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Abstract

The aim of this work is to develop a BPX preconditioner for the Bidomain model of electrocardiology.
This model describes the bioelectrical activity of the cardiac tissue and consists of a system of a
non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear
PDE, modeling at macroscopic level the evolution of the transmembrane and extracellular electric
potentials of the anisotropic cardiac tissue. The evolution equation is coupled through the non-
linear reaction term with a stiff system of ordinary differential equations, the so-called membrane
model, describing the ionic currents through the cellular membrane. The discretization of the
coupled system by finite elements in space and semi-implicit finite differences in time yields at
each time step the solution of an ill-conditioned linear system. The goal of the present study is to
construct, analyze and numerically test a BPX preconditioner for the linear system arising from
the discretization of the Bidomain model. Optimal convergence rate estimates are established and
verified by two- and three-dimensional numerical tests on both structured and unstructured meshes.
Moreover, in a full heartbeat simulation on a three-dimensional wedge of ventricular tissue, the BPX
preconditioner is about 35% faster in terms of CPU times than ILU(0) and an Algebraic Multigrid
preconditioner.
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1. Introduction

The Bidomain model describes the bioelectrical activity of the cardiac tissue and is constituted
by a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear
PDE. This system models at macroscopic level the evolution of the transmembrane and extracel-
lular electric potentials, v and ue respectively, of the anisotropic cardiac tissue (macroscale). The
evolution equation is coupled through the non-linear reaction term with a stiff system of ordinary
differential equations (ODEs), the so-called membrane model, describing the ionic currents flowing
through the cellular membrane (microscale).

The different space and time scales involved make the solution of the Bidomain system a very
challenging problem in the field of scientific computing. In fact, the accurate approximation of the
steep activation wavefront spreading through the cardiac tissue during the excitation phase requires
mesh sizes on the order of the tenth of millimeter and time step sizes on the order of the hundredth of
millisecond, while the dimension of the heart muscle is on the order of centimeters and the duration
of heartbeat on the order of seconds. Thus, the discretization of the anisotropic Bidomain model
in three-dimensional ventricular geometries of realistic size yields the solution of large scale (often
exceeding O(106) unknowns) and ill-conditioned linear systems at each time step.
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Several approaches have been developed in order to reduce the high computational costs of the
Bidomain model. Fully implicit methods in time, requiring the solution of non-linear systems at
each time step, have been considered in the literature, see e.g. [1, 2, 3, 4]. Alternatively, most
previous works have considered semi-implicit (IMEX) time discretizations and/or operator splitting
schemes, where the reaction and diffusion terms are treated separately, see e.g. [5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. The advantage of IMEX and operator splitting schemes is that they only require
the solution of linear systems at each time step. Many different preconditioners have been proposed
in order to devise efficient iterative solvers for such linear systems: SSOR [16], block diagonal or
triangular [17, 18, 19, 20, 21, 22, 23], optimized Schwarz [24, 25], geometric multigrid [26, 27],
algebraic multigrid [28, 17, 29, 18, 19], multilevel Schwarz [30, 31, 32], Neumann-Neumann and
BDDC [33, 34] preconditioners.

The Bramble-Pasciak-Xu (BPX) preconditioner is a multilevel method introduced in [35] for the
solution of linear systems arising from the finite element discretization of elliptic problems. This
preconditioner has been proved to be particularly effective in case of local refinement, see [36, 37, 38].
In the last years, space adaptivity has been largely employed to reduce the high computational costs
required by the solution of the Bidomain model, see e.g. [39, 40, 41, 42, 43, 44, 45].

In order to build a Bidomain preconditioner effective in case of local refinement, the aim of this
work is to construct, analyze and test numerically the BPX preconditioner for the Bidomain model.
Optimal convergence rate estimates have been established by applying the abstract BPX theory
of [35, 38] to the Bidomain bilinear form. Several numerical tests on two- and three-dimensional
structured and unstructured meshes have confirmed the theoretical results. The numerical tests
have also shown that, in a full heartbeat simulation on a three-dimensional wedge of ventricular
tissue, the BPX preconditioner is about 35% faster in terms of CPU times than ILU(0) and Algebraic
Multigrid preconditioners.

The paper is organized as follows. In Section 2 and 3, we present the Bidomain model and
its discretization. In Section 4, we recall the abstract theory of the BPX preconditioner and we
construct and analyze the BPX preconditioner applied to the Bidomain system. Finally, the results
of several numerical tests are reported in Section 5.

2. The Bidomain model

2.1. The macroscopic Bidomain model

The heart is a pump, which by contracting and expanding drives the blood around the body.
Coordination of the mechanical activity is provided by an electric signal. At a microscopic level,
the heart is composed of elongated cells, surrounded by the extracellular space and connected to
each other through special electrical junctions, called gap junctions, see [46, 47].

From a microscopic model of the discrete cellular structure, it is possible to derive, by a homog-
enization process a macroscopic model, see [48]. In this model, called macroscopic Bidomain model,
the cardiac tissue is described as the superposition of two anisotropic continuous media, the intra-
and extracellular media, which coexist at every point of the tissue and are connected by a cellular
membrane, distributed in a continuous way, see [49]. The intracellular domain represents the region
internal to the cells, while the extracellular domain represents the space around cells. A third region
may be included to represent the extramyocardial domain. This region can be used to model a fluid
bath in experimental conditions or the torso. In the following we consider the insulated Bidomain
model, with only the intra- and the extracellular domains, see [50].
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Since in the homogenized representation of the Bidomain model the cardiac domain coincides
with the superposition of the intra- (i) and extra- (e) cellular domains, we have

Ω ≡ Ωi ≡ Ωe ⊂ R
3 is the physical region occupied by the heart,

ui, ue : Ω → R are the intra- ed extracellular electric potentials,

v := ui − ue : Ω → R is the transmembrane potential.

The anisotropic structure of the continuous media is characterized by the conductivity tensors
Di and De. The anisotropic conductivity is related to the arrangement of the cardiac fibers, whose
direction rotates counterclockwise from the epicardium to the endocardium. The ventricular my-
ocardium has a laminar structure composed of muscle sheets. In this organization, it is possible
to identify three principal axes at any point x. Let al(x), at(x), an(x) be a triplet of orthonormal
vectors at a point x, where al is parallel to the local fiber direction, at is tangent to the radial lamina,
and an is normal to the muscle sheet, and the latter two are transversal to the fiber axis. Generally,
this triplet depends on the position x in the myocardium. Let σi,e

l , σi,e
t , σi,e

n be the conductivity
coefficients of the intra- and extracellular media, measured along the corresponding directions al,
at, an. Generally, these coefficient may depend on x, but in the following we assume that they are
constant, i.e. a condition of homogenous anisotropy. Thus the anisotropic conductivity tensors Di

and De are given by:

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x). (1)

The bioelectrical activity of the cardiac cells is due to the flow Iion (per unit area of the membrane
surface) of various ionic currents (among which the most important are sodium, potassium and
calcium) through the cellular membrane. The cellular membrane behaves as a capacitor, so the
total membrane current per unit volume im is given by

im = χ

(
Cm

∂v

∂t
+ Iion

)
,

where v = ui−ue is the transmembrane potential, the coefficient χ is the ratio of membrane area per
tissue volume, Cm is the membrane capacitance and Iion is the sum of all ionic currents, dependent
on the membrane model, see the Appendix.

In an insulated case, any current that leaves one domain must cross the cell membrane and flow
into the other domain. This requires the change in current density in each of the domains to be equal
in magnitude and opposite in sign and also to be equal to the current flow across the membrane.
So we have divJi = − divJe = im, where Ji,e = −Di,e∇ui,e are the intra- ed extracellular current
densities.

Therefore, in the Bidomain model the space-time evolution of the intra- and extracellular po-
tentials ui and ue is modeled by the following reaction-diffusion system of PDEs, coupled with an
ODEs system for Nw gating variables w and Nc ionic concentration variables c, with Nw and Nc

dependent on the membrane model.
Given

ieapp : Ω × (0, T ) → R extracellular applied current per unit volume,
v0 : Ω → R initial condition for the transmembrane potential,
w0 : Ω → R

Nw initial condition for the gating variables,
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c0 : Ω → R
Nc initial condition for the ionic concentrations variables,

find
ui, ue : Ω × (0, T ) → R intra- and extracellular potentials,
v = ui − ue : Ω × (0, T ) → R transmembrane potential,
w : Ω × (0, T ) → R

Nw gating variables,
c : Ω × (0, T ) → R

Nc ionic concentrations variables
such that 




cm
∂v

∂t
− div(Di∇ui) + iion(v,w, c) = 0 in Ω × (0, T )

−cm
∂v

∂t
− div(De∇ue) − iion(v,w, c) = ieapp in Ω × (0, T )

∂w

∂t
−R(v,w) = 0, in Ω × (0, T )

∂c

∂t
− S(v,w, c) = 0, in Ω × (0, T ),

(2)

where cm = χCm and iion = χIion.
We assume that the cardiac tissue is insulated, thus homogeneous Neumann boundary conditions

are imposed on ∂Ω × (0, T ):
nTDi∇ui = 0, nTDe∇ue = 0,

where n is the outward normal to ∂Ω. Initial conditions are assigned on Ω at t = 0

v(x, 0) = ui(x, 0) − ue(x, 0) = v0(x), w(x, 0) = w0(x).

The analytical expression of the functions Iion in the reaction term and R in the right hand side of
the ODEs depends on the membrane model chosen. In this paper, we consider the Luo-Rudy phase
I (LR1) model, see [51].

Adding the two equations of the system (2), integrating on the domain Ω and applying the
divergence theorem, from the Neumann boundary conditions we have the compatibility condition,
necessary for the (2) to be solvable: ∫

Ω
ieapp dx = 0.

The potentials ui and ue are determined up to the same time-dependent additive constant, while v
is uniquely determined. The common constant is related to the reference potential, usually chosen
such that ue has zero average on Ω, i.e.

∫

Ω
uedx = 0.

System (2) can be equivalently rewritten in terms of the transmembrane and extracellular po-
tentials v(x, t) and ue(x, t), thus obtaining the parabolic-elliptic (PE) formulation of the Bidomain
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model, considered in the rest of this paper:




cm
∂v

∂t
− div(Di∇v) − div(Di∇ue) + iion(v,w, c) = 0 in Ω × (0, T )

−div(Di∇v) − div((Di +De)∇ue) = ieapp in Ω × (0, T )

∂w

∂t
−R(v,w) = 0, in Ω × (0, T )

∂c

∂t
− S(v,w, c) = 0, in Ω × (0, T )

n
TDi∇(v + ue) = 0 in ∂Ω × (0, T )

n
T (Di +De)∇ue + n

TDi∇v = 0, in ∂Ω × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω.

(3)

2.2. Variational formulation

Assume that
(H1) the cardiac region Ω is a bounded Lipschitz connected open subset of R

3;
(H2) the tensors Di,e(x) satisfy the following uniform ellipticity condition:

∃αi,e, Ci,e > 0 : αi,e|ξ|
2 ≤ ξTDi,e(x)ξ ≤ Ci,e|ξ|

2, ∀ξ ∈ R
3, x ∈ Ω;

(H3) the coefficients of Di,e(x) are Lipschitz continuous.
Let V be the Sobolev space H1(Ω), define the spaces

Ṽ = {ψ ∈ V :

∫

Ω
ψ = 0} and U = V × Ṽ = {u = (ϕ,ψ) : ϕ ∈ V,ψ ∈ Ṽ },

define the usual L2-inner product (ϕ,ψ) =
∫
Ω ϕψdx ∀ϕ,ψ ∈ L2(Ω), and the elliptic bilinear forms

ai,e(ϕ,ψ) =

∫

Ω
(∇ϕ)TDi,e(x)∇ψdx,

a(ϕ,ψ) =

∫

Ω
(∇ϕ)TD(x)∇ψdx ∀ϕ,ψ ∈ H1(Ω),

where D = Di +De is the bulk conductivity tensor.
The variational formulation of the Bidomain system (3) reads as follows. Given v0, w0 ∈ L2(Ω),

ieapp ∈ L2(Ω × (0, T )), find v ∈ L2(0, T ;V ), ue ∈ L2(0, T ; Ṽ ), w ∈ L2(0, T ;L2(Ω)Nw) and c ∈

L2(0, T ;L2(Ω)Nc) such that
∂v

∂t
∈ L2(0, T ;V ),

∂w

∂t
∈ L2(0, T ;L2(Ω)Nw),

∂c

∂t
∈ L2(0, T ;L2(Ω)Nc)

and ∀t ∈ (0, T )




cm
∂

∂t
(v, v̂) + ai(v, v̂) + ai(ue, v̂) + (iion(v,w), v̂) = 0 ∀v̂ ∈ V

ai(v, ûe) + a(ue, ûe) = (ieapp, ûe) ∀ûe ∈ V

∂

∂t
(w, ŵ) − (R(v,w), ŵ) = 0, ∀ŵ ∈ L2(Ω)Nw

∂

∂t
(c, ĉ) − (S(v,w, c), ĉ) = 0, ∀ĉ ∈ L2(Ω)Nc ,

(4)

with the appropriate initial conditions in (3). For the mathematical analysis of this model we refer
to [52, 53].
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3. Discretization and numerical methods

System (4) is discretized by the finite element method in space and a semi-implicit method in
time.

Time discretization. The time discretization is performed by a semi-implicit method using
for the diffusion term the implicit Euler method, while the non-linear reaction term iion is treated
explicitly. The implicit treatment of the diffusion terms appearing in the Bidomain model is essential
in order to adaptively change the time step according to the stiffness of the various phases of the
heartbeat. The ODE system of the LR1 membrane model is discretized by the implicit Euler method
for the gating variables ODEs and by the explicit Euler method for the ionic concentration ODE.
As a consequence, the full evolution system (4) is decoupled by first solving the gating and ion
concentrations system (given the transmembrane potential vn = un

i − un
e at the previous time-step)

{
(wn+1 − ∆tR(vn, wn+1), ŵ) = (wn, ŵ) ∀ŵ ∈ L2(Ω)Nw

(cn+1, ĉ) = (cn + ∆t S(vn, wn+1, cn), ĉ) ∀ĉ ∈ L2(Ω)Nc
(5)

and then solving for (vn+1, un+1
e ) ∈ U the PE variational problem

{
ct(v

n+1, v̂) + ai(v
n+1, v̂) + ai(u

n+1
e , v̂) = (ct v

n − iion(vn, wn+1, cn+1), v̂) ∀v̂ ∈ V

ai(v
n+1, ûe) + a(un+1

e , ûe) = (ieapp, ûe) ∀ûe ∈ V
(6)

where ct = cm

∆t .

Lemma 3.1. The symmetric bilinear forms ((·, ·)), ((·, ·))0 : U × U → R defined by

((u, û)) : =

∫

Ω
vv̂ +

∫

Ω
∇v · ∇v̂ +

∫

Ω
∇ue · ∇ûe

((u, û))0 : =

∫

Ω
vv̂ +

∫

Ω
ueûe

are inner products on U . Here u = (v, ue), û = (v̂, ûe) in ((·, ·)).

We denote by ||| · |||, ||| · |||0 : U → R the norms induced by the ((·, ·)), ((·, ·))0 inner products, i.e.

|||u|||2 =

∫

Ω
v2 +

∫

Ω
|∇v|2 +

∫

Ω
|∇ue|

2

|||u|||20 =

∫

Ω
v2 +

∫

Ω
u2

e.

Lemma 3.2. The bilinear form abid(·, ·) : U × U → R defined by

abid(u, û) : = ct

∫

Ω
vv̂ +

∫

Ω
Di∇(v + ue) · ∇(v̂ + ûe) +

∫

Ω
De∇ue · ∇ûe,

is continuous and elliptic with respect to the ||| · ||| norm.

The stationary Bidomain system (6) can be rewritten in the compact form:
given vn, wn+1, find un+1 ∈ U such that

abid(u
n+1, û) = (Fi, v̂) + (Fe, ûe) ∀û = (v̂, ûe) ∈ V × V, (7)

with Fi = ct v
n − iion(vn, wn+1, cn+1) and Fe = ieapp.
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Remark 3.1. We note that, if (H1)-(H2)-(H3) hold, problem (7) is H2-regular, i.e.

|v|H2(Ω) + |ue|H2(Ω) ≤ C(||Fi||L2(Ω) + ||Fe||L2(Ω)). (8)

Space discretization. The domain Ω is discretized by introducing a quasi-uniform triangula-
tion Th, with mesh size denoted by h. Denote by V h the associated finite element space. In this
work, we will consider P1 and Q1 finite elements. Define also the spaces

Ṽ h = {ψh ∈ V h :

∫

Ω
ψh = 0} and Uh = V h × Ṽ h.

The discrete Bidomain system is obtained by applying a standard Galerkin procedure, yielding the
same equations as in (6), with e.g. vh,n instead of vn. Choose now a finite element basis {ϕi} for
Vh and let M = (mrs), Ai,e = (ai,e

rs ) and A = (ars) be the symmetric mass and stiffness matrices
defined by

mrs =
∑

E

∫

E
ϕr ϕsdx,

ai,e
rs =

∑

E

∫

E
(∇ϕr)

TDi,e(x)∇ϕsdx, ars =
∑

E

∫

E
(∇ϕr)

TD(x)∇ϕsdx.

Numerical quadrature with a simple trapezoidal rule in three dimensions is used in order to compute
these integrals. We can now write in matrix form the discrete formulation of (6).

Given v
n, w

n, c
n, we first find w

n+1, c
n+1 by solving

{
w

n+1 − ∆tR(vn,wn+1) = w
n

c
n+1 = c

n + ∆t S(vn,wn+1, cn)
(9)

and then v
n+1,un+1

e by solving the Bidomain linear system

Abid

(
v

n+1

u
n+1
e

)
=

(
M[ctv

n − I
h
ion(vn,wn+1, cn+1)]

MI
h,e
app

)
, (10)

where

Abid =

[
ctM + Ai Ai

Ai A

]
. (11)

u
n
e , v

n, w
n, c

n, u
n+1
e , v

n+1, w
n+1, c

n+1, I
h
ion, I

h,e
app are the vectors of nodal values of the discrete

finite element functions uh,n
e , vh,n, wh,n, ch,n, uh,n+1

e , vh,n+1, wh,n+1, ch,n+1, ihion, ih,e
app respectively.

As in the continuous model, v
n+1 is uniquely determined, while u

n+1
e is determined only up to

an additive time-dependent constant chosen by imposing the condition 1
T Mu

n+1
e = 0. Hence, at

each time step we have to solve the large linear system (10), that is ill-conditioned and increases
considerably the computational costs of the simulations.

In order to introduce in the following section the BPX preconditioner for the discrete Bidomain
system, we rewrite the discrete formulation of (6) in the compact form:

given vh,n, wh,n+1, find uh,n+1 ∈ Uh such that

abid(u
h,n+1, ûh) = (Fi, v̂

h) + (Fe, û
h
e ) ∀ûh = (v̂h, ûh

e ) ∈ V h × V h, (12)

with Fi = ct v
h,n − ihion(vh,n, wh,n+1, ch,n+1) and Fe = ih,e

app.
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By defining the linear operator Abid : Uh → Uh as

((Abidu
h, ûh))0 = abid(u

h, ûh) ∀ûh ∈ V h × V h,

we have that (12) is equivalent to the linear operator equation

Abidu
h,n+1 = F h, (13)

with right-hand side F h ∈ Uh defined as

((F h, ûh))0 = (Fi, v̂
h) + (Fe, û

h
e ) ∀ûh = (v̂h, ûh

e ) ∈ V h × V h.

We will construct in the next section the BPX preconditioner for problem (13) and, following the
standard abstract BPX theory developed in [35], we will derive optimal convergence rate estimates.
We need the following L2-error estimate for the solutions of (7) and (12), which is obtained by a
simple application of the Aubin-Nitsche trick, see [30].

Lemma 3.3. Let u = (v, ue) and uh = (vh, uh
e ) be the solutions of (7) and (12), respectively. Then

the following error estimate holds

||v − vh||L2(Ω) + ||ue − uh
e ||L2(Ω) ≤ C h |||u− uh|||. (14)

4. BPX preconditioner

Preconditioned iterative techniques lead to computationally effective algorithms for the solution
of large algebraic systems, which arise in the numerical approximation of PDEs. The Bramble-
Pasciak-Xu (BPX) preconditioner is a multilevel preconditioner introduced in [35] for the finite
element discretization of scalar elliptic problems. Theoretical results have been obtained initially
in the uniform refinement case, but extensions to local refinement in 2D and 3D have also been
obtained in [36, 37, 38]. See also [54] for the BPX applied to the discretization of elliptic PDEs on
the sphere and the recent paper [55] on BPX preconditioning for isogeometric analysis of elliptic
problems.

4.1. Abstract BPX theory

We recall in this section the general abstract construction of the BPX preconditioner, as intro-
duced in [35]. Let

M1 ⊂ M2 ⊂ · · · ⊂ MJ ≡ M, J ≥ 2. (15)

be a sequence of nested finite-dimensional spaces. Assume that two inner products, (·, ·) and A(·, ·),
are defined in M and all its subspaces. For all k = 1, . . . , J we introduce the following operators:

1. the projection Pk : M −→ Mk defined for u ∈ M as

A(Pku, v) = A(u, v) ∀v ∈ Mk;

2. the projection Qk : M −→ Mk defined for u ∈ M as

(Qku, v) = (u, v) ∀v ∈ Mk;
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3. the operator Ak : Mk −→ Mk defined for u ∈ Mk as

(Aku, v) = A(u, v) ∀v ∈ Mk.

We indicate A = AJ and define

Ok = {φ : φ = (Qk −Qk−1)ψ, ψ ∈ M},

with Q0 = 0. With this notation,
Mj+1 = Mj ⊕Oj+1,

so that we can express M through its multilevel decomposition

M =
J⊕

j=1

Oj . (16)

The BPX preconditioner is defined by

B =

J∑

k=1

λ−1
k (Qk −Qk−1), (17)

where λk is the spectral radius of Ak.
A more general BPX operator can be obtained by substituting λ−1

k I with a symmetric positive
definite operator Rk : Mk → Mk, i.e.

B =
J∑

k=1

RkQk. (18)

4.2. BPX preconditioner for the Bidomain model

In the Bidomain model notation (see Section 2), the bilinear form A(·, ·) and the inner product
(·, ·) correspond to abid(·, ·) and ((·, ·))0, respectively. The sequence of nested meshes {Thk

}, with k =
1, ..., J , is defined using uniform or quasi-uniform meshes with mesh size hk, where h1 corresponds
to the coarsest mesh and hJ = h to the finest. Since {Thk

} is obtained from a refinement of {Thk−1
},

it exists a constant C > 0 such that

hk−1 ≤ Chk ∀k = 2, ..., J. (19)

On each level k = 1, . . . , J , we define a finite element space V hk , with V hJ = V h, and the spaces
Ṽ hk , Uhk as

Ṽ hk := Ṽ h ∩ V hk ,

Uhk := V hk × Ṽ hk ,

so to obtain a sequence of finite element spaces

Uh1 ⊂ Uh2 ⊂ · · · ⊂ UhJ ≡ Uh.

We denote by {φk
i } the set of basis functions on the space Uhk .
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With the notation of Section 4.1, the operators Pk, Qk and Ak are

Pk : Uh → Uhk defined for u ∈ Uh as

abid(Pku, ũ) = abid(u, ũ) ∀ũ ∈ Uhk ,

Qk : Uh → Uhk defined for u ∈ Uh as

((Qku, ũ))0 = ((u, ũ))0 ∀ũ ∈ Uhk ,

Ak : Uhk → Uhk defined for u ∈ Uhk as

((Aku, ũ))0 = abid(u, ũ) ∀ũ ∈ Uhk .

Let us consider the BPX operator B of the form (18), with Rk : Uhk → Uhk in the form

Rk = h2
kIk, (20)

where Ik is the identity on level k. Then the following Theorem holds true.

Theorem 4.1. The condition number of the Bidomain linear system (13) preconditioned by the
BPX preconditioner satisfies

κ2(B
1/2AbidB

1/2) ≤ C,

with C independent of the mesh sizes hk and number of levels J .

Proof. The estimate follows easily from the properties of the Bidomain bilinear form detailed in
Section 3 by applying the results obtained in [38].

4.3. Matrix form of the BPX preconditioner

In order to construct the matrix form of the BPX preconditioner, we need to introduce the
prolongation and restriction operators among the different grids, see [56]. Since Uhk ⊂ Uhk+1 , every
function φk

i on the level k can be represented as a linear combination of functions on the level k+1.
With this refinement relation we can define the prolongation operator Ik+1

k from Uhk to Uhk+1 . The
restriction operator Ik

k+1 is the inverse of the prolongation one: given a function vk defined on the
fine level k + 1, the corresponding function on the coarse level k is defined through the transposed
operator, i.e. Ik

k+1 = (Ik+1
k )T . We set also IJ

k := IJ
J−1I

J−1
J−2 · · · I

k+1
k and Ik

J := Ik+1
k Ik+2

k+1 · · · I
J
J−1 for

the prolongation and restriction operator between arbitrary levels.
The discretized BPX preconditioner has the following matrix form:

B =

J∑

k=1

h2
kI

J
k Ik

J .

An improvement of this preconditioner is obtained by substituting the scalar factor h2
k with

diag(Ak)
−1, where diag(Ak) indicates the diagonal matrix obtained from the diagonal entries of

the stiffness matrix Ak. The diagonal scaling has the same effect of the scaling by levels of h2
k, but

improves the condition number ([55]). Finally, we get the discretized BPX preconditioner

B =
J∑

k=1

IJ
kdiag(Ak)

−1Ik
J .
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We introduce now a further improvement. Let A1 be the operator on the coarsest level. If
the condition number κ(A1) is already high on the coarsest level, it can be better to use the exact
inverse on the coarsest mesh, i.e. apply

B = IJ
1A

−1
1 I1

J +

J∑

k=2

IJ
kdiag(Ak)

−1Ik
J . (21)

Another improvement can be obtained substituting the diagonal scaling on every level with an
ILU(0) preconditioning.

5. Numerical results

The numerical results in the two-dimensional case have been obtained using a MATLAB code
on a standard desk computer. The 3D simulations have been performed using our FORTRAN code
based on the PETSc library of the Argonne National Laboratory [57, 58], run on a single processor
of the Nemo Linux cluster at the Department of Mathematics of the University of Milan [59].

The weak formulation of the Bidomain model coupled with the LR1 model is integrated using
the semi-implicit finite difference method described in the Section 3. In order to minimize the
bandwidth of the stiffness matrix, the unknowns have been reordered writing for each node the vi

and ue components consecutively. The linear system is solved at every step using the preconditioned
conjugate method (PCG), using 10−6 relative residual reduction as stopping criterion. We use the
following preconditioners:

• J level BPX preconditioner, with exact matrix on the coarse level and diagonal matrix on the
other levels (in the following BPX(J)-diag), as in (21);

• J level BPX preconditioner, with exact matrix on the coarse level and ILU(0) on the other
levels (in the following BPX(J)-ilu).

Domain structure. The domain Ω is a square in 2D and the image of a cartesian slab using
ellipsoidal coordinates in 3D, yielding a portion of truncated ellipsoid. The family of truncated
ellipsoids is described by the parametric equations





x = a(r) cos θ cosφ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sinφ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1,

where a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 − b1), c(r) = c1 + r(c2 − c1), and ai, bi, ci, i = 1, 2
are given coefficients determining the main axes of the ellipsoid. The fibers rotate intramurally
linearly with the depth for a total amount of 90o proceeding counterclockwise from epicardium to
endocardium. More precisely, in a local ellipsoidal reference system (eφ, eθ, er), the fiber direction
al(x) at a point x is given by

al(x) = eφ cosα(r) + eθ sinα(r), with α(r) =
π

2
(1 − r) −

π

4
, 0 ≤ r ≤ 1.

Mesh hierarchy. In order to build the grids of the BPX(J) preconditioner, in the 2D and 3D
structured case of Q1 finite elements, we start from the coarsest mesh, and then we refine it J − 1

11



h dof BPX(3)-diag BPX(3)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.02 578 9.39 2.92 0.31 19 3.13 3.06 0.98 11
0.01 2178 16.24 3.29 0.20 25 3.20 3.06 0.96 12
0.005 8450 31.21 3.54 0.11 35 3.25 3.15 0.97 12
0.0025 33282 59.72 4.11 0.07 46 3.24 3.18 0.98 12
0.00125 132098 74.66 3.97 0.05 53 3.46 3.43 0.99 13
0.000625 526338 92.20 4.84 0.05 58 3.87 3.72 0.96 14

h dof BPX(4)-diag BPX(4)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.02 578 12.62 3.87 0.31 21 4.03 4.00 0.99 13
0.01 2178 19.05 4.01 0.21 28 4.13 3.98 0.96 14
0.005 8450 37.28 4.03 0.11 38 3.94 3.87 0.98 14
0.0025 33282 77.39 4.82 0.06 54 3.86 3.90 1.00 13
0.00125 132098 97.83 5.33 0.05 61 4.09 4.10 1.00 14
0.000625 526338 118.70 5.64 0.05 69 4.66 4.60 0.99 16

Table 1: Test 1, optimality with respect to mesh size, 2D structured meshes. 3 and 4 levels
BPX-diag and BPX-ilu preconditioners. Mesh size h, degrees of freedom of the Bidomain linear
system (dof), average condition number (κ2), maximal (λmax) and minimal (λmin) eigenvalues of
the preconditioned system, and PCG iterations (it) per time step.

times by halving the mesh size in each coordinate direction. In the 2D unstructured case of P1 finite
elements, we start from the coarsest mesh, generated with the PDETool toolbox of MATLAB, and
then we refine it J − 1 times using the routine refinemesh of PDETool.

Conductivity coefficients. The orthotropic conductivity coefficients of the 3D conductivity
tensors (1) are

σi
l = 3 · 10−3, σi

t = 3.1525 · 10−4, σi
n = 3.1525 · 10−5,

σe
l = 2 · 10−3, σe

t = 1.3514 · 10−3, σe
n = 6.7570 · 10−4.

All values are given in Ω−1cm−1. We recall that in 2D the conductivity tensors (1) become

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x).

Stimulation site, initial conditions and boundary conditions. The depolarization process
starts by applying a stimulus of Ie

app = −200 mA/cm3, lasting 1 ms, to an area of about 0.02 ×
0.02 cm2 in 2D (0.02 × 0.02 × 0.02 cm3 in 3D) at the center of the square domain in 2D or at
the center of the endocardial surface (the interior surface of the truncated ellipsoid) in 3D. Initial
conditions are the resting values for all potentials and gating variables in the LR1 model, with
boundary conditions for insulated tissues. Except the last test on the whole cardiac beat, in all the
other tests the model is run for 40 time steps of 0.05 ms after the stimulation, i.e. for a total time
interval of 2 ms during the excitation phase.

5.1. Test 1: optimality with respect to the mesh size, 2D structured meshes

The aim of this test is to study the performance of the BPX preconditioner when decreasing
the mesh size h. The number of levels J considered is 3 and 4. The 2D domain is a square of
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Figure 1: Test 1, optimality with respect to mesh size, 2D structured meshes. Plots of condition
numbers and iteration counts from the data reported in Table 1.

dimension 0.32 × 0.32 cm2, discretized by six different grids of Q1 finite elements. The mesh size
of the coarsest grid is 0.02 cm, while that of the finest one is 0.000625 cm. As a result, the degrees
of freedom (dof) of the Bidomain linear system vary from 578 in the coarsest case to 526338 in the
finest one.

Table 1 reports the average condition number, maximal and minimal eigenvalues of the precon-
ditioned system, and PCG iteration counts per time step. The condition number and PCG iteration
counts are also plotted in Fig. 1 for better clarity.

The results show that, in the BPX-diag case, both condition numbers and iteration counts
increase when refining h, but, asymptotically, as also confirmed by the plots in Fig. 1, they seem
to be bounded from above, according to the estimate in Theorem 4.1. The independence of the
condition number with respect to the mesh size, thus the optimality of the preconditioner, is instead
clear in the BPX-ilu case. The significant improvement of the BPX-ilu preconditioner with respect
to the BPX-diag is mainly due to the increase of the minimal eigenvalue, which is close to 1.
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J BPX(J)-diag BPX(J)-ilu
κ2 λmax λmin it κ2 λmax λmin it

2 11.75 3.89 0.33 21 2.34 2.17 0.93 9
3 14.91 4.94 0.33 25 3.59 3.39 0.94 11
4 15.70 5.26 0.33 26 4.82 4.56 0.95 13
5 17.06 5.72 0.33 27 5.93 5.61 0.95 15
6 18.23 6.12 0.34 28 7.01 6.64 0.95 16
7 19.67 6.61 0.34 29 7.99 7.59 0.95 18
8 22.19 7.47 0.34 30 8.80 8.42 0.96 19
9 25.35 8.49 0.33 31 9.97 9.40 0.94 19
10 27.93 9.38 0.34 32 10.85 10.30 0.95 20

Table 2: Test 2, increasing the number of levels, 2D structured meshes. J-level BPX-diag and
BPX-ilu preconditioners. Number of levels J , average condition number (κ2), maximal (λmax) and
minimal (λmin) eigenvalues of the preconditioned system, and PCG iterations (it) per time step.
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Figure 2: Test 2, increasing the number of levels, 2D structured meshes. Plots of condition numbers
and iteration counts from the data reported in Table 2.
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h dof BPX(2)-diag BPX(2)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.0285 2709 12.27 3.72 0.30 16 2.37 1.96 0.81 7
0.0142 10665 21.56 4.11 0.19 21 2.67 2.04 0.75 8
0.0071 42321 33.17 4.22 0.12 26 3.11 2.14 0.67 9
0.0035 168609 35.00 4.25 0.12 27 3.41 2.19 0.63 10

h dof BPX(3)-diag BPX(3)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.0285 2709 17.42 5.16 0.29 19 3.38 2.85 0.82 8
0.0142 10665 30.85 5.93 0.19 26 3.74 2.85 0.74 9
0.0071 42321 51.10 6.26 0.12 32 4.31 2.91 0.66 11
0.0035 168609 67.24 6.38 0.09 37 4.76 2.96 0.61 12

Table 3: Test 3, optimality with respect to mesh size, 2D unstructured meshes. 2 and 3 levels
BPX-diag and BPX-ilu preconditioners. Mesh size h, degrees of freedom of the Bidomain linear
system (dof), average condition number (κ2), maximal (λmax) and minimal (λmin) eigenvalues of
the preconditioned system, and PCG iterations (it) per time step.

5.2. Test 2: increasing the number of levels, 2D structured mesh

In this second test, we study the behavior of the BPX preconditioner with respect to the number
of levels J . The domain is a square of dimension 5.12 × 5.12 cm2, discretized by a Q1 structured
grid of 512× 512 finite elements, thus the mesh size is h = 0.01 cm. The total dof of the Bidomain
linear system are 526338. The number of levels varies from 2 to 10.

The results in Table 2, also confirmed by the plots in Fig. 2, show that, even though the minimal
eigenvalue of the preconditioned operator is bounded from below away from zero irrespective of the
number of levels J , the maximal eigenvalue grows weakly with J . As a result, the condition number
κ2 increases, but, since the growth rate reduces when J increases, κ2 seems to be aymptotically
bounded, as predicted by Theorem 4.1.

5.3. Test 3: optimality with respect to mesh size, 2D unstructured meshes

We study here the performance of the BPX preconditioner when decreasing the mesh size h,
on 2D unstructured meshes. The number of levels J considered is 2 and 3. The 2D domain is a
square, discretized by four different grids of P1 finite elements. The mesh size of the coarsest grid is
0.0285 cm, while that of the finest one is 0.0035 cm. As a result, the number of dof of the Bidomain
linear system varies from 2709 in the coarsest case to 168609 in the finest one.

Table 3 reports the average condition number, maximal and minimal eigenvalues of the precon-
ditioned system, and PCG iteration counts per time step.

As in Test 1, the independence of the BPX preconditioner on the mesh size is much more clear in
the BPX-ilu case than in the BPX-diag case, which does not seem to be in the asymptotic behavior,
yet.

5.4. Test 4: increasing number of levels, 2D unstructured mesh

This test is devoted to the study of the behavior of the BPX preconditioner with respect to the
number of levels J in the case of 2D unstructured meshes. The domain is a square discretized by
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J BPX(J)-diag BPX(J)-ilu
κ2 λmax λmin it κ2 λmax λmin it

2 33.17 4.22 0.12 26 3.11 2.14 0.67 9
3 51.10 6.26 0.12 32 4.31 2.91 0.66 11
4 59.86 7.36 0.12 36 5.31 3.58 0.66 12
5 65.07 8.00 0.12 37 6.34 4.27 0.66 13

Table 4: Test 4, increasing the number of levels, 2D unstructured meshes. J-level BPX-diag and
BPX-ilu preconditioners. Number of levels J , average condition number (κ2), maximal (λmax) and
minimal (λmin) eigenvalues of the preconditioned system, and PCG iterations (it) per time step.

h dof BPX(3)-diag BPX(3)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.02 1458 15.71 2.76 0.18 23 3.13 3.11 0.99 11
0.01 9826 21.68 3.16 0.15 27 3.20 3.14 0.98 11
0.005 71874 35.27 3.30 0.09 35 3.46 3.32 0.96 11
0.0025 549250 46.30 3.51 0.08 39 3.59 3.49 0.97 11

h dof BPX(4)-diag BPX(4)-ilu
κ2 λmax λmin it κ2 λmax λmin it

0.02 1458 16.35 3.72 0.23 23 3.87 3.85 1.00 13
0.01 9826 22.99 3.73 0.16 28 4.26 4.12 0.97 13
0.005 71874 38.94 4.11 0.11 36 4.44 4.32 0.97 13
0.0025 549250 55.94 4.36 0.08 41 4.35 4.29 0.98 12

Table 5: Test 5, optimality with respect to mesh size, 3D structured meshes. 3 and 4 levels
BPX-diag and BPX-ilu preconditioners. Mesh size h, degrees of freedom of the Bidomain linear
system (dof), average condition number (κ2), maximal (λmax) and minimal (λmin) eigenvalues of
the preconditioned system, and PCG iterations (it) per time step.

P1 finite elements, with mesh size h = 0.0035 cm. The total number of unknowns of the Bidomain
linear system is 168609. The number of levels varies from 2 to 5.

The results in Table 4 still show, as in Test 2, a weak growth of the condition number κ2 with the
number of levels J , but, since the growth rate reduces when J increases, especially for the BPX-diag
preconditioner, κ2 should be asymptotically bounded.

5.5. Test 5: optimality with respect to mesh size, 3D structured meshes

We study the behavior of the BPX preconditioner when decreasing the mesh size h in a three-
dimensional slab domain, modeling a small portion of ventricular tissue of dimension 0.16 × 0.16 ×
0.16 cm3. The number of levels J considered is 3 and 4. The domain is discretized by four different
grids of Q1 finite elements. The mesh size of the coarsest grid is 0.02 cm, while that of the finest
one is 0.0025 cm. As a result, the degrees of freedom (dof) of the Bidomain linear system vary from
1458 in the coarsest case to 549250 in the finest one.
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J BPX(J)-diag BPX(J)-ilu
κ2 λmax λmin it κ2 λmax λmin it

2 13.93 2.24 0.16 23 2.20 2.06 0.94 9
3 13.78 2.89 0.21 23 3.14 3.06 0.97 11
4 15.32 4.15 0.27 25 4.17 4.08 0.98 13
5 20.43 5.28 0.26 28 5.16 5.10 0.99 15
6 24.61 6.31 0.26 30 6.16 5.98 0.97 16

Table 6: Test 6, increasing the number of levels, 3D structured meshes. J-level BPX-diag and
BPX-ilu preconditioners. Number of levels J , average condition number (κ2), maximal (λmax) and
minimal (λmin) eigenvalues of the preconditioned system, and PCG iterations (it) per time step.

Table 5 reports the average condition number, maximal and minimal eigenvalues of the precon-
ditioned system, and PCG iteration counts per time step.

The results show that, in the BPX-diag case, both condition numbers and iteration counts
increase when refining h, but asymptotically they seem to be bounded from above, according to
the estimate in Theorem 4.1. The independence of the condition number with respect to the mesh
size, thus the optimality of the preconditioner, is instead clear in the BPX-ilu case. The significant
improvement of the BPX-ilu preconditioner with respect to the BPX-diag is mainly due to the
increase of the minimal eigenvalue, which is close to 1.

5.6. Test 6: increasing the number of levels, 3D structured meshes

We test here the BPX preconditioner on a 3D truncated ellipsoidal domain when the number
of levels J increases. The parameters of the ellipsoidal domain are φmin = −π

8 , φmax = π
8 , θmin =

−π
8 , θmax = 0, a1 = b1 = 1.5, a2 = b2 = 2.7, c1 = 4.4, c2 = 5. ai, bi, ci, i = 1, 2 are expressed in cm.

The fine mesh is fixed and consists of 96× 96× 48 Q1 finite elements, yielding a mesh size of about
0.01 cm. The total dof of the Bidomain linear system are 922082. The number of levels varies from
2 to 6.

The results in Table 6 show that, as in the previous Tests 2 and 4, the condition numbers of both
the BPX-diag and BPX-ilu preconditioned systems grow weakly with J , but the behavior seems to
be asymptotically bounded.

5.7. Test 7: robustness with respect to jumps in the conductivity coefficients, 3D structured meshes

An important pathological situation that can be studied by numerical simulation based on
the Bidomain model is the presence of myocardial ischemia, which is the most common cause of
ventricular fibrillation and consequent heart failure. In the ischemic regions, it is experimentally
observed a strong reduction of the conduction velocity of the electric signal, due to a decrease
of gap junction coupling across myocytes. This phenomenon is modeled at macroscopic level by
a reduction of the intracellular conductivity values σi

l,t,n inside the ischemic region, leading to a
jump of these parameters across the ischemic boundary. Thus, an effective preconditioner for the
Bidomain system should be robust with respect to such jumps.

The domain considered in this case is a slab of dimensions 0.96 × 0.96 × 0.48 cm3, with a
transmural ischemic region of dimensions 0.32 × 0.32 × 0.16 cm3 located at the center of the slab.
The portion of tissue is discretized by a cartesian grid of 96 × 96 × 48 Q1 finite elements (922082
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ρ BPX(3)-diag BPX(3)-ilu
κ2 λmax λmin it κ2 λmax λmin it

1 40.83 3.04 7.46e-2 37 3.27 3.07 9.38e-1 12
10 39.60 3.05 7.72e-2 37 3.80 3.51 9.23e-1 12
100 39.65 3.13 7.90e-2 38 3.90 3.60 9.23e-1 12
1000 39.68 3.14 7.93e-2 38 3.91 3.61 9.23e-1 12

Table 7: Test 7, robustness with respect to jumps in the conductivity coefficients, 3D structured
meshes. 3-level BPX-diag and BPX-ilu preconditioners. Jump parameter ρ, average condition
number (κ2), maximal (λmax) and minimal (λmin) eigenvalues of the preconditioned system, and
PCG iterations (it) per time step.

proc BPX(4)-diag BPX(4)-ilu
κ2 it time (s) speedup κ2 it time (s) speedup

64 20.71 29 30.28 - 8.31 19 29.47 -
128 20.71 29 15.41 1.96 (2) 8.25 19 15.17 1.94 (2)
256 20.71 29 8.38 3.61 (4) 8.29 19 8.00 3.68 (4)
512 20.71 29 4.74 6.39 (8) 8.28 19 4.34 6.79 (8)

1024 20.71 29 3.24 9.35 (16) 8.20 19 2.69 10.95 (16)

Table 8: Test 8, parallel performance, 3D structured meshes. 4-level BPX-diag and BPX-ilu precon-
ditioners. Number of processors (proc), average condition number (κ2), PCG iterations (it), CPU
time in seconds per time step, and parallel speedup. In brackets is reported the ideal speedup.

dof). The ischemic condition is modeled by increasing the extracellular concentration of potassium
in the LR1 model from 5.4 mM (control) to 20 mM (ischemia) (see [60]) and scaling the conductivity
coefficients σi

l,t,n in the ischemic region as follows:

σi,isch
l,t,n = σi

l,t,n/ρ,

where ρ is a jump parameter.
The results in Table 7 show that both the 3-level BPX-diag and BPX-ilu preconditioners are

robust with respect to the jump considered, since the condition number of the preconditioned system
and the PCG iteration counts remain bounded increasing the jump value.

5.8. Test 8: parallel performance, 3D structured meshes

We perform a strong scaling test to study the parallel performance of the BPX-diag and BPX-ilu
preconditioners. A truncated ellipsoidal domain is considered, discretized by a Q1 finite element grid
of 512× 512× 96 elements, yielding a Bidomain linear system of 51 054 786 dof. The parameters of
the ellipsoidal domain are φmin = −π

2 , φmax = π
2 , θmin = −3

8π, θmax = π
8 , a1 = b1 = 1.5, a2 = b2 =

2.7, c1 = 4.4, c2 = 5. ai, bi, ci, i = 1, 2 are expressed in cm. The number of processors varies from
64 to 1024 and the number of levels J of the BPX preconditioners is set to 4. The parallel speedup
is computed with respect to the 64 processor run, thus the ideal speedup ranges from 1 to 16. The
code was run on the IBM-BlueGene Q cluster Fermi of the CINECA laboratory (www.cineca.it).
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Figure 3: Test 8, parallel performance, 3D structured meshes. 4-level BPX-diag and BPX-ilu
preconditioners. Plot of average CPU time in seconds per time step (left) and parallel speedup
(right) with respect to the number of processors.

The results reported in Table 8 and Fig. 3 show that both the BPX(4)-diag and BPX(4)-ilu
preconditioners are scalable, with a good speedup up to 512 processors, slightly deteriorating in the
1024 processors run, because at this point the local problems are too small and the communication
costs prevail.

5.9. Test 9: influence of the membrane model, 3D structured meshes

We study here the influence of membrane models on the performance of the BPX preconditioner.
A strong scaling test is run on the same truncated ellipsoidal domain of Test 6, discretized by a
Q1 finite element grid of 96 × 96 × 48 elements (922082 dof). The number of processors varies
from 1 to 24 and the number of levels J of the BPX preconditioners is set to 4. The membrane
models considered are the LR1 model (7 ODEs) as in the other tests, the ten Tusscher model
([61], 18 ODEs), for human ventricular myocytes, and the Shannon model ([62], 38 ODEs), for
rabbit ventricular myocytes. This test is run on the Nemo Linux cluster at the Department of
Mathematics of the University of Milan [59].

The results reported in Table 9 show that the behavior of the BPX preconditioners, both in
terms of PCG iterations and CPU times (timels), is independent of the choice of the membrane
model. Moreover, the solution of the membrane models is completely scalable and the CPU times
(timem) clearly increase with the complexity of the membrane model.

5.10. Test 10: complete cardiac cycle simulation, 3D structured meshes

In this last test, a complete heartbeat (400 ms) is simulated in the truncated ellipsoidal domain
of Test 6, discretized by a Q1 finite element grid of 96 × 96 × 48 elements (922082 dof). The time
step size is changed according to the adaptive strategy described in [20], yielding a total amount of
2200 time steps. Fig. 4 reports the contour plots of the transmembrane (v) and extracellular (ue)
potential distributions on the endocardial and mid-myocardial surfaces, at 10, 20 and 30 ms after
the onset of stimulation.

19



BPX(4)-diag

proc LR1 ten Tusscher Shannon
it timels timem it timels timem it timels timem

1 41 47.71 4.05e-1 41 46.87 9.68e-1 41 47.57 1.35
2 41 24.10 2.04e-1 41 23.55 4.93e-1 41 23.30 6.90e-1
4 41 12.35 1.03e-1 41 12.14 2.49e-1 41 12.33 3.56e-1
8 41 6.47 5.43e-2 41 6.39 1.27e-1 41 6.42 1.88e-1

16 41 3.09 2.80e-2 41 3.08 6.99e-2 41 3.08 9.77e-2
24 41 2.13 1.85e-2 41 2.11 4.36e-2 41 2.11 6.30e-2

BPX(4)-ilu

proc LR1 ten Tusscher Shannon
it timels timem it timels timem it timels timem

1 14 38.79 4.05e-1 14 38.29 9.68e-1 14 38.64 1.35
2 17 19.59 2.04e-1 17 19.24 4.93e-1 17 19.42 6.90e-1
4 17 10.05 1.03e-1 17 9.97 2.49e-1 17 10.06 3.56e-1
8 19 5.26 5.41e-2 18 5.22 1.27e-1 18 5.24 1.88e-1

16 19 2.61 2.80e-2 18 2.60 6.98e-2 18 2.60 9.74e-2
24 19 1.76 1.86e-2 18 1.74 4.36e-2 18 1.76 6.29e-2

Table 9: Test 9, influence of the membrane model on the linear solver, 3D structured meshes. 4-level
BPX-diag and BPX-ilu preconditioners. Luo-Rudy I (LR1), ten Tusscher and Shannon membrane
models. Number of processors (proc), average PCG iterations (it) per time step, average CPU time
in seconds for solving the Bidomain linear system (timels) and the membrane model (timem) per
time step.

prec. κ2 λmax λmin it Tit time (s) Ttime (s)

ILU 636.76 1.57 2.77e-3 64 142757 35.89 22 h 6 m 5 s
AMG 1.22 1.01 8.25e-1 5 11085 36.33 22 h 22 m 35 s

BPX(3)-diag 37.64 3.17 9.54e-2 30 66547 37.71 23 h 13 m 16 s
BPX(3)-ilu 7.32 3.64 6.67e-1 13 28965 28.71 17 h 41 m 1 s

BPX(4)-diag 43.03 4.25 1.16e-1 31 68831 23.37 14 h 23 m 22 s
BPX(4)-ilu 9.51 4.80 6.74e-1 15 33493 39.11 24 h 5 m 3 s

Table 10: Test 10, complete cardiac cycle simulation, 3D structured meshes. Performance compari-
son of ILU, AMG, BPX(3)-diag, BPX(3)-ilu, BPX(4)-diag and BPX(4)-ilu preconditioners. Average
(per time step) condition number (κ2), maximal (λmax) and minimal (λmin) eigenvalues of the pre-
conditioned system, average (per time step) and total PCG iterations (it and Tit, respectively),
average (per time step) CPU time (time) in seconds and total CPU time (Ttime) in hours (h),
minutes (m) and seconds (s) for solving the Bidomain linear systems.
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Figure 4: Test 10, complete cardiac cycle simulation, 3D structured meshes. Contour plots of the
transmembrane (v) and extracellular (ue) potential distributions on the endocardial (ENDO) and
mid-myocardial (MID) surfaces of the truncated ellipsoidal domain modeling a portion of ventricle,
at 10, 20 and 30 ms after the onset of stimulation. Below each plot are reported the minimum,
maximum and contour step in mV of the displayed map.
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We compare the BPX-diag and BPX-ilu preconditioners with the ILU(0) preconditioner and
the default setting of the Algebraic Multigrid (AMG) BoomerAMG [63] preconditioner, provided
within the HYPRE library [64] of the Lawrence Livermore National Laboratory. The number of
levels considered for the BPX preconditioners is 3 and 4.

The results in Table 10 show that the best performance in terms of condition numbers and PCG
iterations counts is achieved by the AMG preconditioner, but in terms of CPU times the BPX(3)-ilu
and BPX(4)-diag preconditioners are the most effective. In particular, in terms of CPU times, the
BPX(4)-diag preconditioner attains the overall best performance, being about 35% faster than the
ILU(0) and AMG preconditioners.

6. Conclusions

We have constructed, analyzed and numerically tested a BPX preconditioner for the Bidomain
system of electrocardiology. By applying the abstract BPX theory, we have proved that the condition
number of the BPX-preconditioned Bidomain system does not depend on the mesh size h and on
the number of levels J (optimality). These theoretical results have been validated by two- and
three-dimensional numerical tests on both structured and unstructured grids. Moreover, we have
shown that, in a full heartbeat simulation on a three-dimensional wedge of ventricular tissue, the
BPX preconditioner is about 35% faster in terms of CPU times than ILU(0) and the default setting
of the BoomerAMG preconditioner. We remark that better results in terms of CPU times with
AMG could be obtained with other choices of the parameters and on different computing platforms.

Limitations of this work include the use of idealized ventricular geometries instead of anatom-
ically more accurate domains and the use of the LR1 ionic model instead of physiologically more
accurate membrane models. Moreover, to further validate the performance of the BPX precondi-
tioner, a more extensive comparison with other methods should be planned in future works.

Appendix: general structure of membrane models

The first membrane model was developed by Hodgkin and Huxley in the celebrated paper [65] for
the nerve action potential. Based on their pioneering work, several membrane models for cardiac cells
have been developed, see e.g. [47, 66, 67]. According to the formalism of the Hodgkin-Huxley (HH)
model, the ionic current through channels of the membrane is modulated by the transmembrane
potential v = ui−ue, by gating variables w := (w1, . . . , wNw) and by ionic intracellular concentration
variables c := (c1, . . . , cNc). In the membrane models of HH type, the ionic current has the following
general structure

Iion(v,w, c) =

N∑

k=1

Gk(v, c)

Nw∏

j=1

w
pjk

j (v − vk(c)) + In(v,w, c),

where N is the number of ionic currents, Gk is the membrane conductance and vk is the reversal
potential for the k-th current, pjk

are integers and In accounts for time independent ionic fluxes.
The dynamics of the gating variables w is described in the HH formalism by a system of ODEs

having the following structure




dwj

dt
= Rj(v,w) = αj(v)(1 − wj) − βj(v)wj

wj(0) = wj,0

αj , βj > 0, 0 ≤ wj ≤ 1, j = 1, ..., Nw .

(22)
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The dynamics of the ionic concentration variables c is described by the additional system of ODEs




dcj
dt

= Sj(v,w, c) = −
Icj

(v,w) ·Acap

Vcj
· zcj

· F
cj(0) = cj,0

j = 1, ..., Nc,

(23)

where Icj
is the sum of ionic currents carrying ion cj , Acap is the capacitive membrane area, Vcj

is the volume of the compartment where cj is updated, zcj
is the valence of ion cj and F is the

Faraday constant.
The transmembrane current

Im = Cm
dv

dt
+ Iion(v,w, c)

is the sum of the capacitive current, associated with the membrane lipidic bilayer and of the ionic
current Iion. Since Im must balance the applied current Iapp, then the evolution of the transmem-
brane potential of a single myocyte is given by the following system of ODEs





Cm
dv

dt
+ Iion(v,w, c) = Iapp

dw

dt
−R(v,w) = 0,

dc

dt
− S(v,w, c) = 0

v(0) = v0, w(0) = w0, c(0) = c0,

(24)

where Cm, Iion, and Iapp are the surface capacitance, the ionic current of the membrane and the
applied current per unit area of the membrane surface, respectively.
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