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Abstract	

During	my	PhD,	I	focused	on	three	important	environmental	bacteria,	namely,	

Azotobacter vinelandii,	Bacillus subtilis	and	Burkholderia thailandensis.	In	each	model,	I	

studied	different	mechanisms	of	oxidative	stress,	related	to	their	role	in	the	

environment	or,	in	the	case	of	B. thailandensis,	related	to	its	condition	of	opportunistic	

pathogen	of	invertebrates	and	model	for	the	human	pathogen	B. pseudomallei.	In	A. 

vinelandii,	inactivation	of	the	rhodanese‐like	protein	RhdA	resulted	in	continuous	

generation	of	endogenous	oxidative	stress,	promoting	biofilm	genesis,	stimulating	the	

activity	of	scavenging	systems	and	triggering	a	switch	between	swarming	and	biofilm‐

like	phenotypes.	Furthermore,	the	oxidative	stress	affected	the	composition	of	the	

exopolymeric	substances	(EPS),	resulting	in	the	production	of	a	polysaccharide‐rich	

extracellular	polymeric	matrix	in	mutant	(part	II,	chapter	1).	In	B. subtilis,	the	

antimicrobial	mechanism	of	silver	nanoparticles	(Ag‐NPs)	involve	the	production	of	

reactive	oxygen	species	(ROS),	with	possible	consequences	on	soil	bacteria.	Sub‐lethal	

doses	of	Ag‐NPs	increased	the	ROS	formation	in	B. subtilis	planktonic	cells,	but	not	in	

sessile	cells,	suggesting	the	presence	of	scavenging	systems	in	biofilms.	Consistently,	

proteomic	analysis	in	Ag‐NPs‐treated	biofilms	showed	increased	production	of	proteins	

related	to	redox	,	quorum	sensing	and	to	stress	response,	thus	suggesting	a	coordinated	

regulation	of	biofilm	and	stress	response	genes.	Extracellular	polysaccharide	production	

and	inorganic	phosphate	solubilization	were	also	increased,	possibly	as	part	of	a	

coordinated	response	to	oxidative	stress	(part	II,	chapter	2).	Finally	we	challenged	B. 

thailandensis	with	phenazine	methosulphate	(PMS)	to	simulate	the	oxidative	stress	

encountered	in	the	soil	and	in	the	infected	host.	A	new	molecular	approach	to	create	

mutants	in	Burkholderia	spp.	has	been	developed	as	part	of	this	work	(part	II,	chapter	3).	

In	B. thailandensis	biofilm,	oxidative	stress	decreased	as	the	biofilm	reached	the	mature	

phase.	The	presence	of	PMS	affected	the	biofilm	morphology,	triggering	the	production	

of	more	EPS.	Interestingly	,	the	deletion	of	the	periplasmic	superoxide	dismutase,	sodC,	

triggered	polysaccharide	production	in	biofilm	cells	(part	III,	chapter	1).	My	results	

demonstrate	how	the	matrix	production	plays	a	pivotal	role	in	protection	from	oxidative	

injuries	in	bacterial	biofilm,	both	in	Gram‐negative	and	Gram‐positive	bacteria.	The	

protection	mechanisms	activated	by	biofilm	in	response	to	oxidative	stress	can	have	

important	consequences	on	environmental	biodiversity	and	in	the	balance	between	

planktonic	and	biofilm	cells.	
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1.	Soil	microbial	community	

	

Soil	systems	host	a	complex	network	of	interactions	between	microorganisms	and	

plants.	Plants	acquire	nutrients	from	inorganic	sources	that	are	supplied	primarily	by	

decomposers,	whereas	decomposers,	mostly	soil	microorganisms,	acquire	carbon	from	

organic	resources	that	are	supplied	primarily	by	plants	(Eisenhauer	et	al.,	2010).	In	soil	

ecosystems,	microorganisms	are	a	driving	force	several	processes:	nutrient	acquisition	

(Sprent	et	al.,	2000),	nitrogen	cycling	(Kowalchuk	et	al.,	2001),	carbon	cycling	(Hogberg	

et	al.	2001),	soil	structure	and	transport	processes	(Feeney	et	al.,	2006),	thus	

contributing	to	establish	specific	microbial	ecological	niches	in	plant‐based	systems	

(Vacheron	et	al.,	2013).	The	rhizosphere,	defined	as	the	portion	of	soil	where	

microorganism‐mediated	processes	are	under	the	influence	of	the	plant	root	(Hiltner,	

1904),	is	one	of	the	most	important	niches	(Berg	et	al.,	2009).	Roots	provide	plant	

anchorage	in	soil,	absorption	of	water	and	ions,	nutrient	storage	and	plant	vegetative	

growth,	but	the	rhizosphere	is	above	all	the	place	where	plants	get	in	close	contact	with	

a	wide	range	of	soil	microbial	populations	(Vacheron	et	al.,	2013).	Plant	roots	exude	a	

huge	diversity	of	organic	nutrients	(organic	acids,	phytosiderophores,	sugars,	vitamins,	

amino	acids,	nucleosides,	mucilage),	making	the	rhizosphere	a	very	selective	

environment	with	a	rich	microbial	community	(Van	Der	Heijden	et	al.,	2008),	

differentiated	from	the	surrounding	soil	biome	(Bulgarelli	et	al.,	2013).	Root	exudates	

also	contain	signalling	molecules	to	change	microbial	community,	according	to	type	of	

compound	detected	in	the	rhizosphere	(Badri	et	al.,	2009).	On	the	other	hand,	

microorganisms	are	able	to	produce	canonical	plant	growth‐regulating	substances	such	

as	auxins	or	cytokinins	to	colonize	rhizosphere.	This	molecular	dialogue	will	determine	

the	outcome	of	the	relationship,	ranging	from	pathogenesis	to	symbiosis,	through	highly	

coordinated	cellular	processes	(Ortiz‐Castro	et	al.,	2009).	Within	the	microbial	

community	of	rhizosphere,	some	microorganisms	establish	beneficial	cooperation,	in	

which	the	plants	and	the	microorganisms	share	costs	and	benefits	(Bulgarelli	et	al.,	

2013).	These	microorganisms,	defined	as	plant	growth‐promoting	rhizobacteria	(PGPR),	

promote	plant	growth	through	several	indirect	or	direct	mechanisms.	In	turn,	plants	

supply	through	the	roots	the	sugars	that	can	be	metabolized	for	bacterial	growth.	Direct	



growth	promotion	mechanisms	include	the	root	development	through	the	production	of	

phytohormones	or	enzymatic	activities	(such	as	as	1‐aminocyclopropane‐1‐carboxylate	

deaminase)	able	to	modulate	the	level	of	plant	hormones;	this	allows	a	higher	uptake	of	

minerals	and	water	and	thus	the	growth	of	the	whole	plant	(Vacheron	et	al.,	2013).	

Other	direct	PGPR	mechanisms	are	nitrogen	fixation	and	solubilization	of	inorganic	

phosphate.	As	nutrient	availability	in	soil	is	often	poor,	nitrogen‐fixing	bacteria	

contribute	consistently	to	the	plant	growth,	enriching	the	soil	with	appreciable	amounts	

of	nitrogen	from	the	atmospheric	reservoir	(Saharan	et	al.,	2011).	The	reduction	of	

nitrogen	gas	to	ammonia	by	the	nitrogenase	enzyme	complex	is	well	known	in	rhizobia‐

legume	symbiosis,	but	has	also	been	demonstrated	for	rhizosphere	bacteria,	as	in	the	

case	of	A. vinelandii	(part	I,	chapter	1).	In	soil,	a	large	proportion	of	phosphorous	is	not	

available	for	plants,	being	present	in	insoluble	complexes.	Phosphate‐solubilizing	

bacteria	mobilize	insoluble	inorganic	phosphates	from	their	mineral	matrix	to	the	bulk	

soil	where	they	can	be	absorbed	by	plant	roots	(Sashidhar	et	al.,	2010).	The	main	

mechanisms	are	associated	with	the	release	of	low	molecular	weight	organic	acids	for	

the	mineral	phosphate	solubilization	and	the	release	of	acid	phosphatases	for	the	

organic	phosphate	solubilization,	to	chelate	the	phosphate‐bound	cations	thereby	

converting	it	into	soluble	forms	(Rodriguez	et	al.,	1999;	Bulgarelli	et	al.,	2013).	Bacillus 

subtilis	is	among	bacteria	having	this	useful	ability	(part	I,	chapter	2).	Indirect	growth	

promotion	is	the	decrease	or	prevention	of	deleterious	effect	of	pathogenic	

microorganisms	(Rodriguez	et	al.,	1999).	Siderophores	and	antibiotics	are	three	of	the	

most	effective	mechanisms	employed	to	counteract	phytopathogenic	proliferation	

(Beneduzi	et	al.,	2012).	Siderophores	are	small	molecules,	secreted	to	solubilize	iron	

from	their	surrounding	environments,	forming	a	complex	ferric‐siderophore	that	can	

move	by	diffusion	to	come	back	to	the	cell	surface	(Andrews	et	al.,	2003).	Siderophore	

production	confers	a	competitive	advantage	in	iron‐limiting	conditions,	so	that	PGPR	

can	exclude	other	microorganisms	from	this	ecological	niche	(Beneduzi	et	al.,	2012).	A	

well‐known	example	is	pyoverdine,	a	siderophore	produced	by	pseudomonads,	very	

efficient	in	scavenging	iron	and	antagonize	some	fungal	plant	pathogens	(Duijff	et	al.,	

1999).	Besides	siderophore	production,	the	mechanism	most	commonly	associated	with	

the	ability	of	PGPR	to	act	as	antagonistic	agents	against	phytopathogens	is	the	

production	of	compounds	inhibiting	microbial	growth:	bacteriocins,	phenazines,	

phloroglucinols,	pyoluteorin,	pyrrolnitrin,	cyclic	lipopeptides,	hydrogen	cyanide	and	
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lipopeptide	biosurfactants	are	compounds	with	proved	efficacy	(Beneduzi	et	al.,	2012).	

Especially,	phenazines	are	of	particular	interest	in	our	case	as	they	are	a	well‐known	

source	of	oxidative	stress.	In	the	presence	of	molecular	oxygen	and	reducing	agents,	

phenazines	lead	to	the	accumulation	of	reactive	oxygen	species	(ROS)	in	organisms	and	

tissues	(Xie	et	al.,	2013).	Furthermore,	phenazines	are	among	those	substances	able	to	

activate	Induced	Systemic	Resistance	(ISR)	in	plants	(Pierson	et	al.,	2010).	ISR	is	the	

state	of	enhanced	defensive	ability	developed	by	plants	when	appropriately	stimulated	

(Van	Loon	et	al.,	1998)	and	depends	on	the	expression	of	the	plant	ethylene	and	

jasmonic	acid	pathways	(Verhagen	et	al.,	2004).	Another	indirect	PGPR	beneficial	effect	

on	plants	is	the	increased	tolerance	to	heavy	metal	contamination	(Vacheron	et	al.	

2013).	At	high	concentrations,	heavy	metals	greatly	affect	the	quantity,	the	activity	and	

the	structure	of	microbial	communities	(Tak	et	al.,	2011).	For	these	reason,	

microorganisms	developed	resistance	or	tolerance	mechanisms	that	can	be	

advantageous	also	for	plants.	PGPR	can	improve	heavy	metal	tolerance	of	plants	and	

phytoextraction	activities	by	altering	the	solubility,	availability,	and	transport	of	heavy	

metals,	by	reducing	soil	pH	and	releasing	chelators	(Ma	et	al.,	2011).		PGPR	interact	with	

a	large	range	of	host	plant	species	and	encompass	a	huge	taxonomic	diversity,	especially	

within	the	Firmicutes	and	Proteobacteria	phyla	(Bulgarelli	et	al.,	2013).	In	this	work,	we	

focused	on	three	bacteria	that	belong	to	these	phyla:	A. vinelandii	(gamma‐

Proteobacteria)	(chapter	I),	B. subtilis	(firmicutes)	(chapter	II)	and	B. thailandensis	

(beta‐Proteobacteria)	(chapter	III	and	IV).	While	A. vinelandii	and	B. subtilis	are	known	

as	PGPR,	B. thailandensis is	a	soil	microorganism	used	as	model	for	the	pathogen	B. 

pseudomallei.	

	

	 	



2.	Bacterial	biofilms	

	

Biofilms	are	heterogenic	microbial	communities	embedded	in	a	self‐	produced	

polymeric	matrix	attached	to	a	surface	(Hall‐Stoodley	et	al.,	2004).	The	biofilm	

formation	is	a	nearly	universal	trait	enabling	bacteria	to	develop	coordinated	

architectural	and	survival	strategies	(Vlamakis	et	al.,	2013)	and	is	now	largely	accepted	

that	biofilms	constitute	the	predominant	microbial	lifestyle	in	natural	and	engineered	

ecosystems	(Mc	Dougald	et	al.,	2011).	Bacteria	growing	as	a	biofilms	are	distinct	from	

free‐	swimming	planktonic	bacteria	in	their	physiology,	in	gene	expression	pattern	and	

even	morphology	(Landini	et	al.,	2010).	While	planktonic	cells	rapidly	grow	to	

disseminate	and	colonize	new	habitats,	the	sessile	form	allows	bacteria	to	settle	in	that	

particular	habitat.	As	the	bacterial	cells	adapt	to	grow	in	these	complex	communities,	

they	express	phenotypic	specific	traits	that	confer	to	biofilm	a	higher	resistance	to	

adverse	condition	and	adaptability	to	environmental	changes	(Stewart	et	al.,	2008).	

Evidence	from	the	fossil	records	(more	than	3‐billion‐year‐old)	indicate	that	the	ability	

to	form	biofilms	is	an	ancient	and	integral	characteristic	of	bacteria	(Westall	et	al.,	

2001).	In	that	time,	bacteria	suffered	drastic	and	fluctuating	conditions,	with	extreme	

high	temperatures,	pH	and	exposure	to	ultraviolet	light	(Hall‐Stoodley	et	al.,	2004).	The	

biofilm	lifestyle	guaranteed	the	protection	that	bacteria	needed	for	survival,	providing	

homeostasis	and	facilitating	the	development	of	complex	interactions	between	

individual	cells.	Biofilm	represents	an	optimal	solution	to	colonize	and	survive	in	niches	

despite	the	limited	availability	of	nutrients,	desiccation,	low	pH	and	predation	(Rinaudi	

et	al.,	2010).	The	biofilm	structure,	the	adhesion	to	a	surface	and	the	polymeric	matrix	

offer	to	cells	a	suitable	environment	for	signalling	pathways,	for	the	exchange	of	genetic	

material,	of	metabolites	and	enzymes,	and	with	a	high	nutrient	and	water	concentration	

(Davey	et	al.,	2000).	In	addition,	the	heterogeneity	of	a	biofilm	offers	a	gradient	of	

physicochemical	conditions	(Stoodley	et	al.,	2002;	Flemming	et	al.,	2007),	allowing	the	

formation	of	stable	consortia	of	different	microbial	species	in	different	compartments	of	

the	biofilm.	Indeed,	although	much	has	been	learned	through	the	study	of	single‐species	

biofilms	grown	in	laboratory	conditions,	natural	biofilms	are	mostly	polymicrobial	

communities	with	unique	characteristics	originating	from	the	combination	of	bacterial	
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species	and	extracellular	condition	in	which	it	develops	(Vlamakis	et	al.,	2013).	A	good	

example	is	the	spatial	distribution	of	microorganisms	according	to	oxygen	gradient	

inside	the	biofilm.	Oxygen‐profile	measurements	in	biofilms	reveal	that	oxygen	

concentrations	decrease	from	the	external	aerated	fluid	into	the	biofilm	depths,	until	is	

completely	depleted.	Oxygen	is	actively	respired	by	aerobic	cells	in	the	upper	layers	of	

the	biofilm,	forming	anaerobic	niches	suitable	for	anaerobic	bacteria,	deeply	in	the	

biofilm	(Schramm	et	al.,	1996).	Therefore,	the	chemical	and	physical	heterogeneity	of	

biofilm	lead	to	the	heterogeneity	in	the	bacterial	species	distribution	in	natural	multi‐

species	biofilms.	In	mono‐species	biofilm,	the	same	heterogeneity	can	be	find	at	a	

different	level:	gene	expression,	activated	pathways	and	produced	proteins	respond	to	

the	local	and	unique	conditions	(Stewart	et	al.,	2008).	Within	the	biofilm,	genetically	

identical	cells	express	different	genes	and	produce	subpopulations	of	functionally	

distinct,	coexisting	cell	types	(Vlamakis	et	al.,	2013).	

	

2.1 Biofilm development  

Microscope	observations	of	sub‐aquatic	biofilm	(i.e.,	biofilm	growing	on	a	solid	surface	

in	contact	with	a	liquid)	revealed	complex	spatial	organization	with	pillars,	mushroom‐

like	and	tree‐like	structures	with	water	channels	that	allow	an	efficient	exchange	of	

nutrients,	waste	products,	and	signalling	molecules	(Stoodley	et	al.,	2002).	Biofilm	

development	from	a	single	cell	to	a	complex	3D	structure	has	been	often	compared	to	

multi‐cellular	organisms	and	cellular	communities.	Because	of	this	similarity,	Asally	et	

al.	(2012)	suggested	that	the	two	processes	guiding	tissue	development	could	govern	

biofilm	formation:	a	genetic	program	to	rule	cellular	processes	(growth,	death,	and	

differentiation)	and	a	macroscopic	movement	of	cell	populations,	determined	by	

mechanical	properties	and	physical	forces.	This	is	particularly	interesting	if	applied	to	

the	available	models	of	biofilm	formation:	the	developmental	model	(O’Toole	et	al.,	

2000)	and	the	individualist	model	(Mods	et	al.,	2009).	The	largely	accepted	

developmental model	mainly	arise	from	imaging	techniques,	microbiological	

observations	of	biofilm	morphology	and	isolation	of	mutants,	considering	the	biofilm	

from	a	macroscopic	point	of	view.	According	to	this	model,	biofilm	formation	occurs	

because	of	a	sequence	of	events,	where	different	stages	can	be	identified	(O’Toole	et	al.,	

2000)	(Fig.	1).	The	formation	of	microbial	biofilms	begins	with	the	reversible	adhesion	



of	a	small	number	of	cells	to	a	surface.	On	the	abiotic	surface,	the	balance	between	non‐	

specific	interactions,	such	as	electrostatic,	hydrophobic,	and	van	der	Waals	forces,	drive	

the	initial	attachment	between	bacteria	and	the	surface	(van	Merode	et	al.,	2008).	Upon	

sensing	the	contact	with	the	surface,	bacteria	undergo	a	cascade	of	metabolic	changes	

and	the	alteration	in	structural	components	such	as	membrane	proteins	and	

transporters,	allowing	a	transient	attachment	to	the	surface	(Sauer	et	al.,	2001).	

Environmental	signals	can	activate	cellular	mechanisms	to	strengthen	the	adhesion,	

make	it	irreversible,	and	cells	proliferate	in	clusters	forming	a	monolayer	called	

microcolony	(Hinsa	et	al.,	2003;	Ono	et	al.,	2014).	Monolayer	cells	keep	dividing	by	

active	binary	division	and	recruiting	cells	to	accumulate	as	multilayered	cell	clusters.	

This	cell	accumulation	requires	coordinated	efforts	from	the	microbial	community	to	

produce	a	well‐organized	structure.	A	multilayer	biofilm	develops	when	bacteria	are	

able	to	adhere	to	a	surface	and	to	each	other.	Intercellular	adhesions	require	an	outer	

adhesive	bacterial	surface,	requirement	that	can	be	satisfied	by	the	synthesis	of	an	

adhesive	matrix	(Karatan	et	al.,	2009).	The	matrix	is	composed	of	extracellular	

polymeric	substances	(EPS),	i.e.	a	mixture	of	polysaccharides,	proteins,	and	nucleic	acids	

that	surrounds	the	bacterial	colony,	allowing	strong	cell‐to‐cell	and	cell‐to‐surface	

interactions	towards	the	differentiation	of	a	mature	biofilm	(Karatan	et	al.,	2009).	EPS	

are	essential	in	building	the	3D	biofilm	structure,	in	retaining	nutrients	for	cell	growth,	

and	in	protecting	cells	from	dehydration	and	other	cellular	stresses	(Flemming	et	al.,	

2007).	Biofilm	commonly	develops	to	form	a	differentiated,	vertical	structure	with	

variable	thickness	and	cell‐free	channels	for	the	transport	of	nutrients	and	oxygen	from	

the	interface	to	the	inner	parts	of	the	biofilm,	and	for	the	removal	of	metabolic	wastes.	

At	this	point,	different	microenvironments	are	present,	characterized	by	specific	

physicochemical	conditions	that	can	support	the	growth	of	heterogeneous	bacterial	

species	or	bacteria	with	different	physiological	states	(Stoodley	et	al.,	2002).	The	last	

step	of	biofilm	development	is	the	dispersal.	Bacterial	cells	detached	from	the	biofilm	re‐

enter	the	planktonic	state,	and	may	start	a	new	biofilm	formation	cycle.	Signalling	

molecules	in	response	to	environmental	changes	(e.g.	nutrients	availability,	oxygen	

concentration,	oxidative	stress)	or	inner	accumulation	of	waste	products	cause	the	

disruption	of	the	biofilm,	through	the	production	of	lytic	enzymes,	the	return	of	motility,	

surfactant	production,	and	cell	lysis	(Mc	Dougald	et	al.,	2011).	In	this	way,	bacteria	

detect	and	respond	to	the	unfavorable	environmental	conditions	by	returning	to	the	
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planktonic	mode	of	existence	(Karatan	et	al.,	2009).	This	first	model	entails	the	

evolution	of	dedicated,	hierarchically	ordered	pathways	for	regulation	of	biofilm	

formation.	Nevertheless,	little	evidence	from	molecular	studies	supports	the	idea	that	

biofilm	formation	relies	on	an	independent	and	dedicated	gene	network	(Ghigo,	2003;	

Monds	et	al.,	2009).	Recently,	Monds	and	O’Toole	(2009)	propose	an	alternative	model,	

called	individualist model,	more	consistent	with	the	involvement	of	genetic	modules	

from	different	pathways	to	regulate	biofilm	formation.	In	this	model,	biofilm	formation	

occur	following	the	same	steps	of	the	previous	model,	except	that	individual	bacteria	–

not	the	multicellular	community‐	sense	and	respond	to	its	specific	surrounding	

environment.	The	process	leads	to	cooperation	between	bacteria	and	to	biofilm	

formation	as	a	highly	adaptive	measure.	Indeed,	some	of	the	apparently	cooperative	

traits	are	advantageous	for	the	individual	bacterium	(Klausen	et	al.,	2006).	According	to	

this	model,	each	cell	reacts	individually	and	constantly	adjust	to	being	part	of	a	

microbial	community	(Monds	and	O’Toole,	2009)	(Fig.	2).	Data	in	support	of	both	

models	have	been	published.	The	complexity	of	the	biofilm	formation	analysed	is	

probably	better	described	merging	the	two	models.	In	the	early	stages	of	biofilm	

formation,	the	individualist	model	fit	well	as	the	contribute	of	the	genetic	program	to	

rule	cellular	processes	is	evident;	on	the	other	hand,	in	the	late	stages	of	biofilm	

formation	the	coordination	and	the	macroscopic	movement	of	cell	populations	are	the	

main	actors	and	are	better	described	by	the	developmental	model.		

	



	

Figure 1. Biofilm formation according to the developmental model. Image retrieved 

from CBE Image Library, Center for Biofilm Engineering Montana State University-

Bozeman. 

 

 

Figure 2. Biofilm formation according to the individual model. Adapted from Monds et 

al., 2009. A. Independent cells attachment to a surface. B. Oxygen and carbon favours 

cell division. C. Microcolony: active metabolism of cells on top pushes the bottom cells 

to adapt, creating heterogeneity. D. Macrocolonies: stochastic production of EPS 

(yellow cells) promotes biofilm maturation. Higher shear forces (yellow zone) make 

top cells adapt, increasing heterogeneity. E. Mature biofilm.	
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2.2 Biofilms impact 

Biofilms	can	colonize	different	surfaces,	either	biotic	or	abiotic,	causing	a	beneficial	or	

detrimental	effect	on	environment,	industry	and	human	health	(Costerton	et	al.,	1987).	

Biofilm	characteristics	are	beneficially	exploited	in	the	wastewater	treatment	plants	

(Nicolella,	2000),	for	bioremediation	(Wu	et	al.,	2015;	Dash	et	al.,	2013),	for	the	

production	of	biomaterials,	or	enhance	the	effect	of	plant	growth	promoting	

rhizobacteria	in	soil	(Rinaudi	et	al.,	2010).	Indeed,	in	rhizosphere,	many	microbial	

species	adopt	a	sessile	lifestyle	to	colonize	roots.	The	biofilm	allows	them	to	overcome	

common	environmental	stresses,	such	as	desiccation	and	nutrient	limitation,	and	to	

establish	with	plants	complex	and	advantageous	interactions,	which	modulate	gene	

expression	in	both	the	plant	and	the	associated	bacteria	(Rudrappa	et	al.,	2008).	This	

interaction	is	favourable	for	plants	too.	Indeed,	EPS	produced	by	bacteria	in	the	

rhizosphere	also	enhance	soil	aggregation,	which	in	turn	improves	water	stability,	

critical	to	the	survival	of	the	plant	(Davey	et	al.,	2000).	Nevertheless,	biofilm	can	also	be	

destructive,	causing	chronic	infections	(Bjarnsholt	et	al.,	2013),	parasitism	phenomena	

in	animals	and	plants	(Rinaudi	et	al.,	2010),	biodeterioration	of	engineered	systems	and	

artworks	(Cappitelli	et	al.,	2006),	fouling	of	food‐processing	equipment	(Villa	et	al.,	

2012a).	Indeed,	biofilms	adhesion	to	metal	surfaces	promotes	corrosion,	clogging	of	

pipelines	in	food	processing	plants	and	reduction	of	heat	transfer	efficiency,	resulting	in	

important	economic	losses	and	high	risks	for	health	because	of	the	possible	food	

contamination	by	pathogens,	such	as	Listeria,	Pseudomonads,	Bacillus	and	Salmonella	

spp.	(Tan	et	al.,	2014).	In	addition,	the	presence	of	biofilms	on	artificial	surfaces	

instigates	biofouling,	stimulating	the	subsequent	attachment	of	macro‐foulers,	like	

plants	and	animals,	through	biochemical	signals	and	changes	of	physical	surface	

properties	(Zardus	et	al.,	2008).	Biofilm	removal	is	carried	out	using	either	biocides	or	

mechanical	methods	(i.e.	grinding,	wash‐out	with	high‐pressure	water),	but	the	

complete	and	efficient	eradication	is	often	difficult	(Bruellhoff	et	al.,	2010).	In	the	

sanitary	field,	biofilm‐associated	diseases	are	more	difficult	to	treat	and	require	a	

considerable	amount	of	time	and	higher	antibiotics	doses	before	they	can	be	completely	

eradicated	(Donlan	et	al.,	2002;	Gilbert	et	al.,	2002).	Eradication	problems	arise	because	

cells	living	in	a	biofilm	are	less	sensitive	to	antimicrobial	agents	compared	to	planktonic	

bacteria	(Mah	et	al.,	2003).	Various	different	mechanisms	have	been	proposed	to	explain	



the	reduced	susceptibility	to	antibiotics	shown	by	bacterial	biofilms.	The	barrier	

properties	of	the	extracellular	matrix,	the	presence	of	niches	of	starved	and	stationary	

phase	bacteria	(Anderl	et	al.,	2003;	Walters	et	al.,	2003),	the	existence	of	sub‐

populations	called	persisters	(Percival	et	al.,	2011)	and	the	spreading	of	antimicrobial	

resistance	by	gene	transfer	are	the	main	mechanisms	ensuring	a	higher	tolerance	of	

biofilm	to	biocides	and	other	stress.	The	eradication	of	biofilm	results	even	more	

difficult	because	killed	cells	might	provide	nutrients	for	subsequent	colonization,	but,	

above	all,	a	small	surviving	population	of	persistent	bacteria	can	repopulate	the	surface	

immediately,	becoming	more	resistant	to	further	biocide	treatment	(Pace	et	al.,	2006).	A	

possible	solution	is	a	combined	approach	of	conventional	biocides	with	additional	

treatments	(e.g.,	permeabilisers,	exopolysaccharide	inhibitors,	DNase;	Vaara	et	al.,	1992;	

Huang	et	al.,	1999)	to	increase	the	vulnerability	of	organisms,	though	reducing	the	

biocide	concentrations	and	the	health	hazard	for	operators	and	environment	(Young	et	

al.,	2008).	Furthermore,	effforts	have	been	addressed	towards	the	development	of	

preventive	strategies	that	can	be	used	to	disarm	microorganisms	without	killing	them.	

Possible	target	to	inhibit	biofilm	formation	are:	the	early	adhesion	phase,	interacting	

with	the	surface	sensing	process	to	repel	pioneering	cells	keeping	them	in	a	planktonic	

form;	the	reversible‐to‐irreversible	adhesion	phase,	interfering	with	cell‐to‐cell	

communication.	Villa	et	al.	(2010;	2011)	described	a	recent	biocide‐free	approach,	

aimed	at	interfering	with	the	adhesion	phase	of	biofilm	genesis:	zosteric	acid	

significantly	reduced,	at	sub‐lethal	concentrations,	both	bacterial	and	fungal	adhesion.	

Furthermore,	zosteric	acid	has	been	recently	successfully	tested	to	inhibit	the	biofouling	

in	membrane	bioreactor	systems	used	in	wastewater	treatment	plants	(Polo	et	al.,	

2014).		

	

2.3 Biofilm composition 

Matrix	is	the	main	component	of	biofilms,	sometimes	accounting	for	over	90%	of	the	dry	

mass	(Flemming	et	al.,	2010)	and,	as	mentioned	before,	forms	the	scaffold	for	the	3D	

architecture	of	the	biofilm.	Cells	themselves	produce	and	extrude	the	exopolymeric	

substances	(EPS)	composing	the	matrix,	necessary	to	ease	cell	adhesion	onto	solid	

surfaces	overcoming	the	electrostatic	interaction	that	would	repulse	cells	from	the	

surface	(Tsuneda	et	al.,	2003).	EPS	supply	the	physicochemical	conditions	apt	for	the	



Oxidative stress response of model biofilm systems under different environmental cues 

19	

	

development	and	growth	of	sessile	cells,	because	it	affects	charge,	porosity,	water	

content,	hydrophobicity,	and	viscoelasticity	of	the	environment	surrounding	cells	

(Flemming	et	al.,	2007).	Furthermore,	EPS	protects	cells	against	abiotic	and	biotic	stress	

(e.g.	desiccation,	antibiotics,	biocides,	metals,	ultraviolet	radiation,	host	immune	

defences),	allowing	the	colonization	of	niches	not	suitable	for	planktonic	cells	(Davey	et	

al.,	2000;	Flemming	et	al.,	2010).	Despite	the	structural	and	defensive	functions,	biofilm	

is	a	fluid	and	dynamic	system	that	allows	the	movement	of	cells,	nutrients	and	gases	

(Sutherland,	2001).	While	matrix	from	in vitro	and	mono‐specie	biofilm	is	principally	

composed	by	polysaccharides,	EPS	from	natural	biofilm	account	also	proteins,	DNA,	

lipids,	humic	substances	(Vu	et	al.	2009)	and	other	extracellular	structures,	i.e.	outer	

membrane	proteins	(Wu	et	al.,	2014),	lipopolysaccharides	(Chatterjee	et	al.,	2006),	

fimbriae,	pili,	and	flagella	(Klausen	et	al.,	2003),	which	are	involved	in	cell‐to‐cell	and	

cell‐to‐surface	adhesion	(Pamp	et	al.,	2007).	Molecular	mechanisms	for	polysaccharides	

production	vary	from	species	to	species,	as	well	as	the	type	of	polysaccharides	

produced.	Here	I	focused	my	attention	on	those	polysaccharides	known	as	matrix	

components	of	biofilm	studied	during	my	PhD:	A. vinelandii,	B. thailandensis	and B. 

subtilis.	

2.3.1 Polysaccharides 

Capsular	polysaccharides	(CPS)	are	highly	hydrated	molecules,	often	linked	to	the	cell	

surface	of	the	bacterium	via	covalent	attachments	to	either	phospholipid	or	

lipolysaccahride	(Whitfield	et	al.,	1993).	They	can	be	either	homo‐	or	heteropolymers	

composed	of	repeating	monosaccharides	joined	by	glycosidic	linkages	in	a	high	number	

of	configurations,	which	leads	to	large	structural	diversity	among	CPS	types	(Roberts,	

1996).	They	promote	adherence	of	bacteria	to	both	surfaces	and	other	bacterial	cells,	

which	may	facilitate	colonization	and	persistence	in	a	particular	niche	through	the	

formation	of	biofilms	(Costerton	et	al.,	1987).	CPS	are	well‐known	virulence	factors	in	

many	bacteria,	e.g.	Escherichia	coli,	Acinetobacter	calcoaceticus,	Erwinia stewartii	and	

Neisseria meningitides	(Reckseidler,	2012).	CPS	can	help	bacteria	to	escape	phagocytosis,	

as	deposition	of	complement	factor	C3b	on	the	bacterial	cell	surface	is	lower	in	the	

presence	of	capsule	(Reckseidler	et	al.,	2005).	The	genes	necessary	for	the	biosynthesis	

and	the	export	of	CPS	are	generally	clustered	at	a	single	chromosomal	locus,	which	

genetic	organization	is	conserved	in	most	bacterial	species	(Roberts,	1996).	This	is	true	



also	for	the	so‐called	Bptm	group,	including	three	species	from	Burkholderia	genus	B. 

pseudomallei,	B. thailandensis	and	B. mallei (Majerczyk	et	al.,	2014).	B. pseudomallei	is	

the	etiological	agent	of	melioidosis,	a	serious	disease	endemic	in	South‐East	Asia,	while	

B.	thailandensis	rarely	causes	disease	and	it	is	often	used	as	model	organism	for	B. 

pseudomallei	(Wiersinga	et	al.,	2006).	B. pseudomallei	produces	a	CPS	with	the	structure	

‐3)‐2‐O‐acetyl‐6‐deoxy‐	β‐d‐manno‐heptopyranose‐(1‐	that	is	required	for	B. 

pseudomallei	virulence	in	experimental	animal	models	(Reckseidler	et	al.,	2001).	The	

genes	involved	in	the	production	of	this	capsule	demonstrated	strong	homology	to	the	

genes	involved	in	the	production	of	capsular	polysaccharides	in	many	organisms,	

including	N. meningitidis,	H. influenzae,	and	E. coli	(Reckseidler,	2012).	The	relation	

between	CPS	production	and	virulence	in	Bptm	group	is	still	controversial.	Indeed,	some	

B. thailandensis	strains	also	produce	the	capsule	as	B. pseudomallei,	despite	being	

avirulent	in	mouse	infection	models	(Sim	et	al.,	2010).	On	the	contrary,	some	B. 

thailandensis	clinical	isolates	such	as	B. thailandensis	CDC2721121	(part	III,	chapter	1),	

are	virulent	despite	the	absence	of	the	capsule;	instead,	they	produce	an	

exopolysaccharide	more	typical	of	environmental	strains	(Peano	et	al.,	2104).	

Exopolysaccharides,	are	long,	thin	molecular	chains	with	high	molecular	weight	(10	to	

30	kDa)	(Kumar	et	al.,	2007),	whose	properties	can	vary	depending	on	the	type	of	

monomer	units,	the	kind	of	glycosidic	linkages	and	the	presence	of	different	organic	and	

inorganic	substitutions.	Exopolysaccharides	can	form	various	types	of	structures	within	

a	biofilm	and	interact	with	other	molecules	to	form	a	very	complex	network	structure	

(Sutherland,	2001).	The	role	of	these	polysaccharides	includes	maintaining	structural	

integrity	of	cell	envelope,	preventing	cellular	desiccation	(Whitney	and	Howell,	2013),	as	

well	as	promoting	the	correct	shaping	and	maturation	of	biofilm	(Branda	et	al.,	2006)	

and	contributing	to	the	protection	of	bacteria	from	environmental	stresses	and	

bactericidals	(Hall‐Stoodley	et	al.,	2004).	The	majority	of	exopolysaccharides	(alginate,	

pel,	psl,	cellulose,	PNAG)	is	synthetized	at	the	cell	membrane	and	exported	out	of	the	

cytoplasmic	membrane,	as	it	happens	for	cell	wall	polymer,	peptidoglycan	and	

lipopolysaccharide	(Kumar	et	al.,	2007;	Baker	et	al.,	2014).	In	Gram‐negative	bacteria,	

such	as	A. vinelandii	and	B. thailandensis,	three	molecular	mechanisms	describe	the	

construction	and	the	export	of	these	biopolymers.	The	first	is	the	Wzx/Wzy‐transporter‐

dependent	pathway,	which	uses	a	lipid	as	an	acceptor;	examples	of	this	mechanism	are	

the	E. coli	group	1	capsular	polysaccharides,	O‐antigen	and	cepacian	production	in	B. 
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cenocepacia.	The	second	system,	which	relies	upon	ATP‐binding	cassette	(ABC) 

transporters,	assembles	the	entire	polysaccharide	on	a	lipid	acceptor	and	is	used,	for	

example,	in	the	production	of	E. coli	group	2	capsular	polysaccharides	and	

lipopolysaccharides	common	antigen.	The	synthase‐dependent	pathway,	a	third	

mechanism	of	assembly,	for	which	the	requirement	for	a	lipid	acceptor	depends	on	the	

polysaccharide,	is	typical	of	complex	polymers	such	as	alginate,	cellulose,	acetylated	

cellulose	and	poly‐N‐acetylglucosamine	(PNAG)	(Whitney	and	Howell,	2013).	Alginate	

is	an	anionic	linear	polymer	composed	of	β‐1,4‐linked	mannuronic	acids	and	its	epimer,	

α‐L‐guluronic	acid.	Alginate	attracted	great	attention	because	of	its	role	in	the	

pathogenesis	of	the	opportunistic	human	pathogen	Pseudomonas aeruginosa	(Govan	et	

al.,	1996),	but	also	because	of	its	use	in	the	food	and	pharmaceutical	industries.	An	

alternative	source	of	this	polymer	can	be	the	rhizobacterium	A. vinelandii	(Rehm,	2010)	

(part	II,	chapter	1),	that	require	alginate	for	the	formation	of	a	dormant	desiccation‐

resistant	cyst	(Campos	et	al.,	1996).	Alginate	maintain	the	hydration	of	the	cells	and	is	

required	for	survival	and	biofilm	formation	under	desiccating	conditions.	It	can	protect	

the	bacteria	from	common	bactericides	used	in	plants	(Hodges	et	al.,	1991)	and	from	

host	defence	mechanisms,	including	scavenge	reactive	oxygen	species	(ROS),	which	are	

used	by	macrophages	and	neutrophils	for	pathogen	killing	and	released	during	the	

hypersensitive	response	plant	defence	system	(Simpson	et	al.,	1989).	As	for	P. 

aeruginosa,	all	but	one	of	the	core	genes	involved	in	alginate	biosynthesis	are	contained	

within	a	single	12‐gene	operon:	algD,	alg8,	alg44,	algK,	algJ,	algG,	algX,	algL,	algI,	algV,	

algF	and	algA.	Its	regulation	is	slightly	different	as	A. vinelandii	alginate	gene	cluster	has	

two	promoters	upstream	of	algD,	one	AlgU‐dependent	and	one	RpoS	(σs)‐dependent	

(Castaneda	et	al.,	2001),	and	three	additional	internal	promoters	regulating	the	level	of	

polymer	modification	(Hay	et	al.,	2014).	The	master	regulator	of	alginate	biosynthesis	is	

the	alternate	sigma	factor	AlgU,	a	homologue	of	the	stress	response	regulator	RpoE	from	

E. coli.	AlgU	is	classified	as	an	extra	cytoplasmic	function	(ECF)	sigma	factor,	a	family	of	

sigma	factors	that	confer	resistance	to	envelope	stress	caused	by	antimicrobial	and	

oxidizing	agents,	elevated	temperatures,	and	osmotic	imbalances.	Under	uninduced	

conditions,	the	activity	of	AlgU	is	sequestered,	but	various	environmental	cues	can	lead	

to	the	release	of	AlgU,	allowing	activation	of	AlgU‐dependent	promoters.	AlgU	is	

encoded	in	an	operon	containing	four	other	genes,	mucA,	mucB,	mucC	and	mucD,	which	

modulate	its	activity.	AlgU	promotes	the	expression	of	its	own	operon,	along	with	



several	other	genes	involved	in	alginate	biosynthesis	and	regulation:	algR,	algB,	algD,	

algC	and	amrZ.	In	addition,	AlgU	has	been	determined	to	be	involved	in	the	regulation	of	

motility,	quorum	sensing	and	virulence	(Hay	et	al.,	2009).	In	response	to	envelope	

stress,	AlgU	is	released	from	their	anti‐sigma	factor	(MucA	and	MucB)	complexes	

through	a	well‐conserved	signal	transduction	pathway	known	as	a	regulated	

intramembrane	proteolysis	(RIP)	cascade,	involving	several	proteases	(Hay	et	al.,	2014).	

The	proteases	action	allows	the	degradation	of	the	repressor	MucA	and	let	AlgU	free	to	

interact	with	RNA	polymerase	to	drive	expression	of	its	regulon,	including	the	alginate	

operon	(Qiu	et	al.,	2008).	Under	unstressed	conditions,	cleavage	sites	on	repressors	are	

not	available,	thus	the	RIP	cascade	cannot	be	initiated	(Qiu	et	al.,	2007).	RIP	cascade	can	

also	be	activated	by	the	accumulation	of	misfolded	and/or	mislocalized	components	of	

outer	membrane	proteins	(OMP)	and	lipopolysaccharides	(LPS),	caused	by	envelope	

stress	(Lima	et	al.,	2013).	On	the	other	hand,	MucD,	a	periplasmic	serine	protease	and	

chaperone‐like	protein,	negatively	regulates	the	RIP	cascade	by	chaperoning	and/or	

degrading	misfolded	OMPs,	forming	the	first	line	of	defence	from	envelope	stress	(Qiu	et	

al.,	2007).	Once	AlgU	is	released,	several	other	steps	take	place	to	allow	it	to	bind	to	the	

RNA	polymerase	and	activate	the	algD	promoter.	Transcription	from	the	algD	promoter	

is	regulated	by	the	coordination	with	two	other	sigma	factors,	RpoD	and	RpoN	(Yin	et	al.,	

2013;	Boucher	et	al.,	2000)	and	a	range	of	other	DNA‐binding	proteins,	which	promote	

algD	operon	expression	by	latching	onto	its	promoter	region	(Baynham	et	al.,	2006).	

These	DNA	binding	proteins	are	also	involved	in	other	pathways,	such	as	the	

biosynthesis	of	other	polysaccharides,	the	control	of	flagella	production	and	virulence	

(Jones	et	al.,	2013).	The	KinB‐AlgB	and	FimS‐AlgR	two‐component	signal	transduction	

systems	also	control	the	expression	of	alginate	production	genes	in	response	to	

unknown	environmental	cue.	Both	the	response	regulators,	AlgB	and	AlgR,	bind	to	the	

algD	promoter,	activating	the	expression	of	alginate	biosynthesis	genes	(Leech	et	al.,	

2008).	In	A. vinelandii,	noncoding	small	RNAs	(sRNA)	have	an	emerging	role	in	the	

regulation	of	alginate.	They	can	bind	RsmA,	a	translational	regulatory	protein,	able	to	

repress	translation	of	the	algD	mRNA	transcripts.	The	disruption	of	the	two‐component	

system	producing	these	sRNAs	leads	to	reduction	in	alginate	production	that	can	be	

restored	through	the	constitutive	expression	of	several	sRNAs	(Manzo	et	al.,	2011).	

Alginate	biosynthesis	is	also	regulated	posttranslationally	by	bis‐(3′‐5′)‐cyclic	dimeric	

guanosine	monophosphate	(c‐di‐GMP)	binding	to	the	PilZ	domain	of	Alg44,	the	putative	
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co‐polymerase	of	the	alginate	biosynthesis	machinery	(Hay	et	al.,	2009).	c‐di‐	GMP	is	a	

generic	secondary	messenger	molecule	utilized	by	bacteria	for	regulation	of	motility,	

exopolysaccharide	production	and	virulence	(Roemling	et	al.,	2005).	Together	with	

alginate,	psl	and	pel	are	polysaccharides	composing	P. aeruginosa	biofilm	matrix,	

particularly	in	the	non‐mucoid	strains	(Ghafoor	et	al.,	2011;	Karatan	et	al.,	2009).	Psl	is	

rich	in	mannose	and	galactose	and	is	involved	both	in	initial	attachment	and	in	biofilm	

maturation	where	it	is	mostly	localized	at	the	caps	of	the	mushroom‐like	structures	(Ma	

et	al.,	2009).	Pel	is	a	cellulose‐like,	glucose‐rich	polymer,	essential	for	the	formation	of	a	

pellicle	at	the	air‐liquid	interface	and	associated	with	the	wrinkled	colony	phenotype	

(Friedman	et	al.,	2004).	Cellulose,	a	polysaccharide	consisting	of	a	linear	chain	of	

several	hundreds	ß‐1,4‐linked	D‐	glucose	monomers,	is	the	most	abundant	

polysaccharide	in	nature	and	is	produced	by	both	plants	and	bacteria.	Its	production	has	

been	described	in	E. coli,	Salmonella strains,	Vibrio fischeri,	Gluconacteobacter	xylinus,	

Sarcina	ventriculi,	Agrobacterium	tumefaciens,	Rhizobium	leguminosarum,	and	in	

different	Pseudomonas	environmental	isolates	(Ausmees	et	al.,	1999;	Matthysse	et	al.,	

1995;	Ross	et.	al.,	1991;	Zogaj	et	al.,	2001;	Jonas	et	al.,	2008;	Bassis	et	al.,	2010;	Ude	et	al.,	

2006).	However,	comparative	sequence	analyses	indicate	that	many	other	bacteria,	

including	Yersinia	and	Burkholderia	cepacia	complex	species,	can	synthesize	cellulose	

(Cuzzi	et	al.,	2014).	In	E. coli,	Salmonella sp.	and	G. xylinus,	pathways	for	cellulose	

production	are	regulated	by	intracellular	levels	of	the	second	messenger	c‐di‐GMP	levels	

(Gualdi	et	al.,	2008).	Cepacian	is	the	major	exopolysaccharide	produced	by	a	large	

percentage	of	clinical	isolates	of	the	Burkholderia	cepacia	complex,	i.e.	a	group	of	

bacterial	species,	including	some	opportunistic	pathogens	in	patients	

immunocompromised	and	affected	by	cystic	fibrosis	(Zlosnik	et	al.,	2008).	Cepacian	has	

been	recognized	as	a	virulence	factor,	inhibiting	neutrophil	chemotaxis	and	the	

production	of	reactive	oxygen	species,	both	essential	components	of	the	innate	host	

defenses	(Bylund	et	al.,	2006).	Cepacian	is	composed	of	a	branched	acetylated	

heptasaccharide	repeat‐unit	with	D‐4	glucose,	D‐rhamnose,	D‐mannose,	three	unities	of	

D‐galactose	and	D‐glucuronic	acid	(Cescutti	et	al.,	2000).	Two	gene	clusters	have	been	

identified	as	responsible	for	the	production	of	cepacian,	namely	bce-I	and	bce-II	

(Moreira	et	al.,	2003;	Ferreira	et	al.,	2010).	With	the	exception	of	some	genes	involved	

also	in	metabolic	processes	such	as,	the	biosynthesis	of	lipopolysaccharide	and	other	cell	

polysaccharides,	most	of	the	enzymes	required	for	cepacian	synthesis	are	encoded	by	



bce	genes.	These	two	clusters	include	genes	encoding	proteins	for	the	nucleotide	sugar	

precursor	biosynthesis	(BceA,	BceC),	the	assembly	of	the	heptasaccharide	repeat‐unit	of	

cepacian	(BceB,	BceG,	BceH,	BceJ,	BceK,	BceR),	the	cytosolic	acetylation	(BceO,	BceS,	

BceU)	and	the	export	of	the	repeat‐units	to	the	periplasmic	side	of	the	inner	membrane,	

their	polymerization,	and	export	of	the	nascent	polymer	(BceQ,	BceI).	All	evidence	

indicates	that	cepacian	biosynthesis	proceeds	via	the	Wzx/Wzy‐transporter‐dependent	

pathway	(Ferreira	et	al.,	2010).	In silico	analysis	reported	the	presence	of	bce-I	and	bce-

II	clusters	also	in	B. thailandensis,	suggesting	the	possible	partecipation	of	cepacian	to	its	

matrix	composition	(Ferreira	et	al.,	2010)	(part	II,	chapter	3	and	part	III,	chapter	1).	The	

EPS	produced	by	B. thailandensis	biofilm	have	not	been	identified	yet,	but	it	has	been	

reported	that	anoxic	conditions	strongly	increased	expression	of	genes	involved	in	EPS	

production,	suggesting	a	linkage	between	polysaccharides	production	and	limited	

oxygen	conditions	(Peano	et	al.,	2014).	The	genes	responsible	for	the	synthesis	of	

another	polysaccharide,	poly‐N‐acetylglucosamine	(PNAG),	are	present	in	a	large	

number	of	both	Gram‐negative	bacteria,	including	E. coli,	Yersinia pestis,	Actinobacillus	

pleuropneumonea,	Bordetella	bronchiseptica	(Whitney	et	al.,	2013),	and	Gram‐positive	

bacteria,	such	as	Staphylococcus epidermidis	and	S. aureus	(Maira‐Litran	et	al.,	2002).	

PNAG	is	a	homopolymer	of	ß‐1,6‐linked	N‐acetyl‐D‐glucosamine	molecules	and	

functions	as	an	important	component	of	the	matrix	of	these	bacteria,	contributing	to	

biofilm	formation	and	persistence	during	infections	(Maira‐Litran	et	al.,	2002;	Darby	et	

al.,	2002).	Three	different	loci	are	involved	in	β‐1,6‐N‐acetyl‐D‐glucosamine	

biosynthesis:	icaADBC	(in	staphylococcal	species),	pgaABCD	(in	E. coli	and	other	Gram‐

negative	bacteria),	or	hmsHFRS	(in	Yersinia	species).	In	these	loci	it	has	been	possible	

recognize	a	glycosyltransferase	necessary	for	catalyzing	the	synthesis	of	the	N‐

acetylglucosamine	polymers	(pgaC/	hmsR/	icaA),	enzymes	for	deacetylation	of	the	N‐

acetylglucosamine	polymer	(pgaB/	hmsF/	icaB),	proteins	for	appropriate	polymer	

length	and	transport	of	the	polymer	to	the	cell	surface,	a	porin‐like	protein	for	PNAG	

secretion	(Vuong	et	al.,	2004;	Itoh	et	al.,	2008).	In	E. coli,	PNAG	is	involved	in	both	

surface	attachment	and	formation	of	multilayer	biofilms,	suggesting	that	this	

polysaccharide	mediates	cell‐cell	adhesion	in	addition	to	cell‐surface	adhesion	(Vuong	et	

al.,2004;	Karatan	et	al.,	2009).	Despite	the	EPS	composition	in	B. subtilis	biofilm	(part	II,	

chapter	2)	can	vary	greatly	depending	on	growth	conditions,	EpsA-O polysaccharide	is	

essential	for	biofilm	formation	(Dogsa	et	al.,	2013)	Indeed,	it	is	known	that	eps‐defective	
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mutants	are	still	able	to	grow	in	cell	chains,	but	develop	flat	colonies	and	extremely	

fragile	pellicles	(Branda	et	al.,	2006).	This	polysaccharide	is	composed	of	glucose,	

galactose	and	N‐acetyl‐	galactosamine	and	is	produced	under	the	direction	of	the	15‐

gene	operon	epsA-O	(Branda	et	al.,	2006;	Chai	et	al.,	2012).	In	addition,	B. subtilis	

secretes	the	31‐kDa	TasA	protein,	which	assembles	in	amyloid	fibers	essential	for	

biofilm	structure	(Branda	et	al.,	2006;	part	I,	chapter	2.2.2).	Activation	of	both	operons	

are	under	the	control	of	the	repressor	SinR	and	its	antagonist	SinI	(Kearns	et	al.,	2005;	

Chu	et	al.,	2006).	In	turn,	sinI	is	under	the	control	of	Spo0A,	i.e.	the	master	regulator	for	

entry	into	sporulation,	suggesting	a	tight	link	between	matrix	production	and	spore	

formation	(Chai	et	al.,	2008).	Furthermore,	in	a	B. subtilis	biofilm,	matrix	operons	are	

derepressed	only	in	a	sub‐population	of	the	cells;	it	has	been	recently	proposed	that	

when	a	high	enough	proportion	of	the	cell	population	express	the	epsA-O	operon,	the	

EpsAB	kinase	can	be	activated	and	polysaccharide	stimulate	their	production	(Elsholz	et	

al.,	2014).	The	γ‐polyglutamic	acid	(γ- PGA)	is	another	component	that	can	play	an	

important	role	in	B. subtilis	biofilm	formation	and	has	been	linked	to	mucoid	appearance	

of	the	B. subtilis	colonies.	Poly‐DL‐glutamic	acid	production	require	the	two‐component	

system	ComPA	(Tran	et	al.,	2000),	DegSU	two‐	component	system,	DegQ	and	SwrA.	The	

effects	of	ComPA,	DegSU	and	DegQ	on	γ	‐PGA	production	appear	to	be	at	the	

transcriptional	level,	while	SwrA	acts	post‐transcriptionally.	Identification	of	these	

regulatory	proteins	suggest	that	γ	–PGA	should	be	produced	in	an	environment	with	

high	cell	density	or	high	salinity	and/or	osmolarity	(Stanley	et	al.	2005).	In	addition,	

PGA	is	one	of	the	major	virulence	factors	of	Bacillus anthracis	confers	virulence	to	B.	

anthracis	by	its	antiphagocytic	activity	(Leppla	et	al.,	2002).	Contrary	to	the	

polysaccharides	described	so	far,	levans, alternans and dextrans	are	synthetized	

extracellularly	(Vanhooren	et	al.,	1998).	Dextran	is	a	homopolysaccharide	with	varying	

molecular	weight	[15−20,000	kDa]	produced	by	Leuconostoc	mesenteroides,	produced	

by	dextransucrase,	a	glucosyltransferase,	which	transfers	glucose	from	sucrose	to	the	

reducing	end	of	a	growing	dextran	chain.	Formation	of	alternan	by	L.	mesenteroides	

occurs	by	alternansucrase,	probably	a	translation	product	of	a	mutant	gene	sequence	

originally	coding	for	a	dextransucrase.	The	alternansucrase	synthesizes	alternan	by	the	

enzyme	levansucrase,	a	glucan	containing	alternating	α‐(1	→	6)	and	α‐(1	→	3)	glycosidic	

linkages.	Levan	is	a	β‐2,6‐fructan	produced	in	Bacillus,	Erwinia,	Gluconobacter	spp.	and	

the	phytopathogen	Pseudomonas syringae,	especially	when	grown	on	sucrose	as	a	



carbon	source	(Vanhooren	et	al.,	1998).	In	B. subtilis,	the	structural	gene	of	levansucrase,	

sacB,	is	part	of	sacB–yveB–yveA	operon	and	is	activated	in	the	presence	of	sucrose	

(Pereira	et	al.,	2001).	Recently,	levan	has	been	highlighted	to	strengthen	B. subtilis	

biofilm	(part	II,	chapter	2),	although	its	presence	is	dependent	on	either	protein	TasA	or	

EpsA‐O	polysaccharide	that	serve	as	a	scaffold	for	levan	entanglement.	Considering	that	

plants	roots	release	sucrose	in	the	soil,	the	ability	to	transform	sucrose	to	levan	may	

increase	B. subtilis	advantage	in	the	rhizosphere,	also	providing	an	additional	

mechanism	to	sequester	carbon	in	a	highly	competitive	environment	(Dogsa	et	al.,	

2013).	

2.3.2 Proteins 

EPS	matrix	of	biofilms	generally	include	large multimeric cellular appendages,	such	as	

flagella,	fimbriae,	and	pili.	They	typically	consist	of	numerous	major	structural	protein	

components	and	several	auxiliary	proteins.	Flagella	are	helicoidal	rotary	appendages	

driven	from	a	motor	at	the	base,	with	a	filament	acting	as	a	propeller	(Bardy	et	al.,	

2003).	This	complex	structure	is	primarily	involved	in	cellular	motility	and	chemotaxis,	

but	it	also	has	a	sensory	function	in	detecting	environmental	wetness	(Wang	et	al.,	

2005).	The	relation	between	flagellar	activity	and	biofilm	formation	is	not	completely	

clear	yet.	A	functional	flagellar	apparatus	appears	to	be	important	in	the	initial	stages	of	

biofilm	formation	stabilizing	the	contact	between	the	surface	and	the	cell,	helping	

bacteria	to	overcome	the	repulsive	forces	generated	by	electrostatic	interactions	(Pratt	

et	al.,	1998).	During	biofilm	formation,	the	increase	of	the	intracellular	level	of	the	

second	messenger	c‐di‐GMP	regulates	the	flagellum	activity	by	a	backstop	brake	

mechanism	(Paul	et	al.,	2010)	and	by	repression	of	the	flagellar	genes	(Srivastava	et	al.,	

2013;	Krasteva	et	al.,	2010).	In	addition,	c‐di‐GMP	is	able	to	inhibit	motility	with	a	

coordinated	action	on	the	flagellum	motor	and	on	the	rotation	movement	itself,	

promoting	the	biosynthesis	of	cellulose	to	obstruct	the	flagellum	rotation	(Zorraquino	et	

al.,	2013).	In	P. aeruginosa	FleQ,	the	master	regulator	of	flagellum	biosynthesis,	is	a	c‐di‐

GMP‐binding	protein:	the	binding	to	c‐di‐	GMP	derepresses	the	pel	operon,	with	the	

consequent	polysaccharide	production,	and	represses	the	expression	of	flagellum	

biosynthesis	genes	(Baraquet	et	al.,	2013).	The	regulation	of	motility	during	biofilm	

formation	can	vary	depending	on	the	analysed	bacterium.	However,	the	molecular	

mechanisms	addressing	motility	to	biofilm	formation	in	Bacillus,	Pseudomonas,	Vibrio,	
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and	Escherichia	spp.	reveal	a	common	trend.	In	the	short	term,	motility	is	decreased	

either	by	inhibition	of	the	flagellar	rotation	or	by	modulation	of	the	basal	flagellar	

reversal	frequency;	over	the	long	term,	flagellar	gene	transcription	is	inhibited	or,	in	the	

absence	of	de novo	synthesis,	flagella	are	diluted	out	through	growth	(Guttenplan	et	al.,	

2013).	Pili	are	long	filamentous	structures	extending	from	bacteria	surfaces.	In	Gram‐

negative	bacteria,	pilins,	the	major	pilus	subunit	proteins,	typically	assemble	by	non‐

covalent	homopolymerization.	Additional	pilins	may	be	added	to	the	fiber	and	often	

function	as	host	cell	adhesins.	Some	pili	are	also	involved	in	biofilm	formation,	phage	

transduction,	DNA	uptake	and	twitching	motility.	In	contrast,	in	Gram‐positive	bacteria,	

pilins	polymerize	covalently	to	form	pili,	through	a	process	that	requires	a	dedicated	

and	specialized	transpeptidase.	Minor	pilins	are	added	to	the	fiber	and	play	a	major	role	

in	host	cell	colonization	(Proft	et	al.,	2009).	There	are	different	types	of	pili,	with	

different	composition	and	biosynthesis,	depending	on	the	bacterial	species.	In	E. coli,	

conjugative	F‐pili	are	used	to	establish	tight	cell‐cell	connections,	promoting	genetic	

material	transfer	between	donor	and	recipient	cells.	Even	minor	changes	of	the	

conjugative	pili	structure	resulted	in	either	the	formation	of	biofilms	with	altered	spatial	

structure,	or	in	a	decrease	in	biofilm	formation	(Reisner	et	al.,	2003).	Type	F	pili	are	

encoded	by	natural	conjugative	plasmids,	which	thus	direct	the	expression	of	biofilm	

factors	as	a	part	of	a	coordinated	strategy	aimed	to	their	propagation	(Ghigo,	2001).	In	P. 

aeruginosa,	type	IV	pili	are	important	to	mediate	adhesion	to	both	abiotic	and	biotic	

surfaces	and	for	biofilm	formation;	strains	defective	for	their	production	are	unable	to	

form	microcolonies	and	cannot	progress	beyond	the	initial	adhesion	step	(Giltner	et	al.,	

2006).	In	addition,	type	IV	pili	bind	extracellular	DNA	(eDNA)	with	high	affinity,	and	

might	thus	act	as	crosslinkers	between	the	cells	and	the	eDNA	matrix	(van	Schaik	et	al.,	

2005).	Fimbriae	are	generally	shorter	than	pili	and	have	been	associated	with	

attachment	to	host	tissues	or	abiotic	surfaces	in	several	pathogenic	E. coli	strains.	The	

most	common	adhesins	found	in	E. coli	isolates	as	well	as	in	other	Enterobacteriaceae	

are	Type	1	fimbriae	(Van	Houdt	et	al.,	2005).	Type	1	fimbriae	consist	primarily	of	the	

structural	protein	FimA,	but	several	auxiliary	proteins	are	necessary	for	transport	and	

assembly	of	the	structural	proteins.	Furthermore,	the	expression	of	the	encoding	

operon,	the	fim	operons,	is	phase	variable	due	to	a	DNA	switch	in	the	promoter	region	

that	depends	on	the	activity	of	the	two	recombinases	FimB	and	FimE	(Gally	et	al.,	1996).	

A	particular	type	of	fimbriae,	curli	fibres,	plays	a	pivotal	role	in	cellular	adhesion	during	



biofilm	formation	in	E. coli, Salmonella, Citrobacter	and	Enterobacter	species,	in	which	

they	mediate	surface	adhesion	and	cell‐to‐cell	aggregation	(Prigent‐Combart	et	al.,	2001;	

Zogaj	et	al.,	2001).	More	recently,	similar	structures	have	also	been	identified	in	the	

Gram‐positive	bacteria	Mycobacterium tuberculosis	and	B. subtilis	(Alteri	et	al.,	2007;	

Romero	et	al.,	2010)	and	in	biofilm	of	several	environmental	isolates	belonging	to	

Gammaproteobacteria,	Bacteriodetes,	Firmicutes	and	Actinobacteria	(Larsen	et	al.,	2007).	

Curli	are	flexible	amyloid‐like	structures	protruding	from	the	cell	surface	(Prigent‐

Combart	et	al.,	2001)	made	up	of	a	primary	structural	component	(CsgA)	and	a	minor	

structural	unit	(CsgB).	Genes	involved	in	curli	biosynthesis	are	clustered	in	the	csgBAC	

operon,	encoding	curli	structural	components,	and	the	csgDEFG	operon,	encoding	the	

CsgD	transcription	regulator	and	proteins	involved	in	curli	assembly	and	transport	

(Hammar	et	al.,	1995).	The	CsgD	protein	activates	transcription	of	the	csgBAC	operon	

and	of	AdrA	production	via	c‐di‐GMP	synthesis	(Simm	et	al.,	2004).	Regulation	of	csgD	is	

extraordinarily	complex	and	responds	to	a	combination	of	environmental	cues	(i.e.,	low	

growth	temperature,	low	osmolarity,	slow	growth	and	oxygen	availability)	(Tagliabue	et	

al.,	2010;	Roemling	et	al.,	2000),	but	also	to	the	intracellular	levels	of	the	signal	

molecules	cAMP	and	c‐di‐GMP,	and	to	the	concentration	of	pyrimidine	nucleotides	

(Garavaglia	et	al.,	2012).	Surface	proteins	are	regularly	present	in	the	biofilm	matrix	of	

many	microorganisms,	such	as	species	from	the	genera	Streptococcus,	Staphylococcus,	

Enterococcus,	Lactobacillus, Pseudomonas,	Bordetella,	Burkholderia,	Escherichia	and	

Salmonella.	Their	presence	has	been	mainly	related	to	the	initial	attachment	of	microbial	

cells	to	surfaces,	but	they	are	also	important	for	the	intercellular	adhesion	and	for	the	

accumulation	in	multilayered	cell	clusters.	A	group	of	surface	proteins	with	sequence	

similarities	to	the	biofilm‐associated	protein	(Bap)	of	Staphylococcus	aureus,	known	as 

Bap-related proteins,	are	able	to	induce	biofilm	formation	in	the	absence	of	

exopolysaccharides.	These	proteins	are	generally	large	(up	to	8800	aminoacids)	and	

have	a	signal	sequence	at	their	N	terminus	followed	by	domains	containing	a	number	of	

tandem	repeats	that	play	a	role	in	cellular	adhesion.	The	production	of	such	large	

proteins	entail	a	considerable	metabolic	effort	by	the	bacteria,	which	therefore	strictly	

regulate	their	production	in	coordination	with	other	elements	of	the	biofilm	matrix	

(Lasa	et	al.,	2006).	Most	of	these	proteins	are	anchored	to	the	surface	of	the	cells,	loosely	

associated	with	the	surface	of	the	cells,	or	secreted	into	the	medium.	Thus,	they	hold	

cells	in	the	biofilm	together	possibly	by	interacting	with	similar	proteins	on	the	surface	
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or	on	the	neighbour	cells.	In	addition,	Bap‐related	proteins	may	also	be	involved	in	the	

virulence	and	the	development	of	chronic	infections	(Karatan	et	al.,	2009).	Bap‐related	

proteins	includes	the	biofilm‐associated	protein	(Bap)	of	Staphylococcus aureus,	the	

large	adhesion	protein	(LapA)	of	P. fluorescens	and	P. putida,	the	biofilm	associated	

protein	(BapA)	of	Salmonella enterica,	the	enterococcal	surface	protein	(Esp)	of	

Enterococcus faecalis	and	the	AdhA	adhesin	of	Burkholderia cenocepacia	(Pamp	et	al.,	

2007).	Bap	was	identified	during	the	screening	of	a	library	of	mutants	in	the	bovine	

mastitis	S. aureus	strain	V329	as	a	protein	that	is	essential	for	biofilm	formation	

(Cucarella	et	al.,	2001).	It	promotes	both	primary	attachment	to	abiotic	surfaces	and	

intercellular	adhesion	through	a	mechanism	of	biofilm	development	alternative	to	the	

regular	PIA/PNAG‐dependent	mechanism	(Lasa	et	al.,	2006).	Close	homologs	of	Bap	

have	been	found	in	numerous	other	staphylococcal	species	among	these	S. epidermidis 

(Tormo	et	al.,	2005).	The	Bap‐	like	protein	Esp	is	required	for	biofilm	formation	by	

Enterococcus	faecalis,	although	some	strains	can	form	biofilms	in	the	absence	of	this	

protein,	suggesting	the	existence	of	a	mechanisms	of	biofilm	development	alternative	to	

Esp	(Kristich	et	al.,	2004).	A	study	showed	that	the	N‐terminal	domain	of	Esp	is	

sufficient	for	Esp‐mediated	biofilm	enhancement	in	E.	faecalis	and	that	Esp	enhance	the	

cell	surface	hydrophobicity	(Tendolkar	et	al.,	2005),	a	unexpected	phenomenon,	also	

observed	for	other	members	of	the	Bap	family	and	apparently	related	to	an	interaction	

of	Bap‐like	proteins	with	other	matrix	components	such	as	polysaccharides.	The	

secreted	Bap‐like	protein	LapA	is	required	for	biofilm	formation	in	Pseudomonas	

fluorescens,	Pseudomonas	putida	and	environmental	pseudomonads,	suggesting	that	the	

involvement	of	LapA	in	adhesion	to	both	abiotic	and	biotic	surfaces	is	a	general	

mechanism.	The	lapA	mutants	are	unable	to	promote	stable	adhesion	(irreversible	

attachment)	to	a	surface	(Hinsa	et	al.,	2003).	LapA	is	transported	to	the	bacterial	surface	

via	an	ABC	transport	system	which	is	encoded	by	the	lapEBC	genes,	and	is	analogous	to	

the	type	1	transporter	associated	with	transport	of	the	BapA	protein	of	S. enterica.	

(Hinsa	et	al.,	2006).	Also	in	S. enteritidis,	the	Bap‐like	protein	BapA	is	required	for	

biofilm	formation.	Moreover,	expression	of	bapA	is	coordinated	with	production	of	

cellulose	and	curli	fimbriae	in	connecting	cells,	either	by	strengthening	fimbriae‐

mediated	interactions	or	by	allowing	the	interconnection	of	bacteria	separated	by	long	

distances.	To	promote	cell–cell	interactions,	BapA	might	interact	with	itself	through	

homophilic	interactions,	thus	acting	both	as	a	receptor	and	as	a	ligand	between	two	



bacterial	clusters	(Lasa	et	al.,	2006).	The	Bap‐type	protein	of	B.	cenocepacia	AdhA	is	able	

to	bind	to	filaments	on	the	apical	surface	of	injured	tracheobronchial	epithelial	cells	and	

is	necessary	for	migration	across	the	epithelium	surface	(Urban	et	al.,	2005).	In	Gram‐

positive	bacteria	a	large	group	of	proteins	termed	MSCRAMM	proteins	(microbial	

surface	components	that	recognize	adhesive	matrix	molecules)	share	many	of	the	

characteristics	of	the	Bap‐type	protein	family,	although	the	functions	have	mostly	been	

demonstrated	in	relation	to	adhesion	to	host	factors	such	as	fibronectin‐,	fibrinogen‐,	

collagen‐,	and	heparin‐related	polysaccharides	(Pamp	et	al.,	2007).	Lectins	are	

characterized	by	affinity	towards	carbohydrate	residues	on	host	cell	surfaces,	but	they	

can	also	recognize	carbohydrates	in	extracellular	biofilm	matrices	and	thereby	promote	

cell‐to‐cell	interconnection.	For	example,	in	P. aeruginosa,	expression	profiling	of	

P.aeruginosa	biofilm	revealed	the	involvement	of	the	two	lectins	LecA	and	LecB	(Waite	

et	al.,	2006).	LecA	is	specific	for	D‐galactose	and	its	derivatives	(Diggle	et	al.,	2006),	

while	LecB	is	specific	for	L‐fucose	and	its	derivatives.	LecB	is	exported	and	bound	to	the	

outer‐membrane	through	interaction	with	fucose	containing	ligands,	suggesting	that	it	

promotes	cell‐cell	interactions	(Tielker	et	al.,	2005).	Autotransporters	are	proteins	that	

are	able	to	transport	themselves	to	the	cell	surface	without	the	need	for	other	transport	

systems	(Girard	et	al.,	2006).	The	self‐associating	autotransporter	sub‐family	of	these	

proteins	are	capable	of	interacting	with	themselves	or	with	other	members	of	the	family,	

thus	mediating	cell‐cell	interactions	and	leading	to	cell	aggregation.	Three	glycoproteins	

in	this	family,	Ag43,	AIDA,	and	TibA,	promote	biofilm	formation	in	E. coli	strains	

(Sherlock	et	al.,	2005;	Klemm	et	al.,	2006).	These	proteins	could	potentially	serve	to	

maintain	close‐	range	interactions	between	some	cells	of	the	biofilm.	Interestingly,	the	

presence	of	fimbriae	on	the	cell	surface	abolishes	the	intercellular	interactions	mediated	

by	these	proteins,	suggesting	that	bacterial	adhesins	may	function	in	mutually	exclusive	

manners	(Sherlock	et	al.,	2005;	Karatan	et	al.,	2009).	In	B.	substilis	(part	II,	chapter	2),	

two	secreted	proteins	provide	structural	integrity	to	the	matrix:	TasA	and	TapA	are	

encoded	by	the	three‐gene	operon	tapA-sipW-tasA	(Branda	et	al.,	2006).	TasA	is	an	

amyloid	protein,	secreted	into	the	extracellular	space	with	the	help	of	SipW,	where	it	

self‐	assembles	into	fibers	that	are	anchored	to	the	cell	wall	by	TapA	(Romero	et	al.,	

2011).	A	tasA‐defective	mutant	produce	cell	chains	that	are	not	held	together	(Branda	et	

al.,	2006).	As	previously	stated,	in	addition	to	the	TasA	protein,	biofilm	formation	

requires	the	EpsA‐O	polysaccharide,	but	the	inactivation	of	either	TasA	protein	or	EpsA‐
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O	can	be	compensated	by	other	mechanisms	resulting	in	a	residual	biofilm	matrix	

(Branda	et	al.,	2006;	Pamp	et	al.,	2007).	BslA	is	secreted	during	the	final	stages	of	

biofilm	maturation	and	self‐assembles	into	a	hydrophobic	layer	on	top	of	the	biofilm	

where	it	serves	as	a	water‐repellent	barrier	for	the	community	(Hobley	et	al.,	2013).	

(Mielich‐Suess	et	al.,	2014).	Finally,	natural	biofilm	offer	a	more	complex	variety	of	

proteins	in	EPS,	including	cold	shock	proteins	(CspC),	superoxide	dismutase	(SOD),	

chaperones	and	peroxidase	(Park	et	al.,	2008),	probably	as	a	defence	mechanism	to	

extreme	conditions.	In	addition,	Jiao	et	al.	(2011)	identified	histone‐like	DNA	binding	

proteins	in	the	EPS	of	an	acid	mine	drainage	biofilm,	possibly	as	part	of	the	extracellular	

DNA	scaffold	to	support	and	organize	biofilm	structure.	

2.3.3 Extracellular DNA 

Extracellular	DNA	(eDNA)	is	an	important	constituent	of	the	biofilm	matrix	in	a	number	

of	bacterial	species	(Karatan	et	al.,	2009).	eDNA	is	indistinguishable	from	chromosomal	

DNA	in	its	primary	sequence	(Boeckelmann	et	al.,	2006),	thus,	it	is	supposed	to	

accumulate	in	the	biofilm	matrix	through	lysis	of	a	fraction	of	cells	in	bacterial	

populations.	However,	according	to	data	collected	from	different	microorganisms	(e.g.	P.	

aeruginosa,	Neisseria	meningitidis,	Shewanella	oneidensis,	Enterococcus	faecalis, 

Staphylococcus epidermidis, Staphylococcus aureus),	active	eDNA	release	is	mediated	by	

both	quorum‐sensing	(QS)‐independent	(early	and	late	exponential	growth	phase)	and	

QS‐dependent	mechanisms	(early	stationary	growth	phase)	(Das	et	al.,	2013b).	The	

biofilm	matrix	in	P. aeruginosa	contains	significant	amounts	of	DNA,	which	are	

necessary	for	biofilm	integrity	(Whitchurch,	et	al.,	2002;	Allesen‐Holm	et	al.,	2006).	

Indeed,	DNase	treatment	of	P. aeruginosa	prevents	biofilm	formation	and	dissolves	

preformed	biofilms,	in	both	laboratory	and	clinical	conditions	(Whitchurch,	et	al.,	2002;	

Nemoto	et	al.,	2003).	The	treatment	is	so	efficient	that	aerosolized	DNase	I	is	used	as	a	

therapeutic	to	reduce	the	viscosity	of	the	sputum	in	cystic	fibrosys	patients	(Bakker	et	

al.,	2007).	The	distribution	of	eDNA	on	the	P. aeruginosa	biofilm	substratum	in	grid‐like	

patterns,	developed	throughout	the	biofilm	maturation,	led	to	speculate	that	DNA	could	

serve	as	sort	of	scaffold	on	which	bacteria	can	climb	and	move	using	type	IV	pili	(van	

Schaik	et	al.,	2005).	eDNA	release	mechanism	in	P. aeruginosa	has	been	widely	studied	

and	appears	to	be	mediated	by	both	QS‐dependent	and	QS‐independent	mechanisms	

(Allesen‐Holm	et	al.,	2006).	QS‐independent	mechanisms	are	responsible	for	basal	levels	



of	eDNA	release,	occurring	via	prophage‐	induced	cell	lysis	controlled	through	flagella	

and	type	IV	pili,	while	QS‐dependent	mechanisms	elevate	cell	lysis	and	concurrently	

generate	elevated	amounts	of	eDNA	release	(Allesen‐Holm	et	al.,	2006).	QS	molecules,	

such	as	acylated	homoserine	lactones	(AHLs)	and	Pseudomonas quinolone signal (PQS),	

controls	the	production	of	cell	lysis	factors	such	as	prophage	and	phenazine	that	induce	

cell	lysis	and	triggers	eDNArelease	(Allesen‐Holm	et	al.,	2006;	Das	et	al.,	2013a).	In	

Gram‐positive	bacteria,	eDNA	release	is	triggered	via	QS‐dependent	lysis	of	bacterial	

cells	mostly	mediated	by	autolysins.	In	Staphylococcus epidermidis,	eDNA	release	is	

mediated	by	the	autolysin	AtlE,	the	major	autolysin	involved	in	cell	wall	turnover,	cell	

division,	and	cell	lysis	in	this	organism	(Qin	et	al.,	2007).	Likewise,	eDNA	is	released	

through	the	activity	of	CidA	murein	hydrolase	in	S. aureus	biofilms	and	contributes	to	

the	strength	of	the	biofilm	matrix	(Rice	et	al.,	2007).	Therefore,	cell	lysis	and	subsequent	

release	of	genomic	DNA	may	be	a	common	mechanism	for	introduction	of	DNA	into	

biofilm	matrices	(Karatan	et	al.,	2009).	In	oral	bacterial	strains	developing	dental	plaque,	

eDNA	release	is	mediated	through	QS‐dependent	autolysins	(Streptococcus intermedius 

and Streptococcus mutans; Petersen	et	al.;	2005),	hydrogen	peroxide	generation	or	

bacteriophages	(Streptococcus	pneumoniae	and	Streptococcus	sanguinis;	Regev‐Yochay	

et	al.,	2006;	Carrolo	et	al.,	2010;	Zheng	et	al.,	2011).		

	

2.4 Regulation of biofilm development 

The	biofilm	lifestyle	is	the	result	of	very	complex	interactions	among	cells,	involving	

physiological	and	metabolic	changes	in	response	to	adverse	or	changed	environmental	

conditions.	Survival	in	adverse	niche	is	energetically	expensive:	cells	involved	in	biofilm	

formation	need	to	coordinate	and	activate	many	different	pathways,	integrating	

environmental	and	physiological	stimuli.	This	section	summarizes	the	common	

mechanisms	that	regulate	the	biofilm	formation	process,	focusing	on	the	known	

pathways	regulation	biofilm	formation	in	the	three	microorganisms	studied	in	this	

thesis.	

2.4.1 Environmental signals 

Several	different	environmental	signals	influence	biofilm	formation,	both	directly	and	

indirectly.	The	nutrient	availability	is	one	of	the	more	important	cues	for	biofilm	
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formation.	Both	scarcity	(e.g.,	Staphylococcus epidermidis,	Dobinsky	et	al.,	2003)	and	

abundance	(e.g.,	Vibrio cholera,	Yildiz	et	al.,	2004)	can	trigger	biofilm	formation,	

depending	on	the	bacteria	studied	and	its	adaptation	strategies	to	the	environment.	It	

seems	that,	in	nutrient	starvation	conditions,	some	bacteria	find	convenient	to	settle	and	

to	minimize	metabolism,	waiting	for	better	times,	whereas	other	species	self‐inhibit	the	

biofilm	formation	to	enable	cell	dispersion	(Nagar	et	al.,	2014).	Both	in	B.thailandensis	

and	B. subtilis	biofilms,	nutrient exhaustion	respectively	affects	polyhydroxyalkanoate	

(PHA)	and	polysaccharides	accumulation	(Peano	et	al.,	2014;	Dogsa	et	al.,	2013).	In	

particular,	in	B. subtilis	biofilms	grown	in	sucrose‐rich	medium,	EPS	is	rich	in	the	

polysaccharide	levan.	Levan	concurs	to	the	stability	and	thickness	of	the	biofilm	and	it	

can	be	used	as	carbon	storage,	increasing	B. subtilis	competitive	advantage	in	the	

rhizosphere	(Dogsa	et	al.,	2013).	Oxygen	is	another	cue	that	influences	cellular	adhesion	

and	biofilm	formation.	In	oxygen‐limiting	condition	P. aeruginosa	forms	more	biofilm,	

and	shows	increased	antibiotic	tolerance	and	alginate	biosynthesis	(Schobert	et	al.,	

2010).	EPS	production	is	also	enhanced	in	anoxic	condition	in	B. thailandensis	(Peano	et	

al.,	2014)	and	in	B. cepacia	(Pessi	et	al.,	2013).On	the	contrary,	a	microaerophilic	

environment	negatively	affects	E. coli	adherence	capacity	on	hydrophilic	substrates	

(Landini	et	al.,	2002).	Moreover,	in	the	model	organism	E. coli	K‐12	str.	MG1655	curli	

fibres	and	PNAG	are	regulated	by	the	oxygen	sensory	system	DosP/DosC,	which	

probably	adjust	levels	of	the	second	messenger	c‐di‐GMP	in	response	to	oxygen	

availability	(Tagliabue	et	al.,	2010).	Temperature	is	another	recognized	environmental	

signal.	In	pathogens	or	commensal	bacteria,	temperature	changes	correspond	to	the	

entrance	in	the	host,	where	temperature	is	higher	and	more	stable.	In	B. thailandensis,	

temperature	plays	a	major	role	in	flagellar	production	and	cellular	motility,	through	a	

mechanism	involving	down‐regulation	of	fliC	gene	expression	at	the	mRNA	stability	

level	(Peano	et	al.,	2014).	Down‐regulation	of	flagellar	expression	at	37°C	has	been	

observed	in	human	pathogens,	like	in	Listeria monocytogenes	(Kamp	et	al.,	2011)	and	B. 

pseudomallei	(Ooi	et	al.,	2013)	and	it	is	considered	a	strategy	to	prevent	recognition	of	

the	highly	antigenic	flagellar	structure	by	the	host	immune	system.	Osmolarity,	iron,	

phosphate	and	zinc	availability,	compounds	resealed	by	host/other	organisms	are	other	

important	environmental	signals,	which	trigger	different	responses	depending	on	the	

bacterium	analysed	(Nagar	et	al.,	2014).	Furthermore,	many	environmental	signals,	e.g.	

the	immune	response,	biocides,	antibiotics	and	toxic	compound	(Albesa	et	al.,	2004;	



Lushchak,	2011),	involve	the	formation	of	reactive	oxygen	species	(ROS),	causing	

oxidative	stress	in	the	cells.	Oxidative	stress	itself	is	a	signal	connected	with	biofilm:	this	

relation	will	be	examined	in	the	chapter	2.5.	

2.4.2 Metabolic cues 

Products	of	primary	or	secondary	metabolism	may	function	as	intracellular	signals	

molecules	that	influence	extracellular	structures	formation.	D-amino acids	are	

important	in	regulating	peptidoglycan	composition,	amount,	and	strength,	both	via	their	

incorporation	into	the	polymer	and	by	regulation	of	enzymes	that	synthetize	and	modify	

it	(Lam	et	al.,	2009).	The	amino	acid	valine	is	secreted	by	Gram‐negative	bacteria	

biofilms	and	inhibits	the	growth	of	E. coli (Valle	et	al.,	2008).	In	B. subtilis,	incorporation	

of	D‐amino	acids	in	the	cell	wall	promotes	the	release	from	the	peptidoglycan	of	the	

protein	TasA,	required	for	the	structural	maintenance	of	the	bacterial	community,	thus	

leading	to	biofilm	disassembly	(Kolodkin‐	Gal	et	al.,	2010).	An	adaptor	protein,	TapA,	

forms	D‐amino	acid‐	sensitive	foci	in	the	cell	wall	to	allow	this	release	(Romero	et	al.,	

2011).	D‐amino	acids	inhibit	biofilm	formation	also	in	S. aureus	and	P. aeruginosa	

(Hochbaum	et	al.,	2011;	Kolod‐	kin‐Gal	et	al.,	2010).	In	B. subtilis	biofilm	dispersal	is	also	

achieved	through	norspermidine,	a	polyamine,	i.e.	organic	polycations	with	at	least	two	

amine	groups	(Wortam	et	al.,	2007).	Norspermidine	directly	interact	with	the	

negatively‐	charged	extracellular	polysaccharides	network	promoting	its	collapse	and	

the	release	of	polymers,	thus	leading	to	biofilm	dispersal	(Kolodkin‐Gal	et	al.,	2012).	

Also	in	the	case	of	metabolic	cues,	oxidative	stress	can	be	evoke	as	metabolic	product	

able	to	regulate	the	biofilm	formation.	For	example,	in	A.vinelandii,	the	inactivation	of	

the	rhodanese‐like	protein	RhdA,	involved	in	oxidative	stress	response,	act	as	

continuous	endogenous	oxidative	stress	generator	that	promotes	the	biofilm	genesis,	

the	activity	of	ROS‐scavenging	systems	and	the	switch	between	swarming	and	biofilm‐

like	phenotypes	(Villa	et	al.,	2012b).	

2.4.3 Global regulators and signal molecules 

The	global	regulators	allow	bacteria	to	rapidly	modulate	the	expression	of	a	large	

variety	of	unrelated	genes	or	operons	scattered	over	the	genome	through	non‐coding	

RNAs	and	signalling	molecules	that	can	act	at	transcriptional,	post‐transcriptional	and	

post‐translational	level.	Quorum-sensing	(QS)	is	a	mechanism	that	enable	bacteria	to	

monitor	their	cell	population	density	through	the	production	and	release	of	chemical	
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signal	molecules	called	autoinducers.	Autoinducers	interact	with	specific	receptors	on	

themselves	and	in	neighbouring	cells	and,	once	reached	a	minimal	threshold	

concentration,	they	induce	a	response	that	alters	gene	expression	patterns	and	

modulates	bacteria	behaviour	(Miller	et	al.,	2001).	Using	these	signal‐response	systems,	

bacteria	take	collective	decisions,	synchronize	with	the	rest	of	the	population	and	thus	

function	as	multicellular	organisms	(Waters	et	al.,	2005).	QS	is	phylogenetically	

widespread,	which	suggests	an	early	origin	in	bacterial	evolution	(Lerat	et	al.,	2004)	and	

the	importance	of	cell‐to‐cell	counication	among	bacteria.	Nevertheless,	each	system	

(types	of	signals,	receptors,	mechanisms	of	signal	transduction,	target	outputs	)	reflects	

the	environmental	conditions	in	which	a	particular	species	of	bacteria	resides	(Water	et	

al.,	2005).	QS	regulate	various	traits	as	surface	attachment	(Dunne,	2002),	extracellular	

polymer	production	(Davies	et	al.,	1998),	biosurfactant	synthesis	(Schuster	et	al.,	2006),	

motility	(Daniels	et	al.	2004),	sporulation	(Ren	et	al.,	2004),	competence	(Zafra	et	al.,	

2012),	bioluminescence	(Wilson	et	al.,	1998),	the	secretion	of	antibiotic	and	virulence	

factors	(Williams	et	al.,	2000).	QS	is	often	linked	to	biofilm	formation	(Nadell	et	al.,	

2008),	mediating	the	transition	from	microcolony	to	mature	biofilm	(He	et	al.,	2015;	

Ueda	et	al.,	2009).	Studies	carried	out	in	P. aeruginosa	show	that,	although	biofilm	is	not	

completely	impaired,	mutants	lacking	the	autoinducer	form	a	thinner	and	less	

structured	biofilm,	which	is	more	susceptible	to	antibiotic	(Davies	et	al.,	1998).	In	Gram‐

negative	bacteria,	all	the	quorum‐sensing	systems	characterized	so	far,	with	the	sole	

exceptions	of	V. harveyi	and	M. xanthus,	resemble	the	first	identified	quorum	sensing	

circuit	of	the	symbiotic	bacterium	V. fischeri.	(Manefield	et	al.,	2002).	The	system	relies	

on	two	proteins:	an	autoinducer	synthase	and	a	receptor,	usually	belonging	to	the	LuxI	

and	LuxR	protein	families,	respectively.	LuxI‐like	proteins	are	responsible	for	the	

biosynthesis	of	a	specific	N‐Acyl	homoserine	lactones	signalling	molecule	(AHL),	while	

LuxR‐like	proteins	bind	the	cognate	autoinducer	once	it	reaches	a	critical	threshold	

concentration,	and	activate	the	transcription	of	target	genes	(Wilson	et	al.,	1998).	AHL	

QS	is	common	to	many	Burkholderia	species,	including	the	so‐called	Bptm	group	(see	

part	I,	chapter	2.3.1)	(Majerczyk	et	al.,	2014).	Members	of	this	group	have	homologous	

QS	systems.	B. thailandensis	and	B. pseudomallei	contain	three	complete	QS	circuits,	QS‐

1,	QS‐2,	and	QS‐3.	B. mallei	has	retained	QS‐1	and	QS‐3,	but	not	QS‐2.	The	B. thailandensis	

QS‐1	circuit	consists	of	the	BtaI1‐BtaR1	pair	and	the	signal	N‐octanoyl	homoserine	

lactone	(C8‐HSL),	QS‐2	consists	of	BtaI2‐BtaR2	and	N‐3‐hydroxy‐decanoyl	homoserine	



lactone	(3OHC10‐HSL),	and	QS‐3	consists	of	BtaI3‐BtaR3	and	N‐3‐hydroxy‐octanoyl	

homoserine	lactone(3OHC8‐HSL)	(Chandler	et	al.,	2009;	Ulrich	et	al.,	2004).	

Additionally,	each	member	of	the	Bptm	group	contains	two	LuxR	homologs	without	a	

cognate	LuxI	homolog,	called	BtaR4	and	BtaR5.	The	B. thailandensis	QS‐1	system	favour	

biofilm	formation,	CPS,	EPS	and	oxalate	production,	while	inhibiting	cell	motility;	QS‐2	

controls	synthesis	of	the	broad‐spectrum	bactobolin	antibiotics,	apparently	necessary	

for	saprophyte	survival,	not	for	host	colonization;	QS‐3	seems	to	control	some	chitin‐

binding	proteins	and	chitinases	that	contribute	to	virulence	in	insects	(Ulrich	et	al.,	

2004).	In	Gram‐positive	QS	circuits,	the	signal	molecules	is	commonly	constituted	by	

short	peptides	(5	–	50	amino	acids)	synthesized	directly	by	ribosomes	and	often	

subjected	to	extensive	post‐translational	modifications	(Miller	et	al.,	2001).	The	major	B. 

subtilis	quorum	sensing	mechanism	is	comQXPA	locus	that	operates	through	the	

signaling	peptide	ComX	(Dogsa	et	al.,	2014).	comQXPA	plays	a	key	role	in	the	

differentiation	of	competent	cells,	surfactin	producer	cells	and	in	their	physiological	

systems	when	cells	enter	the	stationary	growth	phase	(Tran	et	al.,	2000).	The	comX	gene	

encodes	a	precursor	of	competence	pheromone,	which	is	processed	and	secreted	into	

the	medium	with	a	modification	at	a	tryptophan	residue,	probably	by	the	ComQ	function	

(Lazazzera	et	al.,	1999).	ComP	is	a	sensor	protein	kinase	of	the	ComP‐ComA	two‐

component	system;	its	N‐terminal	sensor	domain	interact	with	the	ComX	pheromone	

(Piazza	et	al.,	1999).	The	interaction	with	the	extracellular	pheromone	generate	a	signal,	

which	allows	the	phosphorylation	of	the	cognate	ComA.	Once	phosphorylated,	ComA	

activate	the	transcription	of	a	set	of	genes	that	include	srfA	and	degQ	(Lazazzera	et	al.,	

1999).	The	srf	operon	encodes	surfactin	synthetases	and	the	comS	gene,	encoding	ComS,	

which	liberates	ComK.	At	this	point,	ComK	can	activate	the	transcription	of	its	own	gene	

and	the	late	competence	genes	(Morikawa,	2006).	Surfactin	is	a	QS	molecule	too;	it	

induces	the	phosphorylation	of	Spo0A,	which,	in	turn,	induces	the	expression	of	SinI,	the	

antagonist	of	SinR,	causing	the	derepression	of	genes	involved	in	biofilm	matrix	

synthesis	(Lopez	et	al.,	2009).	The	degQ	gene	encodes	DegQ,	a	small	protein	that	activate	

by	phosphorylation	DegU,	one	of	the	three	main	master	regulators	of	B. subtilis.	Once	

phosphorylated,	DegU	leads	to	expression	of	the	machinery	responsible	for	the	

production	and	secretion	of	proteases	in	a	sub‐population	of	the	biofilm,	called	miners	

(Verhamme	et	al.,	2007).	Miners	degrade	extracellular	proteins	into	small	peptides	that	

serve	as	food	for	the	entire	community	(Veening	et	al.,	2008).	An	important	class	of	
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signal	molecules	affecting	biofilm	formation	is	represented	by	modified	nucleotides.	

Cyclic	nucleotides	such	as	cyclic	dimeric	guanosine	3’,5’‐monophosphate	(c-di-GMP),	

cyclic	dimeric	adenosine	3’,5’‐	monophosphate	(c‐di‐AMP),	cyclic	guanosine	3’,5’‐

monophosphate	(cGMP),	cyclic	adenosine	3’,5’‐monophosphate	(cAMP)	as	well	as	linear	

nucleotides	such	as	guanosine	3’,5’‐bispyrophosphate	(ppGpp)	and	guanosine	3’‐

diphosphate,	5’‐triphosphate	(pppGpp)	emerged	as	important	second	messengers	

involved	in	the	regulation	of	virulence	factor	and	biofilm	formation	(reviewed	in	Kalia	et	

al.,	2012).	In	particular,	a	rise	in	c‐di‐GMP	levels	results	in	an	increase	in	expression	of	

various	factors	necessary	for	the	establishment	and	maintenance	of	biofilm	

communities,	whereas	decrease	in	the	production	of	the	cyclic	dinucleotide	or	its	

cleavage	usually	leads	to	enhanced	expression	of	virulence	and	motility	factors.	c‐di‐

GMP	levels	are	regulated	by	the	opposing	activities	of	diguanylate	cyclases	(DGCs),	that	

synthesize	the	molecule,	and	phosphodiesterases	(PDEs)	that	degrade	it	(Paul	et	al.,	

2010;	Ryan	et	al.,	2006).	These	enzymes	are	characterized	respectively	by	the	conserved	

GGDEF	and	EAL	motifs	respectively	(Galperin	et	al.,	2001).	Specific	domains	within	the	

N‐terminal	region	of	the	DGC	sense	external	environmental	stimuli,	including	sensing	of	

oxygen	(Sawai	et	al.,	2010),	nitric	oxide	(Plate	et	al.,	2012),	redox	potential	(Qi	et	al.,	

2009)	and	light	(Cao	et	al.,	2010;	Savakis	et	al.,	2012;	Tarutina	et	al.,	2006).	Studies	in	

many	bacteria	have	demonstrated	the	reciprocal	relationship	of	DGC	and	PDE	activities	

(Lee	et	al.,	2007).	In	B.	pseudomallei,	the	inactivation	of	cdpA,	encoding	a	protein	with	

PDE	activity,	resulted	in	increased	intracellular	levels	of	c‐di‐GMP,	which	promoted	

exopolysaccharide	production,	cell‐to‐	cell	aggregation	and	biofilm	formation,	and	

inhibited	flagellum	biosynthesis	and	swimming	motility	(Lee	et	al.,	2010).	In	B. 

cenocepacia,	c‐di‐GMP	play	the	same	role,	in	cooperation	with	QS	systems	(Fazli	et	al.,	

2014).	A	c‐di‐GMP	signaling	pathways	was	also	identified	in	B. subtilis.	The	increase	of	c‐

di‐GMP	levels	led	to	transient	inhibition	of	swarm	motility,	but	biofilm	formation	was	

unaffected	(Gao	et	al.,	2013).	

	

	 	



3.	Reactive	Oxygen	Species	(ROS)	

	

Reactive	oxygen	species	(ROS)	are	chemically	reactive	molecules	produced	in	aerobic	

conditions	as	by‐products	of	several	metabolic	processes.	Molecular	oxygen	(O2)	is	

small,	nonpolar	and	it	diffuses	easily	across	biological	membranes	(Ligeza	et	al.,	1998).	

Nevertheless,	O2	poorly	reacts	with	cellular	biomolecules.	Its	toxicity	derives	from	the	

formation	of	ROS	(Gerschman	et	al.,	1954)	which	result	from	the	addition	of	consecutive	

electrons	to	O2,	generating	superoxide	(O2−),	hydrogen	peroxide	(H2O2)	and	the	hydroxyl	

radical	(•OH),	and	the	formation	of	singlet	oxygen	(1O2)	(Fig.	3).	O2	is	stable	diradical,	

which	can	accept	one	electron	at	a	time	with	low	affinity,	having	two	unpaired	electrons	

in	its	π	antibonding	orbitals	and	a	slightly	negative	reduction	potential	(–	0.16	V)	

(Bielski	et	al.,	1985;	Imlay.,	2003).	O2	is	harmless	against	biomolecules,	but	its	unpaired	

electrons	can	easily	interact	with	the	unpaired	electrons	of	transition	metals	and	organic	

radicals,	flavins	and	respiratory	quinones.	The	other	ROS	(O2−,	H2O2,	and	•OH)	have	

higher	reduction	potential,	thus	they	are	stronger	oxidants	than	O2.	O2−	is	a	free	radical.	

	

Figure 3. Generation of reactive oxygen species (ROS) and their half-life. Adapted 

from Imlay (2003).	
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It	is	not	very	reactive	because	it	is	negatively	charged,	so	that	it	cannot	oxidize	electron‐

rich	molecules	and	its	lifetime	is	just	a	few	seconds.	O2−rapidly	reacts	with	another	

molecule	of	O2−	(self‐dismutation	reaction)	to	form	H2O2	or	it	reacts	with	nitric	oxide	

(radical–radical	reaction)	to	form	a	very	potent	oxidant	and	reactive	nitrogen	species,	

peroxynitrite	(NO3‐	with	half‐life	of	seconds)	(Pacher	et	al.,	2007).	H2O2	is	a	precursor	of	

free	radicals	as	UV	radiation	causes	the	cleavage	of	the	oxygen–oxygen	bond	to	form	

•OH.	H2O2	is	stable,	it	has	a	half‐life	of	months,	when	protected	against	light	and	trace	

metal	contamination	because	of	the	stability	of	its	oxygen‐oxygen	bond.	As	the	cell	is	not	

free	from	trace	metal	or	UV	radiations,	antioxidant	enzymes	(catalase,	glutathione	

peroxidase)	rapidly	destroy	H2O2.	•OH	originates	from	the	Fenton	reaction	between	

redox	metal	ions	(Fe2+	or	Fe3+	or	Cu+)	and	H2O2:	

H2O2	+Fe2+→OH−	+FeO2+	+H+→Fe3+	+OH−	+•OH	

•OH	is	the	most	reactive	and	less	selective	species,	reacting	with	most	biomolecules	at	

the	same	time	it	diffuse	in	the	cell.	Its	lifetime	is	extremely	short	(10–9	s)	(Bokare	et	al.,	

2014).	1O2	is	a	photoexcited	form	of	O2,	in	which	the	π	antibonding	electrons	are	spin‐

paired.	Excited	molecules,	readily	produced	upon	UV–visible	light	absorption,	can	

transfer	their	energy	to	O2	generating	1O2	(Ogilby,	2010).	This	happens	often	in	

photosynthetic	systems	with	high	risk	for	the	biomolecules,	as	1O2	reacts	rapidly	with	

cysteine,	histidine,	methionine,	tyrosine	and	tryptophan	residues	present	in	proteins,	

unsaturated	lipids	and	some	nucleic	acids	(Briviba	et	al,	1997).	Typically,	this	species	

exhibits	a	half‐life	time	in	water	of	3.5	µs	(Ogilby,	2010).	As	microbial	life	first	evolved	in	

a	world	devoid	of	O2	and	rich	in	reduced	iron,	microorganisms	evolved	strategies	to	

maintain	a	reducing	environment	and	to	prevent	damage	to	essential	macromolecules	

(Anbar,	2008).	Bacteria	have	evolved	sensitive	and	specific	sensors	to	monitor	different	

redox	signals	such	as	the	presence	or	absence	of	O2,	cellular	redox	state	or	ROS.	The	

sensing	mechanisms	can	involve	redox‐active	cofactors	such	as	haem,	flavins,	pyridine	

nucleotides	and	iron–sulphur	clusters,	or	redox‐sensitive	amino	acid	side	chains	such	as	

cysteine	thiols	(Green	et	al	2004).	The	sensor	signal	is	converted	in	the	activation	of	

pathways	linked	to	the	oxidative	stress	response	to	allow	bacteria	to	face	the	changed	

redox	environment.	Enzymatic	and	non‐enzymatic	scavenger	systems	control	the	

cellular	concentration	of	ROS	in	order	to	maintain	steady‐state	intracellular	

concentrations.	When	the	balance	between	ROS	and	scavenger	systems	is	disturbed,	the	

accumulation	of	ROS	inside	the	cell	lead	to	a	condition	called	oxidative stress	(Groves	



et	al.,	2010;	Green	et	al.,	2004;	Cabiscol	et	al.	2000).	In	this	condition,	the	ROS	

concentration	is	so	high	that	they	can	damage	proteins,	DNA,	and	lipids,	leading	to	an	

increased	rate	of	mutagenesis	and	cell	death.	In	humans,	oxidative	stress	is	involved	in	

many	diseases,	such	as	atherosclerosis,	Parkinson's	disease,	heart	failure,	myocardial	

infarction	and	Alzheimer's	disease.	On	the	other	hand,	ROS	are	essential	for	the	immune	

system	to	attack	and	kill	pathogens	(Groves	et	al.,	2010).	

	

3.1 Sources of oxidative stress. 

3.1.1 Endogenous sources. 

Microorganisms	routinely	generate	ROS	when	they	grow	in	aerobic	environments.	The	

endogenous	ROS	production	has	been	widely	investigated	in	E. coli.	To	understand	

which	mechanisms	are	involved	in	scavenging	and	ROS	formation,	the	O2−	and	H2O2	

formation	rate	was	calculated	measuring	the	H2O2	produced	in	mutants	devoid	of	

scavenging	system.	A	rate	of	10‐15	µm/s	have	been	observed	for	cells	grown	in	air‐

saturated	glucose	medium	(Seaver	et	al.,	2004).	The	accidental	autoxidation	of	

flavoenzymes	is	the	main	responsible	for	O2−	and	H2O2	production	(Seaver	et	al.,	2004).	

In vitro	analysis	identified	several	flavoproteins	releasing	ROS	(Grinblat	et	al.,	1991;	

Messner	et	al.,	2002;	Kussmaul	et	al.,	2006),	but	the	same	role	in	in vivo	experiment	was	

confirmed	for	a	few	of	them	(Korshunov	et	al.,	2011).	The	adventitious	electron	transfer	

of	one	or	both	electron	from	O2	to	the	flavoprotein	generate	O2−	and/or	H2O2.	The	rate	of	

H2O2	production	is	proportional	to	the	intracellular	O2	concentration,	as	higher	the	O2	

cellular	concentration,	most	probable	the	collision	frequency	with	a	flavoenzyme	and	its	

oxidation	(Seaver	et	al.,	2004).	The	degree	of	flavin	exposure,	the	flavin	redox	potential	

and	the	residence	time	of	electrons	on	it	condition	the	autoxidation	rates	of	

flavoproteins	(Messner	et	al.,	2002).	Thus,	it	seems	that	the	ROS	level	in	a	cell	depends	

on	the	state	of	its	flavoenzymes,	the	most	autoxidizable	enzymes.	In vitro	studies	

suggested	NADH	dehydrogenase	II	as	the	most	autoxidizable	component	of	the	electron	

transport	chain,	but	it	turned	out	that	is	only	a	minor	source	of	cellular	H2O2	(Seaver	et	

al.,	2004).	More	recently,	in vivo	studies	identified	two	fumarate‐reducing	flavoenzymes	

as	generators	of	H2O2	in	E. coli.	One	of	these	enzymes	is	fumarate reductase,	an	

anaerobic	respiratory	enzyme	that	forms	substantial	O2−	and	H2O2	when	anaerobic	
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bacteria	enter	aerobic	habitats.	Its	detrimental	activity	is	suppressed	through	its	

interaction	with	the	respiratory	chain,	with	cytochrome	oxidase	acting	as	an	ultimate	

electron	sink	(Korshunov	et	al.,	2011).	This	strategy	seems	to	be	widespread	among	all	

the	bacteria	to	enable	the	organisms	to	survive	transient	oxygen	exposure.	Furthermore,	

cytochrome	d	oxidase	activity	may	help	to	re‐establish	local	anaerobiosis	when	

oxygenated	fluids	invade	self‐contained	microhabitats	such	as	biofilms	(Korshunov	et	

al.,	2011).	Another	flavoenzyme	was	identified	as	a	significant	H2O2	source	in vivo in 

E.coli:	NadB	is	a	dehydrogenase,	which	desaturates	aspartate,	using	fumarate	as	

electron	acceptor	(Mortarino	et	al.,	1996).	In	aerobic	conditions,	NadB	quantitatively	

uses	molecular	oxygen,	rather	than	fumarate,	as	its	electron	acceptor.	Indeed,	the	

aerobic	metabolism	consumes	NADH,	reverses	the	flux	through	the	fumarate‐generating	

branch	of	the	anaerobic	TCA	cycle,	fumarate	levels	drop	and	reduced	NadB	turn	over	by	

the	less	efficient	transfer	of	electrons	to	oxygen	(Korshunov	et	al.,	2011).	Menaquinone	

autoxidation	also	concur	to	the	endogenous	ROS	production,	accounting	for	another	5‐

10%	(Korshunov	et	al.,	2006).	The	sources	of	ROS	identified	so	far,	justify	just	a	part	of	

the	H2O2	measuered	in	vivo.	Evidences	suggest	that	the	remaining	ROS	arises	from	

adventitious	reactions.	

3.1.1 Exogenous sources. 

In	both	anthropic	and	natural	systems,	bacteria	experience	environmental	stress	factors	

known	to	be	sources	of	a	cascade	of	ROS	and	of	oxidative	injuries	(Dwyer	et	al.,	2007;	

Kohanski	et	al.,	2007).	Thus,	many	lethal	stressors	act	through	a	common	biochemical	

mechanism	that	is	reminiscent	of	ROS	involvement	in	eukaryotic	apoptosis	(Jung	et	al.,	

2001;	Mates	et	al.,	2000;	Simizu	et	al.,	1998).	Different	bacteria	may	experience	different	

amounts	of	oxidative	stress	in	the	same	environment,	depending	on	the	efficacy	of	its	

scavenging	resources	(Imlay,	2003).	It	is	well	established	that	the	exposure	of	

microorganisms	to	ionizing	(γ)	and	non‐ionizing	irradiation	(UV)	leads	to	the	

intracellular	formation	of	ROS	from	ionization	of	intracellular	water	(Sies,	1997).	

According	to	the	induction	of	antioxidant	defence	in	bacteria	exposed	to	UV‐B,	oxidative	

stress	could	be	the	responsible	for	UV‐B‐	induced	damage	to	the	biomolecules.	

(Matallana‐Surget	et	al.,	2009).	High	temperatures	result	in	more	oxidative	stress	with	

consequent	DNA	double‐strand	breaks	and	of	damage	to	proteins	at	high	temperature	in	

E. coli	(Murata	et	al.,	2011)	and	in	heat‐induced	cell	death	in	Saccharomyces cerevisiae	



(Davidson	et	al.,	1996).	It	has	been	shown	that,	in	Lactococcus lactis	grown	in	aerobiosis,	

high	temperatures	correspond	to	riboflavin	starvation	due	to	reduced	activity	of	

flavoprotein	disulfide	reductase	(glutathione	and	thioredoxin	reductase),	causing	a	less	

reduced	cytoplasm	and	thus	oxidative	stress	(Chen	et	al.,	2013).	Also	cold	temperatures	

cause	oxidative	stress:	cells	of	the	Antarctic	bacterium	Pseudomonas fluorescens,	grown	

at	4°C,	suffer	an	increasing	amount	of	free	radicals	and	the	enhanced	activity	of	two	

antioxidant	enzymes	(Chattopadhyay	et	al.,	2011).	Another	source	of	oxidative	stress,	

mainly	for	pathogenic	bacteria,	is	the	interaction	with	host	immune	system.	In	

presence	of	pathogens,	plants	and	animals	immune	system	rapidly	releases	ROS	as	a	

first‐line	defence	mechanism,	generating	the	so‐called	“oxidative	burst”	(Apel	et	al.,	

2004).	In	addition,	animals’	macrophages	recognize	and	import	bacteria	into	

phagosomes,	compartments	that	mature	into	phagolysosomes,	containing	ROS	and	

reactive	nitrogen	species	(RNS)	(Garin	et	al.,	2001).	The	multi‐subunit	NADPH‐

dependent	phagocytic	oxidase	is	assembled	on	the	phagolysosome	membrane	and	

pumps	electrons	into	the	compartment	to	reduce	oxygen	to	superoxide	anion	(O2‐).	The	

inducible	nitric	oxide	synthase	uses	arginine	and	oxygen	as	substrates	to	produce	nitric	

oxide	(Fang,	2004).	Nevertheless,	a	number	of	the	more	successful	human	pathogens	

can	survive	this	defense	strategy,	as	in	the	case	of	Salmonella	(Slauch,	2011)	and	B.	

pseudomallei	(Chieng	et	al.,	2012).	ROS	signalling	in	plants	is	well	established	(reviewed	

in	Apel	et	al.,	2004).	ROS	are	used	for	stomata	closing	(Pei	et	al.	2000),	programmed	cell	

death	(Gechev	et	al.,	2005)	and	response	to	abiotic	stress	(Laloi	et	al.	2007;	Miller	et	al.	

2007).	In	the	rhizosphere,	ROS	are	important	for	roots	development	(Mori	et	al.,	2004),	

for	interactions	between	roots	and	microorganisms	(Jamet	et	al.,	2003),	the	regulation	of	

symbiosis	(Shaw	et	al.,	2003;	Rubio	et	al.	2004),	and	the	establishment	of	mycorrhiza	

(Fester	et	al.,	2005).	During	the	early	stages	of	plant‐microorganism	interactions,	plants	

use	ROS	subject	microorganisms	in	the	rhizosphere	to	high	oxidative	stress,	both	to	

prevent	pathogens	infection	and	to	establish	advantageous	symbiotic	interactions.	In	

return,	microorganisms	produce	ROS	scavenging	enzymes	in	order	to	successfully	infect	

the	plant	or	down‐regulate	the	plant	ROS	producing	systems	(Nanda	et	al.,	2010).	In	a	

natural	habitat,	microorganisms	also	face	the	release	of	ROS‐producing	compounds	

produced	by	other	neighbour	microorganisms.	This	is	the	case	of	natural	phenazines,	a	

large	group	of	nitrogen‐containing	heterocyclic	compounds	with	different	chemical	and	

physical	properties	depending	on	the	functional	groups	present	(Mavrodi	et	al.	2010).	
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Phenazines	are	mainly	studied	in	pseudomonads	because	of	their	role	in	cystic	fibrosis	

(Lau	et	al.,	2004)	and	in	plant	disease	management	(Saharan	et	al.,	2011),	but	they	are	

produced	by	both	Gram‐negative	and	Gram‐positive	species,	including	Burkholderia spp.	

(Mavrodi	et	al.	2010).	The	majority	of	phenazine	generate	ROS	accumulation	in	other	

cells,	assisting	the	producing	bacterium	in	competitive	survival,	although	this	is	

probably	not	their	primary	function	(Pierson	et	al.,	2010).	For	example,	pyocyanin,	the	

most	studied	pseudomonads	phenazine,	serves	as	an	alternate	electron	acceptor	that	

reoxidizes	NADH	to	NAD+	to	balance	intracellular	redox	in	the	absence	of	other	electron	

acceptors	(Price‐Whelan	et	al.	2007).	Furthermore,	phenazines	in	pseudomonads	have	

been	proposed	as	signalling	molecules,	involved	in	QS	regulated	pathways	and	various	

stages	of	biofilm	formation	(Pierson	et	al.,	2010).	In	addition	to	natural	sources	of	ROS,	

soil	collect	environmental	pollutants,	such	as	xenobiotics,	metals	and	chemicals,	able	to	

cause	oxidative	stress	in	microorganisms	(Kang	et	al.,	2007;	Pérez‐Pantoja	et	al.,	2013).	

This	effect	can	greatly	impair	the	degradation	capacity	of	microorganisms	used	for	the	

bioremediation	of	polluted	sites	(Kang	et	al.,	2007).	Nanoparticles	(NPs)	are	among	the	

emerging	soil	pollutants	causing	oxidative	stress	in	microorganisms	(Fabrega	et	al.	

2009).	In	particular,	silver	NPs	(Ag‐NPs)	are	widely	used	for	medical	and	industrial	

applications	(Levan	et	al.,	2012;	Duncan,	2011,	Banejeree	et	al.,	2011),	as	they	are	

effective	against	a	broad	spectrum	of	bacterial	and	fungal	species	(Sotiriou	et	al.,	2011),	

including	antibiotic‐resistant	strains	(Schacht	et	al.,	2013).	The	growing	diffusion	of	Ag‐

NPs	in	commercially	available	products	used	daily	(Benn	et	al.,	2008)	and	the	

application	of	treated	sewage	from	wastewater	treatment	plants	as	soil	fertilizer	

(Schlich	et	al.	2013)	leads	to	an	NP	dispersal	in	the	soil	difficult	to	track	(Mueller	et	al.,	

2009),	by	causing	oxidative	stress.	Another	exogenous	source	of	ROS	are	the	

disinfectants and cleaning agents.	They	contain	peroxides,	chloramines	or	

hypochlorites	(Van	Houdt	et	al.,	2010)	and	are	increasingly	used	in	a	number	of	medical,	

food	and	industrial	applications	due	to	their	broad	spectrum	activities,	the	lack	of	

environmental	toxicity	following	their	complete	degradation	and	their	lower	cost	

(Linley	et	al.	2012).	Their	usage	raises	concern	about	the	raising	of	resistance	

mechanisms	among	pathogenic	bacteria	(Van	Houdt	et	al.,	2010)	and	the	exposure	of	

beneficial	soil	microbial	community	to	oxidative	stress	(Ortiz	de	Orué	Lucana	et	al.,	

2012).	A	wide	and	still	open	question	is	whether	antibiotics	generate	ROS	to	kill	



bacteria.	Two	excellent	and	recent	reviews	resume	data	published	so	far	and	deal	with	

this	issue	(Imlay,	2015;	Dwyer	et	al.,	2015).	

	

3.4 Damage caused by oxidative stress 

Proteins	are	the	first	target	of	oxidative	stress.	ROS	cause	protein	modifications,	such	as	

oxidation	of	sulfur‐containing	side	chains,	chlorination	of	side‐chain	amines,	oxidation	of	

histidines	and	tryptophans	and	dityrosine	formation	(Cai	et	al.,	2013),	thus	causing	

fragmentation,	destabilization,	aggregation	and	degradation	of	proteins	(Dahl	et	al.,	

2015).	O2− stress	results	in	growth	defects	in	E. coli.	Specifically,	O2−	destroy	the	catalytic	

[4Fe‐4S]	cluster	of	the	dihydroxyacid	dehydratase,	the	penultimate	step	in	the	pathway	

for	the	formation	of	branched‐chain	(Leu,	Ile,	Val)	aminoacids,	thus	cells	lose	the	ability	

to	grow	without	supplements	of	branched‐chain	and	sulphur‐containing	amino	acids	

(Kuo	et	al.,	1987).	In	addition,	other	members	of	this	enzyme	family	are	equally	sensitive	

to	O2−:	aconitase	B	and	fumarases	A	and	B	(Gardner	et	al.,	1991;	Liochev	et	al.,	1993)	are	

inactivated	by	O2−.	Thus,	the	tricarboxylic	acid	cycle	lose	function	and	the	non‐

fermentable	substrates	(e.g.,	succinate	and	acetate)	can	no	longer	support	growth	

(Imlay,	2003).	In	addition	to	the	branched‐chain	auxotrophy,	O2−	stress	causes	

auxotrophies	for	aromatic	amino	acids	(Tyr,	Trp,	Phe),	as	it	oxidize	the	1,2‐

dihydroxyethyl	thiamine	pyrophosphate	intermediate	of	transketolase,	inactivating	this	

enzyme	and	inhibiting	the	production	of	erythrose‐4‐phosphate,	which	is	essential	for	

the	first	step	of	the	aromatic	biosynthetic	pathway	(Benov	et	al.,	1999).	The	basis	of	the	

sulfur	auxotrophy	(Cys,	Met)	seem	to	lie	in	the	damages	caused	by	O2−	to	the	cell	

envelope.	A	damaged	membrane	allows	leakage	of	sulphite,	which	limits	the	synthesis	of	

sulfide	by	the	action	of	sulfite	reductase,	and	that	in	turn	limits	the	synthesis	of	cysteine	

via	the	action	of	the	O‐acetylserine	sulfhydrylases.	Lacking	the	cysteine,	cell	also	run	out	

of	methionine	(Benov	et	al.,	1996).	O2−	also	causes	a	high	rate	of	DNA	mutations	(Farr	et	

al.,	1986),	which	is	proportional	to	the	concentration	of	free	iron	in	the	cell.	Indeed,	O2−	

causes	an	increase	in	the	internal	pool	of	free	iron,	released	from	the	[4Fe‐4S]	clusters	of	

damaged	dehydratases	(Keyer	et	al.,	1996).	To	limit	DNA	damage,	the	intracellular	iron	

pool	can	vary	freely	in	response	to	environmental	availability	only	during	anaerobiosis	

in	E. coli.	On	the	contrary,	in	aerobiosis,	iron	levels	and	the	sysnthesis	of	O2−	sensitive	

enzymes	(aconitase,	fumarase,	and	6‐phosphogluconate	dehydratase)	are	tighly	
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regulated	(Keyer	et	al.,	1996).	H2O2	oxidizes	protein	cysteinyl	residues,	creates	sulfenic	

acid	adducts	which	form	disulfide	cross‐links	with	other	cysteines,	with	consequent	

protein	inactivation	(Kim	et	al.,	2000).	In	addition,	H2O2	can	directly	oxidize	the	same	

dehydratase	iron‐sulfur	clusters	that	O2−,	directly	oxidizing	the	catalytic	iron	atom	of	

dehydratase	clusters,	precipitating	iron	loss	and	enzyme	inactivation.	However,	the	

enzyme	inactivation	is	just	temporal,	as	defence	mechanisms	are	activated	to	limit	the	

damage	to	a	repairable	[3Fe‐4S]+,	without	the	production	of	the	more	dangerous	•OH.	

This	damage	mechanism	is	typical	of	dehydratases,	while	most	iron‐sulphur	proteins	

protect	their	clusters	from	oxidants	(Imlay,	2013).	H2O2	is	particularly	dangerous	

because	of	the	production	of	•OH	by	the	Fenton	reaction	in	presence	of	free	iron.	•OH	

mediate	the	oxidation	catalysed	by	metals	that	create	protein	carbonyls	in vitro.	The	

amino	acid	radicals	generated	by	•OH	can	be	propagated	to	secondary	sites,	causing	

further	modifications	in	proteins	sites	far	from	the	first	site	of	attack.	This	propagation	

mechanism	endangers	the	protein	active	site,	even	if	shielded	by	other	amino	acids	in	

surface	(Hawkins	et	al.,	2001).	DNA	is	seriously	damaged	by	HO•.	HO•	can	extract	

electrons	from	either	sugar	or	base	moieties,	as	well	as	add	to	the	unsaturated	bases.	

The	resultant	DNA	radicals	are	resolved	in	a	variety	of	ways,	thereby	producing	a	broad	

spectrum	of	lesions.	The	low	reduction	potential	of	guanine	facilitates	electron	hop	to	

electron	holes	in	nearby	oxidized	base	radicals,	thereby	leaving	guanine	with	an	

unpaired	electron	(Giese,	2002).	This	produces	8‐hydroxyguanine,	which	is	highly	

mutagenic	because	it	can	to	base	pair	with	adenine,	eluding	the	mispair	detection	

system	of	DNA	polymerases	(Candeias	et	al.,	1993).	By	contrast,	thymine	blocks	

polymerase	progression	and	is	thus	lethal	(Demple	et	al.,	1986).	ROS	also	cause	the	lipid	

peroxidation	of	polyunsaturated	fatty	acids	in	membranes	with	the	decrease	of	

membrane	fluidity,	the	alteration	of	membrane	properties	and	the	disruption	of	

membrane‐bound	proteins	(Cabiscol	et	al.,	2000).	The	propagation	of	this	effect	causes	

the	degradation	of	polyunsaturated	fatty	acids	and	the	production	of	long‐living	and	

reactive	products,	such	as	aldehydes,	able	to	damage	proteins	(Humpries	et	al.,	1998;	

Esterbauer	et	al.,	1991).	Thus,	ROS	cause	direct	oxidative	modification	on	bacterial	

unsaturated	lipids,	and	indirect	modifications	through	reactive	products	of	lipid	

peroxidation	(Stark,	2005).	Recently	lipid	peroxidation	was	associated	to	oxidative	

stress	caused	by	nanoparticles	and	nanowires	(Premanathan	et	al.,	2011;	

Krishnamoorthy	et	al.,	2012)	and	porphyrinic	photosensitizers	(Lopes	et	al.,	2014).	A	



further	target	for	ROS	are	the	polyunsaturated	fatty	acids	within	the	thylakoid	

membranes	of	photosynthetic	bacteria	(Imlay,	2003).	

	

3.5 Pathways activated in response to oxidative stress 

3.5.1 Scavenging systems 

To	avoid	oxidative	stress	damages,	bacteria	produce	both	enzymatic	and	non‐enzymatic	

scavenging	systems,	regulated	by	a	dense	network	of	pathways,	as	described	in	section	

3.5.2.	A	first	strategy	to	defend	cell	components	from	oxidative	stress	is	the	maintenance	

of	an	intracellular	reducing	environment.	For	this	purpose,	some	non‐enzymatic	

antioxidants	such	as	NADPH/NADH	pools,	β‐carotene,	ascorbic	acid,	α‐tocopherol,	and	

glutathione	(GSH)	are	constantly	present	in	the	cell	(Cabiscol	et	al.,	2000).	GSH	is	the	

major	low‐molecular‐weight	thiol	cofactor	in	eukaryotes	and	most	Gram‐negative	

bacteria	(Masip	et	al.,	2006).	In	the	cell,	it	is	present	at	high	concentrations	as	it	plays	a	

critical	role	in	toxicity	and	oxidative	stress	management,	maintaining	a	strong	reducing	

environment.	Glutathione	reductase	maintains	GSH	in	its	reduced	form	using	NADPH	as	

a	source	of	reducing	power	(Sharma	et	al.,	2013).	Contrary	to	eukaryotes,	in	bacteria	

only	a	few	proteins	undergo	protein	glutathionylation,	i.e.	the	reversible	formation	of	

GS‐S‐protein	disulfides	(Masip	et	al.,	2006).	This	is	a	way	to	regulate	protein	function	

post‐translationally	and	to	protect	exposed	cysteine	residues	(Dalle	Donne	et	al.,	2007).	

In	addition,	GSH	takes	part	in	the	glutaredoxin	pathway,	which	reduces	ribonucleotides	

to	deoxyribonucleotides	to	provide	the	precursors	needed	for	DNA	synthesis	(Leeper	et	

al.,	2011).	All	GSH	functions	are	detailed	in	Masip	et	al.	(2006).	Other	low	molecular	

thiols	are	present	in	microorganisms	devoid	of	GSH:	anaerobic	sulfur	bacteria	use	

glutathione	amide,	aerobic	phototrophic	halobacteria	use	γ‐glutamylcysteine	(Masip	et	

al.,	2006),	actinobacteria	use	mycothiol	(described	in	Jothivasan	et	al.,	2008)	and	Gram‐

positive	bacteria	use	coenzyme A	and	bacillithiol	(Newton	et	al.,	2009).	Coenzyme	A	is	a	

suitable	protective	thiol	for	an	aerobic	organism,	but	it	cannot	function	as	a	protected	

reservoir	of	cysteine	(Newton	et	al.,	2009).	On	the	contrary,	bacillithiol	functions	as	a	

thiol	redox	buffer	in	the	detoxification	of	ROS	and	toxins	and	it	is	used	for	S‐thiolation	to	

protects	critical	cysteine	residues	against	oxidation,	exactly	as	it	happens	for	GSH	in	

Gram‐negative	bacteria	(Chi	et	al.,	2013).	In	the	same	way,	protein	S‐bacillithiolation	is	
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emerging	as	an	important	thiol	redox	mechanism	for	the	regulation	of	protein	function	

(e.g.,	the	redox‐sensitive	peroxiredoxin	transcription	regulator	OhrR	and	the	methionine	

synthase	MetE)	during	oxidative	stress	(Sharma	et	al.,	2013;	Gaballa	et	al.,	2014).	In 

bacteria	devoid	of	GSH	(e.g.,	B. subtilis),	the	thioredoxin	system	is	particularly	

important	(Lu	et	al.,	2013).	It	includes	thioredoxin	reductase	and	thioredoxin,	and	it	

provides	electrons	to	many	enzymes,	being	involved	in	DNA	synthesis	and	in	the	defence	

against	oxidative	stress	(Boronat	et	al.,	2014).	In	bacteria	with	GSH,	the	thioredoxin	

system	is	not	essential	to	scavenge	oxidative	stress,	but	is	critical	to	control	the	ratio	

between	disulphide	and	dithiols	of	cellular	proteins	(Lu	et	al.,	2013).	H2O2	is	removed	by	

catalases,	which	promote	H2O2	dismutation	(2	H2O2	→	2H2O+O2)	and	contain	

dimanganese	(MnCats)	or	heme	groups	(KatEs),	and	peroxidases,	which	use	H2O2	to	

oxidize	a	number	of	compounds	according	to	the	reaction:	H2O2	+2A+	2H+	→	2	H2O+	

2A•+,	where	A	is	an	organic	or	metal	ion	electron	donors	(A).	In	E. coli,	two	catalases	

remove	H2O2,	encoded	by	katG	that	is	induced	by	OxyR,	and	katE,	induced	by	rpoS	gene,	

thus	activated	in	stationary‐phase	or	upon	various	types	of	starvation	(Gonzalez‐Flecha	

et	al.,	1997).	KatG	is	metal	catalase‐peroxidase,	able	to	catalyse	both	reactions	albeit	the	

catalase	reaction	is	more	efficient	than	the	peroxidase	reaction	(Ivancich	et	al.,	2013).	

KatG	from	Mycobacterium tuberculosis	plays	an	essential	role	in	the	survival	to	the	

phagocyte	oxidative	burst	(Zhang	et	al.,	1992)	and	is	responsible	for	the	activation	of	the	

antitubercular	drug	isoniazid	(Bertrand	et	al.,	2004).	In	A. vinelandii,	catalase	activity	is	

essential	since	A. vinelandii	maintains	a	very	high	respiratory	rate	to	protect	its	

nitrogenases	from	oxygen	(Robson	et	al.,	1980;	Kelly	et	al.,	1990)	with	consequent	

formation	of	large	quantities	of	ROS.	As	in	E. coli,	the	efficient	scavenging	system	relies	

on	two	catalases:	the	first	one	is	a	KatG	homologue,	and	the	second	catalase	is	a	

stationary‐phase	inducible,	thermostable	and	protease	resistant	enzyme	(Sandercock	et	

al.,	2008).	A	further	defence	against	oxidative	stress	in	A. vinelandii	is	the	rhodanese‐like	

protein	RhdA.	Its	important	role	has	been	demonstrated	in	both	planktonic	cells	

(Remelli	et	al.,	2010)	and	biofilm	(Villa	et	al.,	2012b;	part	II,	chapter	1).	Superoxide 

dismutases	(SOD)	convert	the	dangerous	ROS	O2–	to	H2O2	and	O2.	In	the	cytoplasm,	two	

main	SOD	scavenge	O2–:	an	iron‐containing	enzyme,	encoded	by	sodB	and	whose	

expression	is	modulated	by	intracellular	iron	levels	(Niederhoffer	et	al.,	1990),	and	a	

manganese‐	containing	SOD,	the	predominant	enzyme	during	aerobic	growth,	encoded	

by	sodA	and	whose	expression	is	transcriptionally	regulated	by	six	control	systems	



(Compan	et	al.,	1993).	E. coli	strains	that	lack	both	SODs	grow	normally	in	anaerobic	

cultures,	but	they	have	evident	growth	defects	in	aerobic	media	(Carlioz	et	al.,	1986).	In	

many	Gram‐negative	bacteria,	copper	and	zinc	SODs	are	present	in	the	periplasm	(Kroll	

et	al.,	1995).	Since	O2–	cannot	cross	membranes,	periplasmic	SOD	defend	cells	from	O2–	

produced	in	the	periplasm,	likely	from	the	bc1	complex	(Han	et	al.,	2001),	or	

exogenously	(Hassan	et	al.,	1979).	For	this	reason,	periplasmic	SOD	play	a	major	role	in	

protecting	bacteria	from	toxic	free	radicals	produced	by	the	host	immune	system;	thus,	

they	are	often	suggested	as	virulence	and	pathogenicity	factors	(Sanjay	et	al.,	2011).	In	

B. pseudomallei,	sodC	encodes	for	a	periplasmic	SOD,	which	plays	a	key	role	in	its	

virulence	and	survival	in	the	host	cells	(Vanaporn	et	al.,	2011).	Alkylhydroperoxide 

reductases	(Ahp)	are	members	of	the	peroxiredoxin	family	of	enzymes,	which	have	

activity	against	H2O2,	organic	peroxides,	and	peroxynitrite	(Poole,	2005).	AhpC	and	

AhpF	were	initially	identified	in	Salmonella enterica	serovar	typhimurium	(S. 

typhimurium)	(Jacobson	et	al.,	1989),	but	they	are	widespread	in	all	organisms	(Mishra	

et	al.,	2012).	AhpC	contains	two	redox‐active	cysteines	that	can	be	oxidised	to	a	sulfenic	

acid	by	the	peroxide	substrate.	Usually,	AhpF,	a	flavoprotein	with	NADH:disulfide	

oxidoreductase	activity,	restores	the	disulfide	in	AhpC	to	its	reduced	form	(Jacobson	et	

al.,	1989;	Poole,	2005).	It	has	been	demonstrated	that	AhpC	is	the	main	scavenger	of	

endogenous	H2O2,	as	its	efficiency	is	higher	than	catalase	for	low	H2O2	concentrations	

(Scherman	et	al.,	1996;	Seaver	et	al.,	2001).	Indeed,	if	H2O2	concentration	exceed	20	μM,	

AhpC	is	saturated,	whereas	catalase	is	not,	thus	a	division	in	the	role	of	the	two	enzymes	

can	be	hypothesized	(Mishra	et	al.,	2012).	In	addition	to	the	first	line	of	defense,	the	

regulation	of	iron solubilization	and	metabolism	through	specific	membrane‐bound	

receptors	that	regulate	iron	entrance,	and	through	the	ferroxidase	activity	of	

bacterioferritin	and	ferritin	(Cabiscol	et	al.,	2000).	A	first	evidence	of	this	link	was	the	

induction	of	Dps,	a	ferritin‐like	protein	that	has	been	demonstrated	to	be	a	scavenger	of	

free	iron,	in	response	to	H2O2	(Imlay,	1995).	In	addition,	DNA and protein repair 

systems	concur	to	limit	cellular	damages.	DNA	repair	enzymes	include	endonuclease	IV,	

induced	by	oxidative	stress,	and	exonuclease	III,	induced	in	the	stationary	phase	and	in	

starving	cells	(Demple	et	al.,	1994).	Bacteria	can	repair	directly	some	covalent	

modifications	to	the	primary	structure	of	proteins,	such	as	the	oxidized	disulfide	bonds	

with	thioredoxin	reductase,	with	glutaredoxin	or	protein	disulfide	isomerase	(Cabiscol	

et	al.,	2000).		
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3.5.2 Regulators of oxidative stress response 

Bacteria	sense	and	adapt	to	oxidative	stress	by	activating	two	main	systems,	which	can	

be	activated	through	the	oxidation	of	sensor	molecules	by	H2O2	or	O2–.	The	genes	

responsible	for	such	responses	are	usually	grouped	in	regulons:	in	E. coli,	for	example,	

OxyR	responds	to	the	stress	induced	by	H2O2,	while	SoxRS	responds	to	the	O2–‐induced	

one.	OxyR	is	a	protein	of	the	LysR	family,	which	senses	H2O2	and	activates	the	

transcription	of	several	genes	involved	in	the	antioxidative	defence,	e.g.	peroxide	

scavengers,	thiol	redox	buffers,	enzymes	to	repair	iron‐sulfur	centres	and	to	repress	iron	

uptake	genes	(Storz	et	al.,	1999;	Zheng	et	al.,	2001).	OxyR	is	a	tetramer	that	binds	to	

DNA	both	in	the	reduced/inactive	form	and	in	the	oxidized/active	form.	Low	

micromolar	concentrations	of	H2O2	(e.g.	5	μM)	fully	activate	OxyR	by	the	formation	of	an	

intramolecular	disulfide	bond	(S‐S)	between	two	cysteine	residues	(Cys	199	and	Cys	

208)	(Zheng	et	al.,	1998).	The	S‐S	formation	causes	a	major	structural	change	in	OxyR	

tetramer.	In	this	form,	OxyR	is	able	to	recruit	RNA	polymerase	to	promoters	of	oxidative	

stress	genes	through	protein‐protein	interaction	with	the	carboxy‐terminal	domain	of	

the	α‐subunit	of	RNA	polymerase	(Storz	et	al.,	1999;	Lushchak,	2001;	Choi	et	al.,	2001).	

Oxidized	OxyR	binds	all	OxyR‐regulated	promoters,	among	which	genes	for	catalase	

KatG,	the	alkylhydoperoxide	reductase	AhpC	and	the	GSH	system	(glutaredoxin	and	

glutathione	reductase)	(Zheng	et	al.	2001).	Alternative	models	have	been	proposed,	

where	oxidant	compound	agents	active	OxyR	through	the	S‐nitrosylation	(Hausladen	et	

al.,	1996;	Seth	et	al.,	2012)	or	the	S‐glutathionylation	(Kim	et	al.,	2002).	The	oxidation	is	

only	transient,	as	OxyR	is	reduced	back	to	the	inactive	conformation	by	disulfide	

reduction	by	glutaredoxin	1,	using	GSH	as	the	electron	donor	(Zheng	et	al.,	1998).	The	

reduced	form	of	the	OxyR	protein	can	bind	the	oxyR	promoter,	but	not	the	katG	and	ahpC	

promoters,	suggesting	that	the	reduced	form	of	OxyR	maintain	a	different	function	from	

the	antioxidative	one	(Lushchak,	2011).	OxyR	has	been	retrieved	also	in	S. Typhimurium	

(Christman	et	al.,	1985),	P. aeruginosa	(Vinckx	et	al.,	2008)	and	Neisseria meningitides	

(Ieva	et	al.,	2008)	and	Streptomyces	coelicolor	A3	(Baltz,	2006).	The	SoxRS	regulon	is	a	

two‐component	system,	part	of	the	inducible	protection	against	oxidant	compounds	

(Wu	et	al.,	2012),	nitric	oxide	radical	(Nunoshiba	et	al.,	1993)	and	hypochlorous	acid	

(Dukan	et	al.,	1996).	SoxR	is	a	homodimer	containing	two	[2Fe–2S]	clusters	responsible	



for	the	regulation	of	its	activity	as	a	transcriptional	factor	(Hidalgo	et	al.,	1996;	Hidalgo	

et	al.,	1997).	SoxR	is	the	specific	switch	regulated	by	redox	signals	that	enhance	the	

expression	of	soxS	gene,	resulting	in	increased	levels	of	the	small	regulatory	protein	

SoxS	(Hidalgo	et	al.,	1997).	SoxS	regulates	its	transcription	and	the	transcription	of	nine	

superoxide‐activated	proteins,	included	manganese‐SOD,	endonuclease	IV	and	glucose‐

6‐phosphate	dehydrogenase,	and	down‐regulates	the	outer	membrane	protein	OmpF	

(Storz	et	al.,	1999).	Evidence	indicates	OxyR/SoxRS	interplay	in	the	response	to	

oxidative	stress	(Lushchak,	2011;	Semchyshyn,	2009),	in	addition,	both	proteins	are	

involved	in	more	complex	pathways	with	RpoS,	the	alternative	σ	factor	of	RNA	

polymerase	essential	during	stationary	phase	and	in	response	to	various	stresses,	

including	oxidative	stress	(Hengge‐Aronis,	2002).	Although	with	some	differences,	the	

regulatory	system	of	B. pseudomallei	also	relies	on	both	OxyR	and	RpoS	for	transcription	

of	oxidative	stress	response	genes,	included	katG	and	dpsA	(Chutoam	et	al.,	2013;	

Jangiam	et	al.,	2010).	In	Streptomyces reticuli,	another	regulator,	FurS,	represses	the	

transcription	of	the	catalase‐peroxidase	cpeB	gene	(Ortiz	de	Orué	Lucana	et	al.,	2000).	

Under	oxidative	stress,	FurS	undergoes	a	conformational	change	because	of	the	

formation	of	an	internal	S‐S	bridge.	In	this	form,	FurS	loses	the	ability	to	block	the	

transcription	of	furS‐cpeB,	leading	to	a	high	production	of	CpeB	under	oxidative	stress	

conditions	(Ortiz	de	Orué	Lucana	et	al.,	2003).	FurS	contains	motifs	common	to	a	

number	of	redox‐active	proteins,	including	thioredoxin,	glutaredoxins	and	thiol‐

disulfide	oxidoreductases	(Groves	et	al.,	2010).	In	B. pseudomallei the	gene fur,	homolog	

of	the	ferric	uptake	regulator	gene	of	E. coli,	positively	regulates	the	activity	of	FeSOD	

and	peroxidase	(Loprasert	et	al.,	2000).	In	B. subtilis,	PerR	is	the	homologus	of	FurS	and	

it	controls	the	induction	of	specific	stress	proteins	in	response	to	H2O2	(Chen	et	al.,	1995;	

Bsat	et	al.,	1998).	The	metal	cofactor	of	PerR,	necessary	for	DNA	binding,	can	be	oxidized	

by	H2O2,	impairing	its	binding	ability	(Herbig	et	al.,	2001).	The	removal	of	PerR	

increases	the	synthesis	of	the	catalase	KatA,	the	alkyl	hydroperoxide	reductase	

AhpC/AhpF,	the	DNA‐	protecting	protein	MrgA,	the	haem	biosynthesis	proteins	(HemA,	

HemX,HemC,	HemD,	HemB	and	HemL),	the	iron‐uptake	regulator	Fur,	the	zinc‐uptake	

system	ZosA	and	PerR	itself	(Bsat	et	al.,	1996;	Helmann	et	al.,	2003).	OhrR repressor,	

instead,	is	involved	in	the	resistance	against	organic	peroxides	(Fuangthong	et	al.,	2001)	

and	no	specific	regulator	for	O2‐	has	been	found	in	B. subtilis.	O2‐	response	partially	

overlaps	to	the	H2O2	one,	although	an	additional	induction	of	genes	for	sulfur	
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assimilation	and	the	biosynthesis	of	cysteine	and	methionine	has	been	observed	

(Mostertz	et	al.,	2004).	

	

3.5.3 Hormetic behaviour of ROS 

As	many	toxins	and	compounds	with	a	hormetic	behaviour,	ROS	can	have	either	a	

detrimental	or	a	beneficial	effect	depending	on	the	concentration	(Lewis,	2008;	Pan.,	

2011).	According	to	the	hormetic	concept,	represented	as	an	inverted	U‐shaped	dose	

response	(Fig.	4),	low	doses	of	toxin	correspond	to	a	stimulation,	whereas	high	doses	of	

toxin	correspond	to	an	inhibition	(Southam	et	al.,	1943;	Calabrese	et	al.,	2011).	This	is	

possible	as	exposure	to	low	levels	of	toxin	or	stress	can	induce	adaptive	responses	

protecting	the	organism	(Cap	et	al.,	2012).	In	bacteria,	ROS	typically	have	a	hormetic	

behaviour,	with	important	consequences	in	the	sanitary	and	industrial	fields	for	the	

resistance	to	antimicrobials	(Marathe	et	al.,	2013),	as	well	as	for	the	possible	

environmental	repercussions	on	the	water	and	soil	microflora	exposed	to	low	(sub‐

lethal)	concentrations	of	oxidizing	agents	(Villa	et	al.,	2012b).	Despite	the	fact	that	

biocides	are	generally	used	at	high	concentrations	to	exert	their	killing	action,	

downstream	of	the	treated	area	there	is	likely	to	be	a	continuum	of	biocide	

concentration	ranging	from	the	treatment	concentration	to	nil	(Gilbert	et	al.,	2003).	

 

Figure 4. Dose-response curve of a toxin with a hormetic behaviour. At high 

concentration the response is inhibitory, while at low concentration the response is 

stimulatory.	
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Thus,	there	will	be	sub‐inhibitory	levels	of	biocide	along	this	concentration	gradient	in	

all	domestic,	health	care,	industrial	systems	(Mc	Cay	et	al.	2009),	as	well	as	in	soil	and	

water	compartments,	the	major	sink	for	toxic	compounds.	Here,	the	hormetic	response	

of	bacteria	can	trigger	the	activation	of	effective	defence	mechanisms	or	the	activation	of	

programmed	cell	death.	Indeed,	some	stress	factors	can	act	in	different	ways,	activating	

opposite	pathways,	according	to	the	level	of	oxidative	stress.	Moderate levels	of	stress	

trigger	the	activation	of	protective	mechanisms	through	a	complex	pathway	involving	

various	regulators	(Zhao	et	al.,	2014).	In	E. coli,	the	very	first	lesions	are	transmitted	to	

the	ROS‐generating	system	by	MazE/MazF,	a	toxin	/antitoxin	system:	MazF	cleaves	

many	cellular	RNAs	(Gerdes	et	al.,	2005),	which	thus	are	translated	into	truncated	

proteins,	in	turn	activating	the	Cpx	envelope	protein	stress	system	(Kohanski	et	al.,	

2008;	Dorsey‐Oresto	et	al.,	2013).	Cpx	allows	either	the	refolding	or	the	degradation	of	

misfolded	proteins	in	the	periplasm	(Raivio	et	al.,	2001)	and	triggers	the	expression	of	

YihE	(Pogliano	et	al.,	1997).	YihE	keeps	MazF	at	low	levels,	thus	reducing	the	

degradation	of	katG	mRNA	by	MazF	and	inhibiting	the	MazF‐mediated	•OH	

accumulation.	Low	levels	of	stress	lead	to	the	activation	of	protective	pathways	(Fig.	5,	

blue	arrows).	On	the	other	hand,	stress	could	be	so	high	and	persistent	to	exceed	a	point 

of no return	(Amitai	et	al.,	2004).	The	accumulation	of	misfolded	proteins	MazF	action	

forces	Cpx	to	interact	with	the	Arc	two‐component	system.	The	Arc	system	perturbs	

electron	transfer	complexes,	such	as	cytochrome	bd	oxidase	(Green	et	al.,	2004),	

increasing	ROS	levels	up	to	a	condition	of	lethal	oxidative	stress	(Fig.	5,	red	arrows).		

	

	

Figure 5. Different levels of stress trigger opposite responses, the MazE/MazF 

system. Adapted from Dorsey-Oresto et al. (2013). 
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Thus,	in	the	case	of	extreme	stress,	the	same	proteins	used	to	trigger	ROS	scavenging	

systems,	contribute	to	a	cascade	of	ROS	and	activate	a	programmed	cell	death	pathways,	

essential	to	reduce	the	risk	of	hypermutation	and	loss	of	genetic	integrity	(Zhao	et	al.,	

2014).	In	B. subtilis,	NdoA	plays	the	same	role	as	the	E. coli	MazE/MazF	(Wu	et	al.,	2011).	

	

4.	Biofilm	and	oxidative	stress	

 

A	tight	connection	between	biofilm	and	oxidative	stress	is	evident,	as	biofilm	is	an	

effective	defence	strategy	from	various	stresses,	included	oxidative	stress	(Landini,	

2009).	Though	the	mechanisms	connecting	ROS	scavenging	and	biofilm	still	need	to	be	

clarified	(Arce	Miranda	et	al.,	2011),	data	suggest	that	three	main	topic	are	central:	the	

existence	of	common	regulators,	the	production	of	polysaccharides	and	the	biofilm	

heterogeneity.	

 

4. 1 Common regulators and pathways  

A	first	evidence	of	the	tight	connection	between	oxidative	stress	and	biofilm	formation	is	

the	involvement,	in	both	processes,	of	the	general	stress	response	regulator	RpoS.	This	

protein	 up‐regulates	 cellular	 stress‐related	 genes	 in	 response	 to	 slow	 growth,	 both	 in	

stationary	phase	and	stress	conditions	(Hengge‐Aronis,	1999).	In	E. coli,	RpoS	is	activated	

also	in	response	to	oxidative	stress,	collaborating	in	scavenging	ROS	with	OxyR	and	SoxRS	

and	inducing	the	transcription	of	genes	involved	in	protection	from	oxidative	damage	(i.e.	

dspA,	katE	and	sodC)	(Patten	et	al.,	2004;	Schellhorn	et	al.,	1992).	In	addition,	RpoS	has	an	

essential	role	during	the	biofilm	growth,	as	it	controls	the	expression	of	almost	50%	of	

genes	 specifically	 induced	 by	 growth	 as	 a	 biofilm	 (Collet	 et	 al.,	 2008).	 Recent	 studies	

highlight	 a	 more	 complex	 picture	 where	 RpoS	 triggers	 the	 production	 of	 extracellular	

structures	 and	 biofilm	 formation	 only	 under	 conditions	 of	 limited	 nutrient	 availability	

(Sheldon	et	al.	2012;	Corona‐Izquierdo	et	al.,	2002).	OxyR	plays	the	opposite	role,	as	oxyR	

mutants	 exhibit	 increased	 autoaggregation	 and	 ability	 to	 form	 biofilms	 in	 minimal	



medium,	both	in	E. coli, B. pseudomallei	(Loprasert	et	al.,	2002)	and	P. chlororaphis	(Xie	et	

al.,	2013).	In	E.coli	the	process	is	mediated	by	the	de‐repression	of	agn43,	which	encodes	

the	 autotransporter	 protein	 Ag43	 and	 stimulates	 bacterial	 biofilm	 formation	 at	 the	

microcolony	stage	(Danese	et	al.,	2000).	 In	P. aeruginosa,	OxyR	probably	promotes	the	

dispersion	of	biofilm	bacteria	under	oxidative	stress,	as	the	oxidized	regulator	can	bind	

the	promoter	region	of	the	bacteriophage	Pf4	operon	and	bdlA,	a	biofilm	dispersion	locus	

(Wei	et	al.,	2012).	In	addition,	P. aeruginosa	OxyR	is	also	involved	in	the	expression	of	the	

QS	transcriptional	regulators	rsaL	and	mvfR	(Wei	et	al.,	2012).	Indeed,	QS systems	also	

connect	biofilm	formation	and	oxidative	stress	response.	 In	P. aeruginosa,	QS‐deficient	

mutants	(lasI,	rhlI	and	lasI	rhlI)	are	more	sensitive	to	oxidative	stress	because	of	the	lower	

expression	 of	 katA	 and	 sodA	 (Hassett	 et	 al.,	 1999).	 As	 QS	 enhance	 the	 oxidative	 stress	

response,	triggering	the	production	of	scavenging	enzymes,	cells	with	an	active	QS	system	

are	more	protected	from	oxidative	damage	and	will	be	selected	by	the	oxidative	stress	

pressure	 (García‐Contreras	 et	 al.,	 2014).	 In	 B. pseudomallei,	 DpsA	 has	 this	 double	 role	

(Lumjiaktase	 et	 al.,	 2006).	 DpsA	 is	 a	 protein	 that	 both	 bind	 DNA	 and	 sequester	 iron	

(Martinez	 et	 al.,	 1997)	 to	 protect	 DNA	 from	 damage	 by	 both	 acid	 and	 oxidative	 stress	

(Loprasert	et	al.,	2004).	At	the	same	time,	bpsRI	mutants,	unable	to	produce	the	quorum	

sensing	 molecules	 N‐octanoylhomoserine	 lactone	 (C8‐HSL)	 and	 N‐(3‐oxooctanoyl)	

homoserine	 lactone	 (3‐oxo‐	 C8‐HSL),	 show	 a	 reduced	 dpsA	 expression,	 thus	 a	 higher	

sensitivity	to	organic	hydroperoxides	(Lumjiaktase	et	al.,	2006).	Lumjiaktase	et	al.	(2006)	

also	hypothesized	that	the	control	of	the	oxidative	stress	response	through	QS	could	be	

useful	in	high‐density	cultures,	e.g.	biofilm	or	stationary	phase	cultures,	to	protect	DNA	

from	oxidative	damage.	Another	pathway	regulated	by	QS	is	the	production	of	phenazine,	

which	 generate	 ROS	 in	 other	 organisms	 and	 tissues,	 work	 as	 electron	 shuttle	 and	 are	

essential	 for	 long	 term	 survival	 under	 anaerobic	 conditions,	 e.g.	 in	 the	 inner	 part	 of	

biofilms	(Drago,	2009).	Phenazines	are	themselves	signals	capable	of	altering	patterns	of	

gene	expression	(Pierson	et	al.,	2010;	Dietrich	et	al.	2008),	as	it	has	been	observed	that	P. 

chloraphis	 mutant	 strains	 defective	 of	 phenazine	 cannot	 form	 biofilm	 (Maddula	 et	 al.,	

2006).	 Moreover,	 P. chlororaphis	 produces	 different	 ratios	 of	 various	 phenazine	

derivatives,	according	to	the	needs	of	 the	population,	as	each	derivative	has	particular	

characteristics.	 For	 example,	 it	 has	 been	 supposed	 that	 2‐hydroxy‐phenazine‐1‐

carboxylic	 acid	 (2OHPCA)	 may	 facilitate	 cellular	 adhesion,	 whereas	 phenazine‐1‐

carboxylic	 acid	 (PCA)	 may	 allow	 biofilm	 growth,	 as	 an	 electron	 shuttle	 within	 the	
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microaerophilic	 community	 (Pierson	 et	 al.,	 2010).	 The	 pseudomonas	 quinolone	 signal	

(PQS)	is	a	very	active	QS	signal	molecule	of	P. aeruginosa	(Pesci	et	al.,	1999),	which,	in	

iron‐rich	media,	induces	many	genes	associated	with	oxidative	stress	(Bredenbruch	et	al.,	

2006).	Interestingly,	PQS	has	both	beneficial	and	deleterious	effects.	On	the	one	hand,	PQS	

acts	 as	 a	 pro‐	oxidant	 that	 sensitizes	bacteria	 towards	 oxidative	stresses;	on	 the	 other	

hand,	 it	 efficiently	 induces	 a	 protective	 anti‐oxidative	 stress	 response,	 reducing	 the	

intracellular	levels	of	ROS.	This	could	be	a	strategy	to	better	respond	to	environmental	

stress	 (Häussler	 et	 al.,	 2008).	 Also	 PQS	 promotes	 the	 autolysis	 at	 high	 cell	 population	

densities	under	stressful	conditions	(Allesen‐Holm	et	al.,	2006),	balancing	viability	and	

cell	 death	 to	 better	 utilize	 available	 resources	 (e.g.,	 eDNA	 for	 matrix)	 (Williams	 et	 al.,	

2009).		

	

4.2 Polysaccharides production  

EPS	production	is	very	expensive	in	terms	of	metabolic	energy	(Landini,	2009).	

Nevertheless,	the	presence	of	a	matrix	is	so	advantageous	for	bacteria	to	be	the	trait	that	

marks	bench	and	environmental	biofilms.	EPS	production	pathway	is	inevitably	

connected	to	the	environmental	stress	sensors,	to	be	activated	with	a	perfect	timing	and	

according	to	the	external	conditions.	Among	EPS	components,	polysaccharides	seem	to	

be	often	involved	in	the	oxidative	stress	response.	Indeed,	chitosan	and	alginate	are	able	

to	scavenge	the	hydroxyl	radicals	(•OH),	inhibiting	the	lipid	and	protein	peroxidation	

(Tomida	et	al.,	2010).	P. aeruginosa	produces	alginate	in	response	to	H2O2	(Mathee	et	

al.,	1999),	produced	by	macrophages	and	neutrophils	for	pathogen	killing	and	also	

released	during	the	hypersensitive	response	plant	defence	system	(Hay	et	al.,	2014).	The	

network	regulating	its	production	(also	studied	in	A.vinelandii,	part	I,	chapter	2.3.1)	is	

controlled	through	the	cross‐talk	between	different	regulators,	but	the	mechanisms	

behind	the	specific	environmental	cues	that	induce	alginate	production	remain	unclear	

(Hay	et	al.,	2014).	Another	relevant	example	is	the	production	of	colanic acid	of	E. coli	

biofilm,	promoted	by	the	GGDEF	protein	YddV,	under	the	regulation	of	rpoS.	YddV	

induce	genes	for	this	polysaccharide	synthesis	and	membrane‐associated	genes,	thus	

promoting	cell	aggregation	and	EPS	production	via	its	diguanylate	cyclase	activity	

(Méndez‐Ortiz	et	al.,	2006),	but	also	genes	in	response	to	oxidative	and	nutritional	

stresses	(Landini,	2009).	Another	aspect	to	consider	is	that	cells	subjected	to	exogenous	



oxidative	stress	try	to	decrease	their	metabolism	to	limit	ROS	production.	This	is	the	

case	of	B. pseudomallei	succinyl‐coA:3‐ketoacid‐coenzyme	A	transferase	(SCOT)	enzyme,	

which	is	down‐regulated	upon	oxidative	stress	to	avoid	ROS	production	and,	instead,	

leads	to	the	accumulation	of	poly‐hydroxybutyrate	(PHB)	inside	cells	as	storage	

molecule	(Chutoam	et	al.,	2013).		

	

4.3 Biofilm heterogeneity 

Biofilm	represents	a	very	heterogeneous	environment	both	spatially	and	temporally,	

enclosing	many	microenvironments	with	different	characteristics,	in	a	continuous	

changing	flux	of	chemical	gradients,	influenced	by	the	metabolism	of	resident	bacteria,	

by	the	transport	limitation	(Teal	et	al.,	2006)	and	by	the	aging	of	the	biofilm	(Saint‐Ruf	

et	al.,	2014).	According	to	the	individualist	model	(part	I,	chapter	2.1),	every	single	cell	

forming	a	biofilm	responds	in	an	individual	and	unique	way	to	environmental	changes	

(Monds	et	al.,	2009;	part	I,	chapter	2.1).	Thus,	in	every	microenvironment,	the	local	

conditions	trigger	a	dishomogeneous	response	in	bacteria	and	select	for	more	favorable	

phenotypes	variants.	Thus,	phenotypes	variants	would	arise	from	both	stochastic	gene	

expression	and	genetic	variation	(mutation	and	genetic	rearrangements)	(Stewart	et	al.,	

2008).	Oxidative	stress	is	one	of	the	main	sources	of	heterogeneity	in	many	bacterial	

species	(Saint‐Ruf	et	al.,	2014).	In	E. coli,	preincubation	of	cells	with	paraquat,	a	redox	

cycling	agent	(i.e.	a	compound	able	to	produce	ROS	changing	its	oxidative	state),	induces	

SoxRS,	which	in	turn	determines	the	occurrence	of	several	phenotypic	variants	able	to	

survive	to	fluoroquinolone	antibiotics	(Wu	et	al.,	2012).	Exposure	of	Staphylococcus	

aureus	to	sub‐lethal	concentrations	of	hydrogen	peroxide	leads	to	the	adaptations	to	

oxidative	stress	of	a	sub‐population	of	small‐colony	variants	with	enhanced	catalase	

production	via	a	mutagenic	DNA	repair	pathway	that	included	DNA	double‐strand	break	

(DSBs)	repair	system	(Painter	et	al.,	2015).	In	P. aeruginosa	biofilm,	oxidative	stress	

triggers	the	activation	of	DNA	repair	system,	included	the	mutagenic	double	strand	

breaks	(DSBs),	resulting	in	higher	phenotypic	diversity	(Boles	et	al.,	2008).	Thus,	the	

presence	of	subpopulations	within	a	bacterial	community,	distinctive	at	phenotypic	

level,	appears	to	be	a	quite	common	occurrence	and	might	even	be	considered	as	an	

evolutionary	strategy	to	withstand	environmental	stresses.	
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5.	Aim	of	the	project	and	main	results	

The	role	of	oxidative	stress	in	bacterial	biofilms	is	a	topic	of	outstanding	importance	as	it	

has	consequences	in	sanitary,	industrial	and	environmental	fields.	The	comprehension	

of	mechanisms	regulating	biofilm	in	response	to	oxidative	stress	may	shed	light	on	the	

determinants	required	by	bacteria	to	colonize	hostile	habitats	and	on	the	molecular	

strategies	to	sense	environmental	cues	and	adapt	accordingly.	My	PhD	thesis	has	aimed	

to	study	the	planktonic	and	the	biofilm	responses	to	exogenously	(e.g.	nanoparticles	and	

phenazine	methosulfate)	and	endogenously	(interruption	of	genes	coding	for	proteins	

involved	in	maintaining	the	redox	homeostasis)	induced	oxidative	stress	in	term	of	

dynamic	of	growth,	biofilm	architecture,	EPS	composition,	extracellular	and	intracellular	

reactive	oxygen	species	(ROS)	level	and	expressed	proteins.		

In	the	manuscript	by	Villa et al. (2012)	(part	II,	chapter	I),	the	biofilm	of	the	

rhizosphere	bacterium	A. vinelandii	was	challenged	with	endogenous	sub‐lethal	

oxidative	stress.	To	this	aim,	we	used	the	mutant	strain	MV474,	which	has	a	deletion	in	

the	gene	encoding	for	the	rhodanese‐like	protein	RhdA	involved	in	the	redox	balance	in	

planktonic	A. vinelandii	cells	(Remelli	et	al.,	2011).	During	biofilm	growth,	chronic	

endogenous	oxidative	events	in	the	MV474	strain	generated	a	stress	condition	to	which	

the	bacterium	responded	by	adopting	the	biofilm	lifestyle	more	efficiently	than	the	wild	

type	strain.	The	same	effect	resulted	from	the	addition	of	an	exogenous	source	of	

oxidative	stress,	e.g.	the	superoxide	generator	phenazine	methosulhate	(PMS).	Collected	

data	suggested	a	sensitive	growth	stage	in	biofilm	development,	corresponding	to	the	

early	stage	of	biofilm	formation.	Likely,	the	elevated	oxidative	stress	level	observed	in	

the	most	vulnerable	biofilm	growth	step,	the	early	stage,	might	provide	the	selective	

pressure	to	increase	the	biofilm	forming	capacity	of	MV474.	As	the	biofilm	reached	the	

mature	phase,	a	reduced	metabolic	activity	and	enhanced	redox	buffering	properties	

may	avoid	stress	inducers,	providing	an	explanation	for	the	low	level	of	ROS	and	the	

higher	activity	of	scavenging	enzymes	detected	in	the	MV474	biofilm.	In	addition,	

oxidative	stress	triggered	both	swimming	and	swarming	motility	and	affected	the	



composition	of	the	EPS,	producing	a	polysaccharide‐	rich	extracellular	polymeric	matrix	

in	MV474,	which	was	more	resistant	to	H2O2	than	the	wild	type.	Thus,	the	inactivation	of	

rhodanese	RhdA	acted	as	continuous	endogenous	oxidative	stress	generator	that	

promoted	the	social	behaviour	orchestrating	biofilm	genesis,	the	activity	of	ROS‐

scavenging	systems	and	the	switch	between	swarming	and	biofilm‐like	phenotypes.	

In	the	attached	manuscript	by	Gambino et al. (2015)	(part	II,	chapter	II),	silver	

nanoparticles	(Ag‐NPs)	were	chosen	as	a	source	of	exogenous	oxidative	stress	to	

challenge	A. vinelandii	and	B. subtilis,	used	as	representatives	of	rhizosphere	bacteria	

With	the	constantly	growing	utilization	of	Ag‐NPs	in	commercially	available	products,	

NP	dispersal	raises	concern	about	the	possible	repercussion	on	the	environment.	Ag‐

NPs,	already	at	0.1	mg/l,	i.e.,	at	a	concentration	close	to	the	proposed	“no	effect	

concentration”,	affected	the	planktonic	growth	of	A. vinelandii,	reducing	both	its	growth	

rate	and	the	amount	of	culture	biomass.	In	contrast,	growth	of	the	Gram‐positive	B. 

subtilis	was	only	affected	at	10	mg/l.	Our	observation	suggested	that,	already	at	

concentrations	thought	to	be	devoid	of	biological	activity,	Ag‐NPs	could	have	

consequences	on	the	composition	of	rhizosphere	microbial	community	by	affecting	

growth	of	specific	bacteria.	At	higher,	yet	sub‐lethal,	concentrations	(i.e.	10	mg/l),	Ag‐

NPs	entered	B. subtilis	cells	grown	in	liquid	cultures	and	accumulate	in	their	cytoplasm,	

triggering	ROS	formation.	However,	a	more	complex	picture	emerges	from	exposure	to	

Ag‐NPs	of	B. subtilis	colony	biofilms,	a	condition	more	likely	to	resemble	bacterial	

growth	and	physiology	in	the	soil	environment.	Despite	showing	some	reduction	in	

initial	growth	rate,	fully	overcome	in	the	later	stages	of	biofilm	development,	10	mg/l	

Ag‐NPs	failed	to	trigger	ROS	formation,	either	in	the	biofilm	matrix	or	inside	the	biofilm	

cells.	However,	exposure	to	10	mg/l	Ag‐NPs	strongly	induced	polysaccharide	production	

in	the	biofilm	matrix,	suggesting	that	the	ATP	consumption	required	by	this	process	

might	be	responsible	for	reduced	growth	rate	in	the	presence	of	Ag‐NPs	in	the	earlier	

stages	of	biofilm	formation.	In	addition	to	the	buffering	effect	of	the	polysaccharide	

matrix,	reduction	in	ROS	levels	in	biofilm	cells	might	suggest	that,	at	the	concentrations	

tested,	Ag‐NPs	might	trigger	an	adaptive	response	to	oxidation	stress.	To	verify	this	

hypothesis,	we	carried	out	a	proteomic	analysis	in	B. subtilis	biofilm	either	in	the	

presence	or	in	the	absence	of	10	mg/l	Ag‐NPs.	Our	proteomic	analysis	allowed	us	to	

identify	cellular	processes	induced	in	response	to	Ag‐NP	treatment	of	B. subtilis	biofilm,	

namely,	stress	responses	(included	oxidative	stress)	and	quorum	sensing,	leading	to	a	
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more	efficient	detoxification	and	removal	of	ROS,	as	observed,	and	maybe	to	the	

induction	of	quorum	sensing,	thus	affecting	gene	expression	at	large	in	B. subtilis	

biofilms.	Finally,	our	results	seemed	to	suggest	that	sub‐lethal	doses	of	Ag‐NPs	might	

exert	a	positive	effect	on	PGP	activity	by	B. subtilis.	Altogether,	we	showed	that	Ag‐NPs	

at	sub‐inhibitory	concentrations	affects	pivotal	cellular	processes	such	as	stress	

responses,	quorum	sensing	and	PGP	activities.	This	is	a	good	example	of	how	exogenous	

sources	of	oxidative	stress	could	re‐direct	cellular	processes	and	gene	expression,	but	

also	be	toxic	in	a	selective	way	on	some	bacterial	species,	thus	exerting	a	strong	impact	

on	soil	bacterial	communities.	

The	results	are	summarized	in	the	part	III,	chapter	I	are	still	unpublished,	and	focus	on	

the	response	to	oxidative	stress	in	biofilms	of	B. thailandensis,	a	soil	bacterium	and	a	

pathogen	of	invertebrates.	We	challenged	B. thailandensis	biofilms	with	PMS	and	

evaluated	oxidative	stress	using	a	set	of	microbiological	and	biochemical	assays.	

Monitoring	of	ROS	revealed	that	the	early	stages	of	biofilm	formation	are	characterized	

by	strong	induction	of	oxidative	stress,	which	decreases	as	the	biofilm	reaches	the	

mature	phase.	Surprisingly,	in	the	presence	of	PMS,	we	observed	reduced	production	of	

ROS	and	lower	oxidative	stress	than	in	its	absence.	However,	PMS	affected	biofilm	

morphology	and	triggered	the	production	of	a	matrix	richer	in	polysaccharides.	To	

investigate	which	enzymes	might	be	involved	in	buffering	oxidative	stress,	we	deleted	

sodC,	encoding	for	the	periplasmic	superoxide	dismutase,	possibly	involved	in	defense	

against	exogenous	sources	of	oxidative	stress.	To	this	aim,	a	Gateway	compatible	allelic	

exchange	system	based	on	the	counter‐selectable	pheS	gene	was	used.	Deletion	of	sodC	

led	to	the	higher	accumulation	of	polysaccharides	in	the	EPS,	confirming	that	oxidative	

stress,	both	exogenous	and	endogenous,	triggers	the	production	of	polysaccharides	in	

the	matrix,	as	already	observed	in	A. vinelandii	and	B. subtilis.	Interestingly,	however,	the	

exposure	of	the	mutant	strain	to	PMS	did	not	cause	a	further	accumulation	of	

polysaccharides	in	the	matrix.	In	conclusion,	the	connection	between	polysaccharides	

production	and	sub‐lethal	oxidative	stress,	both	endogenously	and	exogenously	induced,	

is	strong,	though	the	mechanism	remain	unidentified.	We	have	planned	transcriptomic	

experiments	to	gather	more	information	on	the	response	mechanisms	to	oxidative	

stress	in	B. thailandensis.		

The	deletion	method	utilized	in	my	study	was	partly	developed	with	my	contribution	

during	my	stay	at	the	Costerton	Biofilm	Center	of	the	University	of	Copenhagen	(03/02	–	



10/04/2014).	The	method	was	set	up	in	B. cenocepacia 	and	is	applicable	to	other	

Burkholderia	species,	and	its	description	has	recently	been	published	in	a	manuscript	

with	me	as	co‐author	(part	II,	chapter	III).	

	

6.	Conclusions	and	future	prospects	

All	the	data	presented	in	this	thesis	clearly	highlight	and	reiterate	the	importance	of	the	

biofilm	matrix	production	as	a	common	mechanism	of	defence	to	oxidative	stress,	

triggered	both	by	sub‐lethal	doses	of	exogenous	and	endogenous	sources.	Pathways	

leading	to	EPS	production	are	likely	to	be	connected	with	the	main	regulators	of	the	

oxidative	stress	response.	The	explanation	of	this	pathway	could	be	the	key	to	

understanding	which	mechanisms	lead	to	the	colonization	of	certain	habitats	of	

ecological	end	economic	interest.	In	the	future,	it	could	also	be	possible	to	use	oxidative	

stress	in	a	controlled	way	to	trigger	biofilm	formation	and	dispersal.	
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ABSTRACT 15 

This work reported how chronic sub-lethal oxidative stress affected biofilm genesis and 16 

characteristics of the model bacterium Azotobacter vinelandii. To get a continuous source 17 

of reactive oxygen species, a strain exposed to chronic sub-lethal oxidative stress as 18 

deprived of the gene coding for the antioxidant rhodanese-like protein RhdA (MV474) was 19 

employed. In this research MV474 biofilm showed i) seven-fold higher growth rate, ii) 20 

induction of catalase and alkyl-hydroxyl-peroxidase enzymes, iii) higher average 21 

thicknesses due to increased production of a polysaccharide-rich extracellular matrix and 22 

iv) minor susceptibility to hydrogen peroxide than the wild-type strain (UW136). MV474 23 

had a 10-fold and 6-fold increased swimming and swarming activity respectively when 24 

compared with UW136. In addition, the level of oxidative stress in the MV474 swarming 25 

colony was higher compared to that of UW136, with cells in the center experiencing the 26 

highest one. Overall, chronic sub-lethal oxidative events promote the sessile behavior in 27 

Azotobacter vinelandii. 28 

 29 

 30 

Keywords: oxidizing biocides; chronic sub-lethal oxidative stress; biofilm; Azotobacter 31 

vinelandii 32 

 33 
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INTRODUCTION 35 

Despite extensive research efforts, past and present treatment regimes to control 36 

unwanted effects of biofilms has focused on the employment of biocides (Bridier et al. 37 

2011). Oxidizing agents, such as hydrogen peroxide, are increasingly used in a number of 38 

medical, food and industrial applications due to their broad spectrum activities, the lack of 39 

environmental toxicity following their complete degradation and their inexpensiveness 40 

(Linley et al. 2012). Oxidizing biocide formulations are widely used for wounds irrigation, 41 

topical medication, surfaces and facilities disinfection, packaging sterilization, water and 42 

wastewater treatments (Shintani 2009; Bridier et al. 2011; Linley et al. 2012; Morgenthau 43 

et al. 2012). In addition, biocidal active substances are incorporated within a multitude of 44 

consumer products, as ingredients used in personal care and household products, 45 

together with pharmaceuticals (Gilbert and McBain 2003; Hahn et al. 2010).  46 

Oxidizing biocides induce the production and/or accumulation of reactive oxygen species 47 

(ROS). However, there is accumulating evidence suggesting that many non-oxidizing 48 

biocides and antibiotics with different sites of action rely, in part, on the elevation in ROS 49 

that they elicit (Zuber 2009; Kuczyńska-Wiśnik et al. 2010). 50 

Despite the fact that biocides are generally used at high concentrations to exert the killing 51 

action, downstream of the treated area there is likely to be a continuum of biocide 52 

concentration ranging from treatment concentration to nil (Gilbert and McBain 2003). Thus, 53 

there will be sub-inhibitory levels of biocide at some point along this concentration gradient 54 

in all domestic, health care and industrial systems (Mc Cay et al. 2010). In addition, as 55 

biocides are used in such large volumes, sooner or later they can be found in natural 56 

environments at low (sub-lethal) concentrations leading to a continuous exposure of water 57 

and soil microflora (Scenihr 2010). 58 

Thus, the large scale release of these agents by human activities has added a chronic 59 

sub-lethal oxidative stress to the bacterial populations, but their response is for most part 60 
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unknown. This is an important gap to fill as might result in a reconsideration of the 61 

unexpected, and therefore unexplored, effects of low level of biocides on bacterial biofilm 62 

formation in both natural and engineered ecosystems to predict their impacts and 63 

successful treatment outcomes.  64 

The present study was designed to explore the effects of chronic sub-lethal oxidative 65 

stress on bacterial biofilm genesis and characteristics. To address in more detail the 66 

impact on the natural environment, the soil bacterium Azotobacter vinelandii was used as 67 

model system. In the attempts to generate a continuous source of ROS, the target gene 68 

rhdA coding for the rhodanese-like protein RhdA, was disrupted by deletion generating a 69 

strain exposed to chronic sub-lethal oxidative stress (Cereda et al. 2007, 2009; Remelli et 70 

al. 2010; Cartini et al. 2011). The picture emerged from recent studies indicates that RhdA 71 

(thiosulfate:cyanide sulfurtransferase, E.C. 2.8.1.1, catalyzing in vitro the transfer of a 72 

sulfane sulfur atom from thiosulfate to cyanide) displays further activities other than 73 

detoxification, playing a key role in maintaining the cellular redox balance in planktonic 74 

cells (Cereda et al. 2009; Remelli et al. 2010). Although Remelli et al. (2010) highlighted 75 

the potential of RhdA to sustain oxidative imbalance in A. vinelandii planktonic cells, no 76 

RhdA studies have focused on surface-associated growth model. Thus, using A. vinelandii 77 

oxidant sensitive strain, we also provided insights into the connection between stress-78 

inducible biofilm formation and rhodanese-like proteins orthologous to RhdA. 79 

 80 

MATERIALS AND METHODS 81 

Bacterial strains and growth conditions. The A. vinelandii strains used in this study 82 

were the wild type strain UW136 and the strain MV474, in which the rhdA gene was 83 

disrupted by deletion (Colnaghi et al. 1996), that is exposed to chronic sub-lethal oxidative 84 

stress. The microorganisms were maintained at -80 °C in suspensions containing 20% 85 
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glycerol and 2% peptone, and were grown aerobically in Burk’s medium supplemented 86 

with 1% sucrose and 15 mM ammonium acetate (BSN medium) for 30 h at 30°C. 87 

 88 

Biofilm formation and quantification. Considering the ecological role of A. vinelandii, 89 

living in habitats such as soil, where water availability is influenced by the solute and 90 

matric potentials (Chang and Halverson 2003), the colony-biofilm culturing system to 91 

reproduce at lab-scale subaerial biofilm was selected. Colony biofilms of both A. vinelandii 92 

strains were prepared following the method reported by Anderl et al. (2000). Briefly, 50 µl 93 

cell suspension containing 7.5 x 105 cells were used to inoculate sterile black 94 

polycarbonate filter membranes (0.22 µm pore size and 25 mm diameter, Millipore) resting 95 

on agar BSN culture medium. The plates were inverted and incubated at 30°C for 14 days, 96 

with the membrane-supported biofilm transferred to fresh culture medium every 48 h. 97 

Membranes were collected at 4, 6, 8, 11 and 14 days and transferred to 10 ml glass test 98 

tubes pre-filled with 5 ml sterile phosphate buffered saline (PBS, 10 mM phosphate buffer, 99 

0.3 M NaCl pH 7.4 at 25 °C, Sigma-Aldrich). The colony biofilms were vortexed vigorously 100 

for 1 min to separate the cells from the membrane. In order to break apart clumps of cells, 101 

two cycles of 30 s at 20% power sonication (Branson 3510, Branson Ultrasonic 102 

Corporation, Dunburry, CT) followed by 30 s vortex mixing were applied. The resulting cell 103 

suspensions were serially diluted, plated on plate count agar (PCA, Sigma Aldrich), 104 

incubated 36 h at 30°C and colony forming units (CFU) per membrane were enumerated 105 

using the drop-plate method (Herigstad et al. 2001). The specific growth rate of bacteria in 106 

colony biofilms was estimated from the CFU data vs. time (h) by the Gompertz model 107 

(Zwietering et al. 1990) using the GraphPad Prism software (version 5.0, San Diego, CA, 108 

USA). Experiments were performed in triplicate.  109 

 110 
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Level of oxidative stress. The level of oxidative stress in UW136 and MV474 biofilms 111 

was determined by using 2',7'-dichlorofluorescein diacetate (H2DCFDA) assay according 112 

to Jakubowski et al. (2000). The fluorescence of the supernatant was measured using the 113 

fluorometer VICTOR™ X Multilabel Plate Readers (Perkin Elmer), excitation 490 nm and 114 

emission 519 nm. The emission values were normalized by the protein concentration. 115 

Experiments were conducted in triplicates. 116 

 117 

Enzymatic activities. Biofilm biomass was collected at 4, 6, 8, 11 and 14 days and 118 

transferred into a glass test tubes pre-filled with 2 ml lysing buffer (10 mM Tris-HCl, 100 119 

mM NaCl, pH 8). Cell-free extracts of UW136 and MV474 biofilms were obtained by 120 

sonication (six 30-s sonication cycles followed by 1 min cooling periods, all on ice, in 121 

Sonoplus UW-2070), and cell debris was removed by centrifugation for 15 min at 10,000 x 122 

g. The protein concentration was determined by the Bradford assay (Bradford 1976) using 123 

bovine serum albumin as a standard.  124 

Thiosulfate:cyanide sulfurtransferase (TST) activity was tested by the discontinuous 125 

method described by Sörbo (1953) that quantifies the product, thiocyanate, based on the 126 

absorption of the ferric thiocyanate complex. One unit of TST activity is defined as the 127 

amount of enzyme that produces 1 µmol thiocyanate per minute at 37°C.  128 

Catalase activity was determined in cell-free cultures as described by Cereda et al. (2009) 129 

in which the disappearance of peroxide is followed spectrophotometrically at 240 nm. One 130 

unit of catalase activity is defined as the amount of enzyme that decomposes 1 µmol of 131 

H2O2 per min at 37 °C. 132 

Aconitase activity was tested by using cell-free extracts anaerobically prepared  following 133 

the formation of cis-aconitate from citrate at 240 nm at 30 °C (Cereda et al. 2007). One 134 

unit was defined as the amount of enzyme necessary to produce 1 µmol of cis-aconitate 135 

per minute (ε240 nm = 3.6 mM-1 x cm-1).  136 
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All the experiments were performed in triplicate.  137 

 138 

Expression analysis of alkyl hydroperoxide reductase gene (ahpC) using RT-PCR. 139 

Biofilm biomass was collected at 4, 6, 8 and 14 days and total RNA was isolated using the 140 

RNeasy minikit (QIAGEN) according to the manufacturer’s protocols. Reverse transcription 141 

was performed on 1,200 ng of total RNA, using RevertAid™ H Minus First Strand cDNA 142 

Synthesis Kit (Fermentas Int. Inc., Italy) and random hexamer primer. Quantitative real-143 

time PCR was performed as previously described by Remelli et al. (2010). Negative 144 

controls were performed with 2 ng non-reverse transcribed RNA as a template, and in the 145 

absence of a template. In positive controls, genomic DNA was used as a template. Data 146 

were elaborated according to Livak and Schmittgen (2001) using 16S rRNA as a 147 

reference. Relative expression levels were obtained by normalizing the ahpC transcript 148 

levels to that of the UW136 at day 4 (that was assigned a value of 1). 149 

 150 

SDS polyacrylamide gel electrophoresis and immunoblotting. Biofilm biomass was 151 

collected at 4, 6 and 14 days. Denaturing gel electrophoresis (SDS-PAGE) was done 152 

according to Laemmli (1970) by using the whole cell lysates obtained by heat denaturation 153 

of cellular pellets in Laemmli buffer containing 0.35 M β-mercaptoethanol. Western blot 154 

analyses were carried out by a standard protocol using anti-RhdA antiserum (Remelli et al. 155 

2010). Red Ponceau S-stained blotted membranes, and immunolabeled membranes were 156 

digitized with an Expression 1680 Pro scanner (Epson Italia S.p.A., Milan, Italy). 157 

 158 

Extraction and characterization of the extracellular polymeric substances (EPS). 159 

Approximately 0.4 g of 14-days old biofilm biomass of both wild-type and oxidant sensitive 160 

strains were collected and resuspended in 2 ml 2% ethylenediaminetetraacetic acid 161 

(EDTA, Sigma Aldrich, Italy). Biofilm cell suspensions were shaken at 300 rpm for 3 h at 162 
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4°C. After incubation, the samples were centrifuged for 20 min, 8,000 x g at 4°C and the 163 

supernatant filtered through 0.2 µm polyethersulfone membranes (S623; Whatman, 164 

Florhan Park, NJ). Then, one half of the eluate was used for quantification of proteins and 165 

carbohydrates and cell lysis analysis, while the second half was used for extracellular DNA 166 

(eDNA) precipitation by the cetyltrimethylammonium bromide (CTAB)-DNA method as 167 

described by Corinaldesi et al. (2005). The method of Bradford (1976) was applied for 168 

analyzing protein concentrations, whereas the optimized microplate phenol–sulfuric acid 169 

assay was applied for carbohydrate determination (Masuko et al. 2005) using glucose as 170 

the standard. The results obtained were normalized by the weight of the wet biofilm 171 

biomass. Experiments were performed in triplicate. 172 

 173 

Biofilm cryosectioning, staining and microscopic examination. Fourteen days-old 174 

colony biofilms were covered carefully with a layer of Killik (Bio Optica, Italy) and placed on 175 

dry ice until completely frozen. Frozen samples were sectioned at -19°C using a Leitz 176 

1720 digital cryostat (Leica, Italy). The 10-µm thick cryosections were mounted on slide 177 

glasses treated with Vectabond (Vector laboratories, Italy), a non-protein tissue section 178 

adhesive. The lectin Concanavalin A-Texas Red conjugate (ConA, Invitrogen, Italy) was 179 

used to visualize the polysaccharide component of EPS, whereas Syto 9 green fluorescent 180 

nucleic acid stain (Invitrogen, Italy) was used to display biofilm cells. Biofilm sections were 181 

incubated with 200 µg µl-1 ConA and 5 mM Sito-9 (Invitrogen) dye solution in PBS at room 182 

temperature in the dark for 30 min and then rinsed with PBS. Biofilm sections were 183 

visualized using a Leica TCSNT confocal laser scanning microscope with excitation at 488 184 

nm, and emission ≥ 530 nm. Images were captured with a 10X/NA 0.45 dry lens objective 185 

and analyzed with the software Imaris (Bitplane Scientific Software, Zurich, Switzerland). 186 

The sections were also examined by fluorescence microscopy using Leica DM 4000 B 187 
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microscope at a magnification of 100X and biofilm thickness measured as reported by Villa 188 

et al. (2011).  189 

 190 

Biofilm susceptibility assay. A volume of 2-chlorobenzoic acid and hydrogen peroxide 191 

stock solutions was added to molten culture medium BSN to create a biocide-amended 192 

agar for biofilm experiments. The final biocide concentration in biofilm assays were 6 mM 193 

2-chlorobenzoic acid and 4.5 mM hydrogen peroxide. Six-days old and 14-days old 194 

biofilms of both strains were aseptically transferred to either biocide-containing agar or a 195 

control plate where they were incubated for an additional 16 h at room temperature. After 196 

this time, biofilm biomass was collected, physically disaggregated, serially diluted and 197 

plated on PCA as reported above. Antimicrobial efficacy was expressed as log10 microbial 198 

survival. The log10 reduction was calculated relative to the cell count in the control samples 199 

without biocides. All antimicrobial experiments were conducted in triplicate.  200 

 201 

Motility assay and level of oxidative stress in swarming colonies. The swimming 202 

motility plates were prepared with 10 g l-1 tryptone, 5 g l-1 NaCl and 0.3% (wt/vol) agarose. 203 

Swim plates were incubated at 30 °C for 24 h. Swarming media consisted of 0.5% (wt/vol) 204 

Bacto-agar with 8 g l-1 Difco nutrient broth, to which 5 g l-1 glucose was added. Both swarm 205 

and swim plates were allowed to dry at room temperature for 4 h before being used. Plates 206 

were inoculated with a 5 µl of a 28 h-old culture of both strains in BSN, onto the top of the 207 

agar and incubated at 30 °C for 48 h. Results were expressed as the diameter (mm) of the 208 

area of observed motility at the agar surface.  209 

Cells localized in both the center of swarming colonies and the tip of swarming colony 210 

migrating front were harvested using an inoculation loop and transferred into 50 mM 211 

sodium phosphate buffer pH 7.4. Levels of oxidative stress were measured as previously 212 
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described for UW136 and MV474 biofilms. The results obtained were normalized by the 213 

weight of the collected biomass. All the experiments were performed in triplicate. 214 

 215 

Statistical analysis. T-test or analysis of variance (ANOVA) via a software run in 216 

MATLAB environment (Version 7.0, The MathWorks Inc, Natick, USA) were applied to 217 

statistically evaluate any significant differences among the samples. Tukey’s honestly 218 

significant different test (HSD) was used for pairwise comparison to determine the 219 

significance of the data. Statistically significant results were depicted by p-values < 0.05.  220 

 221 

RESULTS 222 

Chronic sub-lethal oxidative stress increases A. vinelandii biofilm formation.  223 

MV474 biofilm grew about seven-fold faster than the wild-type strain (Growth rateUW136: 224 

5.10 x 106 ± 2.87 x 105 CFU h-1; Growth rateMV474: 3.46 x 107 ± 4.34 x 106 CFU h-1) (Figure 225 

1a). Biofilm biomass raised significantly in MV474 after day 4, reaching a plateau at day 226 

11. MV474 retains only a residual TST activity (about 17%) with respect to that revealed in 227 

UW136 (Figure 1b). The residual TST activity was not correlated with the presence of 228 

RhdA in MV474 (Figure 1c). The TST activity in UW136 increased during the initial stages 229 

of biofilm development, reaching a maximum level at day 6, then decreased and remained 230 

steady during biofilm maturation. Western blot analysis demonstrated that the TST activity 231 

of UW136 is assignable to the expressed RhdA (Figure 1c). 232 

In both UW136 and MV474, the level of endogenously generated oxidative stress was 233 

found to progressively decrease over time, reaching minimum levels in mature biofilm 234 

(Figure 2a). Interestingly, MV474 exhibited a peak at day 4 (two-fold increase level 235 

compared with UW136), followed by a dramatic decline at day 6. The oxidative stress 236 

levels in both UW136 and MV474 remained steady and comparable after day 8.  237 
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The levels of catalase activity were higher in MV474 biofilm than in UW136 biofilm. 238 

However, the enzyme activity decreased over time in MV474 while it was constant 239 

throughout the UW136 biofilm development (Figure 2b). 240 

Expression analysis of ahpC gene revealed that at day 4 the level of ahpC transcript in 241 

MV474 was approximately seven-fold higher than in UW136 (Figure 2c). During biofilm 242 

growth ahpC gene expression in MV474 biofilm decreased over time in line with oxidative 243 

events previously observed. By contrast, the modulation of ahpC transcript occurred in A. 244 

vinelandii wild-type biofilm showed an opposite trend. The ahpC transcript in UW136 245 

biofilm was greatly induced after 6 days, when compared with the gene transcriptional 246 

level observed in MV474 biofilm (Figure 2c). 247 

Aconitase activity was overall higher in MV474biofilm that in the wild-type biofilm, and it 248 

decreased over time (Figure 2d). In the case of UW136, levels of aconitase activity were 249 

kept constant throughout the biofilm development. 250 

 251 

The biofilm grown under chronic sub-lethal oxidative stress exhibits a 252 

polysaccharide-rich extracellular polymeric matrix. 253 

The polysaccharide/protein ratios of the wild type strain and the oxidant sensitive strain 254 

biofilms were 0.84 mg g-1
biomass and 4.25 mg g-1

biomass respectively (Figure 3). Thus, the 255 

MV474 biofilm had a considerably higher polysaccharide content, whereas the UW136 256 

biofilm produced an equal amount of proteins and carbohydrates. No statistically 257 

significant difference in the eDNA content between UW136 and MV474 was observed. 258 

 259 

The strain exposed to chronic sub-lethal oxidative stress forms a thick biofilm at the 260 

solid/air interface.  261 

The fluorescently-labelled ConA, mainly accumulated inside the cell-free void of mature 262 

microcolonies, demonstrated the presence of the EPS fraction confined in the central part 263 
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of the biofilm and the growth of a subaerial biofilm. In addition, MV474 strain synthesized a 264 

polysaccharide-richer matrix (Figure 4).  265 

Images captured from frozen sections showed that MV474 and UW136 biofilm retained 266 

similar morphological patterns. Interestingly, A. vinelandii subaerial biofilms showed a 267 

more patchy architecture with empty holes at the bottom of the structure close to the solid 268 

surface. Cryosectioning combined with microscopy revealed that MV474 biofilm (biofilm 269 

thickness 328 ± 36 µm) was significantly thicker than the biofilm formed by the UW136 270 

(biofilm thickness 217 ± 46 µm).  271 

 272 

The biofilm grown under chronic sub-lethal oxidative stress is resistant to hydrogen 273 

peroxide but not to 2-chlorobenzoic acid.  274 

Six- and 14-days old UW136 biofilm experienced a 2.10 ± 0.05 log10 reduction and 1.59 ± 275 

0.15 log10 reduction in the CFU number after 2-chlorobenzoic acid treatment (Figure 5). 276 

The log10 reductions observed for the MV474 biofilms (6-days old 1.70 ± 0.15; 14-days old 277 

1.33 ± 0.10) were not statistically different from that of the wild-type. However, 6- and 14-278 

days old MV474 biofilm exhibited a 0.65 ± 0.08 and 0.11 ± 0.07 log10 CFU reduction after 279 

exposure to hydrogen peroxide, which indicated that it was statistically significant less 280 

susceptible than the UW136 biofilm (6-days old 0.65 ± 0.08; 14-days old 1.81 ± 0.04 ) 281 

treated with the same biocide.  282 

 283 

The strain exposed to chronic sub-lethal oxidative stress shows an increased 284 

flagella-driven motility and an increased level of ROS in swarming colonies.  285 

MV474 sustained a surface-associated movement resulting in a faster and efficient 286 

colonization of the polycarbonate membrane (Figure 6a,b). MV474 showed a 10-fold and 287 

6-fold increase in both swimming and swarming movement respectively compared to 288 

UW136 (Figure 6c,d).  289 
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The level of oxidative stress in MV474 swarmer cell population was higher compared to 290 

UW136 (Figure 6e). The MV474 cell subpopulation harvested at the swarming migration 291 

front appeared to be under less oxidative stress than the MV474 cell subpopulation 292 

collected at the center (Figure 6e). 293 

 294 

DISCUSSION 295 

Oxidizing biocides play an important role in the control of bacterial biofilm in a variety of 296 

applications and are thus a precious resource that must be managed so as to be protected 297 

from loss of activity over time. In order to preserve the role of oxidizing biocides in infection 298 

control and hygiene, it is paramount to know their effects on biofilm genesis and 299 

characteristics at sub-inhibitory concentrations, a situation normally encountered in all 300 

domestic, health care, industrial and natural systems (Mc Cay et al. 2010). Learning the 301 

biofilm response of the soil model bacterium A. vinelandii to chronic sub-lethal oxidative 302 

stress is thus a relevant task to envisage implications of the current predominant biocide 303 

regime.  304 

The results obtained in this study showed the enhanced ability of A. vinelandii to develop 305 

subaerial biofilm under chronic sub-lethal oxidative events. Cartini et al. (2011) observed 306 

that the planktonic growth rates of both wild-type UW136 and MV474 were comparable. 307 

Explanations for these apparently contrasting results could be based on the significant 308 

differences between the planktonic and the biofilm phenotype in term of physiology, gene 309 

expression pattern and morphology. As biofilm constitutes the dominant mode of microbial 310 

life in most natural and artificial ecosystems, it is important to focus on the sessile point of 311 

view. During the surface-associated growth, chronic oxidative events in MV474 strain 312 

generated a stress condition to which the bacterium responds by adopting the biofilm 313 

lifestyle more efficiently than the UW136 strain. Bacteria that have been previously 314 

exposed to chemical stresses, benzalkonium chloride-adapted Pseudomonas aeruginosa, 315 
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revealed a higher ability to adhere to surfaces and develop biofilms, especially on 316 

benzalkonium chloride-conditioned surfaces, which thereby enhanced resistance to 317 

sanitation (Machado et al. 2011). 318 

Recently, Zuroff et al. (2011) examined the antibiotic tolerance of E. coli colony biofilm on 319 

the LB medium depending on the growth phase. Temporal transcriptional analysis showed 320 

that genes associated with a stress response were induced in the early biofilm but not in 321 

mature biofilms (Domka et al. 2007). According to these results, the highest TST activity in 322 

UW136 was recorded at day 6 indicating that at this biofilm development phase maximum 323 

RhdA functionality is claimed. The residual TST activity measured in MV474 biofilm was 324 

not modulated with a trend correlated to that observed in wild-type biofilm and could be 325 

due to the redundancy of rhodanese-like genes in the A. vinelandii genome (Cartini et al. 326 

2011) since no RhdA was immunodetected in MV474 biofilm. Taken together, these data 327 

suggested a sensitive growth stage in biofilm development, corresponding to the early 328 

stage of biofilm formation. Likely, the elevated oxidative stress level observed in the most 329 

vulnerable biofilm growth step, the early stage, might provide the selective pressure to 330 

increase MV474 biofilm forming capacity. As the biofilm reaches the mature phase, a 331 

reduced metabolic activity and enhanced redox buffer ability may avoid stress inducers, 332 

providing an explanation for the low level of ROS detected in MV474 biofilm.  333 

In line with the oxidant events, both the activity of the hydrogen peroxide scavenger 334 

catalase and the levels of the ahpC transcript were higher in MV474 biofilm than in UW136 335 

and decreased along with the biofilm development. In E. coli and other bacteria, the thiol-336 

based redox sensors OxyR positively regulates genes such as those encoding catalase 337 

and alkyl hydroperoxide reductase, involved in peroxide scavenging, DNA protection and 338 

restoration of the thiol-redox balance of the cell (Pomposiello and Demple 2001; 339 

Hishinuma et al. 2006). Some researchers observed an attenuation in biofilm development 340 

in mutant strains lacking the redox-sensitive protein OxyR in several microbes, including E. 341 
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coli (Reisner et al. 2003) P. aeruginosa (Sauer et al. 2002), Serratia marcescens (Shanks 342 

et al. 2007), Porphyromonas gingivalis (Wu et al. 2008) and Tannerella forsythia (Honma 343 

et al. 2009). Although OxyR-regulated responses in A. vinelandii are unknown, the 344 

presence in A. vinelandii chromosome of a gene coding for a protein homologous with 345 

OxyR could be taken as an indication that similar adaptive mechanisms exist in A. 346 

vinelandii (Cereda et al. 2009). 347 

In this study, aconitase, which catalyses the interconversion of citrate and isocitrate in the 348 

citric acid and glyoxylate cycles, had an overall activity higher in MV474 than in UW136 349 

biofilm, that decreased over time. AcnB, the major aconitase during normal growth 350 

conditions, completely loses activity in response to strong oxidants due to its iron-sulfur 351 

cluster (Tang et al. 1999), causing the increased production of aconitase A (AcnA), 352 

invulnerable to oxidative inactivation in vivo (Varghese et al. 2003). Cereda et al. (2009) 353 

reported the overexpression of AcnA in MV474 planktonic cells. Collectively, enzymatic 354 

and transcriptomic data proved that the genesis of MV474 biofilm under chronic sub-lethal 355 

oxidative stress conditions made it more prone to develop efficient defensive strategies 356 

against ROS injuries than the wild-type developed under physiological/standard 357 

conditions. Temporal resolution of both oxidant events and activation of ROS-scavenging 358 

systems in A. vinelandii may have industrial, medical and agricultural relevance 359 

contributing to fine-tuning of ROS levels and their signaling properties. 360 

The oxidative stress affected also the composition of the EPS, producing a 361 

polysaccharide-rich extracellular polymeric matrix. ConA derived signal was much stronger 362 

in the strain exposed to chronic sub-lethal oxidative stress than the wild-type, indicating 363 

that these sugars are mainly composed of mannose and glucose. The increased amounts 364 

of polysaccharides favoring adherence (Ahimou et al. 2007; Ying et al. 2010) may be part 365 

of a stress response, as it is seen in colanic acid synthesis by E. coli and other 366 

enterobacterial species (Chen et al. 2004). Also Ionesco and Belkin (2009) observed an 367 
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overproduction of exopolysaccharides as adaptive action to the lack of general stress 368 

response sigma factor RpoS in E. coli. Shemesh and colleagues (2010) reported that sub-369 

lethal doses of the oxidizing biocide chlorine dioxide stimulated biofilm formation in 370 

Bacillus subtilis as well as in other bacteria inducing matrix gene transcription. In addition, 371 

previous studies have shown that several bacteria respond to sub-lethal doses of 372 

antibiotics by increasing polysaccharides synthesis and biofilm formation (Rachid et al. 373 

2000; Hoffman et al. 2005).  374 

Both the strains formed a flat biofilm with a compact and uniform architecture in contact 375 

with the air and a more patchy structure near the solid surface, creating empty holes at the 376 

bottom. These structures might facilitate transport of nutrients and gases deeper into the 377 

matrix by diffusion. Biofilm of the strain exposed to chronic oxidative stress is thicker than 378 

the wild-type biofilm corroborating the ability of MV474 to produce the highest biofilm 379 

biomass. 380 

The hypotheses that oxidative stress repair mechanism might increase the emergence of 381 

resistant bacteria and the promotion of cross-resistance to other structurally and 382 

functionally unrelated biocides was also investigated. That MV474 biofilm was less 383 

susceptible to the effective and fast-acting biocide hydrogen peroxide than UW136 biofilm 384 

was not surprising as the catalase activity in the oxidant sensitive strain MV474 was higher 385 

than in UW136. However, the MV474 biofilm cells tolerance increased with the biofilm 386 

maturity and not with the level of catalase activity per se. A mature biofilm provides high 387 

level of protection from external stress like biocides rather that early biofilm due to the 388 

barrier properties of the EPS, the physiological state of biofilm organisms and the 389 

existence of subpopulations of resistant phenotypes (Hall-Stoodley et al. 2004; Boles and 390 

Singh 2008; Simões et al. 2011). 391 

Both UW136 and MV474 showed the same tolerance to 2-chlorobenzoic acid. Warth (1991) 392 

reported that the toxicity of chlorinated phenols arises from both specific and nonspecific 393 
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chemical interactions with bacterial membranes. Differences in the biocidal mode of action 394 

between hydrogen peroxide and chlorobenzoic acid could explain the different 395 

susceptibility of MV474 to the different antimicrobial agents. 396 

MV474 strain exhibited a robust migration activity over the polycarbonate surface. This 397 

bacterial migration activity is an intrinsically surface-linked phenomenon, leading to a 398 

change from an individual (swimming) to a collective "social" behavior (swarming) that 399 

allows the rapid exploration and colonization of surfaces. Motility assays of the peritrichous 400 

flagellated A. vinelandii revealed that MV474 had an increased swimming and swarming 401 

activity when compared with the wild-type strain UW136. Swimming and swarming are two 402 

important systems of bacterial motility required for the competitive fitness during surface 403 

colonization processes (Kearns 2010). Recently, Butler et al. (2010) stated that bacterial 404 

swarming is an effective strategy for prevailing against antimicrobials by maintaining high 405 

cell density, circulating within the multilayered colony to minimize exposure to the 406 

antimicrobials, and the death of individuals that are directly exposed. In addition, the level 407 

of oxidative stress in MV474 swarmer cell population was higher compared to that of 408 

UW136, and cells remaining in the center of the swarming colony experienced the highest 409 

one. Recently, Tremblay and Déziel (2010) demonstrated that in P. aeruginosa oxidative 410 

stress response genes like katA and katB (catalase), ahpF (alkyl hydroperoxide reductase) 411 

and trxB2 (thioredoxin reductase 2) were up-regulated in swarm center and not in tendril 412 

tips. Thus, tendril tip cells function as «scouts» whose main purpose is to rapidly spread 413 

on uncolonized surfaces while swarm center population are in a state allowing a 414 

permanent settlement of the colonized area (biofilm-like) (Tremblay and Déziel 2010). 415 

Decision-making between rapidly colonizing a surface and biofilm formation is central to 416 

bacterial survival among competitors and hostile environment (Verstraeten et al. 2008). 417 

These results allow us to propose a model explaining the ability of strain exposed to 418 

chronic sub-lethal oxidative stress to better colonize the available surface in the biofilm 419 
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phenotype: during biofilm growth a high cell density may lead to the accumulation of 420 

excessive ROS. Thus, MV474 starts to differentiate in a motile phenotype and migrate 421 

over the polycarbonate surface. As cells move out in swarming rafts, the concentration of 422 

ROS decreases, and cells are unable to maintain the differentiated state and de-423 

differentiate back to the biofilm phenotype. During growth, ROS build up again, and 424 

differentiation/swarming proceeds for a second cycle generating a surface-linked 425 

phenomenon. 426 

In summary, the inactivation of rhodanese RhdA acts as continuous generator of sub-lethal 427 

oxidative events that promote the social behaviour orchestrating biofilm genesis, the 428 

activity of ROS-scavenging systems and the switch between swarming and biofilm-like 429 

phenotypes. These findings suggest that sub-inhibitory concentrations of oxidizing 430 

biocides may not necessarily produce a burden on bacterial biofilm but in some occasions 431 

may enhance some characteristics potentially useful for colonization of specific 432 

environments, downscaling the efficacy of biocide treatments. The diversity and 433 

adaptability produced by oxidative stress repair mechanism could help biofilm communities 434 

survive in harsh environments. In addition, these results contribute to a better 435 

understanding of the connection between stress-inducible biofilm formation and 436 

rhodanese-like proteins orthologous to RhdA. 437 
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Figure captions 579 

Figure 1. Growth dynamic (a) and TST activity (b) in A. vinelandii biofilms. Data represent 580 

the mean ± standard deviation of three independent measurements. The graph provides 581 

the p-values obtained by ANOVA analysis. According to post-hoc analysis (Tukey's HSD, 582 

p<0.05), means sharing the same letter are not significantly different from each other. 583 

Panel (c) displays the RhdA expression in A. vinelandii UW136 and MV474 strains during 584 

biofilm development. A 30 kDa protein was immunodetected, corresponding to the 585 

monomeric form of RhdA. 586 

 587 

Figure 2. Oxidative events (a), catalase activity (b), relative expression of ahpC gene (c) 588 

and aconitase activity (d) in biofilms of A. vinelandii UW136 and MV474 strains. Data 589 

represent the mean ± standard deviation of three independent measurements. The graph 590 

provides the p-values obtained by ANOVA analysis. According to post-hoc analysis 591 

(Tukey's HSD, p<0.05), means sharing the same letter are not significantly different from 592 

each other. 593 

 594 

Figure 3. EPS biochemical composition in A. vinelandii UW136 and MV474 biofilms. Data 595 

represent the mean ± standard deviation of three independent measurements. The graph 596 

provides the p-values obtained by Student’s t-test analysis. A star (*) indicates statistically 597 

significant difference at the 95% confidence level between wild-type and oxidant sensitive 598 

strains. 599 

 600 

Figure 4. Cryosectioning images from A. vinelandii subaerial UW136 and MV474 biofilms. 601 

Live cells were stained in green with Syto9, whereas the polysaccharide component of the 602 

EPS matrix was stained in red with Texas Red-labelled Concanavalin A. Scale bars 603 

represent 70 µm or 100 µm. 604 
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 605 

Figure 5. Susceptibility of UW136 and MV474 biofilms to antimicrobial agents observed as 606 

log10 reduction in the number of CFU after exposure to 6 mM 2-chlorobenzoic acid (2-607 

CBA) and 4.5 mM hydrogen peroxide (HP). Data represent the mean ± standard deviation 608 

of three independent measurements. The graph provides the p-values obtained by 609 

ANOVA analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), means sharing 610 

the same letter are not significantly different from each other. 611 

 612 

Figure 6. Surface-associated behaviours influenced by the oxidative stress. Panels (a) 613 

and (b) display the pattern formation over a polycarbonate membrane of biofilms of 614 

UW136 and MV474 A. vinelandii strains respectively. Panel (c) shows swarming motility of 615 

UW136 and MV474 strains. Panel (d) displays swimming and swarming colony expansion 616 

radius of UW136 and MV474 strains. Data represent the mean ± standard deviation of 617 

three independent measurements. The graph provides the p-values obtained by Student’s 618 

t-test analysis. A star (*) indicates statistically significant difference at the 95% confidence 619 

level between wild-type and oxidant sensitive strains. Panel (e) reports the level of 620 

oxidative stress of the swarmer cell population harvested at the center of swarming colony 621 

and at the edge of a swarming colony migration front. Data represent the mean ± standard 622 

deviation of three independent measurements. The graph provides the p-values obtained 623 

by ANOVA analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), means 624 

sharing the same letter are not significantly different from each other. 625 

 626 

Page 26 of 32

http://mc.manuscriptcentral.com/gbif

Biofouling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Growth dynamic (a) and TST activity (b) in A. vinelandii biofilms. Data represent the mean ± standard 
deviation of three independent measurements. The graph provides the p-values obtained by ANOVA 

analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), means sharing the same letter are not 
significantly different from each other. Panel (c) displays the RhdA expression in A. vinelandii UW136 and 
MV474 strains during biofilm development. A 30 kDa protein was immunodetected, corresponding to the 

monomeric form of RhdA.  
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Oxidative events (a), catalase activity (b), relative expression of ahpC gene (c) and aconitase activity (d) in 
biofilms of A. vinelandii UW136 and MV474 strains. Data represent the mean ± standard deviation of three 
independent measurements. The graph provides the p-values obtained by ANOVA analysis. According to 

post-hoc analysis (Tukey's HSD, p<0.05), means sharing the same letter are not significantly different from 
each other.  

181x127mm (300 x 300 DPI)  
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EPS biochemical composition in A. vinelandii UW136 and MV474 biofilms. Data represent the mean ± 
standard deviation of three independent measurements. The graph provides the p-values obtained by 

Student’s t-test analysis. A star (*) indicates statistically significant difference at the 95% confidence level 
between wild-type and oxidant sensitive strains.  
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Cryosectioning images from A. vinelandii subaerial UW136 and MV474 biofilms. Live cells were stained in 
green with Syto9, whereas the polysaccharide component of the EPS matrix was stained in red with Texas 

Red-labelled Concanavalin A. Scale bars represent 70 µm or 100 µm.  
161x158mm (300 x 300 DPI)  
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Susceptibility of UW136 and MV474 biofilms to antimicrobial agents observed as log10 reduction in the 
number of CFU after exposure to 6 mM 2-chlorobenzoic acid (2-CBA) and 4.5 mM hydrogen peroxide (HP). 
Data represent the mean ± standard deviation of three independent measurements. The graph provides the 

p-values obtained by ANOVA analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), means 
sharing the same letter are not significantly different from each other.  
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Surface-associated behaviours influenced by the oxidative stress. Panels (a) and (b) display the pattern 
formation over a polycarbonate membrane of biofilms of UW136 and MV474 A. vinelandii strains 

respectively. Panel (c) shows swarming motility of UW136 and MV474 strains. Panel (d) displays swimming 
and swarming colony expansion radius of UW136 and MV474 strains. Data represent the mean ± standard 
deviation of three independent measurements. The graph provides the p-values obtained by Student’s t-test 
analysis. A star (*) indicates statistically significant difference at the 95% confidence level between wild-

type and oxidant sensitive strains. Panel (e) reports the level of oxidative stress of the swarmer cell 
population harvested at the center of swarming colony and at the edge of a swarming colony migration 

front. Data represent the mean ± standard deviation of three independent measurements. The graph 
provides the p-values obtained by ANOVA analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), 

means sharing the same letter are not significantly different from each other.  
139x76mm (300 x 300 DPI)  

 
 

Page 32 of 32

http://mc.manuscriptcentral.com/gbif

Biofouling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ORIGINAL ARTICLE

Effects of sublethal doses of silver nanoparticles on Bacillus
subtilis planktonic and sessile cells
M. Gambino1, V. Marzano2, F. Villa3, A. Vitali2, C. Vannini4, P. Landini1 and F. Cappitelli3

1 Department of Biosciences, Universit�a degli Studi di Milano, Milan, Italy

2 Institute of Chemistry of Molecular Recognition, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy

3 Department of Food, Environmental and Nutritional Sciences, Universit�a degli Studi di Milano, Milan, Italy

4 Department of Biotecnology and Life Science, Universit�a degli Studi dell’Insubria, Varese, Italy

Keywords

Bacillus, biofilms, proteomics, rhizosphere,

stress response.

Correspondence

Paolo Landini, Department of Biosciences,

Universit�a degli Studi di Milano, Via Celoria

26, 20133 Milan, Italy.

E-mail: paolo.landini@unimi.it

and

Francesca Cappitelli, Department of Food,

Environmental and Nutritional Sciences,

Universit�a degli Studi di Milano, Via Celoria 2,

20133 Milan, Italy.

E-mail: francesca.cappitelli@unimi.it

2014/2544: received 12 December 2014,

revised 10 February 2015 and accepted 14

February 2015

doi:10.1111/jam.12779

Abstract

Aims: Due to their antimicrobial activity, silver nanoparticles (Ag-NPs) are

being increasingly used in a number of industrial products. The accumulation

of Ag-NPs in the soil might affect plant growth-promoting rhizobacteria and,

in turn, the plants. We describe the effects of Ag-NPs on the soil bacteria

Azotobacter vinelandii and Bacillus subtilis.

Methods and Results: In growth-inhibition studies, A. vinelandii showed

extreme sensitivity to Ag-NPs, compared to B. subtilis. We investigated the

effects of Ag-NPs at subinhibitory concentrations, both on planktonic and

sessile B. subtilis cells. As determined by 2,7-dichlorofluorescein-diacetate

assays, Ag-NPs increase the formation of reactive oxygen species in planktonic

cells, but not in sessile cells, suggesting the activation of scavenging systems in

biofilms. Consistently, proteomic analysis in B. subtilis Ag-NPs-treated biofilms

showed increased production of proteins related to quorum sensing and

involved in stress responses and redox sensing. Extracellular polysaccharides

production and inorganic phosphate solubilization were also increased,

possibly as part of a coordinated response to stress.

Conclusions: At low concentrations, Ag-NPs killed A. vinelandii and affected

cellular processes in planktonic and sessile B. subtilis cells.

Significance and Impact of the Study: Re-direction of gene expression, linked

to selective toxicity, suggests a strong impact of Ag-NPs on soil bacterial

communities.

Introduction

Nanoparticles (NPs) are defined as material that is at

least one dimension below 100 nm (Handy et al. 2008).

Such a small size confers NPs features that are different

from the bulk material, i.e. higher chemical reactivity,

resistance and electrical conductivity and, potentially,

higher biological activity (Nel et al. 2006).

Silver NPs (Ag-NPs) are widely used for medical and

industrial applications, e.g. for biological implants, air

and water treatment filters, clothing, paints, cosmetics

and food storage containers (Duncan 2011; Levard et al.

2012). The NP formulation increases the antimicrobial

properties of silver, making Ag-NPs effective against a

broad spectrum of bacterial and fungal species (Sotiriou

and Pratsinis 2011; Guo et al. 2013), including antibiotic-

resistant strains (Schacht et al. 2013).

The growing diffusion of Ag-NPs in commercially

available products used daily (Benn and Westerhoff

2008) leads to a NP dispersal in the environment that is

difficult to track and quantify. The release of Ag-NPs

into the environment mainly occurs through the appli-

cation of sewage sludge to agricultural land (Schlich

et al. 2013). This procedure is still adopted in many

countries (Gottschalk and Sonderer 2009), although the

sludge may contain substantial amounts of heavy metals

(Bourioug et al. 2015) and transfer them to soil. Despite

scientific models identified the soil as a major NP sink

(Mueller et al. 2009), their actual concentrations in the

environment are often unknown, and their biological
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activity still needs to be investigated (Whitley et al.

2013).

Some soil micro-organisms, defined as plant growth-

promoting rhizobacteria (PGPR), promote plant growth

through several indirect or direct mechanisms, such as

nutrient uptake, regulation of plant physiology by mim-

icking the synthesis of plant hormones and increase in

mineral and nitrogen availability in the soil (Philippot

et al. 2013). PGPR can also increase heavy metal solubil-

ity, helping plants withstand pollutants contamination

(Vacheron et al. 2013).

Previous studies have shown that exposure to Ag-NPs

leads to significant mortality in various bacteria, mainly

through membrane damage (Hachicho et al. 2014) and

oxidative stress, via Ag-NP-induced reactive oxygen spe-

cies (ROS) (Fabrega et al. 2009). While antimicrobial

activity and efficacy of Ag-NP has been the focus of a

variety of studies, aiming to use Ag-NPs as an alternative

to antibiotics (Rai et al. 2012), little information is avail-

able regarding the possible effects of sublethal doses. To

identify mechanisms activated by bacteria to face Ag-NP

presence in soil, we have studied the effects of Ag-NPs at

concentrations up to 10 mg l�1 on two plant growth-

promoting rhizobacteria: the Gram-negative nitrogen-fix-

ing bacterium Azotobacter vinelandii, and Bacillus subtilis,

a Gram-positive bacterium. We found that 10 mg l�1

Ag-NPs strongly inhibited A. vinelandii growth and

induced the oxidative stress response and exopolysaccha-

ride production in B. subtilis. Our results suggest that

Ag-NPs, at a concentration range locally found in the soil

environment, can induce ROS production and select soil

microbial population. Interestingly, we also found that, in

B. subtilis, plant growth-promoting activities, in particu-

lar, inorganic phosphate solubilization, were activated by

sublethal Ag-NP concentrations. Possible implications on

soil microbial community are discussed.

Materials and methods

Bacterial strains and growth conditions

Bacillus subtilis wild type strain Cu1065 and Azotobacter

vinelandii wild type strain UW136 were maintained at

�80°C in suspensions containing 20% glycerol. Bacillus

subtilis was grown aerobically in Tryptic Soy Broth (TSB)

medium for 12 h at 30°C. Azotobacter vinelandii was grown
in Burk’s medium supplemented with 1% sucrose and

15 mmol l�1 ammonium acetate for 30 h at 30°C. Silver
nanoparticles (Ag-NPs; 10 nm OECD PVP BioPure Silver

Nanoparticles, nanoComposix, San Diego, CA, USA) were

stored at 4°C as 1 mg ml�1 suspension in water, and were

added to liquid medium, or uniformly distributed on

the agar surface, immediately prior to the start of the

experiments. According to the supplier, purchased Ag-NPs

have a diameter of 8�3 � 1�5 nm, hydrodynamic diameter

smaller than 20 nm and negative zeta potential (�19 mV).

Effects of Ag-NPs on planktonic growth

Bacillus subtilis and A. vinelandii growth in the presence

of Ag-NPs at various concentrations (0, 0�01, 0�1, 1, 10,
and 100 mg l�1) was monitored, registering the optical

density (OD) at 600 nm every 45 min with a microtitre

reader (Biotek-Power Wave XS2, BioTek, Winooski, VT,

USA). The results were confirmed plating cell suspensions

from stationary phase serially diluted on agarized media,

incubated at 30°C (overnight for B. subtilis, 36 h for

A. vinelandii) and the colony forming units (CFU) were

enumerated using the drop-plate method (Herigstad et al.

2001). Experiments were conducted in triplicate. Growth

curves were used to calculate the generation time for each

condition.

Transmission electron microscopy study

Samples for transmission electron microscopy (TEM)

analysis were collected from liquid cultures both in expo-

nential and stationary phases, respectively, after 3 and 8 h

of growth in contact with 0 and 10 mg l�1 of NPs. Cells

were centrifuged (30 min, 7000 g) and fixed in an equal

volume of 2�5% glutaraldehyde in cacodylate buffer (pH

7�4) at 4°C overnight. The samples were then rinsed with

0�1 mol l�1 cacodylate buffer followed by postfixation in

cacodylate buffer supplemented with 1% (w/v) osmium

tetroxide. Fixed cell suspensions were washed with cacody-

late buffer, dehydrated in an ethanol gradient (once for

15 min in 25%, 50%; once for 1 h in 70%; once for 15 min

in 90%, 95% and two times for 15 min in 100%) and then

in propylene oxide for 20 min. The samples were infiltrated

and finally embedded in Epon Araldite at 60°C for 24 h.

The polymerized samples were sectioned into ultra-thin

slices (80 nm in thickness) and placed on collodion-coated

copper grid (400 meshes). The slices were examined by

TEM with Leo912ab (Zeiss, Jena, Germany) at 80 kV.

Ten images with a reduced enlargement of both the

control and the treated samples were analysed after expo-

sure to uranyl acetate (10 min) and to lead citrate

(5 min) to count live and dead cells, considering cells

with no significant morphological alterations as live cells.

TEM analysis was also used to verify the absence of

aggregated NPs in the conditions used.

Biofilm formation

Colony biofilms of B. subtilis were prepared following the

method reported (Anderl et al. 2000). Briefly, 10 ll of
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cell suspension containing 1�5 9 106 cells were used to

inoculate sterile black polycarbonate filter membranes

(0�22 mm pore size, Whatman, UK) that were placed on

TSA plates, at 30°C, either in the absence or in the pres-

ence of Ag-NPs (1 or 10 mg l�1). Ag-NPs were poured

on agar plates to be adsorbed. The membranes were

transferred every 48 h to fresh media, and grown for

8 days in total.

Colony biofilm quantification with Bradford assay and

ATP assay

Total protein amount and average ATP consumption

were determined to assess relative amounts of biomass

and metabolic activity in colony biofilms.

For protein determination, a membrane was collected

every 24 h and resuspended in a 10-ml tube with 2 ml of

sterile phosphate buffered saline (PBS, 10 mmol l�1

phosphate buffer, 0�3 mol l�1 NaCl, pH 7�4). Cells were

broken by five cycles of 30 s sonication with 30 s inter-

vals; cell lysates were centrifuged for 15 min at 4°C at

19 000 g and the supernatant was collected. The protein

amount was quantified by Bradford assay (Bradford

1976), using bovine serum albumin as the standard.

Experiments were performed in triplicate.

Bacterial metabolic activity in colony biofilm was

assessed using the biomass detection kit (Promicol, Sit-

tard, The Netherlands). The experiments were performed

according to the manufacturer’s protocol using the FB 14

Vega bioluminometer (Berthold Detection Systems,

Pforzheim, Germany). Relative light units per second

(RLU s�1) values were converted to ATP concentrations

(nmol ml�1) using the standard provided. Colony biofilm

was resuspended in 100 mmol l�1 Tris (pH 7�75), vor-
texed and sonicated for 30 s (Kobayashi et al. 2009). A

calibration curve was generated by measuring RLU s�1 in

B. subtilis planktonic cells. The tests were performed in

triplicate.

Level of oxidative stress on planktonic and sessile cells

The level of oxidative stress in planktonic and sessile cells

of B. subtilis was determined using the 2,7-dichlorofluo-

rescein-diacetate (H2DCFDA) assay (Jakubowski et al.

2000).

Bacillus subtilis planktonic cells grown at 30°C for 12 h

in TSB, with either 0, 1 or 10 mg l�1 of Ag-NPs, were

washed with PBS and resuspended in 50 mmol l�1 PBS,

while, for the colony biofilm, one membrane biofilm was

collected for 8 days, scraped and homogeneously resus-

pended in 2 ml of 50 mmol l�1 PBS.

Seven hundred and fifty microlitre of cell suspension

was incubated with 10 lmol l�1 H2DCFDA at 30°C for

30 min, vortexed and centrifuged. The supernatant was

collected to measure fluorescence relative to the extracel-

lular ROS presence. To evaluate intracellular ROS con-

centrations in either planktonic or biofilm cultures, cells

were washed three times and broken with five cycles of

30 s sonication with 30 s intervals. The fluorescence of

the supernatant collected before (outer oxidative stress)

and after cell sonication (inner oxidative stress) was

measured using the fluorometer VICTOR TM X Multila-

bel Plate Readers (Perkin Elmer, Milan, Italy), excitation

490 nm and emission 519 nm. The emission values were

normalized against the protein concentration, obtained

from the remaining 750 ll of cell suspension with the

Bradford assay. Experiments were conducted in tripli-

cate.

Extraction and characterization of the extracellular

polymeric substances (EPS)

Extracellular polymeric substance extraction and charac-

terization was conducted as described by Villa et al.

(2012) on 5-day-old biofilm biomass, grown in contact

with 0 and 10 mg l�1 Ag-NPs. The cetyltrimethylammo-

nium bromide (CTAB)-DNA method described by Cori-

naldesi et al. (2005) was used to quantify the extracellular

DNA (eDNA). The Bradford method was applied to

analyse protein concentrations, whereas the optimized

microplate phenol-sulphuric acid assay was applied for

carbohydrate determination (Masuko et al. 2005) using

glucose as the standard. The results obtained were

normalized by the cellular protein concentration. Experi-

ments were performed in triplicate.

Proteomic analysis

Protein extracts were obtained by lysing, homogenizing

and sonicating the whole colony biofilm (ten 5-day-old

biofilms for each condition), grown either in the presence

or in the absence of 10 mg l�1 Ag-NPs, in lysis buffer

(10 mmol l�1 Tris-HCl pH 7�5, 100 mmol l�1 NaCl)

with protease inhibitor. Protein extracts were precipitated

by adding a cold mix of ethanol, methanol and acetone

(ratio 2 : 1 : 1, v/v), and redissolved in 6 mol l�1 urea,

100 mmol l�1 triethylammonium bicarbonate buffer pH

8�5. After reduction with 10 mmol l�1 dithiothreitol and

alkylation with 20 mmol l�1 iodoacetamide, equal

amounts of protein samples were digested 50 : 1 (w/w)

with sequence grade trypsin (Promega, Madison, WI,

USA) at 37°C overnight. In-solution dimethyl labelling

on peptides was performed as described by Boersema

et al. (2009) with sodium cyanoborohydride (NaBH3CN),

formaldehyde (CH2O, light labelling) and deuterated

formaldehyde (CD2O, heavy labelling). In Experiment A,
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tryptic peptides deriving from control and Ag-NP-treated

biofilm were reacted with light and heavy formaldehyde

respectively. A second experiment (Experiment B) was

also performed, inverting the isotope labelling. After mix-

ing equal quantities of labelled tryptic peptides, the sam-

ples were loaded on 18-cm Immobiline DryStrip gels (GE

Healthcare, Uppsala, Sweden), pH 3–10, for peptide sepa-

ration. Isoelectric-focused strips were cut in 18 pieces and

extracted peptides were analysed by liquid chromatogra-

phy-electrospray ionization-tandem mass spectrometry

(LC-ESI-MS/MS) on an Ultimate 3000 Micro HPLC

apparatus (Dionex, Sunnyvale, CA, USA) equipped with

a FLM-3000-Flow manager module directly coupled to

an LTQ Orbitrap XL hybrid FT mass spectrometer

(Thermo Fisher Scientific, Waltham, MA, USA). Reverse-

phase chromatography was performed on a Jupiter C18,

5 lm, 150 9 1�0 mm column (Phenomenex, Torrance,

CA, USA) and a 95-min run (gradient 1�6–44% acetoni-

trile in water with 0�1% formic acid over 60 min) at a

flow rate of 80 ll min�1. Mass spectra were collected in

FT-IT data-dependent scan mode (MS scan at 60 000 of

resolution in the Orbitrap and MS/MS scan on the three

most intense peaks in the linear ion trap, mass range

300–2000 Da). Selected peptide charge states were iso-

lated with a width of m z�1 6–10 and activated for

30 ms using 35% normalized collision energy and an

activation q of 0�25. Protein identification and quantifica-

tion was obtained with the embedded ion-accounting

algorithm (Sequest HT) of the software PROTEOME DISCOV-

ERER (ver. 1.4, Thermo) after searching a UniProtKB/

Swiss-Prot Protein Knowledgebase (release 2013_08 of

24-Jul-13 containing 540732 sequence entries; taxonomi-

cal restrictions: Bacillus subtilis, 4188 sequence entries).

The search parameters were 10 ppm tolerance for precur-

sor ions and 0�8 Da for product ions, two missed cleav-

ages, carbamydomethylation of cysteine as fixed

modification, oxidation of methionine as variable modifi-

cation, light and heavy dimethylation of peptide N-

termini and lysine residues as fixed modification on two

different search nodes. We filtered the data applying a q-

value threshold of 0.05 based on Percolator algorithm

(false discovery rate under is 5%; i.e., the expected frac-

tion of incorrect peptide spectrum match in the entire

data set is less than 5%, calculated on a decoy database).

Relative peptide abundance was calculated from extracted

ion chromatograms of the different isotopic variants with

1�5 fold change in the threshold value for up/down regu-

lation.

Bioinformatic analysis

Modulated proteins identified by proteomic analysis were

further analysed by the Protein Analysis Through Evolu-

tionary Relationships Classification System (PANTHER, ver.

9.0, http://www.pantherdb.org) (Mi et al. 2013) to high-

light the most relevant Gene Ontology (GO) terms and

the enriched functional-related protein groups. By the

PANTHER Statistical overrepresentation tool, the over- and

under-representation of any protein class was assayed

using the binomial test (Cho and Campbell 2000) with

Bonferroni correction for multiple comparisons, compar-

ing the protein list to the whole B. subtilis proteome. The

most significant categories were identified by calculating

the related significance (P-value).

In vitro PGPR and motility assays

PGPR assays were performed inoculating planktonic cells

either in direct contact with Ag-NPs or just pre-exposed

to Ag-NPs. In the first case, media used for PGPR

assays were inoculated with 100 ll of culture of B. sub-

tilis at 0�3 as OD600nm either in the absence or in the

presence of 10 mg l�1 Ag-NPs. In the case of pre-expo-

sition to Ag-NPs, 100 ll of B. subtilis grown in the

absence or in the presence of 10 mg l�1 Ag-NPs for

24 h at 30°C, washed in PBS and resuspended to obtain

0�3 as OD600nm, were used as inoculum for the PGPR

assays.

Indole-3-acetic acid (IAA) production was detected as

described by Brick et al. (1991). Bacterial cultures were

grown for 72 h in TSB supplemented with tryptophan

(500 mg ml�1). After centrifugation, the supernatant

(2 ml) was mixed with 40 ll of orthophosphoric acid

and 4 ml of the Salkowski reagent (35% of perchloric

acid, 1 ml 0�5 mol l�1 FeCl3 solution). After incubating

for 25 min, the OD530nm was taken. Concentration of

IAA produced by the cultures was measured using a cali-

bration curve of IAA in the range of 10–100 mg ml�1.

To verify the capacity to solubilize inorganic phos-

phate, the colorimetric method described by Ahmad et al.

(2008) was used. After 72 h of growth at 30°C, the

OD600nm of centrifuged bacterial cultures was measured.

Values obtained from inoculated medium were subtracted

from the control.

Production of siderophores was studied by cultivating

the isolates on chrome azurol sulphate (CAS) agar plate,

prepared as described by Schwyn and Neilands (1987).

After solidification, the TSA plates were cut into halves

and one half was replaced by CAS agar. The halves con-

taining TSA were inoculated and the plates were incu-

bated at 30°C for a week. The chromatic change in the

CAS agar was evaluated to state the siderophore produc-

tion.

Nitrogen fixation was evaluated by inoculating the

medium described by Tarrand et al. (1978). After 72 h of

growth at 30°C, 100 ll of grown bacteria were inoculated
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again in new medium and let to grow at 30°C for a week,

and then the OD600nm was measured.

Each assay was conducted with 10 replicates for control

and 10 replicates for treated cells.

Swarming and swimming motility were determined as

previously described by Villa et al. (2012) in TSB med-

ium added either with 0�3% (w/v) agar (for swimming

motility) or with 0�7% (w/v) agar (for swarming motil-

ity). Plates were allowed to dry for 2 h and were inocu-

lated with 10 ll of a 24 h-old culture of B. subtilis,

incubated with either 0 or 10 mg l�1 Ag-NPs, washed

with PBS, resuspended to obtain 0�3 as OD600nm, added

to the top of the agar and incubated at 30°C for 48 h.

Results were expressed as the diameter (cm) of the area

of observed motility.

Statistical analysis

A t-test or analysis of variance (ANOVA) via GRAPHPAD Soft-

ware (San Diego, CA) was applied to statistically evaluate

any significant differences among the samples. Tukey’s

Honestly Significant Difference test (HSD) was used for

pairwise comparison to determine the significance of the

data. Statistically significant results were depicted by

P-values 0�05.

Results

Effect of Ag-NPs on planktonic growth of rhizobacteria

Azotobacter vinelandii and Bacillus subtilis

In order to evaluate Ag-NP effects on two important rep-

resentatives of rhizobacteria, namely A. vinelandii and

B. subtilis, we performed growth inhibition tests in liquid

media. Ag-NP concentrations chosen ranged from

0�1 mg l�1, i.e. a concentration close to the proposed

‘no-effect’ concentration in soil (0�05 mg kg�1; Schlich

et al. 2013) to 100 mg l�1. As shown in Fig. 1b, Ag-NPs

inhibited A. vinelandii growth, albeit partially, already at

concentrations as low as 0�1 mg l�1. Low OD values are

caused by the low-oxygen concentration in the medium;

however, similar sensitivity has been observed also in

A. vinelandii cultures grown with vigorous shaking. In

contrast, B. subtilis, growth rate was only affected at

100 mg l�1 Ag-NPs, with consistent decrease in biomass

accumulation (Fig. 1a). Determination of generation

times during growth phase confirmed that, unlike B. sub-

tilis (Fig. 1a), A. vinelandii growth rate was already

affected at the lowest concentration tested (Fig. 1b).

These results were also confirmed by viable counts on

aliquots of stationary phase cultures treated with various

Ag-NP concentrations, showing reduction in CFU consis-

tent with reduction in OD600nm (data not shown). The

results of this experiment would suggest that, even at

concentrations as low as 0�1 mg l�1, Ag-NPs might affect

the composition of soil bacterial community by selective

bacterial growth inhibition. We investigated whether

10 mg ml�1 Ag-NPs, a subinhibitory concentration in

B. subtilis, might trigger the specific cellular responses in

this bacterium.

Study of the interaction between Ag-NPs and Bacillus

subtilis by TEM observations

Interaction of Ag-NPs with B. subtilis cells was monitored

by direct TEM observations, which showed that no Ag-

NP aggregates were present in the media used for bacte-

rial growth. Planktonic cultures, grown either in the

absence or in the presence of 10 mg l�1 Ag-NPs, were

observed to determine the specific localization of Ag-NPs,

and possible effects on cell morphology. During exponen-

tial phase (Fig. 2a–c), Ag-NPs appear to gather preferen-

tially as aggregates around specific cells, with a

nonhomogenous distribution (Fig. 2b). Ag-NPs were also

visible inside the microbial cells, as single or aggregated

Ag-NPs (Fig. 2c). Phase contrast images revealed that the

cell walls of bacteria with internalized Ag-NPs showed no

interruption, and the cells were not affected morphologi-

cally (data not shown).

During the stationary phase (Fig. 2d–f), for both con-

trol and treated samples, the cell wall was no longer

stretched, resulting in a rougher surface. As highlighted

in Fig. 2d–f, both in control and treated samples, some

dead or dying cells were present. Interestingly, in the

treated samples, the Ag-NPs gather preferentially within

the dead cells or on what remains of the cell wall

(Fig. 2e,f). This would suggest that Ag-NPs might be

more toxic to B. subtilis cultures during stationary phase.

To verify this, intact vs lysed B. subtilis cells were counted

in TEM pictures on a total of six thousand cells, both for

control and treated (10 mg l�1 Ag-NPs) samples during

stationary phase. No statistically significant differences

were observed (control: 2�83 � 0�02% dead/live cells;

treated: 4�00 � 0�01% dead/live cells), confirming that, at

10 mg l�1, Ag-NPs does not affect the B. subtilis viability.

Effect of Ag-NPs on sessile growth of Bacillus subtilis

Ag-NPs accumulating in soil are likely to interact with

B. subtilis growing as a biofilm, rather than in planktonic

cells. For this reason, we tested inhibition of colony bio-

film by Ag-NPs. This condition mimics growth in soil, in

which bacteria are attached to a solid surface and where

water availability is influenced by the solute potentials

(Chang and Halverson 2003). Bacillus subtilis colony bio-

film showed rapid growth, reaching maturity in 4 days.
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At later times, the colony biofilm seemed to undergo a

phase of dispersion, as suggested by a reduction in total

proteins (Fig. 3). Although the presence of 10 mg l�1 of

Ag-NPs did not hinder biofilm biomass as determined

both by total protein determination (Fig. 3) and ATP

consumption levels (Fig. S4), it appeared to slow down

the growth rate, in particular at days 2 and 3, corre-

sponding to the exponential phase of biofilm growth. In

this growth phase, the lower ATP concentration of Ag-

NP-treated biofilm with respect to the control, suggested

a more extended lag phase in the presence of Ag-NPs. In

contrast, the presence of 1 mg l�1 of Ag-NPs seemed to

enhance biofilm growth by day 4.

Level of oxidative stress in planktonic cells and biofilm

of Bacillus subtilis

Results of the biofilm growth-inhibition experiments

highlight a phase of adaptation to Ag-NPs of biofilms

that is not visible in the planktonic cells. As inhibition of

bacterial growth by Ag-NP might be associated with the

induction of oxidative stress, we measured Ag-NP-

induced ROS production both in planktonic (Fig. 4) and

biofilm (Fig. 5) cells. Due to the complex structure of the

biofilm, ROS production was determined both intracellu-

larly and in the biofilm matrix. In planktonic cells, col-

lected during stationary phase, 10 mg l�1 Ag-NP

increased the intracellular ROS concentrations by 3 fold

compared to the untreated control (Fig. 4). The effect of

1 mg l�1 Ag-NPs was also tested, and, surprisingly, deter-

mined a reduction in intracellular ROS levels, possibly

suggesting that at low concentrations, Ag-NPs might

induce an adaptive response to oxidative stress, leading

to a reduction in detectable ROS.

A different picture emerged from experiments on bio-

film cells: indeed, ROS levels were lower or similar in Ag-

NP-treated samples in comparison to the control

throughout biofilm growth (Fig. 5). High levels of ROS

were detected in the extracellular matrix, regardless of the

presence of Ag-NPs (Fig. 5a). In contrast, intracellular

ROS formation in biofilm cells was lower than those

measured in the planktonic cells (Figs 4 and 5b) being

undetectable on days 3–4, i.e. during the late exponential/

stationary phase of biofilm formation, while reaching a
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peak on day 8 (Fig. 5b). In biofilm cells, exposure to Ag-

NPs reduced the intracellular ROS concentrations, with

the only exception of day 1 for the higher Ag-NP concen-

tration tested (10 mg l�1).

To gather additional information on their effects on

B. subtilis biofilm, we characterized the composition of

the biofilm matrix in the presence and in the absence of

Ag-NPs. In particular, we quantified the amounts of

proteins, EPS and eDNA. Exposure to either 1 or

10 mg l�1 of Ag-NPs did not affect protein or eDNA

amounts, while significantly stimulating EPS production

in the biofilm matrix (c. 2�5-fold; Fig. 6).

Quantitative proteomics and bioinformatic data mining

To further evaluate the impact of Ag-NPs on B. subtilis,

we determined the total protein composition from

whole colony biofilm grown in the presence or absence

of 10 mg l�1 Ag-NPs by proteomic analysis. Biomass

was collected during the stationary phase. The data

revealed a total of 19 proteins differentially expressed at

significant levels in the Ag-NP-treated samples compared

to the control (Table 1, Tables S1 and S2). No down-

regulated proteins in Ag-NP-treated biofilm were

detected.

Data were further analysed by the Statistical overrepre-

sentation test of the software PANTHER to highlight the

most relevant GO term group annotation associated with

our proteomic dataset. This analysis showed a statistically

significant higher expression of proteins with oxidoreduc-

tase activity (P-value = 0�0487) (Table S3).
As shown in Table 1, Ag-NPs appeared to positively

affect the production of proteins either belonging to stress

responses or able to sense the cell’s redox potential. Indeed,

two proteins directly involved in the response to oxidative

stress (Alkyl hydroperoxide reductase subunit C and FeS

cluster assembly protein SufD) and two proteins were able

to sense the redox conditions (Thioredoxin A and the

iron–sulphur cluster protein YutI) were more expressed in

the presence of Ag-NPs. In addition, exposure to Ag-NPs

also induced other stress response-related proteins, namely,

oxalate decarboxylase (OxdC), involved in protection

against low-pH stress (MacLellan et al. 2009), Tig (trigger

factor), a chaperone protein activated in response to heat-

shock (Reyes and Yoshikawa 2002), and the cell wall-asso-

ciated protease WprA, induced by phosphate starvation

1 µM 1 µM 100 nm

1 µM 500 nm 500 nm

(a) (b) (c)

(d) (e) (f)

Figure 2 Transmission electron microscopy images of Bacillus subtilis planktonic cells grown with 0 (a, d) and 10 mg l�1 of Ag-NPs (b, c, e, f),

during exponential (a, b, c) and stationary phase (d, e, f). Arrows indicate Ag-NPs localized inside the cells.
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and necessary for the secretion of the peroxidase YwbN

(Monteferrante et al. 2013). Our results suggest Ag-NP

induction of some quorum-sensing related genes, as indi-

cated by increased production of SrfAB, DegU, OppF and

CotE proteins. DegU is able to induce competence in

B. subtilis through positive regulation of comK (D’Souza

1994; Kobayashi 2007); oppF is part of oppABCDF operon,

encoding Opp, an oligopeptide permease (Lazazzera 2001),

which allows uptake of quorum-sensing related peptides.

Interestingly, the srfAB gene, encoding a subunit of surfac-

tin synthase, also contains the competence-stimulating

peptide ComS (Zafra et al. 2012), another quorum-sensing

signal. Finally, another Ag-NP-induced protein, CotE, is

produced during sporulation, which is subject to a com-

plex regulation in B. subtilis that also requires high cell

density and production of quorum-sensing signals (Hilbert

and Piggot 2004).

Plant growth-promoting activity and motility

Bacillus subtilis is considered as an important PGPR (Saha-

ran and Nehra 2011). As Ag-NPs in soil might affect plant

growth through modulation of PGPR composition and

metabolic activities, their effects on PGP activities in

B. subtilis (Barriuso et al. 2008) were evaluated, either pre-

exposed to or grown in presence of Ag-NPs (10 mg l�1)

(Fig. 7). Although the bacteria in the rhizosphere are

thought to be mostly present as a biofilm, no reliable assays

are currently available to test the PGPR activities on sessile

cells. Thus, we tested the effects of Ag-NPs on B. subtilis

planktonic cells. Among the different PGP activities, we

examined nitrogen fixation and phosphate solubilization,

as they increase bioavailability of nitrogen and phosphate

in soil, essential for plant growth (Bhattacharyya and Jha

2012). We also determined the production of IAA, an

auxin phytohormone that regulates plant development and

stimulates nitrogen, phosphorous and potassium uptake by

plants (Etesami et al. 2009); finally, we measured produc-

tion of siderophores, high-affinity iron chelating com-

pounds used to solubilize mineral iron and promote its

bioavailability (Saharan and Nehra 2011). The B. subtilis

showed no nitrogen fixation activity in the conditions

tested, while comparable levels of IAA and siderophore

production were measured either in the presence or in the

absence of Ag-NPs. In contrast, treatment with 10 mg l�1

of Ag-NPs increased the ability of B. subtilis to solubilize

inorganic phosphate (OD600nm control: 0�754 � 0�139;
treated: 1�882 � 0�145).
In order to carry out their beneficial activity on plants,

bacteria must be able to colonize plant roots effectively

(Achouak et al. 2004). Two different mechanisms of fla-

gellar motilities can be involved in this process. Swim-

ming is an individual motility (Kearn and Whittington

1991), necessary for the adhesion phase; whereas, swarm-

ing is the coordinated motility of a whole colony, and

can be affected by signal molecules (Verstraeten et al.

2008). We tested Ag-NPs for possible effects on cell

motility: exposure to 10 mg l�1 Ag-NPs failed to affect

either swimming (control: 1�42 � 0�13 cm; treated:

1�50 � 0�21 cm) or swarming motility (control:

1�56 � 0�05 cm; treated: 1�58 � 0�08 cm).

Discussion

Due to the constant increase in their utilization in a vari-

ety of industrial products, the possible accumulation of
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lus subtilis planktonic cells. The histograms provide the P-values

obtained by ANOVA analysis. Post hoc comparison results (Tukey’s HSD,

P < 0�05) are summarized with asterisks to underline the most rele-

vant differences in Ag-NP-treated samples with respect to the control.

P < 0�0001.

Journal of Applied Microbiology 118, 1103--1115 © 2015 The Society for Applied Microbiology1110

Effects of Ag-NPs on B. subtilis M. Gambino et al.



Ag-NPs in soil raises concerns, also since the extents of

their biological effects, especially at low concentrations,

have not been clearly determined yet. It has been pro-

posed that 0�05 mg kg�1 of soil might represent a ‘no-

effect concentration’ for Ag-NPs (Schlich et al. 2013). In

this work, we have shown that Ag-NPs, already at

0�1 mg l�1, i.e. at a concentration close to the proposed

‘no-effect concentration’, can affect growth of A. vinelan-

dii, an important rhizosphere bacterium, reducing both

its growth rate and the amount of culture biomass. In

contrast, growth of the Gram-positive rhizosphere bacte-

rium B. subtilis was only affected at 10 mg l�1. Such dis-

crepancy seems to depend on an increased sensitivity of

A. vinelandii, rather than of Gram-negative bacteria, as

Escherichia coli showed a similar response to Ag-NPs as

B. subtilis (data not shown). Our observation suggests

that, already at concentrations thought to be devoid of

biological activity, Ag-NPs could impact the composition

of rhizosphere microbial community by affecting the

growth of specific bacteria.

Despite being c. 200-fold higher than the proposed

‘no-effect concentration’ in soil, exposure of soil bacteria

to Ag-NPs at 10 mg l�1 or more can occur locally, in

particular, in instances of utilization of sewage sludge,

rich in Ag-NPs, as manure on agricultural soil, a proce-

dure still widely used in many European countries (Sch-

lich et al. 2013). Our results suggest that, at this

concentration, Ag-NPs can enter B. subtilis cells grown in

liquid cultures and accumulate in their cytoplasm, trig-

gering ROS formation. However, a more complex picture

emerges from the exposure to Ag-NPs of B. subtilis

colony biofilms, a condition more likely to resemble bac-

terial growth and physiology in the soil environment.

Despite showing some reduction in initial growth rate,

fully overcome in the later stages of biofilm development,

10 mg l�1 Ag-NPs failed to trigger ROS formation, either

in the biofilm matrix or inside the biofilm cells. Intracel-

lular ROS levels were actually decreased upon exposure

to Ag-NPs. However, exposure to 10 mg l�1 Ag-NPs

strongly induced the polysaccharide production in the

biofilm matrix, suggesting that the ATP consumption

required by this process might be responsible for reduced

growth rate in the presence of Ag-NPs in the earlier

stages of biofilm formation.
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Figure 5 Reactive oxygen species detection

outside (a) and inside (b) the cells of Bacillus

subtilis biofilm in the presence of 0, 1 and

10 mg l�1 of Ag-NPs. The histograms provide

the P-values obtained by ANOVA analysis. Post

hoc comparison results (Tukey’s HSD,

P < 0�05) are summarized with asterisks to

underline the most relevant differences in

Ag-NP-treated samples with respect to the

control. h0 mg l�1, 1 mg l�1,

&10 mg l�1, P < 0�0001.
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Higher polysaccharide production is often induced as

part of a response to environmental stresses (Sutherland

2011). Polysaccharide overproduction in the EPS matrix

might be involved in Ag-NP absorption, thus preventing

them from entering the bacterial cells, and limiting ROS

formation and diffusion, consistent with previous obser-

vations (Peulen and Wilkinson 2011).

In addition to the buffering effect of the polysaccharide

matrix, reduction in ROS levels in biofilm cells might

suggest that, at the concentrations tested, Ag-NPs might

trigger an adaptive response to oxidation stress. To verify

this hypothesis, we carried out a proteomic analysis in

B. subtilis biofilm either in the presence or in the absence

of 10 mg l�1 Ag-NPs. The high amount of polysaccha-

rides in the EPS, resulting in 50 and 75% of the matrix

weight in the control and Ag-NP-treated biofilms, respec-

tively, made extraction of proteins for proteomic analysis

very challenging (Bodzon-Kulakowska et al. 2007).

Although this resulted in relatively low scores for some

proteins, our proteomic analysis allowed us to identify

cellular processes induced in response to Ag-NP treat-

ment of B. subtilis biofilm, namely, stress responses and

quorum sensing. Indeed, we could detect higher expres-

sion of the subunit C of alkyl hydroperoxide reductase,

an important enzyme in oxidative stress response (Antel-

mann et al. 1996). Another protein induced in response

to Ag-NPs was SufD, part of a FeS cluster assembly
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Figure 6 Biochemical composition of mature biofilm matrix of Bacil-

lus subtilis. Protein and polysaccharide values are expressed as

mg g�1 of total cell proteins, while eDNA values are expressed as

lg g�1 of total cell proteins. Data represent the means � the SD of

three independent measurements. The histograms provide the P-val-

ues obtained by ANOVA analysis. Post hoc comparison results (Tukey’s

HSD, P < 0�05) are summarized with asterisks to underline the most

relevant differences in Ag-NP-treated samples with respect to the

control. h0 mg l�1, 1 mg l�1, &10 mg l�1, P < 0�0001.

Table 1 Differentially expressed proteins identified by LC-ESI-MS/MS. The following parameters are listed: alphanumeric unique protein sequence

identifier (Accession) provided by UniProtKB/Swiss-Prot protein Knowledgebase, protein name (Description), Gene name and numeric unique gene

sequence identifier (Gene ID) provided by NCBI, Function and mean of the ratio of the heavy and light quantification channels (Ag-NPs/Ctrl)

Accession Description

Gene name

[gene ID] Function Ag-NPs/Ctrl

Stress response

O32165 FeS cluster assembly protein SufD sufD [938871] Repair under oxidative stress 10�52
O32119 Putative nitrogen fixation proteins yutI [936658] Iron–sulphur cluster assembly 3�38
O34714 Oxalate decarboxylase OxdC oxdC [938620] Acidic stress response 1�65
P14949 Thioredoxin trxA [938187] Cell redox homeostasis 4�72
P54423 Cell wall-associated protease wprA [936350] Proteoglycan peptide bridges

in stationary phase

3�37

P80239 Alkyl hydroperoxide reductase subunit C ahpC [938147] Oxidative stress response 1�86
P80698 Trigger factor tig [936610] Chaperone in heat-shock response 2�39

Primary metabolism

O31669 Acireductone dioxygenase mtnD [939322] Aminoacid biosynthesis 2�04
P21881 Pyruvate dehydrogenase E1

component subunit alpha

pdhA [936005] Pyruvate metabolism 4�93

P34956 Quinol oxidase subunit 1 qoxB [937303] ATP synthesis 9�00
P37808 ATP synthase subunit alpha atpA [936995] ATP synthesis 2�06
P39062 Acetyl-coenzyme A synthetase acsA [937324] Acetate utilization 13�32
P12425 Glutamine synthetase glnA [940020] Glutamine synthetase 3�82

Transcription and translation

P12877 50S ribosomal protein L5 rplE [936981] tRNA binding 6�40
P17889 Translation initiation factor IF-2 infB [936930] Protein synthesis 6�62

Quorum sensing

P13800 Transcriptional regulatory protein DegU degU [936751] Recruitment of ComK 5�05
P24137 Oligopeptide transport ATP-binding protein OppF oppF [936410] Transmembrane transport 2�15
P14016 Spore coat protein E cotE [939508] Sporulation 4�18
Q04747 Surfactin synthase subunit 2 srfAB [938303] Surfactin biosynthesis 3�16
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which, in E. coli, is sensitive to disruption by ROS or by

iron limitation (Layer et al. 2007). Thioredoxin (TrxA),

another enzyme linked to oxidative stress, was also

induced by exposure to Ag-NPs. As many Gram-positive

bacteria do not generate glutathione, which is the domi-

nant low-molecular thiol in most Eukaryota and many

Gram-negative bacteria (Newton et al. 2009), thioredox-

ins are essential to B. subtilis for cellular thiol/disulfide

balance and survival under oxidative stress (Lu and

Holmgren 2013). Thus, results of proteomic analysis sug-

gested that treatment with Ag-NPs leads to a higher

expression of proteins involved in oxidative stress

response, which would in turn, lead to more efficient

detoxification and removal of ROS, as observed.

In addition to proteins involved in stress responses,

exposure to Ag-NPs stimulates the production of compe-

tence-related peptides and to induce quorum-sensing

mechanisms. Indeed, we observed a higher expression of

DegU, a transcription regulator involved in the produc-

tion of the ComK, a quorum sensing-dependent regulator

(Mhatre et al. 2014). We also observed a higher expres-

sion of the quorum sensing-dependent molecule surfactin

coded by the srfAB gene. In addition, a fragment of the

srfAB gene encodes for ComS, a quorum-sensing peptide

able to enhance competence (Morikawa 2006). Surfactin

triggers matrix production (Lopez et al. 2009), which is

consistent with the observed higher polysaccharide pro-

duction in Ag-NP-treated biofilm. It is tempting to spec-

ulate that Ag-NPs might also trigger induction of

quorum sensing, thus affecting gene expression at large in

B. subtilis biofilms.

Exposure of B. subtilis to Ag-NPs positively affects

polysaccharide production, which, by promoting effective

colonization of plant roots, plays an important role in

the PGP activity by this bacterium (Chen et al. 2013).

We also found that inorganic phosphate solubilization,

which results in increased phosphorous availability in the

rhizosphere, was stimulated by Ag-NPs. Although PGP

activities were determined on planktonic cultures, due to

lack of reliable assays on biofilm cells, our results seem to

suggest that sublethal doses of Ag-NPs might exert a

positive effect on PGP activity by B. subtilis. In

conclusion, using B. subtilis as a model for rhizosphere

organisms, we were able to show that Ag-NPs at subin-

hibitory concentrations affect pivotal cellular processes

such as stress responses, quorum sensing and PGP activi-

ties. It is conceivable that similar effects might take place

on other soil bacteria: re-direction of cellular processes

and of gene expression, linked to selective toxicity on

some bacterial species, such as A. vinelandii, suggest a

strong impact of Ag-NPs on soil bacterial communities.
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Accession Gene ID 
Description                                                                                                                  

GN= gene name - 
[Entry name] 

Experiment 
Nanoparticles/Ctrl 

Ratio 
Nanoparticles/Ctrl 

Count 
Nanoparticles/Ctrl 

Variability [%] 
Coverage 

# 
Unique 

Peptides 
# Peptides # PSMs Score 

O31669 939322 

Acireductone 
dioxygenase  
GN=mtnD  - 

[MTND_BACSU] 

A 1.90 2 1.6 7.87 1 1 5 11.87 

B 2.17 1  7.87 1 1 4 6.71 

O32119 936658 

Putative nitrogen 
fixation protein 

YutI  GN=yutI  - 
[YUTI_BACSU] 

A 2.11 1  14.41 1 1 3 7.83 

B 4.64 2 26.0 14.41 1 1 4 7.46 

O32165 938871 

FeS cluster 
assembly protein 

SufD  GN=sufD  - 
[SUFD_BACSU] 

A 11.08 1  3.66 1 1 3 8.90 

B 9.96 1  3.66 1 1 4 10.97 

O34714 938620 

Oxalate 
decarboxylase 

OxdC  GN=oxdC  - 
[OXDC_BACSU] 

A 1.53 1  3.38 1 1 3 7.25 

B 1.77 1  3.38 1 1 3 6.60 

P12425 940020 

Glutamine 
synthetase  

GN=glnA  - 
[GLNA_BACSU] 

A 4.05 1  1.80 1 1 4 7.50 

B 3.58 1  1.80 1 1 3 7.08 

P12877 936981 

50S ribosomal 
protein L5  
GN=rplE  - 

[RL5_BACSU] 

A 7.19 1  8.38 1 1 3 10.16 

B 5.61 1  8.38 1 1 4 12.81 

P13800 936751 

Transcriptional 
regulatory protein 

DegU  GN=degU  - 
[DEGU_BACSU] 

A 5.29 1  9.61 1 1 6 28.20 

B 4.81 2 18.6 9.61 1 1 7 26.75 

P14016 939508 
Spore coat protein 

E  GN=cotE  - 
[COTE_BACSU] 

A 3.90 4 22.8 8.84 1 1 12 52.62 

B 4.46 6 15.9 8.84 1 1 14 39.88 

P14949 938187 

 
Thioredoxin   
GN=trxA  - 

[THIO_BACSU] 

A 3.26 1  11.54 1 1 2 5.56 

B 6.18 1  11.54 1 1 2 4.47 

P17889 939630 
Translation 

initiation factor IF-
A 6.71 2 7.3 1.54 1 1 4 5.91 

B 6.54 1  1.54 1 1 6 12.10 



2  GN=infB  - 
[IF2_BACSU] 

P21881 936005 

Pyruvate 
dehydrogenase E1 
component subunit 
alpha  GN=pdhA  - 
[ODPA_BACSU] 

A 3.71 1  3.77 1 1 3 9.23 

B 6.15 1  3.77 1 1 1 2.31 

P24137 936410 

Oligopeptide 
transport ATP-
binding protein 

OppF  GN=oppF  - 
[OPPF_BACSU] 

A 2.13 2 1.4 6.56 1 1 8 29.34 

B 2.18 3 2.0 6.56 1 1 9 25.96 

P34956 937303 

Quinol oxidase 
subunit 1  

GN=qoxB  - 
[QOX1_BACSU] 

A 9.78 1  1.69 1 1 3 6.31 

B 8.23 1  1.69 1 1 3 7.45 

P37808 936995 

ATP synthase 
subunit alpha  
GN=atpA  - 

[ATPA_BACSU] 

A 2.19 10 11.7 5.98 3 3 68 166.79 

B 1.93 11 11.0 5.98 3 3 55 129.84 

P39062 937324 

Acetyl-coenzyme A 
synthetase  

GN=acsA  - 
[ACSA_BACSU] 

A 11.33 1  1.92 1 1 3 5.65 

B 15.31 2 1.2 1.92 1 1 4 7.79 

P54423 936350 
Cell wall-associated 
protease  GN=wprA  
- [WPRA_BACSU] 

A 2.99 2 16.8 2.46 1 1 7 30.33 

B 3.75 2 19.9 2.46 1 1 8 34.79 

P80239 938147 

Alkyl 
hydroperoxide 

reductase subunit C  
GN=ahpC  - 

[AHPC_BACSU] 

A 2.03 2 8.3 17.11 2 2 2 6.08 

B 1.69 1  9.63 1 1 1 2.31 

P80698 936610 

Trigger factor  
GN=tig  - 

[TIG_BACSU] 
 

A 2.00 2 13.7 4.01 1 1 6 26.15 

B 2.78 1  17.69 3 3 9 29.57 

Q04747 938303 

Surfactin synthase 
subunit 2  

GN=srfAB  - 
[SRFAB_BACSU] 

A 4.10 1  1.31 2 3 8 17.77 

B 2.22 1  2.29 4 4 7 18.63 

 



Supporting Information 1 Detailed information about proteins identified as differentially expressed by quantitative proteomics by stable isotope 

dimethyl labeling. The dataset is relative to the differential proteomic analysis of the NPs treated condition compared with the control colony 

biofilm and to biological replicates results with the same trend of regulation: Heavy/Light (Experiment A) or Light/Heavy (Experiment B) = 

NPs/Ctrl. In the table are listed the following parameters: alphanumeric unique protein sequence identifier (Accession), protein name (Description), 

protein identifier characters with a naming convention [Entry name] provided by UniProtKB/Swiss-Prot protein knowledgebase; numeric unique 

gene sequence identifier (Gene ID) provided by NCBI and gene name; percentage of protein sequence covered by identified peptides (Coverage); 

ratio of the quantification values of the heavy and light quantification channels (Heavy/Light or Light/Heavy = Nanoparticles/Ctrl), number of 

peptide ratios that were actually used to calculate the protein ratio (Heavy/Light or Light/Heavy Count); the variability of the peptide ratios that 

were used to calculate the protein ratio Heavy/Light or Light/Heavy (Variability [%]); number of peptides unique to the protein (# Unique Peptides), 

number of the identified peptides matching to the protein (# Peptides), total number of identified peptide sequences (peptide spectrum matches) (# 

PSMs), protein identification’s SEQUEST Score. 



Accession 
Experi
ment 

Sequence 
MH+ 
[Da] 

Charge 
m/z 
[Da] 

Mass Error 
# Missed 

Cleavages 
Modifications RT # PSMs 

NPs/
Ctrl 
ratio 

NPs/
Ctrl 

Coun
t 

NPs/Ctrl 
Variability 

[%] 

q-
Value 

PEP 

O31669 

A LNPGDLISVPENIR 1568.89 2 784.95 
-0.89 mmu/-

1.13 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
41.43 5 1.90 2 1.58 0 

0.0000091
46 

B LNPGDLISVPENIR 1564.86 2 782.93 
-3.65 mmu/-

4.67 ppm 
0 

N-
Term(Dimethyl) 

39.73 4 2.17 1  0 0.001979 

O32119 

A 

DGGDCELVDVDEGIVK 1775.84 2 888.42 
-0.93 mmu/-

1.05 ppm 
0 

N-
Term(Dimethyl); 
C5(Carbamidom

ethyl); 
K16(Dimethyl) 

34.85 1    0 0.05299 

DGGDCELVDVDEGIVK 1783.88 2 892.45 
-1.2 mmu/-
1.34 ppm 

0 

N-
Term(Dimethyl:

2H(4)); 
C5(Carbamidom

ethyl); 
K16(Dimethyl:2

H(4)) 

34.93 2 2.11 1  0 0.001858 

B DGGDCELVDVDEGIVK 1775.83 2 888.42 
-4.54 mmu/-

5.11 ppm 
0 

N-
Term(Dimethyl); 
C5(Carbamidom

ethyl); 
K16(Dimethyl) 

33.82 4 4.64 2 26.01 0 0.000477 

O32165 

A ALIDIENEDKTLYVQR 1984.12 3 662.04 
-0.97 mmu/-

1.46 ppm 
1 

N-
Term(Dimethyl:

2H(4)); 
K10(Dimethyl:2

H(4)) 

36.63 3 11.08 1  0 4.002E-07 

B ALIDIENEDKTLYVQR 1976.06 3 659.36 
-3.05 mmu/-

4.62 ppm 
1 

N-
Term(Dimethyl); 
K10(Dimethyl) 

35.34 4 9.96 1  0 0.002172 

O34714 

A 

LLEQEPIESEGGK 1484.78 2 742.90 
-0.73 mmu/-

0.98 ppm 
0 

N-
Term(Dimethyl); 
K13(Dimethyl) 

25.37 2 1.53 1  0 0.06406 

LLEQEPIESEGGK 1492.83 2 746.92 
-1.18 mmu/-

1.58 ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K13(Dimethyl:2

H(4)) 

25.39 1    0 0.006101 

B 

 
 

LLEQEPIESEGGK 
 

 

1484.78 2 742.89 
-4.52 mmu/-

6.08 ppm 
0 

N-
Term(Dimethyl); 
K13(Dimethyl) 

24.27 3 1.77 1  0 0.004511 



P12425 

A EIEWDMFR 1157.56 2 579.28 
-0.17 mmu/-

0.29 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
43.28 4 4.05 1  0 0.09111 

B EIEWDMFR 1153.53 2 577.27 
-2.75 mmu/-

4.77 ppm 
0 

N-
Term(Dimethyl) 

41.31 3 3.58 1  0 0.002036 

P12877 

A EQLIFPEIDYDKVTK 1934.13 3 645.38 
-0.62 mmu/-

0.96 ppm 
1 

N-
Term(Dimethyl:

2H(4)); 
K12(Dimethyl:2

H(4)); 
K15(Dimethyl:2

H(4)) 

41.07 3 7.19 1  0 3.336E-08 

B EQLIFPEIDYDKVTK 1922.05 3 641.35 
-2.37 mmu/-

3.7 ppm 
1 

N-
Term(Dimethyl); 
K12(Dimethyl); 
K15(Dimethyl) 

39.37 4 5.61 1  0 0.0002059 

P13800 

A 
ILDFEPTFEVVAEGDDG

DEAAR 
2427.15 2 1214.08 

+0.15 
mmu/+0.12 

ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
45.23 6 5.29 1  0 2.683E-09 

B 
ILDFEPTFEVVAEGDDG

DEAAR 
2423.11 2 1212.06 

-6.34 mmu/-
5.23 ppm 

0 
N-

Term(Dimethyl) 
43.08 7 4.81 2 18.60 0 9.189E-10 

P14016 

A YRDNNYLDDEHEVIAK 2058.03 3 686.68 
-1.35 mmu/-

1.96 ppm 
1 

N-
Term(Dimethyl:

2H(4)); 
K16(Dimethyl:2

H(4)) 

28.09 12 3.90 4 22.76 0 4.948E-11 

B YRDNNYLDDEHEVIAK 2049.98 3 684.00 
-3.61 mmu/-

5.28 ppm 
1 

N-
Term(Dimethyl); 
K16(Dimethyl) 

27.30 14 4.46 6 15.90 0 2.928E-11 



P14949 

A IDVDENQETAGK 1382.72 2 691.87 
-0.9 mmu/-

1.3 ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K12(Dimethyl:2

H(4)) 

20.44 2 3.26 1  0 
0.0000658

8 

B IDVDENQETAGK 1374.67 2 687.84 
-4.55 mmu/-

6.61 ppm 
0 

N-
Term(Dimethyl); 
K12(Dimethyl) 

19.87 2 6.18 1  0 0.03143 

P17889 

A LSLDDLFEQIK 1384.82 2 692.91 
0 mmu/0 

ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K11(Dimethyl:2

H(4)) 

51.29 4 6.71 2 7.25 0 0.01852 

B LSLDDLFEQIK 1376.76 2 688.88 
-3.1 mmu/-
4.49 ppm 

0 
N-

Term(Dimethyl); 
K11(Dimethyl) 

49.18 6 6.54 1  0 0.00699 

P21881 

A EIENEWEQKDPLVR 1848.99 3 617.00 
-0.86 mmu/-

1.4 ppm 
1 

N-
Term(Dimethyl:

2H(4)); 
K9(Dimethyl:2H

(4)) 

33.97 3 3.71 1  0 0.0001206 

B EIENEWEQKDPLVR 1840.93 3 614.32 
-3.86 mmu/-

6.29 ppm 
1 

N-
Term(Dimethyl); 

K9(Dimethyl) 
32.57 1 6.15 1  0.043 0.319 

P24137 

A 

LVELAPADELYENPLHP
YTK 

2368.24 3 790.09 
-0.41 mmu/-

0.52 ppm 
0 

N-
Term(Dimethyl); 
K20(Dimethyl) 

41.98 1    0 0.08422 

LVELAPADELYENPLHP
YTK 

2376.29 3 792.77 
-1.32 mmu/-

1.66 ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K20(Dimethyl:2

H(4)) 

41.88 7 2.13 2 1.37 0 6.023E-11 

B 

LVELAPADELYENPLHP
YTK 

2368.23 3 790.08 
-3.59 mmu/-

4.54 ppm 
0 

N-
Term(Dimethyl); 
K20(Dimethyl) 

40.22 7 2.29 2 9.69 0 1.175E-07 

LVELAPADELYENPLHP
YTK 

2376.28 3 792.76 
-4.92 mmu/-

6.21 ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K20(Dimethyl:2

H(4)) 

40.45 2 2.18 1  0 
0.0000016

23 

P34956 
A EISGDSWGVGR 1194.60 2 597.81 

-0.7 mmu/-
1.16 ppm 

0 
N-

Term(Dimethyl:
2H(4)) 

28.44 3 9.78 1  0 0.0005899 

B EISGDSWGVGR 1190.57 2 595.79 
-3.89 mmu/-

6.53 ppm 
0 

N-
Term(Dimethyl) 

27.22 3 8.22 1  0 0.001844 



P37808 

A 

AIDALIPIGR 1070.68 2 535.84 
-2.76 mmu/-

5.15 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
38.36 52 2.15 7 4.43 0 

0.0000078
1 

IMEVPVGEELIGR 1473.83 2 737.42 
-0.62 mmu/-

0.84 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
39.94 12 22.79 2 14.35 0 0.0001247 

ELIIGDR 847.52 2 424.26 
-0.52 mmu/-

1.22 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
27.64 4 2.45 1  0 0.01237 

B 

AIDALIPIGR 1066.66 2 533.83 
-2.66 mmu/-

4.98 ppm 
0 

N-
Term(Dimethyl) 

37.83 42 1.82 8 5.48 0 
0.0000027

94 

IMEVPVGEELIGR 1469.80 2 735.40 
-3.02 mmu/-

4.1 ppm 
0 

N-
Term(Dimethyl) 

38.42 6    0 
0.0000981

6 

ELIIGDR 843.49 2 422.25 
-2.06 mmu/-

4.89 ppm 
0 

N-
Term(Dimethyl) 

26.56 5 3.16 2 21.22 0 0.01187 

IMEVPVGEELIGR 1485.79 2 743.40 
-3.34 mmu/-

4.5 ppm 
0 

N-
Term(Dimethyl); 
M2(Oxidation) 

34.34 2 12.46 1  0 0.03847 

P39062 

A VVVTTPELLER 1287.78 2 644.39 
-0.58 mmu/-

0.91 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
35.04 3 11.33 1  0 0.05031 

B VVVTTPELLER 1283.75 2 642.38 
-3.35 mmu/-

5.22 ppm 
0 

N-
Term(Dimethyl) 

34.01 4 15.31 2 1.16 0 0.05848 

P54423 

A 

VEYLGEEEPEDGGTAEA
AAEAK 

2321.07 2 1161.04 
-0.31 mmu/-

0.27 ppm 
0 

N-
Term(Dimethyl); 
K22(Dimethyl) 

28.56 4 3.34 1  0 
0.0001031

52 

VEYLGEEEPEDGGTAEA
AAEAK 

2329.12 2 1165.06 
-1 mmu/-
0.86 ppm 

0 

N-
Term(Dimethyl:

2H(4)); 
K22(Dimethyl:2

H(4)) 

28.65 3 2.67 1  0 2.419E-11 

B 
VEYLGEEEPEDGGTAEA

AAEAK 
2321.05 2 1161.03 

-7.15 mmu/-
6.16 ppm 

0 
N-

Term(Dimethyl); 
K22(Dimethyl) 

27.54 8 3.75 2 19.87 0 1.969E-13 

P80239 

A 

NFDVLDEETGLADR 1625.79 2 813.40 
-0.74 mmu/-

0.91 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
37.98 1 1.92 1  0 2.414E-08 

WEEGGETLTPSLDLVGK
I 

2008.11 2 1004.56 
-1.6 mmu/-

1.6 ppm 
1 

N-
Term(Dimethyl:

2H(4)); 
K17(Dimethyl:2

H(4)) 

46.40 1 2.15 1  0 0.0008343 

B 
WEEGGETLTPSLDLVGK

I 
2000.05 2 1000.53 

-6.59 mmu/-
6.59 ppm 

1 
N-

Term(Dimethyl); 
K17(Dimethyl) 

44.55 1 1.69 1  0 0.001262 



P80698 

A 

AENLEVSDEEVDAELTK 1946.95 2 973.98 
+0.59 

mmu/+0.61 
ppm 

0 
N-

Term(Dimethyl); 
K17(Dimethyl) 

33.82 1    0 0.002135 

AENLEVSDEEVDAELTK 1954.99 2 978.00 
-0.4 mmu/-
0.41 ppm 

0 

N-
Term(Dimethyl:

2H(4)); 
K17(Dimethyl:2

H(4)) 

33.88 5 2.00 2 13.65 0 
1.27935E-

13 

B 

AENLEVSDEEVDAELTK 1946.94 2 973.97 
-4.17 mmu/-

4.28 ppm 
0 

N-
Term(Dimethyl); 
K17(Dimethyl) 

32.62 3    0 1.238E-11 

ELPELDDEFAKDIDEEVE
TLAELTEK 

3104.51 4 776.88 
-3.95 mmu/-

5.08 ppm 
1 

N-
Term(Dimethyl); 
K11(Dimethyl); 
K26(Dimethyl) 

61.27 4    0 
0.0000022

19 

AENLEVSDEEVDAELTK 1954.98 2 977.99 
-6.02 mmu/-

6.16 ppm 
0 

N-
Term(Dimethyl:

2H(4)); 
K17(Dimethyl:2

H(4)) 

32.81 1 2.78 1  0 
1.52082E-

08 

EFEQRLQMQGMNLELY
TQFSGQDEAALKEQMK 

3964.92 5 793.79 
-5.59 mmu/-

7.04 ppm 
2 

N-
Term(Dimethyl:

2H(4)); 
M8(Oxidation); 

M11(Oxidation); 
K28(Dimethyl:2

H(4)); 
M31(Oxidation); 
K32(Dimethyl:2

H(4)) 

47.81 1    0 0.003066 

Q04747 

A 

QADQGPVEGEVILTPIQR 1982.08 2 991.55 
-1.39 mmu/-

1.4 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
35.63 3    0 2.548E-09 

QFLEDPFRPGER 1522.79 3 508.27 
-1.25 mmu/-

2.46 ppm 
0 

N-
Term(Dimethyl:

2H(4)) 
36.30 4 4.10 1  0 0.01544 

VSFEIVDLYGSDEEMLR 2034.01 2 1017.51 
+2.41 

mmu/+2.37 
ppm 

0 
N-

Term(Dimethyl:
2H(4)) 

47.76 1    0.003 0.1061 

B 

QADQGPVEGEVILTPIQR 1978.05 2 989.53 
-5.62 mmu/-

5.68 ppm 
0 

N-
Term(Dimethyl) 

34.17 3    0 6.871E-09 

EQTNYQKDEEYWLDVF
KGELPILDLPADFERPAE

R 
4338.13 5 868.43 

-6.44 mmu/-
7.42 ppm 

2 

N-
Term(Dimethyl); 
K7(Dimethyl); 
K17(Dimethyl) 

58.81 2 2.22 1  0 0.006192 

QFLEDPFRPGER 1518.76 3 506.93 
-2.75 mmu/-

5.43 ppm 
0 

N-
Term(Dimethyl) 

35.29 1    0 0.05884 

VSFEIVDLYGSDEEMLR 2029.97 2 1015.49 
-6.15 mmu/-

6.06 ppm 
0 

N-
Term(Dimethyl) 

45.63 1    0.035 0.2962 

 



Supporting Information S2 Information about peptides from proteins identified by LC-ESI-MS/MS experiments. The dataset is relative to the 

differential proteomic analysis of the NPs treated condition compared with the control colony biofilm and to biological replicates results with the 

same trend of regulation: Heavy/Light (Experiment A) or Light/Heavy (Experiment B) = Nanoparticles (NPs) / Ctrl. In the table are listed the peptides 

following parameters: alphanumeric unique protein sequence identifier (Accession) to which the peptide corresponds; the identified amino acidic 

peptide Sequence; the calculated protonated monoisotopic peptide mass, in daltons [MH+ (Da)]; Charge state of the precursor ion; mass-to-charge 

ratio (m/z) of the precursor ion, in daltons; the calculated peptide Mass Error in milli-mass units or parts per million (mmu/ppm); number of Missed 

Cleavages; peptides Modification [Dimethyl = Light labeling = + 28.03130 Da; Dimethyl:2H(4) = Heavy labeling = + 32.05641 Da; Carbamidomethyl 

= + 57.02146 Da; Oxidation = + 15.99492 Da] at the reported amino acids position or peptides N-terminal; retention time of the precursor ion, in 

minutes (RT); total number of identified peptide sequences (peptide spectrum matches) (# PSMs); ratio of the quantification values of the heavy and 

light quantification channels (Heavy/Light or Light/Heavy = NPs/Ctrl), number of peptide ratios that were actually used to calculate the protein ratio 

(NPs/Ctrl Count); the variability of the peptide ratios that were used to calculate the protein ratio Heavy/Light or Light/Heavy (NPs/Ctrl Variability 

[%]);the Percolator q-value ( = false discovery rate) and posterior error probability (PEP) values that discriminate correct from incorrect peptide 

spectrum matches and calculates accurate statistics. 



 

Molecular 
Function 

# proteins B. 
subtilis 

Reference 
list 

# proteins 
NPs/Ctrl list 

(experimental) 

# proteins 
NPs/Ctrl list 
(expected) 

Over 
representation 

p-value 
UniProtK
B Protein 
Accession 

GO Molecular 
Function 

UniProtK
B Protein 
Accession 

GO Molecular Function 

oxidoreductase 
activity 

316 7 1.43 + 4.87E-02 P17889 

GTPase 
activity;translation 

initiation factor 
activity;translation 
elongation factor 

activity;translation 
initiation factor 

activity;translation 
elongation factor 
activity;protein 

binding;translation 
initiation factor 

activity;translation 
elongation factor 

activity 

P17889 
 

GTPase activity;translation initiation factor 
activity;translation elongation factor activity; translation 

initiation factor activity;translation elongation factor 
activity;protein binding;translation initiation factor 

activity;translation elongation factor activity  
P24137 

 
ATPase activity, coupled to transmembrane movement of 

substances;transmembrane transporter activity 
P34956 

 
oxidoreductase activity 

O31669 
 

oxidoreductase activity 

P21881 
 

oxidoreductase activity 

O32119 
 

 

O32165 
 

protein binding 

O34714 
 

 

P13800 
 

methyltransferase activity;protein kinase activity 

P80698 
 

 

P37808 
 

hydrolase activity;receptor activity;anion channel 
activity;ligand-gated ion channel activity;cation 

transmembrane transporter activity;proton-transporting 
ATP synthase activity, rotational mechanism;single-

stranded 
DNA binding 

P14949 
 

oxidoreductase activity 

P12425 
 

ligase activity 

P12877 
 

structural constituent of ribosome;nucleic acid binding 

P14016 
 

 

P39062 
 

oxidoreductase activity;ligase activity 

P54423 
 

serine-type peptidase activity 

Q04747 
 

oxidoreductase activity;ligase activity 

P80239 
 

oxidoreductase activity;peroxidase activity 



  

Supporting Information 3 Functional characterization of the proteins modulated in expression belonging to the dataset relative to proteomic 

analysis of the NPs treated condition compared with the control colony biofilm. PANTHER Statistical over-representation test has been used to 

search for under- and over-represented biological processes. In the table are listed the following parameters: Molecular Function Category; number 

of reference database proteins (total 4193 proteins of B. subtilis) related to the specific category; number of experimental proteins related to the 

specific category; number of expected proteins related to the specific category for the experimental dataset; trend of over-representation; calculated 

p-value; accession number of the differentially expressed proteins with their Gene Ontology molecular functions (bold proteins contribute to the 

over-represented function). 

 



 

 

Supporting Information 4 ATP concentration in colony biofilm of B. subtilis in the presence of 0 and 10 mg/l 

of Ag-NPs over time. Data represent the means + the SD of three independent measurements. The 

histograms provide the p-values obtained by ANOVA analysis. Posthoc comparison results (Tukey’s HSD, p 

<0.05) are summarized with asterisks to underline the most relevant differences of Ag-NPs treated samples 

with respect to control 
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2 
 

Abstract  25 

Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections 26 

in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if 27 

not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is 28 

important for the development of novel treatment regimes. Generating deletion mutations in genes 29 

predicted to encode virulence determinants is fundamental to investigating the mechanisms of 30 

pathogenesis. However, there is a lack of appropriate selectable and counter-selectable markers for 31 

use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-32 

compatible allelic exchange system based on the counter-selectable pheS gene and I-SceI homing 33 

endonuclease. The system provides efficiency in cloning homology regions of target genes, and 34 

allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of 35 

concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a c-di-GMP responsive 36 

regulator protein important for biofilm formation.       37 

 38 

Introduction   39 

Burkholderia cenocepacia is a member of a group of closely related Gram-negative bacteria referred 40 

to as the Burkholderia cepacia complex (Bcc). Bcc contains at least 18 different species that thrive in 41 

diverse ecological niches including clinical, industrial and natural environments. These bacteria 42 

possess very large genomes separated in multiple replicons and hence are considered one of the most 43 

versatile groups of Gram-negative bacteria (1, 2). Some Bcc species have biotechnological potential 44 

use in processes such as enhancement of plant growth or breakdown of pollutants, while others are 45 

opportunistic pathogens causing life-threatening infections in immunocompromised individuals and 46 

in patients with cystic fibrosis (CF) (3). Although all members of Bcc have been isolated from CF 47 



3 
 

patients, B. cenocepacia accounts for the majority of these isolates, comprising the most virulent and 48 

transmissible strains, associated with poor clinical course and high mortality (4).  Therefore, research 49 

on the virulence mechanisms of Bcc bacteria has largely focused on B. cenocepacia.  50 

The genomes of several B. cenocepacia strains have recently been sequenced (5, 6, 7), enabling 51 

bioinformatics-based predictions of virulence determinants in this pathogen. Although a number of 52 

genes associated with virulence in B. cenocepacia has been identified (4, 8, 9) and tested in various 53 

infection models (10, 11), it seems likely that the list of the genes implicated in virulence is far from 54 

complete and will expand with genetic tools becoming available to manipulate B. cenocepacia 55 

strains. The deletion of genes potentially associated with virulence is a powerful way to investigate 56 

their function in bacterial physiology and pathogenesis. Most of the virulence traits of B. 57 

cenocepacia, such as antibiotic resistance, motility, biofilm formation, cell invasion and intracellular 58 

survival, are multifactorial involving more than one gene, thus multiple gene deletions may need to 59 

be generated in one strain to fully assess the genetic basis of a particular virulence trait. This requires 60 

an efficient method to generate gene deletions, which are preferably not marked with antibiotic 61 

resistance cassettes, as this would prevent the ability to mutate more than a single gene in one 62 

particular strain, and moreover, may cause polar effects on adjacent genes. During the past few years 63 

a number of elegant systems has been developed for generation of unmarked gene deletions in B. 64 

cenocepacia (12, 13) as well as in other Burkholderia species (14, 15, 16). In these systems regions 65 

of homology containing a mutant allele of a target gene are cloned into a suicide vector. These 66 

vectors are then transferred into the bacterial host by conjugation. The integration of the plasmid into 67 

the chromosome by homologous recombination is selected by antibiotic resistance encoded by a 68 

gene on the plasmid, leading to formation of merodiploids, which contain both the mutant and wild 69 

type alleles of the target gene. The resolution of merodiploids by excision of the integrated plasmid 70 

in a second homologous recombination event results in a population of cells in which a significant 71 
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fraction contains the desired gene deletion. This latter step usually requires counter-selection for the 72 

integrated plasmid since the second homologous recombination can be an exceptionally rare event. 73 

Sucrose counter-selection based on the sacB gene (15, 17), and an engineered counter selectable 74 

marker based on the Burkholderia pseudomallei pheS gene encoding the α-subunit of phenylalanyl 75 

tRNA synthase (14 ) have been used in some Burkholderia species. However, they appear to be 76 

inappropriate and leaky counter selectable markers for generation of B. cenocepacia gene deletions 77 

in our laboratory.  Another way to stimulate the second homologous recombination event and 78 

consequently the resolution of merodiploids is based on the yeast homing endonuclease I-SceI, 79 

which recognizes a specific 18-bp sequence (12, 15). After an allelic exchange vector carrying the I-80 

SceI recognition site has integrated into the chromosome, a replicative second plasmid constitutively 81 

expressing the I-SceI enzyme is introduced into the merodiploid bacteria. The I-SceI enzyme creates 82 

a double-stranded DNA break at the I-SceI site within the integrated plasmid, which stimulates a 83 

second homologous recombination event by the host’s DNA repair system. The excision of the 84 

integrated plasmid results in a population of cells carrying either the wild type or the mutant allele, 85 

which can be identified by PCR and partial sequencing.  86 

Another major limitation of allelic exchange vectors for Burkholderia species is their dependence on 87 

restriction and ligation enzymes for cloning. Restriction-free cloning based on the Gateway 88 

recombineering technology (18) is an alternative method that can expedite the construction of gene 89 

replacement vectors containing mutant alleles. 90 

Here we present a Gateway-compatible allelic exchange system for Burkholderia species that utilizes 91 

the I-SceI homing endonuclease and pheS-based counter-selection. We further describe the 92 

application of this system for generating in-frame and unmarked gene deletions in B. cenocepacia 93 

H111. As a proof of concept, we describe the deletion and complementation of the Bcam1349 gene, 94 

which is a regulator of biofilm formation in B. cenocepacia H111. In addition, we also provide 95 
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evidence that the system can be used to make gene deletions in Burkholderia thailandensis, 96 

indicating that it may be used in other Burkholderia species as well. 97 

 98 

Experimental procedures  99 

Strains, plasmids, and growth conditions  100 

The bacterial strains and plasmids used in this study are listed in Table 1. All B. cenocepacia and 101 

Escherichia coli strains were grown at 37°C. Luria broth (LB) medium was used for overnight batch 102 

cultivation of all bacteria unless otherwise stated. Solid media were prepared with 2% (w/v) agar. 103 

Eighty micrograms tetracycline (Tet) mL-1 (liquid medium), 120 micrograms µg Tet mL-1 (solid 104 

medium), 25 µg gentamicin-sulfate (Gm) mL-1, 100 µg kanamycin-sulfate (Km) mL-1 and 100 µg 105 

trimethoprim (Tp) mL-1 were used for B. cenocepacia strains, and 20 µg Tet mL-1, 10 µg Gm mL-1, 106 

50 µg Km mL-1, 50 µg Tp mL-1, 100 µg ampicillin (Ap) mL-1 and 25 µg chloramphenicol (Cm) mL-1 107 

were used for E. coli strains where appropriate. After conjugal transfer of plasmids into B. 108 

cenocepacia, AB-agar medium (19) supplemented with 10 mmolL-1 Na-citrate and appropriate 109 

antibiotics were used to select for B. cenocepacia tranconjugants. For use in self curing of the pDAI-110 

SceI-pheS plasmid, 0.1% (w/v) p-chlorophenylalanine (cPhe; DL-4- chlorophenylalanine; Sigma-111 

Aldrich) was autoclaved together with B-salts solution, and A-salts solution and the carbon source of 112 

choice were added thereafter.   113 

Construction of Gateway-compatible allelic exchange vectors  114 

The attB1 and attB2 flanked Gateway donor site was amplified by PCR from pDONR221 using the 115 

primers GWE-SceI-F (flanked by HindIII and I-SceI restriction sites) and GWE-R (flanked by XbaI 116 

site). The resulting 2.6-kb PCR product was digested with HindIII and XbaI, and cloned into 117 

HindIII/XbaI digested plasmids pEX18Tp-pheS, pEX18Gm-pheS and pEX18Km-pheS (14), 118 



6 
 

resulting in the allelic exchange vectors pDONRPEX18Tp-SceI-pheS, pDONRPEX18Gm-SceI-pheS 119 

and pDONRPEX18Km-SceI-pheS, respectively (Fig. 1). The insertion of the Gateway donor site was 120 

confirmed by restriction analysis and partial sequencing of the newly generated vectors. These 121 

vectors are maintained in E. coli DB3.1 strain, which contains a gyrA462 mutation (Invitrogen). 122 

Construction of the I-SceI expression vector pDAI-SceI-pheS       123 

To construct pDAI-SceI-pheS (Fig. 1), a ~1.2-kb fragment containing the pheS gene was excised 124 

from pUC57-pheS (14) by restriction with XbaI and SphI, and was ligated into the XbaI/SphI 125 

digested plasmid pDAI-SceI (12). The presence of the insertion was verified by restriction analysis. 126 

Construction of the gene replacement vector pENTRPEX18Tp-SceI-pheS-Bcam1349  127 

The upstream fragment of Bcam1349 gene was amplified using the primers Bcam1349-UpF-GWR 128 

and Bcam1349-UpR-tail, and the downstream fragment of Bcam1349 gene was amplified using the 129 

primers Bcam1349-DnF and Bcam1349-DnR-GWL (Table 2). Both fragments were amplified using 130 

Phusion High-Fidelity DNA polymerase (Thermo Scientific) according to the manufacturer’s 131 

instructions and the following thermal cycling conditions: 98 °C for 2 min; 25 cycles of 98 °C for 15 132 

sec, 64 °C for 30 sec and 72 °C for 1 min; a final extension step of 72 °C for 7 min. The PCR 133 

fragments were purified using Wizard SV Gel and PCR Clean-Up System (Promega), and their 134 

concentrations were determined spectrophotometrically. The up- and downstream fragments were 135 

fused together and amplified using the primers GW-attB1 and GW-attB2 (Table 2) in splicing-by-136 

overlap extension (SOE) PCR (20) to generate the Bcam1349 mutant allele as follows. Equal 137 

amounts (50 ng) of each up- and downstream fragments and the other components of the PCR 138 

reaction except the primers GW-attB1 and GW-attB2 were mixed. The PCR reaction was carried out 139 

using the following thermal cycling conditions: 98 °C for 2 min; 3 cycles of 98 °C for 15 sec, 64 °C 140 

for 30 sec and 72 °C for 1 min; and a final extension step of 72 °C for 1 min. The final extension step 141 

was paused at 30 sec, the primers GW-attB1 and GW-attB2 were added, and the thermal cycling was 142 
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continued with 27 cycles of 98 °C for 15 sec, 64 °C for 30 sec and 72 °C for 2 min; and a final 143 

extension step of 72 °C for 7 min. The PCR product was then purified and verified by restriction 144 

analysis.  145 

BP clonase reaction for recombinational transfer of the mutant allele into the allelic exchange vector 146 

pDONRPEX18Tp-SceI-pheS was performed at 25 °C overnight as described in the Gateway cloning 147 

manual (Invitrogen), using only half of the recommended amount of BP Clonase II enzyme mix 148 

(Invitrogen). The BP clonase reaction product was transferred into chemically competent E. coli 149 

DH5α cells. The transformants growing on LB-agar plates containing 50 µg Tp mL-1 were screened 150 

by colony PCR using the primers GWE-SceI-F and GWE-R for insertion of the deletion allele. A 151 

number of positive clones were streaked on LB-agar plates containing 50 µg Tp mL-1 for 152 

purification, plasmid isolation and partial sequencing.  153 

Construction of pYedQ2 and the complementation plasmid pMF564  154 

The pYedQ2 plasmid which was used to elevate intracellular c-di-GMP levels was constructed as 155 

follows. The yedQ expression cassette was excised from the plasmid pYedQ (21) by restriction with 156 

BamHI and HindIII, and was inserted into the BamHI/HindIII digested broad-host-range cloning 157 

vector pBBR1MCS-5 (22). The presence of the insertion was confirmed by restriction analysis.    158 

The complementation plasmid pMF564 was constructed as follows. The vector pBBR1MCS-5 was 159 

digested with SphI and blunt-ended by T4 DNA polymerase. The linearized vector was further 160 

digested with XbaI and de-phosphorylated by shrimp-alkaline phosphatase. The SphI/XbaI digestion 161 

removed the Plac promoter and the related regulatory sequences from the plasmid. A ~1.5-kb 162 

fragment containing the Bcam1349 gene and its ~0.7-kb upstream DNA sequence was PCR 163 

amplified using the primers Bcam1349-RBS-F and Bcam1349-RBS-R, which were flanked by SmaI 164 

and XbaI restriction sites, respectively. The PCR fragment was digested with SmaI and XbaI and 165 
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cloned into the previously linearized vector, yielding the complementation plasmid pMF564. The 166 

presence of the insertion was confirmed by restriction analysis.  167 

Mutagenesis of B. cenocepacia H111  168 

The gene replacement vector pENTRPEXTp-SceI-pheS-Bcam1349 was introduced by conjugation 169 

into B. cenocepacia via tri-parental mating as described previously (23). The co-integrants were 170 

selected for Tp resistance on AB-citrate agar plates containing 100 µg Tp mL-1. Four Tp resistant 171 

colonies were streaked on the same selective plates, and the growing colonies were screened for 172 

integration of the plasmid by colony PCR using the primers Bcam1349-F and Bcam1349-R (Table 173 

2). A single positive merodiploid clone was transformed with pDAI-SceI-pheS by tri-parental mating 174 

to stimulate the second homologous recombination event and resolve the merodiploid state. The 175 

transconjugants were screened for Tet resistance on AB-citrate agar plates containing 120 µg Tet 176 

mL-1. Batches of 10 Tet resistant colonies were screened for the loss of the wild type allele and the 177 

presence of the desired gene deletion by colony PCR using the primers Bcam1349-F and Bcam1349-178 

R. Two positive clones were purified by streaking and growing on AB-citrate agar plate. Thereafter a 179 

single colony for each clone was picked and grown in 1 ml AB-glucose medium containing 0.1% 180 

(w/v) cPhe at 37 °C overnight in order to stimulate the loss of pDAI-SceI-pheS via the counter-181 

selectable marker pheS on the plasmid. Ten-fold serial dilutions of the overnight grown cultures were 182 

plated on LB-agar plates without any antibiotic, and 20 of the growing colonies for each clone were 183 

patched on LB-agar plates with or without tetracycline using sterile tooth pick to screen for Tet 184 

sensitivity, which indicated the loss of the plasmid pDAI-SceI-pheS. A single positive colony for 185 

each clone was selected and stored at -80 °C.  186 

Phenotypic characterization of the B. cenocepacia Bcam1349 deletion mutant  187 

The colony morphology, pellicle formation and flow-cell biofilm formation assays were performed 188 

as described previously (24).  189 
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 190 

Results and Discussion  191 

Features of the Gateway-compatible allelic exchange vectors  192 

The allelic exchange vectors pEX18Tp-pheS, pEX18Gm-pheS and pEX18Km-pheS, which contain 193 

different antibiotic resistance markers, were first described by Barrett and colleagues (14). These 194 

vectors are derivatives of a set of pEX-family vectors (25) in which the counter-selectable marker 195 

sacB gene was replaced with a mutant allele of the B. pseudomallei pheS gene. Here, we modified 196 

these vectors for use as Gateway-compatible donor vectors to clone regions of homology containing 197 

the deleted allele of a target gene. This was carried out by cloning the Gateway donor cassette from 198 

pDONR221 into the multicloning site of the above vectors. The 18-bp I-SceI recognition site was 199 

incorporated into the vectors as a tail to the forward primer during PCR amplification of the donor 200 

cassette. The resulting vectors (Fig. 1) contain sequences attP1 and attP2 required for 201 

recombination-based cloning and the ccdB gene as a counter selectable marker, which kills gyrA+ 202 

host cells such as E. coli DH5α by inducing gyrase-mediated double-stranded DNA breaks, 203 

providing positive selection for E. coli clones bearing plasmids with cloned inserts. Additionally, the 204 

vectors contain the counter-selectable pheS gene (14) driven by the PS12 promoter of the B. 205 

pseudomallei rpsL gene (26) and the I-SceI recognition site for downstream resolution of 206 

merodiploids. Although the mutant pheS gene was shown to be efficient in killing Burkholderia 207 

thailandensis cells in the presence of cPhe when expressed as a single copy from the gene 208 

replacement vector integrated on the chromosome (14), it was inefficient in killing B. cenocepacia 209 

H111 cells, and the resolution of merodiploids was almost impossible when the cells were grown in 210 

the presence of cPhe. Therefore, we incorporated the I-SceI site into the gene replacement vectors for 211 

downstream resolution of merodiploids. We preferred to keep the pheS gene on the gene replacement 212 
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vectors as it can efficiently be utilized as a counter selectable marker in strains such as B. 213 

thailandensis (14).   214 

Features of the I-SceI expression vector pDAI-SceI-pheS  215 

The vector pDAI-SceI-pheS (Fig. 1) that constitutively expresses the I-SceI endonuclease is a 216 

derivative of the vector pDAI-SceI, features of which was previously described by Flannagan and 217 

colleagues (12). Although the mutant pheS gene was not efficient in killing B. cenocepacia cells in 218 

the presence of cPhe when expressed as a single copy on the chromosome, it effectively killed 219 

almost all B. cenocepacia cells when expressed from the multicopy plasmid pBBR1MCS-Km-pheS 220 

(14) (Fig. S1), indicating that the mutant pheS gene has to be present in multiple copies in the cells to 221 

provide effective counter selection in B. cenocepacia. Based on this finding, we modified pDAI-SceI 222 

by cloning the mutant B. pseudomallei pheS gene from pUC57-pheS (14) into the multicloning site 223 

of pDAI-SceI to expedite self-curing of the plasmid. In the presence of 0.1% cPhe, the mutant pheS 224 

gene enables efficient killing of B. cenocepacia cells containing pDAI-SceI-pheS and curing of the 225 

B. cenocepacia deletion mutants from the plasmid once they are obtained after the resolution of 226 

merodiploids. In this way, the deletion mutants become ready for subsequent rounds of mutagenesis.  227 

Construction of the B. cenocepacia Bcam1349 deletion mutant  228 

Using the allelic exchange system described here, we have successfully generated gene deletions 229 

both in B. cenocepacia H111 and B. thailandensis (Supplementary material). As a proof of concept, 230 

we present the procedure that was used to delete the Bcam1349 gene. This gene encodes a c-di-GMP 231 

responsive CRP/FNR superfamily transcription factor, and regulates biofilm formation in B. 232 

cenocepacia H111 (23, 24). We previously showed that elevated intracellular levels of c-di-GMP 233 

promoted wrinkled colony formation on solid medium, robust pellicle formation at the air-liquid 234 

interface of static liquid cultures, and increased biofilm formation in flow-cells. However, despite 235 
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having high intracellular c-di-GMP levels, a transposon insertion mutant of Bcam1349 did not form 236 

wrinkled colonies, pellicle or thick flow-cell biofilms (23).  237 

We created the Bcam1349 mutant allele in two consecutive PCR rounds using three primer pairs 238 

(Table 2). Two of them were gene specific, and one of them was common and can be used routinely. 239 

Gene specific primers were designed to amplify fragments ranging from 0.8- to 1-kb in size. The 240 

fragments were chosen so that the gene specific UpF-GWR primer is placed within 10-100bp after 241 

the gene start and the gene specific primer DnR-GWL is placed within 10-100 bp before the stop 242 

codon. The gene specific primers were compared to the B. cenocepacia H111 genome to make sure 243 

that they will not fully anneal to unspecific regions in the genome. In the first PCR round, the gene 244 

specific primers were used to amplify up- and downstream homology regions of the target gene. We 245 

usually obtained single major PCR products of the right size, which were subsequently purified with 246 

a PCR clean-up kit and used in the second PCR round. However, if there are multiple bands, the 247 

entire PCR reactions should be loaded on an agarose gel and fragments with the right size should be 248 

gel extracted. In the second PCR round, equal amounts of up- and downstream PCR fragments were 249 

fused together and amplified with the common primers GW-attB1 and GW-attB2 (Table 2), 250 

incorporating the attB1 and attB2 recombination sites at either end of the deletion allele. We usually 251 

obtained a single major PCR product of the right size (~2-kb) at this step.  252 

We recombined the Bcam1349 mutant allele into pDONRPEX18Tp-SceI-pheS using BP clonase and 253 

transferred the entire BP reaction product into E. coli DH5α cells. Tp resistant transformants were 254 

selected and the presence of the correct plasmid was checked by colony PCR using the primers 255 

GWE-SceI-F and GWE-R. Alternatively M13-F and M13-R primers can be used. Plasmids were 256 

isolated from a number of positive clones, and the presence of the deletion allele was verified by 257 

restriction analysis and partial sequencing.  258 
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The resulting gene replacement vector pENTRPEX18Tp-SceI-pheS-Bcam1349 was transferred into 259 

B. cenocepacia by tri-parental mating giving rise to Tp resistant merodiploids (Fig. 2A). The 260 

integration of the nonreplicative vector into the chromosome can normally be verified by colony 261 

PCR using the gene specific UpF-GWR and DnR-GWL primers, often resulting in two PCR 262 

products corresponding to the wild type and deletion alleles (Fig. 2B). However we had to use 263 

another pair of primers, Bcam1349-F and Bcam1349-R, to verify integration of the vector, as the 264 

former primer pair did not result in any PCR products. During the generation of deletion mutants of 265 

other genes, we also noticed that it is not always possible to see a PCR product corresponding to the 266 

wild type allele as its amplification may not be favoured due to its relatively large size compared to 267 

the deletion allele. A single merodiploid clone was selected and transformed with pDAI-SceI-pheS 268 

by conjugation to stimulate the second homologous recombination event via generation of a double-269 

stranded DNA break by I-SceI endonuclease expressed from the plasmid. Depending on the location 270 

of the second recombination event, the resolution of the merodiploid state either restored the wild 271 

type allele or generated the desired gene deletion (Fig. 2A). Eight Tet resistant colonies were 272 

selected and verified for Bcam1349 deletion by colony PCR. In our experience, at least one colony 273 

always contained the desired gene deletion (Fig. 2B). Finally, the deletion mutant was cured from the 274 

plasmid pDAI-SceI-pheS by growing the mutant in liquid medium containing 0.1% cPhe as 275 

described in the experimental procedures. The counter-selection medium with cPhe should not 276 

contain any competing phenylalanine for efficient counter selection. We therefore prefer to use AB-277 

minimal medium supplemented with glucose as carbon source. However in the case of deleting 278 

genes essential for growth in minimal medium, the mutants can alternatively be cured from the 279 

plasmid pDAI-SceI-pheS by growing them in serial passages in rich medium without cPhe and Tet, 280 

which is required for maintenance of the plasmid.   281 

Phenotypic characterization of the Bcam1349 deletion mutant   282 
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We previously demonstrated that a transposon insertion mutant of Bcam1349 did not form wrinkled 283 

colonies, robust pellicle or thick flow-cell biofilms despite having high intracellular c-di-GMP levels 284 

(22). To characterize the Bcam1349 deletion mutant obtained here, we first transformed it with the 285 

plasmid pYedQ2, which contains the E. coli diguanylate cyclase protein YedQ and leads to elevated 286 

intracellular levels of c-di-GMP in B. cenocepacia (23). Unlike the pYedQ2-containing wild type, 287 

the pYedQ2-containing Bcam1349 mutant formed smooth colonies on AB-agar medium (Fig. 3A) 288 

and did not form robust pellicles in static liquid culture (Fig. 3B).  Furthermore, we tested biofilm 289 

formation ability of the Bcam1349 mutant in a flow-cell biofilm system. In accordance with the 290 

previous results, the Bcam1349 mutant was markedly impaired in biofilm formation compared to the 291 

wild type strain (Fig. 4). To rule out the possibility that the observed biofilm defect was due to a 292 

secondary mutation obtained during the mutagenesis procedure, we genetically complemented the 293 

mutant strain with an intact copy of the Bcam1349 gene and its 0.7-kb upstream DNA sequence on a 294 

replicative plasmid (pMF564). After complementation of the mutant strain, the biofilm formation 295 

ability was restored to wild type levels (Fig. 4), indicating that the biofilm defect was indeed a result 296 

of Bcam1349 deletion.    297 

 298 

Conclusion      299 

The Gateway-compatible allelic exchange system described here takes advantage of the 300 

bacteriophage lambda based site-specific recombination instead of the traditional cloning procedures 301 

based on restriction enzymes and ligase, and provides flexibility and efficiency. With proper primer 302 

design, the system allows precise in-frame deletion of open reading frames without generating 303 

truncated genes, reducing the risk of undesired polar effects. Moreover, the unmarked nature of the 304 

deletion procedure enables repetitive rounds of gene deletions in a single strain. We believe that the 305 

allelic exchange system described here will be useful in understanding the genetic basis of virulence 306 
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in B. cenocepacia and in systematic analysis of functions of genes in the physiology of this emerging 307 

pathogen and other Burkholderia species with medical relevance or potential biotechnological use. 308 

Furthermore, the allelic exchange system may enable the engineering of Burkholderia strains that 309 

retain their biotechnologically useful functions, but are attenuated for virulence.   310 
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 403 

Tables and Figure Legends  404 

Table 1. Bacterial strains and plasmids used in the study.  405 

Table 2. Primers used in the study. 406 

Figure 1. Maps of the allelic exchange vectors and the I-SceI expression vector constructed in this 407 

study. (A, B and C) The gene replacement vectors, each containing a different antibiotic resistance 408 

marker, were constructed by cloning the Gateway cassette into the XbaI/HindIII site of a set of pEX 409 

family vectors based on the mutant pheS gene (14). attP1 and attP2, lambda recombination sites; 410 

CmR, choloramphenicol acetyltransferase-encoding gene; ccdb, gene encoding gyrase-modifying 411 

enzyme; dhfr, dihydrofolate reductase-encoding gene; aac1, Gm-acetyltransferase-encoding gene; 412 

kanR, confers resistance to kanamycin; pheS, mutant gene for the α-subunit of phenylalanyl tRNA 413 

synthase; PS12, B. pseuodomallei rpsL gene promoter; I-SceI, I-SceI endonuclease recognition site; 414 

ColE1, origin of replication; oriT, conjugal origin of transfer; M13-F and M13-R, primer binding 415 

sites for partial sequencing of the DNA sequence cloned into attP1-attP2 sites. (D) pDAI-SceI-pheS 416 

was constructed by cloning the pheS gene into the XbaI/SphI site of plasmid pDAI-SceI (12). tetA 417 

and tetR, genes encoding tetracycline specific efflux protein and repressor protein, respectively; mob, 418 

region facilitating conjugal transfer; I-SceI, gene encoding the I-SceI endonuclease; oripBBR1, origin 419 

of replication; rep, gene encoding pBBR1 replication protein.  420 
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Figure 2. Schematic diagram depicting the gene replacement procedure in B. cenocepacia H111. (A) 421 

Step 1: The gene replacement vector pENTRPEX18Tp-SceI-pheS-Bcam1349 (derivative of 422 

pDONRPEX18Tp-SceI-pheS) contains regions of homology flanking the Bcam1349 gene. The 423 

vector was transferred into B. cenocepacia by conjugation and integrated into the chromosome by 424 

the first homologous recombination event, resulting in trimethoprim resistant merodiploids, which 425 

were verified by colony PCR (gel image lane 1). Step 2: A merodiploid was transformed with pDAI-426 

SceI-pheS. The I-SceI endonuclease expressed from the plasmid introduces a double-stranded DNA 427 

break at the I-SceI recognition site on the chromosome. Step 3: The DNA break stimulates the 428 

second homologous recombination event through the host DNA repair system. Depending on the 429 

location of the second recombination event the resolution of the merodiploid state either generates 430 

the desired gene deletion (Step and gel image 3A) or restores the wild type allele (Step and gel image 431 

3B), which is identified by colony PCR.   432 

Figure 3. Phenotypic characterization of Bcam1349 deletion mutant. Colony morphology on AB-433 

glucose agar medium (A), and pellicle formation in static LB liquid culture (B) of the wild type 434 

(WT) and Bcam1349 mutant strains carrying pYedQ2 and the WT strain carrying pBBR1MCS-5 435 

(vector control).  436 

Figure 4. Flow-cell biofilm formation by the wild type (WT), Bcam1349 mutant and its 437 

complemented counterpart and vector control strains. The CLSM images were acquired after 24 438 

hours incubation at 37 °C.    439 

 440 
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Table 1. Bacterial strains and plasmids used in the study    
Strain or plasmid Lab ID Relevant characteristics Source or reference 

Strains    

B. cenocepacia H111 
B. thailandensis CDC2721121 

MF108 
- 

Clinical isolate from a cystic fibrosis patient 
Clinical isolate from a patient with pleural infection 

(7) 
(29) 

E. coli DH5α TTN322 Used for standard DNA manipulations Invitrogen  
E. coli DB3.1 TTN312 Host for the Gateway- compatible gene replacement vectors Invitrogen 

Plasmids     

pBBR1MCS5 
pBBR1MCS2 

MF528 
MF124 

Broad-host range cloning vector, GmR

Broad-host range cloning vector, KmR 
(22)  
(22) 

pMF564  MF564 Bcam1349 gene cloned in pBBR1MCS5 This study 
pYedQ MF202  E. coli yedQ (yhcK) gene cloned in pRK404A (21)  
pYedQ2 MF217 yedQ gene cloned in HindIII/BamHI site in pBBR1MCS5 This study 
pRK600 TTN365 Helper plasmid in tri-parental conjugations, CmR, ori-ColE1, RK-mob+, RK-tra+ (27)  
pDONR221 
pBBR1MCS-Km-pheS 

TTN313 
MF138 

Source of GWE cassette, Gateway donor vector, KmR  
The engineered pheS cloned in pBBR1MCS2, KmR 

Invitrogen 
(14) 

pEX18Tp-pheS MF322 Gene replacement vector based on pheS and TpR (14)  
pEX18Gm-pheS MF320 Gene replacement vector based on pheS and GmR (14)  
pEX18Km-pheS MF321 Gene replacement vector based on pheS and KmR (14)  
pUC57-pheS MF130 Cloning vector containing the engineered pheS, ApR (14)  
pDAI-SceI MF339 Cloning vector containing the I-SceI endonuclease, TetR (12)  
pDONRPEX18Tp-SceI-pheS MF415 ~2.6-kb Gateway donor site cloned in XbaI/HindIII site of pEX18Tp-pheS, TpR This study 
pDONRPEX18Gm-SceI-pheS MF356 ~2.6-kb Gateway donor site cloned in XbaI/HindIII site of pEX18Gm-pheS, GmR This study 
pDONRPEX18Km-SceI-pheS MF414 ~2.6-kb Gateway donor site cloned in XbaI/HindIII site of pEX18Km-pheS, KmR This study 
pENTRPEX18Tp-SceI-pheS-Bcam1349 
pENTRPEX18Tp-SceI-pheS-phzF 

MF455 
MF450 

Gene replacement vector containing the Bcam1349 deletion allele, TpR

Gene replacement vector containing the phzF deletion allele, TpR 
This study 
This study 

pDAI-SceI-pheS 
 

MF355 ~1.2-kb XbaI/SphI pheS fragment from pUC57-pheS cloned in XbaI/SphI site of pDAI-SceI  This study 
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Table 2. Primers used in the study   
Primer name Sequence from 5’ to 3’ 

Gene specific primers 
 

Bcam1349-UpF-GWL1 TACAAAAAAGCAGGCTAACGGGGATTTCGCACGAT 

Bcam1349-UpR-tail 2 GGACATCGACTGCATCGTCAAGCTCGAGTGAAGATGAAGCA 

Bcam1349-DnF TGACGATGCAGTCGATGTCC 

Bcam1349-DnR-GWR 1 TACAAGAAAGCTGGGTGAGATTGATCGCCGGCAT 

Common primers 3 
 

GW-attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCT 

GW-attB2 GGGGACCACTTTGTACAAGAAAGCTGGGT 

Primers used to amplify Gateway donor 
site 

 

GWE-SceI-F 4 TACTACAAGCTTTAGGGATAACAGGGTAATAGCATGGATGTTTTCCCAGT 

GWE-R 4 TACTACTCTAGATCAGAGATTTTGAGACACGGG 

Other primers 5 
 

Bcam1349-F TACTACCCCGGGTAAATCGCTTATTCGGGCTG 

Bcam1349-R TACTACTCTAGACATTCGTTCCACCGGACAT 

Bcam1349-RBS-F TACTACTCTAGAATTGTCCGGAAATGGATTGGT 

Bcam1349-RBS-R TACTACCCCGGGATTCGTTCCACCGGACAT  
1Sequences double-underlined are common for all genes amplified and overlap with the GW-attB primer sequences (28).  
2Sequences in bold letters overlap with the gene specific-DnF primer.  
3Sequences were obtained from the reference 28. 
4Restriction enzyme sites are single-uderlined and the I-SceI endonuclease recognition site is in bold letters and double-
underlined.  
5Restriction enzyme sites are uderlined 











Supplementary material for “A Gateway-compatible allelic exchange system for generation of 

in-frame and unmarked gene deletions in Burkholderia cenocepacia” by Fazli et al. 

 

Killing of Burkholderia cenocepacia by chromosomally encoded single copy or plasmid encoded 

multicopy pheS gene 

We used three B. cenocepacia strains to test the effectiveness of the engineered pheS gene in killing 

B. cenocepacia cells in the presence of 0.1% cPhe when expressed as a single copy or a multicopy 

gene. The Bcam1349 merodiploid strain served as an example for a bacterium with a single copy 

pheS gene. This strain harbours a single copy pheS gene on the gene replacement vector 

pENTRPEX18Tp-SceI-pheS-Bcam1349, which is integrated into the chromosome. Trimethoprim 

(Tp) was added to the growth medium to maintain the merodiploid state. As an example of 

multicopy pheS gene, we transformed the wild type B. cenocepacia strain with the plasmid 

pBBR1MCS-Km-pheS (1). We also transformed the wild type B. cenocepacia strain with the 

plasmid pBBR1MCS2, which served as the vector control strain. Kanamycin (Km) was added to the 

growth medium for plasmid maintenance. The strains were grown in LB medium with appropriate 

antibiotics overnight at 37°C. One ml of the overnight grown cultures was harvested, washed twice 

in 1ml 0.9% NaCl and serially diluted in 0.9% NaCl. Approximately 2x105 CFU were plated on AB-

agar medium with appropriate antibiotics and with or without 0.1% cPhe. The plates were incubated 

at 37°C for 48 hours. The results indicate that the engineered pheS gene was not efficient in killing 

B. cenocepacia cells in the presence of cPhe when expressed as a single copy on the chromosome, 

but it effectively killed almost all B. cenocepacia cells when expressed from the multicopy plasmid 

pBBR1MCS-Km-pheS (Fig. S1), demonstrating that the mutant pheS gene provides effective counter 

selection in B. cenocepacia when it is present in multiple copies in the cells. 



 

Fig. S1. Killing of B. cenocepacia strains by the engineered pheS gene in the presence of 0.1% cPhe 

when expressed in single or multiple copies. Bcam1349 merodiploid is the single copy pheS gene 

containing strain, WT/pBBR1MCS-Km-pheS is the multicopy pheS gene containing strain, and 

WT/pBBR1MCS2 is the vector control strain. Both Tp and Km were used at 100 µg/ml. An identical 

amount of cells was plated on AB-agar medium with or without 0.1% cPhe. The images of the plates 

were acquired after 48 hours of incubation at 37°C.  

  



Construction of the Burkholderia thailandensis phzF (BTH_I0859) deletion mutant 

Using the allelic exchange system described here, we have successfully deleted the phzF 

(BTH_I0949) gene encoding a putative phenazine biosynthesis protein in B. thailandensis. phzF is 

the first gene of a predicted operon containing five genes.  

We constructed the gene replacement vector pENTRPEX18Tp-SceI-pheS-phzF as follows. The ~0.5-

kb upstream and downstream fragments of phzF gene were amplified using the primer pairs 

Phz_UpF/Phz_UpR and Phz_DnF/Phz_DnR, respectively (The primer sequences are available upon 

request). Both fragments were fused together using the primers GW-attB1 and GW-attB2 in splicing-

by-overlap-extension (SOE) PCR to generate the phzF deletion allele. The final PCR product was 

then purified and verified by restriction analysis. BP clonase reaction for recombinational transfer of 

the mutant allele into the allelic exchange vector pDONRPEX18Tp-pheS was performed at 25 °C 

overnight as described in the Gateway cloning manual (Invitrogen), using only half of the 

recommended amount of BP Clonase II enzyme mix (Invitrogen). The BP clonase reaction product 

was transferred into chemically competent E. coli DH5α cells. The transformants growing on LB-

agar plates containing 50 µg Tp mL-1 were streaked on LB-agar plates containing 50 µg Tp mL-1 for 

purification, plasmid isolation, restriction analysis and partial sequencing. 

The gene replacement vector pENTRPEX18Tp-SceI-pheS-phzF was introduced into B. thailandensis 

via tri-parental mating as described previously (2). The co-integrants were selected for Tp resistance 

on LB-agar plates containing 100 µg Tp mL-1 and 100 µg Amp mL-1. Eight Tp resistant colonies 

were streaked on the same selective plates, and the growing colonies were screened for integration of 

the plasmid by colony PCR using the primers Phz_UpF and Phz_DnR. A single positive merodiploid 

clone was transformed with pDAI-SceI-pheS by tri-parental mating to stimulate the second 

homologous recombination event and resolve the merodiploid state. The transconjugants were 

screened for Tet resistance on LB-agar plates containing 120 µg Tet mL-1 and 100 µg Amp mL-1. 

Batches of 10 Tet resistant colonies were screened for the loss of the wild type allele and the 

presence of the desired gene deletion by colony PCR using the primers Phz_UpF and Phz_DnR. Two 

positive clones were purified by streaking and growing on the same selective plates. Thereafter a 

single colony for each clone was picked and grown in 1 ml AB-glucose medium containing 0.1% 

(w/v) cPhe at 37 °C overnight in order to stimulate the loss of pDAI-SceI-pheS via the counter-

selectable marker pheS on the plasmid. Ten-fold serial dilutions of the overnight grown cultures were 

plated on LB-agar plates without any antibiotic, and 20 of the growing colonies for each clone were 

patched on LB-agar plates with or without tetracycline to screen for Tet sensitivity, which indicated 



the loss of the plasmid pDAI-SceI-pheS. A single positive colony for each clone was selected and 

stored at -80 °C. 
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Response to oxidative stress of Burkholderia thailandensis biofilm. 1 

 2 

This section collects unpublished results, as further experiments are necessary to 3 

complete theresearch. Data are organized in sections ‐ Abstract, Introduction, Material 4 

and methods, Results, Discussion ‐ to better present the main results. 5 

 6 

ABSTRACT 7 

The soil saprophyte Burkholderia thailandensis is a mostly environmental bacterium 8 

and a pathogen of invertebrates, closely related to the pathogenic bacteria B. 9 

pseudomallei and B. mallei. We challenged B. thailandensis biofilms with phenazine 10 

methosulphate (PMS), a well‐known reactive oxygen species (ROS) producer, and 11 

evaluated oxidative stress both in planktonic and sessile cells. Planktonic cells treated 12 

with PMS showed higher oxidative stress than untreated cells, whereas in PMS‐treated 13 

biofilms we measured a lower oxidative stress with respect to the control. To better 14 

identify the enzymes involved in buffering oxidative stress, we deleted sodC, encoding 15 

the periplasmic superoxide dismutase, possibly involved in defence against exogenous 16 

sources of oxidative stress. Surprisingly, compared to the untreated wild type cells, no 17 

additional oxidative stress was measured in the sodC mutant planktonic cells and lower 18 

oxidative stress was measured in sodC biofilms. Even the exposure to PMS did not 19 

exacerbate the oxidative stress levels in the mutant strain. Interestingly, we observed 20 

that PMS affected in the same way both the wild type and sodC biofilm morphology, 21 

leading to the accumulation of polysaccharides in the biofilm matrix. These data suggest 22 

that polysaccharide biosynthesis might be part of an adaptive response to oxidative 23 

stress, both endogenously and exogenously induced. The higher catalase activity 24 

measured in wild type biofilms treated with PMS can only partially explain these 25 

results. Using transcriptomics experiments, we intend to unravel which genes are 26 

involved in the ROS scavenging mechanisms and in the accumulation of 27 

polysaccharides, which appear the main strategies to reduce the endogenous and 28 

exogenous oxidative stress in B. thailandensis biofilms.  29 

 30 

INTRODUCTION 31 

Biofilms are heterogenic microbial communities embedded in a self‐ produced 32 

polymeric matrix attached to a surface (Hall‐Stoodley et al., 2004). The biofilm 33 



formation is a nearly universal trait enabling bacteria to develop coordinated 34 

architectural and survival strategies (Vlamakis et al., 2013) and is now largely accepted 35 

that biofilms constitute the predominant microbial lifestyle in natural and engineered 36 

ecosystems (McDougald et al., 2011). Both in soil and in the host, bacteria form biofilm 37 

to resist to abiotic and biotic stress (Davey et al., 2000; Flemming et al., 2010). Many of 38 

these environmental signals, e.g. the immune response, biocides, antibiotics and toxic 39 

compound, involve the formation of reactive oxygen species (ROS) (Villa et al., 2012; 40 

Albesa et al., 2004; Lushchak, 2011; Gambino et al., 2015), causing oxidative stress in 41 

the cells. The biofilm response to oxidative stress is a topic of outstanding importance. 42 

The comprehension of mechanisms regulating biofilm in response to oxidative stress 43 

may shed light on the molecular strategies to sense environmental signals and adapt 44 

accordingly. 45 

The soil saprophyte Burkholderia thailandensis is an opportunistic pathogen of 46 

invertebrates and is used as a model organism for the human pathogen B. pseudomallei, 47 

the etiological agent of mieloidosis, a serious disease endemic in South Est Asia and 48 

Northern Australia (Wiersinga et al., 2006). The high resistance of the pathogen to the 49 

common antibiotics (Cheng and Currie, 2005), its capacity to stay latent for many years 50 

(Stevens and Galyov, 2004) and the variety of clinical manifestation of the disease 51 

(acute, chronic or latent infections) (Hamad et al., 2011) make mieloidosis difficult to 52 

diagnosticate and to eradicate.  53 

In this study, the response to phenazine methosulphate (PMS), a well‐known 54 

superoxide producer, of a clinical isolate of B. thailandensis CDC272 was studied, both in 55 

planktonic and sessile cells, to identify which pathways this bacterium activate to avoid 56 

oxidative stress. The characterization of a mutant in the gene sodC, coding for a 57 

periplasmic superoxide dismutase, confirmed the tight linkage between endogenously 58 

and exogenously induced oxidative stress and the production of polysaccharides in the 59 

biofilm matrix. 60 

 61 

MATERIALS AND METHODS 62 

Bacterial strain and growth conditions 63 

The bacterial strains, plasmids and primers used in this study are listed in Table 1. 64 

Burkholderia thailandensis wild type strain CDC2721121 (also called CDC272; from now 65 

on, wt) was maintained at ‐80°C in suspensions containing 20% glycerol. B. 66 



thailandensis wt was grown aerobically in Tryptic Soy Broth (TSB) medium at 30° C, in 67 

the dark. Were stated, the two strains were challenged with various concentrations of 68 

phenazine methosulphate (PMS; Sigma‐Aldrich, Milan, Italy). For the construction of the 69 

mutant, E. coli and B. thailandensis strains were grown on Luria broth (LB) and for the 70 

resolution of single croosover, 0.1% (w/v) p‐chlorophenylalanine (cPhe; DL‐4‐ 71 

chlorophenylalanine; Sigma‐Aldrich) was autoclaved together with B‐salts solution, and 72 

A‐salts solution and the carbon source of choice were added thereafter. All media were 73 

made solid by addition of 2% (w/v) agar.  74 

Effects of PMS on planktonic growth and adhesion. 75 

B. thailandensis wt and sodC growth was monitored in a polystyrene 96‐well microtiter 76 

(Greiner, Bio‐One) in the presence of PMS at various concentrations (from 0 to 300 µM), 77 

registering the optical density (OD) at 600 nm every 15 min with a microtiter reader 78 

(Biotek‐Power Wave XS2). The results were confirmed plating cell suspensions from 79 

stationary phase serially diluted on agarized media, incubated at 30°C overnight and the 80 

colony forming units (CFU) were enumerated using the drop‐plate method (Herigstad et 81 

al. 2001). Obtained growth curves were analysed and lag phase and growth rate were 82 

calculated according to the by the Gompertz model (Zwietering et al. 1990) using the 83 

GraphPad Prism software (version 5.0, San Diego, CA, USA). At the end of the growth, 84 

the same microtiter used to monitor the growth was used to quantify adhered cells to 85 

the wells surface with 4',6‐diamidino‐2‐phenylindole (DAPI; LifeTechnologies, Italy) 86 

staining. The liquid culture was removed, and cells attached to the wells surface were 87 

washed gently with PBS and stained for 20 min in the dark with DAPI solution (10 88 

µg/ml), washed twice with PBS, and dried. The OD600nm of crystal violet‐ stained 89 

biofilm cells was determined and normalized to the OD600nm of the planktonic cells 90 

from the corresponding liquid cultures; this value is defined as “adhesion units”. The 91 

fluorescence was measured using the fluorometer VICTOR TM X Multilabel Plate 92 

Readers (Perkin Elmer, Italy), excitation 360 nm and emission 465 nm. Experiments 93 

were conducted in triplicate.  94 

Biofilm growth 95 

Colony biofilms of B. thailandensis wt and sodC mutant strain were prepared following 96 

the method reported (Anderl et al. 2000). Briefly, 10 µl of cell suspension containing 1.5 97 

* 106 cells were used to inoculate sterile black polycarbonate filter membranes (0.22 98 

mm pore size, Whatman, UK) that were placed on TSA plates, at 30°C, either in the 99 



absence or in the presence of PMS. PMS was poured on agar plates and let adsorb. The 100 

membranes were transferred every 24 h to fresh media, and grown for 8 days in total. 101 

For protein determination, a membrane was collected every 24 h and resuspended in a 102 

10‐ml tube with 2 ml of sterile phosphate base saline (PBS, 10 mmol l‐1 phosphate 103 

buffer, 0.3 mol l‐1 NaCl, pH 7.4; Sigma‐Aldrich, Milan, Italy). Cells were broken by 5 104 

cycles of 30 s sonication with 30 s intervals; cell lysates were centrifuged 15 min at 4°C 105 

at 19000 g and supernatant was collected. The protein amount was quantified with 106 

Bradford assay (Bradford 1976), using bovine serum albumin as a standard. 107 

Experiments were performed in triplicate. 108 

Level of oxidative stress on planktonic and sessile cells 109 

The level of oxidative stress in planktonic and sessile cells of B. thailandensis wt and 110 

sodC mutant strain was determined using the 2,7‐dichlorofluorescein‐diacetate 111 

(H2DCFDA) assay (Jakubowski et al. 2000). B. thailandensis planktonic cells grown at 112 

30°C for 6 h in TSB, with either 0, 15 or 150 µM PMS, were washed with phosphate 113 

buffer solution (PBS; Sigma‐Aldrich, Italy) and resuspended in 50 mmol l‐1 PBS. For the 114 

colony‐ biofilm, the protocol described by Gambino et al. (2015) was adopted. One 115 

membrane biofilm was collected for 8 days, scraped and homogeneously resuspended 116 

in 2 ml of PBS 50 mmol/l. 750 µl of cell suspension was incubated with 10 µmol l‐1 117 

H2DCFDA at 30°C for 30 min, vortexed and centrifuged. The supernatant was collected 118 

to measure fluorescence relative to the extracellular reactive oxygen species (ROS) 119 

presence. To evaluate intracellular ROS concentrations in either planktonic or biofilm 120 

cultures, cells were washed three times and broken with 5 cycles of 30 s sonication with 121 

30 s intervals. The fluorescence of the supernatant collected before (outer oxidative 122 

stress) and after cell sonication (inner oxidative stress) was measured using the 123 

fluorometer VICTOR TM X Multilabel Plate Readers (Perkin Elmer, Italy), excitation 490 124 

nm and emission 519 nm. The emission values were normalized against the protein 125 

concentration, obtained from the remaining 750 µl of cell suspension with the Bradford 126 

assay. Experiments were conducted in triplicate. 127 

Construction of B. thailandensis deletion sodC mutant 128 

The gene identified with the locus tag BTQ_RS04505 on chromosome I of B. 129 

thailandensis CDC272, homologous to the B. thailandensis E264 sodC and encoding the 130 

periplasmic superoxide dismutase SodC, was deleted using the allelic exchange system 131 

and the counterselection based on the pheS gene encoding the α‐subunit of phenylalanyl 132 



tRNA synthase (Barrett et al., 2008). Gene replacement vector, containing a 133 

trimethoprim (Tp) resistance cassette, was generated by PCR overlap extension, as 134 

described by Choi and Schweizer (2005). A set of four primers was used to amplify 135 

chromosomal regions upstream (sodC‐UpF and sodC‐UpR) and downstream (sodC‐DnF 136 

and sodC‐DnR) of sodC gene (table 1). Two additional primers (sodC‐SeqF and sodC‐137 

SeqR) were designed to check the deletion site on the chromosome. The PCR fragments 138 

were fused together to generate the deletion allele and amplified with primers GW‐139 

attB1 and GW‐attB2 incorporating the attB1 and attB2 recombination sites at either 140 

end of the gene replacement cassette. The attB1 and attB2 flanked Gateway donor site 141 

were amplified by PCR from pDONR221 using the primers GWE‐ F and GWE‐R (flanked 142 

by XbaI site). The resulting 2.4‐kb PCR product was digested with XbaI, and cloned into 143 

XbaI digested plasmids pEX18Tp‐pheS (Barrett et al., 2008) resulting in the allelic 144 

exchange vectors pDONRPEX18Tp‐ pheS. Using the Gateway cloning system (Invitrogen, 145 

Life Technologies, Denmark), BP clonase reaction for recombinational transfer of the 146 

mutant allele into the allelic exchange vector pDONRPEX18Tp‐pheS was performed at 147 

25 °C overnight. The deletion vector pDONRPEX18Tp‐pheS‐sodC was transferred into 148 

chemically competent E. coli DH5α cells. The presence of the insertion was confirmed by 149 

sequencing and restriction analysis. The gene replacement plasmids pDONRPEX18Tp‐150 

pheS‐sodC was transferred into B. thailandensis wt by tri‐parental mating as described 151 

previously (Fazli et al. 2011), and the resulting transformants were selected for Tp and 152 

Kan resistance on LB agar plates containing 100 µg Tp mL‐1 and 50 µg Kan ml‐1. Six 153 

clones were streaked twice on AB‐phenylanine agar plates. Resolution of single 154 

crossover events was achieved by streaking on plates containing 0.1% (w/v) p‐ 155 

chlorophenylalanine (cPhe; DL‐4‐chlorophenylalanine; Sigma‐Aldrich, Denmark) via the 156 

counter‐ selectable pheS marker on the gene replacement plasmid (Barrett et al. 2008). 157 

Positive clones were verified by sequencing and and maintained at ‐80°C in suspensions 158 

containing 20% glycerol. All primers and plasmids used are listed in table 1. The sodC 159 

mutant strain has been tested for every assay described for the wild type strain, in the 160 

same conditions. 161 

  162 



Primer name Sequence from 5’ to 3’ 

sodC‐UpF GGGACAAGTTTGTACAAAAAAGCAGGCTCAGCGCGATCTCGACTACCT 

sodC‐UpR CGGGAACGCCGGGTCAAAGTCGTCATGATACCGTGA 

sodC ‐DnF GACCCGGCGTTCCCG 

sodC ‐DnR GGGGACCACTTTGTACAAGAAAGCTGGGTAGTTCGAGAATTCGAGCGTCA 

sodC‐SeqF CGAACTCGATCGGCTTTCT 

sodC‐SeqR AGGTCAGACCGATATGCAAG 

GWE‐F AAATCTAGATAAGCTCGGGCCCCAAATA 

GWE‐R AAATCTAGAGGATATCAGCTGGATGGCAA 

GW‐attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCT 

GW‐attB2 GGGGACCACTTTGTACAAGAAAGCTGGGT 

 

Strain and plasmid Relevant characteristics Source 

B. thailandensis  

wild type 

Burkholderia thailandensis wild type strain 

CDC2721121 (also called CDC272), a clinical isolate 

from a patient with pleural infection 

Peano et al., 2014 

sodC mutant strain sodC deletion mutant in B. thailandensis CDC2721121 this study 

E. coli DH5α Used for standard DNA manipulations Invitrogen 

pEX18Tp‐pheS Gene replacement vector based on pheS and TpR Barrett et al., 2008 

pDONRPEX18Tp‐pheS 
~2.4‐kb Gateway donor site cloned in XbaI site of 

pEX18Tp‐pheS, TpR 
this study 

pDONRPEX18Tp‐pheS 

‐sodC 
sodC deletion vector this study 

Table 1. List of primers, strains and plasmids used in this work. 163 

 164 

Extraction and characterization of the extracellular polymeric substances (EPS)  165 

EPS extraction and characterization was conducted as described by Villa and 166 

collaborators (2012) on eight‐days old biofilm biomass of both B. thailandensis wt and 167 

sodC mutant, grown upon exposure to 0, 15 and 150 uM PMS. The 168 

cetyltrimethylammonium bromide (CTAB)‐DNA method described by Corinaldesi and 169 

collaborators (2005) was used to quntify extracellular DNA (eDNA). The Bradford 170 

method was applied to analyze protein concentrations, whereas the optimized 171 

microplate phenol‐sulfuric acid assay was applied for carbohydrate determination 172 



(Masuko et al. 2005) using glucose as standard. The results obtained were normalized 173 

by the cellular protein concentration. Experiments were performed in triplicate.  174 

Catalase assay 175 

For each replicate, a total protein extraction of the whole biofilm was prepared 176 

resuspending one membrane in 2ml of PBS, sonicating (5 cycles of 30 s sonication with 177 

30 s intervals) and centrifuging the suspension to eliminate cell debris. All steps were 178 

performed on ice or at 4°C. Catalase assay described by Sinha (1972) was performed on 179 

the total biofilm extract. For each replicate, 100 ul of biofilm protein extract was added 180 

to 287 umol of H2O2 in 10 mM Tris 100 mM NaCl pH 8.00 buffer. Every 60 s, reaction 181 

was stopped with catalase reagent (25% (v/v) of 5% K2Cr2O7 5%, 75% (v/v) of 100% 182 

acetic acid) and the absorbance at 570 nm was compared with the standard curve. 183 

Controls with no H2O2 and no biofilm protein extract were also included and were used 184 

to calculate H2O2 consumed by catalase activity in the samples. Values were normalized 185 

against the protein concentration, obtained from the remaining protein extract with the 186 

Bradford assay. Experiments were conducted in triplicate. 187 

Statistical analysis 188 

A t‐test or analysis of variance (ANOVA) via Graphpad Software (San Diego California 189 

USA) was applied to statistically evaluate any significant differences among the samples. 190 

Tukey’s honestly significant different test (HSD) was used for pairwise comparison to 191 

determine the significance of the data. Statistically significant results were depicted by 192 

p‐values 0.05. Histograms provide the p‐values obtained by ANOVA analysis. Posthoc 193 

comparison results (Tukey’s HSD, p <0.05) are summarized with asterisks to underline 194 

the most relevant differences with respect to control (wt 0 µM). 195 

 196 

RESULTS 197 

Effects of PMS on B. thailandensis wt planktonic growth and adhesion. 198 

In order to evaluate the response to oxidative stress in B. thailandensis, the superoxide 199 

generator PMS (Hassett et al., 1999) was added to the medium and the absorbance was 200 

monitored spectrophotometrically (OD 600 nm) for 24 h. The concentrations of 1.5 and 201 

15 µM PMS did not affect the growth curve in the wt, while 150 µM PMS significantly 202 

increased the lag phase and reduced the growth rate (Fig. 1). Results were confirmed by 203 

total cell count using the drop counting method. As adhesion, that is the very first step 204 

of biofilm formation, could influence the measured absorbance of cells in suspension, 205 



we also measured the adhesion of cells to the microtiter surface at the end of the growth 206 

by staining DNA with DAPI. No statistically significant difference was detectable 207 

between the DAPI fluorescence of untreated cells (3660.1± 641.9 fluorescence units) 208 

and the 1.5 and 15 µM PMS treated cells (5198.5±793.6; 3163.8±644.1; 1645.3±818.7 209 

fluorescence units). Conversely, the exposure to 150 µM PMS resulted in a lower 210 

fluorescence (1645.3±818.7 fluorescence units), thus in a statistically significant minor 211 

adhesion than the control. 212 

 213 

Figure 1. Planktonic growth curve of B.thailandensis wt in the presence of PMS 214 

concentrations from 0 to 300 µM. 215 

 216 

Effects of PMS on B. thailandensis wt biofilm growth. 217 

Biofilm formation is an effective mechanism of resistance to adverse conditions, largely 218 

conserved among bacteria. Colony biofilm mimics growth in soil, in which bacteria are 219 

attached to a solid surface and where water availability is influenced by the solute 220 

potentials (Chang and Halverson, 2003). This method allowed us to test the inhibition of 221 

colony biofilm by PMS. B. thailandensis colony biofilm reached the maturity in eight days 222 

(Fig. 2). The only effect of PMS treatment (both 15 and 150 µM PMS) on the growth 223 

curve of biofilm, determined as total protein quantification (see Materials and methods 224 

section), was a delay in biomass build‐up at the second day of incubation, somehow akin 225 

to an extension of the lag phase in planktonic cultures (Fig. 2).  226 
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 227 

Figure 2. Total protein amounts from B. thailandensis wt biofilm in the presence of 0, 15 228 

and 150 µM PMS over time. Data represent the means ± the SD of three independent 229 

measurements of proteins for each membrane. The histograms provide the P-values 230 

obtained by ANOVA analysis. Post hoc comparisons results (Tukey’s HSD, P < 0.05) are 231 

summarized with asterisks to underline the most relevant differences of PMS-treated 232 

samples compared to the control. 233 

 234 

PMS clearly affected the morphology of the B. thailandensis biofilm. B. thailandensis wt 235 

colony biofilm presented a succession of smooth and rough rings. This easily 236 

recognizable structure disappeared in biofilm treated with 15 µM PMS. The effect was 237 

even more evident in biofilm treated with 150 µM PMS, leading to the development of 238 

thinner and less organized biofilm respect to the untreated biofilm (Fig. 3). 239 

 240 

Figure 3. Morphology of C Burkholderia thailandensis wt colony biofilm challenged with 0, 241 

15 and 150 µM PMS. 242 



Levels of oxidative stress in planktonic cells and biofilm of B. thailandensis wt. 243 

To directly connect the observed effects on planktonic and sessile growth with the 244 

superoxide produced by PMS, we measured the oxidative stress levels using H2DCFDA, a 245 

fluorescent probe sensitive to ROS (Zhao et al., 2014). As biofilms are composed by cells 246 

enclosed in a polymeric matrix with known defense properties (Flemming et al., 2010), 247 

we measured ROS levels both inside cells (Fig. 4a, inside) and outside the sessile cells 248 

(Fig. 4b, outside), i.e., in the biofilm matrix. We found that 150 µM was a concentration 249 

able to increase oxidative stress in planktonic cells (42.7±12.6 fluorescence/ µg 250 

proteins), whereas oxidative stress in cells exposed to lower PMS concentration 251 

(19.9±1.8 fluorescence/ µg proteins) was not significantly different from the control 252 

(14.9±0.9 fluorescence/ µg proteins). As illustrated in figure 4, in the biofilm the 253 

oxidative stress was higher in the first days of biofilm formation, decreasing at later 254 

times. Villa et al. (2012) and Gambino et al. (2015) already reported the same trend for 255 

colony biofilms exposed to oxidative stress. All along the biofilm growth, no additional 256 

oxidative stress was measurable in the PMS treated samples, both inside and outside 257 

cells. In detail, oxidative stress outside cells, ascribable to the biofilm matrix, was 258 

statistically significant higher in the control biofilm than in 15 and 150 µM PMS treated 259 

biofilms for the first 4 days of growth. Inside cells, oxidative stress is higher in the 260 

untreated biofilm only at the first day of growth; after the first day, no difference has 261 

been detected (Fig. 4). The decrease in oxidative stress levels in biofilm exposed to PMS 262 

led us to hypothesize the activation of effective scavenging mechanisms. 263 

  264 



 265 

Figure 4. Reactive oxygen species detection outside (a) and inside (b) the cells of 266 

Burkholderia thailandensis wt biofilm in the presence of 0, 15 and 150 µM PMS. The 267 

histograms provide the P-values obtained by ANOVA analysis. Post hoc comparison results 268 

(Tukey’s HSD, P < 0.05) are summarized with asterisks to underline the most relevant 269 

differences in PMS-treated samples with respect to the control.  270 

 271 

Effect of PMS on the sodC mutant strain growth as planktonic and sessile cells. 272 

In B. pseudomallei, sodC encodes for a periplasmic superoxide dismutase, which plays a 273 

key role in its virulence and survival in the host cells (Vanaporn et al., 2011), as it 274 

protects bacteria from toxic free radicals produced by the host immune system (Sanjay 275 

et al., 2011). To verify the involvement of SodC in the PMS response, we built a deletion 276 

mutant in the gene coding for this protein, by combining the Gateway allelic exchange 277 

system (Choi and and Schweizer, 2005) and the counterselection based on the pheS 278 

gene (Barrett et al., 2008). As already reported for Salmonella enterica serovar 279 

Typhimurium (Fang et al., 1999) and Escherichia coli (Gorth et al., 1999; Imlay, 2003), 280 

the deletion of sodC in B. thailandensis only caused a slight reduction of the planktonic 281 

growth rate – not statistically significant ‐in respect to the wild type. The effect was 282 

more evident in the presence of an exogenous source of oxidative stress. The differences 283 

already observed exposing the wt to 150 µM PMS (i.e., the elongation of the lag phase 284 

and the decrease in growth rate) were more evident in the mutant (Fig. 5). The 285 

adhesion of the sodC mutant strain to the microtiter surface (2523.3 ± 814.7 286 

fluorescence unities) was not different from the adhesion of the wt (3660.1 ± 641.9 287 



fluorescence unities), except for the observed decreased adhesion in the presence of 15 288 

µM (1363.4 ± 359.1 fluorescence unities) and 150 µM PMS (1123.25 ± 427.1 289 

fluorescence unities). The decrease was comparable to the effect of 150 µM PMS on the 290 

wt (1645.3 ± 818.7 fluorescence unities).  291 

 292 

 293 

Figure 5. Planktonic growth curve of B. thailandensis wt and sodC mutant strain in the 294 

PMS concentrations from 0 to 150 µM. 295 

 296 

Colony biofilm morphology in the sodC mutant strain did not reveal any difference with 297 

the wt colony biofilm, not even upon exposure to PMS, which, as for the wt strain, led to 298 

the development of a less structured biofilm. However, monitoring the biofilm growth, 299 

at day 2 the mutant biofilm treated with 150 µM PMS is the only one with an extended 300 

lag phase (Fig. 6), whereas we previously observed that in wt biofilm the exposure to 15 301 

uM PMS could have this effect, too (Fig. 2).  302 
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 304 

Figure 6. Total protein amounts from the biofilm of B. thailandensis sodC mutant in the 305 

presence of 0, 15 and 150 µM PMS over time. Data from the biofilm of B. thailandensis wt 306 

was added to facilitate the comparison of the results. Data represent the means ± the SD of 307 

three independent measurements of proteins for each membrane. The histograms provide 308 

the P-values obtained by ANOVA analysis. Post hoc comparisons results (Tukey’s HSD, P < 309 

0.05) are summarized with asterisks to underline the most relevant differences of PMS-310 

treated samples with respect to control. 311 

 312 

Levels of oxidative stress in planktonic cells and biofilm of B. thailandensis sodC 313 

mutant. 314 

Oxidative stress levels in sodC planktonic cells (10.7 ± 4.4 fluorescence/ µg proteins) 315 

were similar to those measured in wt planktonic cells (14.9 ± 0.9 fluorescence/ µg 316 

proteins). Conversely to the wt, the exposure of sodC planktonic cells to PMS did not 317 

increase the oxidative stress levels (15 µM PMS: 12.6 ± 5.4 fluorescence/ µg proteins; 318 

150 µM PMS: 17.9 ± 10.5 fluorescence/ µg proteins). Like the wt biofilm, in the sodC 319 

mutant we detected differences in the first 4 days of growth for the outer oxidative 320 

stress and just in the first day of growth for the inner oxidative stress. In addition, both 321 

outer and inner oxidative stress levels were lower than in wt biofilm (Fig. 7), being 322 

comparable to the levels that we measured in wt biofilms treated with PMS. Thus, the 323 
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deletion of sodC led to the same low oxidative stress levels measured with the exposure 324 

of planktonic and biofilm B. thailandensis wt to PMS.  325 

 326 

Figure 7. Reactive oxygen species detection outside (a) and inside (b) the cells of biofilm of 327 

Burkholderia thailandensis sodC mutant in the presence of 0, 15 and 150 µM PMS. Data 328 

from the biofilm of B. thailandensis wt was added to facilitate the comparison of the 329 

results. The histograms provide the P-values obtained by ANOVA analysis. Post hoc 330 

comparison results (Tukey’s HSD, P < 0.05) are summarized with asterisks to underline the 331 

most relevant differences in PMS-treated samples with respect to the control.  332 

 333 

Effect of PMS on matrix composition of biofilm of B. thailandensis wt and sodC 334 

mutant. 335 

The presence of an extracellular matrix is one main element characterizing bacterial 336 

biofilms, where it provides protection against stresses, and promotes adhesion to 337 

surfaces and communication between cells (Hall‐Stoodley et al., 2004; Davey et al., 338 

2000). The matrix of mature biofilms (8 days) of B. thailandensis wt and sodC mutant 339 

strain, exposed to 0, 15 and 150 µM PMS, was extracted and characterized in its main 340 

components: proteins, polysaccharides and eDNA (Fig.8). Both PMS and sodC mutation 341 

had repercussions on the biofilm matrix composition. In wt biofilm, 150 µM PMS 342 

triggered the production of more matrix, as we calculated a higher production of 343 

proteins, polysaccharides and eDNA. Compared to the wt biofilm, the matrix of the sodC 344 

mutant was characterized by the same quantity of proteins and eDNA, but, interestingly, 345 

by a higher quantity of polysaccharides. This polysaccharides quantity was comparable 346 



to the quantity accumulated in wt biofilm treated with 150 µM PMS. Challenging the 347 

sodC mutant biofilm with 15 and 150 µM PMS, this quantity did not increase. Instead, 348 

the treatment of sodC mutant biofilm with PMS (both concentrations) led also to a 349 

higher presence of eDNA in the matrix, though we cannot exclude that these values 350 

were caused by increased cellular lysis. 351 

 352 

Figure 8. Biochemical composition of mature biofilm matrix of B. thailandensis wt and 353 

sodC mutant. Protein and polysaccharide values are expressed as mg/g of total cell 354 

proteins, while eDNA values are expressed as µg/g of total cell proteins. Data represent the 355 

means ± the SD of three independent measurements. The histograms provide the P-values 356 

obtained by ANOVA analysis. Post hoc comparison results (Tukey’s HSD, P < 0.05) are 357 

summarized with asterisks to underline the most relevant differences in sodC mutant 358 

and/or PMS treated samples with respect to the control (wt 0 µM PMS). 359 

 360 

Catalase assay. 361 

The results of the experiments presented so far would suggest that the periplasmic 362 

enzyme encoded by sodC did not play a crucial role in PMS‐induced oxidative stress. 363 

This compound is supposed to generate superoxide, but it can also increase the 364 

intracellular level of hydrogen peroxide (Hassett et al., 1999). Thus, we wondered 365 

whether induction of catalase activity might be involved in the apparently 366 

counterintuitive observation that ROS levels are reduced upon PMS treatment in B. 367 

thailandensis biofilms. Catalase is one of the most efficient scavenging enzyme, being 368 

able to promote the dismutation of hydrogen peroxide to water and oxygen (Imlay et al., 369 



2003). A catalase assay, performed on the total protein extract of the whole wild type 370 

biofilm, revealed a higher catalase activity in the biofilm treated with 150 µM PMS at the 371 

first day of growth (Fig. 9). The result concur to explain the lower level of inner 372 

oxidative stress of biofilm treated with 150 µM PMS, but not the same low oxidative 373 

stress in the biofilm treated with the 15 µM PMS. Similar catalase assays will now be 374 

performed in sodC mutant biofilms. We also plan to identify which of the two catalase 375 

encoding‐genes in B. thailandensis might be responsible for the response to PMS‐376 

induced oxidative stress. 377 

 378 

Figure 9. Catalase assay on total protein extract of B. thailandensis wt biofilm. The 379 

histograms provide the P-values obtained by ANOVA analysis. Post hoc comparison results 380 

(Tukey’s HSD, P < 0.05) are summarized with asterisks to underline the most relevant 381 

differences in PMS-treated samples with respect to the control. 382 

 383 

DISCUSSION 384 

In both anthropic and natural systems, bacteria experience environmental stress factors 385 

leading to ROS formation and to oxidative stress (Dwyer et al., 2007; Kohanski et al., 386 

2007). The soil bacterium B. thailandensis, can infect invertebrates and occasionally, 387 

humans with immunocompromised system. Host colonization, albeit not leading to 388 

infection, is likely in areas of the world where B. thailandensis is largely present (humid 389 

areas in the tropical and sub‐tropical regions). Thus, B. thailandensis can experience 390 

oxidative stress both in the soil, upon exposure to toxic compounds and biocides 391 

(Fabrega et al., 2009; Villa et al., 2012), and in the host, attacked by immune system 392 

(Albesa et al., 2004). Phenazine methosulphate (PMS) is a well‐known superoxide 393 

generator, widely used to mimic exogenous oxidative stress (Lee et al., 2004; Remelli et 394 
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al., 2010): we found that concentrations of 15 and 150 µM of PMS, albeit sub‐lethal for 395 

planktonic cells ofB. thailandensis CDC272, . had a range of effects on its growth, 396 

increasing its lag phase, reducing its growth rate and the adhesion to microtiters 397 

surface, thus forcing cells adapt to the stressful condition by activating specific 398 

mechanisms.  399 

A clear effect of oxidative stress on biofilm was the drastic change in the colony 400 

morphology (Figure 3). B. thailandensis wt colony biofilm presented a series of smooth 401 

and rough ring structures, completely loss in biofilm exposed to 150 µM PMS. The 402 

presence of wrinkles confer various advantages, allowing the transport of water, 403 

nutrient, waste (Wilking et al., 2013) and oxygen, balancing the redox state (Okegbe et 404 

al., 2014). Morales et al. (2013) observed that the exposure of the yeast Candida 405 

albicans to phenazines (i.e. a class of redox‐active antibiotics used by Pseudomonas spp. 406 

as electron shuttling that include PMS) causes the loss of wrinkle phenotype by 407 

perturbating cellular respiration. This could also be the case for the morphology change 408 

of B. thailandensis biofilm upon the exposure to PMS.  409 

The exposure to 150 µM PMS caused higher inner oxidative stress in planktonic cells, 410 

but not in the biofilm. Conversely, lower levels of ROS were measured both in the matrix 411 

(the first 4 days of growth) and in the sessile cells (just the first day of growth), 412 

strengthening the idea of a scavenging mechanism activated to avoid deleterious 413 

oxidative stress.  414 

Superoxide dismutase (SOD) is involved in scavenging ROS, converting the dangerous 415 

ROS superoxide to hydrogen peroxide and water. It has been hypothesized that the 416 

presence of periplasmic copper and zinc superoxide dismutases could be a defence from 417 

superoxide produced in the periplasm (Han and Cadenas, 2001) or exogenously 418 

(Hassan and Fridovich, 1979), for example by the host immune system (Sanjay et al., 419 

2011). In B. pseudomallei, sodC encodes a periplasmic SOD, which plays a key role in its 420 

virulence and survival in the host cells (Vanaporn et al., 2011). Inactivation of thesodC 421 

gene caused a phenotype similar to the wt, except for the shorter lag phase in biofilms 422 

treated with 15 µM PMS. In addition, sodC planktonic cells did not experience higher 423 

oxidative stress in presence of 150 µM PMS and the level of oxidative stress in biofilm 424 

(both outside and inside cells, with or without PMS exposure) were lower than in the wt 425 

biofilm. According to these results, the deletion of periplasmic superoxide dismutase 426 



lowered the level of oxidative stress, leading us to hypothesize that SodC is not the only 427 

enzyme involved in buffering oxidative stress caused by PMS.  428 

Another candidate for the scavenging of ROS is catalase, which dismutates the hydrogen 429 

peroxide to water and oxygen. In many bacteria, such as Escherichia coli and 430 

Azotobacter vinelandii, at least two catalases are present, activated by the two regulator 431 

OxyR and RpoS, upon different stimuli (Gonzalez‐Flecha et al., 1997; Sandercock et al., 432 

2008). The increase in catalase activity in 150 µM PMS‐treated wt biofilm during the 433 

first day of growth can only partially explain the lower levels of oxidative stress 434 

detected for stressed biofilm. The measurement of catalase activity in sodC biofilms will 435 

concur to clarify its role in the response to PMS and to the absence of the periplasmic 436 

superoxide.  437 

Finally, we observed that both exposure to PMS and deletion of sodC triggered the 438 

production of polysaccharides in the B. thailandensis biofilm. Among matrix 439 

components, polysaccharides seem to be often involved in the oxidative stress response. 440 

For example, P. aeruginosa produces alginate in response to hydrogen peroxide (Mathee 441 

et al., 1999) and E. coli produces colanic acid under the regulation of the RpoS‐442 

controlled protein YddV, which promotes cell aggregation and EPS production via its 443 

diguanylate cyclase activity (Méndez‐Ortiz et al., 2006). Increased EPS production might 444 

somehow shield bacterial cells from exogenous ROS; alternatively, polysaccharides 445 

accumulation might be the result of a reduced metabolic activity in order to limit the 446 

production of endogenous ROS. For example, in B. pseudomallei, RpoS, essential for the 447 

response to oxidative stress (Hengge‐Aronis, 2002), directly down‐regulates the 448 

succinyl‐coA:3‐ketoacid‐coenzyme A transferase (SCOT) (Chutoam et al., 2013) to avoid 449 

the feeding with NADH and FADH2 of the electron transport chain, one of the major 450 

source of intracellular ROS in bacteria (Messner and Imlay, 1999). This mechanism 451 

would lead to the accumulation of poly‐β‐hydroxybutyrate, a storage molecule 452 

(Chutoam et al., 2013). The activation of analogous strategies could be responsible for 453 

the observed accumulation of polysaccharides in biofilm matrix upon exposure to PMS 454 

and deletion of sodC.  455 

Transcriptomic analysis on biofilms challenged with endogenous (sodC mutation) and 456 

exogenous (exposure to PMS) oxidative stress will allows us to unravel which 457 

scavenging mechanisms are activated and if the decrease of the metabolic activity is a 458 

strategy adopted also by B. thailandensis. Furthermore, we could have insight on the 459 



molecular mechanisms connecting the regulators of oxidative stress response OxyR and 460 

RpoS to the production of polysaccharides in the matrix. We are planning to perform 461 

these experiments within the next months. 462 

 463 
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