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Abstract

During infection significant alterations in lipid metabolism and lipoprotein

composition occur. Triglyceride and VLDL cholesterol levels increase, while

reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are

observed. More importantly, endotoxemia modulates HDL composition and

size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while
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serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically

increase, and, although the total HDL particle number does not change, a

significant decrease in the number of small- and medium-size particles is

observed. Low HDL-C levels inversely correlate with the severity of septic

disease and associate with an exaggerated systemic inflammatory response.

HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-

negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial

lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs

are emerging also as a relevant player during parasitic infections, and a specific

component of HDL, namely, apoL-1, confers innate immunity against trypano-

some by favoring lysosomal swelling which kills the parasite. During virus

infections, proteins associated with the modulation of cholesterol bioavailability

in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry

into the cells. Pharmacological studies support the benefit of recombinant HDL

or apoA-I mimetics during bacterial infection, while apoL-1–nanobody

complexes were tested for trypanosome infection. Finally, SR-BI antagonism

represents a novel and forefront approach interfering with hepatitis C virus entry

which is currently tested in clinical studies. From the coming years, we have to

expect new and compelling observations further linking HDL to innate immu-

nity and infections.
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Abbreviations

ABCA-1 ATP-binding cassette transporter 1

ApoA-I Apolipoprotein A-I

ApoE Apolipoprotein E

ApoL-1 Apolipoprotein L-1

ApoM Apolipoprotein M

IL-1β Interleukin-1β
IL-6 Interleukin-6

HCV Hepatitis C virus

HIV Human immunodeficiency virus

HDL-C HDL cholesterol

LBP LPS-binding protein

LCAT Lecithin-cholesterol acyltransferase

LDL-C LDL cholesterol

LPS Gram-negative bacterial lipopolysaccharide

LTA Gram-positive bacterial lipoteichoic acid

PAF-AH Platelet-activating factor acetylhydrolase
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PON1 Serum paraoxonase

PTX3 Pentraxin 3

rHDL Reconstituted HDL

SAA Serum amyloid A

S1P Sphingosine-1-phosphate

sPLA2 Secretory phospholipase A2

SR-BI Scavenger receptor class B member 1

TG Triglycerides

TLF-1 Trypanosome lytic factor-1

TLRs Toll-like receptors

TNF-α Tumor necrosis factor-α

1 Introduction

HDLs are heterogeneous particles generated by the continuous remodeling by

lipolytic enzymes and lipid transporters and by lipid and apolipoprotein exchange

with other circulating lipoproteins and tissues (Kontush and Chapman 2006).

Mature HDL particles have a hydrophobic core containing cholesteryl esters and

triglycerides, while proteins are embedded in a lipid monolayer composed mainly

of phospholipids and free cholesterol. HDLs contain two main proteins, apolipo-

protein A-I (apoA-I) and apoA-II, but several other minor apoproteins as well as

enzymes such as lecithin-cholesterol acyltransferase (LCAT), serum paraoxonase

(PON1), and platelet-activating factor acetylhydrolase (PAF-AH) are associated

with HDL particles (Navab et al. 2004). HDLs possess several biological functions

(Pirillo et al. 2013), but the role of HDL in innate immunity has emerged in the

1970s with the first observation associating HDL cholesterol (HDL-C) plasma

levels to protection against sepsis. In the coming years, it has emerged that the

ability of HDL to modulate cholesterol bioavailability in the lipid rafts, membrane

microdomains enriched in glycosphingolipids and cholesterol, is evolutionary

conserved and affects the properties of cells involved in the innate and adaptive

immune response, tuning inflammatory response and antigen presentation functions

in macrophages as well as activation of B and T cells. In the context of infections,

HDL and their components have been linked with protection toward Gram-negative

and Gram-positive bacteria and parasites, while the role during virus infection is

debated (Fig. 1). Furthermore, HDLs influence humoral innate immunity by tuning

the activation of the complement system and the expression of pentraxin 3 (PTX3).

HDLs are critical not only during sepsis but also in other bacterial, parasitic, and

viral infection. The aim of this chapter is to discuss the relevant findings on the link

between HDL and immune response, shedding a new light on the role of these

lipoproteins during sepsis and infectious disease.
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2 HDL and Bacterial Infections

Increasing observations suggest that persistent low-grade inflammation is

associated with the pathogenesis of severe chronic diseases such as atherosclerosis,

diabetes, and other aging-related neurological diseases. Low levels of circulating

Gram-negative bacterial endotoxin lipopolysaccharide (LPS) appear to sustain a

non-resolving low-grade inflammation. As a consequence, low-grade

endotoxinemia may skew host immune environment into a mild non-resolving

pro-inflammatory state, which eventually leads to the pathogenesis and progression

of inflammatory diseases.

During infection, significant changes in the lipid metabolism are observed. At

first, plasma levels of lipid and lipoproteins may change: triglyceride (TG) and

VLDL cholesterol levels increase due to several mechanisms, including reduction

of TG hydrolysis, LPS- and pro-inflammatory cytokines-induced de novo free fatty

acid production, and TG synthesis in the liver and reduction of lipoprotein lipase

activity thus resulting in reduced VLDL clearance and increased TG levels (Wendel

et al. 2007). In addition, the increase in free fatty acids induces insulin resistance,

thus contributing to increased glucose levels during systemic inflammation. On the

other hand, HDL-C and LDL-C levels decrease during sepsis, and a low plasma

Bacteria

Parasites

Virus

HDL

TYPE OF INFECTION HDL-MEDIATED EFFECT

•Favor LPS/LTA binding and neutraliza�on.
•Favor LPS/LTA clearance
• Inhibit LPS (LTA)-induced cytokine release
• Inhibit of LPS (LTA)-induced cell ac�va�on
• Induce an early inflammatory response

•Support ApoL1, Apo-AI and HRP interac�on 
to form the trypanosoma ly�c factor-1  (TLF-
1). complex. ApoL1  then traffics to the 
trypanosomal lysosome, where causes 
swelling which kills the trypanosome.

•Dampen (ApoA-1 mime�c pep�des) the 
ABCA-1 impairment induced by the HIV-1 
Nef protein.
• Inhibit cell fusion, both in HIV-1-infected T 
cells and in recombinant vaccinia-virus-
infected CD4+ HeLa cells.
•Compete with Hepa��s C virus on SRBI 
interac�on to dampen virus entry?

Fig. 1 HDL and infections

486 A. Pirillo et al.



HDL-C level (associated with a low plasma apoA-I level) is a poor prognostic

factor for severe sepsis, as it is associated with increased mortality and adverse

clinical outcomes (Chien et al. 2005); more importantly, significant alterations in

lipoprotein composition are observed, and increased levels of acute-phase proteins,

including serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2), may

contribute to decreased HDL-C levels, by replacing some structural and functional

HDL components (Fig. 2).

Endotoxinemia also modulates HDL composition and size: phospholipids are

reduced while SAA dramatically increases and apoA-I decreases, and, although the

total HDL particle number does not change, a significant decrease in the numbers of

small- and medium-size particles is observed (de la Llera et al. 2012). The apoA-I

content is reduced due to the rapid association of SAA, which displaces apoA-I and

becomes the main protein of acute-phase HDL (Coetzee et al. 1986; Khovidhunkit

et al. 2004); the content of other proteins associated with HDL (PON1, PAF-AH) is

altered, resulting in reduced antioxidant properties of HDL (Feingold et al. 1998)

and increased content of pro-atherogenic lipids (Cao et al. 1998; Memon

et al. 1999). Also the lipid composition of HDL is altered during the acute-phase

response (Khovidhunkit et al. 2004). Endotoxemia induces the increase of some

enzymes involved in HDL remodeling, including endothelial lipase (Badellino

et al. 2008) and secretory phospholipase A2 (de la Llera et al. 2012), and the

decrease of other, such as CETP and LCAT (de la Llera et al. 2012; Wendel

et al. 2007). Altogether these changes result in the loss of functional properties of

HDL (Banka et al. 1995; de la Llera et al. 2012; McGillicuddy et al. 2009).

Infec�on/Sepsis

Acute phase-HDL

An�-inflammatoryac�vity

Mature HDL

HDL
PAF-AH AP-HDL

Fig. 2 Acute-phase HDL
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2.1 Interaction of HDL with LPS and Gram-Negative Bacteria

Sepsis is a major cause of death in hospitalized patients. Mortality is mainly due to

the cytotoxic actions of lipid components of the bacterial outer membrane

Lipopolysaccharide (LPS) is the toxic component of endotoxin in the outer mem-

brane of Gram-negative bacteria. Lipoteichoic acid (LTA) is a heat-stable compo-

nent of the cell membrane and wall of most Gram-positive bacteria that shares

structural similarities with LPS and induces cytokine cascades alike LPS

(Grunfeld et al. 1999).

LPS, the major pathogenic factor in Gram-negative sepsis, is an essential

component of the bacterial cell wall, and it is not toxic when incorporated into

the membrane; after release in the blood following bacterial cell reproduction, lysis,

or death, lipid A, the most essential part of LPS, induces an inflammatory response

(Van Amersfoort et al. 2003). This is mediated by pro-inflammatory cytokines

released primarily from monocytes/macrophages and neutrophils, such as tumor

necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) (Levine

et al. 1993). LPS is recognized mainly by toll-like receptor 4 (TLR4) in cooperation

with other proteins including MD-2, CD14, and LPS-binding protein (LBP) (Jerala

2007). LBP catalyzes the transfer of LPS to CD14, thus enhancing LPS-induced

cell activation (Van Amersfoort et al. 2003). To prevent exaggerated responses to

LPS, the host has developed several control mechanisms that include inhibitory

LPS-binding proteins and plasma lipoproteins (Van Amersfoort et al. 2003).

In patients with severe sepsis, HDL-C decreases rapidly, and SAA is the major

protein present in HDL (45 %) at the start of sepsis and is slowly replaced by apoA-I

during recovery (van Leeuwen et al. 2003). Low HDL-C levels inversely correlate

with the severity of septic disease and associate with an exaggerated systemic

inflammatory response (Wendel et al. 2007), although it is difficult to establish

whether changes in plasma lipoproteins simply reflect the severity of disease or they

can directly modify the host response to inflammation. Also in healthy subjects low

HDL levels are associated with increased inflammatory response on endotoxin

challenge compared to subjects with normal or high HDL levels (Birjmohun

et al. 2007), without differences in the HDL proteome (Levels et al. 2011). These

observations indicate a positive role of HDL in the protection against sepsis.

Several mechanisms are involved in HDL-mediated protection. HDL, as well as

other plasma lipoproteins (LDL, TG-rich lipoproteins), can bind and neutralize

Gram-negative bacterial LPS as well as Gram-positive bacterial lipoteichoic acid

(LTA) (Grunfeld et al. 1999; Murch et al. 2007). ApoA-I knockout mice, which

lack HDL, exhibit decreased LPS neutralization in the serum compared with serum

from control mice (Guo et al. 2013); overexpression of apoA-I moderately

improves survival compared to controls, suggesting that HDL elevation may

protect against septic death. In endotoxemic rats, in which LPS has been infused

after HDL administration, HDLs attenuate LPS-induced organ damage

accompanied by lower TNF-α and nitric oxide production (Lee et al. 2007). In

addition to its role in LPS neutralization, HDLs exert its protection against

sepsis also by promoting LPS clearance; in fact, almost all LPS exists in the
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complex LPS–HDL in the blood (Ulevitch et al. 1979, 1981), the HDL receptor

SR-BI binds and mediates LPS uptake, and HDLs promote SR-BI-mediated LPS

uptake (Vishnyakova et al. 2003).

Administration of reconstituted HDL (rHDL) efficiently inhibits the

LPS-induced cytokine release from the whole-blood system in vitro (Parker

et al. 1995); however, the first study that demonstrated the LPS-neutralizing ability

of rHDL in humans was performed by intravenous infusion of rHDL before

induction of endotoxemia in healthy volunteers (Pajkrt et al. 1996). rHDL signifi-

cantly reduced endotoxemia-induced inflammatory response, as it reduced clinical

symptoms, reduced inflammatory cytokine (TNF-α, IL-6, IL-8) production, and

attenuated LPS-induced leukocyte activation, in part due to the downregulation of

the main LPS receptor monocyte-bound CD14 (Pajkrt et al. 1996). In

LPS-challenged macrophages, HDLs selectively inhibit the activation of type I

IFN response genes (Suzuki et al. 2010), which play a critical role in the antiviral

response of cells, although emerging evidence also implicates this response in host

defense during bacterial infection. This inhibitory effect of HDL does not require

LPS binding to lipoproteins (Suzuki et al. 2010). HDLs (and apoA-I) attenuate also

LPS-induced neutrophil activation (Murphy et al. 2011). More recently Di Nardo

et al. (2014) have shown that HDLs promote the expression of ATF3 in

macrophages, a transcriptional regulator which inhibits TLR2 expression. Of note

the protective effects of HDL against TLR-induced inflammation were shown to be

fully dependent on ATF3 in vitro and in vivo.

Another mechanism by which HDLs exert a protection against sepsis is by

inducing an early inflammatory response to Gram-negative bacteria, thus helping

to maintain a sensitive host response to LPS; HDLs exert this effect by suppressing

the inhibitory activity of LBP (Thompson and Kitchens 2006). In contrast to native

HDL, recombinant HDL did not increase cell response at early time points and are

strongly inhibitory of cell response; this different effect is due to the composition of

rHDL, which contain only apoA-I and PC and are optimized for LPS binding and

neutralization (Thompson and Kitchens 2006).

Indeed apoA-I is a major HDL component that plays a central role in the anti-

inflammatory functions of this lipoprotein class and exhibits protective effects

against sepsis. ApoA-I in fact can directly inactivate bacterial endotoxin by

protein–protein interaction (Emancipator et al. 1992), being the C-terminal half

of apoA-I the main domain responsible for LPS neutralization (Henning

et al. 2011), but also inhibits LPS-induced cytokine release from human monocytes

(Flegel et al. 1993); in addition, apoA-I reduces TNF-α levels during LPS challenge

in rats and increases the survival rates (Humphries et al. 2006), suggesting that

apoA-I might inhibit LPS binding to macrophages thus inhibiting the production of

inflammatory cytokines that are related to sepsis. In mice, the overexpression of

apoA-I (that results in an increased serum level of both apoA-I and HDL) attenuates

LPS-induced acute injury in lung and kidney (Li et al. 2008); LPS-induced pro-

inflammatory cytokines decrease, as well as CD14 expression in liver and lung,

resulting in a protective effect against systemic inflammation and multiple organ

damage (Li et al. 2008). Similar to what reported in mice, subjects with low plasma
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HDL levels (hypoalphalipoproteinemia) present an increased prevalence of classi-

cal CD14++/CD16� but not of intermediate CD14++/CD16+ monocytes, further

linking HDL- to LPS-mediated responses (Sala et al. 2013). Septic HDLs are

almost depleted of apoC-I (Barlage et al. 2001). ApoC-I contains a consensus

LPS-binding motif and is able to enhance the biological response to LPS thus

reducing mortality in mice with Gram-negative-induced sepsis (Berbee

et al. 2006). In fact, apoC-I binds to LPS and prevents its clearance by the liver

and spleen, resulting in the stimulation of the LPS-induced pro-inflammatory

response and protection against septic death (Berbee et al. 2006). These findings

suggest that when LPS is released into the plasma following bacteria proliferation

in the blood, apoC-I binds to LPS and presents it to responsive cells such as

macrophages, leading to a rapid and enhanced production of pro-inflammatory

cytokines, which are essential for effective eradication of the bacterial infection.

2.2 Interaction of HDL with LTA and Gram-Positive Bacteria

The effects of HDL on components of the bacterial outer membrane are not

restricted to Gram-negative bacteria but also involve cell wall components of

Gram-positive bacteria such as LTA which is able to induce an inflammatory

response similar to that induced by LPS. Indeed it induces a massive production

of mediators of inflammation that may result in systemic inflammatory response

syndrome, septic shock, and multiorgan damage (Bhakdi et al. 1991; De Kimpe

et al. 1995). LTA may also trigger disturbances of lipid metabolism, interfering

with both lipoprotein production and lipoprotein clearance (Grunfeld et al. 1999).

All lipoproteins can bind LTA, but the majority of LTA is found in the HDL

fraction (Levels et al. 2003), suggesting that HDLs have the highest affinity. In

contrast to LPS, HDLs (as well as other lipoproteins) alone do not inhibit the

cytokine production induced by LTA, but require the presence of lipoprotein-

depleted plasma (Grunfeld et al. 1999), suggesting that lipoproteins contain

cofactors in sufficient amounts to facilitate LPS binding to lipoproteins but not

LTA binding. LBP is a plasma component (normally bound to HDL, but it can be

found in lipoprotein-depleted plasma following ultracentrifugation) which

enhances the activation of macrophages by LPS in the absence of lipoproteins

and facilitates LPS binding to lipoproteins; LBP can also bind LTA (Tobias

et al. 1989) and allows HDL to efficiently inactivate LTA (Grunfeld et al. 1999).

The inhibition of LBP with neutralizing antibodies significantly decreases (53 %)

the ability of lipoprotein-depleted plasma to facilitate LTA inactivation, but also

suggests the presence of other plasma factors playing a role in HDL inactivation of

LTA (Grunfeld et al. 1999).

ApoA-I has been shown to bind directly LTA in vitro and to attenuate

LTA-induced NF-kB activation (Jiao and Wu 2008); apoA-I dose-dependently

inhibits L-929 cell death induced by LTA-activated macrophages, and

lipoprotein-depleted plasma strengthened this effect of apoA-I (Jiao and Wu

2008). In mice, apoA-I attenuates LTA-induced acute lung injury and significantly

inhibits LTA-induced pro-inflammatory cytokine production (Jiao and Wu 2008).
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These findings suggest that apoA-I can inhibit LTA activation by multiple

mechanisms, by direct binding to LTA, and by interfering with LTA-mediated

inflammatory response.

2.3 HDL and Mycobacteria

HDLs were reported to be protective also toward intracellular bacteria such as

mycobacteria (Cruz et al. 2008). Intracellular pathogens survive by evading the host

immune system and accessing host metabolic pathways to obtain nutrients for their

growth. Mycobacterium leprae, the causative agent of leprosy, is thought to be the

mycobacterium most dependent on host metabolic pathways, including host-

derived lipids. Although fatty acids and phospholipids accumulate in the lesions

of individuals with the lepromatous (also known as disseminated) form of human

leprosy (L-lep), the origin and significance of these lipids remains unclear. Host-

derived oxidized phospholipids were detected in macrophages within L-lep lesions,

and one specific oxidized phospholipid, 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-

sn-glycero-3phosphorylcholine (PEIPC), accumulates in macrophages infected

with live mycobacteria (Cruz et al. 2008). Mycobacterial infection and host-derived

oxidized phospholipids both inhibited innate immune responses, and this inhibition

was reversed by the addition of normal HDL, a scavenger of oxidized

phospholipids, but not by HDL from patients with L-lep (Cruz et al. 2008). The

accumulation of host-derived oxidized phospholipids in L-lep lesions is strikingly

similar to observations in atherosclerosis, which suggests that the link between host

lipid metabolism and innate immunity could contribute to the pathogenesis of both

microbial infection and metabolic disease.

2.4 General Innate Host Defense Mechanisms Exerted by HDL
After Bacterial Infection

In addition to limiting LPS or LTA responses during infection, HDLs exert addi-

tional functions during the innate immune response. In normal plasma, about 5 % of

HDL particles contain apolipoprotein M (apoM) which binds sphingosine-1-phos-

phate (S1P), an important bioactive lipid mediator known to be associated with

HDL (Christoffersen et al. 2011). The inhibition of apoM production results in the

decrease of HDL-C levels and changes in HDL size, subclass profile, and functions

(Wolfrum et al. 2005); apoM is a negative acute-phase protein that decreases during

infection and inflammation (Feingold et al. 2008); in patients with severe sepsis and

systemic inflammatory response syndrome (SIRS), a leading cause of mortality in

non-coronary intensive care units, apoM plasma levels decrease dramatically

suggesting a reduction of the vasculoprotective effects of apoM and its ligand

S1P, with a strong correlation between apoM decrease and the severity of disease

(Kumaraswamy et al. 2012). It is still unclear whether apoM and S1P levels may

have prognostic value and whether changes in apoM levels contribute to the

pathogenesis of SIRS and septic shock.

HDL in Infectious Diseases and Sepsis 491



Another key player during the immune response regulated by HDL is the long

pentraxin 3 (PTX3). This protein belongs, together with the C-reactive protein

(CRP) and other acute-phase proteins, to the pentraxin superfamily: soluble, multi-

functional, pattern recognition proteins. Pentraxins share a common C-terminal

pentraxin domain, which in the case of PTX3 is coupled to an unrelated long

N-terminal domain (Bonacina et al. 2013). PTX3, which is the prototypic long

pentraxin, was identified in the early 1990s, as a molecule rapidly induced by IL-1

in endothelial cells (ECs) or by TNF-α in both ECs and fibroblasts (Breviario

et al. 1992; Lee et al. 1993). The protein presents a high degree of conservation

from mouse to human (82 % identical and 92 % conserved amino acids) and is

induced in a variety of somatic and innate immunity cells by primary inflammatory

stimuli (Garlanda et al. 2005). PTX3 is a key player of the humoral arm of the

innate immunity, and its physiological functions are associated with the recognition

and binding to different ligands, including microbial moieties, complement

components, and P-selectin. This protein plays also a key role in cardiovascular

diseases including atherosclerosis (Norata et al. 2009, 2010). Similarly to short

pentraxins, PTX3 recognizes the highly conserved pathogen-associated molecular

patterns (PAMPs) expressed by microorganisms (Iwasaki and Medzhitov 2010) and

binds a number of bacteria, fungi, and viruses. A specific binding has been observed

to conidia of Aspergillus fumigatus (Garlanda et al. 2002), Paracoccidioides
brasiliensis, and zymosan (Diniz et al. 2004), to selected Gram-positive and

Gram-negative bacteria (Bozza et al. 2006; Garlanda et al. 2002; Jeannin

et al. 2005), and finally to some viral strains, including human and murine cyto-

megalovirus and influenza virus type A (IVA) (Bozza et al. 2006; Reading

et al. 2008). Both short pentraxin and PTX3 bind apoptotic cells and facilitate

their clearance (Doni et al. 2012; Jaillon et al. 2009). Surface bound CRP activates

the classical pathway of complement through interaction with C1q, thus leading to

cell elimination (Nauta et al. 2003). Cell-bound PTX3 might favor the clearance of

apoptotic cells (Jaillon et al. 2009; Poon et al. 2010) by enhancing the deposition of

both C1q and C3 on cell surfaces (Nauta et al. 2003). On the contrary, when in the

fluid phase, PTX3 interacts with C1q and dampens the deposition on apoptotic cells

and the resulting phagocytosis by dendritic cells and phagocytes (Baruah

et al. 2006; Gershov et al. 2000; Rovere et al. 2000; van Rossum et al. 2004). In

addition to PTX3, C1q recognizes and binds to ficolin-2 and mannose-binding

lectin (MBL), thus modulating the classical and the lectin pathways of complement

activation (Bottazzi et al. 1997). The best described and characterized ligand of

PTX3 is the first component of the classical complement system C1q (Bottazzi

et al. 1997; Nauta et al. 2003); PTX3 interacts with the globular head of the protein

(Roumenina et al. 2006) thus resulting in the activation of the classical complement

cascade only when C1q is plastic immobilized, a situation that mimics C1q bound

to a microbial surface. Anti-inflammatory molecules were shown to modulate

PTX3 expression. Under inflammatory conditions, glucocorticoid hormones

(GCs) induce and enhance the protein expression in fibroblasts but not in myeloid
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cells (Doni et al. 2008). Also HDLs, which possess a series of vascular protective

activities, induce PTX3 expression in endothelial cells (Norata et al. 2008). The

latter mechanism requires the activation of the PI3K/Akt pathway through

G-coupled lysosphingolipid receptors and is mimicked by sphingosine-1-phosphate

and others S1P mimetics (Norata et al. 2008), physiologically present in HDL and

responsible for some of the activities linking HDL to the immunoinflammatory

response (Norata et al. 2005, 2012). In vivo, an increased expression of PTX3

mRNA was detected in the aorta of transgenic mice overexpressing human apoA-I,

compared to apoA-I knockout mice, and plasma levels of PTX3 are significantly

increased in C57BL/6 mice injected with HDL (Norata et al. 2008). These data

suggest that some of the beneficial effects in immunity of HDLmay result also from

the modulation of molecules that act as sensors of the immunoinflammatory

balance.

In summary, all the observations showing that the increase of HDL is associated

with an attenuation of LPS-induced inflammatory response (Levine et al. 1993; van

Leeuwen et al. 2003) strongly favor the hypothesis that raising plasma HDL may

represent a therapeutic approach in the treatment of sepsis and its complications.

The picture however is more complicated, and not only HDL quantity but also HDL

quality/composition is critical. For instance, the increase in sepsis-related mortality

of the ILLUMINATE trial observed in the torcetrapib (a cholesteryl ester transfer

protein inhibitor, increasing HDL-C levels) arm (Barter et al. 2007) was unlikely

due to a direct effect of torcetrapib on LBP or bactericidal/permeability increasing

protein function nor to inhibition of an interaction of CETP with LPS (Clark

et al. 2010). It is rather possible that changes in plasma lipoprotein composition

despite increased HDL levels, or the known off-target effects of torcetrapib, such as

aldosterone elevation, could have aggravated the effects of sepsis (Clark

et al. 2010). Apolipoprotein mimetic peptides represent an emerging area of HDL

therapy; the most effective apoA-I mimetic peptide is 4F, which has been shown to

improve HDL quality/function (Sherman et al. 2010; White et al. 2009). 4F mimics

also anti-inflammatory properties of HDL: in vitro, 4F inhibits the expression of

pro-inflammatory mediators in LPS-treated cells by directly binding to LPS, thus

resulting in the inhibition of LPS binding to LBP (Gupta et al. 2005). In

endotoxemic rats, the administration of 4F after LPS injection results in the

attenuation of acute lung injury and increased survival, probably due to the preser-

vation of circulating HDL-C and the downregulation of inflammatory pathways

(Kwon et al. 2012); 4F also prevents defects in vascular functions and is associated

with a decrease in plasma endotoxin activity in rats (Dai et al. 2010) and improved

cardiac performance in LPS-treated rats (Datta et al. 2011). These observations

indicate that, by scavenging LPS, 4F may prevent LPS-induced release of

pro-inflammatory cytokines and changes in HDL composition resulting in an

effective reduction of clinical complications associated with sepsis. Although

promising, future studies are warranted to translate these findings into the clinical

setting.
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3 HDL and Parasitic Infections

The connection between HDL and parasitic infections mainly relates on the ability

of specific apolipoproteins, which circulate as part of the HDL3 complex, to limit

Trypanosoma brucei or Leishmania infection. The most relevant apolipoprotein in

this context is apoL-1 which was discovered in 1997 (Duchateau et al. 1997) and

was shown to be a part of a primate-specific complex named trypanosome lytic

factor-1 (TLF-1) that also contains apoA-I and haptoglobin-related protein as the

main protein components. TLF-1 has lytic activity toward African Trypanosoma
brucei brucei and renders humans and most other primates resistant to infection

with this parasite causing endemic infections of African cattle. The Trypanosoma
species brucei rhodesiense and brucei gambiense, however, are resistant to TLF-1

and cause sleeping sickness in humans. Sleeping sickness is fatal when untreated

and thus is an important health problem in many African countries. The trypano-

some lytic activity has been associated with apoL-1 (Vanhamme et al. 2003); the

apoL-1-containing complex is taken up by T. b. brucei via a receptor that binds

hemoglobin and haptoglobin-related protein (Hb-Hpr). ApoL-1 traffics to the

trypanosomal lysosome, where the acidic pH causes a conformational change,

leading to activation of anion channel function in the apoL-1 N terminus. Lyso-

somal swelling kills the trypanosome (Perez-Morga et al. 2005). Thus, apoL-1

confers innate immunity against this parasite (Wheeler 2010). Over time, T. b.
brucei developed a virulence factor called SRA that can inactivate apoL-1 protein,

although the cellular location of this interaction is unknown. These SRA-expressing

trypanosomes evolved into T. b. rhodesiense, the etiologic agent that causes acute
African sleeping sickness (Wheeler 2010). This discovery has now been used to

engineer a potential fusion protein drug for treating sleeping sickness caused by

brucei rhodesiense in human (Baral et al. 2006). The active component in the novel

protein drug candidate is a recombinant apoL-1 where the C-terminal SRA-binding

region of wild-type apoL-1 has been deleted. This truncated apoL-1 alone probably

has low biological activity when injected into plasma due to competition with

endogenous apoL-1 (~6 mg/l) for uptake by trypanosomes. To circumvent this

problem and effectively target recombinant apoL-1 to trypanosomes, the

SRA-resistant apoL-1 without the C-terminal sequences was fused with a fragment

of a high-affinity camel antibody (designated nanobody) specifically recognizing

conserved epitopes of variant surface glycoprotein on trypanosomes (Baral

et al. 2006). In vitro, the recombinant apoL-1–nanobody specifically bound to

trypanosomes and was capable of lysing them in vivo. When mice infected with

Trypanosoma brucei brucei were treated with the apoL-1–nanobody fusion protein,
the parasites were promptly cleared from the circulation.

Another trypanosomatida, Leishmania, is also targeted by apoL-1 (Samanovic

et al. 2009). It is certainly possible that apoL-1 has broad innate immunity

properties, shaping the relative frequencies of the APOL1 alleles. Of note the

chronic kidney disease (CKD)-associated G1 and G2 variants (Parsa et al. 2013)

encode forms of apoL-1 that evade SRA and remain active against T. b.
rhodesiense. This, and/or other biological effects, may have conferred a selective
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advantage to G1 and G2 heterozygotes, causing a selective sweep. The contribution

of apoL-1 to CKD could also be related to the HDL functionality (Baragetti

et al. 2013) under specific immunopathological conditions such as those observed

during CKD. Hence, HDL could represent the bridge between apoL-1 and CKD and

should be taken into consideration when exploring the contribution of apoL-1 to the

disease. The delineation of how primates in late evolution have exploited HDL to

fight parasite infections highlights the need of investigations on other potential roles

of plasma HDL beyond those in lipid metabolism and reverse cholesterol transport.

4 HDL and Viral Infections

Changes in plasma HDL-C levels have been reported to occur also during infection

with viruses including human immunodeficiency virus (HIV) and hepatitis C virus

(HCV). Furthermore, proteins related to HDL life cycle, such as SR-BI, were shown

to play a key role in HCV infection. So far HDLs were proposed to increase virus

infection and inhibit virus neutralizing antibodies; however, recent findings are

challenging previous data and proposing a more complicated picture based on the

ability of virus to take advantage of HDL–lipid transfer activity in host cells. Most

of the available evidences linking HDL to viral infection are available for HIV

and HCV.

4.1 HIV Infection

HIV infects and depletes CD4 lymphocytes, resulting in immunodeficiency and a

slowly progressive disease. HIV is associated with dyslipidemia, namely,

hypocholesterolemia, low levels of LDL, and hypertriglyceridemia (Riddler

et al. 2003; Shor-Posner et al. 1993). HIV infection is commonly associated also

with hypoalphalipoproteinemia; however, it is unclear whether virion replication

plays a causative role in these changes. Some data suggest that hypoalphalipopro-

teinemia in patients with HIV is likely to be secondary to HIV infection itself (Rose

et al. 2006). Systemic inflammation has been shown to lower the antioxidant and

anti-inflammatory activity by transforming HDL to a pro-oxidant,

pro-inflammatory acute-phase HDL (Kelesidis et al. 2013; Norata et al. 2006). A

small pilot study of HIV-1-infected individuals with suppressed viremia on combi-

nation antiretroviral therapy showed that oxidative stress and inflammation in

HIV-1 are associated with a marked reduction of HDL antioxidant–anti-inflamma-

tory activities. In vitro, these abnormalities were significantly improved by treat-

ment with the apoA-1 mimetic peptide 4F (Kelesidis et al. 2011). HIV infection is

associated with modified HDL metabolism redirecting cholesterol to the apoB-

containing lipoproteins and likely reducing the functionality of reverse cholesterol

transport (Rose et al. 2008). Of note, the HIV-1 Nef protein can impair ABCA1

cholesterol efflux from macrophages, thus supporting atherosclerosis. This viral

inhibition of efflux was correlated with a direct interaction between ABCA1 and

Nef (Fitzgerald et al. 2010; Mujawar et al. 2006). More recently it was shown that
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Nef downregulates ABCA1 function by a posttranslational mechanism that

stimulates ABCA1 degradation but does not require the ability of Nef to bind

ABCA1 (Mujawar et al. 2010).

Not all data are however concordant on this, and although HDL cholesterol and

preβ1-HDL were significantly lower in all HIV-infected groups ( p< 0.05), mean

levels of apoA-I and the ability of plasma to promote cholesterol efflux were similar

in treatment-naı̈ve HIV-infected patients or in HIV-infected patients on long

therapy break. Of note a positive correlation between apoA-I and levels of CD4+

cells was also observed (r2¼ 0.3, p< 0.001) (Rose et al. 2008). Furthermore apoA-

I, the major protein component of high-density lipoprotein, and its amphipathic

peptide analogue were found to inhibit cell fusion, both in HIV-1-infected T cells

and in recombinant vaccinia-virus-infected CD4+ HeLa cells expressing HIV

envelope protein on their surfaces (Srinivas et al. 1990). The amphipathic peptides

inhibited the infectivity of HIV-1. The inhibitory effects were manifest when the

virus, but not cells, was pretreated with the peptides. Also, a reduction in

HIV-induced cell killing was observed when virus-infected cell cultures were

maintained in the presence of amphipathic peptides. These results have potential

implications for HIV biology and therapy (Srinivas et al. 1990).

An aspect debated is how much the HIV infection and/or treatment contribute to

the changes in HDL-C levels. With highly active antiretroviral therapy (HAART)

intervention, mortality due to HIV was greatly reduced (Madamanchi et al. 2002).

However, there have been several reports of increases in cardiovascular

complications in patients with HIV. It is now established that some HAART

regimens cause severe dyslipidemia, characterized by high levels of TC and

LDL-C, hypertriglyceridemia, and hypoalphalipoproteinemia (Riddler

et al. 2003). This clearly pro-atherogenic lipoprotein profile is associated with a

rise in the incidence of CAD (Depairon et al. 2001). The rate of inflammation

predicts changes in HDL-C and apoA-I following the initiation of antiretroviral

therapy and indeed in a subgroup of participants not taking ART at study entry who

were randomized in the Strategies for Management of Antiretroviral Therapy

(SMART) to immediately initiate ART (“VS group”) or to defer it (“DC group”);

HDL-C and ApoA-I levels increased among VS participants (n¼ 128) after starting

ART compared to DC. The effect of starting ART on changes in HDL-C and apoA-I

was greater for those with higher versus lower baseline levels of IL-6 or hsCRP

indicating that the activation of inflammatory pathways could contribute to

HIV-associated changes in HDL (Baker et al. 2011). Also non-nucleoside reverse

transcriptase inhibitors (NNRTI), such as nevirapine (NVP), were shown to

increase apoA-I production, which contributes to the HDL-C increase after intro-

duction of NVP-containing regimens. In view of the potent anti-atherogenic effects

of apoA-I, the observed increase was suggested to contribute to the favorable

cardiovascular profile of NVP (Franssen et al. 2009). Also efavirenz, another

NNRTI antiretroviral treatment, was associated with HDL particles with a better

antioxidant function, i.e., with a higher PON-1 activity. The PON-1 activity of

black patients is higher than that found in whites regardless of treatment suggesting

that ethnicity should be taken into consideration when studying drug effects on

PON-1 activity (Pereira et al. 2009).
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Overall the available evidences suggest that HIV infection could be associated

with modified HDL metabolism redirecting cholesterol to the apoB-containing

lipoproteins and likely reducing the functionality of reverse cholesterol transport

and promote atherosclerosis. Additional pro-atherogenic mechanisms could be

associated with a decrease in the anti-inflammatory properties of HDL.

4.2 HCV Infection

HCV is a major cause of liver cirrhosis and hepatocellular carcinoma. Viral entry is

required for initiation, spread, and maintenance of infection and thus is a promising

target for antiviral therapy. HCV exists in heterogenous forms in human serum and

may be associated with VLDL, LDL, and HDL which can shield the virus from

neutralizing antibodies targeting the HCV envelope glycoproteins (Agnello

et al. 1999; Hijikata et al. 1993; Nielsen et al. 2006; Thomssen et al. 1992). HCV

binding and entry into hepatocytes is a complex process involving the viral enve-

lope glycoproteins E1 and E2, as well as several host factors, including highly

sulfated heparan sulfate, CD81, the low-density lipoprotein receptor, claudin-1,

occludin, and receptor tyrosine kinases (Lupberger et al. 2011; Zeisel et al. 2011).

Also SR-BI which binds a variety of lipoproteins and mediates the selective

uptake of HDL cholesterol ester (CE) as well as bidirectional free cholesterol

transport at the cell membrane emerged as a critical receptor affecting HCV

entry. SR-BI directly binds HCV E2 (Bartosch et al. 2003; Evans et al. 2007;

Scarselli et al. 2002), but virus-associated lipoproteins, including apoB containing,

also contribute to host cell binding and uptake (Dao Thi et al. 2012; Maillard

et al. 2006). Moreover, physiological SR-BI ligands modulate HCV infection

(Bartosch et al. 2005; Voisset et al. 2005; von Hahn et al. 2006), suggesting the

existence of a complex interplay between lipoproteins (not only HDL), SR-BI and

HCV envelope glycoproteins for HCV entry. Earlier studies using small molecule

inhibitors indicated a role for SR-BI lipid transfer function in HCV infection and

HDL-mediated entry enhancement (Bartosch et al. 2003; Dreux et al. 2009; Syder

et al. 2011; Voisset et al. 2005). A human anti-SR-BI mAb has been reported to

inhibit HDL binding, to interfere with cholesterol efflux, and to decrease cell

culture-derived HCV (HCVcc) entry during attachment steps without having a

relevant impact on SR-BI-mediated post-binding steps (Catanese et al. 2007,

2010). However, SR-BI mediates the uptake of HDL-C in a two-step process

including HDL binding and subsequent transfer of CE into the cell without inter-

nalization of HDL; a novel emerging hypothesis suggests that the interference with

SR-BI lipid transfer function may be relevant for both initiation of HCV infection

and viral dissemination independently of HDL function (Zahid et al. 2013).

Indeed SR-BI has also been demonstrated to mediate post-binding events during

HCV entry (Haberstroh et al. 2008; Syder et al. 2011; Zeisel et al. 2007). HCV–SR-

BI interaction during post-binding steps occurs at similar time points as the HCV

utilization of CD81 and claudin-1 suggesting that HCV entry may be mediated

through the formation of co-receptor complexes (Harris et al. 2008; Krieger
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et al. 2010; Zeisel et al. 2007). Also the SR-BI partner PDZK1 was shown to

facilitate hepatitis C virus entry (Eyre et al. 2010).

These data suggest that SR-BI plays a multifunctional role during HCV entry at

both binding and post-binding steps (Catanese et al. 2010). Furthermore the HCV

post-binding function of human SR-BI can be dissociated from its E2-binding

function. Murine SR-BI does not bind E2 although it is capable of promoting

HCV entry (Catanese et al. 2010; Ploss et al. 2009), and SR-BI, although able to

directly bind E2 and virus-associated lipoproteins, could play additional functions

during HCV infection (Bartosch et al. 2003; Dreux et al. 2009; Zeisel et al. 2007).

Although the addition of HDL enhances the efficiency of HCVcc infection, anti-

SR-BI antibodies and SR-BI-specific siRNA efficiently inhibited HCV infection

independently of lipoproteins (Zeisel et al. 2007). In this context, the post-binding

activity of SR-BI is of key relevance for cell-free HCV infection as well as cell-to-

cell transmission and by using antibodies which do not inhibit HDL binding to

SR-BI; it was observed that post-binding function of SR-BI appears to be unrelated

to HDL interaction but to be directly linked to its lipid transfer function (Zahid

et al. 2013). So far small molecules and mAbs targeting SR-BI and interfering with

HCV infection have been described (Bartosch et al. 2003; Catanese et al. 2007;

Syder et al. 2011). A codon-optimized version of this mAb has been demonstrated

to prevent HCV spread in vivo (Meuleman et al. 2012), and ITX5061, a SR-BI

inhibitor, is in clinical development as HCV entry inhibitor (phase I, http://

clinicaltrials.gov/ct2/show/NCT01560468?term¼ITX+5061&rank¼3).

Despite this promising approach, some open questions remain. First, it has been

shown in vitro that apoA-I is required for HCV production (Mancone et al. 2011)

and that serum amyloid A has antiviral activities against HCV which are reduced

when HDL are co-incubated with SAA (Lavie et al. 2006). Given the changes

between apoA-I and SAA occurring in HDL during the acute phase (Norata

et al. 2012), it is still unknown whether this mechanism could be the consequence

of viral infection or may represent part of the immune response which HCV learned

to escape. Second, as the inhibition of SR-BI represents one of the most promising

targets for HCV infection, the potential side effects on the impairment of HDL

function should be carefully evaluated. The new data showing that HCV infection

does not require receptor-E2–HDL interactions, coupled with the observation that

HCV entry and dissemination can be inhibited without blocking HDL–SR-BI

binding (Zahid et al. 2013), open a novel perspective for the design of entry

inhibitors interfering specifically with the proviral function of SR-BI.

Conclusion

HDLs are emerging as a relevant player in both innate and adaptive immunity

(Norata et al. 2011, 2012; Sala et al. 2012). HDL activities rely not only on the

ability to modulate cholesterol availability in immune cells but also on the role

of specific molecules shuttled by HDL. During infections and acute conditions,

HDL-C levels decrease very rapidly, and HDL particles undergo changes that

dramatically alter their composition and function. Whether this is the conse-

quence of a humoral innate response aimed at scavenging lipid bacterial
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products such as LPS from the circulation and driving them into the liver for

catabolism and elimination is still debated. Experimental evidence in genetically

manipulated animal models suggests, however, that alterations in HDL struc-

ture/composition are associated with poor prognosis following endotoxemia or

sepsis, further supporting a protective role for HDL. The same is true for some

parasitic infections, where the key player appears to be a specific and minor

apolipoprotein of HDL–apoL-1. For viral infections, the landscape is more

complicated; SR-BI was clearly indicated as a player favoring virus entry;

however, it is not clear whether viruses, such as HCV, evolved to take advantage

of the HDL–SR-BI interaction to entry liver cells as in vitro studies suggest or

whether in vivo HDL can compete for the interaction between HCV and SR-BI.

Further studies are warranted in this context. Despite this, proteins related to

HDL physiology represent already a target in clinical development for

infections, and SR-BI antagonism represents a novel and forefront approach to

interfere with hepatitis C virus entry.

All the observations showing that the increase of HDL-C is associated with an

attenuation of LPS-induced inflammatory responses strongly favor the hypothe-

sis that raising plasma HDL may represent a therapeutic approach in the treat-

ment of sepsis and its complications (Table 1). HDL-related therapies are of

great interest also in the context of parasites and virus infections (Table 1). As of

beginning of 2014, the research in the field of HDL and immunity is in its

infancy compared to the body of data available for HDL and atherosclerosis.

From the coming years, we have to expect new and compelling observations

further linking HDL to innate immunity.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

Table 1 HDL-related therapies and infections

Compound References

Endotoxemia/

LPS scavenging

Recombinant

HDL

Parker et al. (1995),

Pajkrt et al. (1996)

ApoA-I

mimetics

Gupta et al. (2005)

Parasites

infections

Trypanosoma

Leishmania

ApoL-1–

nanobody

Baral et al. (2006),

Samanovic et al. (2009)

Hepatitis C virus

entry

SR-BI

monoclonal

antibodies

Bartosch et al. (2003), Catanese et al. (2007),

Meuleman et al. (2012), Syder et al. (2011)
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