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Abstract	  
In the last few years the introduction of novel technologies known as “next-generation 

sequencing” (NGS) has brought a major step forward in sequencing. These techniques 

have practically supplanted the conventional Sanger strategies that have been the 

principal method of sequencing DNA since the late 1970s. Different NGS platforms have 

been introduced, with the newest using ion-sensitive sensors to detect the incorporation of 

bases as opposed to the more commonly used fluorescent labelled nucleotides. Since the 

first techniques were introduced, both the sequencing runtime and the cost per sequenced 

base have dramatically decreased, and, at the current state of the art, a complete human 

genome can be fully sequenced in under 24 hours. On the other hand, the ever-increasing 

amount of short sequences (or reads) yielded per single run makes the processing of the 

data more difficult and challenging from a computational point of view. One of the most 

prominent and promising fields of application is RNA-Seq, an assay that provides a fast 

and reliable way to study transcriptomic variability on a whole-genome scale. Generally, in 

a RNA-Seq experiment, a RNA sample is converted in a cDNA library, which then 

undergoes several cycles of sequencing with a NGS method of choice. Usually, the 

resulting sequences are either mapped on the reference genome or assembled de novo 

without the aid of genomic sequence to produce a genome-scale transcription map, or 

trascriptome. 

The data analyzed in this thesis comes from a three year research project focused on the 

characterization of tissue- and individual-specific alternative splicing, and its regulation. 

Data consist of several RNA-Seq experiments performed on different human tissues, 

coming from three healthy individuals. A total of 18 sets of data (6 tissues from three 

individuals with 3  replicates for each) were studied. The work initially focused on the 

quantification of mitochondrial DNA and RNA in the six individuals, and its variability. 

Then, we developed a computational method for the identification of tissue- and individual- 

specific transcripts, able to perform a multi-sample comparison. The algorithm we 

implemented employs statistical test based on a variant of Shannon’s information entropy, 

in order to identify transcripts with an expression pattern presenting a significant bias 

towards one or more of the samples studied. The results obtained show the method to be 

robust and efficient, overcoming the need of performing pairwise comparison as with the 

algorithms currently available, providing a thorough and complete map of the extent of 

tissue-specificity of gene expression at the single individual level.  
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State	  of	  the	  Art	  

RNA	  &	  gene	  expression	  

Euchariotic organisms store their hereditary information by encoding it in long 

deoxynucleotides molecules, which are packed and condensed in cell nucleus in the form 

of chromosomes (Watson & Crick, 1953). The single unit of DNA, or monomer, is known 

as nucleotide, a small molecule formed by a phosphatase group, a 5-carbon sugar (2’-

deoxyribose) and a nitrogenous base called nucleobase. The latter has four different 

forms: adenine (A), timine (T, uracile for RNA), cytosine (C) and guanine (G). The 

nuclotides are bound to each other in two complementary strands (A with T and C with G) 

which are bound together forming hydrogen bonds, with a double helix shape. Thus both 

strands contain the same genetic information, but mirrored. Not all DNA contains encoded 

information, yet it is stored in shorter sequences scattered all over the DNA (genes), which 

represent the single unit of heredity.  

The residues of the deoxyribose determine the DNA directionality: one end of a DNA 

polymer contains an expose hydroxyl group on the penthose, known as the 3’ end 

while the other end contains a phosphate group, the 5’ end. Directionality is essential to 

genes and gene expression, and the two strands are referred to with different names: the 

sense strand, which goes from 5’ to 3’ end, on which genes are traditionally annotated; the 

reverse strand which is the complementary opposite and goes from 3’ to 5’ end. This 

direction play an important role, since most of the processes involving DNA transcription or 

replication (Lehman, Bessman, Simms, & Kornberg, 1958) occur in a specific direction.  

The central dogma of molecular biology (Figure 1), proposed by Francis Crick (Crick, 

1958), states that the biological information encoded in DNA is transferred and translated 

into proteins, and this process is irreversible. More in depth, the information flow consists 

of three main stages: DNA, RNA and Protein. In the first stage, the information contained 

in segments of DNA (genes) is transcribed (i.e. copied) into a single strand ribonucleic acid 

molecule (second stage), known as RNA. This molecule, which is an exact copy of DNA 

can be either used as a template for translation into proteins or further processed as is, 
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with other specific cell roles. According to this distinction, RNA can be divided into two 

main categories: coding RNA (mRNA, messenger RNA) or non-coding RNA (ncRNA). 

Figure	  1.	  Visual	  representation	  of	  the	  central	  dogma	  of	  biology. 

The process of copying DNA sequences into single-stranded RNA is known as 

transcription, and it is performed in the cell nucleus by an enzyme known as RNA 

polymerase, RNA pol (Furth, Hurwitz, & Anders, 1962). In euchariotes, different types of 

this class of enzymes exist, and they all synthetize different types of RNAs:  

RNA pol I transcribes ribosomal RNA, which is combined with complexes known as 

ribosomes, structure on which the template mRNA is translated into amminoacid 

sequences (Russell & Zomerdijk, 2006); 

RNA pol II transcribes mRNA, RNA bearing protein information (Kornberg, 1999) 

RNA pol III transcribes tRNA, small RNA molecules whose role is to select specific 

amminoacids and incorporate them in ribosomes thus synthetizing proteins (Dieci, Fiorino, 

Castelnuovo, Teichmann, & Pagano, 2007).  
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Figure	  2.	  The	  typical	  structure	  of	  mRNA	  molecules.	  

The three polymerases further transcribe other small RNAs which play cathalitic and 

structural roles in the cell. The accepted model of RNA includes three main steps: 

initiation, elongation and termination. Initiation starts when RNA pol binds the DNA 

upstream of the gene to be transcribed at the promoter, with the aid of transcription factors 

(TF), proteins which assemble on the promoter and determine transcription levels. The 

DNA downstream the RNA pol starts to unbind the two strands for the RNa pol to read the 

gene sequence, and the complex of RNA pol advance adding nucleotides to the 3’ end of 

the forming RNA complementary molecule (elongation). Once the gene has been 

completely copied and the stop codon is read the RNA pol leaves DNA, cleaving the RNA 

and releasing it from the transcriptional machinery (termination). 

Post	  transcriptional	  modifications	  

Once released, the RNA undergoes several modifications, which are commonly referred to 

as post-transcriptional modifications: a series of processes that ensure RNA stability and 

facilitate its passage across the nucleus membrane. One of the most important 

modification is poly-A tailing (Colgan & Manley, 1997; Edmonds & Abrams, 1960): to 

stabilize RNA molecules, a series of adenine nucleuotides (hence the poly-A) is added to 

the 3’ end of RNA by the poly-A polymerase. Generally, ~200 nucleotides are added, 

although there are some exceptions, for example the iston protein-coding mRNA gets no 

poly-adenilation (Davila Lopez & Samuelsson, 2008). The tail length ensures that the RNA 

is degradated accordingly, therefore a longer poly-A tail means that the transcript will be 

translated more proactively.  
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Figure	  3.	  The	  flow	  from	  gene	  to	  pre-‐mRNA	  to	  mature	  RNA	  

Another important process is splicing (Black, 2003): the RNA in the nucleus is in fact 

known as pre-RNA for all the modifications it undergoes. The RNA is basically formed by 

alternated exons and introns, the first being (with some exceptions) the coding part of the 

RNA, the latter being the non-coding part. When the RNA undergoes splicing, the introns 

are excided and flanking exons are bound together, and the resulting molecule is called 

mature RNA. Chemically speaking, the introns excisions consist in two sequential 

transesterification reactions, which break and join back together the phosphodiesterical 

bonds between nucleotides on pre-mRNA, by acomplex protein machinery called 

spliceosome. Spliceosome is about the same size as a ribosome and is formed by ~150 

proteins and 5 RNA molecules (small nuclear RNAs, U1, U2, U4, U5, U6), which recognize 

splicing sites on RNA and catahlize the intron excision. The snRNAs couple with proteins 

of the spliceosome forming snRNP (small nuclear ribonuclear proteins) which play different 

key roles during the whole splicing process, which can be summarized in three main 

phases (Figure 4): 

1) In the first phase, the U1 snRNP identifies and hybridizes the 5’ intron splicing site

(known as donor site) on the pre-mRNA. The donor site includes an invariant GU

sequence in a less conserved and broader region. Conversely the splicing site at 3’

end (known as branching site) contains a highly conserved AG sequence,

recognized by snRNP U2. The GU and AG seuqncences define the start and end of

the intron respectively. U4, U5 and U6 join the oher two RNA-protein complexes,

and loop the pre-mRNA, getting the GU and AP sites near each other.
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2) In the second phase, the spliceosome complex undergoes a conformational

modification, creating a second ary RNA structure called lariat, circularizing the

intron.

3) The lariat is cleaved and the flanking exons are bound together.

Figure	  4.	  Visual	  representation	  of	  the	  splicing	  process. 

An interesting feature of splicing is alternative splicing: since the discovery of DNA, it was 

common knowledge that each gene would give origin to a single RNA and a single protein. 

Gene regulation was in fact first studied in relatively simple bacterial systems. Most 

bacterial RNA transcripts do not undergo splicing, being colinear, with DNA directly 

encoding them. That assumption, anyway, could not explain why complex organism like 

humans had a smaller genome size than some plants or other simpler organisms: a wider 

genome size would mean more genes and therefore more proteins for more complexity. 

However this 1:1 ratio dogma was proven wrong when alternative splicing was described 

for the first time: In 1977, several groups of researchers who were working with 

adenoviruses that infect and replicate in mammalian cells obtained some surprising 

results. These scientists identified a series of RNA molecules that they called "mosaics," 

each of which contained sequences from noncontiguous sites in the viral genome (Berget 

& Sharp, 1977; Chow, Gelinas, Broker, & Roberts, 2000). Those sequences became lately 

known as exons and introns. 
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Alternative splicing is the process by which exons and introns are rearranged in different 

ways, by different excision mechanisms, originating different transcripts from the same 

primary transcripts. Recent transcriptome studies (Pan, Shai, Lee, Frey, & Blencowe, 

2008) report that more than 95% of the total multiexon human genes can undergo 

alternative splicing. The usage of a particular splice site is a key factor in determining the 

relative abundance of a specific isoforms. For this reason, the entire process of splicing 

(both alternative and non-alternative) is regulated by trans-acting proteins (called 

activators/repressors) that bind to cis-regulation sites located on the pre-mRNA, selectively 

enhancing or silencing the usage of splice sites (Barbosa-Morais et al., 2012).  

Alternative splicing comes in many different forms (Matlin, Clark, & Smith, 2005; Pan, 

Shai, Lee, Frey, & Blencowe, 2008; Sammeth, Foissac, & Guigo, 2008), as shown in 

Figure 5: 

Exon Skipping: as the name suggests, an exon is excluded from the mature RNA by 

excision of the flanking introns. This is the most common and rearranging effective type of 

splicing in mammals. 

Mutually exclusive exons: This happens when the isoforms can present just one of a set 

of two exons in the different isoforms produced, but not both at the same time, as the 

name implies. 

Alternative 5’ (or 3’) end sites: an alternative splice site is used, altering the 5’ (3’) end of 

an exon. 

Intron retention: while the mature RNA is said to contain no introns, retained intron 

alternative splicing actually keeps an intron in the mature RNA. This can happen if splicing 

sites are not effectively recognized by the spliceosome machinery. Retaining of an intron 

can cause frameshift in the codons, breaking the reading frame and resulting in defective 

or incorrectly folded proteins. 
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Figure	  5.	  The	  five	  main	  types	  of	  alternative	  splicing	  events. 

DNA	  Sequencing	  

Since its discovery in 1953 (Watson & Crick, 1953), one of the biggest challenge to 

scientists has been “cracking the code” of DNA, that is, deciphering DNA sequences and 

assign them their functional role in the cell. Since the advent of the first capillary 

electrophoresis method, CE-Sanger sequencing (Sanger, Nicklen, & Coulson, 1992), 



9	  

scientists from all over the world have tried to elucidate and shed light on genetic 

information and its mechanism. Although this method has been widely used and has been 

the de-facto standard for DNA sequencing for many decades, it is heavily hampered by 

many limitations, such as sequencing speed, scalability (sequencing whole genomes took 

years of work), and strict laboratory protocols.  

Figure	   6.	   In	   th	   eclassical	   formulation	   of	   the	   Sanger	   sequencing	  method,	   4	   radioactive	   terminator	   nucleotides	   are	  
used.	  When	  incorporated	  by	  DNA	  Pol,	  these	  nucleotides	  stop	  DNA	  synthesis	  and	  produce	  truncated	  DNA	  fragments	  of	  
different	  lengths,	  that	  can	  be	  separated	  with	  the	  aid	  of	  gel	  electrophoresis	  allowing	  for	  sequence	  reconstruction.	  
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To overcome these limitations, a groundbreaking new technologies were developed and 

introduced in the early years of 2000, later on called Next Generation Sequencing (NGS, 

(Marziali & Akeson, 2001)). NGS introduced a completely new way of sequencing, which 

could process million of bases in the span of few hours keeping anyway a high precision 

level. In principle, the concept behind several different NGS methods can be considered 

similar to the Sanger method: the sequence is determined by the incorporation of 

specifically modified nucleotides in a fragment of DNA re-syntetized from a template 

strand. Though, in contrast to Sanger method, the type of signal is different: almost all 

NGS techniques rely on light emitted by incorporated nucleotides, each labelled with a 

specifc fluorescent marker. This technology allows the processing of many different DNA 

fragments in a parallel fashion, producing hundreds of Gigabases (Gb) in a single run. 

Since its first appearance in 2004, many new platforms based on different approaches 

have been developed, yielding an ever-increasing data output: roughly, each year the data 

produced by a single machine run has practically doubled and the trend has not stopped 

ever since, with new, more performant technologies developed each year (Niedringhaus, 

Milanova, Kerby, Snyder, & Barron, 2011). For example, while in 2007 a single 

sequencing run averaged 1 Gb of data, in 2011 the rate reached near 1Tb, an astonishing 

1000x increase in output amount. Even the per-sequenced-base cost has been 

decreasing since the first technologies came out, and today a whole human genome can 

be processed in a few hours at an average cost of 30,000-50,000$; for comparison, the 

human genome project started in 1990 (Sawicki, Samara, Hurwitz, & Passaro Jr, 1993; 

Venter et al., 2001) took more than 10 years (including bioinformatic analysis and 

assembly) and required almost 3 billion dollars founds to complete. The results were 

published in 2003, just one year before NGS was developed. 

Even though NGS methods are high-throughput, they are easily scalable to the needs of 

scientists: not only a whole genome can be sequenced, but smaller samples of DNA, or 

RNA selected according to some criterion.. Moreover, the sequencing depth can be fine-

tuned, tailoring it to the needs of the experiment, adjusting the coverage and the average 

length of the reads. Furthermore, different experiments can be sequenced in the same 

run, a technique called multiplexing, which uses specific DNA adapters called barcodes, in 

order to differentiate the sequences in the data analysis (Illumina, 2015). 
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454	  GenomeSequencer	  

First technique to be commercially available (2004-2005), produced by Life Sciences (now 

Roche) (Roche, 2015), is called 454. The method is based on pyrosequencing, that is, 

pyrophosphate detection (Margulies et al., 2005; Ronaghi, Karamohamed, Pettersson, 

Uhlen, & Nyren, 1996; Ronaghi, Uhlen, & Nyren, 1998). Library construction is performed 

by nebulization, in order to shear DNA into small fragments, and a subsequent enzymatic 

blunt-ending and/or adapter ligatition. In pyrosequencing, every nucleotide incorporation, 

performed by DNA polymerase, is coupled with pyrofosfate emission, which triggers a 

signal process. This results in light (in the range of visible spectrum) being emitted by 

luciferase enzyme: luciferase is the generic name given to a class of enzymes that play 

key-roles in bioluminescence processes. The most important luciferase enzyme is firefly 

luciferase, found in the species Photinus pyralis (Nyren, 2007). The quantity of light 

emitted is proportional to the number of incorporated nucleotides. For this approach, the 

DNA fragments library (ligated with a specific linker) is put into a solution containing many 

agarose beads: the 454 specific adapters contain a 5’ biotin tag, which allows binding on 

streptavidin coated beads. A high enough dilution ensures that most of the beads are 

bound to one single fragment of the library to be sequenced. Each of these complexes is 

then isolated in a water micelle in an oil solution which contain the necessary reagents to 

start the PCR amplification (Mullis et al., 1986). The beads are then put in a grid with 44um 

wells, sufficient to to contain a single bead. Over the grid, an high-resolution optical sensor 

register every light emission, 400.000 wells in parallel. The first of the 4 nucleotides 

(TCGA) is injected in the support, triggering, where incorporated, the luciferase reaction. 

This strategy allows to calibrate the machine to a single nucleotide precision, and to have 

good accuracy up to 6 single nucleotides incorporated in series (Gilles et al., 2011). 

Furthermore, because every step uses a single base type, base calling errors are 

practically absent. Performance-wise, this method can sequence up to 100 Mb in 8hours, 

which correspond roughly to 100 nucleotide injections. Since its debut, the read length has 

increased from 250 nt to 500+ nt, and it is still the method of choice for de-novo genome 

assembly. 
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Figure	  7	  The	  workflow	  for	  454	  sequencing 

 

Ilumina	  Solexa	  
 

The “sequencing-by-synthesis” technology now used by Illumina (Illumina, 2015) was 

originally developed by Shankar Balasubramanian and David Klenerman at the University 

of Cambridge (Bentley et al., 2008). They founded the company Solexa in 1998 to 
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commercialize their sequencing method. Illumina went on to purchase Solexa in 2007 and 

has built upon, and rapidly improved the original technology. 

The Solexa/Illumina sequencing method is similar to Sanger sequencing, but it uses 

modified dNTPs containing a terminator which blocks further polymerization (Bentley et al., 

2008; Turcatti, Romieu, Fedurco, & Tairi, 2008).  

Figure	  8:	  The	  workflow	  of	  Illumina	  sequencing 

Although the fluorescent imaging system used in Illumina sequencers is not sensitive 

enough to detect the signal from a single template molecule, the major innovation of the 

Illumina method is the amplification of template molecules on a solid surface (Adessi et al., 
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2000; Fedurco, Romieu, Williams, Lawrence, & Turcatti, 2006). The DNA sample is 

prepared into a “sequencing library” by the fragmentation into pieces each around 200 

bases long.  Custom adapters are added to each end and the library is flowed across a 

solid surface (the “flow cell”) and the template fragments bind to this surface. Following 

this, a solid phase “bridge amplification” PCR process (cluster generation)  

creates approximately one million copies of each template in tight physical clusters on the 

flowcell surface. Illumina has improved its image analysis technology dramatically which 

allows for higher cluster density on the surface of the flowcell. 

Solid phase amplification is employed to create up to 1,000 identical copies of each single 

molecule in close proximity (diameter of one micron or less) (Adessi et al., 2000). 

Solexa sequencing uses four proprietary fluorescently-labeled modified nucleotides to 

sequence the millions of clusters present on the flow cell surface. These nucleotides, 

specially designed to possess a reversible termination property, allow each cycle of the 

sequencing reaction to occur simultaneously in the presence of all four nucleotides (A, C, 

T, G). In each cycle, the polymerase is able to select the correct base to incorporate, with 

the natural competition between all four alternatives leading to higher accuracy than 

methods where only one nucleotide is present in the reaction mix at a time, like 454. 

Sequences where a particular base is repeated one after another (e.g., homopolymers) 

are addressed like any other sequence and with high accuracy. 

SOLiD	  Sequencer	  

The technology behind the SOLiD™ (Biosystems, 2015) (Sequencing by Oligo Ligation 

and Detection) platform was first described in 2005 by Shendure (Shendure et al., 2005). 

The first machine was commercially sold in October 2007 (Mardis, 2008). An overview of 

the workflow of SOLiD sequencing is shown in Figure 1-5. Library construction is similar to 

both 454 and Illumina, and may be constructed with different approaches to produce 

adaptor-flanked fragments (Shendure & Ji, 2008). The SOLiD technology also requires 

DNA amplification, and like 454 sequencing this is performed using emulsion PCR 

(Dressman, Yan, Traverso, Kinzler, & Vogelstein, 2003) where DNA fragments are bound 

to paramagnetic beads. Prior to sequencing, the emulsion is broken, and beads enriched 

and immobilized to the surface of a specially treated glass slide (Mardis, 2008), generating 

a dense array. After hybridization of a sequencing primer, the synthesis of DNA is not 
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performed by a DNA-polymerase, instead by a ligase (Housby & Southern, 1998; 

Shendure et al., 2005). At each step, a fluorescently labeled octamer originating from a 

degenerate set is ligated to the DNA fragment. Fluorescent markers bound to the 

octamers are correlated to a specific position within the oligo. After image acquisition in 

four different channels, chemical cleavage of the octamer between the fifth and sixth base 

is performed removing the marker. Multiple ligation steps enable sequencing of every fifth 

base of the DNA fragment. Following several rounds of ligation, image acquisition and 

cleavage, the DNA is denatured, enabling annealing of a new sequencing primer at a 

different position on the adaptor sequence. A unique feature is that the fluorescent 

markers are correlated to dinucleotides, and not just a single base. This combined with an 

alternate use of sequencing primers and octamer sets, where the fluorophores correspond 

to different positions on the octamer, ensures that each base is sequenced twice, and thus 

minimizing base calling errors (Heinz, 2010; McKernan et al., 2008). 

Figure	  9.	  The	  workflow	  of	  Solid	  sequencing 

Paired-‐end	  Sequencing	  
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The three platforms described above are more or less (let alone 454) limited by short read 

lengths. However, this limitation has been partly overcome by the development of paired-

end sequencing (Roach, Boysen, Wang, & Hood, 1995), which can be performed using all 

three sequencing systems. Moreover, this kind of sequencing can be used for more in 

depth analysis, allowing insertion/deletion detection and exon excision to start with. 

Paired-end reads (sometimes referred to as mate reads) are short sequences originating 

from both the two 5’ ends of a DNA fragment (Fullwood, Wei, Liu, & Ruan, 2009). Paired-

end sequencing was already described in 1981 by Hong (Hong, 1981), and the first use of 

paired-end sequencing was reported by Ewards and Caskey in 1990 (Edwards & Caskey, 

1991). There are multiple ways of constructing a paired-end library:  

 

1) Clone based method, in which the target DNA sequence is linked with adaptors 

containing MmeI restriction sites immediately next to the sequence which needs to 

be sequenced. Following amplification in E. coli, purification and MmeI digestion, 

the tag containing vector is recircularized, which results in joining the two sequence 

tags. After amplification in E. coli, the circularized constructs can be purified using 

restriction digestion (Ng, Wei, & Ruan, 2007).  

2) A second method was introduced by Shendure (Shendure et al., 2005): the target 

DNA fragments are directly circularized with linker oligonucleotides hereby joining 

the two ends of the target DNA. The linker sequence contains two restriction sites 

(e.g. MmeI) flanking the two ends of the target DNA, enabling restriction digestion to 

release the tag-linker-tag construct for sequencing (Shendure et al., 2005). These 

two methods can create libraries with long inserts (up to 20 kb) between the two 

sequence tags, which are often referred to as mate pair libraries (Fullwood et al., 

2009). Additional to these methods, short insert libraries (200-500 bp) can also be 

paired-end sequenced using Illumina sequencing. Here paired-end libraries are 

made using adaptors with two different sequencing primers. Paired-end is 

performed by first sequencing the target DNA utilizing the first sequencing primer. 

After subsequent product denaturation, bridging, and second strand synthesis, the 

opposite strand is cleaved providing a template for a round second sequencing 

utilizing the second sequencing primer (Bentley et al., 2008) . 
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Figure	  10.	  Paired	  end	  reads 

Directional	  sequencing	  

Another feature of NGS is the possibility to keep track of reads directionality, that is, retain 

information about which strand the reads come from, by using kits that allow directional 

library construction. In a typical NGS-based experiment, genes/transcripts levels are 

computed by total read enrichment, without preserving strand information; consequently, 

sequencing data show equal levels of enrichment from both strands.  

As an example, consider a generic gene A to be located on forward (+) strand of a 

chromosome. In a non-directional RNA-Seq experiment, gene A’s exons are enriched by 

an equally distributed mixture of ‘+’ and ‘-‘ strand-originated reads; conversely, by using 

directional sequencing all reads would come from the forward strand.  

When trying to investigate expression levels of overlapping/proximate genes located on 

different strands or estimating antisense transcription rates, the aid of directional 

sequencing can help remove read mapping ambiguity and allows correct reads 

assignment (Flaherty, Van Nieuwerburgh, Head, & Golden, 2011). 

When dealing with paired end reads, one must bear in mind that only read pairs with 

proper orientation (i.e +/-; +/+ and -/- pairs can occur due to sequencing errors or 

sequence artifacts created during ligation/amplification processes) should be taken into 

account to correctly estimate enrichment. 

Next	  generation	  sequencing	  costs	  



18	  

The National Human Genome Research Institute (NHGRI, 2015) compile on a yearly basis 

a “cost per genome” table to illustrate the overall cost of sequencing an entire human 

genome, by gathering data from its sequencing centers (Wetterstrand, 2015; Figure 11a 

and 11b). Calculations take into account labor, amortization of sequencing machine cost, 

computational postprocessing and sample preparation. Table 1 illustrates the decreasing 

cost trend to sequence a complete human genome (approximately 3 Gb) over time, since 

the first sequenced human genome was released in 2001. The dramatic drop in costs 

dating back to 2008 is the result of the transition from classic sequencing methods 

(Maxam & Gilbert, 1992; Sanger et al., 1992) to NGS technologies. NGS methods produce 

shorter sequences and require a greater sequencing depth to allow correct genome 

assembly, however, high throughput parallel sequencing reduces resources cost and the 

number of sequencing runs, hence decreasing overall costs.  

Read	  
Length	  

Sequence	  
per	  day	  

Cost	  per	  
base	  

454	   400-‐500	   1	  Gb	   18	  $/Mb	  
Illumina	   100-‐150	   6.5	  Gb	   0.4	  $/Mb	  
Solid	   50-‐80	   5	  Gb	   0.5	  $/Mb	  

Table	  1.	  Read	  length,	  sequence	  per	  day	  and	  cost	  per	  base	  statistics	  of	  the	  three	  main	  NGS	  platforms 
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Figure	   11a	   and	   11b.	   The	   National	   Human	   Genome	   Researcg	   institute	   compiled	   two	   graphs	   by	   gathering	   data	   on	  
sequencing	  costs	  in	  the	  last	  two	  decades.	  The	  results	  show	  that	  overall	  costs	  (calculated	  on	  the	  sequencing	  of	  3000	  
Mb	  human	  genome)	  not	  only	  decrease	  in	  time,	  but	  overstrip	  Moore’s	  law	  curve	  by	  a	  great	  margin. 
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The	  future	  of	  sequencing	  

Although PCR amplification (Adessi et al., 2000; Mullis et al., 1986) has revolutionized 

DNA analysis, in some instances it may introduce biases such as base sequence errors or 

favor the amplification of certain sequences over others, thus modifying the relative 

abundance of DNA fragments that existed before amplification. More accurate results 

could be achieved if a nano-scale sequencing of the starting DNA population without the 

aid of amplification steps would be possible (Schadt, Turner, & Kasarskis, 2010). Hence, 

third generation sequencing methods have been focusing on single-molecule sequencing, 

trying to achieve better accuracy. 

Transcriptomics	  

In cellular and molecular biology everything ending with –ome have the sense “all of the 

specified constituents of a cell, considered collectively or in total”, and thus the -omics 

suffix indicates the measurement of an entire collection of biological molecules or 

sequence information. It is fair to say that all of the “-omics” approaches in the biological 

field, born to quantify and classify biological data, stem from the advance of technology 

(Schneider & Orchard, 2011). In the field of biology, 4 different “omics” branches have 

emerged in the past years: 

1) Genomics, the quantitative and qualitative study of one cell DNA and genes, with the

aim of assigning to each gene its functional role in the cell. 

2) Transcriptomics, the quantitative and qualitative study of one cell total RNA, extending

from messenger RNA (mRNA) to non-coding RNAs (ncRNA). The cataloguing of new RNA 

is still ongoing and it is still one the hottest topics of next generation “omics” 

3) Proteomics, the quantitative and qualitative study of the whole collection of proteins

encoded by genes (Kalia & Gupta, 2005); 

4) Metabolomics, the quantitative and qualitative study of metabolites
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These four main areas branched in many sub-topics, such as pharmacogenomics, i.e. the 

investigation of how and why differences in genomes lead to different drug responses and 

individual-tailored drug development (Daly, 2010), nutrigenomics, which focus on how 

different foods can trigger the insurgency of diseases by interacting with genes (Mead, 

2007), to cite some. Since most, if not all of these disciplines require huge amount of data 

to be generated and processed, it is only natural that NGS techniques were the methods 

of choice for the biology “omics” era. As such, the development of NGS has brought the 

study of genome and transcriptome to a whole other level, and has lead to many important 

milestone discoveries, enhancing our understanding of the mechanism behind several 

human diseases and their pathogenesis (Rogers & Venter, 2005; Zhang, Chiodini, Badr, & 

Zhang, 2011). However, this paradigm shift in data collection and analysis has introduced 

new challenges, and the stunning benefit of NGS techniques are almost impossible to 

achieve without proper bionformatic workflows and frameworks (Stein, 2011). 

Transcriptomics in particular represents the inevitable result of endless efforts to quantify 

the gene expression levels of thousands of genes in a parallel fashion since the discovery 

of DNA and RNA. It was not until late 90s (with the first appearance of microarrays) that 

scientists, having to face an enormous quantity of data, decided to abandon low-troughput 

approaches to embrace new methods. By the term transcriptome, it is intended the 

complete set of transcripts in a cell, and their quantity, for a specific developmental stage 

or physiological condition (Adams, 2008). Understanding the transcriptome mechanism is 

essential for analyzing the functional elements of the genome, cell development and 

genetic diseases. Similar to genomics for DNA and genes, the aim of transcriptomics is to 

obtain a complete expression profile of a cell, sequencing and cataloguing all the 

transcripts, assigning them their functional role in the cell, quantifying their relative 

abundance in certain conditions, determine the transcriptional structure of the underlying 

genes, defining their starting sites, 5’ and 3’ ends, splicing patterns and last but not least 

post transcriptional modifications. This of course includes all possible types of RNA: albeit 

in the beginning of the genomic era it was common knowledge that most of the RNA in the 

cells were composed by mRNA (messenger RNA, which gets polyadenilated, spliced and 

translated into protein), many new types of this one-stranded molecule were found in the 

last years, ranging from non-coding RNAs (ncRNAs) to silencing RNAs (siRNAs). The ever 

increasing discovery of new RNA types switched the focus from genomes to 

transcriptomes, and many new techniques were developed to study these molecules. In 
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fact, one of the biggest challenges of RNA compared to DNA is the high degradation rate 

of RNA, which needs specific and sophisticated lab techniques to be isolated, purified and 

sequenced. 

Non	  NGS-‐Based	  Technologies	  

Various methods and technologies have been implemented through the years to analyze 

RNAs and quantifying transcript abundance. Hybridization approaches (Lipshutz, Fodor, 

Gingeras, & Lockhart, 1999; Shalon, Smith, & Brown, 1996) make use of fluorescent 

markers applied to cDNA sequences (i.e. retro-transcribed RNA fragments, converted to 

double-strand DNA to avoid degradation and secondary structure formation, such as 

hairpin loops) which are then hybridized to high-density oligo microarrays, designed in 

order to provide a unique probe specific for each transcript of the genome studied. The 

intensity of the fluorescence on a specific spot then determines the relative abundance of 

a specific transcript. Although many types of microarrays have been developed in the 

meantime, like specialized microarrays with probes spanning exon-exon junctions 

sequences in order to detect splicing isoforms (Johnson et al., 2003), or tiling microarrays, 

a high density array which includes the whole genome sequence, which allows for a better 

resolution, this method reliance on a pre-existing genome/transcriptome sequence and a 

limited dynamic range of detection which suffers from background noise and signal 

saturation made scientists search for other methods (Shendure, 2008). Moreover, 

microarrays made difficult to compare transcript levels across multiple experiments, due to 

analogic signal quantification biases (Draghici, Khatri, Eklund, & Szallasi, 2006). 
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Figure	  12.	  The	  basic	  wokflow	  for	  microarray	  assays.	  

Conversely, methods based on sequencing do not rely on existing sequences but directly 

determine them instead. Initially, Sanger sequencing of cDNA or EST libraries was used, 

but this approach suffers from low throughput and is not generally quantitative, therefore 

transcripts levels cannot be accurately measured. To overcome this restriction, Tag-based 

approaches were developed, such as serial analysis of gene expression (SAGE) 

(Velculescu, Zhang, Vogelstein, & Kinzler, 1995), cap analysis of gene expression (CAGE) 

(Shiraki et al., 2003) and massively parallel signature sequencing (MPSS) (Brenner et al., 

2000). However, these are expensive methods and most of the tags produced map 

ambiguously on the reference genome. The SAGE technology produces sequence tags 

from mRNA transcripts, and, conversely to microarray, it gives a digital quantification of the 

mRNA transcript abundance (Velculescu et al., 1995). After cDNA conversion and binding 

to streptavidin beads, sequences are digested with the restriction enzyme NlaIII, which 

recognizes the site 5’-CATG-3’. Following ligation of a linker that contains a recognition 

site of the Type IIS restriction endonuclease BsmFI, the fragment is cleaved 15 bp in the 3′ 

direction from the recognition site, releasing the sequence tag. After removal of the linker 

fragment, tags are concatenated, cloned into a plasmid vector, and sequenced using 

Sanger method. SAGE and newer SAGE assays like superSAGE libraries usually contain 

between 10 and 100 thousand tags (Matsumura et al., 2005; Matsumura et al., 2010). 
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Figure	  13.	  Visual	  representation	  of	  the	  SAGE	  experimnet 

 

It was not until the first high-throughput DNA sequencing methods were developed that 

sequencing a whole transcriptome seemed an overwhelming task: these new protocols 

permitted to sequence millions of bases in a very short time compared to traditional 

approaches and although they were hardly accessible when they came out, they grew in 

popularity and the per-base sequencing cost has decreased ever since. 

 

RNA	  Seq	  	  
 

By replacing purification of DNA with RNA and retrotranscribing RNA to cDNA ("Central 

dogma reversed," 1970), the NGS methods could be used to inspect RNA expression. 

This approach rose to popularity soon after the commercialization of the first NGS 

sequencers and has been known as RNA-Seq (Costa, Angelini, De Feis, & Ciccodicola, 

2010; Tang et al., 2009; Wang, Gerstein, & Snyder, 2009). Early applications of this 

technique date back to 2007, when Emrich et al. combined a laser micro dissection 

performed on maize with a run of 454 sequencing, producing ~260,000 reads from purified 

RNA (Emrich, Barbazuk, Li, & Schnable, 2007). This work allowed the annotation of many 

maize genes as well as showing the potential of NGS transcriptomics. In the same year, 

the same team used 454 for the discovery single nucleotides polymorphisms (Barbazuk, 
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Emrich, Chen, Li, & Schnable, 2007) and since then the number of paper published on 

NGS transcriptomics has grown exponentially.  

Typical	  workflow	  for	  RNA-‐Seq	  experiments	  
 
1. RNA extraction and enrichment 
A typical RNA experiment starts with the isolation and purification of the total or part of the 

RNA present in the cell. The most common approach to isolate mRNA from the bulk of 

RNAs is known as poly-A tailing: bearing in mind that mRNA has a poly-adenylated tail, it 

is easy to extract it by hybridizing it on poly-T oligo covered magnetic beads. Since most of 

the RNA in the cell (more than 90%) consists of ribosomal RNA (rRNA) (de Leeuw, 

Slagboom, & Vijg, 1989), most of the current RNA isolation protocols rely on rRNA 

depletion: high levels of rRNA in the sample result in a high signal-to-noise ratio that can 

make detection of the RNA of interest difficult. As an example, Lifesciences Ribominus™ 

(Cui et al., 2010) technology utilizes specific locked nucleic acids to bind rRNA ribosome 

binding sites (Kozak, 1987; Shine & Dalgarno, 1975) and subsequently remove them from 

the total population of RNA with the aid of streptavidin-coated magnetic beads.  

 

2. RNA fragmentation 
After purification and isolation, the RNA needs to be sheared (Quail, 2001) into fragments 

in the range of 100-300 nucleotides each. This can be achieved via different methods, the 

most common being sonication (Sambrook & Russell, 2006b), nebulization (Sambrook & 

Russell, 2006a) or hydrolysis. These methods can be utilized on both single strand RNA or 

double strand reverse-transcript cDNA (later described in step 3). While RNA 

fragmentation provides a better coverage, it suffers form both 5’ and 3’ ends depletion 

(Wang et al., 2009). On the other hand, reverse-transcription performed with poly dT-

oligomers, which bind to the 3' poly-A tails, is strongly biased towards 3’ end of transcripts 

instead, and reverse-transcription with random hexamers results in an under-

representation of 3’ ends (Wang et al., 2009). This is from the reduced number of priming 

positions at which the reverse transcriptase enzyme can start cDNA synthesis. Enzymatic 

methods are also available, but enzymes tend to have much stronger sequence specific 

biases cleaving than mechanical or chemical methods and are therefore less favored 

(Poptsova et al., 2014).  
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3. cDNA synthesis  
The fragments of RNA (or complete RNA if the fragmentation step is performed after 

retrotranscription) are converted to cDNA: a double stranded DNA originating from the 

RNA, using the reverse transcriptase enzyme (Myers & Gelfand, 1991). This can be 

achieved in two ways: 

 

A) Using short T’s sequences (oligo dT) whih hybridize to the poly-A tail and function 

as primers for the reverse transcriptase enzyme was one of the first methods used, 

but the resulting cDNA was 3’ biased, diminishing the 5’ end sequence 

representation (Myers & Gelfand, 1991); 

B) Random sequence oligos (generally examers), which hybridize to random sites on 

the RNA ensure an even distribution of the retro transcribed fragments, and do not 

suffer from ends biases. This method is the preferred one to avoid oligo dT 

problems (Stangegaard, Dufva, & Dufva, 2006). 

 

Once the first strand of cDNA has been synthetized, the reverse transcriptase removes the 

RNA and the second strand of DNA is synthetized by DNA pol I and ribonuclease H. cDNA 

has the advantage of being much more stable than single strand RNA, and can be easily 

amplified via PCR (Mullis et al., 1986). 

 

 

4. Adapters ligation 
In this step, the sticky ends resulting from cDNA synthesis are cleaved, resulting in blunt 

end double strand cDNA. A single adenine nucleotide is added at 3’ ends, to facilitate the 

ligation of the adapters (or linkers), showing a sticky T nucleotide, which contain an index 

(also called barcode sequence) that is useful to keep track of the experiments once the 

total cDNA/RNA is sequenced (Chen et al., 2012). Once both adapters have been added, 

the cDNA is almost ready to undergo sequencing. 

 

5. Size selection 
To ensure that all the molecules have the same lengths, a gel electrophoresis of the total 

cDNA is performed (Aaij & Borst, 1972). The band corresponding to the expected length of 

the fragments (plus adapters) is extracted from the gel and the rest discarded. This step 

also is useful to eliminate un-ligated adapters and sequence artifacts, such as adapter-
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adapter molecules which contain no cDNA fragments. Also, the sequencing of same-

length fragments ensures that the read length resulting from sequencing is the same, 

effectively avoiding sequencing errors. 

 
6. Amplification and generation of DNA clusters 
As shown in the chapter regarding the NGS technologies, all the methods make use of 

PCR (Mullis et al., 1986) to amplify the starting population of cDNA fragments (Illumina 

uses bridge amplification for example). The immobilized spots on the supports are actually 

clusters of the same sequence repeated over and over, and ensure that the detection of 

the base incorporation is strong enough to be correctly interpreted by optical sensors. 

After step 6, the NGS method of choice starts its workflow to determine the sequences of 

all the cDNA fragments. This is basically the common approach to RNA samples 

preparation for RNA-Seq experiments. 

 

 

Reads	  Quality	  and	  experiment	  quality	  
 

As previously mentioned, one of the determinant factors in obtaining good results from the 

RNA-Seq experiments is to examine and evaluate the library quality and the sequencing 

performance. In a NGS experiment, low quality starting material inevitably lead to 

reading/processing faults by the NGS sequencer, that is, base miscalling. To avoid 

problems arising from these reading faults, it is common procedure to eliminate reads with 

low base quality confidence: information on base calling confidence is extracted from the 

variation of Phred values in the sequence (Ewing, Hillier, Wendl, & Green, 1998; 

Richterich, 1998). Phred quality scores were firstly introduced in Phrap program (Ewing & 

Green, 1998; Ewing et al., 1998), used in the Human Genome Project to automate 

sequencing. To determine a sequence score, phred algorhytm takes into account many 

factors, such as signal intensity and its relative peak shape, for each detected nucleotide 

incorporation. It then proceeds to compare the data to previously obtained data on the 

same type of nucleotides, stored in lookup tables, to assign a quality score to the 

sequenced nucleotide. Different tables are used according to the type of machine used 

and the chemical methods used  by the same machine. Given the accuracy of the method, 

many manufacturers currently use phred-like scores in their sequencers. 
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Phred quality scores (Q) are defined as a property which is logarhytmically related to the 

base calling error probability (P):  

 

𝑄 =   −10   log!" 𝑃 

 

As an example, a Q value of 10 translates to a chance of calling the wrong base of 1 in 10, 

that is, a confidence of 90%. A Q score of 50 has a chance of miscalling of 1 in 100,000 

and so on, as shown in the table. There is no “exact rule” to tell if the quality of a particular 

sequence is good or bad, as this depends on the purpose of the study. For example, an 

expression level analysis requires less read quality than investigating for SNPs or 

transcript variants. Generally, a score over 30 is considered very good, between 20-30 

good and scores below 20 indicate poor quality (X. Li, Nair, Wang, & Wang, 2015).  

Usually, quality scores and fragments sequences are stored together in FASTQ format 

(Cock, Fields, Goto, Heuer, & Rice, 2010). A brief overview of FASTQ format is given in 

figure. Due to the nature of scores being numbers, common compressing methods 

compress the value in ASCII format, which saves disk space and its length is the same of 

the sequence. Phred scores are reported from 33 to 126 (ASCII “!” to “V”), but SOLiD still 

uses numerical values to indicate base quality (Castellana, Romani, Valente, & Mazza, 

2013). 

Another way to determine reads quality is GC content (guanine-cytosine content). GC 

content represent the percentage of bases in a DNA sequence that are either G or C and 

is one of the most simple way to measure nucleotide composition of a DNA sequence. The 

reason behind GC choice over AT is that GC has a more direct biological meaning: not 

only the GC pair bond is stronger than AT (3 hydrogen bonds versus 2) but in the PCR 

amplification processes the GC percentage is critical in predicting annealing temperature 

(Yakovchuk, Protozanova, & Frank-Kamenetskii, 2006) and ensure better amplification 

results and it is known that information encoding sequences on the genome are richer 

than “junk DNA” in cytosine and guanine (Sumner, de la Torre, & Stuppia, 1993). 

Therefore, GC content evaluation represents a simple yet critical step in transcription 

detection and abundance quantification.  
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Figure	   14.	   FASTQ	   read	   in	   Illumina	   format.	   Normally,	   there	   are	   4	   lines	   per	   read:	   the	   firts	   line	   starts	   with	   a	   ‘@’,	  
followed	   by	   a	   unique	   label;	   the	   second	   contains	   the	   read	   sequence;	   the	   third	   starts	   almost	   always	   with	   a	   ‘+’,	  	  
sometimes	  contains	  a	  copy	  of	  the	  label;	  the	  fourth	  contains	  quality	  scores	  in	  ASCII	  format.	  Quality	  score	  is	  referred	  to	  
the	  nucleotide	  in	  the	  same	  column. 

 

 
 
 

Transcriptome	  Assembly	  
 

Ab initio transcriptome characterization is based on de novo assembly of transcriptomes 

(Martin & Wang, 2011; Yassour et al., 2009). This step is essential when a reference gene 

annotation is not available, and anyway useful for the identification and investigation of 

novel alternative splicing events. Recently developed methods make use of de Brujin 

graphs (De Bruijn, 1946) and employ overlapping k-mers to assemble short reads into 

contigs. However, both sequencing errors and the occurrence of alternative splicing 

events in eukaryotes make the process of transcritpome assembly more challenging, both 

in terms of analysis and computational complexity (Lin et al., 2011).  

Nevertheless, reference genomes/transcriptomes are available for only a small fraction of 

organisms, and since genome assembly is a complex and resource draining operation, 

transcriptome assembly has become a less costly and effective way to study organisms, 

facilitating read mapping, phylogenetics, marker constructions and other downstream 

applications. Several tools are now available for de novo assembly of RNA-Seq like Trans-
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ABySS (Robertson et al., 2010), Velvet-Oases (Schulz, Zerbino, Vingron, & Birney, 2012), 

and SOAPdenovo-trans (Xie et al., 2014). 

Reads	  alignment	  
 
When a reference genome sequence is available, the first step is the reassignment of the 

DNA fragments extracted to their original location on the genome: this operation is called 

read mapping. In other words, each read produced has to be matched (aligned) to the 

genome (or, similarlym transcriptome) in order to recover its original position. Although in 

theory this would correspond to finding the exact matching sequence, for which optimal 

solutions already exist, in practice only a small fraction of reads map without errors on the 

reference sequence. This is mainly because of two reasons: 

 

1) Nucleotide polymorphisms: albeit having a reference genome on which to align 

reads, every organism slightly differs from it, notably in single nucleotide mutations 

scattered all over the genome. These mutations are called SNPs (single nucleotide 

polymorphisms). Thus it is possible that a read does not properly align to reference 

sequence due to the presence of one or more of these point mutations (Nielsen, 

Paul, Albrechtsen, & Song, 2011); 

2) Sequencing errors: as previously mentioned multiple times, sequencing errors are 

totally normal in a NGS experiment and are caused by either human errors in 

preparation of the samples, incorrect base calling and enzymatic errors in 

replication/amplification cycles (Wall et al., 2014).  

 

Due to the large throughput of NGS methods, and the need to process millions of short 

sequences by mapping them on the reference genome, traditional aligning algorithms are 

not suited anymore for the task. Classic alignment methods such as Smith-Waterman 

dynamic programming (T. F. Smith & Waterman, 1981), or indexing of k-mers in the 

template sequences (BLAT) (Altschul, Gish, Miller, Myers, & Lipman, 1990) or a 

combination of the two approaches (BLAST, BLAST+) (Camacho et al., 2009), while 

efficient in searching through databases to find homologue sequences, are not suited to 

the alignment of very large number of short reads (especially in the case of Illumina) to a 

reference sequences in the order of several Gbs, and do not take into account error rates 

and types specific of the sequencing platform. To overcome the need of expensive 
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dedicated computing hardware for the alignment of reads, the development of fast, yet 

accurate aligners (using heuristics) has boomed in the last years, and new methods are 

published on a practically weekly basis.  

The problem at the base of read mapping is thus approximate pattern matching, in which 

usually up to two-three substitutions are allowed on tags in the range of 40-100 bp. Also, 

the presence of indels in reads or in the genome/transcriptome induced by the presence of 

same-nucleotide repeat sequences may cause problems in the sequencing process and 

must be taken into account when trying to correctly align reads. 

Another issue that arise is that while a 30-40 bp should be long enough to univocally map 

onto a reference sequence (e.g. chances of randomly finding a 30bp sequence are 1/430), 

often a read can match different positions. Thus, the problem can be formalized in different 

ways: from approximate pattern matching allowing point mutation to approximate pattern 

matching allowing indels. While the mostly used alignment algorithm and approaches to 

the problem differ, they are substantially based on the same principles: the indexing of the 

reference genome or reads (H. Li & Homer, 2010). Indexing allows for faster sequence 

accession and speeds up sequence match research. Although a genome is usually in the 

range of billions of bases and a normal NGS experiment output is measured in 

millions/hundreds of millions bases, indexing the genome for reads alignment, while costly 

in terms of memory usage allows for faster read mapping and is therefore the most used 

methods to develop aligners. On the other hand, indexing reads results in lower memory 

demands, but longer mapping times. Various indexing methods have been proposed; 

additionally, newer methods allow the presence of indels in alignments and implements 

several tricks to speed up reads mapping. As an example, base-calling quality scores can 

be used to make solution search spaces smaller, by limiting the mismatch tolerance only 

to bases with low quality scores that are therefore less reliable (A. D. Smith, Xuan, & 

Zhang, 2008). Moreover, as mentioned before, 3’ biases can be taken care of trimming 3’ 

end nucleotides that usually present low confidence values (Roberts, Trapnell, Donaghey, 

Rinn, & Pachter, 2011). 

 

By aligning reads extracted from a RNA-Seq experiment on the reference genome three 

main problems arise, namely, the assignment of reads corresponding to exons belonging 

to different splicing isoforms originating from the same gene; the mapping of reads that 

span exon-exon junctions; the mapping of reads which contain part of the poly-A tail. 
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The correct assignment of a read ambiguously mapping on two or more isoforms is a 

problem not completely solved yet. While reads assignment can be easily done for genes 

that do not have isoforms, it might be difficult to achieve when more isoforms are present 

due to alternative promoters or alternative splicing events: a read can be assigned 

explicitly to an isoform if it maps to a segment which uniquely belongs to it; read 

assignment is ambiguous if it maps to a segment shared by different isoforms. Different 

approaches can be used to address this issue. For example RSEM (B. Li & Dewey, 2011) 

employs an Expectation-Maximization (EM) strategy to estimate the maximum likelihood of 

a read belonging to a given alternative transcript (B. Li & Dewey, 2011). Cufflinks (Trapnell 

et al., 2010) estimates isoforms relative abundance using a statistcal model in which the 

probability of observing each read is a linear function of the abundance of the transcripts 

from which the read could have originated.  

 

Earlier, the most common way to overcome the exon junction problem was to prepare a 

library (or an array) containing all the known exon-exon junctions and computationally 

predicted ones (Johnson et al., 2003). After a first run of mapping on the genome, 

unmapped reads were extracted and realigned on the exon junctions library. However, this 

method had the drawback of not being able to give information on previously non-

annotated splicing events, which led to the implementation of so-called “spliced aligners”, 

programs that enable the mapping of exon-junctions spanning reads with large gaps in the 

alignment (Ameur, Wetterbom, Feuk, & Gyllensten, 2010). Currently one of the most 

widely used aligners of this kind is Tophat (Trapnell, Pachter, & Salzberg, 2009), which 

implements a “exon first” method: in the first step, reads are mapped to the reference 

genome using an un-spliced read approach; then, the unaligned reads are collected and 

split in shorter sequences, and regions containing a high coverage of reads mapped at the 

previous step are searched to identify possible splice connections. Conversely, many 

other mapping programs, such as GSNAP (Wu & Nacu, 2010), use “seed and extend” 

methods, which split the reads into shorter sequences to give rise to candidate region for 

alignement. As of today, “exon first” approaches are more used due to their flexibility and 

mapping times, although they rely on euristics to align spliced sequences, which lower 

exact mapping confidence. 

When dealing with reads containing poly-A residues, the approach more commonly used 

is to identify all the reads that did not initially map to reference genome and either begin 

with repeated As ot Ts (cDNA) in series of at least 4-5 nucleotides. Trimming the repeated 
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segments and remapping the shortened reads often result in correct alignement to the 

genome, and can be useful to identify new ununnotated polyadenilation sites (Del Fabbro, 

Scalabrin, Morgante, & Giorgi, 2013).  

 

Estimating	  gene	  expression	  levels 
 

When examining transcript levels in a RNA-Seq experiments, some factors must be taken 

into account: the number of reads aligning to a transcript reflects the relative abundance of 

the transcript in the starting library (more copies of the same sequence mean it will be 

sequenced more likely), but it is also a function of transcript length (longer sequences 

produce more fragments in the cDNA fragmentation step). Therefore, when analyzing 

gene expression levels, it is not sufficient to define transcript levels as the number of reads 

belonging to a transcript, but values must be normalized, to allow for comparisons across 

different experiments. in (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008) was 

presented a method to normalize data based on these assumptions and they called the 

measure RPKM (reads per kilobase of exon model per million mapped reads): 

 

𝑅𝑃𝐾𝑀 =   
𝑡𝑜𝑡𝑎𝑙  𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑  𝑟𝑒𝑎𝑑𝑠   𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 ∙ 𝑒𝑥𝑜𝑛  𝑙𝑒𝑛𝑔𝑡ℎ  (𝐾𝐵) 

 

 

𝑅𝑃𝐾𝑀 =   
10!  𝐶
𝑁𝐿/10! 

 

Where: C = number of mappable reads that fall onto the gene’s exons; N = Total number 

of mappable reads in the experiment; L = The length of a transcript (sum of the length of 

its exons) in base pairs.  

 

Later, this definition was extended to expected fragments per kilobase of transcript per 

million mapped read (FPKM), to take into account paired end reads (Trapnell et al., 2010). 

These measures are not the only ones that can be used: many new methods are 

continually proposed and published, based on different assumptions.For example, more 

recently, modified RPKM/FPKM values, that take the mappability of different transcript 
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regions into account have been proposed and successfully used, like TPM in the RSEM 

package (B. Li & Dewey, 2011). 

Sequencing depth is another factor to bear in mind when quantifying gene expression: a 

low sequencing depth means that rarely expressed genes are harder to screen and detect. 

Thus, the development of more sophisticated statistical analysis approaches has become 

one of the most important problems to deal with for RNA-Seq and NGS data processing. 

Differential	  expression	  
 
A classic approach to analyzing transcriptome-based experiments is the comparative 

study of two or more experiments conducted in different conditions, such as disease vs. 

healthy or treated vs. non-treated biological samples. Primary goal of this approach 

(known as differential expression, DE) is to identify differential expressed genes, that is, 

selecting genes that present statistically significant transcriptional variability across the 

samples. Since the first appearance of hybridization-based methods (microarrays) for the 

analysis of DE, many statistical methods to compare enrichment of probes have been 

proposed and are still debated, but they are quite well established, due to how popular 

arrays were in the last decades. The introduction of NGS methods in the analysis of 

transcriptomes, while increasing output and overcoming the boundaries of limited dynamic 

range of detection typical of microarrays, posed new problems for the analysis of data to 

estimate DE gene levels. Due to the digital nature of NGS data, most of the statistical 

analysis methods for NGS based DE experiments were borrowed from SAGE analysis 

workflows; nevertheless, some of the methods used for microarray are still a viable choice 

to analyze NGS data. Early methods included Poisson distribution, binomial and normal 

distribution to approximate read counts. 

Later, it was demonstrated that SAGE count is actually overdispersed and therefore more 

variation than that expected by the sample is present. To ensure correct counts and 

differential expressed genes levels accuracy, several new methods that took 

overdispersion into account were developed: the tw-test (Baggerly, Deng, Morris, & Aldaz, 

2003) was one of the first statistical methods that allowed to estimate DE by using 

“between library variation”, based on beta-binomial distribution. The same group, one year 

later introduced logistic regression applied to overdispersion to allow the direct comparison 

of more than two samples (Baggerly, Deng, Morris, & Aldaz, 2004). Lu et al (Lu, Tomfohr, 

& Kepler, 2005) proposed a similar approach using log-linear models. 
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Nevertheless, early RNA-Seq DE methods did not take overdispersion into account and 

were based on Poisson distribution (Burden, Qureshi, & Wilson, 2014). When 

overdispersion was proved to be present in RNA-Seq as well, methods were adjusted 

accordingly. EdgeR (Robinson, McCarthy, & Smyth, 2010), one of the most common R 

packages used to investigate DE, implements a method based on negative binomial 

distribution, inspired by the work of Robinson and Smyth, apllicable to both RNA-Seq and 

SAGE. In 2010 this method was further expanded by the work of Robinson and Oshlack 

(Robinson & Oshlack, 2010), which proposed a normalization approach to lower the bias 

caused by genes highly expressed in just one sample that could lower the detection 

accuracy of other genes expression.  Another popular R package called DESeq (Anders & 

Huber, 2010) implements a similar method based on negative binomial distribution, but 

uses a posterior empirical Bayesian approach to investigate different DE models.  
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Main	  Results	  

	  

Tissue-‐specific	  mtDNA	  abundance	  from	  exome	  data	  and	  its	  correlation	  
with	  mitochondrial	  	  transcription,	  mass	  and	  respiratory	  activity	  
 

Mitochondria	  
 

From ancient greek µίτος (mítos, “thread”) + χονδρίον (khondríon), diminutive of χόνδρος 

(khóndros, “grain, morsel”), the mitochondrion is often referred to as the “powerhouse of 

the cell” (D'Erchia et al., 2015), since it is the organelle in which cellular respiration takes 

place and produces most of the cell’s ATP (adenosine tri phosphate) supply. Apart from 

cellular energy generation, mitochondria are involved in several other cell processes (such 

as differentiation, apoptosis etc.) as well as playing a key role in the control of cell cycle 

and cell growth (Pesole et al., 2012). In eukaryotes, they are uniparentally inherited from 

the mother (Henze & Martin, 2003).  

The origin of mitochondria are still debated, and two main hypotheses have arisen: the 

endosymbiosis hypotheses states that mitochondria were originally prokaryotic cells, which 

were able to process oxygen in a way that could not be achieved by eukaryotic cells and 

started living in endosymbiosis in the cellular matrix (Andersson, Karlberg, Canback, & 

Kurland, 2003); the autogenous one instead claims that mithochondria were initially part of 

the nucleus DNA and they were born during the divergence of eukaryotes from 

prokaryotes (approximately 1.5-2 billion years ago) as a stand alone organelle. The DNA 

travelled across the nucleus membrane, and formed a protein-proof membrane to en velop 

the DNA. Since the mithochondrion possesses a circular DNA chromosome and many 

other features in common with bacteria, the most accredited theory is the endosymbiosis 

one. 

As mitochondrial DNA (mtDNA) is a relatively small, abundant and easy to isolate, it has 

been the favourite target of early genome sequencing projects (Borst & Grivell, 1978) and 

the nucleotide sequence of mtDNA of thousands of species has now been determined. 

Structure and gene organization of mtDNA is highly conserved among mammals 
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(Taanman, 1999). The chromosome is ~16,500 bp and encodes for 37 genes: redox 

proteins coding genes indispensable for the respiratory chain (subunits of respiratory 

complexes I, III, IV and V), ribosomal RNAs, and 22 tRNAs for protein formation, same 

found in prokaryotes. A single mitochondrion can contain up to 10 copies of the 

chromosome. Most information is encoded on the heavy (H) strand, with genes for two 

rRNAs, 14 tRNAs, and 12 polypetides. The light (L) strand encodes for eight tRNAs and a 

single polypeptide (Taanman, 1999). 

Mammalian mtDNA is extremely organized, when compared to the rest of genome. Genes 

are intron-less, except for one regulatory region, and intergenic sequences are practically 

absent or limited to a few bases. As in prokaryotes, the mitochondrial DNA has a high 

coding DNA/non coding DNA ratio, absence of repeated genes. The rRNAs and  

 
Figure	  15.	  The	  mitochondrial	  DNA	  is	  a	  circular	  DNA	  molecule	  with	  a	  length	  of	  about	  16500	  bp.	  It	  encodes	  for	  a	  total	  

of	  37	  genes,	  divided	  in	  2	  ribosomal	  RNA	  coding	  genes,	  22	  tRNA	  coding	  genes	  and	  13	  protein	  coding	  genes.	   

 

tRNAs originating from mtDNA are unusually small. Some protein coding genes overlap 

each other, and do not have complete termination codons, which are added during the 

process of poly-adenylation. In vertebrate cells that are metabolically active, a large part of 
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the mtDNA contains a short three-stranded structure known as displacement loop or D-

loop, in which a short DNA fragment complementary to the L strand displaces the H strand 

(Fernandez-Silva, Enriquez, & Montoya, 2003). This region is extremely conserved and 

functions as the major control site for mtDNA expression, containing the origin of 

replication and the major promoters for transcription. Once inititated at the D-loop, the L 

strand is transcribed as single polycistronic precursor RNA encompassing most of the 

genetic information contained in the strand. Subsequently, the precursor RNA is cleaved 

and polyadenilated to generate the mRNAs and the other RNAs. Most of the proteins 

needed by the mitochondrion to activate the respiratory chain are encoded in the 

mitochondrial proteins, but many key genes are localized in the cell nucleus, and they 

must be transported into the organelle, further avvalorating the endosymbiotic origin 

(Rackham et al., 2011; Scarpulla, 1997). 

The mtDNA copy number per diploid nuclear genome correlates with ATP production and 

can range between 1000 and 5000 copies (Cavelier, Johannisson, & Gyllensten, 2000). 

This number varies dramatically among different tissues, cell developmental stages and is 

basically a reflection of the cell energy supply requirements. Altered copy number results 

in oxidative stress and linked pathological conditions, especially in tissues with high 

bioenergetics demands, such as muscles. It is thus not a surprise that mitochondria play a 

key role in the insurgency of hearth diseases and malfunctions (Crow, Mani, Nam, & Kitsis, 

2004; Gustafsson & Gottlieb, 2008).   

 

Next	  generation	  sequencing	  and	  mtDNA/RNA	  
 

It has been proved that off targets DNA sequences coming from whole exon sequencing 

experiments (WES) can be used to correctly assemble mitochondrial genome (Picardi & 

Pesole, 2012). It thus interesting to investigate if the data obtained from WES experiments 

can be used to infer the effective mtDNA copy number and whether or not the latter 

correlates with mitochondrial genes expression levels, measured by RNA-Seq. 

 

The starting material of the study consisted of six different post-mortem human snap-

frozen tissues (namely brain, heart, kidney, liver, lung and muscle) extracted from three 

unrelated healthy Caucasian individuals (males, respectively 47, 48 and 54 years old at 

the time of death) obtained from Cureline (South San Francisco, CA, USA). The three 
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individuals are labeled as S7/11, S12/12 and S13/12 as summarized in table 3. DNA has 

been extracted from the samples and purified with DNeasy Blood and Tissue kit (Quiagen, 

2015a) and quantitavely measured on NanoDrop 2000c (Thermo Fisher USA) 

(ThermoFisher, 2015) to check the optical density of the DNA sample. Total RNA was 

purified with the aid of RNeasy Plus Mini Kit (Quiagen, 2015b) and quality checked with 

Agilent Bioanalyzer 2100 (Agilent, 2015), with a resulting RIN (RNA integrity number) 

(Schroeder et al., 2006) in the range 5-7, acceptable for post mortem RNA extractions. 

 

 Age Sex Race Cause of 
Death PMI 

S7/11 47 Years Male Causcasian Acute coronary 
syndrome 3 

S12/12 54 Years Male Causcasian Car accident 1 

S13/12 48 Years Male Causcasian Traumatic 
asphyxia 1 

 

Table	  3.	  Summary	  of	  the	  three	  individuals	  (labelled	  S7/11,	  S12/12	  and	  S13/12)	  from	  which	  the	  samples	  were	  
extracted.	  For	  each	  of	  them	  the	  respective	  age	  at	  the	  time	  of	  death,	  sex,	  race,	  cause	  of	  death	  and	  number	  of	  hours	  in	  
which	  he	  samples	  were	  collected	  after	  death	  are	  reported	  (PMI). 

 

For each tissue, a strand oriented (directional sequencing) paired-end library was 

prepared in order to keep information about which strand of the DNA the transcript was 

originated from. Strand orientation allows for detection of antisense transcription and can 

be useful to investigate gene regulation. The rRNA was removed from total RNA 

population and sequenced on the Illumina HiSeq 2000 platform (Illumina, 2015), 

generating 27 to 35 million reads per tissue sample. Each read length was 100 bp and 

insert size ranged from approximately 100 to 400 bp. This approach automatically 

excludes ncRNA from detection: the reference mitochondrial annotation we used 

contained the 22 tRNA located on the mtDNA, but as expected no read could be assigned 

to them due to absence of enrichment for transcripts <200 nucleotides long (such as 

miRNA and tRNA). 

Results	  	  
 

Sequenced reads were initially mapped to reference human genome (assembly hg19) 

using Tophat (Trapnell et al., 2009) allowing at most two  mismatches. An average of 
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approximately 90% of total reads were aligned in correct forward-reverse strand fashion 

and with a maximum insert size of 1000 bp. Globally, 4~27% of total pairs were assigned 

to mtDNA, according to tissue sample. A further 8% of total reads could mapped also to 

Numt regions on nuclear DNA, either as a singleton (just one of the two reads in the pair 

correctly maps), chimeric pairs (reads in pair mapping on different chromosomes). To 

obtain a correct estimation of mitochondrion-originating reads, we decided to further 

investigate ambiguously mapped reads,. We discovered that for approximately 90% of the 

read pairs mapping on both mitochondrial and nuclear DNA, only one read mapped on 

nuclear DNA (mostly on CO1 or CO3 genes). Of all the correctly forward-reverse mapped 

reads, only 1% mapped on nuclear DNA too, but generally with a higher mismatch rate 

than in the mapping on mtDNA. This led us to the conclusion that correct pairs mapping on 

mtDNA can be safely used to estimate mithocondrial transcript levels. FPKM values were 

then obtained starting from read counts for all the mitochondrial annotated genes.  

 

We found that overall, in all tissue samples, transcription levels of genes annotated on the  

forward and reverse strand of the mitochondrial chromosome were extremely unbalanced, 

with about one thousand fold increase for those mapping on the forward strand, while 

approximately 0.36% of the reads mapping on the forward strand resulted to be originated 

from the precursor RNA. On the other hand, 85% of the reads mapping to the reverse 

strand were found to be originated from precursor RNA. The largest fraction of total reads 

(~95%) originated from rRNA (12S and 16S) in all analyzed tissues, while other reads 

mostly mapped on protein coding genes, albeit with some enrichment on antisense genes 

(such as genes coding for 16S rRNA, CO1 and ND5).  Antisense transcription was 

detected in proximity of ND5, ND6 and CytB genes, which has been reported as 

transcription of lncRNAs (Rackham et al., 2011).  

Expression levels of the 11 protein coding genes localized on mtDNA showed high 

variability among tissue samples, reflecting the relative concentration of mitochondrial 

DNA in the different tissues. In contrast, as shown in Figure 16, relative expression levels 

of protein coding genes are practically constant within the same sample, due to different 

levels of steady-state expression of mature transcripts, a probable consequence of the 

various post transcriptional modifications that occur in mitochondria (Rorbach & Minczuk, 

2012), conserved across all the tissues studied.   
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Figure	  16.	  Expression	  levels	  of	  protein	  coding	  genes	  are	  practically	  constant	  within	  the	  same	  tissue	  samples. 

 

We then performed a correlation analysis between mtDNA copy number (measured by 

qPCR analysis) and expression of genes localized on mtDNA, defined as the sum of 

FPKM values of non-ribosomal mitochondrial genes in the three different individuals. The 

result was a significant correlation (Pearson correlation of 0.81). Similar results were 

obtained by also considering mitochondrial rRNA-coding genes expression levels, or in 

general the fraction of total mitochondrial RNA in the sample (Pearson correlation value 

~0.8). 
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Figure	  17.	  Correlation	  plot	  between	  mtDNA	  copy	  number	  measured	  by	  qPCR	  and	  mt	  mRNAs	  measured	  by	  RNA-‐Seq 

 

By measuring relative mtDNA copy number in the six tissues, we found that heart samples 

held the highest mtDNA copy number, followed by skeletal muscle, brain, liver, kidney and 

lung. This result was consistent with the hypothesis that mtDNA copy number should be 

higher in tissues with high embolic and bioenergetics demands (e.g. muscles). In 

particular, the variation in relative mtDNA content was especially evident between muscle 

and brain, and the estimated low copy number in brain could be also attributed to the 

cause of death of individual S13/12, that is, traumatic asphyxia. 

Quantification of mtDNA with WES off target reads proved to be an accurate method and 

its results correlated with qPCR mesurements of mtDNA levels with high statistical 

significance (bivariate linear correlation r2= 0.92, P< 0.0001). 



	  

	  44	  

  



	   45	  

An	  entropy	  based	  framework	  for	  the	  identification	  of	  sample	  specific	  
expression	  patterns	  and	  splicing	  events	  
 
The general method we introduced works on transcript levels derived from a series of 

RNA-Seq experiments. Samples can come from different tissues, from the same cell line 

in different stages or conditions, from different individuals, and so on. Each sample can be 

sequenced once or, better, in any number of biological replicates. The framework 

implements different statistical tests that, starting from the estimated expression levels of 

each RNA of the transcriptome investigated in every replicate, are able to answer the 

following questions: 

 

• Which genes, or transcripts, show a biased expression pattern, that is, are 

significantly over- or under-expressed in one or more of the samples? For example, 

if samples correspond to different tissues, it detects tissue-specific genes and 

transcripts; if RNAs come from different time points, it detects which ones are 

significantly over- or under-represented at some time points, and so on. 

• Which genes show a significant “isoform switch” across two or more of the 

samples? That is, genes that have two or more alternative transcripts changing in a 

significant way their relative abundance across the samples investigated. These 

genes might or might not be specific for some of the samples, since the relative 

abundance of the different transcripts might compensate each other making the 

overall expression of the gene uniform. 

• The two above points can be studied also at the splicing event level: which splicing 

events (e.g. inclusion of a cassette exon) or alternative promoters are significantly 

over- or under-represented in one or more of the samples? Which present a 

significant “switch” across two or more of the transcripts? 

 
Quite obviously, there is no unique definition of tissue- or in general “sample specific” 

genes, which can change significantly according to the criteria used and the case studies 

investigated. For example, one could require the expression of the gene in a single sample 

to be greater than k times its expression in any of the other samples. This would in turn 

single out genes specific for a single sample. Or, we could define a gene as sample 

specific if its expression in a sample is greater than k times the average expression of the 

gene across all samples. This second definition is less stringent, and could return genes 
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specific for more than one of the samples analyzed. Approaches like the ones just 

mentioned, however, need the definition of explicit thresholds, that is, requiring that a gene 

has to have a k-fold increase of expression, with significantly different results according to 

the value of k chosen. Moreover, only the relative variation of expression across the 

samples is considered, and thus two genes with very different expression levels will be 

considered to be “equally significant” if they present the same fold change with respect to 

e.g. the average expression level. 

 

In this work we first of all introduce a measure, based on information theory, assessing 

how much the expression of a gene across different samples differs from a uniform 

distribution. When applied to samples coming from different tissues, the latter 

characterizes for example genes that could be considered “housekeeping” (Eisenberg & 

Levanon, 2013) and, in general, without any significant change of expression in any of the 

samples. Starting from this measure, we derive a statistical test, returning the probability of 

the expression pattern observed to be actually resulting from a uniform distribution. In this 

way, the lower is the p-value is, the more distant is the distribution observed from the 

uniform one, and classical p-value thresholds of 0.01 or 0.05 for statistical testing can be 

applied, without the need of defining explicit thresholds for expression and/or fold 

enrichments. 

After a subset of genes or transcripts has been singled out to have a distribution 

significantly different from the uniform case, further processing can identify in which of the 

samples lie the most significant differences, and thus which are the ones for which each of 

the transcripts is more “specific”. The same measures we introduce at the genes or 

transcript level can be applied also at the splicing or promoter level, thus identifying for 

example sample-specific splicing events or alternative promoter usage. Finally, we show 

how the same framework can be applied at the gene level, for the identification of genes 

that have the highest variability of isoform abundance across the different samples 

considered, comparing and summarizing the sample specificity of the alternative 

transcripts of the gene. 
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Detecting	  Sample	  Specific	  Expression	  Patterns	  
	  

Given a set of gene expression measurements performed on m different samples or 

conditions, the problem of detecting “sample specific” genes can be informally defined as 

identifying those genes that present an expression pattern that seems to be biased 

towards one or more of the samples, that is, increase in a significant way their expression 

level in a limited subset of the samples. Viceversa, genes not showing any sample-

specificity should present a uniform expression level across all the samples investigated. 

The problem has been widely studied since the initial transcriptome studies based on 

technologies like microarrays. Among many others, an approach that was introduced for 

the problem comes from information theory and is based on Shannon’s entropy (from now 

on referred to simply as entropy). The entropy concept was introduced by Claude E. 

Shannon in the paper “A mathematical Theory of communication” in 1949 (Shannon, 

1949). Entropy can be used to measure the uncertainty associated with a random variable,  

i.e., the expected value of the information in a message (bits in informatics). The idea 

behind entropy is that the less likely an event is, the more information it provides when it 

occurs. The probability distribution of the events, coupled with the information content of 

every event, yields a random variable whose expected value is equal to the average 

amount of information generated by the distribution. The general formula to compute 

entropy is: 

 

𝐻 = − 𝑓!

!

!!!

log! 𝑓! 

 

where fi is the frequency with which the random variable is observed to assume the i-th 

value. Entropy comes in form of logarithm value, because of the additive property of 

logarithms. To understand this, let us consider this coin-flip example. A single coin flip 

provides a bit of information (the outcome can be either heads or tails with equal 

probability, therefore the two results can be described by using a single bit, 0 or 1) and m 

coin flips provide m bits of information. In general, an event that can lead to n equally 

possible outcomes needs log2(n) bits to be represented. This rule holds true as long as all 

the outcomes are equally probable. 
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If an event occurs more frequently than others, it is less informative, and conversely rarely 

observed events hold more information: the observation of a rarer event has the effect of 

lowering the entropy value under the log2(n) threshold, because the data will not be 

uniformly distributed. Entropy is 0 when only one single outcome is observed (minimum 

dispersion) and 1 when all the outcomes are equally distributed (maximum dispersion). As 

for the coin flip, consider the following table: 

 

	  
Table	  4.	  Frequency	  of	  heads/tails	  in	  10	  coin	  flips. 

 

The entropy of the observed distribution would be computed as follows: H = −0.4 log2(0.4) 

− 0.6 log2(0.6) ≈ −0.4(−1.3) − 0.6(−0.7) = 0.52 + 0.42 = 0.94 bits 

	  

For our case, let T be a transcript (or a gene), and t1…tm its expression levels in m 

different samples. In a RNA-Seq experiment, as discussed before these values are usually 

estimated with normalized FPKM or TPM values. The calculations we present can be 

however performed on any other similar normalized measure. 

 

Let 𝑡 = 𝑡!!
!!!  the overall expression value of T, and 𝑓! = 𝑡! 𝑡. The fi values are the ones 

that can be used to compute H(T), that is, the entropy of the expression of the transcript 

across the m samples. Entropy H(T) will be minimum (zero) when the transcript is 

expressed only in a single sample. The more unbiased the expression is, the more H(T) 

will grow, and will be maximum if the transcript has identical expression values across all 

the samples. Suitable thresholds for H(T) can be then defined to detect genes with a 

“sample specific” expression pattern. 

 

Nevertheless, this methods has two drawbacks. The first is that entropy calculation does 

not take into account the absolute expression levels, but makes use of relative variation 

across samples. In other words, a transcript with FPKM values of zero in all the samples 
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but one, and a very low (<1) FPKM value in only one sample will have entropy zero, and 

result to be more “sample-specific” than transcript with a very high level (e.g. FPKM = 

1000) in one sample, and significantly lower (e.g. FPKM = 1) in the others.	  The second 

drawback comes from the fact that the distribution of FPKM values across the samples is 

compared to background expected values of bi = 1/m. To take into account cases for 

which the distribution of background values is not uniform, relative entropy (or, the 

Kullback-Leibler divergence (Kullback, 1951) between the empirical distribution of the fi 

values and theoretical one of bi, such that 𝑏!!
!!! = 1) can be employed: 

 

RE(T ) = fi logb
fi
bii=1

m

∑  

 

The difference is that relative entropy is zero when fi = bi for every i, and maximum where fi 
= 1 for some i. 

To take expression levels into account, we introduce a “weighted” version of entropy, that 

we will call sample specificity index, where each term is multiplied, instead for the 

respective frequency, for the corresponding expression value ti: 

 

SSI(T ) = ti logb
fi
bii=1

m

∑  

 

This value will be proportional to the value of a G-test (goodness of fit test, or log-likelihood 

ratio test), where the null hypothesis is that the observed values ti result from a random 

distribution with expected frequencies bi: 

 

G(T ) = 2 ti loge
fi
bii=1

m

∑ = 2SSI(T )  

 

The G(T) values are distributed with a chi-square distribution with m – 1 degrees of 

freedom. This fact allows us to associate a p-value with every SSI(T) value, by multiplying 

it by two and using b = e as the base of the logarithm (natural logarithm). The p-value will 

denote the probability of obtaining the ti observed values by chance given a random 

background distribution with frequencies bi = 1/m. . We call this computation the general 

sample specificity test.  
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To assess the overall sample specificity of a single transcript we can assume a uniform 

background distribution with bi = 1/m, but the same framework can be used with any other 

assumption on the theoretical distribution of the expression values, as we show in the 

“Isoform Switch” section. Typical p-value thresholds of 0.01 or 0.05 can be employed to 

single out transcripts with significant sample-specific bias, but since thousands of 

statistical tests are performed, one for each annotated transcript, p-values need to be 

corrected for multiple testing. In this work we employed the Benjamini-Hockberg procedure 

(Benjamini & Hochberg, 1995), ranking the genes or transcripts according to increasing p-

values, and given a significance p-value threshold of a we considered significant all 

transcripts for which 𝐺(𝑇) ≤ !
!
𝛼, where N is the overall number of transcripts and k is the 

ranking of the gene or transcript. 

 

Identifying	  Specific	  Samples	  
	  
The SSI(T) method and its relative p-value are used to indicate if a transcript T shows an 

expression pattern that deviates significantly from a uniform one. The samples for which T 

will show higher specificity will be the ones contributing more to the sum in the SSI(T) 

formula. One solution is to arbitrarily choose a threshold and consider significant all the 

transcripts whose contributions exceed the threshold. In order to avoid the problems 

arising from defining an explicit threshold, we decided to opt for a different strategy: once a 

transcript T has been singled out to be “sample biased”, we compute the SSI(T) and the 

relative p-value again by comparing, for each sample, just two values, i.e. the expression 

value of T in the sample considered and the overall expression of T in the others. Hence, 

the expected values on m samples are now ( !
!
) for the sample considered and (𝑚 −

1)𝑡/𝑚 for the others. We call this computation the single sample specificity test.  

 
All in all, a transcript T that passed the general sample specificity test can be reported to 

be specific for those samples with expression value higher than the average and that in 

the pairwise test just described yield a p-value lower than a threshold 𝛼. Notice, in fact, 

that this test will yield as significant also those transcripts with expression values 

significantly lower than the average in some samples, for which they can be then 

considered to be “avoided”. 
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Detecting	  Sample	  Specific	  Isoform	  Switches	  
 
Let G be a gene, and T1, …, Tn n different alternative transcripts (isoforms) for the gene, 

produced by alternative splicing, alternative poly-adenylation, promoter usage, and so on. 

Sample specific alternative transcripts for G can be detected by computing SSI values and 

the sample specificity tests for each Ti, and by determining whether one or more 

transcripts result to be sample specific for different samples. 

  

One the most interesting evolution of the method would be to define a single index at 

whole gene level, in order to detect significant isoforms switches, that is, significant 

changes in the relative abundance of the isoforms across the samples analyzed. For 

example, consider a gene yielding two different isoforms, both showing equal level of 

expression (l) in all the samples, with the exception of two different samples in which either 

one is expressed al level 2l. It is very likely that none of the two transcripts will show a 

sample bias large enough to be considered sample-specific, but what is more “sample 

specific” in this particular case is instead the combination of the isoforms, that is, the 

pattern of on-off-transcription observed in the two samples. 

The idea is to estimate the expected frequency of usage of each isoform from the data 

itself, and compare the actual observed frequency in each sample with the expected 

frequency derived from all the other samples. If we represent the expression level of a 

gene with n alternative transcripts across m samples with a n x m matrix, then sample 

specific transcripts were singled out by performing a G-test on the rows of the matrix, while 

sample specific isoform switches are detected by G-tests on the columns of the matrix. 

 

Let m be the number of samples, and let k be the sample for which we want to compute 

the expected frequencies. Let ti1,…,tim be the FPKM values for transcript Ti measured 

across the samples. Let 𝑡!! = 𝑡!"!
!!!  be the sum of the FPKM values for Ti across all the 

samples different from k. The overall frequency of usage for transcript Ti in all the samples 

different from k can be thus defined by dividing 𝑡!!   by the overall expression value of all the 

transcripts of gene G in all the samples different from k: 

𝑓!! =
𝑡!!

𝑡!!!
!!!
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Likewise, we compute the sample frequency of usage for transcript Ti in each sample k = 

1,…,m, dividing its FPKM value by the overall FPKM of G in the sample: 

 

𝑓!" =
𝑡!"
𝑡!"!

!!!
 

 

Therefore, a gene with no significant isoform switch across the samples will have a 

uniform frequency of usage for each alternative transcript. In other words, for each Ti the fik 

values in the different samples will be close to the expected 𝑓!! value. Vice versa, let us 

consider a gene with two alternative transcripts, expressing one in half of the tissues and 

the other in the other half, at the same FPKM value. The overall frequency of usage will be 

½ for both the transcripts, but in each sample there will be one with frequency 1 and the 

other with frequency 0. Starting from these values, we can define the isoform switch score 

of the gene in each sample k: 

 

𝐼𝑆 𝐺! = 𝑡!"
!

!!!
log!

!!"
!!
!  

 

 

Once again, the IS values are distributed with a chi-square distribution, this time with (n-1) 

degrees of freedom where n is the number of alternative transcripts for gene G. Suitable 

threshold for p-values can be then set in order to detect tissues in which genes show a 

significant isoform switch with respect to the others. For the gene across all samples, we 

can also define 𝐼𝑆 𝐺 = 2 𝐼𝑆 𝐺!!
!!! , in order to rank genes according to the variability of 

isoform usage across all samples. 

 

Identifying	  Sample	  Specific	  Splicing	  Events	  
 
The overall strategy and measures we just defined for detecting sample specific transcripts 

can be also applied at the whole gene level (by applying them to the sum of the 

expression values of all the alternative transcripts of the gene in each sample), or vice 

versa for each single alternative splicing event characterizing the gene. Since an 

alternative splicing event results in the choice on whether including or not a given fragment 
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of the primary transcripts in the mature ones, the SSI and G-test can be computed for the 

expression values of all the transcripts that include a given fragment, in order to determine 

if the fragment is included in a “sample specific” way. For example, in case of a cassette 

exon, we sum the expression values of all the transcripts that include the exon as the 

overall “expression value” of the exon across the different samples, and then derive the 

SSI value and corresponding p-value for the exon starting from these values. This strategy 

permits to identify which alternative exons or splicings which are included in tissue specific 

transcripts.  

 

However, we can also identify sample specific switches at the detail of single splicing 

events, by modifying accordingly the computation of the “isoform switch” score. For 

example, let e be a cassette exon of gene G and k one of the samples. We want to 

determine whether exon e is included in the transcripts produced in sample k with a 

frequency significantly different from the other samples. We first sum the FPKM values in 

all the samples but k of the transcripts that include e. Let 𝑡!"!  be this value. Then, we sum 

the values of all the transcripts of G in all the samples with the exception of k. Let 𝑡!"#!  be 

this value. Then, the expected frequency of inclusion for exon e in sample k will be given 

by: 

𝑓 𝑒, 𝑘 =
𝑡!"!

𝑡!"#!  

 

Then, let tin(e,k)  the sum of the expression values in sample k of all the transcripts that 

include exon e, and G(k) the overall expression value of gene G in sample k. We define 

then tout(e,k) = G(k) -   tin(e,k). Clearly, the expected expression value for the transcripts 

that include e will be f(e,k)G(k), and (1-f(e,k))G(k) for those that do not include e. 

Therefore, we can compute a exon specificity score for e in sample k, denoting how much 

specific for sample k is its inclusion in mature transcripts, by comparing the observed 

values to the expected ones: 

 

𝐸𝑆𝑆 𝑒, 𝑘 = 𝑡!" 𝑘, 𝑒 ln
𝑡!" 𝑒, 𝑘

𝑓(𝑒, 𝑘)𝐺(𝑘)+ 𝑡!"#(𝑘, 𝑒) ln
𝑡!"#(𝑒, 𝑘)

1− 𝑓 𝑒, 𝑘 𝐺(𝑘)
 

 

 Once again, the value 2EES(e,k) follows a chi-square distribution, this time with one 

degree of freedom. Samples for which the corresponding p-values are below a given 
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threshold (e.g. 0.05 or 0.01, corrected for multiple testing) are in turn those where there is 

a significant difference, or switch, in the inclusion/excision of the exon with respect the 

other samples. 

 

 

Using	  replicate	  experiments	  
 

In RNA-Seq analyses, it is common practice nowadays to perform biological replicates, 

that is, sequence more than once each sample in order to obtain more robust results less 

affected by experimental noise. The significance measures we just introduced can easily 

accommodate this point, by simply treating each replicate as a separate sample by itself.  

 

Consider for example, as in the results we present in the next section, an analysis 

performed on six samples. Suppose we have only one replicate per sample, and a 

transcript has FPKM value of 10 in one sample and 1 in all the others. Computing the 

sample specificity score will yield for the transcript a p-value of 0.002, since the ten-fold 

increase of expression in one sample is attenuated by the overall low expression. In turn, 

the transcript might or might not be considered significant according to the correction for 

multiple testing employed. But, if we had another replicate for each tissue, with values very 

close to the first one, the overall p-value for the transcript will be approximately 0.0002, 

that is, one order of magnitude lower. With three replicates, once again with very close 

values, the p-value will be 5x10-6, and so on. The overall effect is that the more replicates 

producing consistent FPKM values are available for each sample, the more robust the 

FPKM estimates are, and this in turn makes more significant the difference from the 

uniform background distribution, and all the different replicates for the sample(s) for which 

a transcript is specific will turn out to be significant.  

 
One advantage of the measures we introduced is thus that they can be applied by 

processing the data keeping the replicates separate, without the need to computing mean 

or standard deviation values. In other words, we can apply the specificity measures 

defined by considering each replicate as a separate “sample”. Then, a transcript will be 

considered to be “sample specific” if the statistical tests consider it to be significant in all 

(or, a majority of) the replicates of a given sample. The only difference is that in the 

statistical tests determining whether a transcript can be considered to be specific for a 
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given sample, the expected value will be computed without taking into account the 

expression values of the other replicates. Another useful side effect is that in this way 

transcript producing inconsistent measures can be singled out, that is, those transcripts or 

genes resulting to be specific only for a subset of the replicates of a given sample can be 

identified and excluded from further analyses since their variability can be considered too 

high. 

 

Identification	  of	  tissue-‐specific	  isoforms	  reveals	  widespread	  individual-‐specific	  
expression	  patterns	  
 
The same set of 54 samples, that is, derived from six tissues of three different individuals, 

employed in the mtDNA/RNA study was used to produce these results. For the 

quantification of expression levels each sample was processed the sequences using the 

Rsem software package (B. Li & Dewey, 2011), using the UCSC human gene annotation 

(hg19, version 2013-06-14) as a reference. We chose the latter because we consider it to 

be the one to provide the best compromise between reliability of the transcripts included 

(the RefSeq collection integrated with additional full length RNAs from Genbank) and 

alternative transcript abundance amongst the different alternatives available (RefSeq, 

ENSEMBL, GENCODE). The annotation comprises 78,289 transcripts assigned to 28,812 

different genes. 

We processed the data computing the general sample specificity index and corresponding 

p-values first on each gene (on the sum of the FPKM values of its transcripts), and then for 

each single transcript, keeping each replicate separate from the others as described in the 

previous section. That is, the test was performed over 54 samples.  

 

At the gene level, by applying the general sample specificity test with a Benjamini-

Hockberg corrected p-value threshold of 0.01, 11,476 genes of the 28,812 available in the 

annotation (about 40%) showed an expression pattern with a significant deviation from the 

uniform distribution. If restricted to the 23,681 genes with transcript level greater than zero 

in at least one sample, the percentage rose to almost half of the genes (FPKM > 1 in at 

least one sample: 18,674; FPKM > 5 in at least one sample: 14,365). 
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Table	  5.	  	  Number	  of	  genes	  with	  Max	  FPKM	  >	  threshold	  in	  each	  tissue.	  

	  
We deemed a gene that passed this initial test to be specific for a given individual in a 

given tissue if it passed the single sample specificity test, with an expression value higher 

than the mean across the samples, in all the three replicates for the sample itself with a p-

value threshold of 0.05, and to be in general “tissue specific” if specific for the tissue in at 

least one individual. As shown in Table 6, the tissue with the highest number of genes 

showing a significant bias towards the tissue in at least one individual was brain, with more 

than 5000 genes, followed by lung (about 4000), kidney (3000), and liver (about 2000). 

Quite surprisingly, however, in each tissue only a fraction of the genes resulted to be 

significantly biased for the tissue all the three individuals, that is, when significantly over-

expressed in a given tissue resulting to be so for all the three individuals and all the nine 

replicates available.  

In other words, the expression of the gene within the same tissue showed changes among 

the three individuals of such a magnitude that according to our test the gene can be 

considered to be over-expressed in the tissue only in one or two of them. It can be seen 

also how the trend towards individual specificity changes according to the tissue, with 

brain having most of the tissue specific genes in turn specific in all the three individuals, 

while vice versa heart has the large majority of genes specific for only one individual. 

In order to determine whether the criterion we adopted was too stringent, we considered a 

transcript to be individual specific in a given tissue if it passed the single sample specificity 

test in at least one replicate out of three. Individual-specific expression remained however 

a widespread phenomenon, with only marginal differences from results obtained with the 

more stringent criterion (Table 6). 
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Table	  6.	  Number	  of	  tissue-‐specific	  genes	  in	  the	  six	  tissues	  detected	  in	  all	  three,	  two	  and	  one	  individual,	  in	  the	  case	  all	  
three	  replicates	  (3/3,	  upper)	  or	  at	  least	  1	  replicate	  (1/3	  lower)	  	  passed	  the	  specificity	  test.	  	  

 

 

Thus, a large fraction of genes showed an expression pattern significantly biased towards 

only one sample of only one individual, and in general about one third of the genes that 

could be considered to be specific for one or more of the tissues studied could be 

considered to be so in only one individual. Remarkably, with the first criterion (three 

replicates out of three significant) we obtained that 2007 genes were to be considered 

purely “individual specific”; that is, with expression significantly biased towards one or 

more tissues but in only one individual. Gene DDX3Y (Figure 18) is a typical example of 

the complex mix of individual- and tissue-specific expression emerging from the data, and 

how a gene can result to be tissue-specific for only one individual. It has an expression 

pattern clearly biased towards individual S13, to the point to be considered tissue specific 

in kidney, lung and brain only for S13, since the expression values in the latter have the 

effect of producing a higher mean value across the samples, and hence the gene fails to 

pass the test in the other two individuals. On the other hand, if only S7 and S12 had been 

considered, the gene would have resulted to be kidney and lung specific in both, but not 

brain specific. SNHG8 (Figure 19) is over-expressed in individual S7, and reported as 
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“tissue-specific” in four tissues (kidney, liver, lung, and muscle). If S7 had not been 

included, the gene would have been “specific” for brain and not for muscle. 

These examples clearly show how the “tissue-specificity” of a gene is a concept very far 

from being straightforward, and can be significantly influenced by the provenience of the 

samples studied, a factor often overlooked. Indeed, like in the two examples just shown, 

almost 300 genes out of 2007 had individual specificity as a key feature stronger than 

tissue specificity, that is, resulted to be specific for more than one tissue in only one 

individual. 

 

 
Figure	  18.	  Expression	  levels	  of	  DDX3Y	  gene	  in	  the	  various	  samples,	  showing	  great	  variability	  in	  both	  individuals	  and	  
tissues.	  	  
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Figure	  19.	  Expression	  levels	  of	  SNHG8	  gene	  in	  the	  various	  samples,	  showing	  great	  variability	  in	  both	  individuals	  and	  
tissues.	  	  

 

 

At the transcript level, by applying the general sample specificity test with a Benjamini-

Hockberg corrected p-value threshold of 0.01, we obtained 15,931 transcripts of the 

78,289 considered (20%) showed a significant deviation from the uniform distribution. If 

compared to the 68,557 with an expression value greater than zero in at least one sample 

the percentage rose to 23%, and to 35% if only transcripts with an expression FPKM value 

of at least one in at least one of the samples were considered (45,212 in all). At the gene 

level, results are consistent with the previous ones, with 11,118 genes out of 28,812 that 

had at least one transcript with expression significantly different from the uniform 

distribution across the samples studied. 

 

Once again we deemed a transcript to be specific for a given individual in a given tissue if 

it passed the single sample specificity test in all the three replicates for the sample itself 

with a p-value threshold of 0.05, and to be tissue specific if specific for the tissue in at least 

one individual. Results shown in Table 7 quite obviously confirm the same trend observed 

at the gene level, with however an increase of the preponderance of transcripts specific for 
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one or two individuals, confirming the complex expression patterns like the examples 

shown for the genes.  

 

 
Table	  7.	  Number	  of	  tissue	  specific	  transcripts	  in	  the	  six	  tissues	  detected	  in	  all	  three,	  two	  and	  one	  individual,	  in	  the	  
case	  all	  three	  replicates	  (3/3,	  upper)	  or	  at	  least	  1	  replicate	  (1/3,	  lower)	  passed	  the	  specificity	  test.	  

	  
The results of the test at the gene level and at the transcript level were obviously identical 

for all those genes with only one annotated transcript. Those with more than one 

alternative transcript could instead be split into different categories, summarized as 

follows: 

 

a) All the annotated transcripts for the gene had the same sample-specificity of the 

gene itself. 

b) Only some of the annotated transcripts for the gene had the same sample-

specificity of the gene itself, while others did not present any significant bias. 

c) The alternative transcripts combined together had the same specificity of the gene, 

but no transcript has exactly the same specificity of the gene. 
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d) A set of alternative transcripts had combined the same specificity of the gene, but 

further transcripts resulted to be specific for additional tissues. 

e) The gene did not result sample-specific in any way according to the test, but some 

of its transcripts were.  

f) The gene resulted to be sample-specific, but none of its transcripts, taken 

singularly, was. 

 

 

Genes with all transcripts with the same tissue specificity (group a) were just a few 

hundreds, mainly because the majority had some of the alternative transcripts expressed 

at very low levels throughout all the samples investigated. This fact yielded the larger 

number of genes in group (b), in all comprising more than 6,000 out of the 9,083 

significant genes with at least two alternative transcripts. Some of these genes 

nevertheless have one or more transcripts that are not sample specific, but with 

expression values high enough throughout the samples. The latter might thus be 

considered to be expressing both “housekeeping” and “tissue-specific” isoforms, as shown 

in the example of Figure 20. 

 

 

 
Figure	  20.	  MARCH2	  isoforms	  expression	  levels	  in	  the	  six	  tissues.	   
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MARCH2 is specific for liver at the gene level, has a transcript specific for liver and kidney 

(blue), while the green and red isoforms do not pass the test and have an uniform 

expression level throughout the samples high enough to be considered to be 

housekeeping. Hence the gene can be considered to express both tissue specific and 

housekeeping isoforms (plot of the average transcript level in each tissue across all the 

replicates). 

 

 
Figure	  21.	  BCCIP	  isoforms	  expression	  levels	  in	  the	  six	  tissues. 

 

 

BCCIP (Figure 21) has the main isoform (blue) that can be clearly considered 

housekeeping, with a minor isoform (red) over-expressed in kidney and kidney specific. 
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Figure	  22.	  CDK13	  isoforms	  expression	  levels	  in	  the	  six	  tissues.  

 

CDK13 (Figure 22) has a brain specific transcript (red) and at least another one (blue) that 

does not pass the significance test and can be considered housekeeping. 

 

While we can decide with our test whether a gene or transcript has an expression pattern 

significantly biased towards one or more samples, it is less straightforward to decide a 

criterion taking into account both expression values and their distribution across the 

samples to consider it “housekeeping”. To generalize the above examples we might define 

a transcript to be housekeeping with a quite stringent criterion: the p-value returned from 

the specificity test across the sample had to be greater than 0.1 (so to avoid “near misses”, 

that is, transcripts with biased expression patterns and p-values close to the threshold), 

and to be transcribed with FPKM greater than one in all the samples studied. In this way, a 

small, but remarkable group of about 200 genes then resulted to express both tissue 

specific and housekeeping isoforms, about 25% of which had the major isoform (the one 

with highest mean FPKM value) to be housekeeping. 

 

Group (c) comprises about 1,500 genes which express different specific isoforms in 

different tissues, each one driving the specificity of the gene towards one or more of the 

samples. 



	  

	  64	  

  

 
Figure	  23.	  MYO1B	  isoforms	  expression	  levels	  in	  the	  six	  tissues.  

 

 

Group (d) is comprised by a sizable number of 803 genes with one or more major tissue 

specific isoforms, that drive the overall tissue specificity of the gene, but that however 

have also minor isoforms specific for additional tissues, that cannot be identified by 

considering expression at the whole gene level. That is, the minor isoforms do not 

contribute enough to the overall expression of the gene to make it tissue-specific as a 

whole (as in Figure 23). 

 

Group (e) is comprised of further 215 genes, that have an expression pattern similar to the 

genes with major housekeeping isoforms detected before that express also minor tissue-

specific ones. But, in this case the group includes genes that show an overall uniform 

expression pattern across the samples, that however changes significantly the abundance 

of the relative transcripts, which taken singularly result to be tissue specific. This latter 

category of genes can be also nicely captured by applying the isoform switch test, that we 

will discuss later on.  
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Figure	  24.	  Comparision	  between	  GFPT1	  isoforms	  levels	  and	  their	  expression	  values	  sum. 

 

The overall expression of gene GFPT1 (green in Figure 24) does not change enough to 

make it specific for any tissue. The red transcript, however, is clearly heart- and muscle-

specific. Notice also how the relative abundance of the blue and red transcripts switches 

significantly in these two tissues.  

 

Finally, group (f) contains genes for which our results might seem to be contradictory, that 

is, tissue specific genes with no tissue specific transcripts. Rather, this can be seen as an 

additional feature of our method, that by considering simultaneously expression levels and 

bias in the distribution across the samples is able to identify single tissue-specific 

transcripts as seen before and, vice versa, genes for which the tissue specificity can be 

seen as a feature of the gene taken as a whole together with all its transcripts.  

 

A non negligible total of 267 genes and 946 transcripts could not be considered to be 

specific for any sample after the single sample specificity test, because, although resulting 

to be significantly diverging from the uniform distribution in the general test, their variability 

within replicates resulted to be too high and did not pass the p-value threshold we set at 

the second step in all the three replicates in any of the samples. Unsurprisingly, among 

these we found the small/micro/tRNA genes, included in the UCSC annotation we 
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employed, but for which the measures obtained from a total RNA-Seq experiment like the 

one we performed cannot be considered reliable, with a high variance of the estimated 

levels across the replicates. Hence, processing the data keeping replicates separate has 

also the side effect of identifying those genes or RNAs which should be eliminated from 

further downstream analyses because yielded inconsistent expression estimates.  

 

All in all, one of the most striking results was the widespread presence of complex patterns 

of mixed individual- and/or tissue-biased gene and transcript expression. A large fraction 

of tissue specific genes and transcripts showed an expression pattern significantly biased 

towards samples coming from one or two individuals, and in general about one third of the 

transcripts that could be considered to be specific for one or more of the tissues studied 

could be considered to be so in only one individual. We obtained that 2007 genes and 

4944 transcripts were to be considered “individual-specific”, that is, with expression biased 

towards usually one, but in some cases two or more tissues coming from the same 

individual. In order to further investigate the extent of individual specific expression and its 

impact on our method, and at the same time on the usual assessments of tissue/sample 

specificity performed by averaging expression values across different samples, we 

reanalyzed the data in two more ways. First, we recomputed the general and sample 

specificity tests by considering the expression of a transcript in one tissue as the average 

of the expression values across the nine different samples and replicates of each tissue.   

 

Results showed a lower number (9257) transcripts (11% of the total) passing the general 

sample specificity test with Benjamini-Hockberg corrected p-value threshold of 0.01 across 

the six tissues, that hence can be considered to be in general tissue-specific. The single 

sample specificity test revealed most of them (85%) to be specific for one tissue, 12% for 

two, and the rest (< 3%) for three or four tissues. As expected, all the transcripts that 

passed these two tests had been considered to significant also in the test performed 

keeping separate all the 54 samples and replicates. The lower number of transcripts 

detected to be significant by using FPKM averages was due to the fact that, as discussed 

in the previous section, when averaging over replicates we need in general transcripts to 

have higher expression values to be considered significantly tissue-specific. And, all 

variability among individuals is flattened by average values, that often were lowered and 

resulted to be non-significant. Thus, by processing all the samples and replicates 

separately from one another our method is able to highlight the details of cases in which 
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genes and/or transcripts show a clear tissue specificity, but are at the same time highly 

variable across individuals.  

 

To shed further light on the variability across individuals, we analyzed separately the nine 

samples coming from the same tissue, in order to detect once again whether there were 

significant variation across the individuals, but this time comparing only samples coming 

from the same tissue. We considered a transcript to be individual-specific if the test was 

passed in all the three replicates for the same individual. Results confirmed the 

widespread individual specific expression patterns detected in the first analysis performed 

across all the samples. We processed with the general sample specificity test the nine 

samples of each tissue with a Benjamini-Hockberg corrected p-value threshold of 0.01.  

 

 

	  
Figure	  25.	  Triax	  plot	  showing	  the	  variability	  amng	  tissue	  samples,	  the	  color	  highlighted	  dots	  represent	  statistically	  
significant	  differentially	  expressed	  genes. 

 

 

 

The results are summarized in Figure 25, built by splitting the overall expression value of 

each transcript in each tissue into the contributions of each of the three individuals, and 
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highlighting the transcripts yielding a significant variation in the samples in our test. It can 

be seen how the plot, in which each point corresponds to a transcript with FPKM > 1 in at 

least one individual, is clearly polarized in all the tissues towards the edges or the vertices 

of the triangle, instead of having all the points grouped in the middle as expected by 

samples with no variability.  Overall, the test returned 2115 individual specific transcripts in 

brain, belonging to 1832 different genes, 994 (776 genes) in heart, 1365 (1096 genes) in 

kidney, 1337 (1060 genes) in liver, 1568 (1219 genes) in lung, and 658 (541 genes) in 

muscle. Thus, a significant fraction of the transcripts that were considered to be individual 

specific for the test across all the samples available remained so if the comparison was 

restricted to only those samples coming from the same tissue. In Figure 25, transcripts 

specific for one individual tend to fall in the plot next to one of the triangle vertices, but it 

can be clearly seen how a sizable number of transcripts, falling in between two vertices 

along the edge connecting them, are specific for two individuals out of three, or vice versa, 

is under-expressed in one individual. The polarity of the plot changes according to the 

tissues: in brain we can see a clear separation between S13 and S7/S12, that is, there 

seem to be transcripts both over- and under-expressed in S13 with respect to the other 

two individuals. Kidney and lung show a similar pattern, but in this case it is S12 differing 

from S7 and S13. Liver is similar to the latter two, but it is less polarized (fewer genes fall 

close to vertices or sides of the triangle) and seems to show a higher number of transcripts 

specific in each of the three individuals. Muscle has the least polarized expression pattern, 

with a lower number of transcripts with individual-specific expression towards S7 and S13. 

Finally, heart has a large number of transcripts over-expressed only in S7, in line with the 

observation that most of the heart-specific transcripts are so in only one individual.  

 

Interestingly, not all the transcripts showing individual bias in a tissue belonged in turn to 

genes that were reported to have transcripts specific for the tissue itself. In other words, in 

brain we had 1689 genes with at least one transcript with individual biased expression, but 

only 1448 had transcripts considered brain specific in at least one individual by the general 

test (Table 8). The tissue with the highest number of individual biased genes not tissue 

specific was heart, where less than half of the 844 genes with individual specific transcripts 

was heart-specific.  
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Table	   8.	   Number	   of	   genes	   with	   individual-‐specific	   and	   tissue-‐specific	   isoforms,	   and	   with	   individual	   isoforms	  
switches. 

 

Another interesting feature that can be gathered from the table is that individual specific 

isoform switch (that is, a gene has to have at least two isoforms specific for different 

individuals) resulted to be a rare phenomenon, restricted to a few cases. That is, only a 

very limited subset of genes had alternative transcripts specific for different individuals, as 

shown for example for gene MPP6 in brain (brain specific) that shows a clear main isoform 

switch in the three individuals (Figure 26). MORF4L1, although not muscle specific, shows 

another clear switch between the main isoform expressed by S12, against that of S7 and 

S13 (Figure 27). Notice that in both cases the overall expression level of the gene is 

balanced among the individuals. 
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Figure	  26.	  MPP6	  expression	  levels	  in	  the	  three	  individuals	  (Brain). 

 
Figure	  27.	  MORF4L1	  expression	  levels	  in	  the	  three	  individuals	  (Muscle). 

 

 

On the other hand, in the different tissues we noticed that genes with individual bias 

tended to belong to the same gene families, with individual specificity that seemed to be 

complementary. An example is the expression of synaptotagmin genes in brain in Figure 

28. We can see in the plot, showing the split among the individuals of the overall 
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expression of the genes, that while the cumulative expression of the members of the 

family is balanced among the three individuals (rightmost column), there are significant 

biases in most of the genes, that tend to be split between those specific for S7 and 12 (first 

5-6 genes to the left) against those specific for 13 (last four genes to the right). In other 

words, the generation of “individual specific isoforms” is due to individual specific splicing 

to some extent, but more remarkably also with the individual specific expression of 

different paralogous genes of the same family (Figure 28). 

 

 
Figure	  28.	  Expression	  of	  Synaptotagmin	  gene	  family	  in	  brain. 

 

 

All in all, also this second analysis confirmed that transcripts that were detected to be as 

sample specific in the general analysis can be split into those that can be considered to be 

tissue-specific across the different individuals, those whose tissue specificity derives from 

individual specificity, and, finally, a significant subset of genes and transcripts resulting to 

have an individual specific bias in one or more tissues, but without any significant tissue 

specificity. 
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Then, we wanted to characterize genes and transcripts showing a tissue specific and/or 

individual specific expression patterns in the different tissues. For this analysis, we 

employed the functional annotation enrichment tools available at DAVID (Dennis et al., 

2003), which includes and evaluates for a set of genes enrichment for Gene Ontology 

categories, annotated protein domains, pathways, and other annotations, performing a 

clustering of annotations that can be referred to similar functional categories.  

Unsurprisingly, all the tissue-specific sets of genes returned by the initial sample specificity 

test across the 54 samples were enriched for functional annotations consistent with the 

respective tissues, and had their tissue specificity confirmed by the corresponding data 

available in DAVID (UP_TISSUE enrichment analysis).  

A more interesting category was instead the set of genes with different splicing isoforms 

resulting to be specific for different tissues. Functional enrichment analysis returned “actin 

binding” and “cytoskeleton” to be the most relevant functional and localization annotations. 

This interesting finding supports the plausible correlation between cell/tissue type and 

cytoskeleton specificity mediated by alternative splicing differential regulation.  

 

Switching to individual-specific gene sets, we started from brain, that showed the highest 

degree of individual-specific expression. Virtually the same categories, all related to 

neurons (synapse, axon, etc.), were found to be enriched in all the individuals. This is 

clearly the result of having genes of the same family with the same functional annotation 

differentially expressed in the individuals. Figure 29 shows the dispersion across the 

different individuals of the expression of transcripts belonging to genes with cellular 

component annotation “synapse” (light blue colored dots are transcripts passing the test, 

hence individual-specific). The plot clearly shows that the three individuals express 

different sub-classes of genes and isoforms associated with synapses, with the greater 

difference between S7/S12 and S13. 

 

Another interesting case were genes whose transcripts over-expressed in individual S7, 

for which the functional analysis reported categories like ribosomal proteins, 

mitochondrion, and respiratory chain (Bonferroni corrected p-value < 10-50), but also 

muscle contraction (p-value >10-15), heart contraction (>10-7), dilated cardiomyophathy 

(KEGG pathway enrichment >10-5). Notice that most of the genes belonging to the first 

three categories did not result to be heart-specific.  
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Figure	  29.	  Dispersion across the different individuals of the expression of transcripts belonging to genes with 
cellular component annotation “synapse”.  

 

All in all, results point to the fact that in more than half of the cases tissue specific gene 

expression can be associated with significant variation throughout different individuals as 

well, while individual-specific alternative transcript and splicing usage was much less 

restricted. While in general tissue specific bias can be anyway recovered by pooling 

together all the samples, future transcriptome analyses should thus consider this very 

important aspect, and significantly different results can be obtained according to the 

source of the RNA samples analyzed and the conditions in which the sampling was 

performed. 

 

Tissue-‐specific	  Splicing	  and	  Isoform	  Switches	  
 
We then better characterized genes with significant isoform switches across different 

samples. For sake of simplicity we present here the results obtained by pooling together 

all the samples and replicates for the same tissue and using in the analysis the resulting 

average FPKM value. 

 

We applied the “isoform switch test” to the 15,877 genes comprising the UCSC gene 

annotation with at least two alternative transcripts. The result was that 2,328 genes 

switched significantly the relative abundance of their alternative transcripts in a sample-

specific way according to our measure, by using a Benjamini-Hockberg corrected p-value 

threshold of 0.05. That is, produced alternative transcripts with significantly different tissue 

specificity. Remarkably 387 of these genes did not have any transcript resulting to be 



	  

	  74	  

tissue-specific according to the general sample specificity test. Thus, the isoform switch 

test is able to capture finer cases, in which the “isoform switch” itself can be considered to 

be significant while the overall expression of the gene has little or no tissue specificity. As 

for tissue specific isoforms, also for this measure brain showed to be the sample with 

higher transcriptome variability, with 1211 genes with a significant isoform switch in brain 

compared to the other tissues, while the others had a comparable number (about 300-400) 

genes with a tissue specific switch.  

 

 

For example, gene MAP3K4 (Figure 30) did not result to be tissue specific, but resulted to 

have a significant isoform switch in brain, with a change of major isoform.  

 

	  
Figure	  30.	  Expression	  of	  MAP3K4	  isoforms	  across	  the	  six	  tissues.	   

 

Gene SH3PXD2A (Figure 31) is brain specific, where it expresses a different main isoform 

in brain (light blue) compared to the other tissues where the main isoform becomes the red 

one, while, the relative abundance of the purple and orange secondary isoforms does not 

show great difference across tissues.  
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Figure	  31.	  Expression	  of	  SH3PXD2A	  isoforms	  across	  the	  six	  tissues.	  

	  
Gene DYM (Figure 32) is brain specific, mainly due to a secondary isoform expressed 

uniquely in brain. 

 

	  
Figure	  32.	  Expression	  of	  DYM	  isoforms	  across	  the	  six	  tissues. 
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Gene EML1 (Figure 33) is lung specific according to the general test, but has a completely 

different main isoform in brain, while the relative abundance of the others seems to remain 

unchanged. 

 

	  
Figure	  33.	  Expression	  of	  EML1	  isoforms	  across	  the	  six	  tissues. 

 

Gene WNK1 (Figure 34) presents complex changes of isoform abundance, changing 

relative abundance of three main isoforms across all the tissues investigated.  
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Figure	  34.	  Expression	  of	  WNK1	  isoforms	  across	  the	  six	  tissues. 

 

Gene CLASP1 (Figure 35) shows three main isoforms, with relative abundance changing 

according to the tissue. Note that none of its transcripts alone passed the sample 

specificity test, while according to their overall expression the gene was reported as brain 

specific. 
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Figure	  35.	  Expression	  of	  CLASP1	  isoforms	  across	  the	  six	  tissues. 

 

 

Finally, we computed the “exon specificity score” and the corresponding test on cassette 

exons, resulting by the comparison of the transcripts in the UCSC gene annotations and 

annotated as such in the UCSC genome browser track “Alternative Splicing Events”. A 

total number of 4339 exons out of the 28351 that showed evidence of expression in at 

least one tissue resulted to be significant using a Benjamini-Hockberg corrected threshold 

of 0.05. Notice that the test does not evaluates tissue specificity per se, that is, not only if 

an exon belongs to a tissue-specific transcript, but also if there is a significant on/off switch 

of exon inclusion in different samples: in other words, a cassette exon is considered to be 

significant “switched” by our test if the same gene produces isoforms containing the exon 

with tissue specificity significantly different from those isoforms that do not include the 

exon. For example, in Figure 36, gene CLTA contains two cassette exons, which are 

clearly included only in brain, muscle, and marginally in kidney, yielding a significant 

switch in exon inclusion with respect to heart, lung, and liver. The topmost transcript, 

including both exons is brain-specific in all three individuals. At lower transcript levels, 

however, the inclusion of both exons is clearly specific also for kidney, with a significant 

switch with respect to the other tissues. 
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Figure	  36.	  	  CLTA	  isoforms	  (from	  UCSC	  ).	  The	  cassette-‐exon	  isoforms	  show	  a	  clear	  switch,	  being	  only	  expressed	  in	  
brain,	  muscle	  and	  kidney,	  while	  the	  other	  isoforms	  show	  more	  or	  less	  the	  same	  levels	  in	  all	  the	  six	  tissues. 

 
 
 
All in all, there are several examples showing how applying simultaneously all the different 

measures we introduced can provide a comprehensive view of the transcript/isoform 

complexity of a gene across different samples. In the examples we have shown they have 

been applied to the characterization of the variability of gene expression across different 

tissues and individuals. Other straightforward applications could be the analysis of tmle 

series experiments, where expression levels are estimated at different time points, e.g. 

developmental stages.   

Concerning the data employed in this work, the next step will be the association of exome 

sequencing data to RNA-Seq data, in order to assess the impact of individual sequence 

variations to the individual specificity of gene expression, if any. And, we plan to take 

advantage of exome data in order to estimate the allele specificity of gene expression in 

the individuals. That is, heterozygous sequence variations identified by exome sequencing 

will be employed to assign transcripts to the corresponding alleles, to estimate the relative 

allele-specific abundance, and finally to assess whether the latter presents significant 

variation across the tissues and individuals for which data are available. 
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ABSTRACT

The regulation of transcription of eukaryotic genes
is a very complex process, which involves inter-
actions between transcription factors (TFs) and
DNA, as well as other epigenetic factors like
histone modifications, DNA methylation, and so on,
which nowadays can be studied and characterized
with techniques like ChIP-Seq. Cscan is a web
resource that includes a large collection of
genome-wide ChIP-Seq experiments performed on
TFs, histone modifications, RNA polymerases and
others. Enriched peak regions from the ChIP-Seq
experiments are crossed with the genomic coordin-
ates of a set of input genes, to identify which of
the experiments present a statistically significant
number of peaks within the input genes’ loci. The
input can be a cluster of co-expressed genes, or
any other set of genes sharing a common regulatory
profile. Users can thus single out which TFs are
likely to be common regulators of the genes, and
their respective correlations. Also, by examining
results on promoter activation, transcription,
histone modifications, polymerase binding and
so on, users can investigate the effect of the TFs
(activation or repression of transcription) as well
as of the cell or tissue specificity of the genes’ regu-
lation and expression. The web interface is free for
use, and there is no login requirement. Available at:
http://www.beaconlab.it/cscan.

INTRODUCTION

The regulation of eukaryotic gene transcription is a very
complex process, which depends on interactions between
transcription factors (TFs) and DNA, as well as on

chromatin structure and other epigenetic factors such as
histone modifications, DNA methylation and so on.
Research in this field has witnessed a major leap
forward with the introduction of techniques like
Chromatin Immunoprecipitation (ChIP) (1), which,
followed by the employment of genome tiling oligonucleo-
tide arrays [ChIP on Chip (2)] or next-generation
sequencing [ChIP-Seq (3)], permits to build genome-wide
maps of TF binding, histone modifications or any other
DNA interacting protein involved in transcription
regulation. ChIP-Seq has rapidly become the method of
choice for research in this field, given its higher resolution
with respect to ChIP on Chip, and the constantly
decreasing cost of next-generation sequencing experi-
ments. As a consequence, today genomic resources like
the UCSC Genome Browser (4) or dedicated databases
like hmChip (5) make available for retrieval the genomic
maps of hundreds of TFs, as well as of histone modifica-
tions, PolII and PolIII binding, and so on, in several
different cell lines. Thus, starting from a gene, its
putative regulators as well as epigenetic information
associated with it can be easily retrieved vice versa, differ-
ent ChIP-Seq experiments can be correlated with one
another by comparing the distribution of the sequence
reads of each one (6) and, once the list of genomic
binding regions for a TF is available, the target genes
it is likely to regulate can be easily singled out by using
tools like GREAT (7).

On the other hand, a very common problem that
researchers have to face is, given a set of genes showing
similar expression patterns, to find out which common
regulators they share, responsible for the expression
observed. This type of analysis is often performed by
finding similar and over-represented sequence elements,
for example in promoter sequences, either by using de
novo motif finding tools (8) or descriptors of the binding
specificity of TFs (9,10). While useful in many cases, these
approaches suffer from several limitations: the binding
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specificity of many TFs is as yet unknown or not well
characterized; different TFs have very similar binding
sites, making difficult, given a sequence motif, to assess
which TF actually could bind it; some key regulators do
not bind DNA directly, but act as co-factors with TFs;
sequence motifs are often weakly conserved, and hard
to discriminate against random similarities; sequence
analysis tools usually ignore chromatin structure and
DNA accessibility, usually resulting in an ‘over-
prediction’ of sequence motifs.

The web tool we present, named Cscan, is based on
a large collection of ChIP-Seq experiments for several
TFs and other factors related to transcription regulation.
Enriched regions from the ChIP-Seq experiments have
been crossed with the genomic coordinates of available
RefSeq and Ensembl gene annotations, so to build
genome-wide maps of putative target genes in each experi-
ment. Given a set of genes as input, the interface evaluates
the over- (or under-) representation of target sites for the
DNA binding protein considered in each ChIP experiment
by counting the number of target genes in the experiment
contained in the input set, and comparing this count to
the overall genome-wide number of its target genes to
assess statistical significance with a Fisher’s exact test.
Experiments with a significantly high number of sites
within the input genes’ loci are thus likely to correspond
to TFs, which are common regulators of the genes. The
computation is performed for hundreds of different TFs
with other data like histone modifications and RNA
polymerases (and/or their subunits), so to provide a
more comprehensive view of all the genetic and epigenetic
factors involved in the regulation of the input genes, and
their effect on gene transcription.

ChIP-SEQ DATA COLLECTION

We retrieved the ChIP-Seq peak lists publicly available
and already past the public release date at the UCSC
Genome Browser for TFs, histone modifications, and
RNA polymerases produced by the ENCODE project
(11). Also, we retrieved from the original publications
the datasets that have been included in the hmChip
database (5). Finally, we added the HMMChip tracks of
the UCSC Genome Browser, showing chromatin state seg-
mentation for each of nine human cell types. A common
set of states (including for example active promoter, weak
promoter, repressed transcription, and so on) across the
cell types were annotated integrating ChIP-Seq data for
nine histone modifications using a Hidden Markov
Model. The genome was thus segmented into regions
according to the corresponding chromatin state (12).

Overall, data collection resulted for human in 409
different experiments for 144 TFs or co-factors in 65 dif-
ferent cell lines, 234 experiments for 11 different histone
modifications in 23 cell lines, 46 experiments for 6 RNA
polymerases (or their subunits) in 28 cell lines, data for
CTCF binding in 49 cell lines, for a total of 777 different
experiments or annotations in 102 cell lines. We are
currently populating the mouse collection, which as of
today contains data for about 50 TFs.

In each ChIP-Seq dataset, the genomic coordinates of
each region marked as ‘peak’ have been crossed with the
RefSeq or Ensembl gene annotations available. This
resulted in a table with one row for each annotated
gene, and one column for each ChIP-Seq experiment.
The table reports the presence/absence of a peak in the
ChIP-Seq experiment within different regions of the locus
of the gene (i.e. in its promoter/upstream of the TSS at
different distances, within the transcribed region, and so
on, see Supplementary Figure S1).

FINDING COMMON REGULATORS

Starting from the data collected, let G be a sample of
k genes or transcripts. If a given TF is a common regulator
of the genes, then one should find an enrichment of
binding regions for the TF associated with the genes,
e.g. in their promoters or transcribed regions. For
example, let m be the number of genes in the sample
that have a peak for the TF in their promoter. Then, let
N be the number of annotated genes in the genome and let
n be the number of annotated genes in the genome that
contain a ChIP-Seq peak for the TF in their promoter.
The enrichment of the TF binding sites with respect to
the gene sample can be thus evaluated by using a
Fisher’s exact test (hypergeometric distribution) with N,
n, k and m as parameters.
The same principle can be applied to any other type of

genome-wide ChIP experiment. For example, we can
assess whether a given histone modification can be
associated with the genes’ promoters, hence denoting
e.g. if their promoters as active or repressed, or whether
RNA polymerase binding in a given cell line is enriched in
the set of genes denoting their transcription, and so on.

THE USER INTERFACE

The user interface contains two main panels on the left
and right hand side, which can be used to input a set of
genes for finding their common regulators or for browsing
and retrieving data from the ChIP-Seq data collections
available.

Data browsing and retrieval

The right hand panel allows users to browse the data
Cscan is based on, and to retrieve the list of target genes
associated with a given experiment of interest. Users can
select (i) the protein that has been ChIP’ed (ii) the cell line
in which the experiment was performed, (iii) the region of
the genes’ locus in which peaks have to be located for the
gene to be considered as a target (e.g. the �450, +50
region including the core promoter or the transcribed
region including 1 kbp upstream), (iv) the source
organism and the gene annotation to be used to display
the results (RefSeq or Ensembl) and (v) the genome
assembly used in the study. Once any of the input fields
is selected, the other choices are automatically limited to
the experiments available, e.g. once a TF has been selected
in the list, the selection of the cell lines will be limited to
those for which data are available for the TF, and so on.
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The output will be displayed within an ‘Experiment view’
output window, described in the ‘Output’ section.
Alternatively, given a gene (transcript) identifier, users
can retrieve the list of ChIP-Seq experiments in the
database that present a peak within the gene region
defined.

Gene input

The left hand panel is used to input a set of genes, by using
the RefSeq or Ensembl IDs of their respective transcripts,
and finding ChIP-Seq experiments that have a signifi-
cantly high (or low) number of peaks associated with the
genes. Users then have to specify the following: (i) the
source organism of the genes (at the present time,
human or mouse); (ii) the region, with respect to the
gene, that has to be analyzed (e.g. core promoter only or
upstream and transcribed regions); and (iii) the cell line in
which the ChIP-Seq data used for the analysis were
generated (or this parameter can be set to ‘ALL’
indicating that all the data available have to be used).

A typical analysis takes a few seconds, and results will
appear in the middle of the page.

Output

The output is split into two tables as shown in Figure 1a.
The topmost one is dedicated to TFs (or co-factors),
while the bottom one contains results for CTCF, histone
modifications, PolII and PolIII binding, HMMChip
regions, and other experiments not involving TFs
(denoted as ‘Features’ in the table). A link on the top of
the features table gives further explanations on each one,
and its possible effect on the regulation of the genes. In
each table, the ChIP-Seq experiments used in the analysis
are ranked according to the P-value of the Fisher’s
test. From left to right the columns of the output table
summarize the following:

. [TF/FEATURE]: The TF or feature of the ChIP-Seq
experiment;

. [LINE]: The cell line in which the experiment was
performed;

Figure 1. (a) Example of the output of Cscan showing the list of input genes (input box on the left hand side) as well as the TFs list (right, top) and
‘features’ (histone modifications, polymerase binding and so on, bottom right) ranked according to the resulting P value. See the main text for
further explanation on the output fields. (b) The ‘Experiment view’ table, showing for a TF (E2F4) in the selected cell line (HeLa-S3) the target genes
that were included in the input sample (left). The tables on the right show enrichment of other TFs (top) and features (bottom), computed on
the E2F4 target genes.
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. [BG_H/BG_S]: The number BG_H of genes in the
genome annotation which contain a peak for the
experiment in the region selected as input, and
the overall number BG_S of ‘background’ genes
(e.g. in the whole genome annotation used);

. [FG_H/FG_S]: As in the previous point, but restricted
to the FG_H genes that contain a peak out of the total
FG_S input genes;

. [Bonf-Pvalue]: The Bonferroni corrected P value
computed with the Fisher’s test (hypergeometric distri-
bution) according to the BG_S, BG_H, FG_S and
FG_H values;

. [BH-Pvalue]: The Benjamini-Hochberg corrected P
value. This correction yields less restrictive P values
than the Bonferroni one. Users can choose which of
the two seems to be more suitable for their data;

. [EXP]: The expected value for FG_H, according to
FG_S, BG_H and BG_S; and

. [O/U]: A red arrow pointing upwards if the number of
FG_H genes is greater than the expected value,
a green arrow pointing downwards if lower. The
arrow thus denotes whether peaks for the ChIP-Seq
experiment are under- or over-represented in the
gene sample provided as input.

Experiments that present a large number of genome-wide
targets (i.e. more than one third of the annotated tran-
scripts), thus unlikely to provide meaningful information,
have the corresponding line shaded in grey. Clicking on
the links above each table allows users to open the table in
a new window (discussed later), to download the table in
text format, or to display the ‘hitmap’, which associates
with each input gene and ChIP experiment pair a ‘1’ if the
gene region specified as input contains at least one ChIP
peak, ‘0’ if not, and that can be used for further compu-
tations and analyses. The hitmap can be displayed also
as a picture, with a colored spot in correspondence of
experiment peak-gene associations, black otherwise.

Once an output table is opened in a new window (called
‘TF table view’ and ‘Feature view’, respectively),
additional links appear. Clicking on the ‘info’ icons (a
white ‘i’ on a blue background) provides further informa-
tion (if available) on the subject of the ChIP experiment or
the cell line in which it was performed. Clicking on the TF/
feature name, instead, opens the ‘Experiment view’
window, that displays the list of input genes which are
associated with a peak for the ChIP-Seq experiment and
cell line selected, as well as their genomic coordinates.
From this window, users can download the list of gene
IDs, or the .bed file of their genomic coordinates which
can be uploaded automatically to the UCSC Genome
Browser for further analysis. The ‘Get Correlations’
button on the right-hand side performs another run of
Cscan, but restricted to the list of target genes for the
TF/feature currently investigated, and using experiments
performed in the same cell line: in this way, users can
immediately assess which other experiments have signifi-
cant correlation (or anti-correlation) with the TF/feature
on the set of genes studied (Figure 1b).

This ‘Experiment view’ window is also displayed when
a given experiment is selected by using the right-hand

panel of the interface: in this case, the list of targets will
comprise all the target genes in the genome annotation
available.

EXAMPLES

As mentioned before, Cscan can be applied to different
types of analysis. A straightforward application is to study
clusters of genes with similar expression patterns, so to
single out their putative common regulators. But, as epi-
genetic data are also included in the analysis, by crossing
these data with the results on TF binding one can get an
idea also on the effect of the TF regulation (activation/
repression) and/or on the tissue/cell/condition specificity
of TF binding. Also, if a novel ChIP-Seq experiment has
been performed, Cscan allows for an immediate assess-
ment of which other TFs show significance correlation
or anti-correlation with the studied one, as well as of
whether the TF correlates with histone modifications,
active/repressed promoters, or polymerase binding, the
latter indicating again whether it might act as an activator
or a repressor. Finally, the results of Cscan provide an
immediate validation for predictions derived from other
tools, for example conserved motifs found by sequence
analysis and motif discovery methods. Users can thus
submit the same set of genes simultaneously to Cscan
and to tools like Pscan (9) or Clover (10), and assess
whether TFs singled out by sequence analysis are also
detected by Cscan, or which TFs are more likely to bind
a given sequence motif. These two approaches can also be
seen as complementary, because ChIP data are not avail-
able for all the TFs and vice versa, a reliable binding
descriptor is not available for all the TFs.
In the following section, we describe some examples of

usage of Cscan. The corresponding datasets are included
in the interface and can be easily loaded as input by
clicking on the corresponding link. The analyses were
performed by using as a target region of the genes the
core promoter (from �450 to +50 with respect to the
transcription start site). The results are also provided in
Supplementary Table S1.

Human cell cycle regulated genes

We retrieved the clusters of human genes whose expres-
sion has been characterized of being specific of a given
phase of the cell cycle [G1/S, S, G2, G2/M and M/G1
(13)]. The microarray experiment was performed in
HeLa cells.
Concerning the ‘features’ table, nearly all the genes of

each dataset seem to be transcribed in all the cell lines
available, and not only HeLa cells. Indeed, PolII,
‘Active promoter’ HMMChIP annotations, and histone
modifications associated with active promoters and tran-
scription are highly enriched, while those features
associated with gene silencing are significantly under
represented. This is hardly a surprising result, because
we can expect cell-cycle expressed genes not to be cell
line or tissue specific. Figure 2 and Supplementary
Table 1 summarize the most significant TFs in the five
phases (Bonferroni corrected P< 10�5 in at least one).
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TFs of the list showing highest enrichments are known cell
cycle regulators, and as expected their over-representation
in the input sets changes according to the different phases.
For example, all members of the E2F family with available
data are significantly enriched in phases G1/S and S. E2F1
and E2F6, however, drop in the successive phases, while
E2F4 remains enriched throughout G2 and G2/M. The
Retinoblastoma protein (RB) lacks a DNA binding
domain and is recruited to promoters by other
sequence-specific TFs, such as the members of the E2F
family: indeed its enrichment profile shows similarity
with E2F1 and E2F6. Thus, results of this kind would
be hard to obtain with sequence analysis alone, also
because specialized databases like TRANSFAC and
JASPAR report only a generic ‘E2F’ binding motif,
while for example E2F4 has been recently shown to bind
the CHR promoter element as part of the DREAM
complex (14).

Human tissue-specific genes

As an example of analysis of tissue-specific genes, we built
two datasets of liver and whole brain-specific genes using
the Gene Sorter tool at the UCSC Genome Browser.
We selected RefSeq genes with an expression logBase2
(tissue/reference) value >2 in the two tissues.
The ‘features’ results on liver genes show how their

transcription activation, active promoter marks and
PolII binding seem to be confined to HepG2 cells, which
indeed are hepatocarcinoma cells, and a model system for
the study of polarized human hepatocytes. On the other
hand, the signatures associated to transcription repression
and gene silencing are over-represented in all other cell
lines. Also, the TF table shows as significantly enriched

a series of TFs (HNF4A, HNF4G, RXRA, FOXA1, and
so on) known to be associated with tissue-specific gene
expression in liver or liver development. Other TFs
usually associated with cell cycle or ‘housekeeping’ gene
expression do not show any enrichment on this gene set in
HepG2 cells. However, not all the genes of this set are
associated with PolII binding or active promoters and
TF binding. This fact can be due to different reasons,
like experimental issues (false positives in the microarray
experiment or false negatives in the ChIP-Seq analyses
producing the lists of peaks), or to differences between
normal and tumoral liver cells. Another possibility is
that, as multiple promoters can be associated with the
same gene, Cscan is able to mark which promoter is
active and bound by TFs in the cell line investigated.

The result on ‘brain-specific’ genes shows how they do
not seem to be transcribed in any of the cell lines available,
nor are enriched for any histone mark associated with
transcriptional activation. The TF table likewise shows
how virtually all the TFs are underrepresented in
the gene sample, with the sole exception of NRSF
(Neuron-restrictive Silencer transcription Factor)
throughout different cell lines, which indeed is a repressor
protein expressed in non-neuronal tissues, repressing
the expression of several neuronal genes.

Computing correlations between different ChIP-Seq
experiments

A simple but explicative example on how Cscan can be
used to identify correlations among different ChIP-Seq
experiments is the set of target promoters for BDP1
(B double-prime 1) in human HeLa cells, retrievable
from Cscan itself. BDP1 is a subunit of the TFIIIB

Figure 2. The most significantly enriched TFs in the different phases of human cell cycle (P< 10�5 in at least one set). We considered experiments
performed on the same cell line of the expression data (HeLa). For TFs for which HeLa data are not yet available, we employed K562 data.
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transcription initiation complex, which recruits RNA
polymerase III to target promoters to activate its tran-
scription (15). Indeed, the features table shows that
PolIII associated with the promoters of the genes. In the
TF list, the highest correlations are with BDP1 itself in a
different cell line (K562), showing how BDF1 binding
does not seem to be cell-line specific. Also, all the targets
of another factor (BRF1) are included into the BDF1 list.
Indeed, BDF1 is another subunit of the same complex,
together with TFIIIC-110, which is also highly enriched.
Other regulators, not related to PolIII transcription
appear anyway to be over-represented. Although, for
example TATA-binding protein has already been shown
to be a regulator of PolIII transcribed genes, other factors
like STAT1 in interferon-stimulated cells or heat-shock
protein that target most of the genes show how they are
probably activated and involved in several different
pathways.

CONCLUSIONS

Cscan is a web server that employs a collection of several
hundreds of different ChIP-Seq experiments to identify
putative common regulators in a set of genes, as well as
assessing their transcriptional and epigenetic profile.
Clearly, results depend on the presence of a given TF or
cell line in the collection of experiments the server is based
on, and while for example we have already a good
coverage for tissues like liver we still lack data on
tissue-specific TFs and epigenomic information in several
tissues or cell lines. We can expect however this gap to be
quickly filled in the near future, given the ever increasing
amount of ChIP-Seq experiments that are performed and
published almost on a daily basis. Also, we plan in the
near future to include information about distal regulatory
elements in enhancers/silencers, by crossing data on TF
binding with chromatin signatures marking likely
enhancer regions and with CTCF binding to insulators,
so to overcome the obvious limitations of analyses only on
promoters or transcribed regions. Concerning the exten-
sion of Cscan to other species, we are currently populating
the ChIP-Seq mouse data collection, as well as preparing
the inclusion of other species, from yeast to the data
produced by the modENCODE project on
Caenorhabditis elegans and Drosophila (16).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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Abstract

Background: MADS-domain transcription factors play important roles during plant development. The Arabidopsis
MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a
repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral
meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions
with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism.

Results: To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive
development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression
analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we
compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC
and AP1, which interact with SVP during the vegetative and reproductive phases, respectively.

Conclusions: Our analyses resulted in the identification of pathways that are regulated by SVP including those
controlling meristem development during vegetative growth and flower development whereas floral transition
pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates
many developmental pathways, some of which are common to both of its developmental roles whereas others are
specific to only one of them.

Keywords: MADS-box, gene regulation, transcription factors, post transcriptional regulation, ChIP-seq, floral transi-
tion, floral development, Arabidopsis thaliana

Background
In plants organs are formed post-embryonically from
populations of undifferentiated cells called meristems. In
these meristems, stem cell activity is kept at the central
zone whereas at the peripheral part of the meristem pri-
mordia arise in which cells differentiate into organs. In
flowering plants like Arabidopsis thaliana during the
vegetative phase the primordia that derive from the
shoot apical meristem (SAM) develop into leaves [1,2].

The change to the subsequent generative phase is called
floral transition, which is regulated by multiple flowering
pathways that are controlled by environmental and
endogenous cues. During the floral transition, the SAM
undergoes a change in fate and becomes an inflores-
cence meristem (IM). The Arabidopsis IM is an indeter-
minate meristem and develops multiple determinate
floral meristems (FMs) in a spiral manner, which in
turn produce a precise number of floral organs arranged
in a whorled pattern [1,3,4]. The reprogramming of
meristems is regulated by a complex gene regulatory
network in which transcription factors represent impor-
tant key players.

* Correspondence: martin.kater@unimi.it
† Contributed equally
1Department of Bioscience, Università degli Studi di Milano, Via Celoria 26,
20133 Milan, Italy
Full list of author information is available at the end of the article

Gregis et al. Genome Biology 2013, 14:R56
http://genomebiology.com/2013/14/6/R56

© 2013 Gregis et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:martin.kater@unimi.it
http://creativecommons.org/licenses/by/2.0


In Arabidopsis the photoperiod, thermosensory, and
vernalization/autonomous pathways that respond to
environmental signals, and the aging and gibberellic acid
pathways that respond to the developmental and physio-
logical state of the plant regulate the floral transition [5].
Many transcription factors encoding genes have been
shown to be involved in the regulation of these pathways
including those belonging to the MADS-box gene family
[6,7]. One of these MADS-box genes controlling flower-
ing time is SHORT VEGETATIVE PHASE (SVP) [8].
MADS-domain transcription factors have been identi-

fied in all eukaryotic kingdoms and in Arabidopsis thali-
ana they are involved in most important developmental
processes [9-12]. MADS-domain factors activate or repress
transcription by direct binding to short sequences called
CArG-boxes that correspond to a 10 nucleotide sequence
CC(A/T)6GG present in the regulatory sequences of target
genes. However, this motif can be quite variable allowing
some mismatches [10,13]. Moreover MADS-domain pro-
teins form homo and/or heterodimers and are also sug-
gested to form tetrameric MADS-domain complexes [14].
The variety of interactions that many MADS-domain fac-
tors can make suggests that they may regulate different
subsets of genes during different phases of development
and might reflect an enormous regulatory potential [15].
Furthermore, their association with others co-factors
probably also influences the affinity and specificity of the
complex for specific target sequences [16,17].
During the vegetative phase SVP acts as a repressor of

flowering since the svp mutant flowers very early [8]. SVP
mediates flowering responses by perceiving signals from
different endogenous and environmental flowering path-
ways such as the thermosensory, autonomous, and GA
pathways [6,18]. SVP regulates the expression of three
floral pathways integrator genes (FPI) that are FLOWER-
ING LOCUS T (FT), TWIN SISTER OF FT (TSF), and
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1) which all promote flowering [18,19]. To maintain
plants in the vegetative phase, SVP represses the expres-
sion of FT and TSF in the phloem and SOC1 in the SAM
by directly binding to CArG boxes in FT and SOC1
[6,18,19]. During the vegetative phase, SVP interacts with
another central repressor of flowering time that is FLOW-
ERING LOCUS C (FLC) and their function is mutually
dependent. In fact it has recently been demonstrated that
the SVP-FLC dimer acts to directly repress FT in the
leaves and SOC1 in the SAM [18]. During the floral transi-
tion, SVP expression gradually decreases until the SVP
protein completely disappears from the IM [20]. In plants
competent to flower, inputs deriving from the flowering
pathways converge to repress SVP and FLC expression
[18,19]. During the vegetative phase SVP plays an opposite
role to its phylogenetically closest related MADS-box gene
AGAMOUS LIKE 24 (AGL24), which is a central promoter

of flowering [21,22]. Both SVP and AGL24 directly regu-
late SOC1 by binding its promoter on the same binding
sites but they have an opposite effect on SOC1 expression
[23].
Interestingly, after the floral transition both SVP and

AGL24 are co-expressed in the floral meristem during
stage 1 and 2 of flower development [24]. Analysis of the
svp agl24 double mutant, especially at higher tempera-
tures, and the svp ap1 agl24 triple mutants showed that
AGL24 and SVP play redundant roles during these early
stages of flower development [20,24,25]. Combining the
svp agl24 double mutant with a weak ap1 allele showed
that AGL24 and SVP together with AP1 repress floral
homeotic genes that control petal, stamen and carpel iden-
tity [25]. Protein interaction and genetic studies revealed
that SVP and AGL24 are able to form dimers with AP1
and that this dimer is able to recruit the LEUNIG-SEUSS
co-repressor complex [15,25]. Combining the svp agl24
double mutant with a strong ap1 allele showed that they
are also controlling floral meristem identity since this tri-
ple mutant forms on the flanks of the IM new IMs instead
of FMs resulting in a cauliflower like curd just as observed
in the ap1 cauliflower (cal) double mutant [24,26].
Recently Simonini et al. [17] have shown that the co-
repressor complex composed of LUG, SEU, and SVP is
also able to repress the ovule identity gene SEEDSTICK
(STK) in a complex together with BASIC PENTACYS-
TEINE transcription factors.
SVP is a key factor for Arabidopsis development and

acts both during vegetative and reproductive phases where
it plays different roles probably by interacting with differ-
ent partners to regulate specific sets of target genes. Even
though SVP is a gene of interest since its first characteriza-
tion [8], still little is known about the mode of action and
the network of genes controlled by this MADS-domain
transcription factor. A powerful tool to study in vivo the
genome-wide DNA-binding patterns of transcription fac-
tors is the ChIP-seq technology that consists in ultra-high
throughput Solexa (Illumina) sequencing of DNA samples
obtained by chromatin immunoprecipitation (ChIP). This
technique has been used for a few years to identify direct
target genes. At first for human transcription factors like
NRSF, STAT1, PPARg, and FOXA2 [27-30] and recently
this technology has been reported for the identification in
Arabidopsis of genome wide targets of different MADS-
domain proteins such as, SEPALLATA3 (SEP3), AP1,
FLC, and SOC1 [13,31-33] and another important tran-
scriptional regulator such as AP2 [34]. Moreover genome
wide binding site analysis is also possible using the ChIP
on chip method, as was done for AGAMOUS LIKE 15
(AGL15), LEAFY (LFY), SVP, and SOC1 [35-37].
Here we report the use of the ChIP-seq approach to iden-

tify genome wide binding sites for SVP, during two distinct
developmental phases: the vegetative and reproductive
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phase. This study allowed us to identify new pathways that
are regulated by SVP in vegetative and reproductive tissues
and to investigate genome-wide interaction dynamics of a
transcription factor during different phases of development.

Results
Genome-wide mapping of SVP binding sites during
vegetative and reproductive development
For genome-wide identification of the in-vivo binding
sites of the SVP MADS-box transcription factor ChIP
was performed followed by single end-read sequencing
with the Solexa/Illumina GA platform. For the ChIP
experiments Arabidopsis svp mutant plants expressing
epitope tagged SVP were used [20]. The full genomic
region of SVP including 3 kb upstream of the start codon
was cloned as a C-terminal fusion with GREEN FLUOR-
ESCENT PROTEIN (GFP) [38]. Since SVP plays impor-
tant roles during two distinct non-overlapping phases of
development, namely the floral transition [8] and the
early stages (stages 1 and 2) of flower development
[20,24,25,39], studying the genome-wide binding sites of
SVP provides an opportunity to compare the pathways
directly regulated by SVP during these two developmen-
tal phases. Therefore vegetative phase material was har-
vested from 2-week-old seedlings grown under short-day
conditions, whereas reproductive phase inflorescences
with developing flowers of stage 1 to 11 [40] were har-
vested to analyze its targets during flower development.
Several independent ChIP experiments were performed.

As control the same tissues were harvested from wild-type
plants that did not express SVP-GFP. ChIP experiments
that showed relatively high enrichment for known SVP
binding regions (FT for the vegetative tissues and AG for
reproductive tissues) were used to select samples for
sequencing (see Additional data file 1, Figure S1) [6,20].

Distribution of SVP binding sites across the genome and
within genes
For both vegetative and reproductive tissues as well as for
the control, two independent ChIP reactions were
sequenced. As in similar experiments [13,31], sequence
reads obtained from duplicate experiments for each of the
three samples were pooled. Only reads mapping to a
unique position on the genome were considered for
further analysis. This resulted in about 3 million uniquely
mapped reads for the two experiments using inflorescence
material, 5 million for experiments performed using vege-
tative material, and 6 million for control experiments
(Additional data file 1, Table S1).
The regions enriched for binding sites were then iden-

tified with a strategy broadly similar to the one previously
employed for SEP3 and AP1 [13,31], and implemented in
the CSAR tool [41]. At a Bonferroni-corrected P value of
0.01 this resulted in about 13,000 regions in inflorescence

tissues and 25,000 in seedlings, reduced to about 8,000
and 15,000, respectively, at threshold 10-4, and about
1,300 in both experiments at threshold 10-5 (see material
and methods and Additional data file 2, Table S2). The
overall distribution of SVP-binding sites across the gen-
ome in both tissues does not change significantly, and
shows that 40% of the sites are located within the 3 Kb
upstream of the gene, 27% in the transcribed region,
whereas 4% are inside the 1 Kb downstream regions
(Figure 1a). Regions falling within the transcribed regions
tend to be located towards the 3’ UTR/transcription
termination (Figure 1b). A similar observation was made
on the genome-wide distribution of SEP3 MADS-box
protein binding sites [13]; moreover in Kaufmann et al.
[31] they found that AP1 is able to bind the 3’ region of
TERMINAL FLOWER 1 (TFL1) which is an important
shoot identity gene [42]. TFL1 3’ region is indeed
required for proper TFL1 expression. To confirm binding
sites of SVP a set of target genes containing predicted
binding sites at the 3’ end was selected and analyzed in
detail. This set included AGL24, SEEDSTICK (STK),
APETALA3 (AP3), and FLOWERING LOCUS C (FLC).
As shown in Figure 1c, these genes show peaks of enrich-
ment in the inflorescence ChIP-seq data near their
3’UTR regions and, for STK and FLC, these regions cor-
respond to predicted SVP binding sites (3’UTR is indi-
cated by the striped rectangle). The enrichments on
the 3’ UTR were analyzed in independent ChIP-qPCR
assays confirming that binding at the 3’UTR is significant
(Figure 1d).
Candidate target genes were then identified by associating
each gene with an overall P value calculated from the pro-
duct of the P values of the single binding regions located
across the whole gene, encompassing the 3 kb upstream of
the transcription start site to 1 kb downstream of the tran-
scribed region. Thus, genes could be ranked according to
the overall P values obtained. Starting from the ranked
gene lists, we selected as high-confidence targets 2,982
genes in seedlings (with a cumulative gene P value <
1.26E-23) and 2,993 genes in inflorescences (cumulative
gene P value <3.16E-15) (Additional data file 2, Table S2).
The cut-offs on these lists were selected to maximize the
number of known targets while excluding the maximum
number of genes that were demonstrated to be false posi-
tives based on validations with ChIP-qPCR.

Binding motifs of the SVP protein
MADS-domain proteins are known to bind to different
CArG box sequences, including the SRF-type (CC[A/T]
6GG), the MEF2-type (C[A/T]8G), and other intermedi-
ate motifs (CC[A/T]7G/C[A/T]7GG) [10,43-46]. In order
to assess the enrichment of CArG box motifs within the
binding regions obtained from ChIP-seq, and to deter-
mine whether there is a preferred form of CArG box for
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SVP, we ran a tailored version of the motif finder Weeder
[47] in order to evaluate separately the enrichment within
the regions of each oligonucleotide which could be con-
sidered a valid instance of a CArG box given the consen-
suses described before and also including NC[A/T]6GN.
Oligonucleotides found to be enriched in the regions
were then clustered together to form the motif maximiz-
ing the enrichment score. Motif enrichment was com-
puted according to the Weeder score, which compares
the number of occurrences within the ChIP enriched

regions to an expected value derived from its number of
occurrences genome-wide, computing a log ratio of the
fold enrichment. The results are summarized in Figure 2a,
split with respect to the two experiments performed and
to the ranking of the ChIP regions according to their
enrichment P value (best 1,000 regions, best 2,000, and so
on). Enrichment clearly increases according to peak rank,
with higher CArG box enrichment to be found within the
peaks more enriched in the ChIP-seq experiments. Enrich-
ment seems to be slightly higher in flower-enriched

Figure 1 Location of SVP binding sites relative to nearby genes and analysis of SVP binding sites at the 3’ UTR regions of target
genes. (a) Promoter 3K refers to the 3,000 bp upstream of the transcription start site (TSS); transcribed refers to the transcript from the 5’ UTR to
3’ UTR. Promoter 3K and Transcribed refers to 3,000 bp upstream to the TSS until the 3’UTR region. Downstream 1K starts from the transcription
termination site until 1,000 bp downstream. Intergenic is none of the above regions; (b) diagram representing distribution of SVP binding (peaks)
sites within the transcribed regions with respect to transcription termination sites (0 on the × axis); (c) binding profiles in inflorescence tissue for
selected target genes which are bound by SVP in the transcribed regions: AGL24, SEEDSTICK (STK), APETALA 3 (AP3), and FLC. TAIR annotation
corresponds to TAIR8. Grey boxes represent the region validated by ChIP-PCR shown in (c); (d) ChIP-PCR validation for selected SVP target genes.
ChIP assays were done using GFP antibodies and SVP::SVP-GFP svp-41 plants and compared with wild-type control plants. Error bars represent
standard deviations of normalized data (SD).

Gregis et al. Genome Biology 2013, 14:R56
http://genomebiology.com/2013/14/6/R56

Page 4 of 26



regions with respect to leaf-enriched regions. Also,
sequence alignment of most enriched oligos in flowers
shows NC[A/T]6GN (shown in the sequence logo of
Figure 2b and 2c) as a preferred consensus, which differs
slightly from the already known forms briefly discussed
above but closely resembles the one presented in Tao
et al. [37]. Finally, oligo analysis restricted to regions
shared by SVP and AP1 shows a more canonical CArG
box, which is present in the regions with a much higher
enrichment (about eight-fold enrichment with respect to
the four-fold enrichment in the other regions; Figure 2d).

Comparison of SVP binding behaviour during vegetative
and reproductive stages
During the vegetative stage SVP acts as a repressor of
the floral transition [6,8,18,19], while later it plays an
important role during floral meristem specification and
organogenesis by regulating expression of organ identity
genes [20,25,48]. Here SVP binding sites were identified
in seedlings and inflorescences to compare its behaviour
at these two stages. A small number of direct target
genes of SVP were previously identified in both vegeta-
tive and reproductive tissues [6,18,24]. Binding of SVP
to these known sites was confirmed in the ChIP-seq
data in both conditions, although in some cases (for
example SOC1 in vegetative tissues, see below) the
enrichment after the IP was not sufficient to exceed the
P value threshold employed.

The high confidence lists of putative targets of SVP in
vegetative and reproductive tissues show a significant over-
lap, even if this does not imply a perfect overlap of binding
regions for common target genes, as shown in the next sec-
tion. In total 689 genes appear in both lists, which repre-
sents a highly significant overlap (P value < 1E-200) (Figure
3a and Additional data file 2, Table S2). The GO analyses
reveal that the biological processes enriched in both stages
are related to development, cell cycle, and DNA metabo-
lism. These may define a set of genes that reflect the core
role of SVP during plant development (Figure 3b).

SVP directly binds to flowering-time genes of different
regulatory pathways
Mutations in SVP cause early flowering, illustrating a role
for SVP in repressing the floral transition, a process con-
trolled by several regulatory pathways [6,8]. Consistent
with this function, GO terms related to development,
such as ‘reproduction’ and ‘flower development’, are sig-
nificantly overrepresented in the list of putative SVP tar-
gets (Figure 3). Moreover, SVP represses flowering by
reducing the mRNA levels of FT and TSF [6,19] key com-
ponents of the photoperiodic pathway, and of the floral
integrator SOC1 [18]. In the ChIP-seq data, FT is indeed
bound by SVP, but with a low P value (9.5 × 10-7) (data
not shown). Similarly, ChIP-chip experiments performed
by Tao and collaborators were not sensitive enough to
detect the binding of SVP to the FT locus [37]. Recent

Figure 2 Enrichment of CArG box motifs within the binding regions obtained from ChIP-seq and CArG box for SVP. (a) Motif
enrichment computed according to the Weeder score split with respect to the two experiments; (b) preferred consensus of most enriched
oligos in flower; (c) preferred consensus of most enriched oligos in seedlings; (d) preferred consensus of most enriched oligos restricted to
regions shared by SVP and AP1 in flowers.
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work demonstrated that SVP also regulates flowering time
independently of FT and SOC1 [18,19]. Thus, we searched
the list for known flowering-time regulators. Surprisingly,
SVP bound genes involved in several different pathways
(Additional data file 1, Table S3), including the circadian
clock and photoperiodic pathway, represented by GIGAN-
TEA (GI) and PSEUDO-RESPONSE REGULATOR 7

(PRR7), the autonomous pathway, represented by genes
such as FLOWERING LATE KH MOTIF (FLK) and FLOW-
ERING LOCUS D (FLD), genes encoding components of
chromatin associated complexes, such as CURLY LEAF
(CLF), SWINGER (SWN), and VERNALIZATION2 (VNR2),
and the light signaling pathway represented by PHYTO-
CHROME A (PHYA).

Figure 3 Common targets of SVP in vegetative and reproductive tissues and GO enrichment analysis of targets of SVP in vegetative
and reproductive tissues. (a) Overlap between high confidence targets of SVP in vegetative and reproductive tissues; (b) GO enrichment
analysis of biological process for the common targets of SVP in both tissues. Significant enrichments in the dataset were highlighted in color,
different colors represented different levels of significance. The FDR was set up to 0.001 and 0.05; (c) visualization of the GO terms related to
biological processes enriched in the high confidence lists of targets of SVP in vegetative (left) and reproductive (right) tissues. The color scale
represents the level of significance, in terms of FDR, for each category.
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SVP and the regulation of growth regulator signaling
during vegetative development
Growth regulators play different roles in flowering-time
control and their molecular links to floral homeotic
genes have been extensively reported [13,31,32]. SVP
targets related to growth regulator signaling, response,
transport and metabolism were identified in the ChIP-
seq data (Additional data file 3, Table S4). For example,
SVP binds directly to STIP (STIMPY), which was
recently described as a component of the cytokinin (CK)
signaling pathway [49], during the vegetative phase. The
expression levels of this gene were tested in svp-41
mutants and Col-0. The qRT-PCR experiments showed
that STIP mRNA was present at significantly higher
levels in svp-41 mutants compared to Col-0 at all time
points tested (Figure 4a). We also quantified the expres-
sion levels of STIP mRNA in ft-10 tsf-1 svp-41, which
harbours null alleles of FT and TSF and SVP [19]. In ft-
10 tsf-1 svp-41 the expression levels of STIP were up-
regulated compared to ft-10 tsf-1 double mutants and
Col-0 wild-type (Figure 4b), indicating that SVP controls
this gene independently of the FT TSF photoperiodic
signals. The effect of SVP on STIP expression might
indirectly influence the expression of other genes
involved in cytokinin signaling. To investigate this possi-
bility a transcriptome analysis was performed by hybri-
dizing RNA extracted from seedlings of wild-type Col-0
and svp-41 to Affymetrix tiling arrays. The results of
these experiments demonstrated that 1,381 genes were
differentially expressed (FDR ≤0.05) in svp-41 compared
to Col-0 seedlings (Additional data file 4, Table S5). For
some of these genes the change in expression in svp-41
compared to Col-0 was also confirmed by qRT-PCR
(Additional data file 1, Figure S2). A GO term test indi-
cated that there is a significant enrichment of genes
included in the category ‘response to hormonal stimuli’
(Additional data file 1, Figure S3 and Table S6). Interest-
ingly seven genes upregulated in svp-41 mutant were
related to cytokinin signaling (Figure 4c). These genes
belong to two different groups of cytokinin response
genes: the type-A ARABIDOPSIS RESPONSE REGULA-
TORS (ARRs) and the CYTOKININ RESPONSE FACTORS
(CRFs). These two groups of genes are also transcription-
ally activated by STIP [49], suggesting that the control of
STIP by SVP has a broad effect on the cytokinin signaling
pathway. Indeed, the effect of SVP on CK signaling was
also reflected by the significant overlap (P value = 6.6 ×
10-13) between the lists of differentially expressed genes in
svp-41 mutant and the available expression-profiling data
of seedlings treated with the CK benzyladenine (BA) [50]
(Figure 4d and Additional data file 5, Table S7).
The ChIP-seq and tiling array data also suggested links
between SVP and other growth regulators. For instance,
SVP bound several genes involved in auxin signal

transduction, such as BIG, which encodes a putative auxin
transporter required for normal auxin efflux and inflores-
cence development (Additional data file 3, Table S4)
[51,52]. Another gene bound by SVP is CORONATINE
INSENSITIVE 1 (COI1), which encodes the jasmonate
receptor (Additional data file 3, Table S4) [53,54]. There-
fore SVP might affect auxin and jamonate homeostasis by
directly binding to genes encoding key components of
their signaling cascade pathways. In agreement with this
conclusion, our Tiling array data showed that members of
the SAUR-like auxin-responsive family were up-regulated
in svp-41 mutant (Additional data file 3, Table S4 and
Additional data file 1, Figure S2). In addition, six of the
JASMONATE ZIM-domain (JAZ) genes (JAZ1, 5, 6, 7, 8,
and 10), which are part of the jasmonate signaling pathway
and are transcriptionally activated by the hormone, were
increased in expression in the mutant compared to Col-0
(Additional data file 3, Table S4 and Additional data file 1,
Figure S2).

Common targets of SVP and FLC during vegetative
development
MADS-domain proteins form multimeric complexes that
are proposed to be important in determining their DNA
binding specificity. Co-immunoprecipitation analysis and
yeast two-hybrid assays demonstrated that SVP interacts
with the related MADS-domain protein FLC and genetic
data indicate that this interaction is likely functionally
important in the control of flowering time [18,55]. More-
over, SVP associates with the promoter region of SOC1
and the intron of FT where FLC also binds [18,39].
Recently the genome wide targets of FLC were identified
using ChIP-seq technology [32]. Of these FLC putative tar-
gets, 112 were also detected in our experiment as being
bound by SVP in vegetative tissue (P value = 1.9 × 10-6)
(Additional data file 1, Figure S4a). Nine of the FLC puta-
tive targets were previously validated by ChIP-qPCR and
six of them shown to change in expression in flc-3
mutants [32]. Of these confirmed FLC targets, four were
selected to test by ChIP-qPCR if they were also bound by
SVP (Figure 5b, c). Of these four FLC targets, three were
bound by SVP in a similar location. One of these was
JAZ6, which was bound by FLC in its promoter region
and its expression is increased in flc-3 [18]. JAZ6 expres-
sion was also upregulated in svp-41 (Figure 5a), however it
was not enriched in our ChIP-seq experiment, and this
was confirmed by independent ChIP-qPCR analysis, sug-
gesting that the changes in JAZ6 expression caused by
SVP are not an effect of direct binding (Figure 5c).
A second confirmed FLC target, AGL16, was not enriched
in the SVP ChIP-seq data, however the region bound by
FLC showed a low but consistent enrichment in ChIP-
qPCR of SVP. This experiment suggests that SVP is
weakly bound to the same region of AGL16 as FLC, and
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the low enrichment might explain why it was not detected
in the ChIP-seq experiment. AGL16 expression was not
changed in svp-41 compared to Col, similar to what was
observed in flc-3. A third confirmed FLC target was SVP,
and ChIP-qPCR confirmed that SVP binds to the same
region in its own promoter as FLC. These ChIP-qPCR
experiments demonstrate that there is a strong but not
complete overlap in the targets of FLC and SVP.

SVP auto-regulates its gene expression in vegetative
tissue and flowers
The ChIP-seq data indicated that SVP binds to its own
genomic region in vegetative tissue and flowers. How-
ever, regions actually bound in both tissues may differ.
This differential binding was confirmed by independent
ChIP-qPCR experiments on two specific regions named
I and II (Figure 6 a-c), located approximately 2,000 bp

upstream of the 5’UTR and in the terminal part of the
SVP first intron, respectively. As shown in Figure 6b
and 6c, SVP binds site I in floral tissue but not in vege-
tative tissue, whereas site II is bound in both tissues.
Whether binding of SVP influenced its own expression
was tested in different ways. In addition to the microar-
ray experiment described above, another transcriptome
analysis was performed by hybridizing RNA extracted
from inflorescences of wild type Col-0 and svp-41 agl24
ap1-12 to affymetrix tiling arrays. In this experiment
246 genes were differentially expressed (FDR ≤0.05) in
svp-41 agl24 ap1-12 compared to Col-0 inflorescences
(Additional data file 4, Table S5). The tiling array
expression data showed that SVP mRNA was downregu-
lated in the svp-41 single mutant in vegetative tissues
(logFC -1.13; P=0.001) as well as in inflorescences of the
svp-41 agl24-2 ap1-12 triple mutant (logFC -0.86;

Figure 4 SVP regulates STIP and genes involved in cytokinin signaling. (a) Quantification by qRT-PCR of the STIP mRNA levels in svp-41
(dashed line) compared to Col-0 (solid line). svp-41 and Col-0 seedlings were grown for 10 and 14 days, respectively, under SDs and then
shifted to LDs for 3 or 5 days; (b) expression levels of STIP in Col-0, ft-10 tsf-1, and ft-10 tsf-1 svp-1 genetic backgrounds. Seedlings were grown
under SDs for 14 days and then shifted to LDs for 3 or 5 days. Bars in (a) and (b) show standard deviation of the mean of three biological
repeats; (c) list of genes differentially expressed in svp-41 compare to Col-0 related to the CK signaling pathway; (d) comparison between genes
affected by BA treatment (Brenner et al., 2005) and genes de-regulated in svp-41. For this analysis the genes represented in the affymetrix tiling
Array 1.0R (used in the present study), but not represented in the ATH1 microarray used by Brenner et al. (2005), were excluded. A total of 167
genes were common between the two conditions (P = 6.6 × 10-13, based on the binomial test).
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Figure 5 Common targets of SVP and FLC. (a) Expression of known direct targets of FLC in svp-41. Data represent expression of selected
genes in microarray experiment with FDR <0.05. The expression level of each gene in svp-41 was normalized to the level of wild type Col-0.
Error bars represent SDs of normalized data; (b) binding profiles of ChIP-seq experiment for the selected genes. TAIR annotation corresponds to
TAIR8. Grey boxes represent the region validated by ChIP-PCR which are shown in panel (c); (c) ChIP-PCR validation of selected genes using anti-
GFP antibodies using seedlings of wild type Col-0 and SVP::SVP-GFP svp-41 lines. Results are expressed relative to actin. Error bars represent SD.
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Figure 6 SVP binds and regulates itself. (a) Binding profiles for SVP on SVP genomic locus in seedlings (upper panel) and inflorescence (lower
panel) tissues. TAIR annotation corresponds to TAIR8. Grey boxes represent the region validated by ChIP-PCR in panels (b) and (c); (b) and (c)
ChIP-PCR validations for two specific regions named I and II. ChIP assays were done using GFP antibodies and SVP::SVP-GFP svp-41 plants and
compared to wild-type control plants. ChIP-PCR validation in vegetative (b) and reproductive tissue (c); (d) qRT-PCR expression analysis using
primers for the SVP 3’UTR region. RNA was extracted from wild-type Col-0, svp-41, and SVP::SVP-GFP svp-41 seedlings and from wild-type Col-0,
svp-41 agl24-2 ap1-12 triple mutant, and SVP::SVP-GFP svp-41 inflorescences; (e) qRT-PCR expression analyses using primers for the SVP 3’UTR
region and coding region. RNA was extracted from wild-type Col-0, svp-41, and 35S::SVP seedlings. In all graphs error bars represent the standard
deviation of normalized data (SD).
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P=0.02). This downregulation was validated by qRT-PCR
using independent svp-41 single mutant, svp-41 agl24-2
ap1-12 triple mutant and wild-type cDNA samples
obtained from RNA extracted from seedlings and inflor-
escences (Figure 6d). Since svp-41 is a deletion mutant
in which two base pairs are deleted in the second exon
resulting in a frame-shift of the open reading frame [8],
this reduction in mRNA level might be due to non-
sense-mediated decay [56]. To investigate this possibi-
lity, we performed qRT-PCR assays using primers
designed on the 3’UTR region of the endogenous SVP
gene, which is not present in the SVP::SVP-GFP fusion
construct. RNA was extracted from wild-type, svp-41
and SVP::SVP-GFP svp-41 seedlings and from wild-type,
svp-41 agl24-2 ap1-12 and SVP::SVP-GFP svp-41 inflor-
escences (Figure 6d). The results confirmed a reduction
in mRNA level also in SVP::SVP-GFP svp-41 tissues sug-
gesting that indeed this reduction in SVP mRNA level
seems to depend on the mRNA instability in the mutant
background. As an alternative approach the abundance
of SVP mRNA expressed from the endogenous gene was
tested in plants in which SVP was overexpressed from a
35S::SVP transgene. A qRT-PCR strategy was used in
which the cDNA expressed from the transgene and
endogenous gene can be distinguished (Figure 6e). This
experiment demonstrated that SVP mRNA expressed
from the endogenous locus is reduced in 35S::SVP
plants. Taken together our data suggest that SVP
directly regulates its own expression, and that it prob-
ably acts to repress its own transcription.

Genes involved in meristem development are targets of
SVP at two developmental stages
Genes involved in meristem development were enriched
as SVP targets in both vegetative material and flowers.
SVP is expressed in the SAM during the vegetative stage
[6,8,18,19]. In addition it plays an important role during
floral meristem specification and organogenesis [25,48].
Consistent with this idea a significant enrichment of
SVP target genes related to post-embryonic develop-
mental processes was detected in the ChIP-seq results
of both vegetative and reproductive samples (Figure 3c).
Due to the expression pattern of SVP, putative targets
with annotated functions in meristem development were
screened for directly (Additional data file 3, Table S4).
The CLV-WUS feedback loop plays a central role in
maintaining meristematic activities [57]. In the ChIP-seq
data CLV1 and CLV2, two important players in WUS
regulation, are targets of SVP in vegetative tissues and
CLV1 is also bound during reproductive development.
Additionally, according to the ChIP-seq data, the HD-
ZIPIII encoding genes PHABULOSA (PHB), PHAVO-
LUTA (PHV), REVOLUTA (REV), and HOMEOBOX
GENE 8 (ATHB8), which regulate post-embryonic

meristem initiation [58], are also bound by SVP in vege-
tative tissue. Furthermore, PHB which is a regulator of
the size of the WUS-expression domain [59], is also
bound by SVP in the floral meristem. In order to test
whether the binding of SVP to some of these genes
affects their spatial pattern of expression we performed
RNA in-situ hybridization experiments. A broader
expression pattern of PHB and CLV1 was observed in
shoot apical meristems of svp-41 mutants than Col-0
wild-type plants grown for 2 weeks under SDs (vegeta-
tive phase) (Figure 7a, b, d, e). However, these differ-
ences might be due to the larger size of the svp-41
meristem compared to Col-0 at this stage. Thus, the
patterns of expression of PHB and CLV1 were also com-
pared in 10-day-old svp-41 mutants and 2-week-old Col-
0 plants, which have SAMs of similar size. Confirming
our previous result PHB and CLV1 mRNA were
detected in a broader region of the svp-41 (10 SDs)
SAM compared to Col-0 (Figure 7c and 7f). These
results together with the ChIP-seq data suggest that
SVP directly regulates the expression pattern of these
genes. Furthermore, KANADI1 (KAN1) and KAN2,
involved in the establishment of abaxial-adaxial polarity
in lateral organs produced from the apical meristem,
resulted also to be direct targets of SVP in inflores-
cences. It has been hypothesized that complementary
regions of action of the class III HD-ZIP genes and
KANADI genes leads to the establishment of adaxial and
abaxial domains in developing lateral organs. The possi-
ble role of SVP and other MADS-domain proteins in
the regulation of part of these genes in reproductive tis-
sues is presented below.

Genome wide targets of SVP during flower development
and comparison with the targets of AP1 and SEP3
During the early stages of flower development (stage 1
and 2) AP1 interacts with SVP and the dimer recruits
the SEU-LUG repressor complex to control the expres-
sion of homeotic genes to maintain the floral meristem
in an undifferentiated state [25]. At late stage 2, when
SVP expression is switched off, AP1 interacts with SEP3
to control sepal and petal identity. Recently, genome-
wide binding studies for SEP3 and AP1 during inflores-
cence development were published [13,31] providing the
opportunity to compare these datasets with the one
obtained here for SVP.
A total of 265 common putative targets for both SVP

and AP1 were identified (P value <7.2E-06) (Additional
data file 6, Table S8 and Additional data file 1, Figure S4).
This overlap is expected because SVP and AP1 act redun-
dantly during floral meristem specification where their
expression domains overlap [24]. Interestingly transcrip-
tion factors are enriched among common targets. In addi-
tion SVP binds to AP1, suggesting that it regulates a
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Figure 7 Expression analysis of meristem developmental genes by in-situ hybridization analysis in vegetative and reproductive tissues
and floral meristem size analysis. (a-c) Patterns of expression of PHB: (a) 14-day-old wild-type, (b) 14-day-old svp-41, and (c) 10-day-old svp-41
mutant; (d-f) patterns of expression of CLV1: (d) 14-day-old wild-type, (e) 14-day-old svp-41 mutant, and (f) 10-day-old svp-41 mutant; in both
svp-41 10 and 14-day-old seedlings the PHB and CLV1 mRNA were detected in a broader region of the SAM compared to Col-0; (g, h)
expression of ARF3 in wild type and svp-41 agl24-2 ap1-12 inflorescence respectively; (i, j) KAN1 expression pattern in wild-type and svp-41 agl24-
2 ap1-12 inflorescences; (k, l) CLV1 expression in wild-type and svp-41 agl24-2 ap1-12 inflorescence; (m, n) expression profile of WUS in wild-type
and svp-41 agl24-2 ap1-12 inflorescences, its expression seems to be higher in the wild-type FM than in the triple mutant FMs at the same
developmental stage. The scale bar represents 50 μm. (o) View of wild-type inflorescence; (p) view of svp-41 agl24-2 ap1-12 inflorescences;
central zone of triple mutant FMs at stage 3 were compared to those of wild-type plants. The scale bar represents 10 μm. (q) Diagram showing
the difference in FMs size between the wild-type and svp-41 agl24-2 ap1-12 triple mutant central dome, error bars represent standard error (SE).
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functionally redundant gene as well as itself. The overlap
between the targets of SVP with those published for SEP3
[13] revealed 413 (P value <5.91E-10) genes that are
bound by both of these MADS domain transcription fac-
tors (Additional data file 6, Table S8 and Additional data
file 1, Figure S4). KAN1, CLV1, PHB, and ARF3 also
named ETTIN, that are present in the subset of genes
bound by SVP and AP1, are also present in the list of
genes regulated by both SVP and SEP3.
Transcriptome data obtained from the tiling array

hybridization experiments using RNA extracted from
inflorescences of Col-0 and the svp-41 agl24 ap1-12
mutant showed that the number of differentially
expressed genes were considerably fewer than those
found by comparing the vegetative tissue of svp-41 and
Col-0 wild-type plants (Additional data file 4, Table S5).
However, the number of deregulated genes might be
underestimated in this analysis because the whole inflor-
escence of svp-41 agl24 ap1-12 mutant plants were
used, whereas SVP expression is restricted to stage 1-2
FMs only. Therefore, altered expression of several tar-
gets might not be detected in this material. To over-
come this we also checked the expression of putative
SVP target genes by a qRT-PCR approach, collecting
the most inner parts of Col-0 and svp-41 agl24 ap1-12
inflorescences, avoiding the already opened flowers.
Both KAN1 and PHB mRNAs were increased in abun-
dance in the svp-41 agl24-2 ap1-12 mutant background
compared to wild-type (Figure 8a) and the enrichment
of these genes observed in the ChIP-seq experiment was
confirmed by means of independent ChIP-qPCR analysis
(Figure 8b and 8c), suggesting a direct regulation of
these genes by both SVP and AP1 during flower devel-
opment. Interestingly also CLV1, which plays an impor-
tant role in establishing and maintaining floral meristem
identity [60], is a direct target of both SVP and AP1 in
reproductive tissue and its expression was increased in
the svp-41 agl24-2 ap1-12 triple mutant compared to
wild-type (Figure 8a-c). Another transcription factor
encoding gene that is bound by SVP and AP1 and upre-
gulated in svp-41 agl24-2 ap1-12 inflorescences is ARF3
(Figure 8a-c). ARFs are proteins that are activated by
convergent auxin flow. Dynamic changes in auxin fluxes
are mediated by PIN proteins and interestingly SVP and
AP1 can interact with the genomic region of PIN1. Ana-
lysis by qRT-PCR showed increased levels of PIN1
mRNA in svp-41 agl24-2 ap1-12 inflorescences in com-
parison to the wild-type control, suggesting a direct role
of SVP and AP1 in its regulation which was confirmed
by independent ChIP-qPCR experiments (Figure 8a-c).
We further examined the expression of ARF3, CLV1,
KAN1, PHB, and PIN1 in response to SVP activation
using the functional steroid-inducible system. The svp-
41 agl24-2 ap1-10 triple mutant was transformed with a

construct in which the 35S promoter directs a fusion
between SVP and a part of the rat glucocorticoid recep-
tor (GR), as reported previously [61]. The svp-41 agl24-
2 ap1-10 mutant forms cauliflower like curds since its
unable to establish FM identity and therefore it prolifer-
ates IMs instead. The obtained transgenic plants showed
upon induction with the steroid dexamethasone (DEX)
rescue of the development of FMs and flowers that
resembled those of the agl24-2 ap1-10 double mutant
(Additional data file 1, Figure S5). We treated the inflor-
escences twice, at time 0 and again after 8 h with DEX
and collected the material after 24 h from the first treat-
ment. This time point was selected according to Smyth
et al. [40], since they showed that the duration of stage
1 of flower development is 24 h. ARF3, CLV1, KAN1,
PHB, and PIN1 expression levels were all decreased
after DEX treatment of svp-41 agl24-2 ap1-10 35S::SVP-
GR inflorescences, confirming that SVP acts as a repres-
sor of those genes (Figure 8d).
To investigate the changes in expression profiles of

some of these target genes, we performed in-situ hybridi-
zation experiments using wild type and svp-41 agl24-2
ap1-12 inflorescences (Figure 7g-n). For ARF3, KAN1, and
CLV1 the expression pattern was not changed suggesting
that the upregulation of these genes is not due to ectopic
expression. Interestingly in situs using a specific probe for
WUS clearly showed that in comparison to wild-type, in
stage 2 FMs this gene was lower expressed in the svp-41
agl24-2 ap1-12 triple mutant. Since svp-41 agl24-2 ap1-12
flowers show reduced numbers of floral organs compared
to wild-type or any of the single mutants [25], we won-
dered if these defects were caused by changes in meristem
size. Therefore the central zone of FMs at stage 3 of flower
development of the svp-41 agl24-2 ap1-12 triple mutant
and wild-type were compared. The size of the central zone
is defined by the distance between the opposite lateral
sepals (Figure 7o-q). The svp-41 agl24-2 ap1-12 FMs were
significantly smaller, as compared to those of wild-type
plants (Table 1 and Figure 7q). Taken together all these
data suggest a role of SVP in the control of FM size, prob-
ably by modulating the expression of genes involved in the
CLV-WUS pathway.

SVP binds in reproductive tissues to genes encoding
post-translational regulators
Interestingly, the high confidence list of SVP target
genes in inflorescence tissue exhibits a significant
enrichment of genes related to Cullin-RING ubiquitin
ligase complexes, mainly involved in post-translational
regulation of substrate proteins by attaching poly-ubi-
quitin chains that target the substrate for 26S protea-
some degradation [62,63]. The substrate specificity of
CUL4-RING-LIGASES (CRL4s) is exerted by proteins
that contain a DWD box (DDB1-binding WD-40 box)
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or a WDxR sub-motif [64-67]. Proteins with these
motifs are referred to as potential DCAF (DDB1-CUL4
ASSOCIATED FACTOR) proteins [67], which may tar-
get proteins for ubiquitinilation [64,68]. However, they

have also been implicated in chromatin mediated tran-
scriptional control [69]. In Arabidopsis, 119 different
putative DCAF proteins have been identified [67] and
our ChIP-seq experiments suggest that nearly half of

Figure 8 Common targets of SVP and AP1. (a) Expression analyses of ARF3, CLV1, KAN1, PHB, and PIN1. RNA was extracted from wild-type Col-
0 and svp-41 agl24-2 ap1-12 triple mutant inflorescences. (b) Binding profiles of ChIP-seq experiment using inflorescence tissue for the selected
genes. TAIR annotation corresponds to TAIR8. Black boxes represent the region validated by ChIP-PCR, which are shown in (c). (c) ChIP-PCR
validation of selected genes using anti-GFP antibodies and inflorescences of wild-type Col-0 and the SVP::SVP-GFP svp-41 line. Error bars
represent standard deviations (SD) of normalized data; (d) relative level of expression of ARF3, CLV1, KAN1, PHB, and PIN1 in svp-41 agl24-2 ap1-10,
35S: SVP-GR plants that were mock-treated or with 10 μM dexamethasone.
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them (47 of 119) are targets of SVP in both tissues
tested and more than half of these (26 of 47) are puta-
tive SVP targets in reproductive tissues (Additional data
file 1, Table S9).
Among the putative DCAF floral SVP targets to which

a function in floral development had not previously
been ascribed (Additional data file 1, Table S9), we
selected WDR55 as a case study for detailed analyses of
its function as a SVP target in flower development.

The regulation of WDR55 by SVP forms as an alternative
pathway for the regulation of AG
WDR55 was shown to interact with DDB1A, suggesting
a regulative role through a putative CUL4-DDB1WDR55

E3 complex, and plays a major role in Arabidopsis
reproductive development. WDR55 is required for game-
togenesis and embryogenesis and is suggested to be
involved in auxin-dependent regulation of embryo devel-
opment [70].
In order to verify that WDR55 expression requires

SVP, we performed qRT-PCR analyses on svp double
and triple mutant combinations. Compared to wild-type,
WDR55 transcripts were reduced in abundance in the
double mutant svp-41 agl24-2 (30°C) and in the svp-41
agl24-2 ap1-12 mutant background (Figure 9a). The
binding of SVP to WDR55, as observed in the ChIP-seq
experiment, was confirmed by means of independent
ChIP-qPCR analysis (Figure 9b), suggesting that changes
of WDR55 expression in svp-41 agl24-2 and svp-41
agl24-2 ap1-12 are due to the direct action of SVP dur-
ing flower development.
A recent report describes two mutant alleles of WDR55

that demonstrate a requirement of WDR55 in gameto-
phyte development and function, as well as for setting up
the embryo body plan. The weaker of these alleles,
wdr55-2, displayed close to mendelian ratios of mutant
seeds (22.7%) and no homozygous plants could be identi-
fied, although a small fraction (2%) could be expected
from the genetic data [70]. In order to screen for the the-
oretical presence of homozygous plants in the progeny,
we allowed a large number of seeds from heterozygous
wdr55-2 plants to germinate for a prolonged period on
MS-2 agar plates containing glufosinate (BASTA) selec-
tion. Indeed, we identified a class of late germinating,
small seedlings that initially were smaller than the glufo-
sinate sensitive seedlings (3.6%, n = 1,035). However, this

class was BASTA resistant and thus carried the wdr55-2
mutation.
Generally, wdr55-2 seedlings supported growth, but

were severely delayed compared to wild-type. In particu-
lar, wdr55-2 inflorescences were smaller than wild-type
and had fewer flowers. Upon inspection we found that
the mutant floral organs were generally smaller and often
morphologically distinct from wild-type (Figure 9 and
Additional data file 1, Figure S6). The sepals were thinner
and often fused at early stages and did not separate com-
pletely at maturation (Figure 9d and 9e, Additional data
file 1, Figure S6b, c and Table S10). The petals were
smaller and thinner, as well as being non-uniform in size
(Additional data file 1, Figure S6e and Table S10). The
stamens were smaller and never occurred in sixes as in
wild-type Col (Additional data file 1, Figure S6 and Table
S10). The wdr55-2 flowers also displayed homeotic trans-
formations (Figure 9g, i). We observed unfused carpels
(Figure 9f), carpeloid sepals (Figure 9g), petals that
resemble stamens filaments and carpeloid filaments with
ectopic papillar cells (Figure 9i) at a moderate frequency.
New flowers appeared to grow out from whorl 1 or 2 at a
low frequency (Figure 9j) and most of the flowers
appeared to be asymmetric in flower organ organization
(Figure 9h).
Due to the homeotic transformations observed in

wdr55-2 flowers, we checked the expression of the organ
identity genes APETALA3 (AP3), PISTILLATA (PI), and
AGAMOUS (AG) by in-situ hybridization (Figure 9k-n and
Additional data file 1, Figure S7). The in-situ analysis
shows that in the wdr55-2 mutant, the expression pattern
of both AP3 and PI is maintained as wild-type plants
(Additional data file 1, Figure S7).
AG is expressed in the inner part of the floral meristem

where stamen and carpel primordia develop. During
flower development AG expression is restricted to whorls
3 and 4 (Figure 9k). The in-situ analysis shows that in the
wdr55-2 mutant, AG is expressed in chimeric organs that
develop in the second whorls (Figure 9l) as well as in car-
pelloid-sepals developing in first whorls (Figure 9m) where
stigmatic tissues and carpelloid structures are detectable.
AG is expressed already in early stages of flower develop-
ment, in particular stage 1 (Figure 9n), but the architecture
of inflorescences in wdr55-2 makes precise staging
difficult.
SEU, LUG, AP1, and SVP are involved in AG regula-

tion, and by mutation ectopic AG expression is found
[25,71-73]. SEU and LUG are thought to be cadastral
genes, and are involved in the control of expression
boundaries of floral homeotic genes [71,73] and they
interact to repress AGAMOUS (AG) in the outer two
whorls of the flower [72,73]. The SVP-AP1 dimer binds
the LUG-SEU repressor and directly regulates AG
expression during early stages of flower development

Table 1 Floral meristem size

Floral meristem mean ±SE (μm)

Col-0 n=8 58.1 ± 2.2

svp-41 agl24-2 ap1-12 n=8 46.7 ± 2

Col-0 vs. svp-41 agl24-2 ap1-12: Two sample T-test, t = 3.9200, DF = 14,
P=0.0015.
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Figure 9 WDR55 is a target of SVP in reproductive tissues. (a) Expression analyses of WDR55, RNA was extracted from wild type Col-0 and
svp-41 agl24-2 ap1-12 triple mutant inflorescences. (b) ChIP-PCR validation of WDR55 region bound by SVP in reproductive tissues; (c-j)
phenotypic analysis of (c) wild-type and (d-j) wdr55-2 flowers: (d) flower of wdr55-2 mutant showing reduced size of sepals and petals; (e) flower
of wdr55-2 mutant with unfused sepals, (f) arrow indicates unfused carpel, (g) arrow indicates chimeric sepal bearing stigmatic tissue on the top,
(h) asymmetric development of wdr55-2 flower, (i) wdr55-2 flowers often develop new flowers in whorls 1 and 2; (k-n) in-situ hybridization of (k)
wild-type, and (l-n) wdr55-2 using AG specific probe: (k) in wild-type inflorescence AG is expressed from late stage 2 and its expression is
restricted to the third and fourth whorl (im is inflorescence meristem), (l) ectopic expression of AG in staminoid petal of wdr55-2 flower, (m)
carpelloid sepals expressing AG in wdr55-2 flower, (n) early stages of flower development in wdr55-2 mutant in which the expression of AG is
already detectable. The scale bar represents 20 μm.
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[20,25]. To investigate the regulation of AG through
WDR55 further, a Yeast-2-Hybrid (Y2H) was performed
with SEU, LUG, AP1, and SVP. Upon repeated testing,
however, WDR55 did not interact with any of these pro-
teins (data not shown). This could be due to weak inter-
actions, and thus not detectable in our Y2H system, or
WDR55 does not directly interact on a protein level with
these AG regulators.
Taken together, our data suggest a role of WDR55 in

floral development. In particular it seems to control the
pattern of AG expression independently from LUG-SEU
repressor complex, indicating an additional pathway by
which SVP repress AG expression. However, the func-
tion of WDR55 in flowers does not seem to be restricted
to the regulation of the boundaries of AG expression as
exemplified by the ag-1 wdr55-2 double mutant (Addi-
tional data file 1, Figure S8).

Discussion
The MADS-domain factor SVP has different functions
during development. An ‘early’ function as a repressor of
the floral transition and a ‘later’ function in floral meris-
tem identity specification [6,8,18,20,24,25,48]. These two
functions are also reflected by SVP expression, which is
present in the leaves and SAM during the vegetative
phase, is repressed in the meristem when plants switch to
reproductive development and then reappears in the
floral meristem during the early stages of flower develop-
ment [8,24]. Whether SVP regulates different or similar
sets of genes during these two phases of development is
unknown. We employed ChIP-seq analysis to study the
genome-wide binding behavior of SVP during these
phases. SVP was found to bind to approximately 3,000
genes at both stages of development. Some genes were
regulated by SVP at both stages of development, such as
those in pathways regulating meristem development,
whereas others were specific to one of the stages. One
mechanism by which these differences in target gene spe-
cificity are likely to occur is through interactions between
SVP and other MADS domain protein partners generat-
ing complexes with different specificities. Consistent with
this idea, comparison of the targets of SVP and two of its
partners, AP1 and FLC, showed similarities and
differences.

Genome-wide ChIP-Seq experiments reveal several roles
for SVP in modulating vegetative development
SVP bound to approximately 3,000 genes during vegetative
development. GO terms analysis of these genes identified
functional categories such as ‘reproduction’ and ‘flower
development’ as being significantly over-represented in the
list of putative SVP targets (Figure 3c). Similar results
were previously found by Tao et al. [37]. These authors
performed ChIP-chip experiments and identified a total of

328 genes bound by SVP during floral transition [37].
Comparison of the SVP target list of Tao et al. [37] and
the list of targets of SVP at the vegetative stage presented
here showed that only 15 genes are in common between
the two datasets (Additional data file 7, Table S11). This
discrepancy might occur for several reasons. First, Tao et
al. made use of hybridization to Tiling arrays (ChIP-chip)
to identify the genomic regions bound by SVP whereas in
the present study these regions were identified by direct
sequencing. As described previously, the set of peaks iden-
tified by the two technologies can be significantly different
[74]. Second, in the ChIP-chip experiments of Tao and
collaborators [37]SVP was expressed from the constitutive
CaMV35S promoter whereas for the experiments shown
here SVP-GFP was expressed from the native SVP promo-
ter. MADS-domain transcription factors (including SVP)
are expressed in specific tissues and interact with different
partners to bind DNA in a tissue-specific manner [18], so
the ectopic expression of SVP in all plant tissues and cell-
types, as in 35S::SVP plants, may affect the detection of the
binding of this protein to genomic regions in a cell-specific
context. Third, Tao et al. [37] identified SVP targets in 9-
day-old seedlings grown under LDs. In the current study
the vegetative tissue was harvested from SVP::SVP-GFP
svp-41 plants grown for 2 weeks under SDs (see Material
and Methods). SVP interacting proteins might be
expressed differently under these two conditions and
therefore affect the capacity and/or selectivity of SVP to
bind certain genomic regions.
Previously SVP was shown to delay flowering by

directly repressing transcription of FT and SOC1, and
reducing the mRNA level of the FT paralogue TSF
[6,18,19]. Here, direct binding to TSF was not detected
suggesting SVP might repress its transcription indirectly.
FT and TSF are components of the photoperiodic flower-
ing pathway, while SOC1 is activated by FT in the SAM
and acts as a point of convergence of other pathways
[75-77]. Analysis of the flowering-time genes present in
the high confidence list of SVP targets in vegetative tissue
detected other genes acting in the photoperiodic flower-
ing pathway or in the circadian clock that acts upstream
of it. Notably, GI and PRR7 are targets of SVP and both
are involved in the photoperiodic induction of flowering
and circadian clock regulation [78-80]. Both genes are
positive regulators of CO, which in turn activates FT
transcription under long photoperiods. Also the increase
in SVP protein accumulation in the lhy cca1 double
mutant in continuous light, points to a link between SVP
regulation and light/clock signaling [55].
The ChIP-seq data suggest that SVP likely also affects

flowering by other mechanisms. The FT gene is a target
for PRC2 and carries the chromatin mark H3K27me3
[81,82]. Therefore the regulation of PRC2 components
by SVP may have an indirect effect on FT expression.
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Mutations in components of PRC2, such as CLF that
was also identified as a SVP target, cause ectopic expres-
sion of MADS-domain proteins that can then promote
earlier flowering by mechanisms that remain unclear
[83]. Furthermore, PRC2 and other chromatin-related
targets of SVP reduce the expression of FLC [84], which
encodes another MADS-domain protein that is a strong
repressor of flowering and physically interacts with SVP
[18,55,85]. This complex of FLC and SVP also binds
directly to SVP, as discussed later, likely leading to
repression of SVP transcription. Thus SVP appears to
influence flowering time through several pathways that
include chromatin regulation and feedback regulation
on its own expression, as well as direct binding to genes
encoding components of the circadian clock, photoper-
iodic flowering pathway and floral integrators.

SVP binds to genes involved in hormonal pathways
Our ChIP-seq data revealed numerous putative direct
targets of SVP involved in hormonal pathways. SVP
binds to genes involved in auxin, GA, cytokinin, and jas-
monate homeostasis (Additional data file 3, Table S4).
One of these direct targets is STIP, a gene involved in the
maintenance of the pluripotency and proliferation of
meristematic tissue in Arabidopsis [86]. Overexpression
of STIP was shown to partially restore the SAM of the
cytokinin insensitive ahk2-2 ahk3-3 cre1-12 triple
mutants, indicating that STIP acts downstream of CKs in
the establishment of the SAM during early seedling
development [49]. Several studies detected a role for
cytokinins in the promotion of the floral transition [87].
For instance, the mutant altered meristem program 1
(amp1) contains elevated levels of cytokinins and flowers
earlier than wild-type plants [88]. Interestingly, the amp1
mutant rescues the late-flowering phenotype of the gi
mutant, demonstrating that CK is implicated in the LD
pathway downstream of GI [50]. Our qRT-PCR experi-
ments showed that STIP mRNA is induced in svp-41 and
in ft-10 tsf-1 svp-41 (Figure 6a, b). This result indicates
that SVP represses STIP independently or downstream of
the two major photoperiod outputs FT and TSF. In addi-
tion, the induction of STIP in svp-41 correlates with
increased mRNA expression of several cytokinin
response genes, belonging to the type-A ARRs and CRFs
transcription factor families (Figure 6c), in agreement
with the proposed role of STIP in the CK signaling path-
way [49]. Moreover, a significant number of genes de-
regulated in svp-41 were also found to be differentially
expressed in response to BA (Figure 6d). These results
suggest that in the svp-41 mutant the up-regulation of
STIP leads to the activation of the CK signaling pathway.
Additional targets of SVP encode hormonal receptors

such as COI1 that may also explain changes in gene
expression of signaling components of jasmonate (JAZs

genes). Furthermore the auxin responsive genes SAURs
increase in expression in svp-41 mutants, and these
changes may be caused by altered auxin signaling, as
SVP binds directly to genes related to auxin transport,
such as BIG [51]. These effects suggest that the develop-
mental role of SVP is likely to involve complex regula-
tion of hormonal signaling pathways.

Common targets of the dimerizing MADS-box factors
FLC and SVP
MADS-box factors form multimeric complexes that are
proposed to be important in determining their DNA
binding specificity and thereby their function [15,89].
SVP interacts with FLC and they are proposed to repress
flowering as part of a complex that binds to the SOC1
and FT genes [6,18,55,77]. To determine how extensive
the overlap in target genes between FLC and SVP is, we
compared the vegetative SVP ChIP-seq dataset with the
one recently published for FLC [32]. The 112 genes in
common between FLC and SVP high confidence targets
included CYTOKININ RESPONSE 1 (CRE1/CHASE),
supporting a role for both proteins in regulating cytoki-
nin signaling, as discussed above for SVP. However, the
ChIP-seq and ChIP-qPCR experiments suggest that SVP
and FLC bind to different regions of the gene, with SVP
binding in an exon and FLC in the promoter. By contrast,
SVP and FLC bound to the same region on the SVP pro-
moter suggesting that the heterodimer composed of SVP
and FLC could control SVP expression by means of a
feedback loop. Taken together this comparison suggests
that FLC and SVP do bind to many genes in similar posi-
tions, supporting the idea that they often bind to targets
as a heterodimer, however some targets appear to be
bound by only one of the proteins, indicating that they
also have unique targets. Such a conclusion is consistent
with the genetic data, which demonstrated that svp flc
double mutants flower earlier than either single mutant
[18,55].

SVP is linked to meristem function during two phases of
development
Analysis of the subset of SVP targets that is common to
vegetative and reproductive development showed an
enrichment of genes involved in meristem function. Dur-
ing vegetative development the SAM continuously pro-
duces new cells that sustain plant growth by producing
leaves and lateral branches, whereas after its formation
the FM enlarges in an undifferentiated state until late
stage 2, after which floral organ formation is initiated.
WUS has a central role in development of both of these
stages, participating in the maintenance of the vegetative,
inflorescence, and floral meristems [59]. The ChIP-seq
analysis showed that SVP binds to regulators of different
stages of meristem development and some of these
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converge on the regulation of WUS. The WUS expression
domain is restricted to a small group of L3 cells in the
center of the meristem by the action of the CLAVATA
(CLV) genes [57]. Our data show that SVP binds CLV1 in
both vegetative and reproductive tissues and CLV2 in
vegetative tissue. Besides the CLAVATA pathway, other
genes that restrict WUS expression, for instance HD-
ZIPIII and SPLAYED (SYD) [58,90] are also targets of
SVP. In vegetative tissues SVP binds four of the five HD-
ZIPIII genes described in Arabidopsis, PHB, PHV, REV,
and ATHB8, and during flower development SVP binds
PHB. Interestingly, we observed that the patterns of
expression of CLV1 and PHB become broader in the
SAM of svp-41 mutants compared to Col-0 (Figure 7).
These data suggest that SVP influences meristem devel-
opment by directly binding to genes that act at different
levels in the regulatory hierarchy. SVP mRNA abundance
in the SAM falls as it undergoes conversion from a vege-
tative to an inflorescence meristem and this correlates
with the meristem becoming more domed and increasing
in size [18,19]. Reduced activity of SVP in the inflores-
cence meristem might therefore alter the activity of mer-
istem maintenance pathways to compensate for size
differences between the vegetative and inflorescence
meristem.
Similarly, floral meristem activity is under control of

the MADS-box gene AG, which represses WUS expres-
sion after stage 6 of flower development [91]. SVP and
AP1 both repress AG expression in the floral meristem,
which in turn prevents the repressive activity of AG on
WUS. Interestingly, our data show that SVP control
CLV1 activity since it binds directly to its locus, in the
svp-41 agl24 ap1-12 triple mutant CLV1 is upregulated
(Figure 8a) and the induction of SVP-GR result in the
downregulation of CLV1; however the pattern of CLV1
expression is retained (Figure 7 k and l) suggesting a
direct role of SVP in the regulation of CLV1 mRNA
quantity, but not in the spatial boundary. Since CLV1 is
also involved in repressing WUS activity, the deregula-
tion of CLV1 could be the cause of the downregulation
of WUS expression that we detected by in situ (Figure
7m, n). Together these data show that SVP and AP1
secure WUS expression in the floral meristem via two
pathways: the direct repression of AG and through
direct repression of CLV1. This hypothesis is further
strengthened by the observation that in the svp-41 agl24
ap1-12 triple mutant a reduction in floral organ number
was observed [25], which is probably due to a decrease
in meristem size resulting from increased CLV1 activity.
Indeed the analysis of floral meristem size that we per-
formed in this study revealed that in the triple mutant
the FMs are smaller compared to the wild-type (Figure
7q and Table 1) indicating a direct correlation between
SVP action and different WUS regulatory pathways.

Common targets of AP1 and SVP
SVP together with AGL24 and AP1 controls floral meris-
tem identity and these proteins are important to prevent
early expression of floral homeotic genes, such as AP3, PI,
SEP3, and AG in the floral meristem [20]. This repression
of floral organ identity genes involves recruitment of the
LUG-SEU repressor complex by the AP1-SVP heterodi-
mer [25]. As soon as the sepal primordia start to differ-
entiate from the FM SVP expression disappears, probably
due to interaction between AP1 and SEP3, as the latter
starts to be expressed during late stage 2 of flower devel-
opment [92]. Comparison of the gene lists obtained by
ChIP-seq experiments for SVP and AP1 [31] identified a
significant number of common target genes. Since SVP is
strictly expressed in the floral meristem (stages 1 and 2 of
flower development), many of these common targets are
likely regulated during FM formation rather than specifi-
cation of floral organ identity. Notably among these com-
mon targets transcription factors are enriched. These
transcription factors include those involved in meristem
maintenance and development. PHB, KAN1, and ARF3 are
all bound by both SVP and AP1 and are upregulated in
svp-41 agl24 ap1-12 inflorescences and the induction of
SVP-GR result in the downregulation of PHB, KAN1, and
ARF3 suggesting that SVP modulate their activity. PHB,
KAN1, and ARF3 are involved in the regulation of meris-
tem development and floral organ formation [58,93-95].
Interestingly the activity of ARFs proteins is controlled by
convergent auxin flow that is controlled by PIN proteins
and SVP and AP1 bound the genomic region of PIN1,
which is expressed in the IM as well as in the FM. Indeed
the expression level of PIN1 is repressed by SVP. Taken
together, these data suggest that there are interactions
between the different regulatory networks that control FM
formation and differentiation.
Analysis of the SEP3 ChIP-seq dataset revealed that

CLV1, PHB, KAN1, and ARF3 are also bound by SEP3,
which also interacts with AP1 [15]. The expression pro-
files of SVP and SEP3 are mutually exclusive, suggesting
a different modulation of the expression of the same tar-
get genes by SVP and SEP3 during floral meristem spe-
cification and floral meristem differentiation.

SVP targets are enriched in post-transcriptional and post-
translational regulators
Multiple layers of regulation of gene expression play
important roles in plant development. Post-transcrip-
tional regulation can enhance and extend the effects of
transcriptional regulation. The observation that SVP tar-
gets are enriched in genes encoding post-transcriptional
and post-translational regulators indicates that SVP may
affect gene expression not only by directly binding to
target genes and modulating their transcription, but also
by indirectly influencing post-transcriptional regulation.
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Protein ubiquitination influences the stability and
localization of proteins, resulting in the modulation of
their biological functions. Defects in ubiquitination path-
ways can result in abnormal floral organ identity as sug-
gested by the functional analyses of the DCAF1 and
CYP71 genes, which are part of Cullin-RING ubiquitin
ligase complexes [67,96].
SVP binds to a large number of DCAF encoding genes

in FMs suggesting that SVP could be involved in the
control of both proteasome and epigenetically mediated
regulation of floral processes (Additional data file 1,
Table S9). Several SVP targets are linked to chromatin-
mediated regulation, such as two uncharacterized WD40
proteins containing Bromodomains, known to bind
acetylated lysine residues in histones [97]. Thus SVP
likely controls developmental processes by regulating
gene expression directly through transcriptional regula-
tion and indirectly by modulating transcription of genes
encoding post-transcriptional and post-translational
regulators.
It was recently reported that the WDR protein WDR55

is a putative DCAF and may function in a CUL4 -
DDB1WDR55 E3 ligase complex [70]. Interestingly we dis-
covered that WDR55 is a target of SVP, which bound its
genomic locus in inflorescence tissues. Moreover WDR55
results downregulated in svp-41 agl24 and svp-41 agl24
ap1-12 compared to the wild-type inflorescences indicat-
ing that SVP acts as a direct activator of WDR55 expres-
sion in the floral meristem.

The role of WDR55 in floral organ ontogenesis
The analyses of the mutant wdr-55-2 showed variable phe-
notype in flower development such as reduced number of
organs, asymmetric and reduced sepal and petal size, and
occasionally chimeric organs such as petaloid stamens and
carpelloid stamen or sepals. In-situ hybridization analysis
revealed that AG was misexpressed in the wdr55-2 flower.
In wild-type, AG expression is always restricted to the two
inner whorls (whorls 3 and 4). In homozygous wdr55-2
mutant flowers AG expression is detectable earlier than in
wild-type and in all floral whorls. This strongly suggests
that WDR55 is involved in both spatial and temporal regu-
lation of AG. The SVP-AP1 heterodimer is thought to
recruit LUG-SEU and regulate AG expression in early
stages of flower development [25]. We tested if WDR55
could bind any of these proteins but were not able to
show any interaction.
Taken together the overall data indicate that SVP

repress AG expression through two different pathways,
the first is via the interaction with the co-repressor
complex containing LUG-SEU and the dimer SVP-AP1
[25] and the second by SVP controlling the expression
level of WDR55. The floral phenotype of the wdr55-2

mutant is variable and did not result in the deregulation
of AG in all the flowers, this suggests that SVP in the
wdr55-2 background is, although less efficient, still able
to repress AG directly probably via the LUG-SEU
pathway.

Conclusions
In summary, our data indicate that the SVP genome-
wide binding profiles during two distinct developmental
stages show a significant overlap and that this subset of
genes includes a wider set of important regulators of
plant development than was previously realized. How-
ever, there is also a large group of SVP target genes that
are not bound at both stages, clearly reflecting distinct
functions during vegetative and reproductive phases.
The specificity of SVP binding to DNA is probably
influenced by interaction with different MADS-domain
partners, such as FLC and AP1. A related observation
was made for the Drosophila MADS domain protein
MEF2 that is expressed widely during development, but
has specific targets at different stages dependent on the
presence of interacting transcription factors [98]. The
presented data provide new insights into the enormous
diversity of pathways that are regulated by SVP and
forms a basis for detailed analysis of the roles of SVP in
regulating specific genes and pathways in combination
with different interacting proteins.

Materials and methods
Plant material and growth conditions
For ChIP and microarray analysis of vegetative phase,
SVP::SVP-GFP, svp-41 single mutant (for plasmid con-
struction see [20]) and wild-type seedlings were grown
14 days under short-day (SD) conditions (8 h light/16 h
dark) at 22°C. For ChIP and microarray analysis of the
reproductive phase, SVP::SVP-GFP svp-41, triple mutant
svp-41 agl24-2 ap1-12 and wild-type plants were grown
under long-day (LD) conditions (LD; 16 h light/8 h
dark) at 22°C. For the GR induction study the triple
mutant svp-41 agl24-2 ap1-10 was used [24]. All the
plants were from the same Columbia ecotype. The SVP::
SVP-GFP svp-41 transgenic line and triple mutant svp-
41 agl24-2 ap1-12 have been previously described
[20,25]. ft-10 tsf-1 svp-41 and ft-10 tsf-1 were described
previously in Jang et al. [19]. The wdr55-2 (WiscD-
sLox430F06) line is in the Col-0 ecotype and is a T-
DNA insertion mutant obtained from the Nottingham
Arabidopsis Stock Centre [99]. Seeds were surface steri-
lized using EtOH, bleach and Tween20 before germi-
nated on MS media [100] supplemented with 2% sucrose
(MS-2) and glufosinate-ammonium for BASTA selection
of wdr55-2 plants. All seeds were stratified on MS-2
plates at 4°C O.N. before being transferred to 18°C for
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about 12 days until germination. The seedlings were
eventually transferred to soil and grown at 18°C under
LD conditions (16 h).

ChIP assays
For ChIP experiments, the commercial antibody GFP:
Living Colors_ full-length A.v. polyclonal antibody was
used (Clontech [101]). Chromatin was prepared from
inflorescences (2 weeks after bolting) and from 14-day-
old seedlings of svp, grown under SD conditions. Wild-
type plants (inflorescences and seedlings) were used as
negative controls. ChIP assays were performed as pre-
viously described by [20] and in Additional data file 1,
Methods S1 with a minor modification in the sonication
step. DNA samples were sonicated six times 30 s each
with amplitude 30 to 40, with intervals of 1 min (100-
500 bp range fragments obtained).
We used as a positive control for the ChIP in the

reproductive phase a region of the AG second intron
(AG.V) that previously has been demonstrated to bind
SVP-GFP [20]. For the vegetative phase we used regions
in FT bound by SVP [18] (Additional data file 1, Figure
S1). Enrichment fold to evaluate the quality of each
ChIP sample was tested by qRT-PCR as described in
Additional data file 1, Methods S2, all the primers used
for ChIP-qPCR are in Additional data file 1, Table S12).

Sample preparation for ChIP-seq Illumina/Solexa
sequencing
Two independent ChIP experiments (enrichment fold
controlled by real-time PCR) were used for vegetative
and reproductive ChIP-seq assays, respectively. We used
one ChIP DNA sample for each library preparation and
these were run on the Genome Analyzer. The DNA
quantification of immunoprecipitated DNA was per-
formed with the Quant-iT dsDNA HS Assay Kit (Invi-
trogen). Libraries for Solexa sequencing were prepared
following the Illumina kit protocol, with some modifica-
tions. The first step ‘Perform End Repair’ was repeated
twice, adding fresh enzymes and incubating 1 h longer
than indicated by the protocol. Two units of undiluted
Klenow enzyme was used. The incubation time of the
step ‘Ligate adapters to DNA fragments’ was prolonged
to 1 h instead of 15 min. Each library was validated
quantifying the DNA with Quant-iT dsDNA HS Assay
Kit (Invitrogen).

Read mapping and identification of enriched regions
Sequence reads were mapped to the unmasked Arabi-
dopsis genome (TAIR8 build) using the Seqmap tool
[102], allowing at most two mismatches at any position.
Trimming unmapped reads at the 5’ or 3’ end led to
marginal improvements in the number of reads mapped,
and this step was therefore skipped. Reads belonging to

duplicate experiments in each of the three conditions
were pooled together. Only reads mapping to a unique
position on the genome were considered for further
analysis. This resulted in about 3 million uniquely
mapped reads for the two inflorescences experiments, 5
million for seedlings experiments, and 6 million for con-
trol experiments. In each experiment, uniquely mapped
reads were extended by 300 bps along the 5’->3’ direc-
tion. This resulted in a base pair by base pair coverage
map of the genome, that is, giving for each base pair the
number of extended sequence reads that contained it.
Only base pairs covered by reads mapping on both
strands were considered valid for further analysis.
Enrichment was then calculated in each valid base pair
by comparing, for each IP experiment, the coverage in
the experiment to the coverage in the control used as
expected value, and computing an enrichment P value
with a negative binomial distribution. In each compari-
son, the coverage of the two samples was normalized
according to the number of reads obtained in each.
Enriched regions were then defined as regions consisting
of consecutive base pairs characterized by calculated P
values <0.01 and not interrupted by a gap of 100 or
more base pairs that were either non-valid or with a P
value >0.01. The P value associated with each of these
regions was defined as the minimum P value among the
base pairs belonging to the region. Regions <150 bps
were then discarded regardless of the P value. The num-
ber of remaining candidate-enriched regions was finally
used to compute a Bonferroni corrected P value to be
associated to the regions themselves. The overall strat-
egy we followed in our analysis for the identification of
enriched regions is highly similar to the one adopted in
the SEP3 and AP1 ChIP-Seq experiments [13,31] and in
the CSAR peak-finding tool [41], which has been shown
to be better suited for ChIP-Seq experiments in Arabi-
dopsis. P values for enrichment were computed by using
a negative binomial distribution instead of the Poisson,
as the former provides a better fit to count data from
ChIP-Seq experiments [103]. Also, we employed a more
conservative Bonferroni correction for multiple testing
aimed at minimizing the number of false positive
predictions.
Starting from regions with corrected P values <0.01,

potential target genes were then identified by associating
with each gene an overall P value given by the product
of the P values associated with the single binding
regions located in its gene locus, from 3 kbps upstream
of the transcription start site to 1 kbp downstream of
the transcribed region. Protocols of ChIP, DNA extrac-
tion, sequencing preparation, data processing, and all
the associated files to this study can be found in the
GEO (Gene Expression Omnibus) database (ID:
GSE33120).
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Tiling array experiments
The vegetative tissue samples were obtained from aerial
parts of the svp-41 single mutant and wild-type seedlings
grown for 2 weeks under SD conditions (8 h light/16 h
dark) and harvested at zeitgeber 8 (ZT8). For the repro-
ductive tissue sampling we used wild-type and svp-41
agl24-2 ap1-12 triple mutant inflorescences grown for 2
weeks under SD conditions and then moved to LD condi-
tions (16 h light/8 h dark). The inflorescences were col-
lected at 2 weeks after bolting at ZT8. RNA from three
independent biological replicates was extracted using the
RNA Plant Mini kit, QIAGEN (www1.qiagen.com/) and
quantified by NanoDrop; 1 μg of total RNA was reverse
transcribed into cDNA using an oligo(dT)-T7 primer,
and was then converted into cRNA and linearly amplified
by T7 in-vitro transcription reaction using the standard
Ambion protocol (MessageAmp aRNA Kit, Ambion).
cRNA was then reverse transcribed with random primers
to dUTP-containing ds cDNA (WT ds cDNA Synthesis
Kit, catalog no. 900813; Affymetrix). Fragmentation and
labeling was performed with the GeneChip WT double-
stranded DNA Terminal Labeling Kit (catalog no.
900812, Affymetrix). After fragmentation, 7.5 ug of ds-
cDNA was hybridized for 16 h at 45°C on GeneChip Ara-
bidopsis Tiling 1.0R Array. GeneChips were washed and
stained with Fluidics Script FS450_0001 in the Affymetrix
Fluidics Station 450. Then, the GeneChips were scanned
using the GeneChip Scanner 3000 7G. Data were pro-
cessed in R as described in [104]. Probe-level data were
pre-processed using the RMA algorithm implemented in
the Bioconductor package Affy. Linear models and
empirical Bayes methods from the Limma package of
Bioconductor were applied to derive a P value, false dis-
covery rate (FDR; P adjusted), and mean of log2-based
ratio across replicates. The data were deposited in the
GEO (Gene Expression Omnibus) database (ID:
GSE32397).

Gene Ontology analysis
The Bingo 2.44 plug-in [105] implemented in Cytoscape
v2.81 [106] was used to determine and visualize the GO
enrichment according to the GOslim categorization. A
hypergeometric distribution statistical testing method
was applied to determinate the enriched genes and the
Benjamini and Hochberg FDR correction was performed
in order to limit the number of false positives. The FDR
was set up to 0.001 and 0.05 for the ChIP-seq and
expression data, respectively. In addition to Bingo 2.44,
further GO annotation analysis of the targets of SVP was
performed by using TAIR bioinformatics resources [107].

cDNA preparation and qRT-PCR analysis
Expression analyses in the vegetative phase was per-
formed using the svp-41 single mutant, 35S::SVP and

wild-type seedlings grown for 2 weeks under SD condi-
tions; for the reproductive phase we used wild-type and
svp-41 agl24-2 ap1-12 triple mutant inflorescences
grown for 2 weeks under SD conditions and then
moved to LD conditions. The inflorescences were col-
lected at 2 weeks after bolting.
Total RNA from three biological replicates was

extracted with the LiCl method, and its integrity was
checked on agarose gels. The samples were treated with
DNase (TURBO DNA-free; Ambion [108]) and reverse
transcribed according to the ImProm-II_ Reverse Tran-
scription System (Promega [109]) instructions. Sequence
primers for RT-PCR amplification are listed in Addi-
tional data file 1, Table S13. Ten-fold dilutions of cDNA
were tested in RT-PCR and qRT-PCR experiments using
reference genes.
Enrichment folds were detected using a SYBR Green

assay (Bio-Rad [110]). The real-time PCR assay was per-
formed in triplicate using a Bio-Rad C1000 Thermal
Cycler optical system or LightCycler480 (ROCHE) ther-
mal cycler. For expression analyses normalized expres-
sion was calculated using the delta-delta Ct method
(DDC(t)). For ChIP experiments, relative enrichment
was calculated as described in Additional data file 1,
Methods S2. For the expression analysis ubiquitin,
PEX4, and PP2a-F were used as reference genes.

In-situ hybridization
In-situ hybridization has been performed as described in
Additional data file 1, Method S3. The WUS antisense
probe has been cloned according to Brambilla et al. [111].
The ARF3 antisense probe has been cloned in the pGEM-
T easy using the primers FW-CCCATCTGTATCAT-
CATCACC and REV- CTCTCATTGCATAGATGTCC.
The KAN1 antisense probe has been cloned in the pGEM-
T easy using the primers FW- AAGACCACTAA-
CAAGCCTGC and REV- CATTTCTCGTGCCAATC
TGGTC. The CLV1 antisense probe has been cloned
according to Clark et al. [60]. The PHB antisense probe
has been cloned in the pGEM-T easy using the primers
FW-GGTAGCGATGGTGCAGAGG and REV- CGAAC-
GACCAATTCACGAAC. Sections were observed using a
Zeiss Axiophot D1 microscope (Zeiss [112]) equipped
with differential interface contrast (DIC) optics. Images
were captured on an Axiocam MRc5 camera (Zeiss) using
the AXIOVISION program (version 4.4).

Scanning electron microscopy
SEM has been performed as described in Additional
data file 1, Method S4.

Inducible expression experiments
The p35S::SVP-GR construct was produced as follows: the
coding region of SVP was amplified from inflorescence
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cDNA using primers Fw-CGTTGCCATGGCGAGAGAA
AAGAT and Rev- ATTGTTCGGATCCCCACCACCA-
TACGG containing NcoI and BamHI sites, respectively,
cloned into pGEM-T easy (Promega), digested with NcoI
and BamHI and ligated into pBluescript SK (Stratagene)
containing a portion of the rat glucocorticoid hormone
binding domain (a.a 508-795 [61]) to produce pSK-SVP-
GR. The AG-GR fragment was amplified from the pSK-
SVP-GR using the primers For and Rev and subcloned
into the pTOPO vector (Life Technology). Finally SVP-GR
was subcloned into the Gateway destination vector
pB2GW7.0 [113] containing the 35S promoter. p35S::SVP-
GR was transformed in svp-41 agl24-2 ap1-10 background
(ap1-10 heterozygous) and the T1 generation was selected
for BASTA resistance.
After bolting, inflorescences of 35S::SVP-GR svp-41

agl24-1 ap1-10 plants were treated with a solution con-
taining 10 μM dexamethasone (Sigma-Aldrich), 0.01%
(v/v) ethanol, and 0.015% (v/v) Silwet L-77. Mock treat-
ment consist of 0.01% (v/v) ethanol, and 0.015% (v/v)
Silwet L-77.
For each time point, tissue from eight plants was col-

lected. Tissue was removed as close to the surface of
the inflorescence as possible to ensure an enrichment of
FM cells.

Appendix
Accession numbers
Arabidopsis Genome Initiative locus identifiers for the
genes mentioned in this article are as follows: AGL24
[TAIR:AT4G24540], STK [TAIR:AT4G09960], AP3
[TAIR:AT3G54340], FLC [TAIR:AT5G10140], SVP
[TAIR:AT2G22540], JAZ6 [TAIR:AT1G72450], AGL16
[TAIR:AT3G57230], SOC1 [TAIR:AT2G45660], CLV1
[TAIR:AT1G75820], PIN1 [TAIR:AT1G73590], ARF3/
ETT [TAIR:AT2G33860], KAN1 [TAIR:AT5G16560],
PHB [TAIR:AT2G34710], JAZ7 [TAIR:AT2G34600],
SADHU [TAIR:AT3G42658], JAZ8 [TAIR:AT1G30135],
GA2ox6 [TAIR:AT1G02400], ARR6 [TAIR:AT5G62920],
ARR7 [TAIR:AT1G19050], DDF1 [TAIR:AT1G12610],
GA2ox2 [TAIR:AT1G30040], miR167 [TAIR:AT1G31173],
ACD6 [TAIR:AT4G14400], AP1 [TAIR:AT1G69120],
WDR55 [TAIR:AT2G34260], VRN2 [TAIR: AT4G16845],
CLF [TAIR: AT2G23380], SWN [TAIR: AT4G02020], GI
[TAIR: AT1G22770], FLK [TAIR: AT3G04610], FLD
[TAIR: AT3G10390], PRR7 [TAIR: AT5G02810], PHYA
[TAIR: AT1G09570], STIP [TAIR: AT2G33880], ARR11
[TAIR: AT1G67710], ARR5 [TAIR: AT3G48100], ARR15
[TAIR: AT1G74890], CRF2 [TAIR: AT4G23750], CRF5
[TAIR: AT2G46310], PHV [TAIR: AT1G30490], REV
[TAIR: AT5G60690], ATHB8 [TAIR: AT4G32880],
ATBARD1 [TAIR: AT1G04020], KAN2 [TAIR:
AT1G32240], LMI1 [TAIR: AT5G03790], DCAF1 [TAIR:

AT4G31160], JAZ5 [TAIR: AT1G17380], JAZ10 [TAIR:
AT5G13220], JAZ1 [TAIR: AT1G19180]

Additional material

Additional data file 1: contains: Figure S1: Analysis of chromatin
sample used for ChIP-seq experiments. Figure S2: qRT-PCR validation of
differentially expressed genes between Col-0 and svp-41 plants at the
vegetative phase. Figure S3: GO enrichment analysis of differentially
expressed genes between Col-0 and svp-41 plants at the vegetative
stage. Figure S4: Venn diagram containing the overlapping set of
putative targets between SVP and FLC and SVP, AP1, and SEP3. Figure
S5: Biologically active SVP-GR fusion. Figure S6: Flower organs of in
wdr55-2 -/- mutants show reduced size and asymmetric positioning.
Figure S7: In-situ hybridization of wild-type and wdr55-2 inflorescence
using AP3 and PI probes. Figure S8: Flower morphology of wdr55-2 ag-1
mutant. Table S1: Summary of sequencing and mapping. Table S3: List
of putative targets of SVP related to flowering time. Table S6: List of
genes differentially expressed in svp-41 compare to Col-0 and related to
auxin, cytokinin, or jasmonate homeostasis. Table S9: List of WDxR motif
containing proteins found in SVP DNA binding screen. Table S10:
Flower organ count from wdr55-2 -/- mutants. Table S12: Primer pairs
used for ChIP-qPCR assays. Table S13: Primer pairs used for the qRT-PCR
expression analysis. Methods S1: ChIP protocol. Methods S2: qRT-PCR.
Methods S3: In-situ hybridization. Methods S4: Scanning electron
microscopy.

Additional data file 2: contains Table S2: High confidence targets of
SVP in vegetative and reproductive tissues; list of the targets of SVP
bound in both vegetative and reproductive tissues; lists of binding
regions of SVP in vegetative and reproductive tissues.

Additional data file 3: contains Table S4: Lists of putative SVP targets
with annotated functions in: meristem development in vegetative and
reproductive tissues; response to hormonal stimuli such as auxin,
cytokinin, ethylene, abscisic acid, jasmonate, and gibberellins in
vegetative tissue.

Additional data file 4: contains Table S5: Tiling array expression data
obtained using RNA extracted from: wild-type Col-0 and svp-41 plants at
the vegetative stage, inflorescences of wild-type Col-0 and svp-41 agl24
ap1-12 and overlap between tiling array and ChIP-seq data.

Additional data file 5: contains Table S7: Lists of differentially
expressed genes in svp-41 mutant and the available expression-profiling
data of seedlings treated with the CK benzyladenine (BA).

Additional data file 6: contains Table S8: putative targets for both SVP
and AP1 and putative targets for both SVP and SEP3.

Additional data file 7: contains Table S8: Comparison of the SVP
target list of Tao et al. [37] and the list of high confidence targets of SVP
in vegetative tissue presented in this study.
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Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain
multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated
with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to
overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions.
Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid
genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also
investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity
and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we
found a highly significant linear correlation betweenmtDNA copy number estimated by qPCR and the frequency
of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with
mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respira-
tory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in
diverse cell-types, tissues and pathological conditions or in response to specific treatments.

© 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
1. Introduction

Mitochondria play a range of critical roles in the life of eukaryotic
cells (Pesole et al., 2012). They are the commonly referred to as the
“power-stations” of the cell—for their provision of ATP through oxida-
tive phosphorylation (OXPHOS), but they are also responsible for the
biosynthesis of numerous macromolecules (lipids, proteins and nucleic
acids) and contribute to the regulation of apoptosis, cell proliferation
andmotility. Individual cells, tissues and organs have distinct metabolic
profiles and energy demands, which can change in response to environ-
mental stimuli, alteration of physiological status or the onset of patho-
logical conditions (Kunz, 2003; Leary et al., 1998; Leverve and
Fontaine, 2001; Pfeiffer et al., 2001). Variation in mitochondrial respira-
tory capacity between tissues is also related to mitochondrial function,
protein composition and morphology (Benard et al., 2006; Johnson
et al., 2007a, 2007b; Mootha et al., 2003; Pagliarini et al., 2008).
70125 Bari, Italy. Tel.: +39

ch Society. All rights reserved.
Mitochondria are endowed of their own genetic system (mtDNA), a
legacy of the endosymbiotic event that can be considered to represent
the origin of eukaryotes and which occurred some 1.5–2 billion years
ago (Lane and Martin, 2010). In mammals, the mitochondrial genome
(mtDNA), a double stranded circular macromolecule, of around 16.5
kbp in length, is uniparentally inherited from the mother. Numerous
mitochondria, each with multiple copies of the mtDNA, are present in
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A comprehensive vision of tissue- and pathology-related variability
in mtDNA copy number per cell is lacking and few studies have
attempted to correlate mtDNA copy number with mitochondrial mass,
respiratory activity or mitochondrial gene expression levels.

We previously demonstrated that off-target reads from human
whole-exome sequencing (WES) can be used to assemblemitochondri-
al genomes (Picardi and Pesole, 2012). Here, we investigate if the rela-
tive abundance of mtDNA reads obtained by WES experiments may be
a reliable indicator of the effective mtDNA copy number per diploid
genome, and whether and how mtDNA copy number correlates with
global mitochondrial gene expression levels measured by RNA-Seq.

In the current study, we have estimated mtDNA copy number by
qPCR (Venegas et al., 2011) as well as by the proposed WES-derived
protocol for liver, kidney, brain, lung, muscle and heart samples from
three age- and sex-matched human individuals. All samples were also
subjected to whole transcriptome sequencing as well as to citrate syn-
thase and cytochrome oxidase assays.

A highly significant linear correlation between qPCR data and the
frequency of mtDNA off target reads imply that, in addition to allowing
the reconstruction of complete or nearly complete mitochondrial
genomes (Picardi and Pesole, 2012), WES data permit accurate quanti-
fication of mtDNA copy number. Furthermore, mtDNA copy number
showed highly significant correlation with mitochondrial gene expres-
sion levels as measured using RNA-Seq as well as with key functional
data. The relative abundance of distinct mtDNA-derived transcripts
was tissue-specific and highly replicable.

2. Materials and methods

2.1. Samples and nucleic acids extraction

Six different post-mortem human snap-frozen tissues (brain, liver,
lung, striated muscle, kidney and heart) from three unrelated healthy
Caucasian individuals (males, aged 47–54 years) were obtained from
Cureline (South San Francisco, CA, USA).

The three sample IDs are S7/11, S12/12 and S13/12, and all sample
details are reported in Supplemental Table S1.

DNA was purified using the DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany) according to the manufacturer's instructions, quanti-
fied and qualitatively checked on NanoDrop 2000c (Thermo Fisher
Scientific, USA).

Total RNA was purified using the RNeasy Plus Mini Kit (Qiagen,
Hilden, Germany), according to the manufacturer's instructions. RNA
quality was assessed on Agilent Bioanalyzer 2100, obtaining RIN (RNA
Integrity Number) values ranging from 5 to 7, that were considered
acceptable for RNA derived from post-mortem tissues.

2.2. Quantification of mtDNA content

RelativemtDNA copy numberwasmeasured by qPCRwith SYBR de-
tection using primers specific for the mitochondrial tRNA Leu(UUR) gene
and the single copy nuclear ß-2-microglobulin (ß2M) gene (Venegas
et al., 2011). All reactions were performed using 5 ng of total DNA as
template on a ABI Prism 7000 sequence detector system (Applied
Biosystems, Foster City, CA, USA), according to this two-step thermal cy-
cling protocol: 50 °C for 2 min (UDG pre-treatment); 95 °C for 10 min
(initial denaturation); 40 cycles at 95 °C for 15 s and 62 °C for 1 min,
followed by a melting curve analysis (95 °C for 15 s, 60 °C for 30s and
95 °C for 15 s) to verify the specificity and identity of the PCR product.
Primers sequence, amplicon size and annealing temperature are report-
ed in the Supplemental Table S2.

The intensity of SYBR fluorescent signals were then analyzed by the
SDS software (version 1.2.3), and the CT value for each qPCRwas used to
calculate the mtDNA content by difference in CT values between the
tRNA Leu(UUR) and ß2M genes (ΔCT). mtDNA content was obtained
using the formula 2 × 2-(ΔCT). Results represent the average of three
independent experiments performed on the same DNA preparation
and are shown with standard deviations.

2.3. Exome sequencing and mtDNA assembly

Exome capture was performed using the TruSeq Exome Enrichment
Kit (Illumina, San Diego, CA), according to the manufacturer's instruc-
tions. Briefly, for each tissue, a DNA library, including inserts ranging
in size from 200 to 400 bp approximately, was prepared using the
TruSeq DNA Sample Prep kit (Illumina). Then, each library was
hybridated with biotinylated probes targeting the exonic regions
(about 200,000 exons, covering about 62 Mb of the human genome).
After two steps of enrichment with the probes, the captured exonic
regions were sequenced on the Illumina HiSeq 2000 sequencer, at IGA
Technology Services in Udine (Italy), generating for each tissue approx-
imately 40 million of 100 bp paired-end reads.

Exome reads were mapped onto the Revised Cambridge Reference
Sequence (rCRS with GenBank accession number NC_012920) of
human mtDNA (Andrews et al., 1999) using GSNAP program version
2013-07-14 (Wu and Nacu, 2010) since it enables the handling of circu-
lar genomes.

Aligned reads were mapped again onto the complete human ge-
nome (assembly hg19 including the rCRS sequence) using GSNAP in
order to exclude read pairs also mapping on nuclear mitochondrial
DNA sequences (i.e., Numts) (for further details see Picardi and Pesole,
2012). The complete mapping procedure was automated by using a
custom python script (mapExome.py), available upon request.

Mitochondrial reads in SAM format were converted into BAM and
then pileup format using samtools (version 0.1.18) (Li et al., 2009).
The final pileup file was parsed position-by-position in order to calcu-
late the distribution of nucleotides aligned at each position, removing
bases with a quality score less than 25. For each position of the rCRS
sequence, supported by at least 5 independent reads, the consensus
base was calculated using a minimum confidence level of 0.75.

Contiguous consensus positionswere grouped in contigs and assem-
bled into a final mitochondrial genome using a custom python script
previously developed in our group (Picardi and Pesole, 2012).

The relative amounts of off-target mtDNA reads were calculated as
the number of reads mapping on mtDNA per million mapped reads.

2.4. Strand-oriented RNA-Sequencing and analysis

For each tissue, a strand-oriented RNA library was prepared to pre-
serve information about which DNA strand was the original template
during the synthesis of transcripts, thus offering strand orientation for
detection of antisense transcription and providing information about
regulatory relationships.

The cytoplasmatic rRNA removal was performed for each total RNA
sample using the Ribo-Zero rRNA removal Kit (Epicentre, Madison,
WI, USA). The rRNA-depleted RNA was used to prepare the stranded-
oriented RNA-seq library using the TruSeq Stranded Total RNA Sample
Prep Kit (Illumina, San Diego, CA, USA), according to themanufacturer's
instructions. Briefly, each RNA was chemically fragmented prior to the
random priming reverse transcription reaction for first strand cDNA
generation. The fragmentation step resulted in an RNA-seq library in-
cluding inserts ranging in size from approximately 100–400 bp. During
the second-strand synthesis, dUTP was incorporated in place of dTTP,
thus preventing amplification of this strand during the subsequent
PCR step and retaining strand information. cDNA libraries were
sequenced on the Illumina HiSeq 2000 platform at IGA Technology Ser-
vices in Udine (Italy), generating for each tissue sample approximately
from 27 to 35 million 100 bp paired-end reads.

In order to investigate the expression level of mitochondrial-
encoded transcripts, we used the reference annotation in Supplemental
Table S3, which also includes long non-coding RNAs (Rackham et al.,
2011).
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No reads that could be attributed uniquely to mature tRNAs were
mapped, as expected, as the procedure used for the RNA extraction
does not provide an enrichment for transcripts b200 nucleotides long
(such as miRNAs and tRNAs).

Sequences were first mapped against the human genome (hg19)
using Tophat with default parameters, with a percentage of mapped
reads in the different samples ranging from 88% to 94%. Sequence read
pairs that mapped on mtDNA as a correct forward-reverse pair, with a
maximum insert size of 1000 bpwere considered to be initialmitochon-
drial candidate reads.

As expected, a non-negligible fraction of the latter (about 8% of the
sequence pairs) resulted to be mapped on Numt regions of the nuclear
genome as well, either as a singleton (only one of the two reads map-
ping), as a chimeric pair mapping on different nuclear chromosomes,
or as a pair on the same chromosome. Since having a correct estimation
of the number of sequence reads that could be reliably assigned tomito-
chondrial geneswas essential for this study, we further investigated this
issue. A comparison of matching against the mitochondrial and the nu-
clear genomes revealed that for more of the 90% of the ambiguously
mapped sequence pairs a match was found for only one of the two
paired reads on the nuclear genome. Only about 1% of the reads map-
ping as paired on the mitochondrial genome was mapped on Numts
as correct forward–reverse pair, however with a number of mismatches
equal to or greater than the one resulting from the mapping on the
mitochondrion.

All in all, these results show how mapping ambiguity between the
Numt sequences and the mitochondrion can be resolved by employing
paired-end sequences. All reads mapping as a correctly oriented pair on
the mitochondrial sequence can be considered for further analyses
independently of mapping on the nuclear genome.

Starting from reads mapped on the mitochondrial genome, expres-
sion of genes was estimated by using the annotation summarized in
Supplemental Table S3. Sequence reads were assigned to a gene when
both sequence reads were completely contained within the gene
boundaries and were assigned by directional sequencing to the same
strand. Reads per kilobase per million (RPKM) values (Mortazavi et al.,
2008) were then computed starting from these counts.

RNA–DNA variations were detected using REDItools (Picardi and
Pesole, 2013).

2.5. Tissue homogenate preparation

The PBI-Shredder, an auxiliary high-resolution respirometry (HRR)
Tool, was used to prepare homogenate—in 0.2 M phosphate buffer
(pH 8.0)—of frozen tissue specimens (Draxl et al., 2013), with high
reproducibility of mitochondrial function as evaluated with HRR by
means of Oxygraph-2 k OROBOROS®. Homogenate protein content
was determined according to (Waddell, 1956) with bovine serum albu-
min used as a standard.

2.6. Enzymatic activity measurements

Citrate synthase (CS) and cytochrome c oxidase (COX) activities
were measured by spectrophotometric standard methods. Each assay
was performed at least in triplicate by using homogenate tissues sub-
jected to three freeze–thaw cycles to disrupt membranes and expose
mitochondrial enzymes.

The reduction of 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) by CS at
412 nm (extinction coefficient is 13.6 mM−1 cm−1) was followed in a
coupled reaction with coenzyme A and oxaloacetate (Robinson and
Srere, 1985). A reaction mixture of 0.1 mM acetyl-coenzyme A, 0.2%
Triton-x-100, 0.1 mM DTNB and 20–40 μg of homogenate protein was
incubated at 25 °C for 5 min. The reaction was initiated by the addition
of 0.5 mM oxaloacetate. Results are expressed as nanomoles CoA
formed per minute per mg homogenate protein.
COX activity wasmeasured by following the decrease of absorbance
at 548–540 nm (extinction coefficient is 19.1 mM−1 cm−1), due to the
oxidation of 40 μM ferrocytochrome c (reduced with substoichiometric
concentrations of potassium ascorbate), for 90 s at 25 °C (see (Bobba
et al., 2013)). Very stringent controls, including (i) test with cyanide,
(ii) adequate homogenate proteins used for the reaction and (iii) gel-
filtration of the reduced cyt c (in a superfine Sephadex G-25 column)
to remove both excess of reductant and dimeric/multimeric form of
cyt c, which per se can inhibit the reaction itself were performed to as-
sure correct estimates of the Cox assay. Time-dependent absorbance
changes were recorded with a Jasco double-beam/double-wavelength
spectrophotometer UV-550. The rate of ferrocytochrome c oxidation,
obtained as tangents to the initial part of the progress curves, is
expressed as nanomoles cyt cox formed per minute per mg homogenate
protein.

Data were expressed as means ± standard deviation (S.D.) (n N 3)
and analyzed with SPSS software by 1-way analysis of variance
(ANOVA) for repeated measures followed by the post hoc Bonferroni
test for multiple comparisons. Statistical differences were determined
at P b 0.05.

3. Results

3.1. mtDNA copy number per diploid nuclear genome determined by qPCR

We measured the relative mtDNA copy number in six tissue types
(brain, lung, kidney, liver, heart and skeletal muscle) from three unre-
lated individuals (S7/11, S12/12 and S13/12) by qPCR. The highest
mtDNA copy number was observed in heart tissue, followed by skeletal
muscle, brain, liver, kidney and lung (Fig. 1 and Supplemental Table S4)
consistent with the hypothesis that tissues with higher ATP require-
ment should show higher mitochondrial copy number. Differences in
mtDNA content between the three subjects are particularly evident in
brain and muscle. The low mtDNA copy number observed in the brain
individual S13/12 could be related to the cause of death (asphyxia),
while the differences observed in muscle might reflect heterogeneous
relative content of nuclei and mitochondria between muscle fibers or
to different levels of habitual physical activity among the three sampled
subjects.

3.2. Correlation betweenmtDNA copy number and unspecific enrichment of
mtDNA reads

To evaluate whether the relative abundance of mtDNA reads among
off-target exome enrichment reads was a reliable and effective estima-
tor of mtDNA copy number, we generated and analyzed whole exome
sequencing (WES) data for each of the 18 samples (Supplemental
Table S5). The relative number of mtDNA reads among off-target WES
reads was calculated using previously published methods (Picardi and
Pesole, 2012). Bivariate linear correlation between mtDNA copy num-
ber and the relative amount of off-targetmtDNA reads (Fig. 2)was high-
ly significant (r2 = 0.92, P b 0.0001) confirming the effectiveness and
reliability of the proposed approach for quantifying mtDNA copy
number.

3.3. Nucleotide variants in assembled mtDNA sequences

For each tissue and individual, we assembled a complete mtDNA
from whole exome reads (see Methods). Analysis of mtDNAs did not
show significant somatic variations between different tissues of the
same individual. Using stringent criteria (minimal coverage of 50
reads and a base variation frequency higher than 10%), we found
heteroplasmy higher than 90% at position 310 of the D-Loop (T-to-C)
in two of the three individuals. These observations were supported by
the corresponding RNA-Seq data (Supplemental Table S6). The strin-
gent filters employed were imposed to minimize false-discovery rate



Fig. 1. Relative mtDNA copy number in six tissues of three individuals (S7/11, S12/12 and S13/12) calculated by qPCR. Values represent the average of three independent experiments.
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butmight lead to the exclusion of poorly supported heteroplasmic sites.
Relaxing the variation frequency, we also detected low frequency (5%)
heteroplasmy at position 310 in the third individual as well as an addi-
tional low-frequency heteroplasmic position at D-Loop position 72 (T-
to-C) in one individual (Supplemental Table S6). Both of these D-Loop
variant positions are annotated as heteroplasmic sites in MITOMAP
(Ruiz-Pesini et al., 2007).

Sample matched comparisons between DNA (from whole exome)
and RNA (fromRNA-Seq)mitochondrial readswere used to identify po-
tential post-transcriptionalmodification events. Only changes occurring
at DNA homoplasmic sites with frequencies higher than 10% at the RNA
level were considered. We observed tissue-specific nucleotide varia-
tions in four positions, three in heart and one in brain, consistently
shared by all three individuals (Supplemental Table S7). Positions
1955 and 2617 (heart) were with the 16S rRNA, whereas site 905
(heart) fell in the 12S rRNA. Notably, at position 2617, we identified
both A-to-U and A-to-G changes as previously reported (Bar-Yaacov
et al., 2013). Position 8303 falls within the lysine tRNA and is found
here for the first time as a target of a post-transcriptional modification
Fig. 2. Linear correlation between themtDNA copy number in the six tissues of three individuals
calculated performing a bivariate linear fit analysis (P b 0.0001). The amount of off-target mtD
Supplemental Table S5).
event supported by RNA-Seq reads likely derived from polycistronic
pre-processed transcripts which might include tRNAs (Nardelli et al.,
1994). In this site both A-to-U and A-to-G changes were observed, but
only in brain tissue. An additional RNA–DNA difference at position
295, described by Bar-Yaacov et al. (2013), was also observed in our
samples, although not in all individuals and tissues because of the strin-
gent filters employed (data not shown).

3.4. Determination of mitochondrial mass and tissue energy requirement

Citrate synthase (CS), a component of the tricarboxylic acid cycle, is
a stably expressed mitochondrial matrix enzyme. Its specific activity
is frequently used as an indicator of total mitochondrial mass
(Figueiredo et al., 2008; Sarnat and Marín-García, 2005; Kirby et al.,
2007). Cytochrome oxidase (COX) activity is often employed as amark-
er of OXPHOS activity since this enzyme (complex IV) constitutes the
last step in the respiratory chain (RC), likely limiting its electron flux
(Capaldi, 1990; Kunz et al., 2000; Larsen et al., 2012; Mazat et al.,
2001; Villani and Attardi, 1997, 2000; Villani et al., 1998). To evaluate
(S7/11, S12/12 and S13/12) and off-targetmtDNA reads of whole exome sequencing data,
NA reads has been calculated as the number of mtDNA reads per million WES reads (see
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variation in mitochondria content and respiratory capacity, CS and COX
activities were determined spectrophotometrically in total homoge-
nates from all 18 samples.

Significant variation in CS and COX activities (normalized by the
total homogenate protein content) were observed between tissues as
well as between individuals (ANOVA). Tissue-dependent differences
again reflected known differences in energetic demands between tis-
sues with heart, the organ that consumes most energy per mass unit
(Goffart et al., 2004; Van den Bogert et al., 1993), showing the highest
CS and COX specific activities with values 4- to 12-fold and 1.2- to
2fold respectively higher than other tissues (Table 1).

Knowing the amount of nuclear DNA (nDNA) andmtDNA per mg of
protein lysate of the same tissue specimens, it was possible to normalize
the CS and COX enzymatic activities per nDNA and mtDNA. Table 1
shows that CS activity/nDNA ratio varies greatly between tissues, again
reflecting the tissue-specific differences in mitochondrial activities. As
expected, the heart shows the highest ratio in all three individuals, in
accordance with mtDNA relative abundance values and evidence that
it has the highest mitochondrial content per cell (Fernandez-Vizarra
et al., 2011). Moreover, the CS activity/mtDNA also differs markedly
between samples, with higher values for heart, skeletal muscle and
brain (Table 1).

The highest COX activity/nDNA values were also associated with
high energy-requirement tissues. However, COX activity/mtDNA values
were, while variable, somewhat more consistent.

3.5. Correlation betweenmtDNA copy number andmitochondrial mass and
respiratory capacity

We then evaluated if a correlation exists between the mtDNA copy
number and the mitochondrial mass and the respiratory capacity in
the different tissues. As shown in Fig. 3A and B, a positive andhighly sig-
nificant correlation was also found between either CS or COX activity
per cell and the amount ofmtDNAper cell. This indicates that the tissues
which have the highest COX and CS activities have also the highest
cellular mtDNA amount.

3.6. Mitochondrial gene expression in different tissues evaluated by
RNA-seq

We carried out a strand-oriented RNA-Seq (2 × 100 bp paired-end,
with random hexamer priming and no mitochondrial rRNA depletion)
in the six tissue samples from the three individuals. Special attention
was paid to minimize the impact of reads that could generate read
mapping artifact to Numt (nuclear mitochondrial DNA) sequences
Table 1
Citrate synthase (CS) and cytochrome oxidase (COX)-specific activity measurements and norm

Tissue CS-specific activity COX-specific activity

liver_S7/11 530 ± 31 1357 ± 32
liver_S12/12 245 ± 14 1813 ± 47
liver_S13/12 297 ± 15 1411 ± 55
kidney_S7/11 367 ± 18 1260 ± 53
kidney_S12/12 246 ± 11 1442 ± 44
kidney_S13/12 426 ± 21 2832 ± 62
brain_S7/11 164 ± 10 949 ± 37
brain_S12/12 166 ± 11 1400 ± 43
brain_S13/12 166 ± 9 1153 ± 30
lung_S7/11 76 ± 5 1436 ± 41
lung_S12/12 62 ± 5 1522 ± 42
lung_S13/12 132 ± 7 1445 ± 47
muscle_S7/11 196 ± 10 995 ± 28
muscle_S12/12 475 ± 22 1363 ± 31
muscle_S13/12 335 ± 12 1335 ± 33
heart_S7/11 564 ± 28 1836 ± 41
heart_S12/12 768 ± 37 2639 ± 55
heart_S13/12 524 ± 25 1890 ± 47

Data are the mean + standard deviation, with n = 4, obtained from six human tissues, liver, k
(Calabrese et al., 2012) and introduce biases into expression level
estimates (see Methods). Analysis of cDNA reads that mapped to
Numts revealed that while rRNA like reads were most predominant,
around 90% of ambiguously mapped read pairs from protein coding
ORFs derived from CO1 or CO3 genes.

Globally, from 4% to 27% of read-pairs (according to tissue) were of
mitochondrial origin (see % mtDNA PE reads in Supplemental Table S8
and Methods).

We observed a remarkably imbalanced level of expression between
the mtDNA plus and minus strand, with about one thousand fold more
reads mapping to the former. Furthermore, only about 0.36% of the
reads mapping on the mtDNA plus strand resulted to be originated
from the precursor RNA in contrast to over 85% of reads mapping on
the minus strand (Supplemental Table S8 and Methods). Mapping of
reads derived from the heavy strand covered the whole mitochondrion
DNA sequence in all tissues (data not shown). The largest fraction of PE
reads, around95%, originated from12S and 16S rRNAgenes in all tissues
considered. Other reads originated, as expected, mostly on annotated
protein coding genes, with however sharp enrichment peaks also in
the antisense strand of 16S rRNA, CO1 and ND5 genes (data not
shown). Antisense transcripts of the ND5, ND6 and CytB genes have
been demonstrated to correspond to three lncRNAs (Rackham et al.,
2011), andwe hypothesize that other antisense ncRNAs could originate
in correspondence with the other peaks observed.

Expression levels of the 11 mtDNA protein coding mature tran-
scripts, ribosomal RNAs, and lncRNAs are reported in Supplemental
Table S9, expressed as RPKMvalues aswell as relative expressionwithin
the same tissue. The comparison of absolute RPKM values of the same
gene across different samples shows high variability, reflecting the
different concentrations of mitochondrial RNAs in each sample. The
relative expression of genes within the same sample, instead, remains
remarkably constant across the different tissues (Fig. 4). However, we
observe a considerable variability of this measure, corresponding to a
highly variable level of steady-state expression of the different mature
transcripts, suggesting a remarkable and variable effect of post-
transcriptional cleavage, processing and stability mechanisms in the
regulation of gene expression, that are conserved across the different
tissues investigated.

3.7. Correlation of between mtDNA copy number and mitochondrial gene
expression

Finally, we sought to investigate potential correlation between
mtDNA copy number and the expression level of mtDNA-encoded
genes. The overall concentration of RNAs of mitochondrial origin in
alization by mtDNA and nDNA content.

CS/mtDNA CS/nDNA COX/mtDNA COX/nDNA

5196 27 13303 68
4803 20 35549 144
1650 7 7839 31
3336 13 11454 144
6648 22 38972 126
4260 11 28320 75
10933 71 63266 413
6384 37 53846 318
12769 22 88693 154
4750 2 89750 36
5166 4 126833 98
2870 2 31413 21
8521 75 43260 383
10106 131 29000 378
14565 86 58043 342
16114 209 52457 680
10378 183 35662 628
12780 227 46097 821

idney, brain, lung, muscle and heart, from three age- and sex-matching individuals.



Fig. 3. Linear correlation between mtDNA copy number and mitochondrial mass and respiratory capacity. (A) Linear correlation between COX/nDNA and the mtDNA copy number in six
tissues of three individuals (S7/11, S12/12 and S13/12) (P b 0.0001). (B) Linear correlation between CS/nDNA and mtDNA copy number in six tissues of three individuals (S7/11, S12/12
and S13/12) (P b 0.0001). Correlation was calculated using a bivariate linear fit analysis.
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each tissue, expressed either as a percentage of non ribosomal mito-
chondrial reads on the overall number of mapped reads, or as the sum
of RPKMvalues associatedwith non ribosomal genes, showed a remark-
able correlation with the estimated mtDNA copy number, yielding
a Pearson correlation of 0.81, as shown in Fig. 5 (Supplemental
Table S10). Similar correlation values (always around 0.8) were obtain-
ed by employing different measures for mitochondrial RNA concentra-
tion, namely, sum of genes RPKM values including rRNA genes, or
fraction of mitochondrial RNA in the RNA-Seq sample, and also when
computed against estimated mtDNA abundance derived from qPCR or
exome sequencing (data not shown).

4. Discussion

The advent of high-throughput technologies for DNA and RNA
sequencing has opened new avenues in biological research. A better
understanding of the coordinated expression of the mitochondrial and
nuclear genomewill be critical for the characterization of novel process-
es underlying the functioning of eukaryotic cells. In particular, mtDNA
copy number is a key functional parameter that varies greatly between
different cell or tissues types, both in response to overall metabolic
and bioenergetics demands and as a consequence or cause of specific
physiological and pathological conditions. Alterations in mtDNA copy
number have been related to aging (He et al., 2014), cancer (Zhang
et al., 2013), neurodegenerative diseases (Podlesniy et al., 2013), diabe-
tes (Chien et al., 2012) and other mitochondrial-related diseases (Liu
et al., 2013).

We previously reported a simple methodology for the reconstruc-
tion of complete or nearly complete mitochondrial genomes from
off-target reads generated in whole exome sequencing experiments
(WES) (Picardi and Pesole, 2012).

Here, usingWESdata from six different tissues (brain, liver, lung, stri-
ated muscle, kidney and heart) from three unrelated healthy Caucasian
individuals (males, aged 47–54) in conjunction with qPCR for experi-
mental validation, we show that mtDNA copy number per cell can be
reliably estimated from the relative amount of off-target reads of mito-
chondrial origin detected inWES data. As previously noted (Picardi and
Pesole, 2012), it is worth underlining that the fraction of off-target
mitochondrial reads is dependent on the exome enrichment protocol
used, with the Illumina TruSeq Exome Enrichment Kit providing a
higher amount of mitochondrial off-target reads than either Roche
Nimblegen and Agilent SureSelect (Picardi and Pesole, 2012). We
observed, as expected, strict tissue specificity of mtDNA copy number,
reflecting the specific bioenergetics andmetabolic demands of different
tissues with heart and lung tissues showing the highest and lowest
values, respectively. Inter-individual variations for the same tissues



Fig. 4. Relative levels of themitochondrialmaturemRNAs in the six examined tissues expressed as average for the three individuals (S7/11, S12/12 and S13/12). Values represent the ratio
between the RPKM (reads per kilobase per million reads) of a specific mRNA and the total RPKM for all mature mRNAs (see Supplementary Table S9) calculated for each given tissue and
individual.
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were also observed, and are likely related to the individual-specific
physiological status and to the cause of death.

Interestingly, we did not detect somatic variations in mtDNA se-
quences in different tissues from the same individual. Furthermore,
the accuracy of sequence data was demonstrated by the overall consis-
tency of gene and transcript sequences obtained byWES and RNA-Seq,
respectively. A few putative post-transcriptional changes were detect-
ed, most of them in rRNA and tRNA genes, at sites already reported in
the literature as susceptible to base-specific post-transcriptional
modification.

We also show, by analyzing RNA-Seq data generated from the 18
samples, that a significant correlation exists, between the mtDNA copy
number and the expression level of mt protein coding genes. Indeed,
Fig. 5. Linear correlation between estimatedmtDNA copy number and relative levels ofmtmatu
and S13/12). Correlation was calculated using a bivariate linear fit analysis (P b 0.001).
the paired-end strand-specific transcriptome sequencing allowed us
to obtain reliable estimates of mature and precursor transcripts in
sense and antisense orientations. We observed considerable variability
in the expression levels of different protein coding transcripts, with
CO1 and CO3 significantly more abundant than other genes (Fig. 4).
On the other hand, the ND6 gene, the only L-strand gene encoding a
polyA- transcript, is expressed at very low levels, totaling on average
only 0.22% of all protein coding transcripts. Our data are not in accor-
dance with the expression profile of mitochondrial mRNAs observed
in Hela (Piechota et al., 2006) or 143B cells (Mercer et al., 2011). How-
ever, it is quite expected that mitochondria from cultured human cells,
particularly HeLa cells, do not reflect the transcriptional pattern
observed in human tissues.
re transcripts expressed as average of RPKM values in the three individuals (S7/11, S12/12
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The strand-specific sequencing performed also allowed the detec-
tion of stable antisense transcripts of ND5 and ND6 genes (Supplemen-
tal Table S9) as already identified in rat (Tullo et al., 1994) and human
cell 143B cell line (Mercer et al., 2011). Interestingly, these antisense
transcripts have different levels in the different tissues, with the highest
levels in heart and kidney.

Moreover,we founda remarkably significant positive correlation be-
tween mtDNA copy number and the mitochondrial mass, i.e., the CS/
nDNA ratio, as well as the respiratory capacity, i.e., the COX/nDNA
ratio, when all the tissues were considered together (Fig. 3), indicating
that tissues with the highest mtDNA content i.e., heart, muscle and
brain, have also the highest CS and COX activities per cell. Indeed, it is
known that differentmetabolic profiles and variable energetic demands
of different tissues are due to the inherently different functions or, in a
single tissue, to changes in ATP demand due to physiological or patho-
logical conditions (Kunz, 2003; Leary et al., 1998; Leverve and
Fontaine, 2001; Pfeiffer et al., 2001). While our data suggest that
mtDNA copy number is a critical parameter in the definition of quanti-
tative aspects of respiratory function, mitochondria also exhibit tissue
related variation in functional capacity, protein composition and mor-
phology (Benard et al., 2006; Fernandez-Vizarra et al., 2011; Johnson
et al., 2007a, 2007b; Mootha et al., 2003; Pagliarini et al., 2008).

An aspect that must not be neglected—in the light of different meta-
bolic profile of the three individuals—is that cellular adaptation to envi-
ronmental and physiological constraints necessitates a fine tuning of the
control of mitochondrial respiration, in response to changes in energy
demand and substrate delivery. Accordingly, different tissues present
large differences in the composition of the OXPHOS machinery and
the organization of mitochondria (Chan, 2006; Fernandez-Vizarra
et al., 2011), which, in addition to mtDNA copy number (Di Mauro
andBonilla, 2004), could influence their physiological activity. Nonethe-
less, mtDNA copy number remains a good proxy for mitochondrial ac-
tivity for a sound conceptual reason: the mitochondrial mass or the
activity of a respiratory enzyme are being related to the unit of genome
that is needed to produce them (Fernandez-Vizarra et al., 2008, 2011) as
well as to its relevant nuclear counterparts (Mercer et al., 2011).

In conclusion, the methodology presented here demonstrates the
feasibility of large-scale detection of mtDNA copy number in diverse
cell-types, tissues and pathological conditions. Given that several thou-
sand exome sequence data sets are available in public repositories from
different sources, the approach presented here is expected to generate a
wealth of information that may contribute to a better understanding of
nucleo-mitochondrion cross-talk and its involvement in health and
disease.
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