr369bAla vs. mock 7.0 ± 0.6 vs. 6.6 ± 1.1) providing further evidence for 

transfected HA-neuroLSD1 phosphorylation. These data suggest that phosphorylation is indeed 

necessary to induce morphogenesis in cortical neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 27  Phosphorylation at Thr369b modulates neuroLSD1 morphogenetic properties in neurons. Rat cortical 
neurons were co-transfected with pCGN vector (mock), HA-LSD1, HA-neuroLSD1, the phospho-mimetic HA-
neuroLSD1-Thr369bAsp mutant and the phospho-defective HA-neuroLSD1- Thr369bAla mutant together with 
pEGFP. (a) Morphological analysis at DIV8 for EGFP- and HA-positive neurons. Scale bars: 20 µm. (b) Protein 
expression level of wild types and mutant isoforms. (c, d) Quantification of cumulative neurite length and number of 
secondary branches is indicated ± SEM. ***p < 0.001 vs. mock; §§§p < 0.001 vs. LSD1; ###p < 0.001 vs. 
HAneuroLSD1-Thr369bAsp. Kruskal–Wallis test oneway ANOVA followed by Dunn’s post hoc test was applied to 
values 
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1.5 Analysis of the demethylase activity of NeuroLSD1 mutants 
 
The data hereby presented suggest that Thr369b phosphorylation impairs neuroLSD1 mediated 

transcriptional repression by displacing histone deacetylase activity from the corepressor 

complex and promoting neuronal maturation and morphogenesis. LSD1 transcriptional 

repression requires the cooperative action of histone H3-Lys4 demethylation and HDAC1/2 

activity (Forneris et al. 2005a; Lee et al. 2005, 2006a; Shi et al. 2005).  The evidence that 

phosphorylation of LSD1 on exon 8a is responsible for the loss of the repressive activity and of 

further enhancement of pro-maturation effects on rat cortical neurons, prompted us to 

investigated if it involves the abolition of demethylase activity. We therefore decided to measure 

the demethylase activity of neuroLSD1-TD (phosphomutant) compared to LSD1 and 

neuroLSD1. We first tried to assess in vitro demethylase activity of the recombinant protein 

LSD1-TD, as already told at pag. 39 (table 1) and we observed no large alterations in the 

enzymatic functional properties as gathered from the comparison of kcat and Km values. We 

then tried an in vivo assay using immunopurified complexes from Hela cells overexpressing 

LSD1 isoforms, as a more phisiologic substrate in wich LSD1 proteins could form in vivo 

complexes with their cellular parterns. We used a demethylase assay from Epigentek, in wich a 

di-methylated histone H3-K4 LSD1 substrate is stably coated onto microplate wells. Active 

LSD1 binds to the substrate and removes methyl groups from the substrate. The LSD1-

demethylated products can be recognized with a specific antibody. The ratio or amount of 

demethylated products, which is proportional to enzyme activity, can then be fluorometrically 

measured by reading the fluoresence in a fluorescent microplate spectrophotometer at 530 

excitation and 590 emission. The activity of the LSD1 enzyme is proportional to the fluorescent 

intensity measured. The problems we encountered were first due to the low sensivity of the 

assay, in wich the difference between the blank and the positive control was extremely modest, 

and the possible differences between LSD1 isoforms demethylase activity not detectable. 

Secondly, it is possibile that the use of short peptides as substrate represents a limitation. So we 

tryied to work with nucleosomes as more physiological and informative substrates. We therefore 

used nucleosome from Hela cells as substrate and immonocomplexes from phosphomimetick 

mutant expressing Hela cells as source of enzymatic activity. We tried another fluorescent kit 

(from Active motive- Enzo) but, again, the assay was not enough consistent and sensitive to 

detect any difference even testing the blank compared to LSD1 condition. 
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1.5.1 Repressive activity of demethylase null mutants 

Since the difficulty in measuring the demethylase activity in vivo associated to LSD1, in order to 

study the relationship neuroLSD1 phosphorylation and demethylase activity in vivo, we 

generated noncatalytic LSD1 and neuroLSD1 mutants. We did it introducing a single mutation 

(Lys661Ala) in the catalytic site of the protein, already described in leterature to block 

demethylase activity (see figure 29). We first verify in vitro the inactivity of these proteins, and 

then performed a series of functional assays using rat cortical neurons transiently transfected 

with this mutated plasmids.  

Fig 28  Scheme of Epigentek (A) and of Active-motive 
demethylase assay (B) 

A 

B 
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Fig 29  Description of the single mutation K661A responsible of the complete abolition of the demethyalse activity 
of LSD1 
 
 
We showed that the LSD1-K661A and neuroLSD1-K661A mutants are unable to repress 

transcription in neurons, since the last mutant reaches a value of luciferase activity almost equal 

to the mock (Fig. 30, LSD1-K661A vs LSD1: 86,6 ± 1,54 vs 23,4 ± 4,87; neuroLSD1-K661A vs 

neuroLSD1: 105,23 ± 4,54 vs 40,65 ±4.98).  

 

 

 

 

 

Then we analyzed the ability to these mutants to drive the morphogenesis in rat cortical neurons, 

comparing LSD1-TD (phosphomimetic mutant) and LSD1-K661A and we found that in this 

model of neuron maturation, these two mutations have the same effect on cumulative neurite 

lenght and number of secondary branches (Figure 31).  
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Finally, we asked if demethylase inactivating mutation is able to revert the effect of the phospho-

defective mutation of NeuroLSD1. So we generated noncatalytic neuroLSD1-TA mutant 

(neuroLSD1-Thr369bAla/Lys661Ala) and we compared it to neuroLSD1-TA neuroLSD1-

Thr369bAla).  First, we showed that the neuroLSD1-TA-K661A mutant is unable to repress 

transcription in neurons, and then we demonstrated that it can partially revert the phenotype of 

the phospho-defective mutant promoting maturation as shown by cumulative neurite length (Fig. 

32c and d; neuroLSD1-Thr369bAla vs. neuroLSD1- Thr369bAla/Lys661Ala 889 ± 45 µm vs. 

1530 ± 74 µm, p < 0.001) and number of neurite branches (Fig. 32c and e; neuroLSD1-
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together with pEGFP. Scale bars: 20 µm. B,  Protein expression level of mutant isoforms. C, D, Quantification of 
cumulative neurite length and number of secondary branches is indicated ± SEM (***p < 0.001 vs. mock). 
Kruskal–Wallis one-way ANOVA followed by Dunn’s post hoc test was applied to values. 
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Thr369bAla vs. neuroLSD1-Thr369bAla/Lys661Ala 7.0 ± 0.6 vs. 12.0 ± 0.8, p < 0.001). This 

result showed that demethylase inactivating mutation is able to phenocopy neuroLSD1 

phosphorylation, demonstrating that interfering with the ability of NeuroLSD1 to repress 

transcription, either by Thr369b phosphorylation or by a demethylase inactivating mutation, 

promotes neuronal maturation and morphogenesis through a dominant negative effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig 32 Effect of demethylase inactivating mutation in Lysine-Specific Demethylase 1 (LSD1)-8a on repressive 
activity and neuronal maturation in cortical neurons. (a) NeuroLSD1-Thr369bAla and a double neuroLSD1-
Thr369bAla-Lys661Ala demethylase null mutant, fused to Gal4, were assayed for their ability to repress the 
5xUAS-TKLUC reporter gene in rat cortical neurons. The luciferase activity normalized on the co-transfected 
renilla reporter is expressed as a percentage of the Gal4 empty vector. Mean values ± SEM. Statistical analysis 
revealed significant differences (**p < 0.01 vs. Gal4-Vector; ###p < 0.001 vs. neuroLSD1-Thr369bAla). (b) Protein 
expression level of mutant isoforms. (c) Morphological analysis at DIV8 for EGFP- and HA positive neurons. 
Neurons were co-transfected with pCGN vector (mock), the phospho-defective HA-neuroLSD1-Thr369bAla mutant 
and the phospho-defective/demethylase null HA-LSD1- 8a-Thr369bAla-Lys661Ala mutant together with pEGFP. 
Scale bars: 20 µm. (d, e) Quantification of cumulative neurite length and number of secondary branches is indicated 
± SEM (*p < 0.05 vs. mock; ###p < 0.001 vs. HA-LSD1- 8aThr369bAla). (c–e) Kruskal–Wallis one-way ANOVA 
followed by Dunn’s post hoc test was applied to values. 
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1.6 NeuroLSD1 regulates spine density and morphology in hippocampal 
neurons 
 
Since we observed that overespression of neuroLSD1 is able to enhance neurite morphogenesis 

(Zibetti et al, 2010) and that this property depends on the phosphorylation of the threonine in 

exon 8a, we decided to go more indeep into the structures that account for neuronal plasticity, the 

synaptic spines. Dentritic spines are discrete membrane protrusions present on neuronal dendrites. 

The highly heterogeneous morphology of dendritic spines is thought to be the morphological 

basis for synaptic plasticity associated to learning and memory formation. Indeed dendritic 

spines structure is regulated by molecular mechanisms that are fine tuned and adjusted according 

to level and direction of synaptic activity, development, specific brain region, and different 

experimental behavioral conditions. This supports the idea that reciprocal changes between the 

structure and function of spines impact both local and global integration of signals within 

dendrites. An increasing number of proteins have been found to be morphogens for dendritic 

spines and provided new insights into the molecular mechanisms regulating spine formation and 

morphology. Thus determining the mechanisms that regulate spine formation and morphology is 

essential for understanding the cellular changes that underlie learning and memory in normal and 

pathological conditions (Sala et al, 2008).  Dendritic spines are essentially formed by a neck and 

head attached to the dendritic membrane. Most spines have constricted necks and are either 

mushroom shaped with heads exceeding 0.6 microns in diameter or thin shaped with smaller 

heads (Harris et al. 1992). Extensive electron microscopy studies of brain tissue have shown that 

spines can be also stubby, cupshaped or branched protrusions with two or more heads, or single 

protrusions with multiple synapses along the head and neck (Harris and Kater 1994; Hering and 

Sheng 2001) and that these different shapes can be found at the same time on the same dendrites 

(Spacek and Harris 1998). This imperfect classification underlines the multiple forms and 

dimensions of the spine head and neck providing a way to functionally measure distinct shape 

categories.  Early spines are often very long and have frequent filopodia-like shape but, later 

during development, their mean length decreases and the number of filopodia is greatly reduced. 

Three major changes can be observed during the maturation process: an increase in spine density, 

a decrease in overall length and a decrease in the number of dendritic filopodia with a 

simultaneous decrease in spine motility.  
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To analyse the effect of neuroLSD1 on spine density and morphology, we transfected 

hippocampal neurons at DIV8 with LSD1, neuroLSD1 and vector, together with GFP, and we 

analyze neurons at DIV18. 

 Labelled transfected neurons were chosen 

randomly for quantification from four 

coverslips from three independent experiments 

for each construct. Fluorescent images were 

acquired with a Zeiss 510 confocal microscope, 

using a 60X objective with sequential 

acquisition setting at 1,240 X 1,240 pixel 

resolution. Image data were a z series 

projection of about 5–8 images, each averaged 4 times and taken at 0.7µm depth intervals. 

Morphometric measurements were made with NeuronStudio software. NeuroLSD1 expressing 

neurons display a significant increase in the number of spines (evaluated as n/10 µm or %) with 

0,25-0,30 µm width. neuroLSD1 transfected neurons also display an increase in the percentage 

of spines with a length comprises between 0,3 and 0,45µm compared to mock neurons. We 

found a higher number of spines in neuroLSD1 compared to mock condition, but no difference in 

width and length spines. This analysis shows that neuroLSD1 spines are different from mock for 

that of middle and small size. This could account for a more plastic condition, in which spines 

are remodeled in response to different stimuli.  We performed this analysis in triplicate, but since 

the low efficientcy of transfection, other experiments are necessary to improve the number and 

the statistical significance, and for this reason the results here presented have to be considered 

preliminary. 
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Fig 33  Effect of overespression of LSD1 or neuroLSD1 on hippocampal spine density and size. A) Analysis of 
spine number (n/10um), width and lenght. B) Morphological analysis at DIV18 for EGFP- and HA positive neurons. 
Neurons were co-transfected at DIV8 with HA-pCGN vector (mock), HA-LSD1 and HA-neuroLSD1 together with 
pEGFP but here shown only mock condition (left) and HA-neuroLSD1 (right). Scale bars: 10 µm. C) Particular of a 
dendrite from mock and neuroLSD1 condition. D,E) Spine distribution according to width and length bins, 
expressed as density (n/10 µm) or %. We sorted dendritic spines of mock and neuroLSD1 transfected neurons into 
width and length bins of  0,05 and 0,15 µm respectively. neuroLSD1 expressing neurons display a significant 
increase in the number of spines (evaluated as n/10 µm or %) with 0,25-0,30 µm width. neuroLSD1 transfected 
neurons also display an increase in the percentage of spines with a length comprises between 0,3 and 0,45µm 
compared to mock neurons. All measurements are given as mean standard error of the mean (s.e.m.). 
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2  IDENTIFICATION OF A NEW TRANSCRIPTION FACTOR 
RECRUITING LSD1 IN NERVOUS SYSTEM 

 
2.1 Identification of SRF (Serum Response Factor) as molecolar interactor of LSD1 and 

neuroLSD1 

NeuroLSD1 isoform contributes to the acquisition of a proper neuronal morphology, playing an 

important role in vitro, in maturation of rat cortical neurons (Zibetti et al., 2010). Such a 

phenotype is established by the role of negative dominant of neuroLSD1 towards LSD1 and by 

the resulting action of derepression on target genes implicated in neuronal maturation and 

plasticity of nervous cells. Within the LSD1 targets we identified the Immediate Early Genes 

(IEGs) c-fos and EGR1, and other genes responsible for morphogenesis as CDK5R1 and 

PCTAIRE. In order to define the role of LSD1 in modulating neuronal plasticy it has been of 

great importance the identification of SRF as transcription factor regulating the expression of 

genes aroused by neuronal activity implicated in structural plasticity. The IEGs are target genes 

of SRF, and several studies have shown as SRF and its targets (c-fos, EGR1, ARC and ΔFosB) 

are down-regulated in human cerebral samples extracted post-mortem from depress patients 

(Covington et al, 2010; Vialou et al, 2010; Kerman et al, 2012). 

SRF is a 508 aa transcription factor containing a MADS box (Knoll and Nordheim, 2009), 

consisting in a higly conserved and reapeted sequence.This is a zinc- finger protein ubiquitarly 

expressed and involved in the transcription of a lot of genes. SRF binds to a consensus sequence 

called CArG-box or Serum Respons Element (SRE), consisting in the motif CC-A/T(6) – GG 

often found in the promotore or in the first introne of the gene. Thanks to its action on genes 

involved in the modulation of actin cytoskeleton, it modules spine dynamics and dendrite 

formation (Knoll and Nordheim, 2009) (Fig 34). It is also important to notice that another SRF 

target is the neurotrophin BDNF (Essex et al, 2006), involved in synaptic plasticity, dendritic 

remodeling and important in several neuropathologies (Tsankova et al, 2006).  

SRF is a versatile transcription factor, that can operate as a transcriptional activator in stimulus 

dependent manner and as a repressor in basal condition. However the details of the SRF-

mediated genic repression are not yet understood. Since SRF does not include any annotated 

repressive domain, this kind of function is probably due to the recruitment of epigenetics co-

repressors as HDAC4 (Knoll and Nordheim, 2009) or HDAC1/2. 
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Fig 34 Schematic representation of SRF functions in CNS: SRF modulates neuronal migration, asson formation and 

synaptic plasticity, as well as the activity-dependent gene transcription (from da Knöll, Nordheim, 2009). 
 

 

Since the functional convergence beyween SRF and LSD1 and the identification of shared target 

genes, we hypothesized that the complex conteining LSD1/HDA1/2 could be recruited by SRF 

complex in “resting” or basal conditions.  

Thanks to co-immunoprepitation (CoIP) experiments, we demonstrated the physical interaction 

between SRF and LSD1 and between SRF and neuroLSD1. Using anti-SRF antibody, we 

immuprecipitated the two proteins, both in vitro in Hela cells (fig. 35B), and in vivo in murine 

hippocampus  (Fig. 35A). In particular we performed an in vivo experiment in order to study the 

interaction betwee SRF and LSD1 in murine WT and neuroLSD1KO hippocampi. Using an anti-



Results 

 
 

59 

SRF primary antibody, and immunodecorating with anti-LSD1, anti-SRF and anti-HDAC2 

antibodies, we observed in both genotypes the interaction between the two proteins and the 

presence of HDAC2, traditionally part of LSD1 repressor complex (Fig 35A). By means of in 

vivo experiments it is not possible to confirm if SRF interacts with both LSD1 and neuroLSD1, 

as specific antibodies against specific isoforms do not exist. To solve this problem, we performed 

a communoprecipitation experiment, using Hela cells stably expressing HA-LSD1 or HA-neuro-

LSD1, in order to verify if there was any difference in the interaction between the different LSD1 

splicing  isoforms and SRF. The immuniprecipitates anti-SRF, immunodecorated with anti-HA 

antibody, showed that both isoforms are tighty associated to endogenous SRF. This interaction 

could potentially contribute to the versatility of SRF as transcription factor, able to repress 

transcription in basal conditions, and to activate it in response to stimuli. 

 

 
 
Fig 35 Physical interaction between LSD1 and SRF. A) Western blot analysis of hippocampi proteic samples from 
WT and neuroLSD1KO mice. IP obtained with anti-SRF antibody and immunodecorated with anti-LSD1, anti-
HDAC2 and anti-SRF. B) Western blot analysis of Hela extracts stably expressing HA-LSD1 or HA-neuroLSD1, 
immunoprecipitetd with anti-SRF and immunodecorated with anti-HA.  
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2.2 SRF recruits LSD1 and neuroLSD1 to control basal transcription of its targets 

Among SRF targets, very important are the IEGs (Knoll, 2011), transcription fators playing a 

prominent role in neuronal plasticity and memory and learning consolidation in CNS.  IEGs are 

transcription factors that can be sperimentally activated in cellular coltures after a brief acute 

treatment with high serum (Cen et al, 2004). Egr1 is a protooncoprotein involved in several 

cellular processes, as growth regulation, transformation, and cellular apoptosis (Thiel, Cibelli, 

2002) and it has been demonstrated to be an important promoter of structural synaptic plasticity 

of hippocampal dentate gyrus, in particular in response to stimuli, as learning. Egr1 is responsive 

to SFR thanks to the presence in its promoter of five SRE sequences. (Traisman, 1987; Thiel, 

Cibelli, 2022; Veyrac et al, 2013). c-fos, is another IEG with a transcription factor function, and 

the first identificated proto-oncogene (Greensberg, Ziff, 1984). Its activation leads to the 

transcriptional induction of BDNF, that has an important role in activation of genes involved in 

synaptic remodelling (Kuzniewska et al, 2013). c-fos is responsive to SRF thanks to the presence 

in its promoter of one SRE sequence (Traisman, 1987). The transcription factor ΔFosB is a IEG 

is also an onco-protein, with a genic organization similar to c-fos, with several consensus 

sequences for transcription factors, among wich it is present also a SRE (Lazo et al, 1992). 

Thanks to the data concerning the molecular interaction between LSD1 and SRF, we wanted to 

verify if LSD1 was involved also in the transcriptional regulation of SRF target genes, and in 

particular Egr1 and c-fos, evaluating the interaction of SRF and LSD1 with SRE sites in 

promoters of mentioned genes. To do this, we performed chromatin immunoprecipitation 

experiments, from murine hippocampi using ant-SRF and anti-LSD1 antibody. The 

immunoprecipitated chromatin was submitted to qRT-PCR using specific primers for Egr1 and 

c-fos promoters. The real time analysis allows a quantitative amplification of 

immunoprecipitated DNA, necessary for evaluating the presence of the protein on a specific 

genomic region. The enrichment of the DNA sequences bound to the protein of interest is 

expressed compared to the mock, that refers to the chromatin immunprecipitated with pre-

immune IgG. Primers for Egr1 are drown using Genome Browser UCSC to amplify the 

regolatory sequences including two of the five CarG box in the Egr1 promoter (Lee et al, 2006), 

as in figure 36A. Primers for c-fos were designed to include the only one CarG box in the 

promoter (Traisman et al, 1986), as shown in figure 37B. Data from real time qRT-PCR derived 

from four distinct experiments, performed in duplicate, on different samples of DNA, extracted 

from two sonicated and immunoprecipitated chromatins, belonging to different animals. We 
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found that both in SRF and in LSD1 immunoprecipitated DNA, the promoter sequence of the 

IEGs was enriched compared to  mock condition.. At the level of Egr1, anti-LSD1 

immunoprecipitates reveal an enrichment of 2,47 times compared to the mock, whereas anti-SRF 

immunoprecipitates show an enrichment of 13,66 times over the mock (WT: SRF vs mock: 

13,66 ± 9,63 vs 1,00; LSD1 vs mock: 2,47 ± 1,81 vs 1,00. (Fig 37B). Similarly, in c-fos 

promoter, in anti-SRF immunoprecipitates we found an enrichment of 21,17 times over the 

mock, whereas in anti-SRF immunoprecipitates we found an enrichment over the mock of 1,42 

times (WT: SRF vs mock: 21,17 ± 4,90 vs 1,00; LSD1 vs mock: 1,42 ± 0,29 vs 1,00. (Fig 36D). 

Moreover, we performed an analysis on a negative control, namely an amplicon derived from the 

amplification of a region of the promoter Egr1 far away from TSS and lacking of CarG box. In 

this region we did not find any enrichment neither for LSD1 nor for SRF (WT: SRF vs mock: 

0,003 vs 0,015; LSD1 vs mock: 0,001 vs 0,015) (Fig 36E).  

In summary, all these data identify SRF as transcriptional factor able to recruit LSD1 on target 

gene promoter sequences to epigenetically co-regulate their expression. In particular, the 

identification of LSD1 and neuroLSD1 as SRF interactors in CNS is an important discovery that 

allows to understand molecular mechanisms through which SRF modules the repression of its 

target genes. 
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Fig 36  LSD1 and SRF are associated to the chromatin on Egr1 and c-fos promoter. A, prossimal promoter of EGR1 
(-434 from TSS), when the five CarG box are in red. Primers in bold. Amplicone 192 bp long. B, D, E, Istograms of 
the results of the ChIP experiments, performed onEGR1, c-fos and CTRL promoters, using chromatin 
immunoprecipitated with anti-SRF and anti-LSD1 antibodies. C, prossimal promoter of c-fos (-406 from TSS), 
when the CarG box is in red and primers in bold. Amplicon 147 bp long. Bars represent error standard. *p≤0,05 
Student “t” test. 
 
 
 
 



Results 

 
 

63 

2.3 Chromatin structure analysis of SRF/LSD1 target promoters 

Having demonstrated the physical association between SRF/LSD1 and EGR1 and c-fos 

promoters, we investigated the contribute of LSD1 demethylase activity in setting a specific  

chromatin state. We performed ChIP experiments, evaluating the level of dimethyl H3K4 in 

murine hippocampal tissues comparing wild type with neuroLSD1KO mice. The 

immunoprecipitated chromatin was submitted to qRT-PCR using specific primers for Egr1 and 

c-fos promoters, as described before. The enrichment of the DNA sequences bound to the 

antibody anti-dimethyl H3K4 is expressed compared to the input, that refers to the chromatin not 

bound to pre-immune. Real time qRT-PCR was performed on DNA samples  from chromatin 

samples derived from at least three different animals. The results showed in figure 37, show that  

the level of dimethyl H3K4, the LSD1 substrate, is higher in WT mice compared with that of KO 

mice. On Egr1 promoter, in wild type animals we found an enrichment of 25,16 times over the 

mock, whereas in KO animals an enrihment of only 4,85 times (EGR1: WT vs WT-mock: 

25,16±3,35 vs 1,00; KO vs KO-mock: 4,85±0,85 vs 1,00) (Fig 37A). Similarly, on c-fos 

promoter, in wild type animals we found an enrichment of 37,53 times over the mock, whereas in 

KO animals an enrihment of only 3,67 times (c-fos: WT vs WT-mock: 37,53±12,99 vs 1,00; KO 

vs KO-mock: 3,67±0,78 vs 1,00) (Figura 37B). The amplication of the negative control region 

(Egr1 ctrl) did not find any specific enrichment in dimethyl H3K4 (WT: SRF vs mock: 0,003 vs 

0,015; LSD1 vs mock: 0,001 vs 0,015) and any difference between WT and neuroLSD1KO (Fig 

37C). 
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Fig 37  ChIP analysis of the histone 3 Lys 4 dimethylation on Egr1 and c-fos promoters in WT and neuroLSD1KO 
murine hippocampal tissues. A, B, C, Enrichment of DiMetK4H3 histonic modification on Egr1, c-fos and CTRL 
proximal promoters. Bars represent error standard. 
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The results we obtained in this work allowed us to highlight the physiological relevance of post-

transcriptional (alternative splicing) and post-translational (phosphorylation) mechanisms 

regulating LSD1 epigenetic activity in the brain in response to neuronal activation modulating 

the relative levels of LSD1, neuroLSD1 and phospho-neuroLSD1. Furthermore, we identified the 

the Serum Response Factor (SRF) as new transcription factor recruiting the 

LSD1/CoREST/HDAC1/2 corepressor complex on its specific target genes. Through this 

interaction, we unraveled part of the transcriptional pathways regulated by LSD1 at the bases of 

its ability to modulate neuronal plasticity.  

We first tried to understand the isoform specific properties enabling neuroLSD1 to modulate 

transcriptional pathways regulating morphogenesis in neurons. Purifying LSD1 directly from rat 

brain, we demonstrated by mass spectrometry that a threonine residue coded by exon E8a, 

Thr369b, can be phosphorylated in vivo. Maturation experiments in cortical neurons provided a 

perspective on the physiological consequence of neuroLSD1 phosphorylation during neuronal 

morphogenesis, unraveling that the pro-maturation effect exerted by neuroLSD1 depends on 

phosphorylation of Thr369b of the transfected protein. Indeed, over-expression in cortical 

neurons of the unphosphorylable mutant (Thr369bAla) knocks out the neuroLSD1 pro-

maturation effect suggesting that part of the neuroLSD1 over-expressed protein must be 

phosphorylated in vivo. In line with partial phosphorylation of the transfected neuroLSD1 

protein, overexpression of the phospho-mimetic mutant (Thr369bAsp) further enhances 

neuroLSD1 pro-maturation properties. The crystal structure analysis of neuroLSD1 shows that 

substitution of Thr369b with an Asp side chain leads to a local conformational change, which 

affects the residues surrounding the phosphorylation site without altering the catalytic pocket and 

its demethylase activity in vitro. In vivo, using endogenous proteins, we demonstrated that the 

structural alteration caused by the phospho-mimetic mutation, is functionally relevant. Indeed, 

neuroLSD1 phospho-mimetic mutant looses the ability to recruit corepressor partners CoREST, 

HDAC1, and HDAC2. We suggest that complex disassembly could be directly mediated by 

phosphorylation or that phosphorylation, being instrumental to the generation of a properly 

structured protein-binding site, allows recruitment of a new interactor, which could directly or 

indirectly compete for the binding with corepressors. The functional consequence of complex 

disassembly on repressive activity stems from the tight functional interdependence and 

synergistic interplay between LSD1-mediated histone demethylation and histone deacetylation 

(Forneris et al. 2005a; Shi et al. 2005; Lee et al. 2006a) that provides the biochemical bases to 
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explain how loss of deacetylase activity is per se sufficient to impair repression. Indeed, it has 

been demonstrated that histone deacetylation is required for proper H3-Lys4 demethylation and 

the enzymatic activity of LSD1 is required for optimal activity of histone deacetylases.. Further 

proof that the synergistic interplay between demethylase and deacetylase activities is required to 

repress gene transcription, is that pro-maturation effect can be achieved also by knocking out 

neuroLSD1 repressive function interfering with its demethylase activity. Indeed, we were able to 

phenocopy the pro-maturation effect of the phospho-mimetic mutation with a paradigmatic 

demethylase-null mutant (Lys661Ala) (Lee et al. 2005). In conclusion, thanks to the 

phosphomimetic and the demethylase-null mutants, we here demonstrate that neuroLSD1-

mediated repression requires both histone H3-Lys4 demethylase and deacetylase activities to 

functionally regulate gene transcription and morphogenesis. These findings also underline the 

dual function of neuroLSD1 as histone demethylase enzyme and as scaffold protein. 

Phosphorylation, regulating disassembly of neuroLSD1 from its corepressor partners, represents 

a powerful tool to regulate neuroLSD1 repressive potential. Since over-expression of the 

phospho-mimetic mutant (Thr369bAsp) in cortical neurons increases target genes transcription, 

we propose that phospho-neuroLSD1 behaves as a transient dominant negative isoform of 

neuroLSD1, competing with the endogenous unphosphorylated form for the binding to the 

chromatin substrate.  Signal-dependent displacement of HDAC2 from chromatin has already 

been described as fine strategy to regulate gene transcription in response to stimuli (Palacios et 

al. 2010). In particular in neurons, NO production and S-nitrosylation of HDAC2 trigger HDAC2 

release from target gene promoters, and the activation of genes that are associated with neuronal 

development (Nott et al. 2008). In this regard, we suggest that phosphorylation of neuroLSD1, 

inducing dissociation of HDAC1/2 and CoREST, could account for an additional strategy to get 

rid of HDAC1/2 from specific targets.  

 

During my theses work a very big effort has been made to identify the kinase acting on 

neuroLSD1 and to produce specific antibodies directed against neuroLSD1 and its 

phosphorylated form without conclusive results. In this context, we notice that the bioinformatic 

tool NetPhosK (http://www.cbs. dtu.dk/services/NetPhosK/) strongly predicts protein kinase C as 

the likely candidate for Thr369b phosphorylation (Saito & Shirai 2002, Schmalz et al. 1998, 

Leach et al. 1989), providing a first clue for future studies along this research direction. The key 

conclusion of the first part of this study is that exon E8a alternative splicing and phosphorylation 
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of Thr369b coded by the same exon, provide a fine dual mechanism to set the LSD1 repressive 

potential in the brain. During a specific developmental window, which correlates with neuronal 

maturation, alternative splicing of exon E8a is dynamically controlled (Zibetti et al. 2010). 

During the adult life LSD1 and neuroLSD1 reach a specific equilibrium, therefore neuroLSD1 

repressive potential could be modulated by external signals promoting phosphorylation or de-

phosphorylation.  We also found that, upon neuronal activation, exon E8a alternative splicing 

could respond, increasing or decreasing the total amount of neuroLSD1 and consequently LSD1. 

In particular we observed an activity-dependent downregulation restricted to exon E8a splicing.  

To better understand the physiological significance of the neuroLSD1 downregulation observed 

in wild-type mice upon neuronal activation, it was applied PISE (Pilocarpine induced status 

epilecticus) paradigm to neuroLSD1KO mice. The analysis revealed a substantial reduction in 

seizure susceptibility of neuroLSD1-null mice relative to wild-type littermates. Furthermore, 

LSD1 modulation due to importamt stress event, as one single session of social defeat stress 

(SDS), was investigated. The decreasing of neurospecific splicing and increasing of transcript 

and protein, show a clear involvement of LSD1 in response to stress. Neuronal activity controls 

therefore the neurospecific LSD1 splicing. Several examples of activity or developmentally 

regulated neuronal splicing factors promote the inclusion of alternative exons, many of which 

contain regulatory phosphorylation sites (Boutz et al. 2007; Zhang et al. 2008; Lee et al. 2009). 

Whereas there are numerous examples on the role of PTMs in regulating transcription factor 

functions (Benayoun and Veitia 2009; Everett et al. 2009), our characterization of the post-

transcriptional and post-translational mechanism regulating LSD1 function represents one of the 

very few cases of epigenetic enzyme modulation by PTMs (Nott et al. 2008; Guan et al. 2009; 

Caretti et al. 2011). The most fascinating aspect of our findings is that neuroLSD1 is the first 

example of a mammalian epigenetic enzyme specifically devoted to neurons that is potentially 

capable of responding to intrinsic or extrinsic cell signals, enabling adaptive transcriptional 

responses in neurons by modifying chromatin. The neurospecific alternative splicing of exon E8a 

therefore creates a clade-restricted, developmentally regulated PTM modulatory site that may 

contribute to the increased complexity of mammalian brain (Barbosa-Morais et al. 2012).  The 

nature of the extracellular signals that modulate the epigenetic landscape in the nervous system 

during development, learning and memory has just begun to be characterized (Nott et al. 2008; 

Riccio 2010) and given its specificity, neuroLSD1 phosphorylation and exon E8a alternative 

splicing represent two models to decipher these pathways. 
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The last part of the work was aimed at the discovery of the functional role of neuroLSD1 in vivo 

through the identification of trascription factors able to mediate its pro-maturation and 

morphogenic proterties. Several genes identified as bona fide LSD1 and neuroLSD1 targets 

where the Immediate Early Genes Egr1 and c-Fos. These genes where downregulated in 

response to LSD1 overexpression and derepressed by overexpression of a phospho-mimetic 

mutant of neuroLSD1. Both thses genes are known to respond to stimuly through the activity of 

two transcription factors, CREB and SRF. By coimmunoprecipitation and chromatin 

immunoprecipitation, we where able to identify the transcription factor SRF as LSD1 and 

neuroLSD1 interactor.  To unravel the role of LSD1 and /or neuroLSD1 in SRF-mediated 

transcriptional regulation of IEG, we  studied the chromatin structure of Egr1 and c-Fos in the 

hippocampus of , neuroLSD1KO mice, in which only the LSD1 isoform is present, and 

compared its H3K4 dimethylation levels with that of WT mice. The chromatin status of KO mice 

in the evaluated promoters was found to be less enriched in dimethyl H3K4 compared to 

neuroLSD1KO mice in agreement with the lack of the dominant negative isoform neuroLSD1. 

Through this quantitative approach we were able to correlate and explain the increase in 

transcription of c-fos and EGR1 after overespression of phosphomimetic mutant neuroLSD1-

Thr369Asp, with a higher degree of dimethylation of these promoters. These data demonstrate 

the cooperation of LSD1 and SRF in transcriptional regulation of common target genes in basal 

conditions and further support the idea of LSD1 as trascriptional repressor and of neuroLSD1 as 

its dominant negative isoform, unable to recruit epigenetic activities as histone deacethylases, 

that contribute to transcriptional repression of targets. We still do not know if neuroLSD1 

phosphorylation might play an active role in the SRF-mediated transcriptional activation upon 

stimuli.  

In conclusion, the double level of LSD1 regulation, the neurospecific splicing and the specific 

phosphorylation of exon E8a, makes LSD1 a very peculiar and versatile neuroepigenetic factor, 

able to mediate the interactions between gene and environment and to carry out a homeostatic 

role that is at the base of the transcriptional plasticity that translate environmental stimuli into 

morphological and functional changes. 
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