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Key Messages (Recommendations to improve patient safety): 

• Assessment of kidney function with estimated glomerular filtration rate (eGFR) 

using CKD-EPI and MDRD formulas is key for correct and safe drug prescribing.  

• Dosing adjustments are generally required when eGFR is below 60 ml/min/1.73 m2  

• When choosing drugs for use in CKD patients consider pharmacokinetics and 

pharmacodynamics characteristics for the best efficacy/safety profile   

• Drug interactions in CKD patients are more frequent for the large number of 

prescribed drugs and for the altered pharmacokinetics 

• Avoid or use with extreme caution drugs which have not been proved effective and 

safe in CKD 

 

Abstract 

Drug safety is a very relevant issue when dealing with patients with chronic kidney disease 

who need vascular access procedures and interventions. Drug dosage adjustment are 

needed for patients with acute or chronic kidney disease (CKD). In CKD patients, the 

estimated Glomerular Filtration Rate (eGFR) is used to guide dose adjustments. 

Determining the influence of renal replacement therapies on drug dosage adjustment is also 

very important. Safety issues for the following drugs used for situations related to vascular 

access are reported: Anticoagulants and antiplatelet agents, antibiotics, antimicrobials for 

catheter lock therapy, thrombolytics, local anesthetics, and painkillers. General principles of 

the interactions of drugs in CKD are also reported. 
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1. BACKGORUND. Introduction to the use of drugs in Chronic Kidney Disease (CKD) 

patients: assessment of kidney function (estimated glomerular filtration rate using 

CKD-EPI and MDRD formulas) 

 

Dialysis access procedures, from central venous catheter insertion to AV fistula and AV 

grafts placement, are performed in patients with different degrees of renal insufficiency, 

including patients with acute kidney injury (AKI) and chronic kidney disease (CKD) in 

different stages. AKI and CKD can change the pharmacokinetics (PK) and the 

pharmacodynamics (PD) of many drugs (1). Moreover, drug removal by intermittent and 

continuous renal replacement therapies (RRTs) determines the need for evaluating drug 

transport across biological (the peritoneum) and artificial membranes. Identifying drugs for 

which individualization of the treatment regimen will be necessary and consequently 

adjusting drug dosage regimens is important to avoid over dosage and toxicity of the drugs 

and/or their metabolites in renally impaired patients. Therefore, prior to treating patients with 

CKD, one must define kidney function (Figure 1). 

 

Which is the most accurate and reliable index to assess kidney function for drug 

dosing, thus improving drug safety?  

Determination of GFR based on the administration of exogenous substances is not practical 

for routine individual drug dose calculations. Therefore, urinary clearance of inulin (the gold 

standard) is rarely performed except for research purposes. Moreover, determination of 

GFR using an endogenous substance (creatinine), based on the urinary clearance of 

creatinine (CLcr) derived from a 24 h urine collection is of limited clinical value because of 

frequent urine collection errors and analytical interferences with the serum or urine 

creatinine assays as the result of concomitant diseases and drug therapies. Therefore, 

estimated GFR (eGFR) obtained in clinical practice from the measurement of endogenous 

substances such as serum creatinine (Scr) and then combined with patient factors is the 

most commonly used measure to define kidney function (2). eGFR can be measured in 

several different ways (Table 1). However, in those clinical situations and for those drugs 

with a narrow therapeutic index for which dosing individualization is required, where any 

creatinine-based estimation equation is not likely to provide a good estimate of GFR, 

measured creatinine clearance or measured GFR using exogenous markers should be 

considered.   
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Which eGFR equation should be used for assessment GFR as the guide to drug 

dosage regimens?  

 

Several considerations regarding methods to estimate eGFR may guide us to choose the 

best option: 

• Estimating equations are more accurate than measured creatinine clearance, given 

the errors in urine collection (3). 

• Variability in serum creatinine (Scr) assays is a major source of bias, leading to 

differences in reported Scr values among laboratories as well as within laboratories 

over time. Use of isotope dilution mass spectroscopy (IDMS), a method to 

standardize creatinine assays, leads to less variation in eGFR and theoretically more 

consistent drug dosing recommendations across institutions and clinical settings. The 

MDRD Study (4) and CKD-EPI (3,5) equations should be preferentially used with 

IDMS standardized creatinine. 

• Keep in mind that in addition to the effect of GFR, Scr may be influenced by 

differences in muscle mass, diet and tubular secretion. Estimating equations capture 

the average differences in the rate of creatinine generation due to age, sex, race, and 

weight, but they do not capture all factors. Therefore, some individuals will have 

substantially different values of Scr than expected and eGFR will be higher or lower 

than the true GFR. 

• Variations of the Scr assays before the availability of standardized approaches 

affected in the past PK/PD drug studies. This may still determine difficulties in 

interpretation of product label drug dosing recommendations. However, it is not 

conceivable repeating all of the PK studies with standardized creatinine: considering 

that the MDRD equation has a similar performance at lower levels of GFR, where 

drug dose adjustment is frequent, it is still reasonable to use drug the dosing 

adjustments suggested in the product labeling. 

• The Cockcroft and Gault (CG) equation (6) has been shown to overestimate GFR 

with the use of standardized creatinine assays. The CG equation is reported in units 

not adjusted for body surface area, which is appropriate for drug dosage adjustment. 

However, it is worth noting that the CG equation consider the body weight in the 

mathematical approach. 
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• The Modification of Diet in Renal Disease (MDRD) equation was developed from 

an extensive sample of patients with known CKD, all of whom had a measured GFR 

< 90 ml/min per 1.73 m2 (4). This equation is now widely reported by clinical 

laboratories around the world whenever Scr is measured. Since the MDRD equation 

overestimates measured GFR in subjects with values > 60 ml/min per 1.73 m2, values 

are only reported for GFR < 60 ml/min per 1.73 m2 (3). Use of IDMS-traceable 

creatinine values in the IDMS-MDRD Study equation results in a more accurate 

eGFR. 

• The CKD-Epidemiology Collaboration (CKD-EPI) equation, derived from studies 

including people with and without CKD, is more accurate than the MDRD equation, 

particularly at higher levels of GFR (5,7).  

• Formulas for eGFR are not accurate in individuals with extremes of body size or 

muscle mass, including the frail, elderly, critically ill, and subjects with unusual dietary 

habits. Kidney function is proportional to kidney size, which is proportional to body 

surface area (BSA). BSA of 1.73 m2 is the normal mean value for young adults. The 

eGFR mL/min/1.73 m2 adjusted for BSA is necessary in patients whose body size is 

markedly different than average. If using eGFR in very large or very small patients, 

multiply the eGFR mL/min/1.73 m2 by the BSA in order to obtain adjusted eGFR in 

units of mL/min. 

2. Drug safety: focus on drugs used for clinical events related to vascular access. 

2.1 ANTIMICROBIAL DRUGS. Many antimicrobial agents are eliminated by the kidneys 

and they require dosing adjustments in patients with CKD; however, several commonly used 

drugs do not require adjustments. Antibiotics should be used at the correct dose (see below 

section 4: dosing of drugs) to avoid under-treatment or, more commonly, drug toxicity. 

Infectious complications are relevant causes of morbidity and mortality in hemodialysis 

patients (8,9). Of particular concern, vascular access has emerged as a major risk factor for 

infection and bacteremia (10). Furthermore, the majority of these bacteremias are caused 

by staphylococci, associated with high rates of mortality (8-25%), recurrence (14.5 to 44%), 

and serious metastatic complications (14.5 to 44%) (11,12). When the source of fever is 

suspected to be access (catheter or graft) related, antimicrobial therapy must reliably cover 

gram-positive species (including methicillin-sensitive S. Aureus), since these organisms 

account for about two thirds of HD access-related bacteremias. Enterococci and gram-

negative organisms account for the majority of the remaining bacteremias and antimicrobial 

therapy should target these organisms as well (12). It has become a common practice 



6 
 

treating the febrile HD patient empirically with a combination of parenteral vancomycin plus 

gentamycin or vancomycin plus a third generation cephalosporin (12). With the emergence 

of vancomycin-resistant enterococci, the empiric use of vancomycin in the febrile patient on 

HD has been challenged: CDC published guidelines for the prudent use of vancomycin in 

attempt to prevent the spread of vancomycin resistance (13). In accordance with these 

guidelines, empiric treatment with vancomycin is appropriate in patients with β-lactam 

allergy or in instance when serious infections with β-lactam-resistant gram-positive bacteria 

are likely (12). Continuing treatment, however, depends on culture results. 

The appropriate management of catheter-related infections has become a major challenge 

for physicians and the initial empiric antibiotic therapy should take into consideration the 

frequency of the bacterial isolates in such settings. Staphylococcal species are the most 

prevalent (60 to 100%) bacterial isolates in HD patients with CRB (14,15); in some patients, 

both gram-positive and gram-negative organisms have been isolated from the bloodstream, 

indicating mixed bacteraemia (16,17). These data mandate that empiric antibiotic therapy 

should target both gram-positive and gram-negative organisms. 

For infections with documented sensitivity to cefazolin in anuric HD patients, intravenous 

post-dialysis dosing of cefazolin is both safe and effective. Moreover, empiric treatment of 

non-life-threatening infections with cefazolin alone or in combination with gentamicin may 

be appropriate in HD patients pending culture results (18,19). 

Exit-site infections are common and are recognized by redness, exudation and crusting. 

Topical agents applied to catheter exit site, such as povidone iodine, mupirocin, bacitracin 

zinc and polymixin B sulphate ointments have been proven effective (20,21). Oral rifampin 

or nasal mupirocin ointment reduced the incidence of Staphylococcus Aureus bacteremia 

(22). 

Patient safety issues regarding the use of antibiotics are largely debated (23). The WHO 

suggests that prescribing antibiotics without regard for the patient’s underlying condition and 

whether antibiotics will help the patient, or administering multiple drugs without attention to 

the potential for adverse drug reactions, all have the potential for harm and patient injury. 

When considering CKD patients with end stage renal disease, it should be kept in mind that 

if we want to avoid safety issues use of the right antibiotic at the right dose is the ultimate 

goal. 
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2.2 CATHETER LOCK THERAPY. Catheter-related bacteraemia (CRB) is the most 

relevant CVC related complication, which can lead to catheter removal, because bacteria 

colonize the catheter and may be difficult to eradicate.  

Antibiotic-lock therapy (ALT) is used in addition to systemic treatment for CVC related 

infections. Filling both catheter lumens with a mix of antibiotic and anticoagulant at the end 

of dialysis (catheter locking), antibiotic concentrations inside the catheter reach very high 

levels, much higher than the concentration reached during conventional treatment. The 

catheter lock can remain in place for many hours, when the catheter is not in use and it may 

limit biofilm formation. ALT is particularly important in central venous catheter-related 

infection of intraluminal origin, especially in patients with coagulase-negative staphylococci 

infections. 

Published guidelines on the management of the catheter-related infections are in favour of 

the use of ALT for the treatment of catheter-related infections (24). The in vitro stability of 

antibiotic-heparin combinations in CVCs was studied by Vercaigne et al (25). While 

ciprofloxacin produced immediate precipitation with heparin, cefazolin, vancomycin and 

ceftazidime at 10 mg/ml and gentamycin at 5 mg/ml were successfully incubated with 

heparin (5000 U/ml) for 72 hours in the central venous catheter lumen. Although free 

antibiotic in CVC solution was reduced, the final concentration was still sufficient for an 

effective antibiotic-heparin lock (25).  Good evidence is available to support ALT in the 

prevention of catheter-related bacteriemia in patients on hemodialysis (26,27). However, 

others have reported that the use of ALT may be limited by concerns of antibiotic toxicity 

and the appearance of antibiotic-resistant microbial isolates (28,29). 

Sodium citrate locks are effective for prophylaxis against catheter related infections (30), 

although increased rates of catheter thrombosis have been reported (31). 

Catheter-related blood stream infections are reduced by interdialytic locking with 

Taurolidine, a nontoxic antimicrobial agent. Although the use of a formulation of 1.35% 

Taurolidine in 4% citrate, compared to 5000 U/ml heparin, was associated with a greater 

need for thrombolysis to maintain catheter patency (32), the addition of 500 U/ml heparin to 

Taurolidine-citrate solution avoided the need for thrombolysis without increasing 

bacteremia, with catheter patency comparable to heparin 5000 U/ml (33). A Taurolidine-

citrate(4%)-urokinase (25,000 U) lock solution is now available,  

Locking of catheters with ethanol is a promising technique: the agent is bactericidal, has low 

toxicity, is unlikely to produce resistant organisms, is able to disinfect organisms in biofilms 

and is cheap; ethanol is bactericidal by protein denaturation and is active against a wide 
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variety of organism including Gram-positive bacteria, Gram-negative bacteria and fungi. A 

study has been designed comparing ethanol lock (70%) once a week versus standard 

heparin lock (34), but it recruited a limited number of patients and could not demonstrate a 

benefit of ethanol (35). 

In patients with AV access, the probability of dialysis access-related infection is considerably 

less for patients with native arteriovenous fistulae than for those with synthetic grafts (36). 

Postoperative wound infection as well as poor aseptic technique at dialysis may cause 

infection of the fistula; silent infection in old non-functional clotted prosthetic arteriovenous 

grafts has been recognized as a frequent cause of bacteraemia and morbidity among HD 

patients (12). Patient safety, with the aim of avoiding infectious complications, should always 

be considered, even in the absence of a catheter. 

 

2.3 TROMBOLYTICS. Catheter thrombosis is another relevant problem for patients dialysed 

with a CVC, leading to the use of trombolytic therapy. Urokinase is used in Europe and 

recombinant tissue plasminogen activator in the U.S. for prevention and treatment of 

thrombosis. 

Locking of the catheter with urokinase (5000 IU instilled to each lumen for 30 min) may be 

used to open occluded CVCs (37), but in some patients is ineffective and is suggested in 

those patients who have contraindications to systemic urokinase. High dose intra-dialytic 

urokinase (250000 IU infused into the venous chamber over 3 hours) is safe and effective 

in almost all instances of non-positional malfunction of haemodialysis catheters without 

signs of sepsis; contraindications to high dose systemic urokinase are rare in stable 

haemodialysis outpatients (38). However, it is not indicated in patients with recent trauma 

or surgery. 

Recombinant tissue plasminogen activator, alteplase, has recently been shown to be an 

effective alternative for restoring line patency (39). In addition, a recent randomized trial 

demonstrated that the use of alteplase instead of heparin once weekly, as compared with 

the use of heparin three times a week, as a locking solution for central venous catheters 

significantly reduced the incidence of catheter malfunction and bacteremia (40). It is also 

significantly more expensive than heparin and urokinase, but it can reduce the costs of 

unblocking or replacing clotted CVCs (41). 

 

2.4 PAIN MEDICATIONS - ANALGESICS. In CKD patients analgesic drugs are difficult to 

handle and pain is often under-treated, as renal failure modifies the pharmacokinetics and 
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pharmacodynamics of analgesics. In addition, most analgesics and their active metabolites 

are distributed in different tissues and their distribution volume is frequently altered in renal 

failure. Therefore, it is possible to observe side effects even at low doses of analgesics. In 

addition, many patients with CKD follow complex poly-pharmacy therapies for which there 

is a high risk of drug interactions. 

Before starting treatment of pain, it is always necessary to understand its cause. In the 

general population, different drugs are available for the treatment of acute and chronic pain: 

peripherally acting analgesics (paracetamol and non steroidal anti-inflammatory drugs - 

NSAIDs), centrally acting analgesics (opioids), clonidine, adjuvants (anticonvulsants, 

antidepressants, ketamine), peripheral neuronal blocking. NSAIDs are known for their renal 

toxicity and they should be avoided in renal failure. 

 

Somatic pain well responds to NSAIDs and narcotics. Visceral pain, deep and poorly 

localized, caused by irritation of the serous or distension or ischemic tissue (for example 

pain associated with nephrolithiasis or pancreatitis) responds better to narcotics. In some 

cases, however, the narcotics themselves can exacerbate the problem (for example in case 

of duct obstruction). Neuropathic pain is characterized by excruciating burning pain and is 

frequently associated with hypersensitivity. It may be more responsive to anticonvulsants 

and antidepressants then to opioids. 

The knowledge of formulations, pharmacokinetics, potency and duration of analgesics is 

required for optimal analgesic therapy practice. 

For a good treatment plan must first establish visual-analogue scale pain intensity (Figure 

2), which is broadly classified as follows: mild pain (VAS 1-4), moderate pain (VAS 5-6), and 

severe pain (VAS 7-10). 

Barakzoy and Moss validated in patients with renal failure the three-step scale of the World 

Health Organization for the treatment of pain, achieving adequate analgesia in 96% of 

patients. (42). However, this scheme is not applicable to acute pain for the long kinetics of 

tramadol, methadone and fentanyl; for the treatment of acute pain rapid action and easy 

handling therapy is necessary. With this understanding, the general principles for the 

treatment of chronic pain in CKD are summarized in table 2, while in table 3 a treatment 

algorithm is proposed for acute pain (42,43). 

Analgesic drugs can be administered intravenously or orally. It is a doctor's duty preventing 

the onset of severe pain by early administration of an analgesic rather than waiting until the 
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patient has severe pain. The goal is the absence of pain, but also the limitation of side 

effects. 

 

2.5 ANESTHETICS. CKD patients present the anaesthetist with a number of clinical 

challenges in part related to altered drug handling, with the production and accumulation of 

active metabolites, and to difficulties with vascular access and fluid balance (44). CKD is a 

risk factor for serious postoperative complications, such as acute renal failure and 

cardiovascular complications, which are associated with an increased morbidity and 

mortality (45). 

Dose adjustments are not usually necessary until GFR falls below 50 ml/min. CKD may 

influence both the pharmacokinetics and the pharmacodynamics of a drug (44). 

Local anaesthetics have two plasma protein binding sites: a high affinity and low capacity 

site, and a low affinity high capacity site on albumin; the albumin binding site becomes 

increasingly important as the plasma concentration of the local anaesthetic increases. 

Metabolic acidosis increases the percentage of unbound drug and this effect is more 

pronounced with bupivacaine (46). 

I.V. anaesthetic agents 

 Propofol pharmacokinetics are unaltered by established renal failure; the time interval 

between cessation of a propofol infusion and eye opening is significantly shorter in 

renal failure patients than controls, although blood propofol concentrations are not 

significantly different on waking (47). 

 Thiopental has an increased volume of distribution and reduced plasma protein 

binding in renal failure and the brain is exposed to a higher free drug concentration 

so the rate of administration should be reduced (48). 

Potent inhalation agents 

 Methoxyflurane anaesthesia may determine elevated serum inorganic fluoride levels 

and polyuric renal failure (serum fluoride levels > 50 μmol/dl were associated with an 

increased risk of renal damage) (49). 

 Enflurane: case reports of renal failure after enflurane anaesthesia suggest that it is 

best avoided in patients with renal dysfunction (50). 

 Desflurane and isoflurane are not associated with renal toxicity and appear safe to 

use in patients with CKD (51). 
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2.6 ANTICOAGULANTS AND PLATLET AGGREGATION INHIBITORS. The prevalence 

of atrial fibrillation (AF) in end-stage renal disease is high, with an increased risk of stroke 

among these patients with AF compared with the AF population without severe renal 

impairment. Many trials have shown the clinical benefit of oral anticoagulation therapy for 

primary and secondary prevention of stroke in patients with AF. However, current stroke risk 

stratification schemes are based on studies that have deliberately excluded patients with 

severe renal impairment. Indeed, there are no large randomized controlled trials assessing 

the real risk/benefit of full intensity anticoagulation in patients with severe renal impairment. 

In addition, rates of major bleeding episodes in anticoagulated hemodialysis patients with 

AF are high (52). 

Using data from the international Dialysis Outcomes and Practice Patterns Study (DOPPS) 

studying patients with AF, Wizemann et al (53) found that warfarin use was associated with 

a significantly higher stroke risk, particularly in those over 75 years of age. This study shows 

that atrial fibrillation is common and associated with elevated risk of adverse clinical 

outcomes, and this risk is even higher among elderly patients prescribed warfarin. The 

effectiveness and safety of warfarin in hemodialysis patients require additional investigation 

(53). 

Many physicians prescribe anticoagulants and antiplatelet medications to prevent 

thromboembolic events and access thrombosis in dialysis patients despite limited evidence 

of their efficacy in this population. Chan et al (54) concluded that warfarin, aspirin, or 

clopidogrel prescription is associated with higher mortality among hemodialysis patients 

(54). 

 

Recently, several novel oral anticoagulants (NOACs, rivaroxaban, dabigatran, apixaban) 

have been tested in large trials involving patients with atrial fibrillation (AF) and venous 

thromboembolism (VTE). All of these new anticoagulants are partially eliminated by renal 

clearance. In CKD patients, therefore, the half-lives of these novel anticoagulants may be 

prolonged, resulting in enhanced antithrombotic activity. On the other hand, there might be 

a higher risk of bleeding in CKD patients with these compounds. 

The ROCKET-AF study (55) tested the efficacy and safety of rivaroxaban, a novel factor Xa 

inhibitor, in 14264 patients with non-valvular AF and additional stroke risk factors compared 

with standard warfarin therapy aiming at an international normalized ratio (INR) of 2.0–3.0. 

Rivaroxaban is predominantly metabolized by the liver, but approximately one-third of the 

drug is cleared by the kidneys. The ROCKET-AF trial excluded patients with an eGFR < 30 
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mL/min, whereas the daily dose of rivaroxaban was reduced from 20 to 15 mg in patients 

with an eGFR of 30–49 mL/min based on available pharmacodynamic data and 

pharmacokinetic modelling (55). 

In the setting of chronic non-valvular atrial fibrillation or venous thromboembolism, a recent 

systematic review of eight randomized controlled trials among patients with CKD who 

received NOACs compared with those who received vitamin K antagonists (VKAs) identified 

no difference in the risk of stroke and systemic thromboembolism, recurrent 

thromboembolism or thromboembolism-related death, or bleeding. CKD was defined as a 

creatinine clearance between 30 and 50 ml/min (56). Collectively, the NOACs have 

demonstrated efficacy and safety similar to those of the VKAs in patients with moderate 

CKD (CrCl 30–50 ml/min); however, trials evaluating the effect of these agents on important 

clinical outcomes in patients with more severe CKD, including patients undergoing dialysis, 

are lacking (56). 

When planning vascular access interventions, one important safety aspect is the 

management of already established anticoagulant and anti-platelet treatments. Oral 

anticoagulation should be substituted with unfractionated heparin, which can be easily 

monitored with aPTT and stopped the day before surgery. Low molecular weight heparins, 

on the other hand, pose an increased risk of bleeding because they accumulate in patients 

with CKD, unless their activity is monitored by the anti-factor Xa assay, which currently is 

not widely available.   

Patients with CKD, including dialysis patients, are often prescribed platelet aggregation 

inhibitors. However, safety with antithrombotic therapy is a major concern in patients with 

renal impairment, because they are at increased risk of bleeding compared with the general 

population for the concurrent uremia-related platelet dysfunction (57). Therefore, 

understanding strategies of antithrombotic management in patients with CKD is of key 

importance. The most commonly used agents are ticlopidine, clopidogrel, and aspirin, which 

sometimes are combined. 

A systematic review identified sixteen studies including 40,676 patients and found an 

increased bleeding risk for hemodialysis patients treated with combination antiplatelet 

therapy, while there are mixed results for studies using a single antiplatelet agent (58). The 

study also suggested that antiplatelet agents appear to be effective in preventing shunt and 

central venous catheter thrombosis, but not for preventing thrombosis of arteriovenous 

grafts. Considering risks and benefits, the usefulness of antiplatelet agents for the 

prevention of access thrombosis in dialysis patients remains poorly defined. Individual risk 
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stratification taking into account the increased risk of bleeding should be considered before 

initiating antiplatelet agents, especially in combination therapy (58).  

Ongoing treatment with antiplatelet agents is generally stopped before planned vascular 

access surgery because they might increase the bleeding and the overall surgical risk in 

CKD patients. A recent retrospective study in renal transplantation, however, highlighted 

that these drugs are associated with a low risk of bleeding during renal transplantation and 

their use does not seem to be a contraindication for renal transplant surgery (59). The same 

might be true for vascular access surgery, especially when considering risks in patients 

needing urgent interventions for vascular access dysfunction. 

Martinez Salazar et al. (60) reported no bleeding complications after 53 tunneled 

hemodialysis catheter procedures performed in dialysis patients on clopidogrel therapy, 

indicating that cardiologic indications to continue clopidogrel after cardiac procedures can 

be followed with low risks of complications during dialysis catheter procedures.  

After vascular access surgery, benefits and risks of anti-thrombotic medications should be 

considered. The aim of such treatment is increasing the access duration, but its suitability 

for needling is also an important outcome to be considered.  

Antiplatelet agents represent a logical strategy to prevent vascular access failure. 

Clopidogrel activity has been studied in patients with renal function impairment (61), 

although no data are reported in the drug prescribing information. Dose adjustment in 

patients with severe renal failure (GFR 5-15 ml/min) and moderate renal impairment (GFR 

30-60 ml/min) does not appear to be required (61). 

Clopidogrel has been evaluated for prevention of AV fistula non-maturation (62) in a 

multicenter randomized clinical trial. Patients received either clopidogrel or placebo for 6 

weeks after surgery. Although the frequency of access thrombosis within 6 weeks was 

significantly lower in patients receiving clopidogrel (12.2% versus 19.5%), AV fistula non-

maturation was similar (and surprisingly very high) in both groups (61.8% versus 59.5%). 

Anti-thrombotics for prevention of stenosis or thrombosis of AV grafts have also been 

evaluated with randomized trials. Neither warfarin nor aspirin plus clopidogrel prevented AV 

graft thrombosis, but unfortunately they increased the risk of bleeding complications (63,64). 

Dipyridamole plus aspirin produced a modest, although significant, prolongation of primary 

unassisted AV graft survival (65).  

Interestingly, long-term fish oil ingestion (four 1-g capsules/day) in patients with new 

hemodialysis grafts decreased by 22% (although statistically non-significant) the proportion 

of grafts with loss of native patency within 12 months (66). In addition, fish oil improved some 
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relevant secondary outcomes such as graft patency (RR 0.58), rates of thrombosis (RR 

0.50), and angioplasty (RR 0.59). Unexpected benefits on cardiovascular events were also 

observed: improved cardiovascular event-free survival (hazard ratio, 0.43) and lower mean 

systolic blood pressure, indicating a favourable risk/benefit ratio for this pharmacological 

approach (66). 

Systemic anticoagulation for the prevention of dialysis catheter thrombosis is a controversial 

issue for its inherent risk-benefit issues: while it may improve catheter survival, it can also 

increase the risk of side effects, such as bleeding and cardiovascular calcifications due to 

inhibition of vitamin K dependent proteins, such as MGP (Matrix Gla protein) (67,68). 

Warfarin at the mini-dose of 1 mg/day was not effective in preventing thrombus formation 

with hemodialysis catheters, although catheter survival improved in patients with an INR 

greater than 1.00 (69). A retrospective study found a significantly reduced thrombosis rate 

of tunneled catheters using anticoagulation at therapeutic levels (70). Similar results were 

reported in patients anticoagulated after treatment with urokinase for thrombosis (71) and in 

patients at high risk for thrombosis with the maintenance of target INR in the range of 1.5 to 

2.0 (72). Twardowski proposed a stepwise anticoagulation strategy in which the warfarin 

dose, started at 1 mg/day, is titrated upwards until thrombotic episodes resolve (73).  

Thus, anticoagulation appears to be effective in preventing catheter thrombosis, but the 

available evidence is based on retrospective and non-controlled studies, where the risks of 

bleeding, vascular calcification and bone side effects were not assessed. This raises a 

relevant safety issue and in the absence of controlled prospective studies confirming the 

overall benefits of anticoagulation use, its general use cannot be currently recommend (74).  

 

3. Interactions of drugs: general principles 

CKD patients are affected by many comorbidities that require multiple pharmacological 

treatments. One of the factors that can modify the response to drugs is the concurrent 

administration of other drugs. This phenomenon is defined as drug interaction. Drug 

interactions may lead to adverse effects and occasionally to fatal outcomes (75). Adverse 

effects due to drug interactions are often predictable from previous reports and careful 

knowledge of pharmacologic principles, but many clinicians have a low awareness of these 

possible adverse events.   

Drug interaction is a condition of pharmacological incompatibilities, in which a drug affects 

the activity of another drug when they are administered together (drug-drug interaction); 
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moreover, this reaction may also happen between drug and food, or between drug and 

medical plants.  

Potential drug-drug interactions have been frequently reported, but only few studies have 

been conducted on actual interactions. Some data are available about drug interactions 

among elderly patients hospitalized for drug toxicity (76). In a recent review (77), differences 

between actual and potential drug-drug interactions (DDIs) were outlined: the incidence of 

actual DDIs resulted lower than that of potential DDIs; important adverse effects occur only 

in the presence of specific risk factors, such as age or genetic polymorphisms.  

There are several mechanisms by which drugs may interact; they can be classified as 

pharmacokinetics, pharmacodynamics, or combined interactions (78,79). Drug action can 

be synergistic (when the drug’s effect is increased), antagonistic (when the drug’s effect is 

decreased), or it may produce new effects. Drug interactions depend both on patient-specific 

factors (intrinsic drug clearance, genetics, gender, concurrent diseases, diet), and drug-

specific factors (dose, route of administration, drug formulation, and the sequence of drug 

administration). 

3.1 Pharmacodynamic interactions Pharmacodynamic interactions can occur 

thought pharmacological receptors or signal transductor mechanisms (79). The drugs may 

or may not act on the same receptor to produce pharmacological effects. When drugs with 

similar pharmacologic effects are concurrently administered, an additive or synergistic 

response is usually seen. 

If the drugs act on the same receptor, they in turn can be:  

- Pure agonists, binding to the receptor’s main locus and causing a similar effect  

- Partial agonists, binding to one of the receptor’s secondary loci, causing the same effect, 

but with a lower intensity in contrast to the principle drug. 

- Antagonists, binding the receptor’s main locus but with an opposite effects to that of the 

main drug. If they compete with the main drug to bind with the receptor, they are defined 

competitive antagonists; instead, when the antagonist irreversibly binds to the receptor and 

it is not released until the receptor is saturated, it is called uncompetitive antagonists. 

3.2 Pharmacokinetics interactions. Different basic pharmacokinetics parameters 

must be considered for obtaining a careful drug management (78).  The most important are 

clearance, distribution volume, amount bound in plasma, half-life.  Clearance is the measure 

of capacity to eliminate the drug, while volume of distribution is the measure of the apparent 

body space available to contain the drug. Moreover, half –life represents the time required 

to reduce the amount of drug in the body by one-half during elimination and attain 50% of 



16 
 

steady state. Finally, the renal eliminated fraction of a drug is the key to predict its 

pharmacokinetics. 

Pharmacokinetics interactions may modify drug concentrations, by interfering with different 

mechanisms such as absorption, distribution, metabolism, and excretion of the drug (78).  

Absorption is strictly related to gastric pH, drug solubility or gastrointestinal motility, while 

distribution is influenced by competition of plasma protein binding, displacement from tissue 

binding sites, or alterations in local tissue barriers.  

Metabolism is regulated by metabolizing enzymes, which are typically activated through 

nuclear receptors. It primary occurs in liver tissue and small intestine, followed by other 

sides, such as plasma, lung and kidney. The most important of this enzymatic system is the 

system of cytochrome P450 isozymes. A result of interactions between endogenous or 

exogenous factors on enzymatic systems may stimulate the function of the enzyme (enzyme 

induction) or inhibit it (enzyme inhibition) (80). The final action is a modification in drug 

metabolism.  

Finally, the excretion interactions principally depend on renal function. Drugs are removed 

from the plasma by the kidney with different mechanisms: passive filtration, reabsorption 

and active secretion. Filtration depends on urine pH, so that renal excretion of certain drugs 

that are weak acids or weak bases may be influenced by other drugs that affect urinary pH 

(for example, drugs acting as weak bases are more easily excreted with acid urine pH, the 

inverse it is true for weak acids). Finally, secretion is a process based on saturability of the 

transported molecule and competition between substrates. P-glycoprotein, organic anion 

and cation transporters are involved in active tubular secretion of some drugs, and inhibition 

of these transporters can reduce renal elimination of the drugs, causing an increase of their 

serum levels (81).  

Considering the key role of the kidneys in drug metabolism and excretion, kidney failure 

obviously modifies drug pharmacokinetics (table 4). 

 

4. Dosing drugs in patients with renal failure 

The standard dose of a drug derives from studies in healthy volunteers and patients with 

normal capacity to metabolize and eliminate drugs (78). However, the effective dose may 

be different from patient to patient. Pathologic conditions (heart, liver or renal failure) may 

demand dosage adjustment in individual patients, because they modify specific 

pharmacokinetic parameters of the drugs. 
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For the predominant role of the kidneys in drug metabolism and excretion, patients affected 

by renal failure require an adjustment of dosing for substances cleared and metabolized by 

the kidney. The principles for drug dosage individualization in CKD patients are summarized 

in table 5. 

Dose adjustment is based on a combination of pharmacokinetics and pharmacodynamics 

effects, determining the relationship between the concentration of a drug and its final effect 

on organs (82). In case of a marked reduction of glomerular filtration, certain drugs should 

no longer be given, either because they may further damage the kidneys or because they 

are insufficiently eliminated and will accumulate, causing adverse events. 

Dosages of drugs cleared by kidney should be adjusted according to creatinine clearance 

or glomerular filtration rate calculated using online or electronic calculators (83), as 

previously outlined. 

A careful assessment of renal function is necessary before starting a drug. It is necessary 

to evaluate if a drug should be administrated or not, and/or if a dosing adjustment is required 

according to glomerular filtration rate.   

Attention in the use of antibiotics is particularly important. Patients with fluid overload may 

require a larger loading dose, in contrast to dehydrated patients. Patients with renal 

insufficiency generally need a higher starting dose, and then the maintenance dose is 

adjusted according to renal function, depending on drug half-life. The starting dose is 

important for both types of antibiotic, those whose effect is concentration-dependent and 

those whose effect is time-dependent. For adjusting the maintenance dosage in patients 

affected by kidney failure, it is possible to reduce the dose or to increase the intervals 

between doses, keeping the dose size normal. In clinical practice, a combination of the two 

methods is often useful. Finally, in patients requiring dialysis many drugs are given at the 

end of the dialysis session, minimizing removal during dialysis.  As a clinical alternative, it is 

often useful to search for drugs that are similar to the principle drugs but not metabolized by 

the kidney (83). 

Detailed dosing recommendations for individual drugs are available in specific textbooks 

(84,85).  Nevertheless, although guidelines are available, indications and regimens must be 

always individualized according to patient response and serum drug concentrations. 

4.1 Problematic drugs in CKD. Many drugs are commonly administered in CKD and 

dialysis patients. Here we focus our attention on drugs required for management of vascular 

access: antimicrobials, anticoagulants, analgesics and anaesthetics. Pharmacokinetic 

parameters may be modified in kidney failure and dosing adjustment based on glomerular 
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filtration rate may be required, especially for antimicrobials (table 6). Again, we want to 

emphasize that patients affected by renal failure are at high risk of adverse events induced 

by  nonsteroidal anti-inflammatory drugs (NSAIDs) (86). The most frequent are acute kidney 

failure, nephritic/nephrotic syndrome, papillary necrosis. In patients with preexisting renal 

damage, the use of NSAIDs can lead to permanent renal damage.  The risk of renal damage 

is increased if NSAIDs are administrated together with ace-inhibitors, in dehydrated 

conditions and for prolonged time. They should be avoided in renal failure. 

4.2 Measurement of therapeutic drug levels. Measuring drug concentrations is one 

way to optimize therapeutic regimens and account for changes between individuals. 

Therapeutic drug monitoring requires availability of rapid, specific, and reliable assays and 

known correlations of drug concentration to therapeutic and adverse outcomes. 

Hypoalbuminemia may influence interpretation of drug concentrations as the total drug 

concentration may be reduced even when the active unbound drug concentration is not. 

Unbound drug concentrations are often not clinically available, and therefore clinicians must 

empirically consider the impact of hypoalbuminemia in their interpretation of measured total 

drug concentrations 

5. CONCLUSIONS 

Safety of pharmacologic therapy in CKD patients is a major concern. Therefore, 

understanding strategies of drug management in this patient population is of key 

importance. The lack of studies performed specifically in patients with impaired renal 

function, particularly those with acute kidney injury or end-stage renal disease, who are 

generally excluded from many large-scale clinical trials, often leads to either no 

recommendation on the most appropriate pharmacologic treatment regimen or to opinion 

based indications. Overall, the choice and combination of drugs prescribed to CKD patients 

should be balanced against the individual risk of adverse events. More data from large-scale 

clinical trials including CKD patients or even better from dedicated studies in patients with 

CKD are warranted, in order to define the most effective and safe drugs for CKD patients. 
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Figure legends  

Figure 1. Clinical algorithm for drug prescribing in CKD patients. 

Figure 2. An example of a visual analogue scale (VAS), where 0 is No pain and 10 is 
agonizing pain. Pain is a subjective sensation and patients can adequately express the 
level of pain they are feeling and the level of pain they consider acceptable using the VAS 
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Table 1- List of the most common formulas for estimating glomerular filtration rate (eGFR), 

used for guiding drug dosage adjustment (see www.mdrd.com) 

Cockcroft and Gault (6)  

MDRD - four-variables (4) Modification of Diet in Renal Disease 

CKD-EPI (3,5) Chronic Kidney Disease-Epidemiology Collaboration 
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Table 2. General principles for the treatment of chronic pain in CKD patients. 

    

Pain level Recommended analgesic Safety issues 

Mild pain:  

VAS 1–3 

Paracetamol (± adiuvant) is the non-

narcotic agent of choice. 

 

 

NSAID are not indicated (topical 

gels may be used in small amounts) 

Paracetamol: at high doses (over 4 g/day) 

liver toxicity is possible, especially in 

patients with chronic liver disease (viral or 

alcohol related) 

NSAID: increased risk of gastrointestinal 

bleeding; oliguria/anuria due to sodium 

and water retention; hyperkalemia; 

worsening of renal function. 

Moderate pain: 

VAS 4–6 

Tramadol (with dose adjustment 

according to residual renal function)  

Side effects are similar to those observed 

with opioids: 

Constipation; nausea; central nervous 

system depression; seizures (in 

conditions with lower seizure threshold). 

May precipitate excess serotonin activity 

(“Serotonin syndrome”), when patients 

are concomitantly treated with 

serotonergic drugs  

Severe pain: 

VAS 7-10 

Fentanyl (mostly cleared by the 

liver; inactive metabolites) 

 

Buprenorphine (with dose 

adjustment according to residual 

renal function; mostly cleared by the 

liver; inactive metabolites) 

 

Methadone (mostly cleared by the 

liver; inactive metabolites)  

Safe for treatments over short periods; all 

may accumulate in the long term. 

Reassess the need and dose of opioids 

every 24–48 hours. 

Use caution in opioid naïve patients 

(monitor for CNS and respiratory effects). 

Fentanyl and methadone are highly 

protein bound and not dialyzable. 

Constipation; nausea; central nervous 

system depression; seizures (in 

conditions with lower seizure threshold). 

May precipitate excess serotonin activity 

(“Serotonin syndrome”), when patients 

are concomitantly treated with 

serotonergic drugs. 
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Table 3. Treatment of acute pain in CKD patients. 

 

Severity of 

pain 

CKD EPI  50-10 ml/min 

male 1.50 < sCr > 5 

female 1.25 < sCr > 4 

CKD EPI  <10 ml/min or dialysis 

male sCr > 5 

female sCr > 4 

mild pain paracetamol 1 g x4; 

tramadol 100 mg may be 

added 

paracetamol 1 g x 3;  

tramadol 50 mg may be added 

moderate pain paracetamol 1 g x4 

+ tramadol 100mg x2; 

buprenorphine 0.15 mg may 

be added 

paracetamol 1 gx 3 

+ tramadol 50 mg x 2 

buprenorphine 0.15 mg may be 

added 

severe pain buprenorphine 0.3 mg x 2 

+ paracetamol 1 g x 4; 

buprenorphine (3rd dose)  

buprenorphine 0.3 mg x 2 

+ paracetamol 1 gr x 3; 

buprenorphine (3rd dose) 
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Table 4. Potential effects of kidney failure on drug pharmacokinetics   

 

Absorption  

 Diabetic or uremic gastroparesis may alter gastrointestinal transit time and modify drug 

absorption  

 Drug able to alter gastric pH (e.g. antacids ad phosphate binders) can reduce absorption of 

other drugs  

 Gastrointestinal tract edema caused by congestive heart failure or nephrotic syndrome can 

slow drug absorption 

Distribution 

 Edema or ascites may increase the distribution volume for protein-bound and water-soluble 

drugs  

 Uremia can alter plasma protein binding, affecting acidic drugs  

 Hypoalbuminemia and altered plasma protein binding increase free or unbound 

concentrations of drugs  

 Tissue protein drug binding is reduced in uremic states 

Metabolism 

 Renal failure may affect liver function, increasing or decreasing hepatic biotransformations  

Excretion 

 Reduced excretion and prolonged half-life. Renal failure may alter glomerular filtration, 

tubular secretion, reabsorption 
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Table 5. Drug dosage individualization in patients with CKD  
 

 eGFR should be calculated for evaluating the stage of CKD and drug dosing purposes  

 Dosing adjustments are generally required when GFR falls below 60 ml/min/1.73 m2 

 The impact of interactions of all drugs commonly used in CKD patients (e.g., phosphate 

binders) should be evaluated 

 The volume of distribution (VD) of many drugs is increased in patients with moderate to 

severe CKD as well as in those with pre-existing CKD who develop AKI. The increase in 

VD may be the result of decreased protein binding or fluid overload. Obese CKD and AKI 

patients and those with large variations in serum protein levels should have their drug 

dosage individualized 

 Dosing changes can involve dose reduction, increasing the interval between doses or both 

 Loading doses may be required if a drug has a long half-life and there is a need to rapidly 

achieve the desired steady-state concentrations or if the VD of a drug is significantly 

increased 

 Patient’s loading dose for increased VD = Usual loading dose x ((Patient’s VD) / (Normal 

VD))  

 Maintenance dose: most commonly, prolonging the dosing interval but maintaining the 

same dose will result in the achievement of similar peak and trough concentrations as well 

as AUC and thus may be preferred.  

 A more accurate drug dosage adjustment is recommended for agents that have a narrow 

therapeutic index. When available, measurement of therapeutic drug levels may optimize 

therapeutic regimens. Hypoalbuminemia may influence the interpretation of drug 

concentrations. 
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Table 6. Pharmacokinetic parameters for selected drugs used in CKD/dialysis population and dosing 

adjustment according to glomerular filtration rate. Modified from Holford (78), Berns (84), and Gilbert 

(85). 

 

Drug Urinary 

excretion  % 

Bound 

to 

plasma 

proteins 

% 

Volume 

of 

distributi

on L/kg 

 

Half-life 

(hours) 

Normal 

/ESRD 

 

Dose for 

normal 

renal 

function 

Dosing  

adjustmen

t eGFR 

30-15 

ml/min 

CKD IV 

Dosing  

adjustment 

eGFR < 15 

ml/min 

CKD V 

Antiplatelet and Anticoagulant Drugs 

Acetyl-salicylic 

acid  (Aspirin) 

for prophylaxis 

of thrombosis 

5-80% (Highly 

variable:  

increases with 

increased urinary 

pH) 

80-90% 0.1-0-2 2 (salycilate)/ 

unchanged 

75-325 mg  

q24 h 

75-325 mg  

q24 h 

Not 

recommended 

(*) 

(*) nephrotoxic at high doses (a potential GFR reduction when renal blood flux is supported by prostaglandins); dose 

of 100 mg when administrated as antiplatelet action 

Warfarin 3% 99% 0.15 34-45/ 

unchanged 

2-10 mg 

(*) 

100% 10% 

(*) according to INR (international normalized ratio), reduced binding to plasma protein in CKD 

Ticlopidine 2% 98% No data 12/no data 

(single dose) 

24-33/no 

data (repeat 

dosing) 

250 mg 

q12h 

100% 100% 

Clopidogrel  50% 98% No data 6-8/No 

data 

75 mg  

q24h 

100% 100% 

Heparin  - 90% 0.06-0.1 0.3-2/ 

unchanged 

50-75 

UI/kg 

100% 100% (*) 

(*) increased risk of bleeding – measure aPTT 

Low molecular 

weight heparin 

- No data 0.06-0.13 22.6/4-10 30-40 mg 

q12h  (*) 

100% 50% (*) 

(*) 1 mg= 100 UI; monitored by anti-Xa factor activity; reduced elimination in renal failure. Avoid in renal failure if 

anti-Xa factor activity can not be monitored  

Pain Medications/Analgesics 

Paracetamol 

(Acetaminophen) 

3% 20-30% 1-2 2/2 500-1000 

mg / q4h  

500-1000 

mg / q 6h 

(*) 

500-1000 

mg / q 8h (*) 

(*) safe in CKD 
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Tramadol 95% 20% 2-3 5-7/11 

(range up 

to 20 h) 

50-100 mg 

q12h-q4h 

depending on 

severity of 

pain 

50-100 mg 

q12h 

(100 mg 

extended-

release tablets 

should not be 

used) 

50 mg q12h 

(100 mg 

extended-

release tablets 

should not be 

used) 

Buprenorphine 30% (inactive 

metabolites) 

96% 2.8 37/ 0.3 mg q6h 

(initial 

dose) 

0.15-0.3 

mg q12h 

0.15-0.3 mg 

q12h 

Fentanyl 10%  

 

84% 3-4 IV: 6/no data 

Sublingual: 

6.6/no data 

Transdermal: 

20-27/no data 

Sublingual: 

100 mcg 

(initial dose). 

Transdermal: 

25 mcg/hour 

(initial dose) 

75% 50% 

Codeine >90% 7% 3-4 2.5-3.5/no 

data 

30-60 mg  

q4-6h 

Avoid (*) Avoid (*) 

Methadone Highly variable 

(reduced with 

increased urinary 

pH) 

85-90% 1-8 30/ 2.5-10 mg 

q8-12h 

75% (*) 50% (*) 

Morphine  8% 20-30% 3.5 1-4/ 

unchanged 

20-25 mg 

q4h 

Avoid (*) Avoid (*) 

(*) opioid use experienced adverse events in CKD patients 

Antimicrobial Drugs  

Gentamicin 76%   10% 0.23-0.28 1.8-3/ 

20-60 

1.7 mg/kg 

q8h 

100%  

q12-24h 

100%  

q48h 

Ciprofloxacin 65%    40% 2.5 3-6/6-9 500-750 

mg  

q12h 

50-75% 50% 

Levofloxacin 60-80% 24-38% 1.1-1.5 4-8/76  250-750 

mg  

q24h 

250-750 

mg  

q24-48h 

(*) 

250-500 mg 

q48h 

(*) 

(*) loading dose 500 mg 

Vancomycin 80%    30% 0.4-1.1 4-6/200-

250 

1 g  

q12h 

1 g  

q24-96h 

1g  

q4-7 days 

(*) 

(*) measure serum levels 

Amoxicillin 50-70% 15-25% 0.26 0.9-2.3/5-

20 

250-500 

mg q8h 

250-500 

mg q8-12h 

250-500 mg 

q24h 
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Ampicillin 30-90%    20% 0.17-0.31 0.8-1.5/7-

20 

250mg-2 g 

6h 

250mg- 2 g 

q6-12 h 

250mg- 2 g  

q 12-24 h 

Cefazolin 90% 80% 0.13-0.22 2/40-70 0.25-2 g 

q6h 

100%  

q12h 

50%  

q24-48h 

Ceftazidime  60-80% 5-24% 0.18-0.31 1.2/13-25 1-2 g  

q8h 

1-2 g  

q12-24h 

1-2 g  

q24-48h 

Ceftriaxone 30% 90% 0.12-0.18 7-9/12-24 0.25-2 g 

q12-24h 

100% 100% 

Meropenem 70% 2% 0.35 1.1/6-10 1-2 g  

q8 h 

100%  

q12h 

100%  

q24h 

Imipenem  70% 13-21% 0.17-0.3 1/4 0.2mg -1 g 

q6h 

50%  (*) 25%  (*) 

(*) administered together with cilastatin  to prevent nephrotoxicity 

Local Anesthetics 

Lidocaine 0.5-

1% 

<10% 70%  1.1 1.8/5.0 5-300 mg 

(1-60 ml)  

75% 75% 

 

CKD= chronic kidney disease; GFR= glomerular filtration rate 
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Figure 2 
 

 

 
 

Figure 2: An example of a visual analogue scale (VAS), where 0 is No pain and 10 is 
agonizing pain. Pain is a subjective sensation and patients can adequately express the 
level of pain they are feeling and the level of pain they consider acceptable using the VAS 
 

 

 

 

 


