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We present electromagnetic models aiming to calculate the variation of the inductance in a magnet
due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The
models are studied with special regard to the calculation of the inductance in superconducting magnets
which are affected by interfilament coupling currents. The developed models have been compared with
experimental data coming from tests of prototype Nb3Sn magnets designed for the new generation of
accelerators. This work is relevant for the quench protection study of superconducting magnets: quench
is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be
discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The
magnet inductance is therefore a relevant term for the description of the current discharge, especially for
the high-field new generation superconducting magnets for accelerators, and this work shows how to
calculate the correct value during rapid current changes, providing a mean for simulations of the
reached temperature.
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I. INTRODUCTION

Superconducting magnets are a technology of paramount
importance in particle accelerators because of the high
performances that they can offer in terms of field gradient
and quality [1]. However, magnetothermal instabilities
(quenches) could affect their conductors, inducing a
transition from a superconducting to a normal-conducting
state. In these cases, a protection system must discharge
the stored magnetic energy as fast as possible, in order
to protect the windings from overheating. For the next
generation of high-field superconducting magnets
(Bpeak ≈ 12–15 T), the use of Nb3Sn as a superconductor
is foreseen. Because of the large ratio between the magnetic
energy and the conductor mass, the quench protection is
one of the most challenging aspects for the design of these
magnets [2], and in the future it could be the limiting factor
for them. The protection problem is more relevant in high-
field dipole and quadrupole magnets for accelerators than
in other high-field magnets, such as solenoids: in fact, the
first ones require very large values of current density in the
coils, whereas in the second ones, usually, stabilized
conductors can be used, with much lower current density
in the coil area.

Some experimental results [3] showed that in some
superconducting magnets, during a fast current decay,
the inductance appears lower than expected; in particular,
in some cases, the inductance is 30% lower [4] than the
value measured at low dI=dt. The quench protection of
magnets with high field and high energy density can
sensibly benefit from this inductance reduction, because
the current discharge during a quench results faster. As a
consequence, a deep understanding and prediction of the
phenomenon could play an important role for the design of
a safe protection for such superconducting magnets [5].
Here we explain this inductance reduction considering

the magnetic flux change due to the coupling currents in the
wires. The presented model can be generalized to any
energy loss due to magnetization phenomena (both mag-
netic materials and magnetization currents). The energy
variations due to the magnetization are manifested as a
change in the differential inductance.
We present two approaches for the calculation of the

inductance variation due to a magnetization phenomenon in
a magnet; then we present two ways for the calculation of
the inductance in a superconducting magnet during rapid
current changes, such as during a quench, when large
interfilament coupling currents (IFCCs) are generated,
showing how to compute the magnetization due to the
IFCC; finally, we compare the results with experimental
data, showing an analytical example of a long super-
conducting quadrupole magnet and a numerical example
of a short racetrack magnet.
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II. INDUCTANCE VARIATION DUE TO
MAGNETIZATION

During current changes, the voltage across a super-
conducting cable is given by

V ¼ − dϕ
dt

¼ − dϕ
dIt

dIt
dt

; ð1Þ

where It indicates the transport current. The “standard”
inductance is defined as

Ls ¼
ϕ

It
; ð2Þ

therefore, Eq. (1) can be written as

V ¼ − dðLsItÞ
dIt

dIt
dt

¼ −
�
Ls þ

dLs

dI
It

�
dIt
dt

: ð3Þ

We can now define the differential inductance

Ld ¼ Ls þ It
dLs

dIt
¼ dϕ

dIt
; ð4Þ

which is equivalent to the definition (2) only when the
inductance does not depend on the current. Since the usual
inductance measurements as V=_I give as the result the
differential inductance, we will consider Ld, which will be
called simply L from now on.
The differential inductance is computed now by follow-

ing two different approaches. The first one is based on an
energetic model, the second one on a vector potential
analysis.

A. Energetic approach

Suppose that, during a current variation, a magnetization
phenomenon occurs in a superconductor, and a magneti-
zation M is produced; the total magnetic induction field on
the superconductor is

B ¼ μ0M þ μ0H: ð5Þ

The magnetic susceptibility χ can be used in order to
express the magnetization in terms of the magnetic field

M ¼ χH; ð6Þ

therefore, the magnetic energy increment per volume unit
du ¼ HdB can be expressed as

du ¼ μ0HdH þ μ0χHdH þ μ0H2dχ: ð7Þ

The magnetic energy variation per time unit is

− dU
dt

¼ VIt: ð8Þ

Combining Eqs. (3), (4), and (8), we obtain

dU
dt

¼ LIt
dIt
dt

; ð9Þ

therefore, we can write the inductance as

L ¼ 1

It

dU
dIt

: ð10Þ

Combining Eqs. (7) and (10), we obtain

L ¼
Z �

μ0H
It

dH
dIt

þ μ0χH
It

dH
dIt

þ μ0H2

It

dχ
dIt

�
dV: ð11Þ

Equation (11) expresses the inductance calculated by
considering the occurrence of magnetization phenomena.
Generally, the magnetization involves a change not only of
B, through M, but also of H, due to the presence of a
demagnetization fieldHdm; therefore, all three terms in (11)
contribute to the differential inductance variation. However,
in some cases, such as during a fast discharge in a
superconducting magnet, the demagnetization field is small
compared to the H0 field generated by the transport current
in air. As a consequence, the variation of inductance is due
to the second and mainly to the third term in (11), while the
first term can be considered representative of the static
inductance. The problem of magnetization during a quench
in superconducting magnets will be discussed in Sec. III.

B. Vector potential approach

The magnetic vector potential that arises in a point PðrÞ
from a generic distribution of current and magnetized
media located in a volume V can be computed as

AðrÞ ¼ μ0
4π

2
4Z

V

�
Jt

jr− r0j þ
Jmv

jr− r0j
�
d3r0 þ

Z
S

Jms

jr− r0jd
2r0

3
5;

ð12Þ

where Jt is the transport current density, S is the surface of
the magnetized media (with outwards normal n), and

Jmv ¼ ∇ ×M; ð13Þ

Jms ¼ M × n ð14Þ

are the equivalent volume and boundary surface current
densities, respectively, that represent the magnetized
material. An approach based on this magnetic vector
potential A for the computation of the effect of magneti-
zation on magnet inductance is therefore also possible.
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Since M ¼ χH, we can rewrite the volume equivalent
current density Jmv as

Jmv ¼ χ∇ ×H þ ∇χ ×H: ð15Þ

However, considering a uniform susceptibility (∇χ ¼ 0)
and combining ∇ ×H ¼ Jt, Eq. (12) becomes

AðrÞ ¼ ð1þ χÞ μ0
4π

Z
V

Jt
jr − r0j d

3r0þ μ0
4π

Z
S

Jms

jr − r0j d
2r0

¼ ð1þ χÞAtðrÞ þ AmsðrÞ; ð16Þ

in which At is the transport current Jt contribution to the
magnetic vector potential, whereas Ams is due to the
distribution of current per unit length Jms. The total
magnetic flux ϕ can be therefore written as

ϕ ¼ ð1þ χÞϕt þ ϕms; ð17Þ

where ϕt and ϕms are, respectively, the circulations of At
and Ams along the path Γ that edges the surface of interest
(ϕ ¼ H

Γ A · dl). Expressing the current densities Jt and Jms,
respectively, as suitable time-independent functions multi-
plied for the time-dependent currents It and Ims, the fluxes
can be written as

ϕt ¼ ϕt;1It; ð18Þ

ϕms ¼ ϕms;1Ims; ð19Þ

where ϕt;1 and ϕms;1 are the magnetic fluxes computed,
respectively, for a unitary transport current It and a unitary
surface magnetization current Ims. The differential induct-
ance can therefore be written by using Eq. (4)

L ¼
��

1þ χ þ dχ
dIt

�
ϕt;1 þ

dIms

dIt
ϕms;1

�
; ð20Þ

where dχ=dIt and dIms=dIt are, respectively, the deriva-
tives of the magnetic susceptibility and of the surface
magnetization current with the transport current. In the
absence of magnetization (χ, Ims ¼ 0), the inductance is

L ¼ ϕt;1; ð21Þ

which is equivalent to the “standard” inductance.

III. EFFECT OF IFCC ON THE INDUCTANCE

During a quench in a superconducting magnet, the
current derivative reaches very high values, from 1 to
100 kA=s. In these conditions, a considerable susceptibility
variation arises, due to the large coupling currents that are
generated in the wires. In this section, we show how to
calculate the magnetization and the related susceptibility

due to IFCC in two different cases, which have wide
applicability: when the applied magnetic field can be
approximated with an exponential function of time or with
a power series.

A. General model for IFCC

Superconducting wires are composed by a large number
of filaments embedded in a normal-conducting (usually
copper) matrix. When they are exposed to time-varying
fields, coupling currents can flow among filaments through
the normal conducting matrix. It can be proved [6] that the
magnetic field Bi acting on the superconducting wires,
when IFCCs are present, follows the equation

Bi ¼ Be − dBi

dt
τ; ð22Þ

where Be is the applied field and τ is the IFCC decay time
constant, which is [6]

τ ¼ μ0
2ϱe

�
p
2π

�
2

; ð23Þ

where p is the filament twist pitch in the wire and ϱe is the
effective transverse resistivity of the copper matrix. In this
study, we assume that τ is constant; therefore, we neglect
the copper magnetoresistance. Typical values for τ are
1–100 ms, taking into account the uncertainties on the
matrix transverse resistivity [7] and the typical values of the
twist pitch [8].
By means of the internal field Bi, it is possible to

calculate the magnetization due to the IFCCs from direct
integration of the coupling currents distribution (for more
details, see [6])

M ¼ 2λτ

μ0

dBi

dt
; ð24Þ

where λ takes into account the presence of the insulation in
the cable (that is not magnetized) and the conductor
packing factor (filaments do not fill uniformly the strand);
typical values are λ≃ 0.7–0.8. By combining Eqs. (5), (6),
and (24), it is possible to express the susceptibility related
to the IFCCs:

χ ¼ − 1

1þ 1
2λ ð 1

1−Be=Bi
Þ : ð25Þ

From Eq. (25), note that, under the assumption of
constant τ, the susceptibility is uniform along the magnet,
since it depends only on the ratio Be=Bi; therefore, the
wires can be considered as a uniform magnetized material.
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B. Exponential approach

Assuming that Be decreases exponentially

Be ¼ B0e−ðt=τeÞ; ð26Þ

together with the initial condition

Bið0Þ ¼ Beð0Þ ¼ B0; ð27Þ

the solution of Eq. (22) can be found as

Bi ¼
B0

τ − τe
ðτe−ðt=τÞ − τee−ðt=τeÞÞ: ð28Þ

By combining Eqs. (25), (26), and (28), the magnetic
susceptibility can be obtained:

χ ¼ 2λτðe−ðt=τeÞ − e−ðt=τÞÞ
τe−ðt=τÞ − τee−ðt=τeÞ − 2λτðe−ðt=τeÞ − e−ðt=τÞÞ : ð29Þ

The inductance at this point can be calculated by using
Eq. (11) or (20).

C. Power series approach

Another possibility is to express the time dependence of
the applied field as a power series:

Be ¼
XN
i¼0

αiti: ð30Þ

This is particularly useful in the case of experimental
data that can be fitted with a polynomial or a spline.
Obviously, the case of the exponential can be reduced to
this case considering a sufficiently large value for N and a
proper choice of αi, i.e., the Taylor series coefficients.
Equation (22) can be rewritten in the classical shape of

the ordinary differential equations:

dBi

dt
þ Bi

τ
¼ Be

τ
; ð31Þ

whose solution is

Bi ¼ B0e−ðt=τÞ þ
e−ðt=τÞ

τ

Zt

0

BeðsÞes=τds: ð32Þ

Inserting (30) in (32) gives

Bi ¼ B0e−ðt=τÞ þ
e−ðt=τÞ

τ

�XN
i¼0

αi

Zt

0

sies=τds

�
: ð33Þ

With the change of variables x ¼ s=τ, it becomes

Bi ¼ B0e−ðt=τÞ þ e−ðt=τÞ
�XN

i¼0

αiτ
i

Zt=τ

0

xiexdx
�
: ð34Þ

The general solution for the integral in Eq. (34) is [9]

Z
xiexdx ¼ ð−1Þii!ex Xi

j¼0

ð−xÞj
j!

: ð35Þ

By combining (34) and (35), the result is

Bi¼B0e−ðt=τÞ þ
XN
i¼0

i!αið−τÞi
�
1−e−ðt=τÞþ

Xi

j¼1

1

j!

�
− t
τ

�
j
�
:

ð36Þ
Imposing the initial condition, that is, for a nonmagnetized
material

Bið0Þ ¼ Beð0Þ ¼ α0; ð37Þ
the final result becomes

Bi ¼ α0 þ
XN
i¼0

i!αið−τÞi
�
1 − e−ðt=τÞþ

Xi

j¼1

1

j!

�
− t
τ

�
j
�
:

ð38Þ

The magnetization and the susceptibility can be found as
just done for Eqs. (24) and (29), and then the inductance
can be calculated by using Eq. (11) or (20).

IV. ANALYTICAL CALCULATION OF THE
INDUCTANCE REDUCTION IN A LONG

MAGNETIC QUADRUPOLE

A long magnetic quadrupole is a good example for an
analytical calculation of the inductance reduction. Indeed,
the magnetic field in such a magnet can be easily expressed
through analytical formulas, and this allows one to obtain
simple relations using the energetic approach shown above,
without the need of computing the vector potential.

A. Inductance calculation

In Eq. (11), assuming that H is not affected by the
magnetization effects and considering that HdH ¼ dH2=2,
the inductance variation is

ΔL ¼ μ0χ

2It

d
dIt

Z
H2dV þ μ0

It

dχ
dIt

Z
H2dV: ð39Þ

The presence of the two terms χ and dχ=dI allows one to
limit the integration domain to the coil volume, because
these two terms are null elsewhere. For simple geometries,
the magnetic field can be obtained and integrated
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analytically; otherwise, the field map on the coils can be
obtained and integrated by using numerical methods.
A 2D geometry is considered in which a cos 2ϑmagnetic

field is assumed. This is accurate for long accelerator
quadrupole magnets that are characterized by high field
quality; otherwise, a 3D numerical model should be
developed.
The magnetic field B0 produced inside the coils by a

volumetric transport current distribution J ¼ J0 cos 2ϑ can
be expressed by using the complex formalism [10]

B�
0 ¼ i

μ0J0
2

�
z ln

�
a2
jzj
�
− 1

4

jzj4 − a14

z3

�
; ð40Þ

where a2 and a1 are, respectively, the outer and the inner
radius of the coils, z ¼ xþ iy is the coordinate inside the
coils (a1 ≤ jzj ≤ a2), and B� ¼ Bx − iBy (i is the pure
imaginary unit). H can be obtained from the relation

H ≃ B0

μ0
ð41Þ

neglecting the demagnetization field Hdm, which is
assumed to be small compared to the field due to the
transport current; this approximation is true for typical
values of the magnetization M [Eq. (27)]. By using the
relation H2 ¼ H�H and using the cylindrical coordinates
z ¼ reiϑ, the magnetic field intensity can be obtained:

H2 ¼ J20
4

�
r2ln2

a2
r
þ 1

16

ðr4 − a41Þ2
r6

− 1

2

r4 − a41
r2

ln
a2
r
cos 4ϑ

�
:

ð42Þ

The result of the volume integration on the coil volume is

l
Za2
a1

Z2π

0

H2rdrdϑ

¼ lJ20π
2

�
3

64
a42− a41

64

�
16

�
ln2

a2
a1

þ ln
a2
a1

�
þ a41
a42

þ 2

��
;

ð43Þ

where l is the magnet length.
The current derivative in the first term of Eq. (39) can be

calculated by noting that

NIt ¼ 2

Za2
a1

Zπ=4

−ðπ=4Þ
J0 cos 2ϑrdrdϑ¼ J0ða22 − a21Þ; ð44Þ

where N is the total number of turns, so we obtain

dH2

dIt
¼ dH2

dJ0

N
ða22 − a21Þ

¼ 2NH2

J0ða22 − a21Þ
: ð45Þ

The inductance reduction caused by the IFCC can
therefore be found by replacing the results (29), (43),
and (45) in Eq. (39).

B. Implementation in QLASA

QLASA is a computer code for the quench simulation
[11]. The program simulates a standard quench protection
circuit such as the one shown in Fig. 1.
The magnet is represented by its inductance L, and Rq is

its resistance developed during the quench propagation
(therefore, it is time dependent). When the quench is
detected, the switch S1 is opened, and the current is forced
to flow into the dump resistor Rd, which extracts part of the
energy stored into the magnet.
The current decay is so computed by solving with a

temporal step-by-step method the equation

ðRd þ RqÞIt þ L
dIt
dt

¼ 0: ð46Þ

Details on the program operation can be found in [11].
QLASA is therefore suitable for implementing the method
described in Sec. III B: at each time step the inductance is
recalculated according to Eq. (39), and the current
decreases according to Eq. (46); the resistance and the
inductance are assumed to be constant, and therefore the
output current from (46) is a piecewise exponential. This
justifies the assumption (24), provided that the decay time
τe ¼ L=ðRd þ RqÞ is recalculated at each time step. The
program calculates the resistance growth due to the quench,
combining quench propagation and heat produced by the
Joule effect. If IFCCs are present, anyway, there is also an
additional power dissipation, which can be calculated
through the magnetization: the power per volume unit
dissipated by the IFCCs is [6]

FIG. 1. Schematic quench protection circuit.
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PIFCC ¼ 2λτ

μ0

�
dBi

dt

�
2

: ð47Þ

Equation (47), combined with Eq. (26), becomes

PIFCC ¼ 2λτ

μ0

�
B0

τ − τe
ðe−ðt=τeÞ − e−ðt=τÞÞ

�
2

: ð48Þ

This expression has been implemented in the QLASA
subroutine which computes the magnet temperature and the
quench resistance. More details on the resistance compu-
tation can be found in Ref. [11].

C. Experimental comparison

The model implemented in QLASA has been
compared with some experimental data from quench tests
of R&D magnets for the project High Luminosity LHC
(HiLumi) [5].
Here we present a test done on HQ [12], a 1 m long

Nb3Sn superconducting quadrupole, with a bore diameter
of 120 mm. The magnet nominal inductance ranges from
∼5.7 mH at high current to ∼6.4 mH at low current, being
the difference due to the iron saturation, and it has been
experimentally measured at low dI=dt [13]. The test has
been performed by extracting the magnet energy on an
external dump resistor with a resistance of 60 mΩ. In this
measurement there is no natural quench, and the starting
current is 13 kA, which is the 80% of the short sample limit
[12]. By neglecting the iron saturation, which is important
only at the end of the discharge, the current decay should be
a simple exponential, with a time constant τ̄ ¼ L=Rd ≃ 0,
1 s. However, comparing the experimental decay with the
exponential curve IðtÞ ¼ I0e−ðt=τ̄Þ, there is not agreement
between the two curves, as shown in Fig. 2.
The experimental decay is appreciably faster than

expected; in fact, the actual decay time constant is 30%
lower than the expected one. This happens at the very
beginning of the decay, when such a difference cannot be

justified by a quench back. Quench back [6] is a phe-
nomenon strictly related to IFCC: the coupling currents,
flowing through the copper matrix, dissipate some heat
inside the wire, raising its temperature and inducing a
quench; this phenomenon, anyway, usually needs at least
∼5–10 ms to occur.
The test has been modeled with QLASA, considering the

dynamic IFCC effects on the magnet inductance, as
described in Secs. IVA and IV B. The result is shown in
Fig. 3. The agreement is good at the beginning of the decay,
until ∼10 ms. Later on, the experimental current decay
becomes too fast. In order to explain this feature, we
assumed the occurrence of a quench back after 10 ms.
QLASA presently cannot detect the occurrence of a quench
back by itself but can model it once the appropriate initial

FIG. 2. Comparison between the experimental current decay
(solid blue curve) and a pure exponential (dashed green curve).

FIG. 3. Comparison between the experimental current decay
(solid blue curve), a pure exponential (dashed green curve), and a
QLASA simulation which considers dynamic effects on the
inductance due to IFCCs (point-dashed red curve).

FIG. 4. Comparison between the experimental current decay
(solid blue curve), a QLASA simulation which considers dy-
namic effects on the inductance due to IFCCs and quench back
after 10 ms (point-dashed red curve), and a standard QLASA
simulation without considering dynamic effects but considering
quench back after 10 ms (dashed green curve).
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conditions are set. In this way, the starting time of a quench
back in QLASA can be viewed as a sort of fitting
parameter, which has been set to 10 ms in the present
case. In Fig. 4, it can be noted that the simulation made
considering dynamic IFCC effects and quench back fits
well the experimental curve. Comparing Figs. 3 and 4, it is
easy to notice that quench back plays a very important role
in the decay. On the other hand, quench back alone cannot
justify the experimental behavior, as can be seen in Fig. 4
(dashed green curve).
The conclusion is that the dynamic effects due to IFCC

and the related quench back are both needed for a good
simulation of a fast current decay. To improve the simu-
lation accuracy, the implementation of the code in order to
predict the occurring of quench back is in progress.

V. NUMERICAL COMPUTATION OF THE
INDUCTANCE REDUCTION IN A SMALL

RACETRACK MAGNET

When the field produced by the magnet cannot be
expressed by an analytical formula like Eq. (40), the
previous method is no longer applicable. An example of
this is the short model coil, a small Nb3Sn racetrack magnet
produced and tested by CERN [14], which has reached a
peak field of about 13.5 T with a transport current of about
15.9 kA. The magnet winding is composed by two layers of
35 turns each, with a straight section about 15 cm long.
A numerical approach for the 3D field computation is
needed; therefore, the method shown above based on the
potential vector has been applied.
In the present case, the contribution of the iron yoke to

the electromagnetic field can be considered as a static
background field of about 2 T. Indeed, we are interested in
the inductive phenomena at very high fields, and in these
conditions the iron is fully saturated. This is confirmed by
the inductance measurement on the coil at low dI=dt shown
in Fig. 5, where a constant value of about 1.43 mH for the

inductance is obtained when the magnet transport current is
over 10 kA, whereas variations are observed at lower
current. We will therefore focus on the behavior of the
magnet in fully saturated iron conditions.

A. Transport current contribute

The magnet geometry has been modeled with the
program THELMA [15].
Each coil layer is modeled by using three solid racetracks

with rectangular cross section, representing each group of
turns divided by spacers. Each racetrack axis is modeled
through two suitable rectilinear segments interleaved by
two half-circular axes. In Fig. 6, a pictorial view of these
solid racetracks is reported.
Taking advantage of the magnet symmetry, a three-

dimensional field map has been calculated in a grid of
points in the positive octant (x; y; z ≥ 0) and then suitably
extended by symmetry to the complete space needed for the
computation. The distance between the points is about
1 mm, and the field is linearly interpolated at the inter-
mediate points. The circulation of At along all the magnet
turns is then computed with the GNU Octave tool [16]
using an adaptive Gauss-Konrod quadrature [17].
The resulting computed inductance of 1.41 mH is in very

good agreement with experimental data at high field, as
shown by the dashed line in Fig. 5. This value corresponds
to the contribution ϕt;1 of Eq. (20).

B. Magnetization and susceptibility computation

The considered magnet current discharge with time is
reported in Fig. 7 together with its time derivative. The
current starts to decay at about 10 ms, when a natural
quench happens in the conductor. The protection system
features a dump resistor of 40 mΩ, which becomes con-
ductive at about 2.8 ms, assuming t ¼ 0 ms as the moment
when the quench is validated by the protection system.
Very large values for the current derivative can be esti-
mated, up to 40 kA=s before the switch opens and up to
900 kA=s after. As we see in Fig. 8, also in this case the
exponential with a time constant L=Rd is not able to
reproduce the experimental data, if the static value of
inductance is assumed. Moreover, the additional resistance
developed on the coil by the quench cannot explain such a
large discrepancy, with a time constant varying up to the
50%. Equation (20) has been therefore employed to
compute the dynamic inductance.

FIG. 5. Short model coil inductance as a function of the magnet
current, measured at low dI=dt. The dashed line represents the
computed value. FIG. 6. Views of the modeled racetracks.

EFFECT OF COUPLING CURRENTS ON THE DYNAMIC … Phys. Rev. ST Accel. Beams 18, 032401 (2015)

032401-7



The magnetic induction Be has been estimated as a
function of time from the transport current by means of the
magnet load line. The piecewise power series approach
[Eq. (30)] has been employed, since data can be easily fitted
with a cubic spline. Equation (36) has been used to
compute Bi, whereas the magnetization M (and therefore
Ims) and the susceptibility χ as a function of time are
calculated through Eqs. (24) and (25).
As confirmed by the previous field computation, the

magnetic induction in this type of racetrack magnet is by far
dominated by the z (out-of-plane) component, and the same
applies also to the magnetization according to Eq. (24).
Thus, in order to simplify the model and to reduce the
computational effort required, we decided to consider only
the z component of the magnetization in the numerical
model. This approximation leads to an underestimation of
the effect only in the middle turns of the magnet, since in
this region the y (planar) component of the field can be
significant. The computation of ϕms;1 has been performed
also in this case with the THELMA code. The vector

potential generated by Jms has been computed by means of
thin sheets of current placed in the inner, outer, and spacer
surfaces of the coil parallel to the z axis. The Jms value has
been suitably averaged along the turn where the sources are
located. The resulting vector potential has been integrated
with the same procedure explained in the previous section.
As we can see from Fig. 8, also in this case a very good fit

on the data can be obtained including the dynamic effects in
the inductance computation. The IFCC time constant has
been set to τ ¼ 8 ms in this case, well within the expected
range for this parameter. It is important to highlight that the
method employed is applicable in the first 10–15 ms of the
discharge. Indeed, when the current decays at lower values,
the iron can no longer be considered saturated. Furthermore,
as the coil becomes completely normal conducting, the
IFCCs and their related magnetization vanish; therefore, the
dynamic effects should vanish as well.

VI. CONCLUSIONS

In this work, we have developed two models aiming to
calculate the inductance reduction due to a whatsoever
magnetization in a magnet; one model is based on energetic
considerations, the other on the vector potential description.
Energetic considerations are useful in problems where the
magnetic field is known, whereas the vector potential is
useful for numerical problems. Then, we treated the
specific problem of the IFCCs in superconducting magnets,
showing two ways for the calculation of the wire mag-
netization. We have shown two examples of comparison of
the models with experimental data: an analytical example
for a long quadrupole magnet and a numerical example for
a short racetrack magnet; in both cases, the agreement
between the models and the experimental data is very
satisfying.
These models are a very important improvement for the

quench protection study of superconducting accelerator
magnets [5], providing more realistic values of the induct-
ance of the magnets during fast discharges (with respect to
the much too large values of static inductances) and better
estimations of the maximum temperature during a quench
and allowing the development of more performing
magnets.
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FIG. 7. Short model coil, magnet current, and its estimated
derivative as a function of time after a quench starts.

FIG. 8. Short model coil and magnet current decay compared
with computed decays without and with dynamic effects.
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