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Comparison of Alternative Imputation Methods for
Ordinal Data

Federica Cugnata∗ Silvia Salini†

Abstract

In this paper, we compare alternative missing imputation methods in the presence of ordi-

nal data, in the framework ofCUB (Combination of Uniform and (shifted) Binomial random

variable) models. Various imputation methods are considered, as are univariate and multivari-

ate approaches. The first step consists of running a simulation study designed by varying the

parameters of theCUB model, to consider and compareCUB models as well as other methods

of missing imputation. We use real datasets on which to base the comparison between our ap-

proach and some general methods of missing imputation for various missing data mechanisms.

Keywords: Missing data;CUB models; single imputation

1 Introduction

In this paper, we consider theCUB (Combination of Uniform and (shifted) Binomial random vari-

ables) model [Piccolo, 2003] for the analysis of ordinal variables. We decided to use theCUB model

because on one hand, it allowed us to generate different distributions of ordinal variables, and on

the other, it allowed us to interpret them in the specific context of customer satisfaction. InCUB

models, the answers to ordinal response items in a questionnaire are interpreted as the result of a

cognitive process, where the judgement is intrinsically continuous but is expressed in a discrete

way within a pre-fixed scale ofm categories. The rationale of this approach stems from the in-

terpretation of the final choices of respondents as a result of two components; a personalfeeling

and some intrinsicuncertaintyin choosing the ordinal value of the response [Iannario, 2012]. The

first component is expressed by a shifted binomial random variable. The second component is

expressed by a uniform random variable. The two components are linearly combined in a mixture

distribution.

To compare different methods of missing imputation, two simulation studies are done. The first
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ACCEPTED MANUSCRIPT

one is designed by varying theCUB model parameters, and the second simulates missing values in

a Likert structure. Two real datasets with similar structures have been used in simulation studies.

Three missing data mechanisms, namelymissing completely at random(MCAR), missing at ran-

dom(MAR), andmissing not at random(MNAR), are considered and the imputation methods are

applied and compared in terms of proportion of correct classification and in terms ofCUB model

parameter estimation.

The paper is organized as follows. Following the Introduction, Section 2 presents a classification

of missing imputation methods. Section 3 is devoted toCUB models. Section 4 presents two sim-

ulation studies and the relevant results. Section 5 deals with real datasets. Section 6 draws the

conclusions.

2 Missing data imputation for ordinal data

Various approaches can be followed in the treatment of missing values [Little and Rubin, 1987,

2002]. In brief, it is possible to distinguish betweeni. strategies which allow a complete dataset

to be created (complete-case analysis or listwise deletion, available-case analysis, weighting pro-

cedures, and imputation-based procedures), andii. strategies which allow direct analyses using

model-based procedures; models are specified for the observed data, and inferences are based on

likelihood or Bayesian analysis. Moreover, the numerous studies in the literature on missing data

highlight that for both approaches, there are numerous procedures and methods of missing impu-

tation, which are often difficult to classify. In this paper, a classification of the various procedures

and methods will be proposed, followed by some specific proposals for the imputation of ordinal

data.

The most common procedures for imputation of missing data can be classified as:

a. Univariate: methods that substantially use information from the distribution of the variable

from which the variable itself is missing (i.e., mean, median, mode, random imputation, etc.).

b. Multivariate : methods that use the observed pattern for one or more related variables to esti-

mate by means of a model, in which the variable is missing (i.e., linear and nonlinear regression

models).

Another common classification of methods is:

a. Single imputation (SI), which imputes one value for each missing item.
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ACCEPTED MANUSCRIPT

b. Multiple imputation (MI), which imputes more than one value for each missing item to allow

for the appropriate assessment of imputation uncertainty. Each set of imputations is used to

create a complete dataset, which is analysed by complete-data methods; the results are then

combined to produce appropriate estimates that incorporate missing-data uncertainty.

In multiple imputation, each missing value is replaced with multiple imputed values, creating

several simulated complete datasets. Rubin [1987] presented the method for combining results

from a data analysis performeds times, once for eachs imputed dataset, to obtain a single set of

results.

Most of the literature on missing data has focused on quantitative data. Less attention has been

paid to the treatment of missing imputation methods for ordinal data, although ordinal variables

occur in many fields. Existing methods for ordinal data are generally an adaptation of techniques

originally designed for quantitative variables. Galati et al. [2012] studied bias arising from round-

ing categorical variables following multivariate normal (MVN) imputation. Three methods that

assign imputed values to categories based on fixed reference points are compared using differ-

ent scenarios: crude rounding, projected distance-based rounding, and distance-based rounding

(DBR).They concluded that these simple methods are generally unsatisfactory for rounding cate-

gorical variables following imputation under an MVN model.

Mattei et al. [2012] give a useful and comprehensive review of missing data and imputation

methods and present an example from the context of customer satisfaction. They start with a

basic discussion ofmissing-data patterns, describing which values are observed in the data matrix

and which are missing; andmissing-data mechanisms, which concern the relationship between

missingness and the values of variables in the data matrix. Second, they review four classes of

approaches to handling missing data, with a focus on MI, which they believe is the most generally

useful approach for survey data, including customer satisfaction data. Third, a simple MI analysis

is conducted for the ABC ACSS Survey data1, and theresults are compared to those from alternative

missing-data methods.

Ferrari et al. [2011], in the specific context of qualitative variables, proposed a procedure based

on an iterative algorithm where sequentially missing categories for one element are replaced with

the corresponding values observed for the most similar element from a complete dataset (R package

ForImp). They employed nonlinear principal component analysis to build statistical indicators.

They carried out a simulation study in which they applied the forward method to a real dataset and

compared the results of their single multivariate imputation method to other univariate imputation

1The ABC Company has conducted an Annual Customer Satisfaction Survey (ACSS) since 2001,to gather infor-
mation on its touch points and interactions with customers, through a questionnaire consisting of 81 questions.
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ACCEPTED MANUSCRIPT

methods. Their iterative method may be extended to other explanatory multivariate techniques.

Stekhoven and B̈uhlmann [2012] proposed an iterative non-parametric imputation method for

mixed-type data, essentially based on random forest (R package missForest). By averaging over

many unpruned classification or regression trees, random forest intrinsically constitutes a multiple

imputation scheme. Using the built-in out-of-bag error estimates of random forest, they were able

to estimate the imputation error without the need for a test set. Evaluation was performed on

multiple datasets from a diverse selection of biological fields, with artificially introduced missing

values ranging from 10% to 30%. They showed that missForest can successfully handle missing

values, particularly in datasets including different types of variables. In their comparative study,

missForest outperformed other methods of imputation, especially in datasettings where complex

interactions and nonlinear relations were suspected. Additionally, missForest was found to exhibit

attractive computational efficiency and was able to cope with high-dimensional data. The idea

of using regression and classification trees to input missing values is not new: Iacus and Porro

[2007] proposed random recursive partitioning (RRP). This method generates a proximity matrix,

that can be used in non-parametric matching problems such as hot-deck missing data imputation

and average treatment effect estimation. RRP is a Monte Carlo procedure that randomly generates

non-empty, recursive partitions of the data and calculates the proximity between observations as

the empirical frequency in the same cell of these random partitions over all the replications.

White et al. [2010] consider multiple imputation. They highlight that the automated procedures

widely available in standard software, may hide many assumptions and possible difficulties in

the specific context of categorical variables and may give severely biased results. They propose

bootstrap methods, penalized regression methods and a new argumentation procedure to solve this

problem.

In this paper, we also consider the use ofCUB models to inputate missing values for both

univariate and multivariate procedures.

3 CUB models

CUB models are a class of statistical models introduced by Piccolo [2003] for the specific pur-

pose of interpreting and fitting ordinal responses. An application of CUB models on marginal

ranks can be found in D’Elia and Piccolo [2005a]. InCUB models, ratings are interpreted as the

result of two main factors: the personalfeelingof the subject towards the item and some intrinsic

uncertainty. Let R be a random variable that assumesm possible categories,r = 1,2,3, . . . ,m.
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ACCEPTED MANUSCRIPT

Formally, the probability distribution of theCUB model is given by:

Pr(R= r) = π

(
m− 1
r − 1

)

ξm−r(1− ξ)r−1 + (1− π)
1
m
, r = 1,2, . . . ,m. (1)

Since the distribution is well defined when parameters areπ ∈ (0,1] andξ ∈ [0,1], the parametric

space is the (left open) unit square:

Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} .

Iannario [2010] proved that such a model is identifiable for anym> 3.

The first component is a shifted binomial random variable;ξ is inversely related to thefeelingof

the respondent towards the item:ξ increases when respondents choose low ratings, and vice versa.

The second component is a uniform random variable;π is inversely related to theuncertaintyin

the final judgement. If the respondents manifest a great propensity for extreme indecision in the

choice,π −→ 0. When the respondent manifests a minimum propensity for extreme indecision

and the choice is more resolute and determined mostly byfeeling, thenπ −→ 1 [Iannario, 2012].

To improve the performance of this structure, an extension of theCUB model with covariates has

been proposed [Iannario, 2007, Piccolo and D’Elia, 2008]. Ifp andq covariates are introduced to

explainuncertaintyandfeeling, respectively, we will denote such a structure as aCUB(p,q) model.

The general formulation of aCUB(p,q) model is modelled by two components:

1. A stochastic component:

Pr(Ri = r | yi; wi) = πi

(
m− 1
r − 1

)

ξm−r
i (1− ξi)

r−1 + (1− πi)

(
1
m

)

,

r = 1,2,. . . ,m; for anyi = 1,2, . . . , n.

2. Twosystematic components:

πi =
1

1+ e−y i β
; ξi =

1
1+ e−w i γ

; i = 1,2, . . . , n ,

whereyi = (1, yi1, yi2, ..., yip)′ andwi = (1,wi1,wi2, ...,wiq)′ denote the covariates of thei-th subject,

selected to explainπi andξi respectively.γ = (γ0, γ1, ..., γq)′ andβ = (β0, β1, ..., βq)′ are parameter

vectors.

Asymptotic statistical inference for CUB models, an effective EM procedure for maximum

likelihood estimators, has been developed and implemented by Piccolo [2006], and related soft-

ware is freely available [Iannario, 2012]. The simulation routinesimcub() [Iannario and Piccolo,

2009], can be used to simulate from a givenCUB distribution.
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ACCEPTED MANUSCRIPT

When only one variable contains missing values, we can estimate theCUB model based on the

subset of the complete data, and then simulate from thisCUB distribution to impute each missing

value.

When more than one variable has missing data, imputation typically requires an iterative

method of repeated imputations. On the basis of the iterative robust model-based imputation pro-

posed by Templ et al. [2011], we propose aCUB approach-based iterative algorithm (iCUB), where,

in each step of the iteration, one variable is used as a response variable and the remaining variables

serve as the covariates in theCUB models. The proposed iterative algorithm consists specifically of

the following steps:

Step 1 Initialize the missing values using a simple imputation technique.

Step 2 Sort the variables according to the original amount of missing values. We now assume that

the variables are already sorted, i.e.M(x1) ≥ M(x2) ≥ ... ≥ M(xv) whereM(x j) denotes the

number of missing cells in variablex j. SetI = {1, ..., v}.

Step 3 Setl = 1.

Step 4 Denotemisl ∈ {1, ..., n} the indices of the observations that are originally missing in variable

xl, andobsl = {1, ..., n}\misl the indices corresponding to the observed cells ofxl. Let Xobsl
I\{l}

andXmisl
I\{l} denote the matrices with the variables corresponding to the observed and missing

cells ofxl, respectively.

Based on the subset of the observed cells ofxl, estimate theCUB model

Pr(xi∈obsl
l = r |X i∈obsl

I\{l} ) = πi

(
m− 1
r − 1

)

ξm−r
i (1− ξi)

r−1 + (1− πi)

(
1
m

)

r = 1,2, . . . ,m.

πi =
1

1+ e−X
i
I\{l} β

; ξi =
1

1+ e−X
i
I\{l} γ

; i ∈ obsl ,

We can use a model selection to choose the best model.

Step 5 Estimate theCUB model coefficients with the corresponding model in Step 4, and replace

each missing valuexmisl
l by a random number generared by aCUB model with the estimated

CUB model coefficients.

Step 6 Carry out Steps 4-5 in turn for eachl = 2, ..., v.
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ACCEPTED MANUSCRIPT

Step 7 Repeat Steps 3-6 until the imputed values stabilize, i.e. until

∑
i(x̂l,i − x̃l,i)2 < δ for all i ∈ misl andl ∈ I

for a small constantδ, wherex̂l,i is thei-th imputed value of the current iteration, andx̃l,i is

the i-th imputed value from the previous iteration.

The R function for iCUB and the related functions can be downloaded from here: http://users.unimi.it/salini/iCUB.zip.

4 Simulation study

Two simulation studies were conducted. The first considered the imputation for only one vari-

able with covariates and the second considered the imputation for more variables with a Likert

structure without covariates, as in Ferrari et al. [2011]. In all cases, the number of Monte Carlo

replications was 1.000.

4.1 Imputation for one variable with covariates

In the first simulation, we considered a variableY generated by aCUB(0,0) model and two covari-

ates:X1 generated by normal distributionN(y,0.16) andX2 generated by aCUB model withY as

a covariate to explain feeling. The variableY was generated by aCUB(0,0) model with a different

number of possible categories (m= 5,7,9) and for varying parameters over the admissible param-

eters space,π = 0.1,0.2,0.3, . . . , 1 andξ = 0,0.1,0.2,0.3, . . . , 0.99.

The missing values were selected only inY using two different missing data patterns:

a) missing completely at random (MCAR),

b) missing not at random (MNAR), in which only the low categories are omitted.

We repeated the experiment for three sample sizes (n = 200,500,1.000) and three different

amounts of missing values (v=5%, 10%, and 20%).

To evaluate the imputation method performance, we considered the percentage of cases cor-

rectly imputed and the bias of the estimates of theCUB parameters.
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The methods compared in this simulation study were: median imputation (ME), random impu-

tation (RA),CUB(0,0), polytomous ordered logistic regression (PO),CUB(p,q), forward imputation

(FO) [Ferrari et al., 2011] and miss-Forest (MF) [Stekhoven and Bühlmann, 2012].

In Figure 1 and Figure 2, for case a) MCAR and for b) MNAR respectively, the value ofξ is

plotted in the horizontal axis and the percentage of cases correctly imputed is plotted in the vertical

axis, forπ = 0.1,0.5,0.9.

The first thing to be noticed, in both cases, is that when uncertainty is high (π = 0.1), MF, FO,

andCUBpq methods behave better than all other methods considered for all levels of feeling. When

the missing values are not at random (case b), the polytomous regression, which, like MF, FO, and

CUBpq, consider the covariates too, is better than univariate methods median, random and,CUB00.

When uncertainty decreases (π = 0.5,0.9), the performance of the models MF, FO, and,CUBpq

remains better than the other models and, in the case of missing values not at random, changes

with the variation ofξ: it improves with increasingξ (a decrease of feeling) when the missing

values are in low categories. In cases whereπ = 0.9, that is where there is little uncertainty, and

the missing values are not at random, median sometimes behaves better thanCUBpq.

Whenm increases, the performance of all methods worsens a little while maintaining the same

pattern of Figure 1 and Figure 2. The same happens whenv increases. Whenn increases, results

are stable; therefore, we decided not to report them.

In Figure 3 and Figure 4, for case a) MCAR and for b) MNAR respectively, the box-plots of the

bias of the estimates of theξ parameter are reported. We compared the estimates obtained using

different methods of imputation as well as complete-case analysis (CCA), in which we ignored

incomplete cases.

It was immediately observed that all univariate methods are biased, with the most biased being

the median. Among the multivariate methods in some cases, FO has a greater bias than others. The

bias is generally reduced whenξ is very small or very large. There is no large variability of results

whenπ varies, so we have not reported the results. If the number of missingv increases, then this

increases the variability of the bias. There is, however, no significant change as a result of them

changes.

4.2 Imputation for more variables with a Likert structure

In this simulation, the missing values existed in more than one variable, and, following the ap-

proach of Ferrari et al. [2011], we use all the variables to predict the missing values on the others.

The multivariate ordinal variableY = (Y1,Y2,Y3,Y4,Y5) is generated, following Ferrari and Barbi-

ero [2012] and using the R package GenOrd [Barbiero and Ferrari, 2013]. This approach is able
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to generate multivariate ordinal variables with the required marginal distributions and correlations.

A sample is drawn from a standard multivariate normal rv with correlation matrixRN and then

discretized to yield a sample of ordinal data with assigned marginal distributions by employing

a quantile approach. The matrixRN, ensuring the prescribed correlation matrixRD on the target

variables, is computed through a recursive algorithm. We consider five ordinal categories (m= 5)

and three different correlation coefficients (ρ(Yi ,Yj) = 0.3,0.5,0.8), to assess the effect of different

correlations on final results.

We consider two missing data mechanisms:

a) missing completely at random (MCAR),

b) missing not at random (MNAR), in which lowest category are more often omitted.

To evaluate the performance of the imputation method, we considered the mean and the standard

deviation of percentage of cases correctly imputed.

Table 1 shows the percentage of correct cases in case of MCAR e MNAR with a rate of missing

values equal to 5%. The multivariate models obviously impute better than univariate, in particular

for low values ofρ. To compare the results in the case MCAR and MNAR, one can observe

that the univariate methods worsen in the case of MNAR and those multivariates improve instead,

especially whenρ is high.

The procedure was also repeated for a missing rate equal to 10%, and 20% but the amount of

missing values seems to only minimally affect the performance of all methods.

To verify our simulation results, we selected various real datasets. The first two examples were

built to produce a situation similar to our simulation studies. The first dataset contains the ranking

of nine serious problems that could arise in a large metropolitan area. We considered the 2006

wave and some covariates of the respondents. See D’Elia and Piccolo [2005b] and Iannario [2007]

for more details on the dataset. The values of each variable, as shown in the paper by D’Elia and

Piccolo [2005b], can be modeled effectively with aCUB model. The fact that data are rankings

does not appear to be relevant if one is interested in the construction of univariate models for

each emergency, because they are estimated for variables with respect to the marginal analysis of

multivariate distribution. Considering the covariates, we applied the same approach to this dataset

as in the first simulation study. The second dataset comes from a typical questionnaire completed

by airline passengers to evaluate their flight.
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The questionnaire contains variables such asoverall experience, likelihood to repurchase, like-

lihood to recommendandvalue for money. There are further questions grouped by topic:overall

booking, check-in, departure, cabin environmentand,meal. The evaluation of each item is based

on a seven-points scale (from 1= extremely dissatisfied to 7= extremely satisfied). Covariates

related to the flight and covariates related to the passenger are present. We applied the same ap-

proach to this dataset as in the second simulation study.

For these two examples, we considered three different cases of missing patterns, selecting 10% of

the available rows each time:

A) missing at random (MCAR)

B) missing in the low categories (MNAR)

C) missing associated to some values of the covariates (MAR)

4.3 Dataset: Emergency in Metropolitan Area

The datasetEmergency in Metropolitan Areacontains 419 observations. The variables are 1.Po-

litical Patronage, 2. Organized Crime, 3. Unemployment, 4. Pollution, 5. Public Health, 6. Petty

Crimes, 7. Immigration, 8. Street and Waste, 9. Traffic Transport. The estimation of theCUB model

parameters for the nine variables is reported in Figure 5.

The number of generated missing cases is 10% of the total rows. Table 2 reports the percentage

of correct cases for the same method used in the first simulation studies. The first observation is

that, if we consider the percentage of cases correctly classified, the median tended to work well

for these data, in particular in case A, where missing values were randomly selected. In the other

cases, the performance of the median was lower. TheCUB models exceeded the level of the other

models and improved slightly for MCAR and MAR in cases where there was more uncertainty

and the level of feeling was high (for example, variable 7,Immigration, and variable 9,Traffic

Transport). This is consistent with the result of the first simulation study shown in Figure 1.

From a model-based point of view, it might be interesting to evaluate the bias in the estimators

of the parameters of theCUB models in the dataset completed by different methods. Figure 6

shows the estimates ofπ andξ in the different datasets and for the four cases for variable 9,Traffic

Transport. It is immediately evident, that the median sometimes produces biased estimates forπ,

and the same happens for the other variables. In cases B and C, where the missing values are not at

random and are in lower and higher categories, respectively, all the estimators forξ are obviously

biased: the (complete case available) CCA have been created by changing the initial distributions.
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ACCEPTED MANUSCRIPT

4.4 Dataset: Airline Industry

The datasetAirline Industrycontainsn = 558 valid questionnaires collected in 2010. The variables

of satisfaction are 1.Booking, 2. Check-in, 3. Departure, 4. Cabin environment,and 5.Meal. The

estimation of the parameters of theCUB model for the five variables is reported in Figure 7.

The number of generated missing cases is 10% of the total rows. Table 3 reports the percentage

of correct cases for the same methods used in the second simulation study.

As shown in Figure 6, in this dataset the values of the CUB model parameters for variables 4,

Cabin environment, and 5,Meal. fall in the case of little uncertainty and high feeling.

In these cases, theCUBpq model performs worse than the other multivariate models. On the

contrary, for variable 2,Check-inin which uncertainty is present (value ofπ is low), CUBpq is the

best solution for the four cases. Moreover, generally,CUBpq in both cases of missing at random

and missing not at random approaches PO.

From a model-based point of view, it might be interesting to evaluate the bias in the estimators

of the parameters of theCUB models in the dataset completed by different methods. Figure 8

and Figure 9 show the estimates ofπ andξ for the three cases of missing patterns for variable 1,

Booking, and variable 3,Departure. We also report the estimates obtained with the true dataset

(TRUE) and with available-case analysis (ACA) which uses only complete data on the variable

that is considered.

In this case, MF, being based on an algorithmic approach, always produces estimates that seem

more biased forπ with respect to the other multivariate estimators. In this case, as in the previous

one, the median is completely biased with respect to the estimators forξ, and in some cases, all the

univariate estimators are biased as well. Moreover, MF, except in case B where missing values are

concentrated in lower categories, is the most biased of all the multivariate estimators.

5 Conclusion

As is well known, the imputation for missing ordinal data is more complex than it is for continuous

data. Proposals that work well are found in the literature, particularly inforward imputation(FO)

andmissForest(MF). When theCUB model is the preferred model for data analysis, a further oppor-

tunity exists to useCUB models for imputation. We performed two different simulation studies and

tested the results on two different real datasets that reflected the characteristics of the simulation

studies. When missing values were present only for one variable and covariates related to it were

available, the multivariate methods performed better than univariate ones. In cases where there
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is little uncertainty, the observations are highly concentrated on a few values and the relationship

with the covariates is not very strong, the median method may be the best method according to the

criteria of correct attribution of the cases. From a model-based point of view, however, we also ver-

ified that, as expected, imputation with the median produces biased estimators of the parameters.

When data have the classical Likert-scale structure and the missing values are present for some

ordinal variables, then, in addition to the classic covariates, ordinal variables may be used in the

multivariate imputation methods. The simulation study shows that in generalforward imputation

(FO), andmissForest(MF) perform better than the other multivariate methods. However, when

the uncertainty is high, theCUBpq model approach seems better. Reviewing all the results, sim-

ulations and applications suggest that the method missForest, in agreement with the conclusions

of the authors Stekhoven and Bühlmann [2012], performs best and is also more computationally

efficient. The authors, however, proceeding in an optical complete-case, did not raise the question

of the properties of the estimators obtained from their method. Our results seem to show a greater

bias of theCUB model parameter estimates when using MF for imputation then when using other

multivariate procedures. Circumventing this is a challenge that is worth investigating in the future.

Another interesting aspect to note is that the multivariate methods work well, even in the case of

missing not random, sometimes attaining the same performance as in the case with random missing

values.
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Table 1: % correct cases.

MCAR
ρ

Method 0.3 0.5 0.8
ME 25.051 24.697 25.051

(2.051) (2.097) (2.949)
RA 20.857 20.491 19.977

(2.343) (2.491) (2.823)
CUB00 20.251 21.28 20.457

(1.949) (2.52) (2.657)
PO 25.291 29.12 45.749

(1.991) (2.88) (1.851)
FO 23.543 29.28 46.731

(1.143) (2.72) (3.269)
MF 26.149 33.189 52.366

(2.149) (2.211) (3.434)
CUBpq 26.549 33.749 49.291

(2.651) (2.151) (2.009)

MNAR
ρ

Method 0.3 0.5 0.8
ME 15.795 15.597 15.816

(1.395) (1.203) (0.184)
RA 20.149 19.824 20.157

(1.451) (1.024) (1.357)
CUB00 16.565 16.573 16.496

(1.365) (2.973) (1.104)
PO 25.08 32.621 54.139

(2.72) (1.621) (2.661)
FO 24.947 32.363 53.643

(2.253) (2.037) (3.557)
MF 17.923 27.149 58.048

(1.477) (2.549) (2.752)
CUBpq 23.259 32.613 57.872

(2.459) (2.413) (2.128)
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Table 2: Emergency in Metropolitan Area. % of correct cases.

ME RA CUB00 PO FO MF CUBpq

Case A

1 19.55 16.55 18.71 16.41 12.11 23.76 19.58

2 55.80 38.81 49.53 37.19 40.90 35.63 49.50

3 22.82 17.54 18.83 15.10 19.00 21.46 18.62

4 21.39 17.07 19.78 18.87 19.38 21.58 20.92

5 24.03 14.20 19.09 15.28 18.66 21.64 20.61

6 22.60 17.62 21.16 16.86 15.15 20.86 20.73

7 15.11 28.66 41.41 31.91 26.67 15.68 39.85

8 25.88 16.52 19.75 15.25 16.06 22.46 19.06

9 20.31 18.61 22.04 19.62 19.43 19.63 23.25

Case B

1 4.82 17.48 19.61 17.34 10.44 19.20 21.34

2 100.00 51.34 65.89 49.63 62.22 16.34 67.04

3 27.01 18.69 20.27 17.40 21.97 15.19 20.57

4 20.90 13.58 11.32 13.92 13.67 22.16 12.42

5 21.33 14.53 16.58 17.82 23.71 19.33 17.96

6 32.59 20.10 22.95 17.22 21.37 13.30 21.29

7 0.00 8.91 2.84 11.26 10.64 17.96 9.57

8 2.02 9.33 12.29 11.70 13.47 21.51 13.17

9 0.00 12.59 10.04 14.17 13.69 20.96 11.80

Case C

1 14.50 15.25 19.25 17.13 11.54 21.26 19.30

2 51.90 37.38 47.24 30.17 34.52 32.71 43.80

3 27.61 17.61 18.62 17.37 19.43 22.65 19.65

4 20.65 16.52 18.43 19.86 15.05 21.19 18.96

5 21.62 15.75 18.98 17.96 15.41 23.70 19.50

6 19.74 16.42 19.47 17.04 16.10 21.32 20.59

7 12.77 32.78 48.58 38.22 33.32 18.81 51.72

8 22.87 15.74 16.81 14.15 16.16 16.74 16.24

9 17.58 17.38 20.68 21.98 17.04 16.80 22.81
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Table 3: Dataset: Airline Industry: % of correct cases.

ME RA CUB00 PO FO MF CUBpq

Case A

1 41.85 24.55 30.06 31.37 29.48 35.14 33.51

2 34.88 20.84 24.14 36.94 34.53 32.56 37.25

3 39.61 23.40 31.40 34.13 42.38 43.90 37.29

4 37.12 25.66 32.89 34.44 43.03 44.55 35.50

5 32.32 27.29 34.11 36.98 44.05 48.47 38.25

Case B

1 21.61 14.82 17.71 16.73 18.01 22.98 18.75

2 10.04 10.94 11.86 20.80 18.27 20.98 21.01

3 8.04 15.09 16.76 24.94 22.59 29.59 21.79

4 1.80 19.72 18.03 26.12 30.33 36.01 21.92

5 0.00 20.69 21.49 28.37 31.16 45.88 24.48

Case C

1 48.03 28.81 35.27 32.11 34.09 39.81 38.64

2 31.09 21.67 25.37 36.89 36.78 37.34 38.70

3 31.35 23.18 31.68 35.80 40.75 46.57 37.49

4 35.59 27.19 31.99 33.36 42.12 43.19 35.94

5 28.96 28.07 33.00 32.53 41.21 48.12 38.17
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Figure 1: Imputation for one variable m= 5 categories, MCAR v= 5%: Percentage of cases
correctly imputed.
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Figure 2: Imputation for one variable m= 5 categories, MNAR v= 5%: Percentage of cases
correctly imputed.
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Figure 3: Imputation for one variable, MCAR: bias of the estimates of the parameterξ.
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Figure 4: Imputation for one variable: bias of the estimates of the parameterξ.
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Figure 5: Emergency in Metropolitan Area:CUB models parameters.

22
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ità
 d

eg
li 

St
ud

i d
i M

ila
no

] 
at

 0
2:

27
 0

5 
M

ay
 2

01
5 



ACCEPTED MANUSCRIPT

A

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86 0.88

B

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86

C

π

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.80 0.82 0.84 0.86 0.88

A

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.195 0.200 0.205 0.210

B

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.170 0.175 0.180 0.185 0.190 0.195 0.200

C

ξ

TRUE

CCA

ME

RA

CUB00

PO

FO

MF

CUBpq

0.195 0.200 0.205 0.210

Figure 6: Estimation of the parameters of theCUB models, Variable 9. Traffic Transport.
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Figure 7: Airline Industry:CUB model parameters.
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Figure 8: Estimation of the parameters of theCUB models, Variable 1,Booking.
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Figure 9: Estimation of the parameters of theCUB models, Variable 3,Departure.
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