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Abstract

We develop a parallel solver for the cardiac electro-mechanical coupling. The electric model
consists of two non-linear parabolic partial differential equations (PDEs), the so-called Bido-
main model, which describes the spread of the electric impulse in the heart muscle. The
two PDEs are coupled with a non-linear elastic model, where the myocardium is considered
as a nearly-incompressible transversely isotropic hyperelastic material. The discretization of
the whole electro-mechanical model is performed by Q1 finite elements in space and a semi-
implicit finite difference scheme in time. This approximation strategy yields at each time
step the solution of a large scale ill-conditioned linear system deriving from the discretization
of the Bidomain model and a non-linear system deriving from the discretization of the finite
elasticity model. The parallel solver developed consists of solving the linear system with the
Conjugate Gradient method, preconditioned by a Multilevel Schwarz preconditioner, and
the non-linear system with a Newton-Krylov-Algebraic Multigrid solver. Three-dimensional
parallel numerical tests on a Linux cluster show that the parallel solver proposed is scalable
and robust with respect to the domain deformations induced by the cardiac contraction.

Keywords: Cardiac electromechanics, Bidomain model, Finite Elasticity, Multilevel
Schwarz preconditioners, Algebraic Multigrid

1. Introduction

We develop a parallel solver based on algebraic multigrid and multilevel Schwarz methods
for the solution of the cardiac electro-mechanical coupling model. This model consists of the
Bidomain equations (electrical model), a degenerate system of parabolic partial differential
equations modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical
model, describing the contraction and relaxation of the cardiac muscle during a heart beat.

The numerical approximation of the cardiac electro-mechanical coupling is a challenging
multiphysics problem, because the space and time scales associated with the electrical and
mechanical models are very different. The discretization of the model by finite elements
in space and semi-implicit finite difference splitting methods in time yields at each time
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step the solution of a large ill-conditioned linear system, deriving from the discretization of
the Bidomain equations, and of a non-linear system, deriving from the discretization of the
non-linear elasticity equations.

Many studies have been devoted to the development of efficient solvers and precondi-
tioners for the Bidomain model, see e.g. [9, 14, 30, 32, 44, 31, 40, 54, 42, 43, 58, 62, 63]
and the surveys [37, 60], but the robustness of these methods with respect to the domain
deformation induced by the mechanical feedback has not been demonstrated yet. In the
last years, several works have been devoted to the development of models for the mechani-
cal cardiac contraction and to the numerical simulations of the electro-mechanical coupling
models, see e.g. [22, 25, 12, 23, 36, 38, 49, 34, 55]. A few studies have focused on the devel-
opment of efficient solvers for the quasi-static mechanical model, see [36, 59] for a parallel
GMRES solver and [24, 25, 23] for parallel direct solvers. The majority of the simulation
studies of the cardiac mechanics, have used very coarse mechanical meshes in comparison
with the standard electrical meshes. Thus, the solution of the quasi-static nonlinear me-
chanical model is performed solving the linear Jacobian system by direct methods, at each
Newton iteration. However, in the recent paper [38], it has been shown that, when complex
active tension development model are used, stability issues may arise in case of too coarse
mechanical meshes, and fine meshes are needed also for the mechanical model.

The first aim of the present paper is to study the scalability and robustness, with re-
spect to mechanically induced domain deformations, of Multilevel Schwarz methods for the
Bidomain system. The second aim is to study the scalability of Algebraic Multigrid precon-
ditioners for the linear Jacobian system arising at each Newton iteration during the solution
of the non-linear elasticity equations in the mechanical model.

2. Mathematical models

2.1. Mechanical model

Let us denote the material coordinates of the undeformed or reference cardiac domain
by X = (X1, X2, X3)

T , the spatial coordinates of the deformed cardiac domain by x =
(x1, x2, x3)

T and the region occupied by the undeformed and deformed, at time t , cardiac
domains by Ω̂ and Ω(t) , respectively. We denote by Div and div (Grad and grad) the material
and spatial divergence (gradient) of a vector (scalar), respectively. From a mechanical point
of view, the cardiac tissue is modeled as a non-linear elastic material. The deformation
gradient tensor F and its determinant are given by

F(X, t) = {Fij} =

{

∂xi

∂Xj

i, j = 1, 2, 3

}

, J(X, t) = detF(X, t)

The Cauchy-Green deformation tensor C and Lagrange-Green strain tensor E are

C = FTF and E =
1

2
(C − I),

where I denotes the identity matrix.
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We first assume that the time-dependent inertial term in the governing elastic wave
equation may be neglected, see e.g. [25, 26, 27, 33, 61, 6]. Thus, the quasi-static Cauchy’s
equation of equilibrium, without body force, in term of the Cauchy stress tensor σ is given
by div σ = 0, in Ω(t) and in the coordinates of the deformed body satisfy the steady-state
force equilibrium equation

Div(FS) = 0, X ∈ Ω̂, (1)

where S = {sij} = JF−1 σ F−T is the second Piola-Kirchoff stress tensor. The tensor S
is given by the sum of a passive elastic component Spas and a biochemically generated
active component Sact, i.e. S = Spas + Sact, as done in many previous studies, see e.g.
[21, 59, 27]. An alternative multiplicative strategy for combining the passive Spas and active
Sact components has been recently proposed in [7], see also [1, 36, 48].

The passive component Spas is computed from a suitable strain energy function W and
the Green Lagrange strain E

Spas
ij =

1

2

(

∂W

∂Eij

+
∂W

∂Eji

)

i, j = 1, 2, 3. (2)

A wide variety of strain energy functions W have been proposed and adopted in the literature,
see e.g. [11, 13, 15, 18, 33, 45, 49, 52, 57]. We recall that the cardiac tissue consists of
an arrangement of fibers that rotate counterclockwise from epi- to endocardium, and that
have a laminar organization modeled as a set of muscle sheets running radially from epi-
to endocardium, e.g. [28, 57]. In this paper, we choose to model the myocardium as a
transversely isotropic hyperelastic material, with the exponential strain energy function [59]

W =
1

2
c

(

eQ − 1
)

,

Q = bllE
2
ll + btn(E2

nn + E2
tt + 2E2

nt) + 2blt(E
2
lt + E2

ln),
(3)

where the Lagrange-Green strain tensor is referred to the orthogonal local fiber coordinate
system, consisting of the fiber direction (l), and two others orthogonal cross fiber directions.
The material constant c scales the stress, bll and btn scale the material stiffness in the fiber
and the two cross fiber directions, and blt scales the material rigidity under shear in the
fiber-transverse plane.

The myocardium is modelled as nearly-incompressible material and, following [59], we
add a bulk modulus K multiplying a volume change penalization term into the strain energy

W =
1

2
c
(

eQ − 1
)

+ K
(

√

det(C) − 1
)2

. (4)

We close the quasi-static mechanical model (1) by imposing a prescribed displacement
on a Dirichlet boundary x(X) = x̂(X), X ∈ ∂Ω̂D and no traction force on a Neumann
boundary FSN = 0, X ∈ ∂Ω̂N .

The contraction of the ventricles results from the active tension generated by the model of
myofilements dynamics activated by calcium (see e.g. [21, 46, 35, 47] for electro-contraction
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coupling models). We assume that the generated active force acts only in the direction of
the fiber, as in the other works [38, 61, 13], hence, according to [20, Ch. 10], the active
Cauchy stress is expressed as

σact = Taal ⊗ al,

where al is a unit vector parallel to the local fiber direction and Ta is the active stress
related to the deformed domain. Let us denote by âl(X) and ât(X) the unit vectors parallel
and across the local fiber direction in the reference configuration. Then, al = Fâl/||Fâl||
is the unit vector parallel to the local fiber in the deformed configuration and it holds

al = Fâl/
√

âl
TC âl

T . In terms of the principal axes of the reference configuration, we
obtain:

al ⊗ al =
Fâl ⊗ Fâl

||Fâl||2
=

Fâlâl
TFT

âl
TC âl

. (5)

Then, the corresponding second Piola-Kirchhoff active stress component is given by

Sact = J F−1σactF−T = J Ta

âl ⊗ âl

âl
TC âl

. (6)

In this simulation study, we assume that the biochemically generated active tension Ta

response is modelled by the following simple dynamics proposed by Nash and Panfilov in
[34]

∂Ta

∂t
= Q(V, Ta) = ǫ(V )(kTa

V − Ta), with ǫ(V ) =

{

1 for V < 0.05
10 for V ≥ 0.05.

where kTa
= 47.9 kPa controls the amplitude of the active stress twitch and the function

ǫ(V ) controls the delay in the development (V < 0.05) and recovery V ≥ 0.05 of active stress
with respect to the normalized action potential V .

2.2. Bidomain model

The macroscopic Bidomain representation of the cardiac tissue volume Ω is obtained by
considering the superposition of two anisotropic continuous media, the intra- (i) and extra-
(e) cellular media, coexisting at every point of the tissue and separated by a distributed
continuous cellular membrane; see e.g. [10, 41] for a derivation of the Bidomain model from
homogenization of an assembling of cellular models.

The anisotropy of the intra- and extracellular media, related to the macroscopic ar-
rangement of the cardiac myocytes in the fiber structure, is described by the anisotropic
conductivity tensors Di(x) and De(x), respectively, defined in (8) below.

In order to take into account the mechanical deformation of the tissue, following [34,
38, 61] we will now introduce the parabolic-parabolic formulation of the Bidomain system
on the reference cardiac domain Ω̂. Given an applied extracellular current per unit volume
Ie
app : Ω̂ × (0, T ) → R, and initial conditions v0 : Ω̂ → R, w0 : Ω̂ → R

Nw , find the intra- and

extracellular potentials ui,e : Ω̂ × (0, T ) → R, the transmembrane potential v = ui − ue :
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Ω̂×(0, T ) → R, the gating and ionic concentrations variables (w, c) : Ω̂×(0, T ) → R
Nw ×R

Nc

such that






















































cm

∂v

∂t
− J−1 Div(JF−1DiF

−T Gradui) + Iion(v, w, c) = 0 in Ω̂ × (0, T )

−cm

∂v

∂t
− J−1 Div(JF−1DeF

−T Gradui) − Iion(v, w, c) = Ie
app in Ω̂ × (0, T )

∂w

∂t
− R(v, w) = 0,

∂c

∂t
− S(v, w, c) = 0, in Ω̂ × (0, T )

n̂T F−1Di,eF
−T Gradui,e = 0 in ∂Ω̂ × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω̂,

(7)

where F is the deformation gradient tensor and we have assumed an insulated cardiac bound-
ary ∂Ω̂. For an applied extracellular current Ie

app satisfying the compatibility condition
∫

Ω
Ie
app dx = 0, this system uniquely determines v, while the potentials ui and ue are defined

only up to the same additive time-dependent constant related to the reference potential.
We choose this potential to be the average extracellular potential in the cardiac volume by
imposing

∫

Ω
ue dx = 0. The nonlinear reaction term Iion and the ODE system for the gating

variables w are given by the ionic membrane model; here we will consider the Luo–Rudy I
(LR1) membrane model [29].

The conductivity tensors Di(x) and De(x) at any point x ∈ Ω are defined as

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x). (8)

Here al(x), at(x), an(x), is a triplet of orthonormal principal axes with al(x) parallel to
the local fiber direction, at(x) and an(x) tangent and orthogonal to the radial laminae,
respectively, and both being transversal to the fiber axis (see e.g. LeGrice et al. [28]).
Moreover, σi,e

l , σi,e
t , σi,e

n are the conductivity coefficients in the intra- and extracellular
media measured along the corresponding directions al, at, an. In this work, the electric
conduction of the cardiac tissue is model as an axi-symmetric anisotropic media with respect
to the local finer direction, i.e. σi,e

n = σi,e
t . Hence, using the orthogonality of the principal

axes the conductivity tensors can be written as

Di,e(x) = σi,e
t I + (σi,e

l − σi,e
t ) al(x) aT

l (x). (9)

The computation of the tensors F−1(X)Di,e(x)F−T (X) must be performed on the reference

configuration Ω̂. Denoting by âl(X) the unit vector parallel to the local fiber direction in the

reference configuration, then we recall that, from (5), it holds al aT
l = Fâlâl

T
F

T

âl
T
Câl

. Considering

the product F−1(X)Di,e(x)F−T (X) and assuming that the conductivity coefficients refer to
the deformed configuration, we finally obtain

(F−1Di,eF
−T )(X) = σi,e

t C−1(X) + (σi,e
l − σi,e

t )
âl(X)âT

l (X)

âl
T (X)C(X)âl(X)

. (10)
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Instead, if the conductivity coefficients refer to the reference configuration, than the influence
of the deformation is taken into account as

(F−1Di,eF
−T )(X) = σi,e

t C−1(X) + (σi,e
l − σi,e

t ) F−1âl(X)âT
l (X)F−T . (11)

2.3. Coupled electro-mechanical model

In summary, our coupled electro-mechanical model consists of the mechanical contraction
model (1), (2), (6), coupled through the tensors F and J with the Bidomain model (7), (11),
written on the reference configuration.

The well-posedness of the coupling of the Bidomain model and the mechanical contraction
model based on the active stress approach is still an open problem, as well as the convergence
of its finite element approximation. A first investigation of the strong ellipticity condition
of the passive and active strain energy function can be found in [39] and [2]; see also [18].
A partial result on the solvability of the coupled problem has been established recently in
[3] for passive linear strain energy function and for contraction models based on the active
strain approach.

3. Discretization and numerical methods

The coupled electro-mechanical model is then discretized in time and space as follows.
The time discretization is performed by a semi-implicit splitting method. At each time step,

1- given vn, wn, cn, T n
a , solve the ODEs of the membrane model and active force equation

with a first order IMEX method to compute the new wn+1, cn+1, T n+1
a

wn+1 = wn + ∆tR(vn, wn+1)

cn+1 = cn + ∆tS(vn, wn+1, cn)

T n+1
a = T n

a + ∆tQT (vn, T n+1
a ),

2- given T n+1
a solve the mechanical problem to compute the new deformed coordinates

xn+1, providing the new deformation gradient tensor Fn+1

Div(Fn+1Sn+1) = 0,

3- given wn+1, cn+1, Fn+1, and Jn+1 = det(Fn+1) solve the Bidomain system with a first
order IMEX method computing the new electric potentials un+1

i , un+1
e , vn+1 = un+1

i −
un+1

e

cm

vn+1

∆t
− J−1

n+1 Div(Jn+1F
−1
n+1Di F−T

n+1 Gradun+1
i ) = cm

vn

∆t
− Iion(vn, wn+1, cn+1)

−cm

vn+1

∆t
− J−1

n+1 Div(Jn+1F
−1
n+1De F−T

n+1 Gradun+1
e ) = −cm

vn

∆t
+ Iion(vn, wn+1, cn+1) + Ie,n+1

app
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For the space discretization, we use structured grids of hexahedral isoparametric Q1 finite
elements in space, for both the non-linear elasticity system and the Bidomain equations. In
this work, we consider a bulk modulus of K = 200kPa, so that the non-linear elasticity
system is only moderately almost-incompressible and our pure displacement formulation is
still appropriate. For larger values of K, the elasticity system becomes increasingly almost-
incompressible and volumetric locking affects both the accuracy of the numerical solution
and the robustness of our iterative solver (described below). In such cases, we should adopt
a mixed formulation with both displacements and pressures (see [5]) or a B-bar method (see
[19]) or a splitting of the deformation into volumetric and isochoric parts (see [17]).

Due to the employed discretization strategy, at each time step, the main computational
effort consists of

1- solving the non-linear system deriving from the discretization of the mechanical prob-
lem. We use the Newton method, with GMRES for the linear Jacobian system, pre-
conditioned by an Algebraic Multigrid preconditioner [16].

2- solving the linear system deriving from the discretization of the Bidomain model. We
use the Conjugate Gradient (CG) method preconditioned by the Block Jacobi (BJ)
or the Multilevel Hybrid Schwarz preconditioner with L levels (MHS(L)), studied in
[50, 51]. See also [53, 56] for a general introduction to these methods. Inexact ILU(0)
local solvers are used for the local problems on the subdomains.

4. Numerical results

In this section, we present the results of parallel numerical experiments performed on the
Linux Cluster IBM SP6/5376 of the Cineca Consortium (www.cineca.it). Our FORTRAN-90
code is based on the parallel library PETSc [4], from the Argonne National Laboratory.

Domain geometry and fiber structure. The domain Ω̂ = Ω(0) is the image of a
cartesian slab using ellipsoidal coordinates, yielding a portion of truncated ellipsoid. The
family of truncated ellipsoids is described by the parametric equations







x = a(r) cos θ cos φ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sin φ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1,

where a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 − b1), c(r) = c1 + r(c2 − c1), and ai, bi, ci, i =
1, 2 are given coefficients determining the main axes of the ellipsoid. The fibers rotate
intramurally linearly with the depth for a total amount of 120o proceeding counterclockwise
from epicardium to endocardium. More precisely, in a local ellipsoidal reference system
(eφ, eθ, er), the fiber direction al(x) at a point x is given by

al(x) = eφ cos α(r) + eθ sin α(r), with α(r) =
2

3
π(1 − r) −

π

4
, 0 ≤ r ≤ 1.
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Mechanical solver - AMG preconditioner
procs dof nit lit time

8 107,811 2 42 12.06
27 352,947 2 42 16.70
64 823,875 2 39 23.45

125 1,594,323 2 39 30.66
216 2,738,019 2 40 49.12
343 4,328,691 2 39 92.93
512 6,440,067 2 40 75.09

Table 1: Weak scaling test, Mechanical solver with AMG preconditioner. Number of processors (procs),
Degrees of freedom (dof), average Newton iterations (nit) per time step, average GMRES iteration counts
(lit) per Newton iteration and time step, average CPU time in seconds (time) per time step.

Conductivity coefficients and strain energy function parameters. In order to
reduce the parameter calibration, we assume that the cardiac tissue electric and mechanic
behavior is transversely isotropic or axisymmetric with respect to the local fiber direction.

The values of the conductivity coefficients used in all the numerical tests are the following:

σi
l = 3. mΩ−1cm−1 σe

l = 2. mΩ−1cm−1

σi
t = σi

n = 0.31525 mΩ−1cm−1 σe
t = σe

n = 1.3514 mΩ−1cm−1.

This choice of parameters yields physiological propagation velocities of the excitation wave-
front along and across fiber of about of 0.05 and 0.03 cm ms−1, see e.g. [8]. In the transversely
isotropic strain energy function (3) the values of the parameters are chosen as in the original
work [59], i.e. c = 1.76 kPa, bll = 18.5, btt = bnn = btn = bnt = 3.58, blt = bln = 1.63 and
K = 200 kPa.

Mesh hierarchy. We denote the cartesian mesh used to discretize our domains by
T = Ti · Tj · Tk, indicating the number of elements in each coordinate direction. This
notation applies to both fine and coarse meshes. When we scale up the mesh by a factor c,
for brevity we define cT = cTi · cTj · cTk, i.e. the number of elements in cT is c3 times the
number of elements in T .

Stimulation site, initial and boundary conditions. The depolarization process is
started by applying a cathodal extracellular stimulus of Ie

app = −200 mA/cm3 lasting 1 ms
on a small volume of 0.4 × 0.4 × 0.2 mm3 located in the center of the endocardial surface.
The initial conditions are at resting values for all the potentials and LR1 gating variables,
while the boundary conditions are for insulated tissue. In all simulations, the fine mesh size
is h = 0.01 cm. The time step size is ∆t = 0.05 ms.

4.1. Test 1: weak scaling

We first consider a weak scaling test on truncated ellipsoidal domains of increasing size,
modeling wedges of the ventricular wall. The number of subdomains (and processors) is
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Bidomain solver - BJ preconditioner
non-deforming (F = I) deforming

procs dof κ2 it time κ2 it time
8 549,250 900.64 65 1.91 1.01e+3 66 1.93

27 1,825,346 2.30e+3 100 3.21 2.51e+3 100 3.19
64 4,293,378 4.25e+3 131 4.21 4.61e+3 131 4.28

125 8,346,562 6.81e+3 164 5.27 7.35e+3 170 5.63
216 14,378,114 9.95e+3 197 6.41 1.07e+4 204 6.61
343 22,781,250 1.34e+4 240 9.06 1.43e+4 247 8.79
512 33,949,186 1.76e+4 276 9.56 1.90e+4 293 9.81

Bidomain solver - MHS(4) preconditioner
non-deforming (F = I) deforming

procs dof κ2 it time κ2 it time
8 549,250 1.11 3 1.05 1.11 3 1.31

27 1,825,346 1.11 3 1.19 1.12 3 1.17
64 4,293,378 1.12 3 1.23 1.13 3 1.21

125 8,346,562 1.13 3 1.31 1.18 4 1.49
216 14,378,114 1.18 4 1.55 1.20 4 1.55
343 22,781,250 1.15 4 1.62 1.17 4 1.66
512 33,949,186 1.14 4 1.96 1.17 4 1.67

Table 2: Weak scaling test, Bidomain solver. Comparison of BJ and MHS(4) preconditioners on deforming
and non-deforming domains. Number of processors (procs), Degrees of freedom (dof), Average condition
number (κ2) per time step, average CG iteration counts (it) per time step and average CPU time in seconds
(time) per time step.

increased from 8 to 512, with the largest domain being an half ellipsoid with parameters
a1 = b1 = 1.5, c1 = 4.4, a2 = b2 = 2.7, c2 = 5, all in cm, and φmin = −π/2, φmax =
π/2, θmin = −3π/8, θmax = π/8. The physical dimensions of the increasing ellipsoidal
domains are chosen so that the electrical mesh size h is kept fixed to the value of about
h = 0.01 cm, so as to keep the local mesh on each subdomain fixed at 32 · 32 · 32. The
mechanical mesh size is twice the electrical one, thus on each subdomain the local mechanical
mesh is 16 · 16 · 16. With these choices, the global size of the discrete Bidomain system
increases from about 0.5 million degrees of freedom (dof) for the smallest domain with 8
subdomains to 34 million dof for the largest domain with 512 subdomains, and the discrete
non-linear elasticity system increases from about 100 thousands dof to 6.5 million. The
simulation is run for 10 time steps of 0.05 ms during the plateau phase of the cardiac action
potential, where the deformation due to the mechanical contraction is stronger.

The results regarding the mechanical solver are reported in Table 1. Both the non-
linear Newton iteration (nit) and linear GMRES iteration (lit) are completely scalable. The
scalability of the GMRES iterations is achieved by the use of the AMG preconditioner.
Nevertheless, the CPU times are not scalable, because they increase with the number of
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Mechanical solver - AMG preconditioner
procs local dof nit lit time speedup

8 102,984 2 41 110.84 -
16 51,492 2 40 63.61 1.74 (2)
32 25,746 2 41 34.64 3.20 (4)
64 12,873 2 39 23.26 4.76 (8)

128 6,436 2 40 16.08 6.89 (16)
256 3,218 2 40 15.50 7.15 (32)
512 1,609 2 41 16.97 6.53 (64)

Table 3: Strong scaling test, Mechanical solver with AMG preconditioner. Number of processors (procs),
Degrees of freedom per processor (dof), average Newton iterations (nit) per time step, average GMRES
iteration counts (lit) per Newton iteration and time step, average CPU time in seconds (time) per time step
and standard speedup (the ideal speedup is reported in brackets).

processors, due to the setup of the AMG preconditioner at each Newton iteration.
In Table 2, we compare the BJ and MHS(4) Bidomain preconditioners, considering or

neglecting (F = I in (7) and (11)) the influence of the mechanical tissue deformation on the
conductivity tensors. The results show that both the preconditioners are robust with respect
to the domain deformations due to the mechanical contraction. The BJ preconditioner is not
scalable, since the condition number of the preconditioned system, the CG iterations and the
CPU times increase with the number of subdomains. Instead, the MHS(4) preconditioner
is completely scalable, both in terms of the mathematical quantities (condition number and
CG iterations) and CPU times. In the largest simulation with 512 processors, the MHS(4)
preconditioner is almost 6 times faster than the BJ preconditioner.

4.2. Test 2: strong scaling

In this strong scaling test, the three-dimensional cardiac domain considered is a half of
truncated ellipsoid (with parameters a1 = b1 = 1.5, c1 = 4.4, a2 = b2 = 2.7, c2 = 5, all in
cm, and φmin = −π/4, φmax = π/4, θmin = −π/4, θmax = π/8). modeling a half the left
ventricular wall, discretized by a fine electrical mesh of 128 · 128 · 128 Q1 finite elements,
for a total amount of 2146689 nodes. The mechanical mesh size is twice the electrical one,
thus the elements are 64 · 64 · 64 and the nodes 274625. Consequently, the global size of the
discrete Bidomain system is fixed at about 4.2 million dof, while the size of the discrete non-
linear elasticity system is 823875 dof. The number of subdomains (= number of processors)
increases from 8 to 512. In this way, the number of dof per subdomain is reduced when the
number of subdomains is increased. As in the previous test, the physical dimension of the
truncated ellipsoidal domain is chosen so that the electrical mesh size h is kept fixed to the
value of about h = 0.01 cm and the simulation is run for 10 time steps of 0.05 ms during
the plateau phase.

Table 3 reports the Newton iterations (nit), the GMRES iterations (lit), the CPU times
and speedup of the mechanical solver. The speedup is defined with respect to the 8 processors
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Bidomain solver - BJ preconditioner
procs local dof κ2 it time speedup

8 536,672 3.71e+3 125 30.50 -
16 268,336 3.95e+3 128 17.09 1.78 (2)
32 134,168 4.02e+3 129 8.50 3.59 (4)
64 67,084 4.61e+3 137 4.40 6.93 (8)

128 33,542 5.09e+3 142 2.21 13.80 (16)
256 16,771 5.22e+3 143 1.02 29.90 (32)
512 8,385 6.29e+3 154 0.55 55.45 (64)

Bidomain solver - MHS(4) preconditioner
procs local dof κ2 it time speedup

8 536,672 1.13 3 9.18 -
16 268,336 1.13 3 5.16 1.78 (2)
32 134,168 1.14 3 2.62 3.50 (4)
64 67,084 1.15 3 1.30 7.06 (8)

128 33,542 1.16 4 0.72 12.75 (16)
256 16,771 1.19 4 0.48 19.12 (32)
512 8,385 1.20 4 0.26 35.31 (64)

Table 4: Strong scaling test, Bidomain solver. Comparison of BJ and MHS(4) preconditioners on deforming
domains. Number of processors (procs), Degrees of freedom per processor (local dof), Condition number
(κ2), CG iteration counts (it), CPU time in seconds (time), Average condition number (κ2) per time step,
average CG iteration counts (it) per time step, average CPU time in seconds (time) per time step and
standard speedup (the ideal speedup is reported in brackets).

run as

speedup(procs) :=
time(8)

time(procs)
.

Although the Newton and GMRES iterations are completely scalable, since they remain
bounded when increasing the number of processors, the speedup are quite far from the
theoretical one, even with a small number of processors. Much better is the performance in
terms of speedup of the Bidomain solver (see Table 4), both employing the BJ or the MHS(4)
preconditioner. Thanks to small number of CG iterations, the MHS(4) preconditioner is
always about 2-3 times faster than the BJ preconditioner, even if the speedup of the latter
is closer to the theoretical one.

4.3. Test 3: whole cardiac cycle

In this last test, we study the performance of our electro-mechanical solver on a whole
heartbeat simulation lasting 400 ms. The cardiac domain is a half truncated ellipsoid as in
the previous test, discretized by a fine electrical mesh of 128 ·128 ·64 Q1 finite elements. The
mechanical mesh is much coarser and consists of 16 · 16 · 8 elements. As a consequence, the
Bidomain linear system dof are 2163330, while the non-linear elasticity system dof are 7803.
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Mechanical solver
prec nit Tnit lit Tlit time Ttime

AMG 3 549 52 29,174 1.02 203.13

Table 5: Full heartbeat test, Mechanical solver with AMG preconditioner. Total number of mechanical
degrees of freedom = 7,803. Number of processors = 32. Average Newton iterations (nit) per time step
, total Newton iterations (nit), average GMRES iterations (lit) per Newton iteration and time step, total
GMRES iterations (Tlit), average CPU time in seconds (time) per time step for solving one mechanical
non-linear system, total CPU time in seconds (Ttime) for solving all the mechanical non-linear systems.

Bidomain solver
prec κ2 it Tit time Ttime
BJ 4.10e+3 135 1,082,713 5.46 43,707

MHS(4) 1.17 4 30,982 1.51 12,107

Table 6: Full heartbeat test, Bidomain solver. Comparison of BJ and MHS(4) preconditioners on deforming
domains. Total number of Bidomain degrees of freedom = 2,163,330. Number of processors = 32. Average
Condition number (κ2) per time step, average CG iteration counts (it) per time step, total CG iteration
counts (Tit), average CPU time in seconds (time) per time step for solving one Bidomain linear system,
total CPU time in seconds (Ttime) for solving all Bidomain linear systems.

The number of processors is 32. The time step size is chosen accordingly to the adaptive
strategy described in [9]. The non-linear elasticity system is solved every 10 electrical time
steps.

Tables 5 and 6 report the summary of the mechanical and Bidomain solver data. On a
whole heart beat simulation, the results show that the MHS(4) preconditioner is about 3.6
times faster than the BJ preconditioner. Fig. 1 shows the time evolution of the condition
number, CG iterations, Newton iterations, GMRES iterations and CPU times of the electro-
mechanical solver. The plots in Panels C and I clearly show that the solution of the non-
linear elasticity system is harder after the excitation phase, at about 100 ms, when the
muscle contracts, and during the repolarization phase at about 300 ms, when the muscle
relaxes. Figures 2, 3 and 4 display the spatial distributions of the transmembrane and
extracellular potentials on the endocardium, epicardium and on a transmural section of the
deformed wedge at six different instants during the activation and plateau phases of the
action potential.

5. Conclusion

We have constructed and studied a parallel multilevel solver for the cardiac electro-
mechanical coupling model. The solver consists of two major steps: 1) solving the linear
system deriving from the discretization of the Bidomain equations with the Conjugate Gra-
dient (CG) method, preconditioned by Multilevel Schwarz preconditioners; 2) solving the
non-linear system deriving from the discretization of the quasi-static mechanical model with
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the Newton method, where the linear Jacobian system is solved by GMRES, preconditioned
by an Algebraic Multigrid preconditioner. The three-dimensional numerical tests performed
on a Linux cluster up to 512 processors have shown that the mechanical non-linear solver is
scalable in terms of Newton and GMRES iterations, but not in terms of CPU time. Further
research is needed in order to obtain a more effective parallel non-linear solver, and a possible
strategy could be to develop non-overlapping domain decomposition methods (such as BDDC
or FETI-DP) for the linear Jacobian system. On the other hand, the results have shown that
the Bidomain solver based on Multilevel Schwarz preconditioners is scalable both in terms
of CG iterations and CPU time. Moreover, the Bidomain solver is robust with respect to
the severe domain deformations induced by the mechanical contraction of the cardiac tissue.

Acknowledgements

The authors were partially supported by grants of MIUR (PRIN 201289A4LX 002) and
of INdAM (Istituto Nazionale di Alta Matematica, Roma, Italy).

References

[1] D. Ambrosi, G. Arioli, F. Nobile, A. Quarteroni, Electromechanical coupling in cardiac
dynamics: the active strain approach, SIAM J. Appl. Math. 71 (2011) 605–621.

[2] D. Ambrosi, S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive
issues, J. Elast. 107 (2012) 199–212.

[3] B. Andreianov, M. Bendahmane, A. Quarteroni, R. Ruiz-Baier, Weak solutions and
numerical approximation of a coupled system modeling cardiac electromechanics (2014).
URL: http://hal.archives-ouvertes.fr/hal-00865585.

[4] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes,
B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.3,
Argonne National Laboratory, 2012.

[5] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications,
Springer, Berlin, 2013.

[6] S.G. Campbell, E. Howard, J. Aguado-Sierra, B.A. Coppola, J.H. Omens, L.J. Mulli-
gan, A.D. McCulloch, R.C.P. Kerckhoffs, Effect of transmurally heterogeneous myocyte
excitation-contraction coupling on canine left ventricular electromechanics, Exp. Phys-
iol. 94 (2009) 541–552.

[7] C. Cherubini, S. Filippi, P. Nardinocchi, L. Teresi, An electromechanical model of car-
diac tissue: constitutive issues and electrophysiological effects, Progr. Biophys. Molec.
Biol. 97 (2008) 562–573.

13



0 100 200 300 400
0

1000

2000

3000

4000

5000

6000
Bidomain solver − BJ

ms

κ 2

(A)

0 100 200 300 400
1

1.1

1.2

1.3

ms

κ 2

Bidomain solver − MHS(4)

(B)

0 100 200 300 400
0

2

4

6

8

10

ms

N
e

w
to

n
 it

e
ra

tio
n

s

Mechanical solver − AMG

(C)

0 100 200 300 400
0

50

100

150

200

ms

C
G

 it
e

ra
tio

n
s

(D)

0 100 200 300 400
1

2

3

4

5

6

ms

C
G

 it
e

ra
tio

n
s

(E)

0 100 200 300 400
40

45

50

55

60

ms

G
M

R
E

S
 it

e
ra

tio
n

s
(F)

0 100 200 300 400
0

2

4

6

8

10

12

ms

C
P

U
 t

im
e

 (
s)

(G)

0 100 200 300 400
0.8

1.2

1.6

2

2.4

2.8

ms

C
P

U
 t

im
e

 (
s)

(H)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

ms

C
P

U
 t

im
e

 (
s)

(I)
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(A), CG iterations (D), CPU time in second (G) for solving one Bidomain linear system. Bidomain solver
- MHS(4) preconditioner: time evolution of condition number (B), CG iterations (E), CPU time (H) for
solving one Bidomain linear system. Mechanical solver - AMG preconditioner: time evolution of Newton
iteration (C), GMRES iterations (F) per Newton iteration, CPU time (I) for solving one mechanical
non-linear system.

14



cm

cm

t=20 ms,    min=−82.66 mV,    max=2.74 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=40 ms,    min=−82.59 mV,    max=16.66 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=60 ms,    min=−82.59 mV,    max=15.16 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=80 ms,    min=0.74 mV,    max=12.77 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=100 ms,    min=0.27 mV,    max=8.01 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=160 ms,    min=−12.64 mV,    max=3.83 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−100

−80

−60

−40

−20

0

20

cm

cm

t=20 ms,    min=−26.67 mV,    max=11.17 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

cm

cm

t=40 ms,    min=−22.96 mV,    max=25.59 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

cm

cm

t=60 ms,    min=−12.52 mV,    max=39.65 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

cm

cm

t=80 ms,    min=−3.63 mV,    max=6.27 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

cm

cm

t=100 ms,    min=−1.08 mV,    max=1.97 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

cm

cm

t=160 ms,    min=−2.12 mV,    max=3.80 mV

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

−30

−20

−10

0

10

20

30

Figure 2: Full heartbeat test: Endocardial transmembrane (first and second rows) and extracellular (third
and fourth rows) potential distributions on the deformed domain at different time instants.
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Figure 3: Full heartbeat test: Epicardial transmembrane (first and second rows) and extracellular (third and
fourth rows) potential distributions on the deformed domain at different time instants.
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Figure 4: Full heartbeat test: Epicardial transmembrane (first and second rows) and extracellular (third and
fourth rows) potential distributions on the deformed domain at different time instants.
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