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Introduction

This thesis is divided into two parts, which deal with two similar problems, but with a

different perspective.

The first part is devoted to the study of the Hardy spaces Hp, p ∈ (1,∞), on non-smooth

worm domains (see below) and the mapping properties of the Szegő projection associated to

these spaces. Naively, given a domain Ω, the starting point is a space Hp(Ω) of holomorphic

functions on Ω that respect some growth condition and that admit boundary values on ∂Ω.

To these spaces, we can associate an operator SΩ that extends a function F defined on

∂Ω to a a holomorphic function SΩF defined on Ω. Our interest is to study the mapping

properties of the operator SΩ between the spaces Lp(∂Ω) and Hp(Ω). Once we have proved

that the range of SΩ is contained in Hp(Ω), we can consider a new operator related to SΩ.

Since every function SΩF in Hp(Ω) admits a boundary value function, say S̃ΩF , defined

on ∂D we consider the operator F 7→ S̃ΩF , the so-called Szegő projection operator, and

we are interested in studying its mapping properties. We remark that the Szegő projection

associates to a function F defined on ∂Ω another function S̃FΩ defined on ∂Ω, but we also

obtain an intermediate holomorphic function SΩF which belongs to a specific functional

space and our interest in also in this space. In particular, we face this problem considering

as domain Ω some non-smooth versions of the worm domain. It turns out that the Szegő

projection of these domains has an integral representation and can be studied using the

classical theory of Calderón-Zygmund operators.

In the second part we have again an operator of the kind F 7→ S̃ΩF , but we only require

that the intermediate function SΩF is holomorphic on Ω, without worrying if it belongs to

some specific functional space Hp. More specifically, the domain we consider is the perturbed

upper half space HΓ1×HΓ2 where HΓj is the perturbed half plane HΓj = {xj + iLj(xj)+ itj :

xj ∈ R, tj > 0} with Lj Lipschitz functions. The operators that arise in this setting are

biparameter singular integral operators whose studying of the mapping properties is delicate.

iii
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For this reason, the focus is more on the operators than on the properties of the holomorphic

extension of the starting function.

We briefly describe here the main results we have obtained and illustrate the relationship

with related results in the literature.

Szegő kernel and projection on non-smooth worm

domains

The smooth worm domain W = Wβ was first introduced by Diederich and Fornæss in

[DF77] to provide counterexamples to certain classical conjectures about the geometry of

pseudoconvex domains. For β > π
2
, the worm domain is defined by

W = {(z1, z2) ∈ C2 : |z1 − ei log |z2|2|2 < 1− η(log |z2|2)}, (1)

where η is a smooth, even, convex, non-negative function on the real line, chosen so that

η−1(0) = [−β+ π
2
, β− π

2
] and so thatW is bounded, smooth and pseudoconvex. See [KP08a]

for a history of the study of the worm domain. Diederich and Fornæss introduced this domain

to provide an example of a smooth, bounded and pseudoconvex domain whose closure does

not have a Stein neighbourhood basis. Nearly 15 years after its introduction, the interest

in the worm domain has been renewed since it turned out to be a counterexample to other

important conjectures. Starting from ground-breaking works of Kiselman [Kis91] and Barrett

[Bar92], Christ [Chr96a] finally proved that the worm domain does not satisfy the so-called

Condition R. A domain Ω satisfies Condition R if the Bergman projection PΩ associated to

the domain Ω maps C∞(Ω) to C∞(Ω).

We recall that, given a domain Ω in Cn, the Bergman projection PΩ of Ω is the Hilbert

space projection P : L2(Ω)→ A2(Ω) where A2(Ω) is the closed subspace of L2(Ω) consisting

of holomorphic functions. It turns out that PΩ has an integral representation, namely

PΩf(z) =

∫
Ω

KΩ(z, w)f(w)dA(w),

where KΩ(z, w) = KΩ(w, z) is the Bergman Kernel.

The interest in Condition R dwells in the fact that it is closely related to the boundary

regularity of biholomorphic mappings as it has been shown in works of Bell [Bel81] and
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Bell and Ligocka [BL80]. Specifically, in [BL80] it is proved that given a biholomorphism

Φ : Ω1 → Ω2 between smoothly bounded, Levi pseudoconvex domains of Cn, one of which

satisfies Condition R, then Φ extends to a C∞ diffeomorphism Φ : Ω1 → Ω2.

Due to the results of Christ’s, it is natural to deeply investigate the Bergman kernel of

the worm domain. This has been done extensively by Krantz and Peloso in [KP07],[KP08a]

and [KP08b]. Following [Kis91] and [Bar92], they studied the Lp-mapping properties of the

Bergman projection associated to two non-smooth versions of the original worm domain,

namely

Dβ =
{

(ζ1, ζ2) ∈ C2 : Re(ζ1e
−i log |ζ2|2) > 0,

∣∣ log |ζ2|2
∣∣ < β − π

2

}
and

D′β =
{

(z1, z2) ∈ C2 : | Im z1 − log |z2|2| <
π

2
,
∣∣ log |z2|2

∣∣ < β − π

2

}
.

Notice that the slices of Dβ for each fixed z2 are half-planes in the variable z1, while the slices

of D′β for each fixed z2 are strips in the variable z1. These two domains, firstly introduced in

[Kis91], are biholomorphically equivalent and, even if their geometry is rather different from

the one of the original smooth worm, they are a model forWβ as it can be seen in [Bar92]. In

[KP08b], the mapping properties of the Bergman projection are studied by giving an explicit

computation of the kernels KD′β
and KDβ . We remark that the actual computations are made

for the domain D′β since it has an easier geometry and with the restriction that β > π. It is

then possible to recover the Bergman kernel of Dβ thanks to the well-known transformation

rule for the Bergman kernel under biholomorphism. The more complex geometry of Dβ is

echoed also in the regularity of the Bergman projection. The Lp mapping properties of the

Bergman projection of D′β are better than the ones of the Bergman projection of Dβ.

Recently, Krantz, Peloso and Stoppato studied in [KPS14] the mapping properties of the

Bergman projection of another unbounded worm domain W∞. This domain can be thought

as a limit of the original smooth worm domain. Namely,

W∞ =
{

(z1, z2) ∈ C2 : |z1 − e−i log |z2|2|2 < 1, z2 6= 0
}
.

In [KPS14], the authors proved some results concerning the mapping properties of the

Bergman projection ofW∞ in Lp and Sobolev scale. The authors observe that the approach

they use to deal with W∞ may be useful to study the original worm domain of Diederich

and Fornæss.
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The first part of the thesis fits in this investigation of the geometry of the worm domain.

We focus on the non-smooth worm domain D′β with the restriction that β > π and we define

the Hardy spaces Hp(D′β), p ∈ (1,∞), as follows. For every p ∈ (1,∞), we define the Hardy

space Hp(D′β) as the functional space

Hp(D′β) =
{
F holomorphic in D′β : ‖F‖pHp(D′β) = sup

(t,s)∈[0,π
2

)×[0,β−π
2

)

LpF (t, s) <∞
}
,

where,

LpF (t, s)

=

∫
R

∫ 1

0

∣∣F (x+ i(s+ t), e
s
2 e2πiθ

)∣∣p dθdx+

∫
R

∫ 1

0

∣∣F (x− i(s+ t), e−
s
2 e2πiθ

)∣∣p dθdx
+

∫
R

∫ 1

0

∣∣F (x+ i(s− t), e
s
2 e2πiθ

)∣∣p dθdx +

∫
R

∫ 1

0

∣∣F (x− i(s− t), e− s2 e2πiθ
)∣∣p dθdx.

We are then computing a growth condition on copies of the distinguished boundary

∂D′β = ∂1D
′
β ∪ ∂2D

′
β ∪ ∂3D

′
β ∪ ∂4D

′
β

, where,

∂1D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = β, log |z2|2 = β − π

2

}
;

∂2D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = β − π, log |z2|2 = β − π

2

}
;

∂3D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = −β, log |z2|2 = −

(
β − π

2

)}
;

∂4D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = −(β − π), log |z2|2 = −

(
β − π

2

)}
.

Notice that we can identify each ∂iD
′
β with R× T.

We prove that every function F in Hp(D′β) admits a boundary value function F̃ in

Lp(∂D′β) such that proper restrictions of F converges to F̃ in norm and pointwise (Theorems

2.37, 2.38, 2.45 and 2.46) and we denote with Hp(∂D′β) the space of functions in Lp(∂D′β)

which are boundary values of function in Hp(D′β). Thus, we construct the operator SD′β
associated to D′β and we prove the following results (Theorem 2.32).

Theorem. The operator SD′β extends to a bounded linear operator

SD′β : Lp(∂D′β)→ Hp(D′β)

for every p in (1,∞).
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The operator SD′β has an integral representation by means of the so-called Szegő kernel,

that is,

SD′βF (z) =

∫
∂D′β

KD′β
(z, ζ)F (ζ) dζ.

Following [KP08b], we perform an explicit computation of the principal singularities of the

kernel KD′β
(Theorem 2.17). Then, we consider the Szegő projection S̃D′β , the operator that

associates to a function F the boundary value function S̃D′βF of SD′βF . One can think of

the Szegő projection as a boundary analogue of the Bergman projection. The regularity

properties of the Szegő projection and its relationship with the Bergman projection have

been intensively studied for a large class of domains in many papers. We cite [PS77, Boa85,

Str86, Boa87, BCS88, BS89, NRSW89, Che91, BS91, MS97, Chr96b, LS04, CF11], among

others. The worm domain is not included in any of the known situations, so we want to

investigate if its pathological geometry affects the regularity of the Szegő projection as it

does in the Bergman case.

The work presented here on the non-smooth worm domain D′β would like to be a starting

point for this investigation. Thus, we focus on the Lp and W k,2 mapping properties of

the operator S̃D′β . Here W k,2 denotes the classical Hilbert-Sobolev space of order k. The

geometry of D′β allows to reduce our problem in two complex variables in a problem in one

complex variable and the Szegő projection of D′β can be seen as an infinite sum of the Szegő

projections of strips in the complex plane properly weighted. Using techniques of the theory

of multipliers operators we prove the following result (Theorems 2.28 and 2.29).

Theorem. The Szegő projection S̃D′β extends to a bounded linear operator

S̃D′β : Lp(∂D′β)→ Hp(∂D′β)

for 1 < p <∞. Moreover, for all k > 0, S̃D′β extends to a bounded linear operator

S̃D′β : W k,2(∂D′β)→ W k,2(∂D′β).

Therefore, in analogy with the Bergman case, our theorem shows that S̃D′β has good

mapping properties with respect to the Lp and W k,2 norms.

Unlike the Bergman case, in general, we do not have a transformation rule for Szegő

kernels under biholomorphism, so the study of SDβ and S̃Dβ turns out to be more complicated

and the research is still on-going. Our goal in the future is to investigate the Szegő projection

of Dβ and, ultimately, of the original worm of Diederich and Fornæss.
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Holomorphic extension on product Lipschitz surfaces in

two complex variables

The results presented here have been obtained in collaboration with Jarod Hart of Wayne

State University [HM14]. Starting from a holomorphic extension problem we prove some re-

sults pertaining biparameter singular integrals operators and Littlewood-Paley-Stein theory.

It is well known that the standard one parameter Hilbert transform is intrinsically related

to the boundary behaviour of holomorphic functions in the half-plane H = {x+ it ∈ C : x ∈
R, t > 0}. Given a function f ∈ Lp(R) for 1 < p < ∞, one can extend f to a holomorphic

function

F (x+ it) =
1

2πi

∫
R

f(y)

y − (x+ it)
dy; for x ∈ R, t 6= 0.

This function F is a holomorphic extension of f in the the sense that F is holomorphic on

C\R and f(x) = f+(x)− f−(x) for x ∈ R, where

f+(x) = lim
t→0+

F (x+ it) and f−(x) = lim
t→0+

F (x− it).

These limits hold almost everywhere in R and in Lp(R). It also follows that f± = 1
2
(± I +

iH)f where I is the identity operator and H is the Hilbert transform

Hf(x) = lim
t→0+

1

π

∫
R

x− y
(x− y)2 + t2

f(y)dy.

The setting we just described can be generalized to a Lipschitz perturbed upper half space

of the form HΓ = {γ(x) + it ∈ C : x ∈ R, t > 0} where γ : R→ C is a Lipschitz graph. The

holomorphic extension result corresponding to the one in the last paragraph is the following:

given a function g ∈ Lp(Γ) for 1 < p <∞, one can extend g to a holomorphic function

G(z + it) =
1

2πi

∫
Γ

f(ξ)

ξ − (z + it)
dξ; for z ∈ Γ, t 6= 0,

which is a holomorphic extension of g in the the sense that G is holomorphic on C\Γ and

g(z) = g+(z)− g−(z) for z ∈ Γ, where

g+(z) = lim
t→0+

G(z + it) and g−(x) = lim
t→0+

G(z − it)
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and these limits exist in Lp(Γ). The boundary values of G can be realized in this setting as

well by g±(z) = 1
2
(± I + iCΓ)g(z), where CΓ is the Cauchy integral transform

CΓg(z) = lim
t→0+

1

π

∫
Γ

z − ξ
(z − ξ)2 + t2

g(ξ)dξ.

Progressing from the extension problem on H to the one on HΓ was not an easy feat. It

took more than 40 years from the proof of Lp bounds for the Hilbert transform to prove the

Lp bounds for the Cauchy integral transform along Lipschitz curves with small constants,

which was due to Calderón [Cal77]. The proof for a general Lipschitz constant appeared

some years later in works of Coifman, McIntosh and Meyer [CMM82a, CMM82b]. Later,

new proofs and generalizations appeared in the work of David, Journé and Semmes [DJS85],

Jones [Jon89], and Christ [Chr90], among others.

There are results similar to the ones above in the product setting. Let us consider the

product upper half plane H×H in C2. Then, one can extends a given function f in Lp(R2),

p ∈ (1,∞), to a holomorphic function

F (x+ it) =
1

(2πi)2

∫
R2

f(y)

(y1 − (x1 + it1))(y2 − (x2 + it2))
dy; for x ∈ R2, t = (t1, t2)

with t1, t2 6= 0. This function F is a holomorphic extension of f in the the sense that F is

holomorphic on (C\R)× (C\R) and f(x) = f++(x)− f+−(x)− f−+(x) + f−−(x) for x ∈ R,

where

f++(x) = lim
t1,t2→0+

F (x1 + it1, x2 + it2), f+−(x) = lim
t1,t2→0+

F (x1 + it1, x2 − it2),

f−+(x) = lim
t1,t2→0+

F (x1 − it1, x2 + it2), and f−−(x) = lim
t1,t2→0+

F (x1 − it1, x2 − it2).

These limits hold almost everywhere in R2 and in Lp(R2). In this situation, it follows that

f±,± = 1
4
(± I + iH1)(± I + iH2)f(x) where H1f and H2f are the Hilbert transforms applied

to the first and second variable of f respectively. These operators H1, H2, and H1H2 are

sometimes called the partial and biparameter Hilbert transforms, which are bounded on

Lp(R2), see e.g. [Fef81, FS82]. These boundedness results are related to the biparameter

Hardy space theory that is addressed in [MM77, GS79, Gun80, CF80, Fef81, FS82, Fef86,

Fef87], among many others. Many of these articles work on the polydisk instead of products

of upper half planes, but working in these two settings is essentially equivalent; look, for

example, in [GS79].
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The problem we deal with is a generalization of this situation since we work in a perturbed

half-space.

Let L1, L2 : R → R be Lipschitz functions and define γ1(x1) = x1 + iL1(x1), γ2(x2) =

x2 + iL2(x2), and γ(x) = (γ1(x1), γ2(x2)) ∈ C2 for x = (x1, x2) ∈ R2. Then, we call

Γ = Γ1 × Γ2 = γ1(R)× γ2(R) a product Lipschitz surface in C2. We say that Γ is a product

Lipschitz surface with small Lipschitz constants if the Lipschitz constants λ1 and λ2 of L1

and L2 respectively are both smaller than 1. The upper half space associated to Γ is defined

to be HΓ1 ×HΓ2 , where HΓj = {γj(xj) + itj : xj ∈ R, tj > 0}. We also define Lp(Γ) for a

product Lipschitz surface Γ as follows: given a product Lipschitz surface Γ = γ1(R)×γ2(R),

let Lp(Γ) be the collection of measurable functions g : Γ→ C such that

‖g‖pLp(Γ) =

∫
R2

|g(γ(x))|p|γ′1(x1)γ′2(x2)|dx1 dx2 <∞.

Given a function g : Γ → C, we define for ω = (ωt1 , ωt2) = (z1 + it1, z2 + it2) , where

(z1, z2) ∈ Γ and t1, t2 6= 0, the function

G(ωt1 , ωt2) :=
1

(2πi)2

∫
Γ

g(ξ)dξ

(ξ1 − ωt1)(ξ2 − ωt2)
.

We prove the following result.

Theorem. Let Γ be a product Lipschitz surface with small Lipschitz constants in C2 defined

by γ = (γ1, γ2) : R2 → C2. Assume that

lim
|x1|→∞

γ1(x1)

x1

= c1 and lim
|x2|→∞

γ2(x2)

x2

= c2,

for some c1, c2 ∈ C. If g ∈ Lp(Γ) for some 1 < p < ∞, then the function G : (C\Γ1) ×
(C\Γ2)→ C is a holomorphic extension of g such that, for z = (z1, z2) ∈ Γ,

g(z) = g++(z)− g+−(z)− g−+(z) + g−−(z),

where,

g++(z) = lim
t1,t2→0+

G(z1 + it1, z2 + it2),

g+−(z) = lim
t1,t2→0+

G(z1 + it1, z2 − it2),

g−+(z) = lim
t1,t2→0+

G(z1 − it1, z2 + it2),

g−−(z) = lim
t1,t2→0+

G(z1 − it1, z2 − it2).

and the limits hold in Lp(Γ).
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We prove the above theorem using the approach David, Journè and Semmes used to

apply their Tb theorem to prove Lp bounds for Cauchy integral transform in [DJS85]. For

this, we prove the following reduced biparameter Tb theorem.

Theorem 0.1. Let b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) be para-accretive functions, and

define b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn1+n2. Also let T be a

biparameter operator of Calderón-Zygmund type associated to b and b̃. If T satisfies the weak

boundedness property, mixed weak boundedness properties, and the Tb = T ∗b̃ = 0 conditions,

then T can be continuously extended to a bounded linear operator on Lp(Rn) for 1 < p <∞.

There have been a number of results for biparameter singular integral operators of

Calderón-Zygmund type, going back to R. Fefferman, Stein, and Journé, among others.

There were different versions of T1 theorems proved in R. Fefferman-Stein [FS82], Journé

[Jou85], Pott-Villaroya [PV11], Ou [Ou13], and [HLT]. In fact, [Ou13] includes a biparam-

eter Tb theorem as well. The formulation of the Tb theorem in this work is different than

the one in [Ou13], and even the definitions of biparameter Calderón-Zygmund operators are

different. In Chapter 5, we define biparameter singular integral operators relying only on

continuity in test function spaces, a full kernel representation, and testing conditions on nor-

malized bumps, whereas in [Ou13] the singular integral operators addressed are required to

have full and partial kernel representations as well as some a priori partial L2 bounds. The

Tb theorem formulated in this work is a natural extension of the single parameter theory.

Unfortunately, it is still not a full characterization of Lp bounds for biparameter Calderón-

Zygmund operators since difficulties of working with product BMO persist, but this reduced

Tb = T ∗b = 0 theorem is sufficient to prove the holomorphic extension result we stated. Even

though we will only apply Tb theorem when n1 = n2 = 1, we prove it for general dimensions

n1, n2 ∈ N. Our strategy for the proof is to decompose the operator T ,

〈Tf, g〉 =
∑
~k∈Z2

〈
Θ~kf, g

〉
,

where Θ~k are smooth truncations of T . These truncations Θ~k are biparameter Littlewood-

Paley-Stein operators, which have been studied extensively in the single parameter setting,

see e.g. [DJ84, DJS85, Sem90, Han94]. There are a few results for biparameter Littlewood-

Paley-Stein operators due to R. Fefferman, Stein, and Journé [Fef81, FS82, Fef86, Jou85],

among others. All of these results are for operators of convolution type. We prove estimates
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for the square function associated to a larger class of operators including non-convolution

operators, which we call biparameter Littlewood-Paley-Stein operators. In particular, we

prove bounds for square function operators associated to biparameter Littlewood-Paley-Stein

operators, defined by

Sf(x)2 =
∑
~k∈Z

|Θ~kf(x)|2 (2)

for x ∈ Rn and appropriate f : Rn → C.

Theorem 0.2. Let b1 ∈ L∞(Rn1) and b2 ∈ L∞(Rn2) be para-accretive functions, and define

b(x) = b1(x1)b2(x2) for x = (x1, x2) ∈ Rn1+n2. Also let Θ~k for ~k ∈ Z2 be a collection of

biparameter Littlewood-Paley-Stein operators with kernels θ~k. If∫
Rn1

θ~k(x, y)b1(y1)dy1 =

∫
Rn2

θ~k(x, y)b2(y2)dy2 = 0

for all ~k ∈ R2 and x, y ∈ Rn, then ‖Sf‖Lp(Rn) . ‖f‖Lp(Rn) for all f ∈ Lp(Rn) when

1 < p <∞. Note that S is the square function operator defined in (2)

The formulations and proofs of Theorems 0.1 and 0.2 were introduced by Hart, Lu and

Torres [HLT] in a slightly different setting, where b = b̃ = 1. Here, we reproduce the

proofs from [HLT], and address the additional technical difficulties that arise when accretive

functions b and b̃ are used in place of 1.

Some other boundary value problems related to the ones we described can be found in

[Boc44],[Wei69],[Ste67, Ste70, Ste73],[FKN81],[JK82],[KP87],[Jac73],[Kra80, Kra07] among

others.

The thesis is organized in the following way. In Chapter 1 we recall and prove some

results related to the Hardy space theory for the symmetric strip Sβ = {z ∈ C : | Im z| < β}.
The boundedness results of the singular integrals which arise in this setting are a direct

consequence of the standard theory of Calderón-Zygmund convolution operators, but we

include most of the proofs since we perform some explicit computations which will be used

in the later chapters. The Hardy spaces on the non-smooth worm domains are discussed

in Chapter 2. In Chapter 3 we perform an explicit computation of the integral kernel

of the Szegő projection studied in the previous chapter. In Chapter 4 we develop some

biparameter Littlewood-Paley-Stein theory which will be used in Chapter 5 to prove our



xiii

reduced biparameter Tb theorem. Finally, in Chapter 6 we discuss the extension problem in

the setting of the perturbed half-space.

Unless specified, we will use standard and self-explanatory notation. We will denote by

C, possibly with subscripts, a constant that may change from place to place.
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Part I

Szegő kernel and projection on
non-smooth worm domains

1





Chapter 1

Hardy Spaces on the symmetric strip

In the Introduction we mentioned that the non-smooth worm domain D′β can be sliced

in strips. This feature of D′β will be fundamental in the development of the Hardy spaces

Hp(D′β) since it will allow us to use the theory of Hardy spaces on a strip. Hence, we recall

here some results concerning the Hp(Sβ) spaces where Sβ is the symmetric strip

Sβ = {x+ iy ∈ C : |y| < β}.

The results contained in this chapter are well known. We refer also to [BK07]. The

boundedness results of the singular integrals which arise in this context are consequence of

the standard theory of Calderón-Zygmund convolution operators, but, to the best of the

author’s knowledge, they do not appear explicitly in the literature. Thus, we include most

of the proofs since we perform some computations which will be used in the chapters that

follow.

After defining the space Hp(D′β), in the first part of the chapter we focus on the Hilbert

case p = 2; we prove that every function F in H2(D′β) admits a boundary value function

F̃ in L2(∂D′β) such that ‖F‖H2(D′β) = ‖F̃‖L2(D′β). This fact allows us to prove that H2(Sβ)

is a Reproducing Kernel Hilbert space (see e.g. [Aro50]) and we compute explicitly its

reproducing kernel. A primary role in proving these results is played by the Paley–Wiener

Theorem for the strip (Theorem 1.2). In the second part of the chapter, we extend the

results obtained for the space H2(Sβ) to the spaces Hp(Sβ), p ∈ (1,∞).

For every p ∈ (1,∞), the Hardy space for the strip Sβ is the functional space

Hp(Sβ) =
{
f holomorphic in Sβ : ‖f‖Hp(Sβ) <∞

}
,

3
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where

‖f‖pHp(Sβ) = sup
0≤y<β

[∫
R

|f(x+ iy)|p +

∫
R

|f(x− iy)|p dy
]
. (1.1)

The proof of the next proposition is elementary and we leave the details to the reader.

Proposition 1.1. Let K a compact subset of Sβ. Then, for every f ∈Hp(Sβ), it holds

sup
z∈K
|f(z)| ≤ Cp,K‖f‖pHp(Sβ),

where Cp,K is a constant which depends only on p and the compact set K.

1.1 Case p = 2

We start stating the Paley–Wiener Theorem for a strip, which relates the growth of a

holomorphic function in a strip with the growth of the Fourier transform of its restriction to

the real line. Then, we study the boundary behaviour of functions in H2(Sβ).

Theorem 1.2. (Paley–Wiener Theorem for a strip) Let f0 in L2(R). Then the

following are equivalent:

(i) f0 is the restriction to the real line of a function F holomorphic in the strip Sβ such

that

sup
|y|<β

∫
R

|F (x+ iy)|2 dy <∞;

(ii) eβ|ξ|f̂0 ∈ L2(R).

Moreover, the following relationship holds

F (z) =
1

2π

∫
R

f̂0(ξ)eizξ dξ

= F−1[e− Im z(·)f̂0](Re z). (1.2)

Proof. See [PW87].

Remark 1.3. The notation used in the statement of the Paley–Wiener Theorem will be

consistently used throughout this work.
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The Paley–Wiener Theorem turns out to be extremely useful since it reduces the studying

of holomorphic functions in a strip to the studying of some L2 functions on the real line via

the Fourier Transform. Using the Paley–Wiener Theorem we will prove that each function

in H2(Sβ) admits boundary values in L2(∂Sβ).

Proposition 1.4. Let F ∈ H2(Sβ) and for every y in [0, β) define

L(y) =

[∫
R

|F (x+ iy)|2 dy +

∫
R

|F (x− iy)|2 dy
]
.

Then

‖F‖2
H2(Sβ) = sup

0≤y<β
L(y)

= lim
y→β−

L(y)

=
1

π

∫
R

|f̂0(ξ)|2 Ch[2βξ] dξ.

Proof. By the Paley–Wiener Theorem, we get

L(y) =
1

2π

∫
R

e−2yξ|f̂0(ξ)|2dξ +
1

2π

∫
R

e2yξ|f̂0(ξ)|2 dξ

=
1

π

∫
R

|f̂0(ξ)|2 Ch[2yξ] dξ

and the conclusion follows.

Remark 1.5. The previous proposition establishes an isometry between the Hardy space

H2(Sβ) and a weighted L2 space of the real line.

Now we show that each F in H2(Sβ) admits boundary values in L2(∂Sβ). Since ∂Sβ has

two components, when we consider a function, say G, defined on ∂Sβ we mean a couple of

functions (G1, G2) where G1 is defined on ∂1Sβ := {x + iβ : x ∈ R} and G2 is defined on

∂2Sβ := {x− iβ : x ∈ R}. Hence, the norm L2(∂Sβ) is given by

‖G‖2
L2(∂Sβ) =

∫
R

|G1(x+ iβ)|2 dx+

∫
R

|G2(x− iβ)|2 dx. (1.3)

Notice that both ∂1Sβ and ∂2Sβ can be identified with the real line R.

The Paley–Wiener Theorem guarantees that the following definition is meaningful.
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Definition 1.6. Given a function F in H2(Sβ), we define on ∂Sβ the function F̃ = (F̃1, F̃2)

where

F̃1(x+ iβ) :=
1

2π

∫
R

e−βξf̂0e
ixξ dξ (1.4)

and

F̃2(x− iβ) :=
1

2π

∫
R

eβξf̂0e
ixξ dξ. (1.5)

Proposition 1.7. Let F be a function in H2(Sβ) and consider F̃ in L2(∂Sβ) defined as

above. Then,

lim
y→β−

‖F (·+ iy)− F̃1‖L2(∂1Sβ) = 0

and

lim
y→β−

‖F (· − iy)− F̃2‖L2(∂2Sβ) = 0.

Proof. We only prove the convergence on the component ∂1Sβ of the boundary. The result

for ∂2Sβ follows analogously. We have

‖F (·+ iy)− F̃1‖L2(R) =

∫
R

|F (x+ iy)− F̃1(x+ iβ)|2 dx

=
1

2π

∫
R

∣∣e−yξf̂0(ξ)− e−βξf̂0(ξ)
∣∣2 dξ

≤ 1

π

∫∞
0

|f̂0(ξ)|2 dξ +
1

π

∫ 0

−∞
e−2βξ|f̂0(ξ)|2 dξ

<∞.

By the Dominated Convergence Theorem we can conclude.

Remark 1.8. We will constantly use the notation of Definition 1.6 to denote the boundary

values of a function in H2(Sβ).

From Proposition 1.7 and Proposition 1.4 we can deduce that H2(Sβ) is a Reproducing

Kernel Hilbert space. In fact, each function F in H2(Sβ) admits a boundary value function

F̃ such that

‖F‖2
H2(Sβ) =

1

π

∫
R

|f̂0(ξ)|2 Ch[2βξ] dξ
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=

∫
R

|F̃1(x+ iβ)|2 dx+

∫
R

|F̃2(x− iβ)|2 dx

= ‖F̃‖2
L2(∂Sβ).

Therefore, we can endow H2(Sβ) with a inner product; namely, given F and G in H2(Sβ),

we define

〈F,G〉H2(Sβ) :=
〈
F̃ , G̃

〉
L2(∂Sβ)

=

∫
R

F̃1(x+ iβ)G̃1(x+ iβ) dx+

∫
R

F̃2(x− iβ)G̃2(x− iβ).

Furthermore, Proposition 1.1 ensures that the point-evaluation functionals are bounded on

H2(Sβ). In conclusion, we have the following result.

Proposition 1.9. The Hardy space H2(Sβ) is a Reproducing Kernel Hilbert space with the

inner product 〈F,G〉H2(Sβ) =
〈
F̃ , G̃

〉
L2(∂Sβ)

. Thus, there exists a function K : Sβ × Sβ → C

such that

(i) for all z, w in Sβ, K(z, w) = K(w, z);

(ii) for all z in Sβ, K(·, z) belongs to H2(Sβ);

(iii) for all F in H2(Sβ) and z in Sβ we have f(z) = 〈f,K(·, z)〉H2(Sβ).

Such a function K is called reproducing kernel of H2(Sβ).

In general it is very hard to find an explicit formula for the reproducing kernel of a space,

but, in our setting, the Paley–Wiener Theorem helps us once again.

Theorem 1.10. The reproducing kernel of H2(Sβ) is the function

K(z, w) =
1

2β

1

Ch[ π
4β

(w − z)]
. (1.6)

Proof. Let F be a function in H2(Sβ). Then,

F (z) =
1

2π

∫
R

f̂0(ξ)eizξ dξ

=

∫
R

F̃1(x+ iβ)K̃1(x+ iβ, z) dx+

∫
R

F̃2(x− iβ)K̃2(x− iβ, z) dx

=
1

2π

∫
R

e−2βξf̂0(ξ)k̂0(ξ, z) dξ +
1

2π

∫
R

e2βξf̂0(ξ)k̂0(ξ, z)dξ
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=
1

π

∫
R

f̂0(ξ)k̂0(ξ, z)(z, ξ) Ch[2βξ] dξ,

where k0(·, z) is the restriction to the real line of K(·, z). We deduce that

k̂0(ξ, z) =
1

2

e−izξ

Ch[2βξ]
,

therefore

K(w, z) =
1

2π

∫
R

k̂0(ξ, z)eiwξ dξ

=
1

4π

∫
R

ei(w−z)ξ

Ch[2βξ]
dξ. (1.7)

Notice that for (w, z) in Sβ×Sβ the above integral is absolutely convergent. So, our problem

is now to compute the integral ∫
R

eiτξ

Ch[2βξ]
dξ,

where | Im τ | < 2β. We conclude this computation using the Residue Theorem. Suppose τ

is such that Re τ > 0. Consider the function gτ (ζ) = eiτζ

Ch[2βξ]
and, chosen a number R > 0,

the rectangle R of vertices (−R, 0), (0, R), (R, i π
2β

) and (−R, i π
2β

). Then∫
∂R
gτ (ζ) dζ = 2πiRes[gτ , i

π

4β
],

where

Res[gτ , i
π

4β
] = lim

ζ→i π
4β

(ζ − i π
4β

)eiτξ

Ch[2βξ]
=

1

2βi
e−τ

π
4β

and ∫
∂R
gτ (ζ) dζ =

∫R
−R

[gτ (ξ)− gτ (ξ + i
π

2β
)] dξ +

∫ π
2β

0

i[gτ (R + iξ)− gτ (−R + iξ)] dξ.

Now ∫R
−R

[gτ (ξ)− gτ (ξ + i
π

2β
)] dξ =

∫R
−R

[ eiτξ

Ch[2βξ]
− eiτξe−

τπ
2β

Ch[2βξ + iπ]

]
dξ

= (1 + e−
τπ
2β )

∫R
−R

eiτξ

Ch[2βξ]
dξ,

while ∣∣∣∣ ∫ π
2β

0

i[gτ (R + iξ)− gτ (−R + iξ)] dξ

∣∣∣∣ ≤ 2 Sh[Im τR]

∫ π
2β

0

e−ξReτ

[Sh2[2βR] + cos2(2βξ)]
1
2
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≤ C
Sh[Im τR]

Sh[2βR]
.

Hence, when R tends to 0, we have∫ π
2β

0

i[gτ (R + iξ)− gτ (−R + iξ)] dξ → 0

uniformly in τ when τ varies in a compact subset of S2β. In conclusion

K(w, z) =
1

4π

∫
R

ei(w−z)ξ

Ch[2βξ]
dξ

=
1

4π
lim
R→∞

∫R
−R

ei(w−z)ξ

Ch[2βξ]
dξ

=
1

2β

1

Ch[ π
4β

(w − z)]

as we wished. Notice that we performed the computation for τ = w − z such that Re τ >

0; the computation when Re τ < 0 follows analogously integrating along the rectangle of

vertices (−R, 0), (0, R), (R,−i π
2β

) and (−R,−i π
2β

).

Remark 1.11. For every fixed z ∈ Sβ the function K(·, z) is well-defined on Sβ. Hence, the

boundary value functions K̃1(·, z) and K̃2(·, z) are simply the restrictions of K(·, z) to ∂1Sβ

and ∂2Sβ respectively.

Having proved that H2(Sβ) is a Reproducing Kernel Hilbert space, we have that every

function F of H2(Sβ) is reproduced by integration against K, that is,

F (z) = 〈F,K(·, z)〉H2(Sβ)

=

∫
R

F̃1(x+ iβ)K(z, x+ iβ) dx+

∫
R

F̃2(x− iβ)K(z, x− iβ) dx.

We show that we can actually produce functions in H2(Sβ) via integration against the kernel

K. We have the following proposition.

Proposition 1.12. Let be F = (F1, F2) a function in L2(∂Sβ), that is, F1 and F2 are

functions in L2(R). Let us define the function

SF (z) :=

∫
R

F1(x)K(z, x+ iβ) dx+

∫
R

F2(x)K(z, x− iβ) dx.
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Then, the operator F 7→ SF is a bounded linear operator

S : L2(∂Sβ)→ H2(Sβ)

such that

‖SF‖H2(Sβ) ≤ ‖F‖L2(∂Sβ).

Moreover

S̃F 1(x+ iβ) = F−1
[ F̂1(·)e−2β(·)

2 Ch[2β(·)]

]
(x) + F−1

[ F̂2(·)
2 Ch[2β(·)]

]
(x) (1.8)

S̃F 2(x− iβ) = F−1
[ F̂1(·)

2 Ch[2β(·)]

]
(x) + F−1

[ F̂2(·)e2β(·)

2 Ch[2β(·)]

]
(x). (1.9)

Proof. First of all we must prove that the function SF is holomorphic in Sβ. In order to do

so we prove that ∫
R

|Fi(x+ iβ)K(z, x+ iβ)| dx

is uniformly bounded in z varying in a compact subset K of Sβ and i = 1, 2. If we prove this,

then, for every closed curve γ in Sβ, Fubini’s theorem and the holomorphicity of K(z, x+ iβ)

for every x in R would assure that∫
γ

∫
R

Fi(x+ iβ)K(ζ, x+ iβ) dxdζ =

∫
R

∫
γ

Fi(x+ iβ)K(ζ, x+ iβ) dζdx = 0,

hence, the holomorphicity of SF . So, for every z in a compact subset K of Sβ,

|K[z, x+ iβ]| = 1

2β

1

|Ch[ π
4β

(z − x+ iβ)]|

=
1

2β

1[
Sh2[ π

4β
(Re z − x)] + cos2[ π

4β
(Im z + β)]

] 1
2

≤ 1

2β

1[
Sh2[ π

4β
(Re z − x)] + CK

] 1
2

.

Hence,

sup
z∈K

∫
R

|F1(x+ iβ)K(z, x+ iβ)| dx ≤ ‖K[z, ·+ iβ]‖L2(R)‖F1‖L2(R)

≤ Cβ,K‖F1‖L2(R).
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Analogusly we obtain the estimate

sup
z∈K

∫
R

|F2(x− iβ)K(z, x− iβ)| dx ≤ Cβ,K‖F2‖L2(R)

and thus the holomorphicity of SF on Sβ. Using Theorem 1.10 and Parseval’s identity we

obtain that

SF (z) =
1

4π

∫
R

F̂1(ξ)e−βξeizξ

Ch[2βξ]
dξ +

1

4π

∫
R

F̂2(ξ)eβξeizξ

Ch[2βξ]
dξ

= F−1
[ F̂1(·)e−(Im z+β)(·)

2 Ch[2β(·)]

]
(Re z) + F−1

[ F̂2(·)e−(Im z−β)(·)

2 Ch[2β(·)]

]
(Re z). (1.10)

Plancherel’s theorem leads now to the estimate

‖SF‖2
H2(Sβ) ≤ ‖F1‖2

L2(R) + ‖F2‖2
L2(R).

Another application of Parseval’s identity shows that

lim
y→β
‖SF (·+ iy)− S̃F 1‖L2(R) = 0

lim
y→β
‖SF (· − iy)− S̃F 2‖L2(R) = 0

as we wished.

Remark 1.13. We stress that if we start with a couple of functions (F1, F2) which already

are boundary values of a functions F in H2(Sβ), then (1.8) and (1.9) coincide with (1.4) and

(1.5), respectively, as expected. This can easily seen by means of the Paley–Wiener Theorem

once again.

So far we have defined a space of holomorphic functions H2(Sβ) and proved that every

function F in this space admits boundary values (F̃1, F̃2) in L2(∂Sβ). These functions F̃1

and F̃2 are defined by (1.4) and (1.5) and they are boundary values of F in the sense of

Theorem 1.7. Moreover, we proved that H2(Sβ) is a Reproducing Kernel Hilbert space and

we showed in Theorem 1.12 how to obtain a function in H2(Sβ) given any couple of fuctions

(F1, F2) in L2(∂Sβ). Since to every function in F in H2(Sβ) we can associate a function F̃

in L2(∂Sβ), we can see H2(Sβ) as a subspace of L2(∂Sβ). To remark this point of view we

introduce the notation

H2(∂Sβ) := {G̃ = (G1, G2) ∈ L2(∂Sβ) : ∃F ∈ H2(Sβ) s.t. (G1, G2) = (F̃1, F̃2)}. (1.11)

Notice that Proposition 1.1 assures that H2(∂Sβ) is a closed subspace of L2(∂Sβ). Thus, we

can summarize what we have seen so far in the following theorem.



12 CHAPTER 1. HARDY SPACES ON THE SYMMETRIC STRIP

Theorem 1.14. The operator

S̃ : L2(∂Sβ)→ H2(∂Sβ)

(F1, F2)→ (S̃F 1, S̃F 2) (1.12)

defined by (1.8) and (1.9) is a Hilbert space orthogonal projection operator.

Remark 1.15. The operator S̃ associates to a couple of functions (F1, F2) in a new couple

of functions (S̃F 1, S̃F 2). We will costantly use the compact notation F → S̃F meaning

(1.12). If we need to be more specific and indicate which component of the boundary ∂Sβ

we are interested in, we will use the notation with subscripts.

Definition 1.16. The operator S̃ : L2(∂Sβ)→ H2(∂Sβ) is called Szegő projection.

1.2 Case 1 < p <∞

In this section we prove the validity of Theorem 1.14 for every p in (1,+∞), that is

Theorem 1.17. The Szegő projection S extends to a bounded linear operator

S̃ : Lp(∂Sβ)→ Hp(∂Sβ)

(F1, F1)→ (S̃F 1, S̃F 2)

for every p ∈ (1,∞),

The operator S̃ acts on a couple of functions (F1, F2), but, by linearity, it suffices to prove

our boundedness results for initial data of the form (F1, 02) or (01, F2) where the functions

0i, i = 1, 2, are the constant functions zero.

Let us focus now on F = (F1, 02) and suppose that F1 is in Lp(R)∩L2(R). The situation

for the couple (01, F2) is analogue. Then, for every x+ iy in Sβ, we have

SF (x+ iy) = F−1

[
F̂1(·)e−(y+β)(·)

2 Ch[2β·]

]
(x) =

1

2β

∫
R

F1(u)

Ch[ π
4β

(x− u+ i(y + β))]
du (1.13)

and

S̃F 1(x+ iβ) = F−1

[
F̂1(·)e−2β(·)

2 Ch[2β(·)]

]
(x); (1.14)



1.2. CASE 1 < p <∞ 13

S̃F 2(x+ iβ) = F−1

[
F̂1(·)

2 Ch[2β(·)]

]
(x) =

1

2β

∫
R

F1(y)

Ch[ π
4β

(x− y)]
dy. (1.15)

All the above operators are multipliers operators, therefore they admit a representation via

a convolution kernel. The convolution kernels of the operators F 7→ SF and F 7→ S̃F 2

are immediately obtained by Theorem 1.10 and 1.12. Later we will find explicitly also the

convolution kernel of the operator F 7→ S̃F 1.

Proposition 1.18. Let F = (F1, 02) be in Lp(∂Sβ), p ∈ (1,∞). Then,

SF (z) = F−1

[
F̂1(·)e−(Imz+β)(·)

2 Ch[2β·]

]
(Rez) =

1

2β

∫
R

F1(y)

Ch[ π
4β

(Rez − y + i(Imz + β))]
dy

is in Hp(Sβ). Moreover, there exists a constant Cp such that

‖SF‖Hp(Sβ) ≤ Cp‖F‖Lp(∂Sβ).

Hence, S is a bounded linear operator S : Lp(∂Sβ)→ Hp(Sβ).

Proof. The holomorphicity of SF on Sβ follows as in the proof of Proposition 1.12. It remains

to prove that ‖SF‖Hp(Sβ) <∞. For every fixed y such that |y| < β, the operator

F 7→ SF (·+ iy) = F−1

[
F̂1(·)e−(y+β)(·)

2 Ch[2β·]

]
is a multiplier operator trivially bounded on Lp(R) since the multiplier

my(ξ) =
e−(y+β)ξ

2 Ch[2βξ]

is a Schwartz function for every fixed y with |y| < β. We prove that the norm of this

multiplier operator is bounded by a constant which does not depend on y. We do it showing

that my satisfies Mihlin’s multiplier condition uniformly in y (see, for instance, [Gra08, Thm.

5.2.7]). We have∣∣∣∣ ddξmy(ξ)

∣∣∣∣ =

∣∣∣∣−(y + β)e−(y+β)ξ Ch[2βξ]− 2βe−(y+β)ξ Sh[2βξ]

Ch2[2βξ]

∣∣∣∣
=

e−(y+β)ξ

Ch2[2βξ]

∣∣∣∣y[Ch[2βξ] + Sh[2βξ]
]

+ [β − y]
[

Sh[2βξ]
]

+ β
[

Ch[2βξ] + Sh[2βξ]
]∣∣∣∣

≤ e−(y+β)ξ

Ch2[2βξ]

[
2β
∣∣∣Ch[2βξ] + Sh[2βξ]

∣∣∣+ [β − y]
∣∣∣ Sh[2βξ]

∣∣∣]
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= I + II.

It is easily seen that

I = 2β
e−(y+β)ξ

Ch2[2βξ]

∣∣∣Ch[2βξ] + Sh[2βξ]
∣∣∣

is bounded and decays exponentially when |ξ| → ∞ for every y such that |y| ≤ |β|. About

II we have

II =
e−(y+β)ξ

Ch2[2βξ]
[β − y]

∣∣∣ Sh[2βξ]
∣∣∣

≤ [β − y]e−(y+β)ξe−2β|ξ|.

Hence, we have exponential decay for every y such that |y| ≤ β when ξ → +∞. If ξ → −∞,

we obtain

II = [β − y]e(β−y)ξ

=
|ξ|[β − y]eξ(β−y)

|ξ|

≤ Cβ
|ξ|
.

Hence, we can conclude that sup
|y|<β

∣∣ d
dξ
my(ξ)

∣∣ =≤ Cβ
|ξ| . Moreover,

sup
|y|<β
‖my‖L∞ = 1.

Thus, Mihlin’s multiplier theorem implies∫
R

|SF (x+ iy)|p dx ≤ Cp

∫
R

|F1(x)|p dx

= Cp

∫
R

|F (x)|p dx. (1.16)

The proof is complete.

It remains to prove that SF (· + iy) → S̃F 1(· + iβ) and SF (· + iy) → S̃F 2(· − iβ) in

Lp(R), p ∈ (1,∞). The latter limit is easily obtained using (1.13) and (1.15). In fact,∫
R

|SF (x+ iy)− S̃F 2(x− iβ)|p dx =
1

2β

∫
R

∣∣∣∣ ∫
R

[ F1(x− u)

Ch[ π
4β

(u+ i(y + β))]
− F1(x− u)

Ch[ π
4β
u]

du
]∣∣∣∣p dx
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≤ ‖F‖pLp(R)

[ ∫
R

∣∣∣ 1

Ch[ π
4β

(u+ i(y + β))]
− 1

Ch[ π
4β
u]
du
∣∣∣]p

→ 0 (1.17)

as y tends to −β+.

To show that SF (·+ iy)→ S̃F 1(·+ iβ) as y tends to β− is more complicated to prove

and we start proving that it holds in a weak sense when F is regular.

Proposition 1.19. Let F = (F1, 02) be in Lp(∂Sβ) where F1 is a Schwartz function. Then,

for every y such that |y| < β, SF (· + iy) converges weakly Lp to S̃F 1(· + iβ) as y tends to

β−, p ∈ (1,∞).

Proof. For every Schwartz function G we have

lim
y→β−

∫
R

SF (x+ iy)G(x) dx = lim
y→β−

∫
R

e−(y+β)ξF̂1(ξ)

2 Ch[2βξ]
Ĝ(ξ) dξ

=

∫
R

e−2βξF̂1(ξ)

2 Ch[2βξ]
Ĝ(ξ) dξ

=

∫
R

S̃F 1(x)G(x) dx,

where we can to switch the limit and the integral by Dominated Convergence Theorem.

Therefore, if we prove that SF (·+ iy) admits a limit in a stronger sense, the limit has to

be S̃F 1, at least when F is regular. To make our notation lighter, instead of computing the

limit limy→β− SF (·+ iy), we compute the equivalent limit limε→0+ SF [·+ i(β − ε)], where

SF [x+i(β − ε)] =

∫
R

e−(2β−ε)ξF̂1(ξ)

2 Ch[2βξ]
dξ

=
1

2β

∫
R

F (x− y)

Ch[ π
4β

(y + i(2β − ε))]
dy

=
1

2βi

∫
R

F (x− y)

Sh[ π
4β

(y − iε)]
dy

=
1

2β

∫
R

F (x− y)
Ch[πy

4β
] sin[πε

4β
]

Sh2[πu
4β

] + sin2[πε
4β

]
dy − i

2β

∫
R

F (x− y)
Sh[πy

4β
] cos[πε

4β
]

Sh2[πu
4β

] + sin2[πε
4β

]
dy

= [Kε ∗ F ](x)− i[K̃ε ∗ F ](x). (1.18)

Thus, we can study the convolution kernels Kε and K̃ε separately.
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Proposition 1.20. The family of functions

1

2
Kε(x) =

1

β

Ch[πx
4β

] sin[πε
4β

]

Sh2[πx
4β

] + sin2[πε
4β

]

is a summability kernel for ε→ 0+.

Proof. We have

1

2

∫
R

|Kε(x)| dx =
1

2

∫
R

Kε(x) dx =
1

4β

∫
R

Ch[πx
4β

] sin[πε
4β

]

Sh2[πx
4β

] + sin2[πε
4β

]
dx

=
1

π

∫
R

1

1 + x2
dx

= 1.

Moreover, for every δ > 0, we have∫
|x|>δ

Ch[πx
4β

] sin[πε
4β

]

Sh2[πx
4β

] + sin2[πε
4β

]
dx ≤

∫
|x|>δ

Ch[πx
4β

] sin[πε
4β

]

Sh2[πx
4β

]
dx

→ 0

as ε tends to 0. Hence, the proposition is proved.

Now, for suitable functions ϕ, we define〈
ϕ, p.v.

1

Sh[πx
4β

]

〉
:=

1

2β
lim
ε→0+

∫
|πx
4β
|>ε

ϕ(x)

Sh[πx
4β

]
dx

where ϕ is a Schwartz function. It is not hard to prove that p.v. 1
Sh[πx

4β
]

is a well-defined

tempered distribution.

Theorem 1.21. The operator

T : S(R)→ S(R)

ϕ 7→ p.v.
1

Sh[πx
4β

]
∗ ϕ (1.19)

extends to a bounded linear operator

T : Lp(R)→ Lp(R)

for every 1 < p <∞.
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Proof. This is a standard fact; see e.g. [Gra08, Thm. 4.4.1].

Let us denote by Tε the truncated operator associated to T , that is,

TεF (x) =

∫
|πx
4β
|>ε

F (x− y)

Sh[πy
4β

]
dy.

We compare the operator Tε and the convolution with the kernel K̃ε obtaining the following

result.

Proposition 1.22. Let F be a function in Lp(R). Then,

lim
ε→0+

‖K̃ε ∗ F − TεF‖Lp(R) → 0

for every p in (1,∞).

Proof. It holds

K̃ε ∗ F (x)− TεF (x) = Kε ∗ F (x),

where

Kε(y) =


Sh[πy

4β
] cos[πε

4β
]

Sh2[πy
4β

]+sin2[πε
4β

]
if |πy

4β
| < ε

Sh[πy
4β

] cos[πε
4β

]

Sh2[πy
4β

]+sin2[πε
4β

]
− 1

Sh[πy
4β

]
if |πy

4β
| > ε.

We show that the family of functions Kε is a multiple of a summability kernel. We have∫
|πy
4β
|<ε

| Sh[πy
4β

]| cos[πε
4β

]

Sh2[πy
4β

] + sin2[πε
4β

]
dy =

8β

π

∫ ε
0

Sh[t] cos[πε
4β

]

Sh2[t] + sin2[πε
4β

]
dt

≤ 8β

π

∫ ε
0

Sh[t]

Ch2[t]− cos2[πε
4β

]
dt

=
8β

π

∫Ch[ε]

1

1

t2 − cos2[πε
4β

]
dt

→ Cβ,

with Cβ <∞, as ε tends to 0+.

Moreover,∫
|πy
4β
|>ε

∣∣∣∣ Sh[πy
4β

] cos[πε
4β

]

Sh2[πy
4β

] + sin2[πε
4β

]
− 1

Sh[πy
4β

]

∣∣∣∣ dy



18 CHAPTER 1. HARDY SPACES ON THE SYMMETRIC STRIP

≤
∫
|πy
4β
|>ε

∣∣∣∣Sh[πy
4β

](cos[πε
4β

]− 1)

Sh2[πy
4β

] + sin2[πε
4β

]

∣∣∣∣ dy +

∫
|πy
4β
|>ε

∣∣∣∣ sin2[πε
4β

]

Sh[πy
4β

][Sh2[πy
4β

] + sin2[πε
4β

]]

∣∣∣∣ dy
≤ (1− cos

πy

4β
)

∫
|πy
4β
|>ε

1

Sh[πy
4β

]
dy + sin2[

πε

4β
]

∫
|πy
4β
|>ε

1

Sh2[πy
4β

]
dy

→ Cβ

where again Cβ <∞, as ε tends to 0+. Thanks to these estimates we can conclude that

sup
ε

∫
R

|Kε(y)| dy <∞.

Using analogue estimates, it is easy to see that, for every δ > 0,

lim
ε→0+

∫
|y|>δ
|Kε(y)| dy = 0.

At last, ∫
R

K ε(y) dy = 0

since Kε is odd. Therefore, we can conclude that for every F in Lp(R)

‖Kε ∗ F − 0 · F‖Lp = ‖K̃ε ∗ F − TεF‖Lp → 0

as ε tends to 0+.

Proposition 1.20 and Proposition 1.22 together prove that

lim
ε→0+

SF [x+ i(β − ε)] = 2F − iTF , (1.20)

where the limit is in Lp. Moreover, by density, by the uniqueness of the limit and by

Proposition 1.19, we can conclude that

lim
ε→0+

SF [·+ i(β − ε)] = 2F − iTF

= S̃F 1(·+ iβ)

= F−1

[
F̂1(·)e−2β(·)

2 Ch[2β(·)]

]
. (1.21)

We sum up everything in the following theorem.
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Theorem 1.23. The Szegő projection S extends to a bounded linear operator

S : Lp(∂Sβ)→ Hp(∂Sβ)

(F1, F2) 7→ (S̃F 1, S̃F 2)

for every p ∈ (1,∞).

Proof. As we already remarked, it is enough to prove the theorem for F = (F1, 02) and

G = (01, F2) and then use linearity. We prove the result for F , the case of G being completely

analogous. Thus, (1.17) and (1.21) guarantees that S̃F 2 and S̃F 1 are boundary values of

the Hp(Sβ) function SF defined in Proposition 1.18. Moreover, by (1.16),

‖S̃F‖pHp(∂Sβ) =

∫
R

|S̃F 1(x+ iβ)|p dx+

∫
R

|S̃02(x− iβ)|p dx

≤ Cp

∫
R

|F1(x)|p dx

= Cp

∫
∂Sβ

|F (x)|p dx

= Cp‖F‖pLp(∂Sβ).

The proof is complete.

We conclude the chapter with a theorem which states that SF in Hp(Sβ) converges to

its boundary value function S̃F not only in norm, but also pointwise almost everywhere.

Theorem 1.24. Let F = (F1, F2) be a function in Lp(∂Sβ), p ∈ (1,∞). Then,

lim
y→β−

SF (x+ iy) = S̃F 1(x+ iβ) lim
y→−β+

SF (x+ iy) = S̃F 2(x− iβ)

for almost every x in R.

Proof. As usual, we work with F = (F1, 02). By (1.17),

|SF (x+ iy)− S̃F 2(x− iβ)| =
∣∣∣∣ ∫
R

F1[x− u]

[
1

Ch[ π
4β

(u+ i(y + β))]
− 1

Ch[ π
4β
π]

]
du

∣∣∣∣
≤ ‖F1‖Lp(R)

[ ∫
R

∣∣∣∣ 1

Ch[ π
4β

(u+ i(y + β))]
− 1

Ch[ π
4β
π]

∣∣∣∣p′ du] 1
p′

→ 0
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as y → −β−1. By (1.18) and Proposition 1.22,

lim
y→β−

SF (x+ iy) = lim
ε→0+

SF (x+ i(β − ε)

= lim
ε→0+

[
Kε ∗ F − iK̃ε ∗ F

]
(x)

= lim
ε→0+

[
Kε ∗ F − iTεF

]
(x).

Now,

lim
ε→0+

Kε ∗ F (x) = 2F (x)

almost everywhere thanks to Proposition 1.20. The pointwise convergence of K̃ε ∗ F is a

consequence of the boundedness of the maximal truncated operator associated to TεF . We

do not report the proof, but we refer to [Gra08, Theorems 2.1.14 and 4.4.5].



Chapter 2

Hardy Spaces on the non-smooth

worm domain D′β

In this chapter we develop the theory of Hardy spaces on the domain D′β. We refer to

the Introduction and the bibliographic references therein for background results on worm

domains.

We focus attention on the non-smooth worm domain

D′β =
{

(z1, z2) ∈ C2 : | Im z1 − log |z2|2| <
π

2
,
∣∣ log |z2|2

∣∣ < β − π

2

}
, (2.1)

where β is assumed to be β > π. This domain is biholomorphically equivalent to the domain

Dβ =
{

(z1, z2) ∈ C2 : Re(z1e
−i log |z2|2) > 0,

∣∣ log |z2|2
∣∣ < β − π

2

}
(2.2)

via the map

Ψ : D′β → Dβ

(z1, z2) 7→ (ez1 , z2)

and

Ψ−1 : Dβ → D′β

(ζ1, ζ2) 7→ (Log[ζ1e
−i log |ζ2|2 ] + i log |ζ2|2, ζ2),

where Log(ζ) is the Principal Logarithm.

21
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Inspired by [Kis91], Barrett used the domains Dβ and D′β as models to study the

(ir)regularity in Sobolev scale of the Bergman projection of the smooth worm W . Later,

in [KP07], [KP08a] and [KP08b], Krantz and Peloso studied the Lp mapping properties of

the Bergman projection of Dβ and D′β by an explicit computation of the Bergman kernel.

The actual computation of the kernel are made for the domain D′β since it has an easier

geometry. It is then possible to recover the kernel of Dβ by the transformation rule of the

Bergman kernel under biholomorphism. Unlike the Bergman case, in general, we do not

have a transformation rule for the Szegő kernel. At the moment, we are able to study the

mapping properties of the Szegő projection of D′β only. The research on Dβ is on-going and

our goal in the future is to study the Szegő projection of the smooth worm W .

This chapter is organized as follows. After defining the spaces Hp(D′β) , we focus on the

case p = 2. Using Fourier analysis, we see that H2(D′β) can be decomposed in orthogonal

subspaces and we see which relationship exists between these subspaces and the space H2(Sβ)

of the previous chapter. We prove that every function of H2(D′β) admits boundary values and

that H2(D′β) is a Reproducing Kernel Hilbert space. Thus, we define the Szegő projection

of H2(D′β) and, following [KP08b], we provide an explicit formula for the reproducing kernel

KD′β
. We conclude the first part of the chapter proving a Paley–Wiener theorem in this

setting and proving a regularity result for the Szegő projection in Sobolev scale.

In the second part of the chapter we extend the results to the case p ∈ (1,∞). We study

the mapping properties of the Szegő projection in Lp-scale and we show that the spaces

Hp(D′β) admit a decomposition similarly to the Hilbert case. In addition, we conclude the

chapter proving a Fatou type theorem, that is, we prove that an appropriate restriction of a

function in Hp(D′β) converges to its boundary value function pointwise almost everywhere.

2.1 The spaces Hp(D′β)

Let us focus on

D′β =
{

(z1, z2) ∈ C2 :
∣∣Im z1 − log |z2|2

∣∣ < π

2
,
∣∣log |z2|2

∣∣ < β − π

2

}
where β > π. This domain is rotationally invariant in the z2 variable and we can represent

it in the plane (Im z1, log |z2|) as in Figure 2.1.

Remark 2.1. Notice that definition of D′β (as well as the one of Dβ and W) requires only
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that β > π
2
. For simplicity of the arguments, we restrict ourselves to the case β > π. This is

not a serious constraint since, at least in the case of Bergman spaces and Bergman projection,

the most interesting situations occur when β tends to +∞.

The feature which makes the analysis on D′β easier than on Dβ is the following. Let

z1 ∈ C such that | Im z1| < β be fixed; then, as it is elementary to check, the set

D′β(z1) := {z2 ∈ C : (z1, z2) ∈ D′β}

is connected. This is not the case for the domain Dβ and the main difference between the

two domains.

As we already mentioned, the domain D′β can be sliced in strips. More in detail, let us

fix z2 ∈ C such that | log |z2|2| < β − π
2
; then, the set

D′β(z2) = {z1 ∈ C : (z1, z2) ∈ D′β} = {z1 ∈ C : | Im z1 − log |z2|2| <
π

2
}

can be identified with a strip centered in log |z2|2 and width equals to π. All these charac-

teristics will be reflected in our results. The rotationally invariance in the z2-variable will

allow us to use the theory of Fourier series, while the “strip-like” geometry in the z1-variable

will make the results of Chapter 1 available.

In order to define Hardy spaces on D′β we need to establish a Hp-type growth condition

for holomorphic functions on D′β. We do this by restricting the functions to copies of the

distinguished boundary ∂D′β of D′β. In detail, the distinguished boundary ∂D′β is the set

∂D′β = ∂1D
′
β ∪ ∂2D

′
β ∪ ∂3D

′
β ∪ ∂4D

′
β.

where

∂1D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = β, log |z2|2 = β − π

2

}
;

∂2D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = β − π, log |z2|2 = β − π

2

}
;

∂3D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = −β, log |z2|2 = −

(
β − π

2

)}
;

∂4D
′
β =

{
(z1, z2) ∈ C2 : Im z1 = −(β − π), log |z2|2 = −

(
β − π

2

)}
.

For every p ∈ (1,∞), we define the Hardy spaces Hp(D′β) as the functional space

Hp(D′β) =
{
F holomorphic in D′β : ‖F‖pHp(D′β) = sup

(t,s)∈[0,π
2

)×[0,β−π
2

)

LpF (t, s) <∞
}
,
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Figure 2.1: A representation of the domain D′β in the (Im z1, log |z2|)-plane.

where

LpF (t, s)

=

∫
R

∫ 1

0

∣∣F (x+ i(s+ t), e
s
2 e2πiθ

)∣∣p dθdx+

∫
R

∫ 1

0

∣∣F (x− i(s+ t), e−
s
2 e2πiθ

)∣∣p dθdx
+

∫
R

∫ 1

0

∣∣F (x+ i(s− t), e
s
2 e2πiθ

)∣∣p dθdx +

∫
R

∫ 1

0

∣∣F (x− i(s− t), e− s2 e2πiθ
)∣∣p dθdx.

We emphasize that the domain D′β is not a product domain, while, on the other hand,

every component ∂iD
′
β of the distinguished boundary is and it can be identified with R×T.

Remark 2.2. Since ∂D′β has four different components, we can think of a function F ∈
Lp(∂D′β) as a vector F = (F1, F2, F3, F4) where each function Fk is thought as defined on

∂kD
′
β = R× T, k = 1, 2, 3, 4 and

‖F‖pLp(∂D′β) =
4∑

k=1

‖Fk‖pLp(∂kD
′
β) =

4∑
k=1

‖Fk‖pLp(R×T).

As in the case of the strip, it is not hard to prove that convergence in Hp(D′β) implies

uniform convergence on compact subsets of D′β.
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Proposition 2.3. Let K a compact subset of D′β and F a function of Hp(D′β). Then

sup
(z1,z2)∈K

|F (z1, z2)| ≤ CK‖F‖pHp .

Using only the definition of Hp(D′β), we can immediately prove that every function F

in Hp(D′β) admits a boundary value function F̃ = (F̃1, F̃2, F̃3, F̃4) in Lp(∂D′β) at least in a

weak-∗ sense.

We need to restrict the holomorphic function F to copies of the distinguished boundary

∂D′β inside the domain. Since ∂D′β is union of four disjoint components, we denote by F
(t,s)
k

such restrictions, k = 1, . . . , 4. They are defined as follows.

Definition 2.4. Let F be a function in Hp(D′β), p ∈ (1,∞). For every (t, s) ∈ [0, π
2
) ×

[0, β − π
2
), we define

F
(t,s)
1 (ζ1, ζ2) := F

(
Re ζ1 + i

s+ t

β
Im ζ1, e

− 1
2

(β−π
2
−s)ζ2

)
;

F
(t,s)
2 (ζ1, ζ2) := F

(
Re ζ1 + i

s− t
β − π

Im ζ1, e
− 1

2
(β−π

2
−s2)ζ2

)
;

F
(t,s)
3 (ζ1, ζ2) := F

(
Re ζ1 + i

s+ t

β
Im ζ1, e

1
2

(β−π
2

+s)ζ2

)
;

F
(t,s)
4 (ζ1, ζ2) := F

(
Re ζ1 + i

s− t
β − π

Im ζ1, e
1
2

(β−π
2

+s)ζ2

)
.

Each function F
(t,s)
k is a well-defined function in Lp(∂kD

′
β), k = 1, 2, 3, 4.

Proposition 2.5. Let F be a function in Hp(D′β), p ∈ (1,∞). Then, there exist a function

F̃ = (F̃1, F̃2, F̃3, F̃4) in Lp(∂D′β) and a subsequence (t, s)n, such that, for every function G

in Lp
′
(R× T),∫

∂kD
′
β

F (t,s)n(ζ1, ζ2)G(ζ1, ζ2) dζ1dζ2 →
∫
∂kD

′
β

F̃1(ζ1, ζ2)G(ζ1, ζ2) dζ1dζ2

as n tends to +∞ and k = 1, . . . , 4.

Proof. Let (t, s)m, a sequence such that (t, s)m → (π
2
, β − π

2
) as m → +∞. Then, {F (t,s)m

k }
is a bounded set in Lp(R×T). By the Banach-Alaoglu Theorem, there exists a subsequence

{F (t,s)mn
k } converging in the weak-∗ topology to a function F̃i in Lp(R×T). The conclusion

follows from the definition of weak-∗ topology.
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2.2 Case p = 2

In this section we study the Hardy space H2(D′β) according to this plan:

− we first decompose H2(D′β) as direct sum of subspaces H2
j using the rotational in-

variance in the second variable and the theory of Fourier series (Proposition 2.6 and

Remark 2.15) ;

− using such a decomposition we show that each F ∈ H2(D′β) admits boundary values

in L2(∂D′β) (Proposition 2.13);

− we show that H2(D′β) is a Reproducing Kernel Hilbert space by identifying the inner

product in H2(D′β) as an L2 inner product on the distinguished boundary (Theorem

2.14);

− we describe the Reproducing Kernel of H2(D′β) (Theorem 2.17);

− we define the Szegő projection operator (Theorem 2.26) and we formulate a Paley–

Wiener Theorem for the domain D′β (Theorem 2.27);

− we study the Sobolev regularity of the Szegő projection (Theorem 2.28).

We adapt a decomposition introduced by Barrett [Bar92], while providing some details

for the reader’s convenience.

Proposition 2.6. Let F be a function in H2(D′β). Then F (z1, z2) =
∑

j∈Z fj(z1)zj2 where

the series converges pointwise and each function fj belongs to the Hardy space H2(Sβ).

Proof. If F is a function in H2(D′β) and (z1, z2) is a point of D′β, it is immediate that∫ 1

0

|F (z1, |z2|e2πiθ)|2 dθ <∞.

Thus, by the theory of Fourier series in L2(T), we get

F (z1, z2) = F (z1, |z2|e2πiγ2) =
∑
j∈Z

[ ∫ 1

0

F (z1, |z2|e2πiθ)e−2πijθ dθ
]
e2πijγ2

=
∑
j∈Z

[ ∫ 1

0

F (z1, e
iθz2)e−2πijθ dθ

]
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=
∑
j∈Z

Fj(z1, z2),

where the convergence is pointwise for every (z1, z2) in D′β.

Notice that the function

Gj(z1, z2) =
[ ∫ 1

0

F (z1, e
iθz2)e−2πijθ dθ

]
z−j2

is holomorphic in D′β and depends only in |z2|. Hence, it must be locally constant in z2.

As we already stressed, for all z1, the set D′β(z1) = {z2 ∈ C : (z1, z2) ∈ D′β} is connected,

therefore Gj(z1, z2) ≡ fj(z1). Since Fj(z1, z2) = fj(z1)zj2 is holomorphic on D′β, it follows

that fj is holomorphic on the strip Sβ = {x+ iy ∈ C : |y| < β}.
Finally, we have

∞ > sup
(t,s)

L2F (t, s)

= sup
(t,s)

∑
j∈Z

L2Fj(t, s)

≥ sup
(t,s)

min{ejs, e−js}
{∫

R

∣∣fj[x± i(s+ t)]
∣∣2 dx}

≥ cj‖fj‖2
H2(Sβ),

therefore each fj belongs to H2(Sβ).

Remark 2.7. A few comments on the last proposition:

− we proved that F (z1, z2) =
∑
j∈Z

Fj(z1, z2) =
∑
j∈Z

fj(z1)zj2. Notice that each function Fj

satisfies the equality

Fj(z1, e
iθz2) = eijθFj(z1, z2).

Thus, we define the following subspaces of H2(D′β). For every j in Z,

H2
j = {F ∈ H2(D′β) : F (z1, e

iθz2) = eijθF (z1, z2)}; (2.3)

− since each function fj belongs to the Hardy space H2(Sβ), all the results contained in

the previous chapter are available. In particular, we know that the each function fj

admits a boundary value function f̃j in L2(∂Sβ).
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Remark 2.8. The connectedness of the set D′β(z1) = {z2 ∈ C : (z1, z2) ∈ D′β} for every

fixed z1 has a primary role since it permits to split the variables in each function Fj.

We now use the Paley–Wiener Theorem for the strip to compute the H2(D′β) norm of

each function Fj.

Proposition 2.9. Let Fj(z1, z2) = fj(z1)zj2 be a function in Hj and f̃j in L2(∂Sβ) a boundary

value function for fj. Then,

‖Fj‖2
H2(D′β) =

[
ej(β−

π
2

)‖fj[·+ i(β − π

2
)]‖2

H2(Sπ
2

)+

+ e−j(β−
π
2

)‖fj[· − i(β −
π

2
)]‖2

H2(Sπ
2

)

]
=

2

π

∫
R

|f̂j,0(ξ|2 Ch(πξ) Ch[(2β − π)(ξ − j

2
)] dξ.

In particular,

sup
(t,s)

L2Fj(t, s) = lim
(t,s)→(π

2
,β−π

2
)
L2Fj(t, s).

Proof. By the Paley–Wiener Theorem we get

‖Fj‖2
2 =sup

(t,s)

[(∫
R

|fj(x+ i(s+ t))|2ejs + |fj(x+ i(s− t))|2ejs+

+ |fj(x− i(s− t))|2e−js + |fj(x− i(s+ t))|2e−js
)
dx

]
= sup

(t,s)

2

π

∫
R

|f̂j,0(ξ)|2 Ch[2tξ] Ch[s(2ξ − j)] dξ, (2.4)

where fj,0 = fj |R , that is, the restriction of fj to the real line, and f̂j,0 is its Fourier transform.

The Paley–Wiener Theorem assures that eβ|·|f̂j,0 is in L2(R). Hence, using the Dominated

Convergence Theorem, we obtain

sup
(t,s)

L2Fj(t, s) ≤
2

π

∫
R

sup
(t,s)

|f̂j,0(ξ)|2 Ch[2tξ] Ch[s(2ξ − j)] dξ

=
2

π

∫
R

lim
(t,s)
|f̂j,0(ξ)|2 Ch[2tξ] Ch[s(2ξ − j)] dξ

= lim
(t,s)

2

π

∫
R

|f̂j,0(ξ)|2 Ch[2tξ] Ch[s(2ξ − j)] dξ
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=
2

π

∫
R

|f̂j,0(ξ)|2 Ch[πξ] Ch[(2β − π)(ξ − j

2
)].

In conclusion,

sup
(t,s)

L2(t, s) = lim
(t,s)→(π

2
,β−π

2
)
L2(t, s).

Since now we know that the supremum is obtained for (t, s) = (π
2
, β− π

2
), we do not have

to see the norm of Fj necessarily from the Fourier transform side. Therefore, we have

‖Fj‖2
2 =

∫
R

(
|f̃j(x+ iβ)|2ej(β−

π
2

) + |f̃j(x+ i(β − π))|2ej(β−
π
2

)+

+ |f̃j(x− i(β − π))|2e−j(β−
π
2

) + |f̃j(x− iβ)|2e−j(β−
π
2

)
)
dx

= ej(β−
π
2

)‖fj(·+ i(β − π

2
))‖2

H2(Sπ
2

) + e−j(β−
π
2

)‖fj(· − i(β −
π

2
))‖2

H2(Sπ
2

). (2.5)

Remark 2.10. Notice that

2

π

∫
R

|f̂j,0(ξ)|2 Ch[πξ] Ch[(2β − π)(ξ − j

2
)] dξ (2.6)

can be thought as a weighted norm of the Hardy space of the strip H2(Sβ). We denote with

H2
j (Sβ) the Hardy space of the strip equipped with this weighted norm. We remark that

H2
0 (Sβ) is the standard unweighted Hardy space H2(Sβ) and the different norms of the spaces

H2
j (D′β) are all equivalent when j varies. In conclusion, the previous proposition shows that

Fj 7→ f̃j is an isometry between H2
j (D′β) and L2

j(∂Sβ) where

‖f̃j‖2
L2
j (∂Sβ) =

∫
R

|f̂j,0(ξ)|2 Ch[πξ] Ch[(2β − π)(ξ − j

2
)] dξ

=

∫
R

(
|f̃j(x± iβ)|2e±j(β−

π
2

) + |f̃j(x± i(β − π))|2e±j(β−
π
2

)
)
dx.

We stress that in the above norm the function f̃ appears evaluated at heights ±iβ and

±i(β−π); while f̃(x± iβ) truly are boundary values, it trivially holds that f̃(x± i(β−π)) =

f(x± i(β − π)).

Proposition 2.11. Let be F a function in H2(D′β). Then

‖F‖2
H2(D′β) = sup

(t,s)

∑
j∈Z

L2Fj(t, s) =
∑
j∈Z

sup
(t,s)

L2Fj(t, s) =
∑
j∈Z

‖Fj‖2
H2(D′β),

where the supremum is taken for (t, s) varying in [0, π
2
)× [0, β − π

2
).
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Proof. We already know that ‖F‖2
H2(D′β) = sup

(t,s)

∑
j∈Z L2Fj(t, s); it trivially follows from the

orhogonality of trigonometric monomials. We would like to prove that it is possible to switch

the supremum with the sum, i.e.

sup
(t,s)

∑
j∈Z

L2Fj(t, s) =
∑
j∈Z

sup
(t,s)

L2Fj(t, s).

Since we know from Proposition 2.9 that sup
(t,s)

L2Fj(t, s) = lim
(t,s)
L2Fj(t, s), we can conclude

using the Monotone Convergence Theorem.

We sum up everything we have seen so far in the following theorem.

Theorem 2.12. Every function F (z1, z2) in H2(D′β) admits a decomposition

F (z1, z2) =
∑
j∈Z

Fj(z1, z2) =
∑
j∈Z

fj(z1)zj2

where each fj belongs to H2
j (Sβ) and

‖F‖2
H2(D′β) =

∑
j∈Z

‖Fj‖2
H2(D′β) =

∑
j∈Z

‖f̃j‖2
L2
j (∂Sβ).

Moreover,

‖F − SNF‖H2(D′β) = ‖F −
N∑

j=−N

Fj‖H2(D′β) → 0

as N tends to +∞.

Proof. The only thing we still have to prove is the norm convergence of SNF . From Propo-

sition 2.6 we have the pointwise convergence, while the previous proposition assures that

{SNF} is a Cauchy sequence in H2(D′β). Hence, the conclusion follows.

Finally, we are able to prove that a function F ∈ H2(D′β) admits boundary values in

L2(∂D′β). We denote with F
(t,s)
k , k = 1, 2, 3, 4, the functions defined in Definition 2.4.

Proposition 2.13. Let F (z1, z2) =
∑
j∈Z

fj(z1)zj2 a function in H2(D′β). For (ζ1, ζ2) ∈ ∂D′β
define

F̃ (ζ1, ζ2) :=
∑
j∈Z

f̃j(ζ1)ζj2 .

Then F
(t,s)
k → F̃ in L2(∂kD

′
β) as (t, s)→ (π

2
, β − π

2
), k = 1, 2, 3, 4.
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Proof. Theorem 2.12 guarantees that F̃ is well defined. We prove the proposition only ∂1D
′
β,

thus (ζ1, ζ2) = (x + iβ, e
1
2

(β−π
2

)eiθ). The proof for k = 2, 3, 4 is similar and we omit it. We

want to prove that∫
R×T

∣∣∣F̃ (x+ iβ, e
1
2

(β−π
2

)eiθ)− F (t,s)
1 (x+ iβ, e

1
2

(β−π
2

)eiθ)
∣∣∣2 dxdθ → 0

as (t, s)→ (π
2
, β − π

2
). Since F is in H2(D′β), it holds

‖F̃ − F (t,s)
1 ‖2

L2(∂1D′β) =
∑
j∈Z

‖F̃j − F (t,s)
1,j ‖2

L2(∂1D′β) <∞.

Moreover, ‖F̃j − F
(t,s)
1,j ‖2

L2(∂1D′β) → 0 as (t, s) → (π
2
, β − π

2
). By Monotone Convergence

Theorem for decreasing sequences, we can switch the sum and the limit obtaining

lim
(t,s)→(π

2
,β−π

2
)
‖F̃ − F (t,s)

1 ‖2
L2(∂1D′β) =

∑
j∈Z

lim
(t,s)→(π

2
,β−π

2
)
‖F̃j − F (t,s)

1,j ‖2
L2(∂1D′β)

= 0.

The conclusion follows.

Thus, we proved that a given function F (z1, z2) =
∑

j∈Z fj(z1)zj2 admits a boundary

value function F̃ (ζ1, ζ2) =
∑

j∈Z f̃j(ζ1)ζj2 in L2(∂D′β). Moreover, as expected, it holds the

identity

‖F‖H2(D′β) = ‖F̃‖L2(∂H2
β). (2.7)

This fact allows to prove that H2(D′β) is a Reproducing Kernel Hilbert space by identifying

the inner product in H2(D′β) as an L2 inner product on the distinguished boundary.

Theorem 2.14. The Hardy space H2(D′β) is a Reproducing Kernel Hilbert space with the

inner product

〈F,G〉H2(D′β) =
〈
F̃ , G̃

〉
L2(∂D′β)

=
4∑

k=1

∫
∂kD

′
β

F̃ (ζ1, ζ2)G̃(ζ1, ζ2) dζ1dζ2. (2.8)

Proof. It follows from (2.7) and Proposition 2.3.
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Remark 2.15. In conclusion, we proved that the space H2(D′β) admits an orthogonal de-

composition

H2(D′β) =
⊕
j∈Z

H2
j , (2.9)

where the H2
j ’s are the subspaces of H2(D′β) defined in (2.3)

Before investigating the reproducing kernel KD′β
of H2(D′β), we investigate the reproduc-

ing kernels of the subspaces H2
j . The particular structure of each H2

j and Proposition 2.9

allow us to look for the kernels of the spaces H2
j (Sβ).

Proposition 2.16. The reproducing kernel of H2
j (Sβ) is the function

kj(z1, z2) =
1

8π

∫
R

ei(z1−z2)ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ.

Proof. Given z2 in Sβ, by Remark 2.6, we have

f(z2) =
2

π

∫
R

f̂0(ξ)k̂j,0(ξ, z2) Ch(πξ) Ch[(2β − π)(ξ − j

2
)] dξ

=
1

2π

∫
R

f̂0(ξ)eiz2ξ dξ,

where the last equality holds since f belongs to H2(Sβ). It follows

k̂j,0(ξ, z2) =
1

4

e−iz2ξ

Ch(πξ) Ch[(2β − π)(ξ − j
2
)]
.

Using the inverse Fourier transform we finally obtain

kj(z1, z2) =
1

8π

∫
R

ei(z1−z2)ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ.

The reproducing kernel of H2(D′β) is then given by

KD′β
[(w1, w2), (z1, z2)] =

∑
j∈Z

Kj,D′β
[(w1, w2), (z1, z2)]

=
∑
j∈Z

w2
jz2

jkj(w1, z2)

=
∑
j∈Z

w2
jz2

j

8π

∫
R

ei(w1−z1)ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ. (2.10)
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2.2.1 Asymptotic expansion of the kernel KD′
β

Following [KP08b], we obtain an asymptotic expansion for the kernel KD′β
. Since the

proof is long and technical, we do not report it here, but we refer to Chapter 3.

Theorem 2.17. Let β > π and define νβ = π
2β−π Let h be fixed such that

νβ
2
< h < min

(
1

2
,
3νβ
2

)
.

Then there exist functions F1, F2, G1, . . . , G8, E and Ẽ that are holomorphic in w and anti-

holomorphic in z, for w = (w1, w2) and z = (z1, z2) varying in a neighborhood of D′β, and

remain bounded, together with all their derivatives, for w, z ∈ D′β, as |Re(w1 − z1)| → +∞.

Then,

KD′β
(w, z) = e− sgn(Re(w1−z1))

(w1−z1)νβ
2 K(w, z) + e− sgn(Re(w1−z1))(w1−z1)hK̃(w, z),

where

K(w, z) =
F1(w, z)

1− (w2z2)e
i(w1−z1)+π

2

+
F2(w, z)

1− (w2z2)e
i(w1−z1)−π

2

+ E(w, z)

= K1(w, z) +K2(w, z) + E(w, z)

and

K̃(w, z) =
G1(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ]
+

G2(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ]
+

+
G3(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ][1− (w2z2)eβ−
π
2 ]

+

+
G4(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ][i(w1 − z1) + 2β]
+

+
G5(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ][i(w1 − z1)− 2β]
+

+
G6(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ][1− (w2z2)e−(β−π
2

)]
+

+
G7(w, z)

[i(w1 − z1) + 2β][1− (w2z2)e−(β−π
2

)]
+
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+
G8(w, z)

[i(w1 − z1)− 2β][1− (w2z2)eβ−
π
2 ]

+ Ẽ(w, z)

= K̃1(w, z) + . . .+ K̃8(w, z) + Ẽ(w, z).

Remark 2.18. A comment about the singularities of KD′β
is required. We have the following

facts:

− for w, z ∈ D′β the terms K1 and K̃1 become singular only if

w2z2 → e−
i(w1−z1)+π

2 .

This can happen only if log |w2|2 → Im(w1)− π
2

and log |z2| → Im(z1)− π
2
. Thus, K1

and K̃1 are singular only when both w and z tend to the right oblique boundary line

of the domain in Figure 2.1;

− the terms K2 and K̃2 are similar to K1 and K̃1 and they are singular on the left oblique

boundary line of the domain in Figure 2.1;

− the term K̃3 is singular when

w2z2 → e−
i(w1−z1)+π

2 or w2z2 → e−(β−π
2

).

Thus, K̃3 is singular when both w and z tend either to the lower horizontal or the right

oblique boundary line on of the domain in Figure 2.1. Notice that the term is more

singular when w2z2 → e−(β−π
2

) and (w1 − z1) → 2(β − π) since the singularities add

up. Therefore, K̃3 is more singular on the component of the distinguished boundary

∂4D
′
β;

− the term K̃4 is singular when

w2z2 → e−
i(w1−z1)+π

2 or Im(w1 − z1)→ 2β.

Therefore, K̃4 is singular when both w, z tend to the right oblique boundary line of

the domain of Figure 2.1. The term becomes more singular on the component of the

distinguished boundary ∂1D
′
β;

− the singularities of K̃5 are similar to the ones of K̃4 and the worst situation is when

both w, z tend to ∂3D
′
β;
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− the singularities of K̃6 are similar to the ones of K̃3. The term in singular both w and

z tend to left oblique or the upper boundary line of the domain in Figure 2.1and it

becomes more singular on ∂2D
′
β;

− the term K̃7 becomes singular when

w2z2 → eβ−
π
2 or Im(w1 − z1)→ 2β.

Therefore, the term becomes singular when both w and z tend to the upper boundary

line of the domain in Figure 2.1 and, like K̃4 it is more singular when w, z tend to

∂1D
′
β:

− the last term K̃8 is symmetric to K̃7. It is singular when w, z tends to the lower

boundary line of the domain in Figure 2.1 and it is more singular when w, z tend to

∂3D
′β .

2.3 The Szegő projection of D′β

To conclude the study of H2(D′β) it remains to prove that the integration against the

kernel KD′β
actually produces functions in H2(D′β).

We start the section proving two propositions on the convergence of the series which

defines the kernel KD′β
.

Proposition 2.19. Let us consider KD′β
(z, ζ) = KD′β

[(z1, z2), (ζ1, ζ2)] where (ζ1, ζ2) ∈ ∂D′β
and (z1, z2) varies in a compact set K ⊆ D′β. Then,∑

j∈Z

sup
(z,ζ)∈K×∂D′β

∣∣kj(z1, ζ1)zj2ζ
j

2

∣∣ <∞
Proof. We prove the proposition supposing that (ζ1, ζ2) is in ∂1D

′
β. The general case will

follow analogously. In order to estimate the size of kj, suppose for the moment that j < 0.

Then,

|kj(z1, ζ1)| = |kj(z1, x+ iβ)| ≤
∫
R

e−[Im z1+β]ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ
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=

( ∫ j
2

−∞
+

∫ 0

j
2

+

∫+∞

0

)
e−[Im z1+β]ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ.

It follows that∫ j
2

−∞

e−[Im z1+β]ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ ≈

∫ j
2

−∞

e−[Im z1+β]ξ

e−πξe−(2β−π)(ξ− j
2

)
dξ

= C
e−j(β−

π
2

)e
j
2

(β−Im z1)

β − Im z1

;∫ 0

j
2

e−[Im z1+β]ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ ≈

∫ j
2

0

e−[Im z1+β]ξ

e−πξe(2β−π)(ξ− j
2

)
dξ

= Cej(β−
π
2

) e
− j

2
[Im z1+3β−2π] − 1

Im z1 + 3β − 2π
;∫+∞

0

e−[Im z1+β]ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ ≈

∫+∞

0

e−[Im z1+β]ξ

eπξe(2β−π)(ξ− j
2

)
dξ

= C
ej(β−

π
2

)

Im z1 + 3β
.

Notice that all these estimates do not depend on Re ζ1 and the term

e−
j
2

[Im z1+3β−2π] − 1

Im z1 + 3β − 2π

is not singular when Im z1 + 3β − 2π → 0. Finally,∑
j<0

|z2|je
j
2

(β−π
2

)|kj(z1, x+ iβ)| ≤

≤ C
∑
j<0

[
e
j
2

[log |z2|2+π
2
−Im z1]

β − Im z1

+
e
j
2

[log |z2|2−Im z1+π
2

] − e j2 [log |z2|2+3β− 3π
2

]

Im z1 + 3β − 2π
+
e
j
2

[3β− 3
2
π+log |z2|2]

Im z1 + 3β

]

and it is immediate to see that we get a uniform bound for (z1, z2) ∈ K. Analogous compu-

tations prove the estimate for the sum over positive j’s.

By the property of Reproducing Kernel Hilbert spaces, we know that KD′β
[(z1, z2), (·, ·)]

is in H2(D′β) for every fixed (z1, z2) in D′β. In particular, KD′β
[(z1, z2), (·, ·)] admits boundary

values in L2(∂D′β). Notice that for (z1, z2) fixed in D′β, the kernel KD′β
[(z1, z2), (·, ·)] is well-

defined on ∂D′β, thus its boundary value function is just its extension to D′β. Regarding the

L2(∂D′β) norm of KD′β
[(z1, z2), (·, ·)] we have the following estimate.
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Proposition 2.20. Let K be a compact subset of D′β. Then,

sup
(z1,z2)∈K

‖KD′β
[(z1, z2), (·, ·)]‖L2(∂D′β) ≤ CK , (2.11)

where CK is a constant which depends on K.

Proof. We prove the proposition for only one of the component of the distinguished boundary,

say ∂1D
′
β. The computation for the other three components is analogue. Therefore, by

Proposition 2.12, we get

∫
∂1D′β

∣∣∣KD′β
[(z1, z2), (ζ1, ζ2)]

∣∣∣2dζ1dζ2 = C
∑
j∈Z

∫
R

∫ 1

0

∣∣∣Kj,D′β
[(z1, z2), (x+ iβ, e

1
2

(β−π
2

)e2πiγ)]
∣∣∣2dγdx

= C
∑
j∈Z

∫
R

∫ 1

0

∣∣∣zj2e j2 (β−π
2

)e−2πijγkj[z1, x+ iβ]
∣∣∣2dγdx

= C
∑
j∈Z

|z2|2jej(β−
π
2

)

∫
R

∣∣∣ e−(Im z1+β)ξ

Ch[2βξ] Ch[(2β − π)(ξ − j
2
)]

∣∣∣2dξ
where in the last equality we used Plancherel’s theorem. The computation continues similarly

to the computation in the proof of Proposition 2.19.

Remark 2.21. In order to have more readable proof, as we did in the previous chapter for

the strip Sβ, we can think to have a function F in L2(∂D′β) such that F = (F1, 02, 03, 04)

where 0i’s are constant zero fuctions. The results for a general F will follow by linearity,

since, as element of L2(∂D′β),

(F1, F2, F3, F4) = (F1, 02, 03, 04) + (01, F2, 03, 04) + (01, 02, F3, 04) + (01, 02, 03, F4).

Notation. Given a function F in C∞0 (R×T), we denote with FRF (ξ, ĵ) the Fourier trans-

form of F in the first variable and the jth Fourier coefficient in the second, i.e.

FRF (ξ, ĵ) =
1

2π

∫
R

∫ 1

0

F (x, γ)e−ixξe−2πijγ dγdx.

Proposition 2.22. Let F = (F1, F2, F3, F4) a function in L2(∂D′β). Then, the function

SF (z1, z2) :=
〈
F,K[(·, ·), (z1, z2)]

〉
L2(∂D′β)

=
4∑

k=1

〈
Fk, K[(·, ·), (z1, z2)]

〉
L2(∂kD

′
β)

is in H2(D′β). Moreover,

‖SF‖H2(D′β) ≤ ‖F‖L2(∂D′β).
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Proof. We prove the proposition for a function F in L2(∂D′β) of the form F = (F1, 02, 03, 04).

Therefore, by Plancherel’s theorem,

‖F‖2
L2(∂D′β) =

∫
∂D′β

|F (ζ1, ζ2)|2 dζ1dζ2

=

∫ 1

0

∫
R

|F1(x+ iβ, e
1
2

(β−π
2

)e2πiθ)|2 dxdθ

=
1

2π

∑
j∈Z

∫
R

|FRF1(ξ, ĵ)|2 dξ.

The holomorphicity of SF follows using the estimate in Proposition 2.20 and an argument

analogue to the one used in Proposition 1.12. It remains to prove that SF satisfies the H2

growth condition. To simplify notation, we set F1(x+ iβ, e
1
2

(β−π
2

)e2πiθ) := F1(x, θ). Thus,

SF (u+ iv, re2πiγ) =
〈
F,K[(·, ·), (u+ iv, re2πiγ)]

〉
L2(∂D′β)

=

∫
R

∫ 1

0

F1(x, θ)
∑
j∈Z

kj(u+ iv, x+ iβ)rje2πijγe
j
2

(β−π
2

)e−2πijθ dθdx

=
1

4

∑
j∈Z

rje
j
2

(β−π
2

)e2πijγF−1
R

[
e−(v+β)(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(u).

Hence,∫
R

∫ 1

0

∣∣SF [u+ i(s+ t),e
s
2 e2πiγ]

∣∣2 dγdu
=

1

8π

∑
j∈Z

ej(s+β−
π
2

)

∫
R

∣∣ e−(s+t+β)ξFRF1(·, ĵ)
Ch[πξ] Ch[(2β − π)(ξ − j

2
)]

∣∣2 dξ
=

1

8π

∑
j∈Z

∫
R

∣∣∣e−(s+β−π
2

)(ξ− j
2

)e−(π
2

+t)ξFRF1(ξ, ĵ)

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]

∣∣∣2 dξ
≤ 1

8π

∑
j∈Z

∫
R

∣∣∣FRF1(ξ, ĵ)
∣∣∣2 dξ. (2.12)

Taking the supremum for (t, s) ∈ [, π
2
)× [0, β − π

2
) we obtain

‖SF‖H2(D′β) ≤
1

4
‖F1‖L2(R×T) ≤ ‖F‖L2(∂D′β) (2.13)

and the conclusion follows.
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Remark 2.23. We report for completeness the explicit expression of SF given a general

initial data F = (F1, F2, F3, F4) in L2(∂D′β). Let (u+ iv, r2πiγ) in D′β, then

SF (u+ iv, re2πiγ) =
1

4

∑
j∈Z

rje
j
2

(β−π
2

)e2πijγF−1
R

[
e−(v+β)(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(u)

+
1

4

∑
j∈Z

rje
j
2

(β−π
2

)e2πijγF−1
R

[
e−(v+β−π)(·)FRF2(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(u)

+
1

4

∑
j∈Z

rje−
j
2

(β−π
2

)e2πijγF−1
R

[
e−(v−β)(·)FRF3(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]+

]
(u)

+
1

4

∑
j∈Z

rje−
j
2

(β−π
2

)e2πijγF−1
R

[
e−(v−β+π)(·)FRF4(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(u).

(2.14)

Since SF is a function in H2(D′β), we know it admits a boundary value function S̃F . We

show an explicit formula of S̃F .

Definition 2.24. Given (F1, F2, F3, F4) in L2(∂D′β), we define

S̃F 1(x+ iβ, e
1
2

(β−π
2

)e2πiγ) :=
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)e−π(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)FRF2(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
FRF3(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e−π(·)FRF4(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x);

S̃F 2[x+ i(β − π), e
1
2

(β−π
2

)e2πiγ] :=
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)eπ(·)FRF2(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
eπ(·)FRF3(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)
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+
1

4

∑
j∈Z

e2πijγF−1
R

[
FRF4(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x);

S̃F 3[x− iβ, e−
1
2

(β−π
2

)e2πiγ] :=
1

4

∑
j∈Z

e2πijγF−1
R

[
FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
eπ(·)FRF2(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e(2β−π)(·− j

2
)eπ(·)FRF3(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e(2β−π)(·− j

2
)FRF4(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x);

S̃F 4[x− i(β − π), e−
1
2

(β−π
2

)e2πiγ] :=
1

4

∑
j∈Z

e2πijγF−1
R

[
e−π(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
FRF2(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e(2β−π)(·− j

2
)FRF3(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

+
1

4

∑
j∈Z

e2πijγF−1
R

[
e(2β−π)(·− j

2
)e−π(·)FRF4(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x).

Proposition 2.25. Let F = (F1, F2, F3, F4) a function in L2(∂D′β). Then,

lim
(t,s)→(π

2
,β−π

2
)
‖SF (·+ i(s+ t), e

s
2 e2πi(·))− S̃F 1(·+ iβ, e

1
2

(β−π
2

)e2πi(·))‖L2(R×T) = 0;

lim
(t,s)→(π

2
,β−π

2
)
‖SF (·+ i(s− t), e

s
2 e2πi(·))− S̃F 2[·+ i(β − π), e

1
2

(β−π
2

)e2πi(·)]‖L2(R×T) = 0;

lim
(t,s)→(π

2
,β−π

2
)
‖SF (· − i(s+ t), e−

s
2 e2πi(·))− S̃F 3(· − iβ, e−

1
2

(β−π
2

)e2πi(·))‖L2(R×T) = 0;

lim
(t,s)→(π

2
,β−π

2
)
‖SF (· − i(s− t), e−

s
2 e2πi(·))− S̃F 4[· − i(β − π), e−

1
2

(β−π
2

)e2πi(·)]‖L2(R×T) = 0;

Proof. We compute only one of the four limits for a simpler function F of the form F =

(F1, 02, 03, 04). The other limits follow analogously. We have

‖SF (·+ i(s+ t),e
s
2 e2πi(·))− S̃F 1(·+ iβ, e

1
2

(β−π
2

)e2πi(·))‖L2(R×T) =
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=
1

8π

∑
j∈Z

∫
R

∣∣∣FRF1(ξ, ĵ)
e−(s+β−π

2
)(ξ− j

2
)e−(π

2
+t)ξ − e−(2β−π)ξe−πξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]

∣∣∣2 dξ
≤ 1

8π

∑
j∈Z

∫
R

∣∣∣FRF1(ξ, ĵ)
∣∣∣2 dξ

<∞.

By the Dominated Convergence Theorem, we can conclude. The conclusion for a general

function F follows by linearity as explained in Remark 2.2.

Let us define

H2(∂D′β) := {G = (G1, G2, G3, G4) ∈ L2(∂D′β) : ∃F ∈ H2(D′β) s.t. G = F̃}.

From Proposition 2.3 we deduce that H2(∂D′β) is a closed subspace of L2(∂D′β).

Everything we proved so far can be summarized in the following theorem.

Theorem 2.26. The operator

S̃ : L2(∂D′β)→ H2(∂D′β)

(F1, F2, F3, F4) 7→ (S̃F 1, S̃F 2, S̃F 3, S̃F 4)

is a Hilbert space orthogonal projection operator. We call S̃ : L2(∂D′β)→ H2(∂D′β) the Szegő

projection operator.

We conclude this section with a Paley–Wiener type of result.

Theorem 2.27. (Paley–Wiener Theorem for D′β) Let F = (F1, F2, F3, F4) be a function

in L2(∂D′β). Then, F is in H2(∂D′β) if and only if there exists a sequence of functions {gj}
such that ∑

j∈Z

∫
R

|ĝj(ξ)|2 Ch[πξ] Ch[(2β − π)(ξ − j

2
] dξ <∞

and

F1(x+ iβ, e
1
2

(β−π
2

)e2πiγ) =
∑
j∈Z

f1,j(x+ iβ)e
j
2

(β−π
2

)e2πijγ;

F2[x+ i(β − π), e
1
2

(β−π
2

)e2πiγ] =
∑
j∈Z

f2,j[x+ i(β − π

2
)]e

j
2

(β−π
2

)e2πiγ;
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F3(x− iβ, e−
1
2

(β−π
2

)e2πiγ) =
∑
j∈Z

f3,j(x− iβ)e−
j
2

(β−π
2

)e2πijγ;

F4[x− i(β − π), e−
1
2

(β−π
2

)e2πiγ] =
∑
j∈Z

f4,j[x− i(β −
π

2
)]e−

j
2

(β−π
2

)e2πiγ,

where, for every j ∈ Z,

f1,j[x+ iβ] = F−1
R

[
e−β(·)gj(·)

]
(x);

f2,j[x+ i(β − π)] = F−1
R

[
e−(β−π)(·)gj(·)

]
(x);

f3,j(x+ iβ) = F−1
R

[
eβ(·)gj(·)

]
(x);

f4,j[x− i(β − π)] = F−1
R

[
e(β−π)(·)gj(·)

]
(x).

Proof. Suppose that F belongs to H2(∂D′β). Then, the conclusion follows from Proposition

2.12. Conversely, let {gj} be a sequence which defines F = (F1, F2, F3, F4) as in the hypoth-

esis. It follows that SF belongs to H2(D′β) and the formulas in Definition 2.24 guarantee

that S̃F k = Fk, k = 1, 2, 3, 4. The proof is complete.

2.3.1 Sobolev regularity

We conclude this section on H2(D′β) studying the regularity of the Szegő projection S̃ in

Sobolev norm. For every k > 0, let us consider the Sobolev space

W k(∂D′β) =

{
F = (F1, F2, F3, F4) : ‖F‖2

Wk(∂D′β) =
4∑
i=1

‖Fi‖2
Wk(∂iD′β)

}
,

where

‖Fi‖2
Wk(∂iD′β) =

∑
j∈Z

∫
R

(1 + j2 + ξ2)k
∣∣FRF (ξ, ĵ)

∣∣2 dξ.
We prove that the Szegő projection S̃ preserves the regularity of functions.

Theorem 2.28. The Szegő projection S̃ is a bounded linear operator

S̃ : W k(∂D′β)→ W k(∂D′β)

(F1, F2, F3, F4) 7→ (S̃F 1, S̃F 2, S̃F 3, S̃F 4)

for every k > 0.
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Proof. We only show explicitely that ‖S̃F 1‖Wk(∂1D′β) ≤ ‖F1‖Wk(∂qD′β); the computation for

the other term is similar. Moreover, by Remark 2.2, it is enough to prove the theorem for

F = (F1, 02, 03, 04). For such a function F , it holds

S̃F 1(x+ iβ, e
1
2

(β−π
2

)e2πiγ) :=
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)e−π(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x).

Thus,

‖S̃F 1‖2
Wk(∂1D′β) =

1

16

∑
j∈Z

∫
R

(1 + j2 + ξ2)k
∣∣FRS̃F 1(ξ, ĵ)

∣∣2 dξ
=

1

16

∑
j∈Z

∫
R

∣∣∣∣ e−(2β−π)(ξ− j
2

)e−πξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]

∣∣∣∣2(1 + j2 + ξ2)k
∣∣FRF1(ξ, ĵ)

∣∣2 dξ
= ‖S̃Gk

1‖2
L2(∂D′β),

where

Gk(x, γ) =
∑
j∈Z

e2πijγF−1
R

[
[1 + j2 + (·)2]

k
2FRF1(·, ĵ)

]
(x).

By hypothesis, the function Gk is in L2(R× T), therefore,

‖S̃F 1‖2
Wk(∂1D′β) = ‖S̃Gk

1‖2
L2(∂D′β)

≤ ‖Gk‖2
L2(R×T)

= ‖F1‖2
Wk(∂1D′β).

The conclusion follows.

2.4 Case 1 < p <∞

In this section we extend the results we have seen so far to the case p ∈ (1,∞). In detail,

− we show that the Szegő projection can be realized as a composition of simpler operators

we are able to study and we extend Theorem 2.26;

− we prove that the space Hp(D′β), p ∈ (1,∞), admits a decomposition analogous to

(2.9) for the case p = 2 (Proposition 2.39);
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− we prove a Fatou-type theorem; that is, we prove that an appropariate restriction

of a function F in Hp(D′β), p ∈ (1,∞), converges to its boundary value function F̃

pointiwise almost everywhere (Theorem 2.45).

One of the goals of this section is to prove the following boundedness result the for Szegő

porjection.

Theorem 2.29. The Szegő projection S̃ extends to a bounded linear operator

S̃ : Lp(∂D′β)→ Hp(∂D′β)

(F1, F2, F3, F4) 7→ (S̃F 1, S̃F 2, S̃F 3, S̃F 4)

for every p ∈ (1,∞).

As already pointed out in Remark 2.2, it is enough to prove the theorem for F in Lp(∂D′β)

of the form F = (F1, 02, 03, 04), where F1 is a function in Lp(R × T). From now on we will

always think to work with a function F in Lp(R×T) of such a form unless specified. Keeping

this in mind, the formulas in Definition 2.24 reduce to

S̃F 1(x+ iβ, e
1
2

(β−π
2

)e2πiγ) =
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)e−π(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x); (2.15)

S̃F 2[x+ i(β − π), e
1
2

(β−π
2

)e2πiγ] =
1

4

∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x); (2.16)

S̃F 3(x− iβ, e−
1
2

(β−π
2

)e2πiγ) =
1

4

∑
j∈Z

e2πijγF−1
R

[
FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x); (2.17)

S̃F 4[x− i(β − π), e−
1
2

(β−π
2

)e2πiγ] =
1

4

∑
j∈Z

e2πijγF−1
R

[
e−π(·)FRF1(·, ĵ)

Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x).

(2.18)

Moreover, if (x+ iy, re2πiγ) is in D′β, the formula (2.14) reduces to

Sy,sF (x, γ) := SF (x+iy, e
s
2 e2πiγ) =

∑
j∈Z

e2πijγF−1
R

[
e−(β−π

2
+s)(·− j

2
)e−(π

2
−s+y)(·)FRF1(·, ĵ)

4 Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x).

(2.19)

We observe that the operators F 7→ S̃Fi, i = 1, 2, 3, 4, and F 7→ SFy,s are well defined on

the set {
F (x, γ) =

∑
]j<∞

F (x, j)e2πijγ : F (·, j) ∈ C∞0 (R)

}
,
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where the sum is on a finite number of j’s. Moreover,

Proposition 2.30. For every p ∈ (1,∞),{∑
]j<∞

F (x, j)e2πijγ : F (·, j) ∈ C∞0 (R)

}‖·‖Lp(R×T)
= Lp(R× T).

Proof. Let F ∈ Lp(R× T)), then F (x, ·) is in Lp(T) for almost every x ∈ R. Therefore,

lim
N→∞

∫ 1

0

∣∣∣F (x, γ)−
N∑

j=−N

F (x, ĵ)e2πijγ
∣∣∣p dγ = 0.

Since the partial sum operator is uniformly bounded for 1-dimensional Fourier series, by

Dominated Convergence Theorem, it follows

lim
N→+∞

∫
R

∫ 1

0

∣∣∣F (x, γ)−
N∑

j=−N

F (x, ĵ)e2πijγ
∣∣∣p dγdx = 0.

Now, fix ε > 0 and let N(ε) such that∫
R

∫ 1

0

∣∣∣F (x, γ)−
N(ε)∑

j=−N(ε)

F (x, ĵ)e2πijγ
∣∣∣p dγdx < εp.

For every function F (·, ĵ) there exists a function F̃ (·, j) in C∞0 (R) such that[ ∫
R

∣∣F (x, ĵ)− F̃ (x, j)
∣∣p dx] 1

p

<
ε

2N(ε)
.

Thus, ∫
R

∫ 1

0

∣∣∣F (x, γ)−
N(ε)∑

j=−N(ε)

F̃ (x, j)e2πijγ
∣∣∣p dγdx

 1
p

≤

∫
R

∫ 1

0

∣∣∣F (x, γ)−
N(ε)∑

j=−N(ε)

F (x, ĵ)e2πijγ
∣∣∣p dγdx

 1
p

+

∫
R

∫ 1

0

∣∣∣ N(ε)∑
j=−N(ε)

F (x, ĵ)e2πijγ − F̃ (x, j)e2πijγ
∣∣∣p dγdx

 1
p

≤ 2ε,

where we used triangle inequality and the hypothesis on F̃ (·, j) to estimate the sum in j.

The proof is complete.
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Proposition 2.31. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β). Then, for every

p ∈ (1,∞),

‖Sy,sF‖Lp(∂D′β) ≤ Cp‖F‖Lp(∂D′β),

where the constant Cp does not depend on y and s.

Proof. Let be F1(x, γ) =
N∑

j=−N
F1(x, j)e2πijγ as in Proposition 2.30. Then,

Sy,sF (x, γ) = [λ′y,s ◦ λs]F (x, γ),

where

λsF (x, γ) =
1

2π

∫
R

N∑
j=−N

e2πijγ e−(β−π
2

+s)(ξ− j
2

)

4 Ch[(2β − π)(ξ − j
2
)]
FRF1(ξ, j)eixξ dξ

=
1

2π

∫
R

N∑
j=−N

e2πijγms(ξ −
j

2
)FRF1(ξ, j)eixξ dξ (2.20)

and

λ′y,sF (x, γ) =
1

2π

∫
R

e−(π
2
−s+y)ξ

Ch[πξ]
FRF1ξ, γ)eixξ dξ

=
1

2π

∫
R

m′y,s(ξ)FRF1(ξ, γ)eixξ dξ. (2.21)

We recall that y and s are such that (x + iy, e
s
2 e2πiγ) is in D′β, thus |s| ∈ (0, β − π

2
) and

|y − s| ∈ (0, π
2
). Following the proof of Proposition 1.18, we obtain that m′y,s is a multiplier

of Lp(R) for every p ∈ (1,∞) with norm independent of y and s. Thus the operator λ′y,s

extends to a bounded linear operator Lp(R× T)→ Lp(R× T) for every p ∈ (1,∞). About

λs we have

λsF (x, γ) =
1

2π

∫
R

N∑
j=−N

e2πij(γ+ x
4π

)ms(ξ)FRF1(ξ +
j

2
, j)eixξ dξ

=
1

2π

∫
R

N∑
j=−N

e2πij(γ+ x
4π

)ms(ξ)FR[e−i
j
2

(·)F1(·, j)](ξ)eixξ dξ.

Therefore, by a change of variables and the periodicity of the exponential function,∫
R×T
|λsF (x, γ)|pdxdγ =

∫
R

∫ 1

0

∣∣∣∣ 1

2π

N∑
j=−N

∫
R

e2πij(γ)ms(ξ)FR[e−i
j
2

(·)F1(·, j)](ξ)eixξ dξ
∣∣∣∣p dγdx
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=

∫ 1

0

∫
R

∣∣∣∣ 1

2π

∫
R

ms(ξ)
N∑

j=−N

e2πijγFR[e−i
j
2

(·)F1(·, j)](ξ)eixξ dξ
∣∣∣∣pdxdγ

=

∫ 1

0

∫
R

∣∣∣∣ 1

2π

∫
R

ms(ξ)FR
[ N∑
j=−N

e−i
j
2

(·)F1(·, j)e2πijγ

]
(ξ)eixξ dξ

∣∣∣∣pdxdγ.
Following again the proof of Proposition 1.18 we obtain that ms is a multipliers of Lp(R)

for every p ∈ (1,∞) with norm indepedent of s. Therefore, if we prove that the function
N∑

j=−N
e−i

j
2
tF1(t, j)e2πijγ is in Lp(R × T), we will obtain the Lp boundedness of the operator

λs. By a change of variables and the periodicity of the exponential function, we have∫
R

∫ 1

0

∣∣∣∣ N∑
j=−N

e−i
j
2
tF1(t, j)e2πijγ

∣∣∣∣p dγdt =

∫
R

∫ 1

0

∣∣∣∣ N∑
j=−N

F1(t, j)e2πijγ

∣∣∣∣p dγdt
= ‖F1‖pLp(R×T)

<∞.

Finally, ∫
R

∫ 1

0

∣∣Sy,sF (x, γ)
∣∣p dγdx =

∫
R

∫ 1

0

∣∣[λy,s ◦ λs]F (x, γ)
∣∣pdγdx

≤ Cp

∫
R

∫ 1

0

∣∣λsF (x, γ)
∣∣pdγdx

≤ Cp

∫
R

∫ 1

0

∣∣F (x, γ)
∣∣pdγdx,

as we wished.

The last proposition allows us to prove that the operator S extends to a continuous

operator with respect to the Lp norm.

Theorem 2.32. Let F = (F1, 02, 03, 04) a function in Lp(∂D′β). Then, for every p ∈ (1,∞),

the operator S extends to a bounded linear operator

S : Lp(∂D′β)→ Hp(D′β).

Proof. Suppose that F = (F1, 02, 03, 04) is a function in Lp(∂D′β) ∩ L2(∂D′β). Then, Propo-

sition 2.22 assures that SF is holomorphic on D′β. Moreover,

‖SF‖pHp(D′β) = sup
(t,s)∈[0,π

2
)×[0,β−π

2
)

LpSF (t, s)
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= sup
(t,s)

[
‖Ss+t,sF‖pLp(R×T) + ‖Ss−t,sF‖pLp(R×T)

+ ‖S−(s+t),−sF‖pLp(R×T) + ‖S−(s−t),−sF‖pLp(R×T)

]
≤ Cp‖F‖pLp(R×T) (2.22)

with Cp independent of t and s thanks to Proposition 2.31. Thus, we proved the theorem

when F is in Lp(∂D′β) ∩ L2(∂D′β). Suppose now that G is a general function in Lp(∂D′β).

Then, there exists a sequence {Gn} ⊆ Lp(∂D′β) ∩ L2(∂D′β) such that ‖G−Gn‖Lp(∂D′β) → 0

as n tends to ∞. From Proposition 2.31 we obtain

‖S[G−Gn]‖Hp(D′β) ≤ Cp‖G−Gn‖Lp(∂D′β),

thus SGn → SG in Hp(D′β). It remains to prove that the function SG is holomorphic on

D′β. From the first part of the proof and Proposition 2.3 we know that the functions SGn’s

are holomorphic on D′β and

sup
(z1,z2)∈K

|S[Gn −Gm](z1, z2)| ≤ Ck‖Gn −Gm‖pHp(D′β)

for every compact set K ⊆ D′β. It then follows that SG is holomorphic on D′β.

It remains to prove that (2.15), (2.16), (2.17) and (2.18) are boundary values for SF . At

the moment, we focus on (2.15) and we fix some notation. We have

T 1
t,sF (x, γ) := [S̃F 1 − Ss+t,sF ](x, γ)

=
∑
j∈Z

e2πijγF−1
R

[
e−(2β−π)(·− j

2
)e−π(·) − e−(β−π

2
+s)(·− j

2
)e−(π

2
+t)(·)

4 Ch[π(·)] Ch[(2β − π)(· − j
2
)]

FRF1(·, ĵ)

]
(x)

=
∑
j∈Z

e2πijγF−1
R

[
m1,I
t,s (·, j)FRF1(·, ĵ)

]
(x) +

∑
j∈Z

e2πijγF−1
R

[
m1,II
t,s (·, j)FRF1(·, ĵ)

]
(x)

= T 1,I
t,s F (x, γ) + T 1,II

t,s F (x, γ), (2.23)

where

m1,I
t,s (ξ, j) =

1

8

[
e−πξ − e−(π

2
+t)ξ

Ch[πξ]

][
e−(2β−π)(ξ− j

2
) + e−(β−π

2
+s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
=

1

8

[
m1,I
t (ξ)

][
m2,I
s (ξ − j

2
)
]
;

m1,II
t,s (ξ, j)=

1

8

[
e−πξ + e−(π

2
+t)ξ

Ch[πξ]

][
e−(2β−π)(ξ− j

2
) − e−(β−π

2
+s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
=

1

8

[
m1,II
t (ξ)

][
m2,II
s (ξ − j

2
)
]
.
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Thus, the operator T 1,I
t,s can be seen as a composition of two operators, that is,

T 1,I
t,s F (x, γ) = [Λs ◦ Ξt]F (x, γ), (2.24)

where, Λs and Ξt, acting on a suitable function G, are defined by

ΛsG(x, γ) :=
∑
j∈Z

e2πijγ

2π

∫
R

e−(2β−π)(ξ− j
2

) + e−(β−π
2

+s)(ξ− j
2

)

Ch[(2β − π)(ξ − j
2
)]

FRG(ξ, ĵ)eixξ dξ;

ΞtG(x, γ) :=
1

2π

∫
R

e−πξ − e−(π
2

+t)ξ

Ch[πξ]
FRG(ξ, γ)eixξdξ.

The situation for the operator T 1,II
t,s is analogue. We have

T 1,II
t,s F (x, γ) = [Λ′s ◦ Ξ′t]F (x, γ), (2.25)

where the operators Λ′s and Ξ′t are defined by

Λ′sG(x, γ) :=
∑
j∈Z

e2πijγ

2π

∫
R

e−(2β−π)(ξ− j
2

) − e−(β−π
2

+s)(ξ− j
2

)

Ch[(2β − π)(ξ − j
2
)]

FRG(ξ, ĵ)eixξ dξ; ;

Ξ′tG(x, γ) :=
1

2π

∫
R

e−πξ + e−(π
2

+t)ξ

Ch[πξ]
FRG(ξ, γ)eixξdξ.

So, in order to obtain information on the mapping properties of the operator T 1
t,s, we

study the operators Λs,Ξt,Λ
′
s and Ξ′t separately. The realization of T 1

t,s as composition of

these operators is particularly effective since the parameters t and s become, in some sense,

independent.

Proposition 2.33. The operator Λs extends to a bounded linear operator

Λs : Lp(R× T)→ Lp(R× T)

for every p ∈ (1,∞). Moreover,

sup
s∈[0,β−π

2
)

|||Λs|||p <∞. (2.26)

Proof. Let G(x, γ) =
N∑

j=−N
G(x, j)e2πijγ be a function as in Proposition 2.30. Then, similarly

to the proof of Proposition 2.31 for the operator λs, we obtain∫
R

∫ 1

0

∣∣ΛsG(x, γ)
∣∣p dγdx =

∫
R

∫ 1

0

∣∣∣∣ ∫
R

m2,I
s (ξ)

2π
FR
[ N∑
j=−N

ei
j
2

(·)(·)G(·, j)e2πijγ

]
(ξ)eixξdξ

∣∣∣∣pdγdx.
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By Mihlin’s condition (see, for instance, [Gra08, Thm. 5.2.7]), we obtain that the function

m2,I
s (ξ) =

e−(2β−π)ξ + e−(β−π
2

+s)ξ

Ch[(2β − π)ξ]
(2.27)

identifies a multiplier operator that is bounded on Lp(R) for every p ∈ (1,∞) and that

satisfies (2.26). Notice also that the function
N∑

j=−N
ei
j
2
xG(x, j)e2πijγ is in Lp(R×T). In fact,

∫
R

∫ 1

0

∣∣∣∣ N∑
j=−N

ei
j
2
xG(x, j)e2πijγ

∣∣∣∣p dγdx =

∫
R

∫ 1

0

∣∣∣∣ N∑
j=−N

G(x, j)e2πijγ

∣∣∣∣p dγdx <∞,
where we performed a change of variables and used the periodicity of the exponential func-

tion. Finally, by Fubini’s theorem,∫
R

∫ 1

0

∣∣ΛsG(x, γ)
∣∣p dγdx =

∫ 1

0

∫
R

∣∣∣∣ ∫
R

m2,I
s (ξ)

2π
FR
[ N∑
j=−N

ei
j
2 (·)G(·, j)e2πijγ

]
(ξ)eixξdξ

∣∣∣∣pdxdγ
≤ Cp

∫ 1

0

∫
R

∣∣∣∣ N∑
j=−N

ei
j
2
xG(x, j)e2πijγ

∣∣∣∣p dxdγ
= Cp

∫ 1

0

∫
R

∣∣∣∣ N∑
j=−N

G(x, j)e2πijγ

∣∣∣∣p dxdγ.
By Proposition 2.30, the proof is complete.

Proposition 2.34. The operator Ξ′t extends to a bounded linear operator

Ξ′t : Lp(R× T)→ Lp(R× T)

for every p ∈ (1,∞). Moreover,

sup
t∈[0,π

2
)

|||Ξ′t|||p <∞. (2.28)

Proof. By Mihlin’s condition we obtain that the function m1,II
t (ξ) is a Lp(R) multipliers for

every p ∈ (1,∞) which satisfies (2.28). By Fubini’s theorem we conclude.

Proposition 2.35. The operator Ξt extends to a bounded linear operator

Ξt : Lp(R× T)→ Lp(R× T)

for every p ∈ (1,∞). Moreover,

sup
t∈[0,π

2
)

|||Ξt|||p <∞
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and

lim
t→π

2

‖ΞtG‖Lp(R×T) = 0

for every function G in Lp(R× T).

Proof. The boundedness of Ξt follows once again by Mihlin’s condition, while the limit is

computed as in (1.20) for the strip Sπ
2
.

Proposition 2.36. The operator Λ′s extends to a bounded linear operator

Λ′s : Lp(R× T)→ Lp(R× T)

for every p ∈ (1,∞). Moreover,

sup
s∈[0,β−π

2

|||Λ′s|||p <∞.

and

lim
s→β−π

2

‖Λ′sG‖Lp(R×T) = 0

for every function G in Lp(R× T).

Proof. The proof follows similarly as the proofs of Proposition 2.33 and Proposition 2.35

Thanks to the last proposition, we can finally prove the norm convergence of a function

in Hp(D′β) to its boundary value function.

Theorem 2.37. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β). Then, for every p ∈
(1,∞),

lim
(t,s)→(π

2
,β−π

2
)
‖Ss+t,sF − S̃F 1‖Lp(R×T) = 0. (2.29)

Proof. From (2.23), it is enough to prove that ‖T 1,I
t,s ‖p and ‖T 1,II

t,s ‖p tends to 0 as (t, s) →
(π

2
, β − π

2
). Thus, using Proposition 2.33 and Proposition 2.35,∫

R×T
|T 1,I
t,s F (x, γ)|p dxdγ =

∫
R×T

∣∣[Λs ◦ Ξt]F (x, γ)
∣∣p dxdγ

≤ C

∫
R×T

∣∣ΞtF (x, γ)
∣∣p dxdγ

→ 0
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as (t, s)→ (π
2
, β − π

2
). Similarly, using Proposition 2.34 and Proposition 2.36, we get∫

R×T

∣∣T 1,II
t,s F (x, γ)

∣∣p dxdγ =

∫
R×T

∣∣[Ξ′t ◦ Λ′s]F (x, γ)
∣∣p dxdγ

≤ C

∫
R×T

∣∣Λ′sF (x, γ)
∣∣p dxdγ

→ 0

as (t, s)→ (π
2
, β − π

2
). The proof is complete.

Following the same scheme, we can prove that we have convergence in norm to the

boundary values also on the other components of the distinguished boundary.

Theorem 2.38. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β). Then, for every p ∈
(1,∞),

lim
(t,s)→(π

2
,β−π

2
)
‖Ss−t,sF − S̃F 2‖Lp(R×T) = 0; (2.30)

lim
(t,s)→(π

2
,β−π

2
)
‖S−(s+t),−sF − S̃F 3‖Lp(R×T) = 0; (2.31)

lim
(t,s)→(π

2
,β−π

2
)
‖S−(s−t),−sF − S̃F 4‖Lp(R×T) = 0. (2.32)

Proof. We have

T 2
t,sF (x, γ) := [S̃F 2 − Ss−t,sF ](x, γ)

=
∑
j∈Z

e2πijγF−1
R

[
m2,I
t,s (·, j)FRF1(·, ĵ)

]
(x) +

∑
j∈Z

e2πijγF−1
R

[
m2,II
t,s (·, j)FRF1(·, ĵ)

]
(x)

= T 2,I
t,s F (x, γ) + T 2,II

t,s (x, γ);

T 3
t,sF (x, γ) := [S̃F 3 − S−(s+t),−sF ](x, γ)

=
∑
j∈Z

e2πijγF−1
R

[
m3,I
t,s (·, j)FRF1(·, ĵ)

]
(x) +

∑
j∈Z

e2πijγF−1
R

[
m3,II
t,s (·, j)FRF1(·, ĵ)

]
(x)

= T 3,I
t,s F (x, γ) + T 3,II

t,s (x, γ);

T 4
t,sF (x, γ) := [S̃F 3 − S−(s−t),−sF ](x, γ)

=
∑
j∈Z

e2πijγF−1
R

[
m4,I
t,s (·, j)FRF1(·, ĵ)

]
(x) +

∑
j∈Z

e2πijγF−1
R

[
m4,II
t,s (·, j)FRF1(·, ĵ)

]
(x)

= T 4,I
t,s F (x, γ) + T 4,II

t,s (x, γ),
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where

m2,I
t,s (ξ, j) =

1

8

[1− e−(π
2
−t)ξ

Ch[πξ]

][e−(2β−π)(ξ− j
2

) + e−(β−π
2

+s)(ξ− j
2

)

Ch[(2β − π)(ξ − j
2
)]

]
;

m2,II
t,s (ξ, j) =

1

8

[1 + e−(π
2
−t)ξ

Ch[πξ]

][e−(2β−π)(ξ− j
2

) − e−(β−π
2

+s)(ξ− j
2

)

Ch[(2β − π)(ξ − j
2
)]

]
;

m3,I
t,s (ξ, j) =

1

8

[1− e−(π
2
−t)ξ

Ch[πξ]

][ 1 + e−(β−π
2
−s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
;

m3,II
t,s (ξ, j) =

1

8

[1 + e−(π
2
−t)ξ

Ch[πξ]

][ 1− e−(β−π
2
−s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
;

m4,I
t,s (ξ, j) =

1

8

[e−πξ − e−(π
2

+t)ξ

Ch[πξ]

][ 1 + e−(β−π
2
−s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
;

m4,II
t,s (ξ, j) =

1

8

[e−πξ + e−(π
2

+t)ξ

Ch[πξ]

][ 1− e−(β−π
2
−s)(ξ− j

2
)

Ch[(2β − π)(ξ − j
2
)]

]
.

The conclusion follows by an argument similar to the proof of Theorem 2.37.

Finally, we are able to prove Theorem 2.29.

Proof. (Theorem 2.29) As pointed out in Remark 2.2, it is enough to prove the theorem for

F = (F1, 02, 03, 04). For such a function F , the thesis follows combining (2.22), Theorem

2.37 and Theorem 2.38.

2.4.1 A decomposition of Hp(D′β)

In this section we prove that the the space Hp(D′β) admits for every p ∈ (1,∞) a decom-

position

Hp(D′β) =
⊕
j∈Z

Hp
j (2.33)

analogously to (2.9) for the case p = 2. We recall that, for every j ∈ Z,

Hp
j =

{
F ∈ Hp(D′β) : F (z1, e

2πiθz2) = e2πijθF (z1, z2)
}
.

Thus, we will prove that given a function F in Hp(D′β), there exist functions Fj’s such that

lim
N→∞

∣∣∣∣∣∣∣∣F − N∑
j=−N

Fj

∣∣∣∣∣∣∣∣
Hp(D′β)

= 0,
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where each function Fj belongs to Hp
j .

We begin proving this result for functions which belong to the range of the operator S.

As usual, without losing generality, we work using simplified initial data. Given a function

F = (F1, 02, 03, 04) in Lp(∂D′β), we define

SNF (x+ iy, e
s
2 e2πijγ) :=

N∑
j=−N

e2πijγF−1
R

[
e−(β−π

2
+s)(·− j

2
)e−(π

2
−s+y)(·)FRF1(·, ĵ)

4 Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

=
N∑

j=−N

SjF (x+ iy, e
s
2 e2πijγ).

Notice that each function SjF trivially belongs to Hp
j .

Proposition 2.39. Let F = (F1, 02, 03, 04) be a function in Lp(D′β), p ∈ (1,∞). Then,

lim
N→∞

‖SF − SNF‖Hp(D′β) = 0.

Proof. For almost every function x ∈ R, the function F1(x, ·) is in Lp(R). Thus, the Lp

convergence of one-dimensional Fourier series guarantees that

lim
N→∞

∫ 1

0

|F1(x, y)− F (N)
1 (x, γ)|p dγ = 0,

where F
(N)
1 (x, γ) =

∑N
j=−N F1(x, ĵ)e2πijγ. By the Dominated Convergence Theorem we can

conclude that

lim
N→∞

∫
R

∫ 1

0

|F1(x, γ)− F (N)
1 (x, γ)|p dγdx =

∫
R

lim
N→∞

∫ 1

0

|F1(x, γ)− F (N)
1 (x, γ)|p dγdx

= 0.

Thus we can conclude that

lim
N→∞

‖F − F (N)‖Lp(∂D′β) → 0,

where F (N) = (F
(N)
1 , 02, 03, 04). By definition, it holds

S[F (N)](x+ iy, e
s
2 e2πiγ) =

N∑
j=−N

e2πijγF−1
R

[
e−(β−π

2
+s)(·− j

2
)e−(π

2
−s+y)(·)FRF1(·, ĵ)

4 Ch[π·] Ch[(2β − π)(· − j
2
)]

]
(x)

= SNF (x+ iy, e
s
2 e2πiγ)
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=
N∑

j=−N

SjF (x+ iy, e
s
2 e2πiγ)

and it is easily seen that SjF ∈ Hp
j (D′β). Finally, using estimates (2.22), we get

lim
N→∞

‖SF − SNF‖Hp(D′β) = lim
N→∞

‖SF − S[F (N)]‖Hp(D′β)

≤ Cp lim
N→∞

‖F − F (N)‖Lp(∂D′β)

= Cp lim
N→∞

‖F1 − F (N)
1 ‖Lp(R×T)

= 0.

The proof is complete.

So far we proved that every function which is in the range of S admits a decomposition

SF =
∑
j∈Z

SjF

where the equality is meant in Hp(D′β) and each SjF belongs to Hp
j (D

′
β). To obtain (2.33)

it remains to prove that the operator S is surjective on Hp(D′β). We already know this the

case for the case p = 2, therefore the following result will be useful.

Proposition 2.40. For every p in (1,∞), we have

H2(D′β) ∩Hp(D′β)
‖·‖Hp

= Hp(D′β).

Proof. For every ε > 0 and z1 ∈ Sβ consider the function

Gε(z1) =
1

1 + ε[2β + iz1]
.

Since Gε is bounded, it follows that F · Gε is in Hp(D′β) for every function F ∈ Hp(D′β),

p ∈ (1,∞). Moreover, F ·Gε belongs toH2(D′β)∩Hp(D′β). In fact, let (t, s) ∈ [0, π
2
)×[0, β−π

2
),

then ∫ 1

0

∫
R

∣∣F [x+ i(s+ t), e
s
2 e2πiγ]Gε[x+ i(s+ t)]

∣∣2 dxdγ ≤ ∫ 1

0

[ ∫
|F |2<1

+

∫
|F |2>1

]
dγ

≤
∫ 1

0

∫
R

|Gε[x+ i(s+ t)]|2 dxdγ +

∫ 1

0

∫
R

|F [x+ i(s+ t), e
s
2 e2πiγ]|p dxdγ
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≤ C(ε) + ‖F‖pHp(D′β).

Analogue estimates hold for the other terms of the norm Hp(D′β). Thus, for every fixed

ε > 0, the function F ·Gε is in H2(D′β)∩Hp(D′β) and FGε = S[F̃Gε]. Notice that Gε admits

a continous extension to D′β, therefore F̃Gε = F̃Gε, where F̃ is the weak-∗ limit of F (see

Proposition 2.5). Now,

lim
ε→0+

‖F − FGε‖pHp(D′β) ≤ lim
ε→0+

sup
(t,s)

∫ 1

0

∫
R

|(F − FGε)[x± i(s+ t), e±
s
2 e2πiγ]|p dxdγ+

+ lim
ε→0+

sup
(t,s)

∫ 1

0

∫
R

|(F − FGε)[x± i(s− t), e±
s
2 e2πiγ]|p dxdγ.

We focus on one of these term; the computation for the other terms is similar. Therefore,

lim
ε→0+

sup
(t,s)

∫ 1

0

∫
R

|(F − FGε)[x+ i(s+ t), e
s
2 e2πiγ]|p dxdγ =

= lim
ε→0+

sup
(t,s)

∫ 1

0

∫
R

∣∣F [x+ i(s+ t), e
s
2 e2πiγ]

[
1−Gε[x+ i(s+ t)]

]∣∣p dxdγ
≤ lim

ε→0+
sup
(t,s)

lim inf
δ→0+

∫ 1

0

∫
R

∣∣F [x+ i(s+ t), e
s
2 e2πiγ]

[
(Gδ −Gε)[x+ i(s+ t)]

]∣∣p dxdγ
= lim

ε→0+
sup
(t,s)

lim inf
δ→0+

∫ 1

0

∫
R

∣∣S[F̃ (Gδ −Gε)][x+ i(s+ t), e
s
2 e2πiγ]

∣∣p dxdγ
≤ lim

ε→0+
sup
(t,s)

lim inf
δ→0+

‖S[F̃ (Gδ −Gε)]‖pHp(D′β)

≤ Cp lim
ε→0+

lim inf
δ→0+

‖F̃ (Gδ −Gε)‖Lp(∂D′β)

= 0,

where in the last two lines we used the boundedness of the operator S and the Dominated

Convergence Theorem. The proof is complete.

Finally, we can now prove that the operator S is surjective on Hp(D′β).

Proposition 2.41. Let F be a function in Hp(D′β), p ∈ (1,∞). Then, there exists F̃ in

Lp(∂D′β) such that F = SF̃ .

Proof. From the previous proposition we know there exists a sequence {Gn} of functions

in H2(D′β) ∩ Hp(D′β) such that ‖F − Gn‖Hp(D′β) → 0. Since Gn is in Hp(D′β), there exists
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G̃n = (G̃n,1, G̃n,2, G̃n,3, G̃n,4) in Lp(∂D′β) such that, with the notation of Proposition 2.12,

for k = 1, . . . , 4,

G
(t,s)
n,k (ζ1, ζ2) ⇀∗ G̃n,k(ζ1, ζ2)

where the convergence is weak-∗ in Lp(R× T), k = 1, 2, 3, 4. Now

‖G̃n − G̃m‖Lp(∂D′β) = sup
H∈Lp′ (∂D′β)

‖H‖p′=1

∫
∂D′β

[G̃n − G̃m]H(ζ1, ζ2) dζ1dζ2

= sup
H∈Lp′ (∂D′β)

‖H‖p′=1

4∑
k=1

∫
∂iD′β

[G̃n − G̃m]H(ζ1, ζ2) dζ1dζ2

= sup
H∈Lp′ (∂D′β)

‖H‖p′=1

4∑
k=1

lim
(t,s)→(π

2
,β−π

2
)

∫
∂kD

′
β

[G(t,s)
n −G(t,s)

m ]H(ζ1, ζ2) dζ1dζ2

≤ C
4∑
i=1

lim
(t,s)→(π

2
,β−π

2
)
‖G(t,s)

n,k −G
(t,s)
m ‖Lp(∂kD

′
β)

≤ C‖Gn −Gm‖Hp(D′β).

Thus, the sequence {G̃n} is a Cauchy sequence in Lp(∂D′β) which admits a limit G̃ in

Lp(∂D′β). We recall that, since Gn is a function in H2(D′β)∩Hp(D′β), then Gn = SG̃n. Now,

for every fixed ε > 0, there exists N(ε) such that for every n > N(ε), it holds

‖F −Gn‖Hp(D′β) < ε and ‖G̃n − G̃‖Lp(∂D′β) < ε.

Therefore,

‖F − SG̃‖Hp(D′β) ≤ ‖F −Gn‖Hp(D′β) + ‖Gn − SG̃‖Hp(D′β)

≤ ε+ ‖SG̃n − SG̃‖Hp(D′β)

≤ ε+ ‖G̃n − G̃‖Lp(∂D′β)

≤ 2ε,

where we used the boundedness of the operator S. Since this holds for every ε > 0, we can

conclude that F = SG̃ and the proposition is proved.
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Remark 2.42. Theorem 2.37 and Theorem 2.38 show that every function in the range of S

tends to its boundary values in norm. The previous proposition allows to conclude that this

is true for every element of Hp(D′β), p ∈ (1,∞).

Remark 2.43. Proposition 2.39 and Proposition 2.41 together prove the decomposition

(2.33).

2.4.2 Pointwise convergence

We conclude this chapter proving a Fatou-type theorem. We prove that an appropriate

restriction of a function F in Hp(D′β), p ∈ (1,∞), converges to its boundary value function

F̃ also pointwise almost everywhere . As usual, we prove our results in a simplified situation.

The general case follows by linearity. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β), then

we proved that, for example,

lim
(t,s)→(π

2
,β−π

2
)

∫
R

∫ 1

0

∣∣∣SF [x+ i(s+ t), e
s
2 e2πiγ]− SF [x+ iβ, e

1
2

(β−π
2

)e2πiγ]
∣∣∣p dγdx = 0.

In general, to prove a pointwise convergence result, we expect that we need to put some

restrictions on the parameters t and s. For example, also in the simpler case of the polydisc

D2(0, 1) = D(0, 1) × D(0, 1), we are able to prove the almost everywhere existence of the

pointwise radial limit

lim
(r1,r2)→(1,1)

G(r1e
2πiθ, r2e

2πiγ)

for a function G in Hp(D2) under the hypothesis that the ratio 1−r1
1−r2 is bounded (see, for

example, [Rud69, Chapter 2, Section 2.3]).

At the moment, we are able to prove a pointwise convergence result which depends only

on one parameter. It would be interesting to determine a larger approach region to the

distinguished boundary ∂D′β.

We need the following lemma.

Lemma 2.44. Let Sβ be the strip Sβ = {z = x+ iy ∈ C : |y| < β}. Let G = (G+, G−) be a

function in Lp(∂Sβ), p ∈ (1,∞). Then the function

SG(x+ iy) = F−1

[
Ĝ+(·)e−(y+β)(·) + Ĝ−(·)e−(y−β)(·)

4 Ch[π(·)] Ch[(2β − π(· − j
2
)]

]
(x)

belogs to Hp(Sβ) for every integer j.
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Proof. Without losing generality and to simplify notation we suppose G = (G, 0). Thus,

SG(x+ iy) = F−1

[
Ĝ1(·)e−(y+β)(·)

4 Ch[π(·)] Ch[(2β − π(· − j
2
)]

]
(x).

If G is in Lp(R) ∩ L2(R), then

SG(x+ iy) = F−1

[
Ĝ(·)e−(y+β)(·)

4 Ch[π(·)] Ch[(2β − π)(· − j
2
)]

Ch[2β(·)]
Ch[2β(·)]

]
(x)

= F−1

[
Ĝ (·)e−(y+β)(·)

2 Ch[2β(·)]

]
(x),

where

G (x) = F−1

[
Ch[2β(·)]Ĝ(·)

2 Ch[π(·)] Ch[(2β − π)(· − j
2
)]

]
(x)

= F−1
[
m(·)Ĝ(·)

]
(x).

Since m is bounded and G belongs to Lp∩L2 the function G is well defined. From Proposition

1.18 we deduce that SG is Hp(Sβ). The conclusion for a general function G in Lp(R) follows

by density.

Theorem 2.45. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β), p ∈ (1,∞). Then,

lim
t→β−

SF [x+ it, e
t
2β

(β−π
2

)e2πiγ] = S̃F 1[x+ iβ, e
1
2

(β−π
2

)e2πiγ] (2.34)

for almost every (x, γ) ∈ R× T.

Proof. By (2.23), we want to prove that

Lt(x, γ) =

∣∣∣∣∑
j∈Z

e2πijγF−1
R

[
e−2β(·)ej(β−

π
2

) − e−(β+t)(·)e
j
2

(β−π
2

)(1+ t
β

)

4 Ch[π(·)] Ch[(2β − π
2
)(· − j

2
]

FRF1(·, ĵ)
]
(x)

∣∣∣∣
=

∣∣∣∣∑
j∈Z

StjF (x, γ)

∣∣∣∣→ 0

for almost every (x, γ) ∈ R× T when t tends to β−. Let ε > 0 be fixed. Then,∣∣∣∣{(x, γ) ∈ R× T : lim sup
t→β−

Lt(x, γ) > ε

}∣∣∣∣
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≤
∑
j∈Z

∣∣∣∣{(x, γ) ∈ R× T : lim sup
t→β−

|StjF (x, γ)| > αj

}∣∣∣∣,
where the αj’s are positive and

∑
j∈Z αj = ε. We claim that the sets in the right-hand side

of the previous inequality are all of measure zero. Following the proof of Theorem 2.37 we

obtain that

lim
t→β−

‖Stj(F )‖Lp(R×T) = 0. (2.35)

Therefore, it is enough to prove the existence of the pointwise limit

lim
t→β−

e2πijγF−1
R

[
e−(β+t)(·)e

j
2

(β−π
2

)(1+ t
β

)

4 Ch[π(·)] Ch[(2β − π)(· − j
2
)]
FRF1(·, ĵ)

]
(x)

for almost every (x, γ) ∈ R× T.

To prove this, it is sufficient to prove that

lim
t→β−

F−1
R

[
e−(β+t)(·)FRG(·)

4 Ch[π(·)] Ch[(2β − π)(· − j
2
]

]
(x)

exists for almost every x in R and for every function G in Lp(R), p ∈ (1,∞). The existence

of this last limit follows immediately from the lemma and Theorem 1.24.

Analogously we can prove the pointwise convergence of SF to the other components of

∂D′β.

Theorem 2.46. Let F = (F1, 02, 03, 04) be a function in Lp(∂D′β), p ∈ (1,∞). Then,

lim
t→(β−π

2
)−
SF [x+ it, e

t
2 e2πiγ] = S̃F 2[x+ i(β − π

2
), e

1
2

(β−π
2

)e2πiγ];

lim
t→−β+

SF [x+ it, e
t
2β

(β−π
2

)e2πiγ] = S̃F 3[x− iβ, e−
1
2

(β−π
2

)e2πiγ];

lim
t→−(β−π

2
)−
SF [x+ it, e

t
2 e2πiγ] = S̃F 4[x− i(β − π

2
), e−

1
2

(β−π
2

)e2πiγ]

for almost every (x, γ) in R× [0, 1).

Remark 2.47. We proved the previous theorems for functions that belong to the range of

the operator S. From Proposition 2.41 we can conclude that the results are true for every

function in Hp(D′β), p ∈ (1,∞).



Chapter 3

The reproducing kernel of H2(D′β)

We report here the proof of Theorem 2.17. The proof is obtained following the arguments

in [KP08b]. We recall that

KD′β
[(z1, z2), (w1, w2)] =

∑
j∈Z

wj2z
j
2

8π

∫
R

ei(w1−z1)ξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ.

The proof is based on a direct computation of the sum which defines KD′β
. To simplify the

notation we define

Ij(τ) =

∫
R

eiτξ

Ch[πξ] Ch[(2β − π)(ξ − j
2
)]
dξ.

Then, we would like to compute the sum∑
j∈Z

Ij(τ)λj, (3.1)

where the couple (τ, λ) belongs to the set

D′ = {(τ, λ) ∈ C2 :
∣∣ Im τ − log |λ|2

∣∣ < π, e−(β−π
2

) < |λ| < eβ−
π
2 }.

To compute Ij(τ) we use the Residue Theorem. We denote gj(ζ) the holomorphic function

gj(ζ) :=
eiτζ

Ch[πζ] Ch[(2β − π)(ζ − j
2
)]
.

About the function gj, we have the following result whose easy proof we do not report.

Proposition 3.1. The function gj is holomorphic in the plane except at the points

61
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ζ = i

(
1

2
+ k

)
, k ∈ Z, ζ = iνβ

(
1

2
+ k

)
+
j

2
, k ∈ Z,

where νβ = π
2β−π . Moreover

Res

(
gj,

j

2
± iνβ

2

)
= ± eiτ( j

2
±i

νβ
2

)

i(2β − π) Ch
[
π
(
j
2
± iνβ

2

)] .
To compute Ij(τ) we shall distinguish two cases according to whether Re τ ≥ 0 or Re τ <

0. Let us focus now on the case Re τ > 0. We shall use the method of contour integrals.

As contour of integration we choose the rectangular box γN centered on the imaginary axis

with corners N + i0, −N + i0, N + ih and N − ih where h is chosen so that

νβ
2
< h < min

(
1

2
,
3νβ
2

)
.

By the Residue Theorem we have the following result.

Proposition 3.2. Let β > π and fix h as above. We define

Rj(τ) = 2πi ·Res
(
gj,

j

2
+ i

νβ
2

)
, Jj(τ) =

∫
R

gj(ξ + ih) dξ.

Then, for all j in Z,

Ij(τ) = Rj(τ) + Jj(τ).

Proof. By the Residue Theorem, we have∫N
−N

gj(ξ) dξ = Rj(τ) +

∫N
−N

gj(ξ + ih) dξ − i
∫h

0

gj(N + iξ) dξ

− i
∫ 0

h

gj(−N + iξ) dξ.

Thus, we want to show that the integrals along the vertical sides go to zero. It holds

i

∫h
0

gj(N + iξ) dξ = i

∫h
0

eiτ [N+iy]

Ch[π(N + iy)] Ch[(2β − π)(N + iy − j
2
)]
dξ.

Therefore, ∣∣∣∣∫h
0

gj(N + iξ) dξ

∣∣∣∣ ≤ ∫h
0

e−Re(τ)y−Im τN

e2βNe(2β−π) j
2

dy
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≤
∫∞

0

e−Re(τ)y−Im τN

e2βNe(2β−π) j
2

dy

→ 0

uniformly when τ varies in a compact subset of S2β and N goes to infinity. The proof when

Re τ < 0 is completely analogous, but we integrate along the analogue rectangular box in

the bottom half-plane.

So, we have splitted the sum (3.1) into two different sums. Namely,

∑
j∈Z

Ij(τ)λj =
∑
j∈Z

Rj(τ)λj +
∑
j∈Z

Jj(τ)λj.

where the couple (τ, λ) belongs to the domain

D =
{

(τ, λ) ∈ C2 :
∣∣Imτ − log |λ|2

∣∣ < π, e−(β−π
2

) < |λ| < e(β−π
2

)
}
.

We focus on the sum of the Rj. Unless specified, we are always supposing to work with τ

such that Re τ ≥ 0.

Before stating a result concerning the sum of the Rj, we remark that the following equality

will have a prominent role in our computation. Let a, b in R such that a 6= 0, then

e|a|

Ch(a+ ib)
= 2e−i sgn(a)b

(
1− e−2 sgn(a)(a+ib)

1 + e−2 sgn(a)(a+ib)

)
. (3.2)

Proposition 3.3. There exists a function E(τ, λ) which is smooth in a neighborhood of D
such that

R(τ, λ) =
∑
j∈Z

Rj(τ)λj (3.3)

=
4νβ

e
τνβ
2

{[
e
iπνβ

2

λe
iτ+π

2 − 1

]
+

[
e−

iπνβ
2 λe

iτ−π
2

1− λe iτ−π2

]
+ E(τ, λ) +

1

Ch[i
νβ
2

]

}
.

The convergence of the series is uniform on compact subsets of D.

Proof. From the previous results we have

Rj(τ) = 2πi ·Res
(
gj,

j

2
+ i

νβ
2

)
=

2πeiτ(
j
2

+i
νβ
2 )

(2β − π) Ch
[
π
(
j
2

+ i
νβ
2

)]
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=
2νβe

iτ( j2+i
νβ
2 )

Ch
[
π
(
j
2

+ i
νβ
2

)] .
Our problem is then to compute the sum

∑
j∈Z

2νβe
iτ( j2+i

νβ
2 )

Ch
[
π
(
j
2

+ i
νβ
2

)]λj = 2νβe
−
τνβ
2

∑
j∈Z

e
ijτ
2 λj

Ch
[
π
(
j
2

+ i
νβ
2

)] . (3.4)

If we consider only the sum on the right-hand side of the previous equation, from (3.2), it

follows

∑
j∈Z

e
ijτ
2 λj

Ch
[
π
(
j
2

+ i
νβ
2

)] = 2
∑
j∈Z

e
ijτ
2 λj

e−iσ(j)
πνβ
2

e
|j|π
2

[
1− e−2σ(j)( jπ2 +i

πνβ
2 )

1 + e−2σ(j)( jπ2 +i
πνβ
2 )

]
= 2 (F − E +G) ,

where

• σ(j) = sgn(j);

• F = F (τ, λ) =
∑
j 6=0

e
ijτ
2 λje−

π
2 (|j|+iνβσ(j));

• E = E(τ, λ) =
∑
j 6=0

e
ijτ
2 λje

−π2 (|j|+iνβσ(j))e−πσ(j)(j+iνβ)

1+e
−πσ(j)(j+iνβ) ;

• G = 1

Ch(i
πνβ
2 )

.

About F , we have

F = e
iπνβ

2

∑
j<0

ej(
iτ
2

+π
2 )λj + e−

iπνβ
2

∑
j>0

ej(
iτ
2
−π

2 )λj

= e
iπνβ

2

[
1

λe
iτ+π

2 − 1

]
+ e−

iπνβ
2

[
λe

iτ−π
2

1− λe iτ−π2

]
(3.5)

and the convergence of the two series is guaranteed exactly when e
Imτ−π

2 < |λ| < e
Imτ+π

2 .

We analyze now the error term E. It results

E = e
3iπνβ

2

∑
j<0

λjej
iτ+3π

2

1 + eπ(j+iνβ)
+ e−

3iπνβ
2

∑
j>0

λjej
iτ−3π

2

1 + e−π(j+iνβ)
.
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It is easy to prove that there exists a constant c > 0 such that |1 + e−πσ(j)+iνβ | > c > 0 for

every j. Hence the series which define E converge when e
Imτ−3π

2 < |λ| < e
Imτ+3π

2 which is

an annulus strictly larger than e
Imτ−π

2 < |λ| < e
Imτ+π

2 . Thus the sums of the two series are

smooth and bounded, with all derivatives smooth and bounded, on a neighborhood of the

closure D′ of D′.
In conclusion, we have

R(τ, λ) =
4νβ

e
τνβ
2

{[
e
iπνβ

2

λe
iτ+π

2 − 1

]
+

[
e−

iπνβ
2 λe

iτ−π
2

1− λe iτ−π2

]
+ E(τ, λ) +

1

Ch
(
i
πνβ

2

)},
as we wished.

It remains to compute Jj(τ) and then
∑
Jj(τ)λj. We recall that

Jj(τ) =

∫
R

eiτ(ξ+ih)

Ch[π(ξ + ih)] Ch[(2β − π)(ξ + ih− j/2)]
dξ.

From equation (3.2) we obtain

1

Ch[π(ξ + ih)] Ch[(2β − π)(ξ − j
2
)]

= 4
e−i sgn(ξ)πh−i sgn(ξ− j

2
)(2β−π)h

eπ|ξ|+(2β−π)|ξ− j
2
|

− e−2 sgn(ξ)[π(ξ+ih)]

1 + e−2 sgn(ξ)[π(ξ+ih)]
− e−2 sgn(ξ− j

2
)[(2β−π)(ξ− j

2
+ih)]

1+ e−2 sgn(ξ− j
2

)[(2β−π)(ξ− j
2

+ih)]
.

Let us define σ(ξ) = e−i sgn(ξ)πh−i sgn(ξ− j
2

)(2β−π)h. Then we have

Jj(τ) = 4e−τh
(
Mj(τ)− E(1)

j (τ)− E(2)
j (τ) + E

(3)
j (τ)

)
, (3.6)

where

Mj(τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|
dξ; (3.7)

E
(1)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

[
e−2 sgn(ξ)[π(ξ+ih)]

1 + e−2 sgn(ξ)[π(ξ+ih)]

]
dξ; (3.8)

E
(2)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

[
e−2 sgn(ξ− j

2
)[(2β−π)(ξ− j

2
+ih)]

1+ e−2 sgn(ξ− j
2

)[(2β−π)(ξ− j
2

+ih)]

]
dξ; (3.9)

E
(3)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

[
e−2 sgn(ξ)[π(ξ+ih)]

1 + e−2 sgn(ξ)[π(ξ+ih)]

]
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×

[
e−2 sgn(ξ− j

2
)[(2β−π)(ξ− j

2
+ih)]

1+ e−2 sgn(ξ− j
2

)[(2β−π)(ξ− j
2

+ih)]

]
dξ. (3.10)

Our problem has become the computation of the sum

∑
j∈Z

Jj(τ)λj = 4e−τh

[∑
j∈Z

Mj(τ)λj +
3∑

k=1

∑
j∈Z

E
(k)
j (τ)λj

]
. (3.11)

To compute the integrals (3.7)-(3.10) we will use the following scheme. If j > 0, we choose

a positive δ such that 0 < δ < j/2 and we consider∫
R

f =

∫−δ
−∞

f +

∫ δ
−δ
f +

∫ j
2
−δ

δ

f +

∫ j
2

+δ

j
2
−δ
f +

∫+∞

j
2

+δ

f (3.12)

= I + E1 + II + E2 + III.

Analogously, for negative j’s, we choose a positive δ such that j/2 < −δ < 0 and we will

consider ∫
R

f =

∫ j
2
−δ

−∞
f +

∫ j
2

+δ

j
2
−δ

+

∫−δ
j
2

+δ

f +

∫ δ
−δ
f +

∫+∞

δ

f (3.13)

= I∗ + E∗1 + II∗ + E∗2 + III∗.

We remark that the case j = 0 is somehow special, but it could be treated in a similar way.

Also, notice that the decomposition of the integrals above make sense even for δ = 0; this

choice of δ will be the case in the computation of the sum of the Mj’s as we immediately

see.

Proposition 3.4. There exist entire functions ψi(τ, λ), i = 1, 2, 3, 4, such that

4e−τh
∑
j∈Z

Mj(τ)λj = 4e−τh

[
e2βih

iτ + 2β
+
−e−2βih

iτ − 2β

−e2βih

(iτ + 2β)(1− λe iτ+π2 )

+
e−2βih

(iτ − 2β)(1− λeβ−π2 )
+

ψ1(λ)

(iτ + 2β)(1− λe−(β−π
2

))
+

ψ2(τ, λ)

(iτ − 2β)(1− λe iτ−π2 )

+
ψ3(τ, λ)

(1− λe iτ−π2 )(1− λe−(β−π
2

))
+

ψ4(τ, λ)

(1− λeβ−π2 )(1− λe iτ+π2 )

]
, (3.14)

where

ψ1(λ) = λe2βihe−(β−π
2

);
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ψ2(τ, λ) = −λe−2βihe
iτ−π

2 ;

ψ3(τ, λ) = λe−(β−π
2

)e2(β−π)ih

[
e
iτ
2

+β−π − 1

iτ + 2β − 2π

]
;

ψ4(τ, λ) = λe−2(β−π)iheβ−
π
2

[
e
iτ
2
−β+π − 1

iτ − 2β + 2π

]
.

Proof. First of all, we have to compute each single Mj(τ). In this case we choose δ = 0 in

(3.12) and (3.13) so that we do not have the error terms E1, E2, E∗1 and E∗2 . We begin focusing

on positive j’s. Therefore,

I = e2βihe−(2β−π) j
2

∫−δ
−∞

e(iτ+2β)ξ dξ; (3.15)

II = e2(β−π)ihe−(2β−π) j
2

∫ j
2
−δ

δ

e(iτ+2β−2π)ξ dξ; (3.16)

III = e−2βihe(2β−π) j
2

∫+∞

j
2

+δ

e(iτ−2β)ξ dξ; (3.17)

With some easy computations we obtain

I = e2βih

[
e−δ(iτ+2β)

iτ + 2β

]
e−(2β−π) j

2 ;

II =
e2(β−π)ih

iτ + 2β − 2π

[
e−δ(iτ+2β−2π)e(iτ−π) j

2 − eδ(iτ+2β−2π)e−(2β−π) j
2

]
;

III = −e−2βih

[
eδ(iτ−2β)

iτ − 2β

]
e(iτ−π) j

2 ;

Finally, taking δ = 0, it results

I =
e2βih

iτ + 2β
e−(2β−π) j

2 ;

II =
e2(β−π)ih

iτ + 2β − 2π

(
e(iτ−π) j

2 − e−(2β−π) j
2

)
;

III = − e−2βih

iτ − 2β
e(iτ−π) j

2 .

Summing up over the positive j’s we obtain∑
j>0

Mj(τ)λj =
∑
j>0

(I + II + III)λj (3.18)
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=
e2βih

iτ + 2β

[
λ

eβ−
π
2 − λ

]
+

e2(β−π)ih

iτ + 2β − 2π

[
λ

e−
iτ−π

2 − λ
− λ

eβ−
π
2 − λ

]
− e−2βih

iτ − 2β

[
λ

e−
iτ−π

2 − λ

]

=
e2βih

iτ + 2β

[
λ

eβ−
π
2 − λ

]
+

λe−(β−π
2

)e2(β−π)ih(
1− λe iτ−π2

) (
1− λe−(β−π

2
)
)[ e iτ2 +β−π − 1

iτ + 2β − 2π

]
− e−2βih

iτ − 2β

[
λ

e−
iτ−π

2 − λ

]
Notice that we do not have a singularity when τ → 2β − 2π.

This is the computation only for the positive j’s. Analogously, using (3.13), we obtain a

result for negative j’s. Remembering that we have chosen δ = 0, we have

I∗ =
e2βih

iτ + 2β
e(iτ+π) j

2 ;

II∗ =
e−2(β−π)ih

iτ − 2β + 2π

(
e(2β−π) j

2 − e(iτ+π) j
2

)
;

III∗ = − e−2βih

iτ − 2β
e(2β−π) j

2 .

Then, it results∑
j<0

Mj(τ)λj

=
∑
j<0

(I∗ + II∗ + III∗)λj (3.19)

=
e2βih

iτ + 2β

[
1

λe
iτ+π

2 − 1

]
+

e−2(β−π)ih

iτ − 2β + 2π

[
1

λeβ−
π
2 − 1

− 1

λe
iτ+π

2 − 1

]
− e−2βih

iτ − 2β

1

λeβ−
π
2 − 1

=
e2βih

iτ + 2β

[
1

λe
iτ+π

2 − 1

]
+

λe−2(β−π)iheβ−
π
2(

λeβ−
π
2 − 1

) (
λe

iτ+π
2 − 1

)[ e iτ2 −β+π − 1

iτ − 2β + 2π

]
− e−2βih

iτ − 2β

1

λeβ−
π
2 − 1

.

Notice that we do not have a singularity when τ → −2β + 2π. It remains to compute

M0(τ); it is easy to verify that

M0(τ) =
e2βih

iτ + 2β
− e−2βih

iτ − 2β
. (3.20)

In conclusion, we found that

∑
j∈Z

Mj(τ)λj =
e2βih

iτ + 2β

[
λe−(β−π

2
)

1− λe−(β−π
2

)

]
− e−2βihe

iτ−π
2

iτ − 2β

[
λ

1− λe iτ−π2

]

+
λe−(β−π

2
)e2(β−π)ih(

1− λe iτ−π2

) (
1− λe−(β−π

2
)
)
[
e
iτ
2

+β−π − 1

iτ + 2β − 2π

]
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+
e2βih

iτ + 2β
− e−2βih

iτ − 2β
− e2βih

(iτ + 2β)(1− λe iτ+π2 )

+
λe−2(β−π)iheβ−

π
2(

1− λeβ−π2
) (

1− λe iτ+π2

) [ e iτ2 −β+π − 1

iτ − 2β + 2π

]

+
e−2βih

(iτ − 2β)(1− λeβ−π2 )
. (3.21)

Simplifying the notation a little bit,

4e−τh
∑
j∈Z

Mj(τ)λj = 4e−τh

[
e2βih

iτ + 2β
+
−e−2βih

iτ − 2β

+
−e2βih

(iτ + 2β)(1− λe iτ+π2 )
+

e−2βih

(iτ − 2β)(1− λeβ−π2 )

+
ψ1(λ)

(iτ + 2β)(1− λe−(β−π
2

))
+

ψ2(τ, λ)

(iτ − 2β)(1− λe iτ−π2 )

+
ψ3(τ, λ)

(1− λe iτ−π2 )(1− λe−(β−π
2

))
+

ψ4(τ, λ)

(1− λeβ−π2 )(1− λe iτ+π2 )

]
,

where

ψ1(λ) = λe2βihe−(β−π
2

); (3.22)

ψ2(τ, λ) = −λe−2βihe
iτ−π

2 ; (3.23)

ψ3(τ, λ) = λe−(β−π
2

)e2(β−π)ih

[
e
iτ
2

+β−π − 1

iτ + 2β − 2π

]
; (3.24)

ψ4(τ, λ) = λe−2(β−π)iheβ−
π
2

[
e
iτ
2
−β+π − 1

iτ − 2β + 2π

]
. (3.25)

This concludes the proof.

We wish to evaluate the sums
∑

j∈ZE
(k)
j (τ)λj for k = 1, 2, 3. We recall that we are still

supposing that Re τ ≥ 0. We first introduce the following domains

D′ =
{

(τ, λ) ∈ C2 :
∣∣Im τ − log |λ|2

∣∣ < 2π,
∣∣log |λ|2

∣∣ < 2β − π

2

}
; (3.26)

D′′ =
{

(τ, λ) ∈ C2 :
∣∣Im τ − log |λ|2

∣∣ < 2π, | log |λ|2| < 3(2β − 4

3
π)

}
; (3.27)
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D∞,2π =
{

(τ, λ) ∈ C2 :
∣∣Im τ − log |λ|2

∣∣ < 2π, |λ| > 0
}

; (3.28)

S2β+ 3
2
π =

{
τ ∈ C : | Im τ | < 2β +

3

2
π

}
. (3.29)

We notice that D′,D′′ and D∞,2π are all neighborhood of D.

Proposition 3.5. Let E
(1)
j (τ) be defined as in (3.8), that is,

E
(1)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

[
e−2 sgn(ξ)[π(ξ+ih)]

1 + e−2 sgn(ξ)[π(ξ+ih)]

]
dξ,

where σ(ξ) = e−i sgn(ξ)πh−i sgn(ξ−j/2)(2β−π)h. Then

e−τh
∑
j∈Z

E
(1)
j (τ)λj = e−τh

[
Ψ

(1)
1 (τ, λ)

eβ−
π
2 − λ

+
Ψ

(2)
1 (τ, λ)

e−(β−π
2

) − λ
+ Ψ

(3)
1 (τ, λ)

]
, (3.30)

where Ψ
(j)
k are holomorphic functions in a neighborhood of D, bounded together with all their

derivatives as |Re τ | → ∞.

Proof. Notice that choosing h as we do it results that 1 + e−2 sgn(ξ)[π(ξ+ih)] 6= 0 for every ξ.

We decompose the integral defining E
(1)
j as in (3.12) and (3.13), according to whether j is

positive or negative. So, we recal that, for a fixed δ > 0,

E
(1)
j (τ) = I + E1 + II + E2 + III

when j is positive, and

E
(1)
j (τ) = I∗ + E∗1 + II∗ + E∗2 + III∗

when j is negative. We start analyzing the error terms E1 and E2. We have

E1 = e2βihe−(2β−π) j
2

∫ 0

−δ
e(iτ+2β)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

+ e2(β−π)ihe−(2β−π) j
2

∫ δ
0

e(iτ+2β−2π)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ,

from which we deduce

∑
j>0

E1λ
j =

[
λe−(β−π

2
)

1− λeβ−π2

][
e2βih

∫ 0

−δ
e(iτ+2β)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ
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+ e2(β−π)ih

∫ δ
0

e(iτ+2β−2π)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

]
. (3.31)

We conclude that

e−τh
∑
j>0

E1λ
j =

[
e−(β−π

2
)

1− λeβ−π2

]
e−τhΨE1(τ, λ), (3.32)

where ΨE1(τ, λ) is entire, bounded together with all its derivatives as |Re τ |→ ∞ and Im τ

remains bounded.

To deal wih E2 is a little more complicated since the integration extremes depend on j,

but we cannot compute explicitly the integral in order to proceed with the sum in j. In fact,

we have

E2 = e2(β−π)ihe−(2β−π) j
2

∫ j
2

j
2
−δ
e(iτ+2β−2π)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

+ e−2βihe(2β−π) j
2

∫ j
2

+δ

j
2

e(iτ−2β)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

= I + II.

We notice that
e−2π(ξ+ih)

1 + e−2π(ξ+ih)
= −

∑
k>0

[
−e−2π(ξ+ih)

]k
, ξ > 0,

where the series converges uniformly on compact sets with bounds uniform in j > 0. This

allows to interchange the order of integration and summation over k. Then

I = −e2(β−π)ihe−(2β−π) j
2

∫ j
2

j
2
−δ
e(iτ+2β−2π)ξ

∑
k>0

[
−e−2π(ξ+ih)

]k
dξ

= −e2(β−π)ihe−(2β−π) j
2

∑
k>0

[
−e−2πih

]k ∫ j
2

j
2
−δ
e(iτ+2β−2π−2πk)ξ dξ.

Summing up on positive j’s, we obtain

∑
j>0

Iλj = −e2(β−π)ih
∑
j>0

λje−(2β−π) j
2

∑
k>0

[
−e−2πih

]k∫ j
2

j
2
−δ
e(iτ+2β−2π−2πk)ξdξ

= −e2(β−π)ih
∑
k>0

[
−e−2πih

]k∑
j>0

λje(iτ−π) j
2

∫ 0

−δ
e(iτ+2β−2π)ξe−2πk(ξ+ j

2)dξ
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= −e2(β−π)ih
∑
k>0

[
−e−2πih

]k [ λe
iτ−π−2πk

2

1− λe iτ−π−2πk
2

] ∫ 0

−δ
e(iτ+2β−2π−2πk)ξdξ

= −e2(β−π)ih
∑
k>0

[
−e−2πih

]k [ λ

e
π+2πk−iτ

2 − λ

] ∫ 0

−δ
e(iτ+2β−2π−2πk)ξdξ

= −e2(β−π)ih
∑
k>0

[
−e−2πih

]k [ λ

e
π+2πk−iτ

2 − λ

]
h

(k)
1 (τ), (3.33)

where h
(k)
1 (τ) is an entire function such that∣∣∣h(k)

1 (τ)
∣∣∣ ≤ cδe

2πkδ

[
1− e−δ(2β−Im τ)

2β − Im τ

]
.

Notice that we do not have a singularity when Im τ → 2β. The convergence of the sum

in j is guaranteed when
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1. This last condition is satisfied for every positive k

when the pair (τ, λ) belongs to D∞,2π .

We still have to study
∑

j>0 IIλ
j. We have

II = −e−2βihe(2β−π) j
2

∑
k>0

[
−e−2πih

]k ∫ j
2

+δ

j
2

e(iτ−2β−2πk)ξ dξ.

Then, ∑
j>0

IIλj = −e−2βih
∑
j>0

λje(2β−π) j
2

∑
k>0

[
−e−2πih

]k ∫ j
2

+δ

j
2

e(iτ−2β−2πk)ξ dξ

= −e−2βih
∑
k>0

[
−e−2πih

]k∑
j>0

λje(iτ−π−2πk) j
2

∫ δ
0

e(iτ−2β−2πk)ξ dξ

= −e−2βih
∑
k>0

[
−e−2πih

]k [ λ

e
π+2πk−iτ

2 − λ

]
h

(k)
2 (τ). (3.34)

Here h
(k)
2 (τ) is an entire function such

∣∣∣h(k)
2

∣∣∣ < [
1−e−δ(Im τ+2β)

Im τ+2β

]
and we use the fact that∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1 for every positive k. In conclusion,

∑
j>0

E2λ
j = −

∑
k>0

[−e−2πih]k
[

λ

e
π+2πk−iτ

2 − λ

]
×
[
e2(β−π)ihh

(k)
1 (τ) + e−2βihh

(k)
2 (τ)

]
. (3.35)

We want to prove that this sum on k converges to a function holomorphic on the domain

D∞,2π. To prove this is enough to assume δ < 1/2 and to notice that, for fixed M > 0, it is
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possible to select k0 large enough so that for all k ≥ k0, when (τ, λ) ∈ D∞,2π with Im τ ≤M

and |λ| ≤ eM , we have that ∣∣∣eπ+2πk−iτ
2 − λ

∣∣∣ ≥ ceπk.

Thus, the sum in k is uniform on the fixed compact set. In conclusion, we have

e−τh
∑
j>0

E2λ
j = e−τh

[
e2(β−π)ihΨ

(1)
E2 (τ, λ) + e−2βihΨ

(2)
E2 (τ, λ)

]
, (3.36)

where Ψ
(i)
E2 (τ, λ) are holomorphic on D∞,2π, bounded together with their derivatives as

|Re τ | → ∞ and Im τ and λ remain bounded. We took care of the error terms E1 and

E2. With the same strategy, we now study I, II and III. We have

I = e2βihe−(2β−π) j
2

∫−δ
−∞

e(iτ+2β)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ;

II = e2(β−π)ihe−(2β−π) j
2

∫ j
2
−δ

δ

e(iτ+2β−2π)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

= −e2(β−π)ihe−(2β−π) j
2

∑
k>0

[
−e−2πih

]k ∫ j
2
−δ

δ

e(iτ+2β−2π−2πk)ξ dξ;

III = e−2βihe(2β−π) j
2

∫+∞

j
2

+δ

e(iτ−2β)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

= −e−2βihe(2β−π) j
2

∑
k>0

[
−e−2πih

]k ∫+∞

j
2

+δ

e(iτ−2β−2πk)ξ dξ.

Then, if
∣∣λe−(β−π

2
)
∣∣ < 1, we obtain

∑
j>0

Iλj = e2βih

[
λe−

2β−π
2

1− λe− 2β−π
2

] [∫−δ
−∞

e(iτ+2β)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

]

= e2βih

[
λ

e(β−π
2

) − λ

]∑
k>0

[
−e2πih

]k [ e−δ(iτ+2β+2πk)

iτ + 2β + 2πk

]
= e2βih

[
ΨI(τ, λ)

e(β−π
2

) − λ

]
(3.37)

where ΨI is holomorphic in a neighborhood of D. In fact, let us consider

D′ =
{

(τ, λ) ∈ C2 :
∣∣Im τ − log |λ|2

∣∣ < 2π,
∣∣log |λ|2

∣∣ < 2β − π

2

}
. (3.38)
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Then, on this set, the holomorphicity of ΨI(τ, ·) as a function of λ for every τ fixed is obvious,

while for the holomorphicity of ΨI(·, λ) we have∣∣∣∣[−e2πih
]k e−δ(iτ+2β+2πk)

iτ + 2β + 2πk

∣∣∣∣ ≤ eδ(Im τ−2β) e−2πkδ

[(Re τ)2 + (2β + 2πk − Im τ)2]
1
2

≤ Ceδ(Im τ−2β)e−2πkδ.

This is true because Im τ < 2β + 3
2
π < 2β + 2πk for all k ≥ 1. Thus, we have uniform

convergence. So, we can conclude that

e−τh
∑
j>0

Iλj = e−τhe2βih

[
ΨI(τ, λ)

e(β−π
2

) − λ

]
, (3.39)

where ΨI(τ, λ) is holomorphic in D′.
About II, notice that

II = −e2(β−π)ih−(2β−π) j
2

∑
k>0

[
−e−2πih

]k
e(iτ+2β−2π−2πk)δ

{
e(iτ+2β−2π−2πk)( j

2
−2δ) − 1

iτ + 2β − 2π − 2πk

}
and we do not have a singularity when iτ + 2β − 2π − 2πk tends to 0.

If we suppose again
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1, we get

∑
j>0

IIλj =
−e2(β−π)ih

eβ−
π
2 − λ

∑
k>0

λ
[
−e−2πih

]k
e(iτ+2β−2π−2πk)δ

iτ + 2β − 2π − 2πk

[
eβ−

π
2 − e 2πk+π−iτ

2

e
2πk+π−iτ

2 − λ

]
.

Again, of course, notice that we do not have a singularity when iτ + 2β− 2π− 2πk tends

to 0. We want to say something more about the sum in k. For each M > 0 we can select k0

such that for every k > k0 and (τ, λ) with | Im τ | < M and |λ| < eM , we have∣∣∣e 2πk+2π−iτ
2 − λ

∣∣∣ ≥ e
2π(k+1)−M

2 − eM ≥ 1

2
eπk,

so that the series in k converges uniformly on the fixed compact set. We conclude that

e−τh
∑
j>0

IIλj = −e2(β−π)ihe−τh
[

ΨII(τ, λ)

eβ−
π
2 − λ

]
(3.40)

where ΨII is a function holomorphic in D∞,2π.

Finally, for (τ, λ) in D′, it holds for every positive k that
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1, so the sum of

the III’s results to be∑
j>0

IIIλj = e−2βih
∑
k>0

[
−e−2πih

]k [ eδ(iτ−2β−2πk)

iτ − 2β − 2πk

][
λe

iτ−π−2πk
2

1− λe iτ−π−2πk
2

]
. (3.41)
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We have to discuss the sum over k. We notice that∣∣∣∣∣ λe
iτ−π−2πk

2

1− λe iτ−π−2πk
2

∣∣∣∣∣ ≤ |λ|e− Im τ−π−2πk
2

e
− Im τ−π−2πk

2

∣∣∣Im [λe iRe τ
2

]∣∣∣
=

|λ|e− Im τ−π
2

e
− Im τ−π

2

∣∣∣Im [λe iRe τ
2

]∣∣∣ .
So

∣∣∣∣ λe−
iτ−π−2πk

2

1−λe−
iτ−π−2πk

2

∣∣∣∣ is uniforlmy bounded in k. Moreover, since Im τ > −2β− 3
2
π > −2β−2πk

for every positive k, the series
∑
k>0

[
−e−2πih

]k [ eδ(iτ−2β−2πk)

iτ−2β−2πk

]
converges uniformly in τ . We then

conclude that

e−τh
∑
j>0

IIIλj = e−2βihe−τhΨIII(τ, λ), (3.42)

where ΨIII(τ, λ) is holomorphic in D′. We remark that the functions ΨI ,ΨII and ΨIII are

bounded together with all their derivative as |Re τ | → ∞ and Im τ and λ remain bounded.

We now focus on the sum over negative j’s. Again, we start analyzing the error terms

E∗1 and E∗2 . We have

E∗1 = e2βihe−(2β−π) j
2

∫ j
2

j
2
−δ

e(iτ+2β)ξe2π(ξ+ih)

1 + e2π(ξ+ih)
dξ + e−2(β−π)ihe(2β−π) j

2

∫ j
2

+δ

j
2

e(iτ−2β+2π)ξe2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

= I + II.

If we suppose (τ, λ) ∈ D∞,2π, then
∣∣∣λe iτ+π+2πk

2

∣∣∣ > 1 for every positive k, so we obtain

∑
j<0

Iλj = −e2βih
∑
k>0

[
−e2πih

]k
λe

iτ+π+2πk
2 − 1

∫ 0

−δ
e(iτ+2β+2πk)ξ dξ.

Now, since (τ, λ) is in D∞,2π, it holds |λ| > e
Im τ
2
−π > e

Im τ
2
− 3

2
π ≥ e

Im τ
2
−π

2
−πk for every

positive k, so ∣∣∣λe iτ+π+2πk
2

−1
∣∣∣ = e

π+2πk−Im τ
2

∣∣∣λ− e− iτ+π+2πk
2

∣∣∣
≥ e

π+2πk−Im τ
2

(
|λ| − e

Im τ−π−2πk
2

)
≥ e

π+2πk−Im τ
2

(
|λ| − e

Im τ−3π
2

)
≥ e

π+2πk−Im τ
2

(
e

Im τ
2
−π − e

Im τ−3π
2

)
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= ce
π+2πk

2

> 0.

Using this estimates and the fact that
∣∣∣∫0

−δ e
(iτ+2β+2πk)ξdξ

∣∣∣ is uniformly bounded in k, we

can conclude that ∑
j<0

Iλj = e2βihΨ
(1)
E∗1

(τ, λ),

where Ψ
(1)
E∗1

is holomorphic in D∞,2π. Similarly,

∑
j<0

IIλj = −e−2(β−π)ih
∑
k>0

[
−e2πih

]k
λe

iτ+π+2πk
2 − 1

∫ δ
0

e(iτ−2β+2π+2πk)ξ dξ,

Arguing as before, if in addition we suppose δ < 1
2
, we obtain∑

j<0

IIλj = e−2(β−π)ihΨ
(2)
E∗1

(τ, λ),

where Ψ
(2)
E∗1

is holomorphic in D∞,2π.

In conclusion we obtain

e−τh
∑
j<0

E∗1λj = e−τh
[
e2βihΨ

(1)
E∗1

(τ, λ) + e−2(β−π)ihΨ
(2)
E∗1

(τ, λ)
]
, (3.43)

where Ψ
(i)
E∗1

(τ, λ) are holomorphic on D∞,2π.

For E∗2 it results

E∗2 = e−2(β−π)ihe(2β−π) j
2

∫ 0

−δ

e(iτ−2β+2π)ξe2π(ξ+ih)

1 + e2π(ξ+ih)
dξ + e−2βihe(2β−π) j

2

∫ δ
0

e(iτ−2β)ξe−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ.

It follows, for
∣∣λeβ−π2 ∣∣ > 1,

∑
j<0

E∗2λj =

[
1

λe
2β−π

2 − 1

][
e−2(β−π)ih

∫ 0

−δ
e(iτ−2β+2π)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

+ e−2βih

∫ δ
0

e(iτ−2β)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ

]
. (3.44)

We conclude that

e−τh
∑
j<0

E∗2λj = e−τh
[

ΨE∗2 (τ)

λeβ−
π
2 − 1

]
, (3.45)



77

where Ψ∗2(τ) is entire.

Let us see what happens with the principal terms I∗, II∗ and III∗. We have

I∗ = e2βihe−(2β−π) j
2

∫ j
2
−δ

−∞
e(iτ+2β)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

= −e2βihe−(2β−π) j
2

∫ j
2
−δ

−∞
e(iτ+2β)ξ

∑
k>0

[
−e2π(ξ+ih)

]k
dξ;

II∗ = e−2(β−π)ihe(2β−π) j
2

∫−δ
j
2

+δ

e(iτ−2β+2π)ξ e2π(ξ+ih)

1 + e2π(ξ+ih)
dξ

= −e−2(β−π)ihe(2β−π) j
2

∫−δ
j
2

+δ

e(iτ+2π−2β)ξ
∑
k>0

[
−e2π(ξ+ih)

]k
dξ;

III∗ = e−2βihe(2β−π) j
2

∫+∞

δ

e(iτ−2β)ξ e−2π(ξ+ih)

1 + e−2π(ξ+ih)
dξ.

Then, if we suppose (τ, λ) in D′, it holds
∣∣∣λe iτ+π+2πk

2

∣∣∣ > 1 for every positive k, so

∑
j<0

I∗λj = −e2βih
∑
k>0

[
−e2πih

]k e−δ(iτ+2β+2πk)

iτ + 2β + 2πk

[
1

λe
iτ+π+2πk

2 − 1

]
; (3.46)

∑
j<0

II∗λj = −e2(β−π)ih
∑
k>0

[
−e2πih

]k
iτ − 2β + 2π + 2πk

×
[
e−δ(iτ−2β+2π+2πk)

λe
2β−π

2 − 1
− eδ(iτ−2β+2π+2πk)

λe
iτ+π+2πk

2 − 1

]
;

(3.47)∑
j<0

III∗λj = e−2βih

[
1

λe
2β−π

2 − 1

]∑
k>0

[
−e−2πih

]k eδ(iτ−2β−2πk)

iτ − 2β − 2πk
. (3.48)

Notice that (τ, λ) ∈ D′ implies that iτ+2β+2πk 6= 0 for every positive k, so we can conclude

that

e−τh
∑
j<0

I∗λj = −e2βihe−τhΨI∗(τ, λ), (3.49)

where ΨI∗(τ, λ) is holomorphic in D′. Analogously, for
∑

j<0 III
∗λj we have

eδ(iτ−2β−2πk)

iτ − 2β − 2πl
≤ eδ(− Im τ−2β)e−2πδk

[(Re τ)2 − (Im τ + 2β + 2πk)2]
1
2

≤ Ce−2πδk,

where the last inequality is true since Im τ > −2β − 3
2
π > −2β − 2πk for every k ≥ 1. So

e−τh
∑
j<0

III∗λj = e2βih

[
e−τhΨIII∗(τ)

λeβ−
π
2 − 1

]
, (3.50)
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where ΨIII∗(τ) is holomorphic in S2β+ 3
2
π. About (3.47) we notice that we do not have a

singularity when iτ − 2β + 2π + 2πk → 0. Then, for every M > 0 and (τ, λ) ∈ D∞,2π such

that eM > |λ| > e−M and | Im τ | < M we can choose k0 such that for every k > k0 it holds∣∣∣λe iτ+π+2πk
2 − 1

∣∣∣ ≥ e−Me
−M+π+2πk

2 − 1 ≥ 1

2
eπk.

Using this last estimate we can conclude that

e−τh
∑
j<0

II∗λj = −e2(β−π)ih

[
e−τhΨII∗(τ, λ)

λeβ−
π
2 − 1

]
(3.51)

where ΨII∗(τ, λ) is holomorphic on D2π,∞. It remains to study the term E
(1)
0 (τ). Using

some of the same arguments we used before it is possible to conclude that E
(1)
0 (τ) is an

holomorphic function in S2β+ 3
2
π. We remark that all the functions Ψ∗ are bounded together

with all their derivatives as |Re τ | → ∞ and Im τ and λ remain bounded.

Proposition 3.6. Let

E
(2)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

e−2 sgn(ξ− j2)[(2β−π)(ξ− j
2

+ih)]

1 + e−2 sgn(ξ− j2)[(2β−π)(ξ− j
2

+ih)]
dξ,

where

σ(ξ) = e−i sgn(ξ)πhe−i sgn(ξ− j
2

)(2β−π)h.

Then

e−τh
∑
j∈Z

E
(2)
j (τ)λj = e−τh

[
Φ

(1)
2 (τ, λ)

1− λe iτ−π2

+
Φ

(2)
2 (τ, λ)

λe
iτ+π

2 − 1
+ Φ

(3)
2 (τ, λ)

]
, (3.52)

where Φ
(j)
k are holomorphic functions in a neighborhood of D, bounded together with all their

derivatives as |Re τ | → ∞.

Proof. We divide the integral as before. We have

I = −e2βihe−(2β−π) j
2

∫−δ
−∞

e(iτ+2β)ξ
∑
k>0

[
−e2(2β−π)(ξ− j

2
+ih)
]k

dξ.

Now, if (τ, λ) belongs to D′′, we have that |λ| < e3(β− 2
3
π) < e(β−π

2
)(1+2k) and Im τ < 3(2β −

2
3
π) ≤ 2β + 2k(2β − π) for every k ≥ 1. This allows us to have

∑
j>0

Iλj = −e2βih
∑
k>0

[
−e2(2β−π)ih

]k [∫−δ
−∞

e[iτ+2β+2k(2β−π)]ξ

]
dξ
∑
j>0

[
λe−(β−π

2
)(1+2k)

]j



79

= −e2βih
∑
k>0

[
−e2(2β−π)ih

]k [∫−δ
−∞

e[iτ+2β+2k(2β−π)]ξ

]
dξ

[
λe−

1
2

(2β−π)(1+2k)

1− λe− 1
2

(2β−π)(1+2k)

]

= −e2βih
∑
k>0

[
−e2(2β−π)ih

]k [ λ

e(β−π
2

)(1+2k) − λ

] [
e−δ(iτ+2β+2k(2β−π))

iτ + 2β + 2k(2β − π)

]
.

We can conclude that

e−τh
∑
j>0

Iλj = −e−τhΦI(τ, λ), (3.53)

where ΦI is holomorphic on D′′, bounded together with all its derivative as |Re τ | → ∞ and

Im τ and λ remain bounded.

About II we have

II = −e2(β−π)ihe−(2β−π) j
2

∫ j
2
−δ

δ

e(iτ+2β−2π)ξ
∑
k>0

[
−e2(2β−π)(ξ− j

2
+ih)
]k

dξ

= −e2(β−π)ihe−(2β−π) j
2

∑
k>0

[
−e2(2β−π)(ih− j

2
)
]k

× eδ[iτ+2β−2π+2k(2β−π)]

∫ j
2
−2δ

0

e[iτ+2β−2π+2k(2β−π)]ξ dξ

= −e2(β−π)ih
∑
k>0

[
−e2(2β−π)ih

]k eδ[iτ+2β−2π+2k(2β−π)]

iτ + 2β − 2π + 2k(2β − π)

×
[
e−2δ[iτ+2β−2π+2k(2β−π)]e(iτ−π) j

2 − e−(2β−π)(2k+1) j
2

]
= A+B,

where

A = −e2(β−π)ih
∑
k>0

[
−e2(2β−π)ih

]k
e−δ[iτ+2β−2π+2k(2β−π)]

iτ + 2β − 2π + 2k(2β − π)
e(iτ−π) j

2

and

B = e2(β−π)ih
∑
k>0

[
−e2(2β−π)ih

]k
eδ[iτ+2β−2π+2k(2β−π)]

iτ + 2β − 2π + 2k(2β − π)
e(2β−π)(1+2k) j

2 .

Then, if
∣∣∣λe iτ−π2

∣∣∣ < 1, it results

∑
j>0

Aλj = −
[
e2(β−π)ihλ

e−
iτ−π

2 − λ

]∑
k>0

[
−e2(2β−π)ih

]k
e−δ[iτ+2β−2π+2k(2β−π)]

iτ + 2β − 2π + 2k(2β − π)
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=
Φ

(1)
II (τ, λ)

e−
iτ−π

2 − λ
,

where Φ
(1)
II is holomorphic in D′. Notice that, if (τ, λ) ∈ D′, it holds iτ+2β−2π+2k(2β−π)

for every positive k.

About B, if we suppose,|λ| < e3(β−π
2

) and δ < 1
2
, we can conclude that

∑
j>0

Bλj = e2(β−π)ih
∑
k>0

[
−e2(2β−π)ih

]k
iτ + 2β − 2π + 2k(2β − π)

eδ[iτ+2β−2π+2k(2β−π)]λ

e(β−π
2

)(1+2k) − λ

= Φ
(2)
II (τ, λ),

where Φ
(2)
II is holomorphic on D′. So

e−τh
∑
j>0

IIλj = e−τh

[
Φ

(1)
II (τ, λ)

e−
iτ−π

2 − λ
+ Φ

(2)
II (τ, λ)

]
(3.54)

About III we have

III − e−2βihe(2β−π) j
2

∫+∞

j
2

+δ

e(iτ−2β)ξ
∑
k>0

[
−e−2(2β−π)(ξ− j

2
+ih)
]k

dξ.

So, if
∣∣∣λe iτ−π2

∣∣∣ < 1, it holds,

e−τh
∑
j>0

IIIλj = −e−τhe−2βih
∑
k>0

[
−e−2(2β−π)ih

]k∑
j>0

λje(2β−π)(1+2k) j
2

∫+∞

j
2

+δ

e[iτ−2β−2(2β−π)k]ξ dξ

= −e−τhe−2βih
∑
k>0

[
−e−2(2β−π)ih

]k∑
j>0

λje(iτ−π) j
2

∫+∞

δ

e[iτ−2β−2(2β−π)k]ξ dξ

=

[
e−τhe−2βihλ

e−
iτ−π

2 − λ

]∑
k>0

[
−e−2(2β−π)ih

]k ∫+∞

δ

e[iτ−2β−2(2β−π)k]ξ dξ. (3.55)

We then conclude that

e−τh
∑
j>0

λj = e−τh
ΦIII(τ, λ)

e−
iτ−π

2 − λ
, (3.56)

where ΦIII is holomorphic in D′′.
Let us see the error terms. We have

E1 = −e2βihe−(2β−π) j
2

∫ 0

−δ
e(iτ+2β)ξ

∑
k>0

[
−e2(2β−π)(ξ− j

2
+ih)
]k

dξ



81

− e2(β−π)ihe−(2β−π) j
2

∫ δ
0

e(iτ+2β−2π)ξ
∑
k>0

[
−e2(2β−π)(ξ− j

2
+ih)
]k

dξ.

Then, if
∣∣λe−(β−π

2
)(1+2k)

∣∣ < 1,∑
j>0

E1λ
j = −

∑
k>0

[
λ

e(β−π
2

)(1+2k) − λ

] [
−e2(2β−π)ih

]k
×
[
e2βih

∫ 0

−δ
e[iτ+2β+2(2β−π)k]ξ dξ + e2(β−π)ih

∫ δ
0

e[iτ+2β−2π+2k(2β−π)]ξ
]
dξ. (3.57)

If we suppose δ < 1
2

and (τ, λ) ∈ D′, we get

e−τh
∑
j>0

E1λ
j = e−τh

[
Φ

(1)
E1 (τ, λ) + Φ

(2)
E1 (τ, λ)

]
, (3.58)

where Φ
(i)
E1 are holomorphic on D′.

About E2, after an obvious change of variables, we have

E2 = −e2(β−π)ihe(iτ−π) j
2

∫ 0

−δ
e(iτ+2β−2π)ξ e2(2β−π)(ξ+ih)

1 + e2(2β−π)(ξ+ih)
dξ

− e−2βihe(iτ−π) j
2

∫ δ
0

e(iτ−2β)ξ e−2(2β−π)(ξ+ih)

1 + e−2(2β−π)(ξ+ih)
dξ.

Then , if
∣∣∣λe iτ−π2

∣∣∣ < 1,

∑
j>0

E2λ
j = −

[
ΦE2(τ, λ)

e−
iτ−π

2 − λ

]
, (3.59)

where the function ΦE2 is entire.

Let us see the negative j’s. We have

I∗ = −e2βihe−(2β−π) j
2

∫ j
2
−δ

−∞
e(iτ+2β)ξ

∑
k>0

[
−e2(2β−π)(ξ− j

2
+ih)
]k
.

So, if
∣∣∣λe iτ+π2

∣∣∣ > 1,

e−τh
∑
j<0

I∗λj = −
[
e−τhe2βih

λe
iτ+π

2 − 1

]∑
k>0

[
−e2(2β−π)ih

]k∫−δ
−∞

e[iτ+2β+2(2β−π)k]ξ dξ

= −e−τh ΦI∗(τ)

λe
iτ+π

2 − 1
, (3.60)
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where ΦI∗ is a function holomorphic in S2β+ 3
2
π.

About II∗ we have

II∗ = −e−2(β−π)ihe(2β−π) j
2

∫−δ
j
2

+δ

e(iτ−2β+2π)ξ
∑
k>0

[
−e−2(2β−π)(ξ− j

2
+ih)
]k

dξ.

= A+B,

where

A = −e−2(β−π)ih
∑
k>0

[
−e−2(2β−π)ih

]k
e−δ[iτ−2β+2π−2k(2β−π)]

iτ − 2β + 2π − 2k(2β − π)
e(2β−π) j

2
(1+2k);

B = e−2(β−π)ih
∑
k>0

[
−e−2(2β−π)ih

]k
eδ[iτ−2β+2π−2k(2β−π)]

iτ − 2β + 2π − 2k(2β − π)
e(iτ+π) j

2

So, choosing |λ| > e−3(β−π
2

) in order to have
∣∣λe(β−π

2
)(1+2k)

∣∣ > 1 for every k and if
∣∣∣λe iτ+π2

∣∣∣ > 1

and δ < 1
2
, it holds

∑
j<0

Aλj =−e−2(2β−π)ih
∑
k>0

[
−e−2(2β−π)ih

]k
e−δ[iτ−2β+2π−2k(2β−π)]

[iτ − (2β − π)(1 + 2k) + π]
(
λe(β−π

2
)(1+2k) − 1

) ;

∑
j<0

Bλj =
e2(β−π)ih

λe
iτ+π

2 − 1

∑
k>0

[
−e−2(2β−π)ih

]k
eδ[iτ−2β+2π−2k(2β−π)]

iτ − 2β + 2π − 2k(2β − π)
.

We conclude that

e−τh
∑
j<0

II∗λj = e−τh

[
Φ

(1)
II∗(τ, λ) +

Φ
(2)
II∗(τ)

λe
iτ+π

2 − 1

]
, (3.61)

where Φ
(1)
II∗ is holomorphic on D′ and Φ

(2)
II∗ is holomorphic in S2β+ 3

2
π.

About III∗,

III∗ = −e−2βihe(2β−π) j
2

∫+∞

δ

e(iτ−2β)ξ
∑
k>0

[
−e−2(2β−π)(ξ− j

2
+ih)
]k

dξ.

If (τ, λ) is in D′′, we get

e−τh
∑
j<0

III∗λj = −e−2βih
∑
k>0

[
−e−2(2β−π)ih

]k
λe(β−π

2
)(1+2k) − 1

[∫+∞

δ

e[iτ−2β−2(2β−π)k]ξ

]
dξ

= e−τhΦIII∗(τ, λ), (3.62)
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where ΦIII∗ is holomorphic on D′′.
About the error terms, we have

E∗1 = −e2βihe(iτ+π) j
2

∫ 0

−δ
e(iτ+2β)ξ

∑
k>0

[
−e2(2β−π)(ξ+ih)

]k
dξ

− e−2(β−π)ihe(iτ+π) j
2

∫ δ
0

e(iτ−2β+2π)ξ
∑
k>0

[
−e−2(2β−π)(ξ+ih)

]k
dξ.

So, if
∣∣∣λe iτ+π2

∣∣∣ > 1,

∑
j<0

E∗1 = − e2βih

λe
iτ+π

2 − 1

∑
k>0

[
−e2(2β−π)ih

]k ∫ 0

−δ
e[iτ+2β+2(2β−π)k]ξ dξ

− e−2(β−π)ih

λe
iτ+π

2 − 1

∑
k>0

[
−e−2(2β−π)ih

]k ∫ δ
0

e[iτ−2β+2π−2(2β−π)]ξ dξ. (3.63)

So,

e−τh
∑
j<0

E∗1λj = −e−τh
[

ΦE∗1 (τ)

λe
iτ+π

2 − 1

]
, (3.64)

where ΦE∗1 is entire.

Finally,

E∗2 = −e−2(β−π)ihe(2β−π) j
2

∫ 0

−δ
e(iτ−2β+2π)ξ

∑
k>0

[
−e−2(2β−π)(ξ− j

2
+ih)
]k

dξ

− e−2βihe(2β−π) j
2

∫ δ
0

e(iτ−2β)ξ
∑
k>0

[
−e−2(2β−π)(ξ− j

2
+ih)
]k

dξ.

Arguing as for (3.58), we can conclude that

e−τh
∑
j<0

E∗2λj = −e−τhΦE∗2 (τ, λ) (3.65)

where ΦE∗2 is holomorphic on D′. It remains to consider the term E
(2)
0 (τ); we notice that

E
(2)
0 (τ) = E

(1)
0 (τ), therefore we already know that E

(2)
0 (τ) is an holomorphic function in

S2β+ 3
2
π. We remark that all the functions Φ∗ are bounded together with all their derivatives

as |Re τ | → ∞ and Im τ and λ remain bounded.

Proposition 3.7. Let

E
(3)
j (τ) =

∫
R

σ(ξ)
eiτξ

eπ|ξ|+(2β−π)|ξ− j
2
|

e−2 sgn(ξ)π(ξ+ih)

1 + e−2 sgn(ξ)π(ξ+ih)

e−2 sgn(ξ− j2)[(2β−π)(ξ− j
2

+ih)]

1 + e−2 sgn(ξ− j2)[(2β−π)(ξ− j
2

+ih)]
dξ,
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where

σ(ξ) = e−i sgn(ξ)πhe−i sgn(ξ− j
2

)(2β−π)h.

Then

e−τh
∑
j∈Z

E
(3)
j λj = e−τhΘ(τ, λ), (3.66)

where Θ is a holomorphic function in a neighborhood of D, bounded together with all its

derivatives as |Re τ | → ∞.

Proof. We divide the integral as before. We have

I = e2βihe−(2β−π) j
2

∫−δ
−∞

e(iτ+2β)ξ
∑
k>0

[
−e2π(ξ+ih)

]k∑
l>0

[
−e2(2β−π)(ξ− j

2
+ih)
]l

= e2βih
∑
l>0

[
−e2(2β−π)ih

]l∑
k>0

[
−e2πih

]k
e−

j
2

(2β−π)(1+2l)

∫−δ
−∞

e[iτ+2β+2πk+2l(2β−π)]ξ dξ

= e2βih
∑
l>0

[
−e2(2β−π)ih

]l∑
k>0

[
−e2πih

]k
e−

j
2

(2β−π)(1+2l) e−δ[iτ+2β+2(2β−π)l+2πk]

iτ + 2β + 2πk + 2l(2β − π)
,

where we have supposed (τ, λ) in D′′, so that Im τ < 2β+ 2πk+ 2l(2β−π) for every k, l and∣∣λe−(β−π
2

)(1+2l)
∣∣ < 1 for every positive l. Summing up on positive j’s, we obtain

∑
j>0

Iλj = e2βih
∑
l>0

[
−e2(2β−π)ih

]l∑
k>0

[
−e2πih

]k∑
j>0

λje−
j
2

(2β−π)(1+2l) e−δ[iτ+2β+2(2β−π)l+2πk]

iτ + 2β + 2πk + 2l(2β − π)

= e2βih
∑
l>0

[
−e2(2β−π)ih

]l λ

e(β−π
2

)(1+2l) − λ

∑
k>0

[
−e2πih

]k e−δ[iτ+2β+2(2β−π)l+2πk]

iτ + 2β + 2πk + 2l(2β − π)

(3.67)

We can conclude that

e−τh
∑
j>0

Iλj = e−τhΘI(τ, λ), (3.68)

where ΘI is a function holomorphic on D′′.
About II we have

II = e2(β−π)ih
∑
l>0

[
−e2(2β−π)ih)

]l
e−

j
2

(2β−π)(1+2l)

×
∑
k>0

[
−e−2πih

]k ∫ j
2
−δ

δ

e[iτ+2β−2π−2πk+2l(2β−π)]ξ dξ
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= e2(β−π)ih
∑
l>0

[
−e2(2β−π)ih)

]l
e−

j
2

(2β−π)(1+2l)
∑
k>0

[
−e−2πih

]k
×

[
e[iτ+2β−2π−2πk+2l(2β−π)]( j

2
−δ) − e[iτ+2β−2π−2πk+2l(2β−π)]δ

iτ + 2β − 2π − 2πk + 2l(2β − π)

]
= e2(β−π)ih

∑
l>0

[
−e2(2β−π)ih)

]l∑
k>0

[
−e−2πih

]k
[C +D] ,

where

C =
e−δ[iτ+2β−2π−2πk+2l(2β−π)]e[iτ−π−2πk] j

2

iτ + 2β − 2π − 2πk + 2l(2β − π)
;

D =
eδ[iτ+2β−2π−2πk+2l(2β−π)]e−(2β−π)(1+2l) j

2

iτ + 2β − 2π − 2πk + 2l(2β − π)

Notice that we do not have a singularity when iτ + 2β − 2π − 2πk + 2l(2β − π)→ 0. Now,

if
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1,

∑
j>0

Cλj =

[
λ

e−
iτ−π−2πk

2 − λ

]
e−δ[iτ+2β−2π−2πk+2l(2β−π)]

iτ + 2β − 2π − 2πk + 2l(2β − π)
,

and, if
∣∣λe−(β−π

2
)(1+2l)

∣∣ < 1,∑
j>0

Dλj =

[
λ

e(β−π
2

)(1+2l) − λ

]
eδ[iτ+2β−2π−2πk+2l(2β−π)]

iτ + 2β − 2π − 2πk + 2l(2β − π)
.

In conclusion

e−τh
∑
j>0

IIλj = e−τh
[
Θ

(1)
II (τ, λ) + Θ

(2)
II (τ, λ)

]
, (3.69)

where Θ
(1)
II is holomorphic on D∞,2π and Θ

(2)
II is holomorphic on D′′.

For III, supposing that (τ, λ) is in D′′, it holds

III = e−2βih
∑
k>0

[
−e−2πih

]k
e(iτ−π−2πk) j

2

∑
l>0

[
−e−2(2β−π)ih

]l ∫+∞

δ

e[iτ−2β−2πk−2l(2β−π)]ξ dξ

= −e−2βih
∑
k>0

[
−e−2πih

]k
e(iτ−π−2πk) j

2

∑
l>0

[
−e−2(2β−π)ih

]l eδ[iτ−2β−2πk−2l(2β−π)]

iτ − 2β − 2πk − 2l(2β − π)
,

Summing up, if
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1, we obtain

∑
j>0

IIIλj = e−2βih
∑
k>0

[
−e−2πih

]k [ λ

e−
iτ−π−2πk

2 − λ

]
×
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×
∑
l>0

[
−e−2(2β−π)ih

]l eδ[iτ−2β−2πk−2l(2β−π)]

iτ − 2β − 2πk − 2l(2β − π)
.

We conclude,

e−τh
∑
j>0

IIIλj = e−τhΘIII(τ, λ), (3.70)

where ΘIII is holomorphic on D′′.
Let us study the first error term E1. We set m(ξ) = e−2 sgn(ξ)π(ξ+ih)

1+e−2 sgn(ξ)π(ξ+ih) . Then, we have

E1 = A+B,

where

A = −e2βih

∫ 0

−δ

∑
l>0

[
−e2(2β−π)ih

]l
e−

j
2

(2β−π)(1+2l)e[iτ+2β+2l(2β−π)]ξm(ξ) dξ;

B = −e2(β−π)ih

∫ δ
0

∑
l>0

[
−e2(2β−π)ih

]l
e−

j
2

(2β−π)(1+2l)+[iτ+2β−2π+2(2β−π)l]ξm(ξ)dξ.

So, if
∣∣λe−(β−π

2
)(1+2l)

∣∣ < 1,

∑
j>0

Aλj = e2βih

∫ 0

−δ

∑
l>0

[
−e2(2β−π)ih

]l [ λ

e(β−π
2

)(1+2l) − λ

]
e[iτ+2β+2l(2β−π)]ξm(ξ) dξ;

∑
j>0

Bλj = e2(β−π)ih

∫ δ
0

∑
l>0

[
−e2(β−π)ih

]l [ λ

e(β−π
2

)(1+2l) − λ

]
× e[iτ+2β−2π+2(2β−π)l]ξm(ξ) dξ.

Now, the inner sums on l converge uniformly for ξ in [−δ, δ] to a smooth a function in ξ and

holomorphic in λ for |λ| < e3(β−π
2

). We can conclude that

e−τh
∑
j>0

E1λ
j = e−τh

[
Θ

(1)
E1 (τ, λ) + Θ

(2)
E1 (τ, λ)

]
, (3.71)

where the functions Θ
(i)
E1 are holomorphic on D′′.

Now we analyze the second error term. We set m1(ξ) = e−2 sgn(ξ)(2β−π)(ξ+ih)

1+e−2 sgn(ξ)(2β−π)(ξ+ih) . Then, we

have

E2 =

∫ j
2

j
2
−δ

+

∫ j
2

+δ

j
2

= E + F,

where

E = −e2(β−π)ih

∫ 0

−δ

∑
l>0

[
−e−2πih

]l
e
j
2

(iτ−π−2πl)e[iτ+2β−2π−2πl]ξm1(ξ) dξ;
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F = −e−2βih

∫ δ
0

∑
l>0

[
−e−2πih

]l
e
j
2

(iτ−π−2πl)e[iτ−2β−2πl]ξm1(ξ) dξ.

So, if
∣∣∣λe iτ−π−2πk

2

∣∣∣ < 1,

∑
j>0

Eλj = −e2(β−π)ih

∫ 0

−δ

∑
l>0

[
−e−2πih

]l [ λ

e−
iτ−π−2πl

2 − λ

]
e[iτ+2β−2π−2πl]ξm1(ξ) dξ;

∑
j>0

Fλj = −e−2βih

∫ δ
0

∑
l>0

[
−e−2πih

]l [ λ

e−
iτ−π−2πl

2 − λ

]
e[iτ−2β−2πl]ξm1(ξ) dξ.

Now, the inner sums on l converge uniformly in ξ in [−δ, δ] to a smooth function in ξ and

holomorphic in (τ, λ) if Im τ − log |λ|2 > −3π.

We conclude

e−τh
∑
j>0

E2λ
j = e−τh

[
Θ

(1)
E2 (τ, λ) + Θ

(2)
E2 (τ, λ)

]
, (3.72)

where Θ
(i)
E2 are holomorphic on D∞,2π.

It remains to compute the sum on negative indices. Suppose that (τ, λ) is in D′′, then

I∗ = e2βih
∑
k>0

[
−e2πih

]k
e(iτ+π+2πk) j

2

∑
l>0

[
−e2(2β−π)ih

]l ∫−δ
−∞

e[iτ+2β+2kπ+2l(2β−π)]ξ dξ

= e2βih
∑
k>0

[
−e2πih

]k
e(iτ+π+2πk) j

2

∑
l>0

[
−e2(2β−π)ih

]l e−δ[iτ+2β+2kπ+2l(2β−π)]

iτ + 2β + 2kπ + 2l(2β − π)
.

Summing up on j, we obtain

∑
j<0

I∗λj = e2βih
∑
k>0

[
−e2πih

]k
λe

iτ+π+2πk
2 − 1

∑
l>0

[
−e2(2β−π)ih

]l e−δ[iτ+2β+2kπ+2l(2β−π)]

iτ + 2β + 2kπ + 2l(2β − π)
.

In conclusion

e−τh
∑
j<0

I∗λj = e−τhΘI∗(τ, λ), (3.73)

where ΘI∗ is holomorphic on D′′.
About II∗, it holds

II∗ = e−2(β−π)ih
∑
l>0

[
−e−2(2β−π)ih

]l
e
j
2

(2β−π)(1+2l)
∑
k>0

[
−e2πih

]k ∫−δ
j
2

+δ

e[iτ−2β+2π+2πk−2l(2β−π)]ξ dξ

= e−2(β−π)ih
∑
l>0

[
−e−2(2β−π)ih

]l∑
k>0

[
−e2πih

]k
[C +D] ,
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where

C =
e−δ[iτ−2β+2π+2πk−2l(2β−π)]e

j
2

(2β−π)(1+2l)

iτ − 2β + 2π + 2πk − 2l(2β − π)
;

D =
eδ[iτ−2β+2π+2πk−2l(2β−π)]e(iτ+π+2πk) j

2

iτ − 2β + 2π + 2πk − 2l(2β − π)
.

Notice that C + D is not singular when iτ − 2β + 2π + 2πk − 2l(2β − π) → 0. So, if∣∣λe(β−π
2

)(1+2l)
∣∣ > 1 and

∣∣∣λe iτ+π+2πk
2

∣∣∣ > 1, we obtain

∑
j<0

Cλj =

[
1

λe(β−π
2

)(1+2l) − 1

]
e−δ[iτ−2β+2π+2kπ−2l(2β−π)]

iτ − 2β + 2π + 2kπ − 2l(2β − π)
;

∑
j<0

Dλj =

[
1

λe
iτ+π+2πk

2 − 1

]
eδ[iτ−2β+2π+2kπ−2l(2β−π)]

iτ − 2β + 2π + 2πk − 2l(2β − π)
.

We conclude that

e−τh
∑
j<0

II∗λj = e−τh
[
Θ

(1)
II∗(τ, λ) + Θ

(2)
II∗(τ, λ)

]
, (3.74)

where Θ
(1)
II∗ is holomorphic on D′′ and Θ

(2)
II∗ is holomoprhic on D∞,2π.

The last term III∗ is given by

III∗ = e−2βih
∑
l>0

[
−e−2(2β−π)ih

]l
e
j
2

(2β−π)(1+2l)
∑
k>0

[
−e−2πih

]k ∫+∞

δ

e[iτ−2β−2πk−2l(2β−π)]ξdξ

= −e−2βih
∑
l>0

[
−e−2(2β−π)ih

]l
e
j
2

(2β−π)(1+2l)
∑
k>0

[
−e−2πih

]k eδ[iτ−2β−2kπ−2l(2β−π)]

iτ − 2β − 2kπ − 2l(2β − π)
,

where we are supposing (τ, λ) ∈ D′′. Then

∑
j<0

III∗λj = e−2βih
∑
l>0

[
−e−2(2β−π)ih

]l
λe(β−π

2
)(1+2l) − 1

∑
k>0

[
−e−2πih

]k [ eδ[iτ−2β−2kπ−2l(2β−π)]

iτ − 2β − 2kπ − 2l(2β − π)

]
.

We conclude

e−τh
∑
j<0

III∗λj = e−τhΘIII∗(τ, λ), (3.75)

where ΘIII∗ is holomorphic in D′′.
We now study the first error term E∗1 . We set n(ξ) = e−2 sgn(ξ)(2β−π)(ξ+ih)

1+e−2(2 sgn(ξ)β−π)(ξ+ih) . Then, we have

E∗1 =

∫ j
2

j
2
−δ

+

∫ j
2

+δ

j
2

= A+B,
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where

A = −e2βih

∫ 0

−δ

∑
l>0

[
−e2πih

]l
e[iτ+2β+2πl]e[iτ+π+2πl] j

2n(ξ) dξ;

B = −e−2(β−π)ih

∫ δ
0

∑
l>0

[
−e2πih

]l
e[iτ−2β+2π+2πl]ξe(iτ+π+2πl) j

2n(ξ) dξ.

Thus, if
∣∣∣λe iτ+π+2πl

2

∣∣∣ > 1, we obtain

∑
j<0

Aλj = −e2βih

∫ 0

−δ

∑
l>0

[
−e2πih

]l
λe

iτ+π+2πl
2 − 1

e[iτ+2β+2πl]ξn(ξ) dξ;

∑
j<0

Bλj = −e−2(β−π)ih

∫ δ
0

∑
l>0

[
−e2πih

]l
λe

iτ+π+2lπ
2 − 1

e[iτ−2β+2π+2πl]ξn(ξ) dξ.

The inner sums converge uniformly for ξ ∈ [−δ, δ] to a smooth function in ξ and holomorphic

in λ for |λ| > e−3(β−π
2

). So, we conclude

e−τh
∑
j<0

E∗1λj = e−τh
[
Θ

(1)
E∗1

(τ, λ) + Θ
(2)
E∗1

(τ, λ)
]
, (3.76)

where Θ
(i)
E∗1

are holomorphic functions on D′′. Now the second error term E2∗. We set

n1(ξ) = e−2 sgn(ξ)π(ξ+ih)

1+e−2 sgn(ξ)π(ξ+ih) . Then, we have

E∗2 =

∫ 0

−δ
+

∫ δ
0

= E + F,

where

E = −e−2(β−π)ih

∫ 0

−δ

∑
l>0

[
−e−2(2β−π)ih

]l
e
j
2

(2β−π)(1+2l)e[iτ−2β+2π−2l(2β−π)]ξn1(ξ) dξ;

F = −e−2βih

∫ δ
0

∑
l>0

[
−e−2(2β−π)ih

]l
e
j
2

(2β−π)(1+2l)e[iτ−2β−2l(2β−π)]ξn1(ξ) dξ.

Supposing that
∣∣λe(β−π

2
)(1+2l)

∣∣ > 1, we get

∑
j<0

Eλj = −e−2(β−π)ih

∫ 0

−δ

∑
l>0

[
−e2πih

]l
λe(β−π

2
)(1+2l) − 1

e[iτ−2β+2π−2l(2β−π)]ξn1(ξ) dξ;

∑
j<0

Fλj = −e−2βih

∫ δ
0

∑
l>0

[
−e−2(2β−π)ih

]l
λe(β−π

2
)(1+2l) − 1

e[iτ−2β−2l(2β−π)]ξn1(ξ) dξ.
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The inner sums converge uniformly for ξ in [−δ, δ] to a smooth function in ξ and holomorphic

in λ for |λ| > e−3(β−π
2

). We conclude that

e−τh
∑
j<0

E∗2λj = e−τh
[
Θ

(1)
E∗2

(τ, λ) + Θ
(2)
E∗2

(τ, λ)
]
, (3.77)

where Θ
(i)
E∗2

are holomorphic functions on D′′.

In conclusion,

∑
j∈Z

Jj(τ)λj = 4e−τh
[∑
j∈Z

Mj(τ)λj +
3∑

k=1

∑
j∈Z

E
(k)
j (τ)λj

]
= 4e−τh

[
e2βih

iτ + 2β
+
−e−2βih

iτ − 2β
+

−e2βih

(iτ + 2β)(1− λe iτ+π2 )
+

e−2βih

(iτ − 2β)(1− λeβ−π2 )

+
ψ1(λ)

(iτ + 2β)(1− λe−(β−π
2

))
+

ψ2(τ, λ)

(iτ − 2β)(1− λe iτ−π2 )
+

ψ3(τ, λ)

(1− λe iτ−π2 )(1− λe−(β−π
2

))

+
ψ4(τ, λ)

(1− λeβ−π2 )(1− λe iτ+π2 )
+

Ψ
(1)
1 (τ, λ)

eβ−
π
2 − λ

+
Ψ

(2)
1 (τ, λ)

e−(β−π
2

) − λ
+ Ψ

(3)
1 (τ, λ)

+
Φ

(1)
2 (τ, λ)

1− λe iτ−π2

+
Φ

(2)
2 (τ, λ)

λe
iτ+π

2 − 1
+ Φ

(3)
2 (τ, λ) + Θ(τ, λ)

]
.

Moreover, we know

R(τ, λ) =
4νβ

e
τνβ
2

{[
e
iπνβ

2

λe
iτ+π

2 − 1

]
+

[
e−

iπνβ
2 λe

iτ−π
2

1− λe iτ−π2

]
+ E(τ, λ) +

1

Ch
(
i
πνβ

2

)}
where E(τ, λ) is a smooth and bounded function with all derivatives smooth and bounded

in a neighborhood of D. In conclusion,

∑
j∈Z

Ij(τ)λj = 4νβe
−
τνβ
2

[
e
iπνβ

2

λe
iτ+π

2 − 1
+
e−

iπνβ
2 λe

iτ−π
2

1− λe iτ−π2

+ E(τ, λ)

]

+ 4e−τh
[
e2βih

iτ + 2β
+
−e−2βih

iτ − 2β
+

−e2βih

(iτ + 2β)(1− λe iτ+π2 )
+

e−2βih

(iτ − 2β)(1− λeβ−π2 )

+
ψ1(λ)

(iτ + 2β)(1− λe−(β−π
2

))
+

ψ2(τ, λ)

(iτ − 2β)(1− λe iτ−π2 )
+

ψ3(τ, λ)

(1− λe iτ−π2 )(1− λe−(β−π
2

))

+
ψ4(τ, λ)

(1− λeβ−π2 )(1− λe iτ+π2 )
+

Ψ
(1)
1 (τ, λ)

eβ−
π
2 − λ

+
Ψ

(2)
1 (τ, λ)

e−(β−π
2

) − λ
+ Ψ

(3)
1 (τ, λ)+

+
Φ

(1)
2 (τ, λ)

1− λe iτ−π2

+
Φ

(2)
2 (τ, λ)

λe
iτ+π

2 − 1
+ Φ

(3)
2 (τ, λ) + Θ(τ, λ)

]
.
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We recall that the above formula holds for Re τ > 0. For general τ we have

∑
j∈Z

Ij(τ)λj = 4νβe
− sgn(Re τ)

τνβ
2

[
e
iπνβ

2

λe
iτ+π

2 − 1
+
e−

iπνβ
2 λe

iτ−π
2

1− λe iτ−π2

+ E(τ, λ)

]
+

+ 4e− sgn(Re τ)τh

[
e2βih

iτ + 2β
+
−e−2βih

iτ − 2β
+

−e2βih

(iτ + 2β)(1− λe iτ+π2 )
+

e−2βih

(iτ − 2β)(1− λeβ−π2 )
+

+
ψ1(λ)

(iτ + 2β)(1− λe−(β−π
2

))
+

ψ2(τ, λ)

(iτ − 2β)(1− λe iτ−π2 )
+

ψ3(τ, λ)

(1− λe iτ−π2 )(1− λe−(β−π
2

))

+
ψ4(τ, λ)

(1− λeβ−π2 )(1− λe iτ+π2 )
+

Ψ
(1)
1 (τ, λ)

eβ−
π
2 − λ

+
Ψ

(2)
1 (τ, λ)

e−(β−π
2

) − λ
+ Ψ

(3)
1 (τ, λ)

+
Φ

(1)
2 (τ, λ)

1− λe iτ−π2

+
Φ

(2)
2 (τ, λ)

λe
iτ+π

2 − 1
+ Φ

(3)
2 (τ, λ) + Θ(τ, λ)

]
.

Finally, recalling that τ = w1 − z1 and λ = w2 − z2, we obtain

KD′β
[(w1, w2), (z1, z2)] =

∑
j∈Z

(w2z2)j

8π
Ij(w1 − z1) =

=
νβe
− sgn(Re(w1−z1))

(w1−z1)νβ
2

2π

[
e
iπνβ

2

(w2z2)e
i(w1−z1)+π

2 − 1
+
e−

iπνβ
2 (w2z2)e

i(w1−z1)−π
2

1− (w2z2)e
i(w1−z1)−π

2

+

+ E(w1 − z1, w2z2)

]
+
e− sgn(Re(w1−z1))(w1−z1)h

2π

[
e2βih

i(w1 − z1) + 2β
+

−e−2βih

i(w1 − z1)− 2β
+

+
−e2βih

(i(w1 − z1) + 2β)(1− (w2z2)e
i(w1−z1)+π

2 )
+

e−2βih

(i(w1 − z1)− 2β)(1− (w2z2)eβ−
π
2 )

+

+
ψ1(w2z2)

(i(w1 − z1) + 2β)(1− (w2z2)e−(β−π
2

))
+

ψ2(w1 − z1, w2z2)

(i(w1 − z1)− 2β)(1− (w2z2)e
i(w1−z1)−π

2 )

+
ψ3(w1 − z1, w2z2)

(1− (w2z2)e
i(w1−z1)−π

2 )(1− (w2z2)e−(β−π
2

))
+

ψ4(w1 − z1, w2z2)

(1− (w2z2)eβ−
π
2 )(1− (w2z2)e

i(w1−z1)+π
2 )

+

+
Ψ

(1)
1 (w1 − z1, w2z2)

eβ−
π
2 − (w2z2)

+
Ψ

(2)
1 (w1 − z1, w2z2)

e−(β−π
2

) − (w2z2)
+ Ψ

(3)
1 (w1 − z1, w2z2)+

+
Φ

(1)
2 (w1 − z1, w2z2)

1− (w2z2)e
i(w1−z1)−π

2

+
Φ

(2)
2 (w1 − z1, w2z2)

(w2z2)e
i(w1−z1)+π

2 − 1
+ Φ

(3)
2 (w1 − z1, w2z2) + Θ(w1 − z1, w2z2)

]
.

Simplifying a little bit, using the notation of Theorem 2.17, we obtain

KD′β
(w, z) = e− sgn(Re(w1−z1))

(w1−z1)νβ
2 K(w, z) + e− sgn(Re(w1−z1))(w1−z1)hK̃(w, z),

where
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K(w, z) =
F1(w, z)

1− (w2z2)e
i(w1−z1)+π

2

+
F2(w, z)

1− (w2z2)e
i(w1−z1)−π

2

+ E(w, z)

= K1(w, z) +K2(w, z) + E(w, z)

and

K̃(w, z) =
G1(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ]
+

G2(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ]

+
G3(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ][1− (w2z2)eβ−
π
2 ]

+
G4(w, z)

[1− (w2z2)e
i(w1−z1)+π

2 ][i(w1 − z1) + 2β]

+
G5(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ][i(w1 − z1)− 2β]

+
G6(w, z)

[1− (w2z2)e
i(w1−z1)−π

2 ][1− (w2z2)e−(β−π
2

)]

+
G7(w, z)

[i(w1 − z1) + 2β][1− (w2z2)e−(β−π
2

)]

+
G8(w, z)

[i(w1 − z1)− 2β][1− (w2z2)eβ−
π
2 ]

+ Ẽ(w, z)

= K̃1(w, z) + . . .+ K̃8(w, z) + Ẽ(w, z)

as we wished.
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Chapter 4

Biparameter Littlewood-Paley-Stein

Theory

In this chapter we develop some biparameter Littlewood-Paley-Stein theory that we will

use to prove our biparameter Tb theorem.

We work in arbitrary dimension Rn where n = n1 + n2. We will use the subscripts of

xj to distinguish between functions on Rn1 and Rn2 . In the first part of the chapter we

fix notation and define biparameter Littlewood-Paley-Stein operators and square functions.

Thus, we prove a reproducing formula in our setting which is the analogous of a result by

Han (Theorem 4.7) and we conclude the chapter proving Theorem 0.2.

4.1 Background results

In this short section we fix notation and recall some known results. We do not prove

these results, but we provide the references.

Definition 4.1. For 0 < δ ≤ 1, define C0,δ
0 (Rn) to be the collection of all δ-Hölder continu-

ous, compactly supported functions f : Rn → C with norm

‖f‖δ = sup
x 6=y

|f(x)− f(y)|
|x− y|δ

<∞.

Since C0,δ
0 (Rn) is made up of compactly supported functions, it follows that ‖ · ‖δ is a

norm, and we endow C0,δ
0 (Rn) the topology generated by the norm ‖ · ‖δ. Given a function

b ∈ L∞(Rn) such that b−1 ∈ L∞(Rn), let bC0,δ
0 (Rn) be the collection of functions bf such

95
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that f ∈ C0,δ
0 (Rn). We define ‖bf‖b,δ = ‖f‖δ for bf ∈ bC0,δ

0 (Rn), and endow bC0,δ
0 (Rn) the

topology generated by the norm ‖ · ‖b,δ. Finally, given a function space X, we define X ′ to

be the continuous dual of X with the weak∗ topology. In our situation, we will primarily use

this definition for X = bC0,δ
0 (Rn).

For k ∈ Z, N > 0 and x ∈ Rn, define

ΦN
k (x) =

2nk

(1 + 2k|x|)N
.

The following proposition will be used in later sections.

Proposition 4.2. If M,N > n, then, for all j, k ∈ Z,∫
Rn

ΦM
j (x− u)ΦN

k (u− y) du . ΦM
j (x− y) + ΦN

k (x− y).

Proof. Fix x, y ∈ R and j, k ∈ Z. Then, |x − y| ≤ |x − u| + |u − y| for all u ∈ Rn. Thus,

either |x− u| ≥ |x− y|/2 or |u− y| ≥ |x− y|/2. Then,∫
Rn

ΦM
j (x− u)ΦN

k (u− y) du ≤

≤
∫
|x−u|≤|x−y|/2

ΦM
j (x− u)ΦN

k (u− y) du+

∫
|u−y|≥|x−y|/2

ΦM
j (x− u)ΦN

k (u− y) du

= A+B.

Then,

A ≤
∫
|x−u|≥|x−y|/2

2jn

(1 + 2j|x− u|)M
2kn

(1 + 2k|u− y|)N
du

≤ 2jn

(1 + 2j|x− y|/2)M

∫
Rn

2kn

(1 + 2k|u− y|)N
du

. ΦM
j (x− y).

The estimate for the term B is analogous. The proof is complete.

Definition 4.3. For a measurable function f : Rn1+n2 → C, the biparameter strong maximal

function is

MSf(x) = sup
Qi3xi

1

|Q1‖Q2|

∫
Q1×Q2

|f(y1, y2)| dy1dy2,

where the supremum is taken over cubes Q1 ⊆ Rn1 and Q2 ⊆ Rn2 .
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Proposition 4.4. Let ΦNi
ki

: Rni → C for i = 1, 2 and Ni > n1. Then, for all f ∈
L1(Rn) + L∞(Rn),

sup
k1,k2∈Z

(ΦN1
k1
⊗ ΦN2

k2
) ∗ |f |(x) .MSf(x).

Proof. We have

|(ΦN1
k1
⊗ ΦN2

k2
) ∗ |f |(x)| =

∫
Rn1+n2

|f(y1, y2)|ΦN1
k1

(x1 − y1)ΦN2
k2

(x2 − y2) dy1dy2

=

∫
|x1−y1|≤2−k1

|x2−y2|≤2−k2

+

∫
|x1−y1|≤2−k1

|x2−y2|≥2−k2

+

∫
|x1−y1|≥2−k1

|x2−y2|≤2−k2

+

∫
|x1−y1|≥2−k1

|x2−y2|≥2−k2

= I + II + III + IV.

We estimate explicitly the term II. The other estimates follow similarly. Thus,

II =

∫
|x1−y1|≤2−k1

|x2−y2|≥2−k2

|f(y1, y2)|ΦN1
k1

(x1 − y1)ΦN2
k2

(x2 − y2) dy1dy2

≤
+∞∑
j=0

∫
|x1−y1|≤2−k1

2j−k2<|x2−y2|≤2j+1−k2

2k1n12k2n2|f(y1, y2)|
(2k2|x2 − y2|)N2

dy1dy2

≤
+∞∑
j=0

∫
|x1−y1|≤2−k1

|x2−y2|≤2j+1−k2

2k1n12k2n2 |f(y1, y2)|
2jN2

dy1dy2

.MSf(x1, x2)
∞∑
j=0

2−j(N2−n2)

.MS(x1, x2)

as we wished. The proof is complete.

Now, we recall the definition of para-accretive functions firstly introduced in [DJS85].

Definition 4.5. A function b in L∞(Rn) is para-accretive if b−1 is in L∞(Rn) and there

exists a constant c0 > 0 such that for all cubes Q ⊆ Rn, there exists a cube R ⊆ Q such that

1

|Q|

∣∣∣∣∫
R

b(x)dx

∣∣∣∣ ≥ c0.

Let ϕ be a function in C∞0 such that ϕ is non-negative, it has integral 1 and supp(ϕ) ⊆
B(0, 1/8). For every k ∈ Z, let us denote ϕk the function ϕk(x) = 2knϕ(2kx). Define the

operator

Sbkf(x) = PkM(Pkb)−1Pkf(x) and Db
kf(x) = Sbk+1f(x)− Sbkf(x), (4.1)
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where

Mbf(x) := b(x)f(x) and Pkf(x) = ϕk ∗ f(x).

These operators were introduced in [DJS85], where it is proved that |Pkb(x)| ≥ Cc0 with the

constant C > 0 depending only on the dimension n. This assures that the operator M(Pkb)−1

is well-defined. Moreover, they proved the following results. We refer to [DJS85] or [Han94]

for the proofs.

Theorem 4.6. [DJS85] For every function f in Lp(Rn) ∩ Lq(Rn), where 1 < q ≤ p <∞,

it holds

lim
k→∞

SbkMbf = f and lim
k→∞

Sb−kMbf = 0 (4.2)

in Lp(Rn). Moreover,

Sbkf(x) =

∫
Rn
sbk(x, y)f(y) dy and Db

kf(x) =

∫
Rn
dbk(x, y)f(y) dy, (4.3)

where the kernels sbk and dbk satisfy

sbk(x, y) = dbk(x, y) = 0 for 2k|x− y| > 1,

|sbk(x, y)|+ |dbk(x, y)| . 2kn,

|sbk(x, y)− sbk(x′, y)|+ |dbk(x, y)− dbk(x′, y)| . 2kn(2k|x− x′|)γ,

|sbk(x, y)− sbk(x, y′)|+ |dbk(x, y)− dbk(x, y′)| . 2kn(2k|y − y′|)γ.

We have the following important reproducing formula.

Theorem 4.7. [Han94] Let b ∈ L∞(Rn) a para-accretive function. There exist operators

D̃b
k for k ∈ Z such that ∑

k∈Z

D̃b
kMbD

b
kMbf = f (4.4)

in Lp(Rn) for any function f : Rn → C such that |f(x)| . ΦN
0 (x) for some N > n,

|f(x) − f(y)| . |x − y|γ for some γ > 0, and bf has mean zero. Furthermore, D̃d
k is given

by integration against its kernel d̃bk : R2n → C,

D̃b
kf(x) =

∫
Rn
d̃bk(x, y)f(y)dy,
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and d̃bk satisfies

|d̃bk(x, y)| . ΦN+γ
k (x− y),

|d̃bk(x, y)− d̃bk(x′, y)| . (2k|x− x′|)γ
(

ΦN+γ
k (x− y) + ΦN+γ

k (x′ − y)
)
,∫

Rn
d̃bk(x, y)b(y)dy =

∫
Rn
d̃bk(x, y)b(x)dx = 0

for some N > n and 0 < γ ≤ 1.

4.2 Biparameter Littlewood-Paley-Stein operators and

square functions

Definition 4.8. A collection of functions θ~k : R2n → C for ~k ∈ Z2 is a collection of

biparameter Littlewood-Paley-Stein kernels if for all x1, y1, x
′
1, y
′
1 ∈ Rn1 and x2, y2, x

′
2, y
′
2 ∈

Rn2

|θ~k(x, y)| . ΦN1+γ
k1

(x1 − y1)ΦN2+γ
k2

(x2 − y2) (4.5)

|θ~k(x, y)− θ~k(x
′
1, x2, y)| . (2k1|x1 − x′1|)γ

×
(

ΦN1+γ
k1

(x1 − y1) + ΦN1+γ
k1

(x′1 − y1)
)

ΦN2
k2

(x2 − y2) (4.6)

|θ~k(x, y)− θ~k(x1, x
′
2, y)| . (2k2|x2 − x′2|)γ

× ΦN1
k1

(x1 − y1)
(

ΦN2+γ
k2

(x2 − y2) + ΦN2+γ
k2

(x′2 − y2)
)

(4.7)

|θ~k(x, y)− θ~k(x, y
′
1, y2)| . (2k1|y1 − y′1|)γ

×
(

ΦN1+γ
k1

(x1 − y1) + ΦN1+γ
k1

(x1 − y′1)
)

ΦN2
k2

(x2 − y2) (4.8)

|θ~k(x, y)− θ~k(x, y1, y
′
2)| . (2k2|y2 − y′2|)γ

× ΦN1
k1

(x1 − y1)
(

ΦN2+γ
k2

(x2 − y2) + ΦN2+γ
k2

(x2 − y′2)
)

(4.9)

for some N1 > n1, N2 > n2, and 0 < γ ≤ 1.

Definition 4.9. We say that a collection of operators Θ~k for ~k ∈ Z2 is a collection of

biparameter Littlewood-Paley-Stein operators if

Θ~kf(x) =

∫
Rn
θ~k(x, y)f(y)dy. (4.10)

for some collection of biparameter Littlewood-Paley-Stein kernels θ~k satisfying (4.5)-(4.9).
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Remark 4.10. Properties (4.5)-(4.9) hold if and only if θ~k satisfies the alternate condition

set:

|θ~k(x, y)| . Φ
N ′1
k1

(x1 − y1)Φ
N ′2
k2

(x2 − y2),

|θ~k(x, y)− θ~k(x
′
1, x2, y)| . 2n1k1 2n2k2(2k1|x1 − x′1|)γ

′
,

|θ~k(x, y)− θ~k(x1, x
′
2, y)| . 2n1k1 2n2k2(2k2|x2 − x′2|)γ

′
,

|θ~k(x, y)− θ~k(x, y
′
1, y2)| . 2n1k1 2n2k2(2k1|y1 − y′1|)γ

′
,

|θ~k(x, y)− θ~k(x, y1, y
′
2)| . 2n1k1 2n2k2(2k2|y2 − y′2|)γ

′

for some N ′1 > n1, N ′2 > n2, and 0 < γ′ ≤ 1.

Proof. It is obvious that (4.5)-(4.9) imply the above condition set since Φ
Nj
kj

(xj) ≤ 2kjnj .

Assume there exist N ′1 > n1, N ′2 > n2, and 0 < γ′ ≤ 1 such that the alternate condition

set holds and choose η ∈ (0, 1) small enough so that N1 = (1 − η)N ′1 − ηγ′ > n1 and

N2 = (1 − η)N ′2 − ηγ′ > n2, which is possible since N ′1 > n1 and N ′2 > n2. Also define

γ = ηγ′, and it follows that

|θ~k(x, y)− θ~k(x
′
1, x2, y)| .

(
2k1n1 2k2n2(2k1|x1 − x′1|)γ

′
)η

×
(

Φ
N ′1
k1

(x1 − y1) + Φ
N ′1
k1

(x′1 − y1)
)1−η

Φ
N ′2
k2

(x2 − y2)1−η

. (2k1|x1 − x′1|)γ
(

ΦN1+γ
k1

(x1 − y1) + ΦN1+γ
k1

(x′1 − y1)
)

ΦN2+γ
k2

(x2 − y2).

The other conditions follow by symmetry, and hence the condition sets are equivalent.

We now prove an almost orthogonality lemma.

Lemma 4.11. Assume that Θ~k and Ψ~k are operators defined by (4.10) with kernels re-

spectively θ~k and ψ~k. Also assume that θ~k satisfies (4.5), (4.8), and (4.9) and that ψ~k

satisfies (4.5), (4.6), and (4.7). If there exist para-accretive functions b1 ∈ L∞(Rn1) and

b2 ∈ L∞(Rn2) such that∫
R
nj

θ~k(x, y)bj(yj)dyj =

∫
R
nj

ψ~k(x, y)bj(xj)dxj = 0

for j = 1, 2 all x ∈ Rn and k1, k2 ∈ Z, then for all ~k = (k1, k2),~j = (j1, j2) ∈ Z2

|Θ~kMbΨ~jf(x)| . 2−ε|j1−k1|2−ε|j2−k2|MSf(x)

for some ε > 0, where b(x) = b1(x1)b2(x2) for x = (x1, x2) ∈ Rn.
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Proof. Using the cancellation of ψ~j and conditions (4.5) and (4.8), it follows that∣∣∣∣∫
Rn
θ~k(x, u)b(u)ψ~j(u, y)du

∣∣∣∣ . ∫
Rn
|θ~k(x, u)− θ~k(x, y1, u2)| |ψ~j(u, y)|du

.
∫
Rn

(2k1|u1 − y1|)γ
(

ΦN1+γ
k1

(x1 − u1) + ΦN1+γ
k1

(x1 − y1)
)

× ΦN2+γ
k2

(x2 − u2)ΦN1+γ
j1

(u1 − y1)ΦN2+γ
j2

(u2 − y2)du

= 2γ(k1−j1)

∫
Rn

(2j1|u1 − y1|)γΦN1+γ
j1

(u1 − y1)
(

ΦN1+γ
k1

(x1 − u1) + ΦN1+γ
k1

(x1 − y1)
)

× ΦN2+γ
k2

(x2 − u2)ΦN2+γ
j2

(u2 − y2)du

≤ 2γ(k1−j1)

∫
Rn

ΦN1
j1

(u1 − y1)
(

ΦN1+γ
k1

(x1 − u1) + ΦN1+γ
k1

(x1 − y1)
)
du1

×
∫
Rn

ΦN2+γ
k2

(x2 − u2)ΦN2+γ
j2

(u2 − y2)du2

. 2γ(k1−j1)
(
ΦN1
k1

(x1 − y1) + ΦN1
j1

(x1 − y1)
) (

ΦN2
k2

(x2 − y2) + ΦN2
j2

(x2 − y2)
)
.

By similar computations using the cancellation of θ~k, we have∣∣∣∣∫
Rn
θ~k(x, u)b(u)ψ~j(u, y)du

∣∣∣∣
. 2−γ(j1−k1)

(
ΦN1
k1

(x1 − y1) + ΦN1
j1

(x1 − y1)
) (

ΦN2
k2

(x2 − y2) + ΦN2
j2

(x2 − y2)
)
.

Then it follows that

|Θ~kMbΨ~jf(x)| . 2−γ|j1−k1|MSf(x).

Our assumptions are symmetric in k1, j1 and k2, j2, so it follows that

|Θ~kMbΨ~jf(x)| . 2−γ|j2−k2|MSf(x).

Then taking the geometric mean of these two estimates, we have

|Θ~kMbΨ~jf(x)| . 2−γ|j1−k1|/22−γ|j2−k2|/2MSf(x).

This completes the proof.

Lemma 4.12. Let b1 ∈ L∞(Rn1) and b2 ∈ L∞(Rn2) be para-accretive functions and Db1
k1

and

Db2
k2

be the operators in (4.1). Also define D~k = Db1
k1
Db2
k2

for ~k ∈ Z2. Then∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~k∈Z2

|D~kf |
2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

. ‖f‖Lp(Rn)

for 1 < p <∞ and f ∈ Lp(Rn).



102 CHAPTER 4. BIPARAMETER LPS THEORY

This proof is essentially the same as the one due to R. Fefferman and Stein in Theorem

2 of [FS82]. We reproduce the argument to demonstrate that there are no problems that

arise by introducing para-accretive perturbations.

Proof. We start by viewing the operator {Db1
k1
} defined initially from L2(Rn1 , `2(Z)) into

L2(Rn1 , `2(Z2)) in the following way: for {Fk2} ∈ L2(Rn1 , `2(Z)), define

{Db1
k1
}({Fk2})(x1) = {Db1

k1
Fk2(x1)}k1,k2∈Z; for x1 ∈ Rn1 .

Let {Fk2} ∈ L2(Rn1 , `2(Z)). For each k2 ∈ Z, we use the square function bound for Db1
k1

from

[DJS85], and it follows that∫
Rn1

∑
k1∈Z

|Db1
k1
Fk2(x1)|2dx1 .

∫
Rn1

|Fk2(x1)|2dx1.

Then it follows that

‖{Db1
k1
}({Fk2})‖2

L2(Rn1 ,`2(Z2)) =
∑
k2∈Z

(∫
Rn1

∑
k1∈Z

|Db1
k1
Fk2(x1)|2dx1

)

.
∑
k2∈Z

(∫
Rn1

|Fk2(x1)|2dx1

)
= ‖{Fk2}‖L2(Rn,`2(Z)).

That is, {Db1
k1
} is bounded from L2(Rn1 , `2(Z)) into L2(Rn1 , `2(Z2)). Now the kernel of

{Db1
k1
} is given by {db1k1(x1, y1)} ∈ L(`2(Z), `2(Z2)) for all x1, y1 ∈ Rn1 , where L(X, Y ) for

Banach spaces X and Y denotes the collection of all linear operators from X into Y . For

fixed x1, y1 ∈ Rn1 , the kernel {db1k1(x1, y1)} is realized as a linear operator by the scalar

multiplication: {ak2} 7→ {db1k1(x1, y1)ak2}(k1,k2)∈Z2 . Furthermore for x1 6= y1

‖{db1k1(x1, y1)}‖L(`2(Z),`2(Z2)) = sup
‖{ak2}‖`2(Z)=1

‖{db1k1(x1, y1)ak2}‖`2(Z2)

= sup
‖{ak2}‖`2(Z)=1

‖{db1k1(x1, y1)}‖`2(Z)‖{ak2}‖`2(Z)

= ‖{db1k1(x1, y1)}‖`2(Z) .
1

|x1 − y1|n1
.

The last inequality is a well-known vector-valued Calderón-Zygmund kernel result, see e.g.

Coifman–Meyer [CM78]. It also follows that

‖{db1k1(x1, y1)} − {db1k1(x
′
1, y1)}‖L(`2(Z),`2(Z2)) .

|x1 − x′1|γ

|x1 − y1|n1+γ
; for |x1 − x′1| < |x1 − y1|/2,



4.2. BIPARAMETER LPS OPERATORS AND SQUARE FUNCTIONS 103

‖{db1k1(x1, y1)} − {db1k1(x1, y
′
1)}‖L(`2(Z),`2(Z2)) .

|y1 − y′1|γ

|x1 − y1|n1+γ
; for |y1 − y′1| < |x1 − y1|/2.

Then {Db1
k1
} is bounded from Lp(Rn1 , `2(Z)) into Lp(Rn1 , `2(Z2)) for 1 < p < ∞ by the

vector-valued Calderón-Zygmund theory developed by Benedek - Calderón - Panzone in

[BCP62] and by Rubio de Francia - Ruiz - Torrea in [RdFRT83]. Alternatively, see Theorem

4.6.1 in Grafakos [Gra08] for a statement of the result applied here. Now we fix f ∈ Lp(Rn)

and define for x2 ∈ Rn2 and k2 ∈ Z,

F x2
k2

(x1) = Db2
k2
f(x) =

∫
Rn2

db2k2(x2, y2)f(x1, y2)dy2.

For almost every x2 ∈ Rn2 , we have {F x2
k2
} ∈ Lp(Rn1 , `2(Z)) and hence

∫
Rn1

∑
~k∈Z2

|D~kf(x)|2


p
2

dx1 =

∫
Rn1

∑
~k∈Z2

|Db1
k1
F x2
k2

(x1)|2


p
2

dx1

= ‖{Db1
k1
}({F x2

k2
})‖Lp(Rn1 ,`2(Z2))

. ‖{F x2
k2
}‖Lp(Rn1 ,`2(Z)) =

∫
Rn1

(∑
k2∈Z

|Db2
k2
f(x)|2

) p
2

dx1. (4.11)

Now integrate both sides of (4.11) in x2, and using the square function bound for Db2
k2

, it

follows that

∫
Rn

∑
~k∈Z2

|D~kf(x)|2


p
2

dx .
∫
Rn1

∫
Rn2

(∑
k2∈Z

|Db2
k2
f(x)|2

) p
2

dx2

 dx1

.
∫
Rn1

[∫
Rn2

|f(x)|pdx2

]
dx1 = ‖f‖pLp(Rn).

This completes the proof.

We prove a lemma analogous to Theorem [Han94].

Lemma 4.13. Let b1 ∈ L∞(Rn1) and b2 ∈ L∞(Rn2) be para-accretive functions and b(x) =

b1(x1)b2(x2) for x = (x1, x2) ∈ Rn. For j = 1, 2 let Dbi
kj

be as in (4.1) and D̃bi
kj

be as in (4.4).

Define E
bj
kj

= D̃kjMbjD
bj
kj

for kj ∈ Z and j = 1, 2. For any differentiable compactly supported

function f : Rn → C such that∫
Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 = 0
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for x = (x1, x2) ∈ Rn, we have the following convergence

lim
T→∞

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<NT

E~jMbf − f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

= 0

for some sequence NT ≥ T .

Proof. Let f : Rn → C be differentiable and compactly supported such that∫
Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 = 0.

For each x2 ∈ Rn2 , f(·, x2) is differentiable, compactly supported, and b1 · f(·, x2) has mean

zero. Then by Theorem 4.7, for every x2 ∈ Rn2

lim
T→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j1|<T

Ej1Mb1f(·, x2)− f(·, x2)

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn1 )

= 0

Since f is compactly supported and the above quantity is bounded uniformly in T , it follows

by dominated convergence that

lim
T→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j1|<T

Ej1Mb1f − f

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Lp(Rn)

=

∫
Rn2

lim
T→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j1|<T

Ej1Mb1f(·, x2)− f(·, x2)

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Lp(Rn1 )

dx2 = 0. (4.12)

We also know that for each T > 0, define

F x1
T (x2) =

∑
|j1|<T

Ej1Mb1f(x1, x2).

It follows that

|F x1
T (x2)| ≤

∑
|j1|<T

|Ej1Mb1f(x1, x2)| ≤ 2TM1f(x) ≤ 2T sup
x1∈Rn1

|f(x1, x2)|.

Therefore F x1
T : Rn2 → C is bounded (depending on T ) and compactly supported. Further-

more

|F x1
T (x2)− F x1

T (y2)| ≤
∑
|j1|<T

|Ej1Mb1f(x1, x2)− f(x1, y2)|
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≤
∑
|j1|<T

∫
Rn2

|d̃b1j1(x2, u2)− d̃b1j1(y2, u2)‖Mb1D
b1
j1
Mb1f(x1, u2)|du2

.
∑
|j1|<T

∫
Rn2

(2j2|x2 − y2|)γ|Db1
j1
Mb1f(x1, u2)|du2

. 2T |x2 − y2|γ
∑
|j1|<T

‖Db1
j1
Mb1f(x1, ·)‖L1(Rn2 )

≤ 2T |x2 − y2|γ
∑
|j1|<T

‖f(x1, ·)‖L1(Rn2 ) ≤ T2T+1‖f(x1, ·)‖L1(Rn2 )|x2 − y2|γ.

Finally, we have that∫
Rn2

F x1
T b2(x2)dx2 =

∑
|j1|<T

Ej1Mb1

∫
Rn2

f(x1, x2)b2(x2)dx2 = 0.

Then by Theorem 4.7, it follows that

lim
N→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j2|<N

Ej2Mb2F
x1
T − F

x1
T

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn2 )

= 0.

Then by dominated convergence

lim
N→∞

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<N

E~jMbf −
∑
|j1|<T

Ej1Mb1f

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Lp(Rn2 )

=

∫
Rn1

lim
N→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j2|<N

Ej2Mb2F
x1
T − F

x1
T

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Lp(Rn2 )

dx1 = 0. (4.13)

For each T > 0, using (4.13) there exists NT > T such that∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<NT

E~jMbf −
∑
|j1|<T

Ej1Mb1f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn2 )

<
1

T
.

This defines the sequence NT , and so now we verify the conclusion of Lemma 4.13. Let ε > 0.

Fix M > 2
ε

large enough so that for T > M∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j1|<T

Ej1Mb1f − f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

<
ε

2
.
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Then ∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<NT

E~jMbf − f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

=

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<NT

E~jMbf −
∑
|j1|<T

Ej1Mb1f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|j1|<T

Ej1Mb1f − f

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

<
1

T
+
ε

2
< ε.

This completes the proof.

Finally, we prove the Lp bounds for the square function associated to a collection of

biparameter Littlewood-Paley-Stein operators.

Theorem 4.14. Let b1 ∈ L∞(Rn1) and b2 ∈ L∞(Rn2) be para-accretive functions, and

define b(x) = b1(x1)b2(x2) for x = (x1, x2) ∈ Rn1+n2. Also let Θ~k for ~k ∈ Z2 be a collection

of biparameter Littlewood-Paley-Stein operators with kernels θ~k. If∫
Rn1

θ~k(x, y)b1(y1)dy1 =

∫
Rn2

θ~k(x, y)b2(y2)dy2 = 0

for all ~k ∈ Z2 and x, y ∈ Rn, then∣∣∣∣∣∣∣∣[∑
~j∈Z

|Θ~kf |
2
] 1

2

∣∣∣∣∣∣∣∣
Lp(Rn)

. ‖f‖Lp(Rn)

for all f ∈ Lp(Rn) when 1 < p <∞.

Proof. Let b(x) = b1(x1)b2(x2) for x = (x1, x2) ∈ Rn, and f, g~k be differentiable, compactly

supported such that ∫
Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 = 0

and ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~k∈Z2

|g~k|
2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp′ (Rn)

≤ 1.
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Let R > 1, and define

ΛR(f) =
∑

|k1|,|k2|<R

∣∣∣∣∫
Rn

Θ~kMbf(x)g~k(x)dx

∣∣∣∣ ,
which satisfies

0 ≤ ΛR(f) .
∫
Rn
MSf(x)

∑
|k1|,|k2|<R

|g~k(x)|dx . R‖f‖Lp . (4.14)

Let S
bj
kj

, D
bj
kj

= S
bj
kj+1 − S

bj
kj

, D̃
bj
kj

, and D~k = Db1
k1
Db2
k2

be the operators defined in (4.1). Also

define E
bj
kj

= D̃
bj
kj
MbjD

bj
kj

and E~k = Eb1
k1
Eb2
k2

, where D̃
bj
kj

are the operators from (4.4) that were

constructed in Theorem 4.7. Let f : Rn → C be continuous, compactly supported such that∫
Rn1

f(x)b1(x1)dx1 =

∫
Rn2

f(x)b2(x2)dx2 = 0

for all x = (x1, x2) ∈ Rn. For T > 1 it follows that

ΛR(f) ≤
∑

|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

Θ~kMb −Θ~kMb

 ∑
|j1|<T,|j2|<NT

E~jMb

 f(x)g~k(x)dx

∣∣∣∣∣∣
+

∑
|k1|,|k2|<R

∣∣∣∣∣∣
∑

|j1|<T,|j2|<NT

∫
Rn

Θ~kMbE~jMbf(x)g~k(x)dx

∣∣∣∣∣∣ = IT + IIT .

where NT are chosen as in Lemma 4.13. We first estimate IT using (4.14):

IT =
∑

|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

Θ~kMb

f(x)−
∑

|j1|<T,|j2|<NT

E~jMbf(x)

 g~k(x)dx

∣∣∣∣∣∣
≤ ΛR

f − ∑
|j1|<T,|j2|<NT

E~jMbf

 . R

∣∣∣∣∣∣
∣∣∣∣∣∣f −

∑
|j1|<T,|j2|<NT

E~jMbf

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

,

which tends to 0 as T → ∞ by Lemma 4.13. Now we estimate IIT by putting the absolute

value inside and summing more terms,

IIT ≤
∑
~k,~j∈Z2

∫
Rn
|Θ~kMbE~jMbf(x)g~k(x)|dx,

So we now estimate IIT . By Lemma 4.11, there exists ε > 0 such that

|Θ~kMbE~jf(x)| . 2−ε|k1−j1|2−ε|k2−j2|MSD~jMbf(x).
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Then it follows that

ΛR(f) ≤
∫
Rn

∑
~j,~k∈Z2

|Θ~kMbE~jMbf(x)g~k(x)|dx

.
∫
Rn

∑
~j,~k∈Z2

2−
ε
2

(|k1−j1|+|k2−j2|)MS

(
D~jMbf

)
(x)|g~k(x)|dx

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∑
~j,~k∈Z2

2−
ε
2

(|k1−j1|+|k2−j2|)
[
MS

(
D~jMbf

)]2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

×

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∑
~j,~k∈Z2

2−
ε
2

(|k1−j1|+|k2−j2|)|g~k|
2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp′ (Rn)

.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~j∈Z2

[
MS

(
D~jMbf

)]2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~k∈Z2

|g~k|
2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp′ (Rn)

.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~j∈Z2

|D~jMbf |2
 1

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

. ‖f‖Lp(Rn)

In the last two lines we use the Fefferman-Stein strong maximal function bound from [FS82]

twice and the multiparameter Littlewood-Paley bound from Lemma 4.12. The estimate for

general functions f ∈ Lp(Rn) follows by density.

Remark 4.15. To prove Theorem 4.14, one does not need to assume that Θ~k for ~k ∈ Z2 is

a collection of biparameter Littlewood-Paley-Stein operators as initially stated in Theorem

4.14. Instead, we only need to assume that θ~k satisfies (4.5), (4.8), and (4.9). In short, we

can remove the assumption that θ~k satisfies conditions (4.6) and (4.7) from Theorem 4.14.

In particular, this means that the square function associated to D̃∗~k is bounded as well: let

D̃b1
k1

and D̃b2
k2

be the operators constructed in Theorem 4.7. Define D̃~k = D̃b1
k1
D̃b2
k2

for ~k ∈ Z2,

and it follows that ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~k∈Z2

|D̃∗~kf |
2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

. ‖f‖Lp

for all f ∈ Lp(Rn) when 1 < p <∞.
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Next we prove a sort of dual pairing bound for biparameter Littlewood-Paley-Stein opera-

tors. This is the estimate that we use to bound the truncations of singular integral operators

in the next chapter.

Proposition 4.16. Let Θ~k be a collection of biparameter Littlewood-Paley-Stein operators

with kernels θ~k for ~k ∈ Z2 and b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) be para-accretive

functions. If ∫
R
nj

θ~k(x, y)bj(yj)dyj =

∫
R
nj

θ~k(x, y)b̃j(xj)dxj = 0

for j = 1, 2, then for all f ∈ Lp(Rn) and g ∈ Lp′(Rn)

∑
k1,k2∈Z

∣∣∣∣∫
Rn

Θ~kMbf(x)b̃(x)g(x)dx

∣∣∣∣ . ‖f‖Lp(Rn)‖g‖Lp′ (Rn),

where b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn.

Proof. Let f, g be differentiable, compactly supported functions such that∫
Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 =

∫
Rn1

g(x)b̃(x)dx1 =

∫
Rn2

g(x)b̃(x)dx2 = 0.

Define for R > 1

ΛR(f, g) =
∑

|k1|,|k2|<R

∣∣∣∣∫
Rn

Θ~kMbf(x)b̃(x)g(x)dx

∣∣∣∣ ,
which satisfies

0 ≤ ΛR(f, g) .
∑

|k1|,|k2|<R

‖MSf‖Lp(Rn)‖g‖Lp′ (Rn) . R2‖f‖Lp‖g‖Lp′ . (4.15)

Let S
bj
kj

, D
bj
kj

= S
bj
kj+1 − S

bj
kj

, D̃
bj
kj

, Db
~k

= Db1
k1
Db2
k2

, and D̃b
~k

= D̃b1
k1
D̃b2
k2

be the operators defined

in (4.1). Also define E
bj
kj

= D̃
bj
kj
MbjD

bj
kj

and Eb
~k

= Eb1
k1
Eb2
k2

, where D̃
bj
kj

are the operators

constructed in Theorem 2.3 in [Han94]. We also construct the corresponding operators with

bj replaced by b̃j. Then for f, g ∈ Cδ
0(Rn) for some 0 < δ ≤ 1 where bf and b̃g have mean

zero and T > 1, it follows that

ΛR(f, g) ≤ IT + IIT + IIIT ,
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where

IT =
∑

|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

Θ~kMb −Θ~kMb

 ∑
|j1|<T,|j2|<NT

Eb
~j
Mb

 f(x)Mb̃g(x)dx

∣∣∣∣∣∣ ,
IIT =

∑
|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

Θ~kMb

 ∑
|j1|<T,|j2|<NT

Eb
~j
Mb


−

 ∑
|m1|<T,|m2|<MT

E b̃
~mMb̃

Θ~kMb

 ∑
|j1|<T,|j2|<NT

Eb
~j
Mb

 f(x)Mb̃g(x)dx

∣∣∣∣∣∣ ,
IIIT =

∑
|k1|,|k2|<R

∣∣∣∣∣∣
∑

|j1|<T,|j2|<NT ,|m1|<T,|m2|<MT

∫
Rn
E b̃
~mMb̃Θ~kMbE

b
~j
Mbf(x)Mb̃g(x)dx

∣∣∣∣∣∣ ,
where NT and MT are chosen as in Lemma 4.13 for f and g respectively. We first estimate

IT using (4.15) and Lemma 4.13:

IT =
∑

|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

Θ~kMb

f(x)−
∑

|j1|<T,|j2|<NT

Eb
~j
Mbf(x)

Mb̃g(x)dx

∣∣∣∣∣∣
≤ ΛR

f − ∑
|j1|<T,|j2|<NT

Eb
~j
Mbf, g

 . R

∣∣∣∣∣∣
∣∣∣∣∣∣f −

∑
|j1|<T,|j2|<NT

Eb
~j
Mbf

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

‖g‖Lp′ (Rn),

which tends to 0 as T →∞. Now we estimate IIT again using (4.15) and Lemma 4.13,

IIT =
∑

|k1|,|k2|<R

∣∣∣∣∣∣
∫
Rn

I−
∑

|m1|<T,|m2|<MT

E b̃
~mMb̃

Θ~kMb

 ∑
|j1|<T,|j2|<NT

Eb
~k
Mb

 f(x)Mb̃g(x)dx

∣∣∣∣∣∣
= ΛR

 ∑
|j1|<T,|j2|<NT

Eb
~j
Mbf, g −

∑
|m1|<T,|m2|<MT

E b̃
~mMb̃g


. R

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|j1|<T,|j2|<NT

Eb
~j
Mbf

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(Rn)

∣∣∣∣∣∣
∣∣∣∣∣∣g −

∑
|m1|<T,|m2|<MT

E b̃
~mMb̃g

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp′ (Rn)

. R‖f‖Lp(Rn)

∣∣∣∣∣∣
∣∣∣∣∣∣g −

∑
|m1|<T,|m2|<MT

E b̃
~mMb̃g

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp′ (Rn)

,

where I is the identity operator. This term also tends to 0 as T → ∞ by Lemma 4.13. So
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we are left with the third term, to estimate ΛR

ΛR(f, g) ≤ lim
T→∞

∑
|k1|,|k2|<R

∣∣∣∣∣∣
∑

|j1|<T,|j2|<NT ,|m1|<T,|m2|<MT

∫
Rn
E b̃
~mMb̃Θ~kMbE

b
~j
Mbf(x)Mb̃g(x)dx

∣∣∣∣∣∣
≤

∑
~k,~j,~m∈Z2

∣∣∣∣∫
Rn
MbD

b̃
~mMb̃Θ~kMbE

b
~j
Mbf(x)(D̃b̃

~m)∗Mb̃g(x)dx

∣∣∣∣ . (4.16)

So we now estimate (4.16). By Lemma 4.11, there exists ε > 0 such that

|Db̃
~mMb̃Θ~kMbE

b
~j
f(x)| . 2−ε|m1−k1|2−ε|m2−k2|M2

SD
b
~j
f(x), and

|Db̃
~mMb̃Θ~kMbE

b
~j
f(x)| .MS(Θ~kMbE

b
~j
f)(x) . 2−ε|k1−j1|2−ε|k2−j2|M2

SD
b
~j
f(x).

Therefore we also have

|Db̃
~mMb̃Θ~kMbE

b
~j
f(x)| . 2−

ε
2

(|m1−k1|+|m2−k2|+|k1−j1|+|k2−j2|M2
SD

b
~j
f(x). (4.17)

Using (4.17) we have∫
Rn

∑
~j,~k,~m∈Z2

|Mb̃D
b̃
~mMb̃Θ~kMbE

b
~j
Mbf(x)(D̃b̃

~m)∗Mb̃g(x)|dx

.
∫
Rn

∑
~j,~k,~m∈Z2

2−
ε
2

(|m1−k1|+|m2−k2|+|k1−j1|+|k2−j2|)M2
S

(
Db
~j
Mbf

)
(x)(D̃b̃

~m)∗Mb̃g(x)|dx

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∑
~j,~k,~m∈Z2

2−
ε
2

(|m1−k1|+|m2−k2|+|k1−j1|+|k2−j2|)
[
M2

S

(
Db
~j
Mbf

)]2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

×

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∑
~j,~k,~m∈Z2

2−
ε
2

(|m1−k1|+|m2−k2|+|k1−j1|+|k2−j2|)|(D̃b̃
~m)∗Mb̃g|

2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp′ (Rn)

.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~j∈Z2

[
M2

S

(
Db
~j
Mbf

)]2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

∣∣∣∣∣∣
∣∣∣∣∣∣
(∑
~m∈Z2

|(D̃b̃
~m)∗Mb̃g|

2

) 1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp′ (Rn)

.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
~j∈Z2

|Db
~j
Mbf |2

 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

‖g‖Lp′ (Rn) . ‖f‖Lp(Rn)‖g‖Lp′ (Rn)

In the last two lines we use the Fefferman-Stein maximal function bound from [FS82] twice

and the biparameter Littlewood-Paley-Stein bound proved in Theorem 4.14. Recall that the
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square function associated to (D̃b̃
~m)∗ is bounded on Lp(Rn) for 1 < p < ∞ from Remark

4.15. The estimate for general functions f ∈ Lp(Rn) and g ∈ Lp′(Rn) follows by density.



Chapter 5

A reduced biparameter Tb theorem

In this chapter we use the theory developed so far to prove a reduced Tb theorem. In the

first section we define biparameter singular integral operators of Calderòn-Zygmund type

associated to para-accretive functions and we define what we called the biparameter weak

boundedness and the mixed biparameter weak boundedness properties. The second section

is devoted to the proof of our reduced Tb theorem.

5.1 Biparameter singular integral operators

We start defining standard kernels.

Definition 5.1. We say that K a standard biparameter kernel on Rn = Rn1 × Rn2 if it

satisfies the following conditions:

|K(x, y)| . 1

|x1 − y1|n1 |x2 − y2|n2
for |x1 − y1|, |x2 − y2| 6= 0 (5.1)

|K(x, y)−K(x′1, x2, y)−K(x1, x
′
2, y) +K(x′1, x

′
2, y)| . |x1 − x′1|γ|x2 − x′2|γ

|x1 − y1|n1+γ|x2 − y2|n2+γ
(5.2)

whenever |x1 − x′1| < |x1 − y1|/2 and |x2 − x′2| < |x2 − y2|/2,

|K(x, y)−K(x, y′1, y2)−K(x, y1, y
′
2) +K(x, y′1, y

′
2)| . |y1 − y′1|γ|y2 − y′2|γ

|x1 − y1|n1+γ|x2 − y2|n2+γ
(5.3)

whenever |y1 − y′1| < |x1 − y1|/2 and |y2 − y′2| < |x2 − y2|/2.,

|K(x, y)−K(x, y′1, y2)−K(x1, x
′
2, y) +K(x1, x

′
2, y
′
1, y2)| . |y1 − y′1|γ|x2 − x′2|γ

|x1 − y1|n1+γ|x2 − y2|n2+γ
(5.4)

whenever |y1 − y′1| < |x1 − y1|/2 and |x2 − x′2| < |x2 − y2|/2.,

113
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|K(x, y)−K(x, y1, y
′
2)−K(x′1, x2, y) +K(x′1, x2, y1, y

′
2)| . |x1 − x′1|γ|y2 − y′2|γ

|x1 − y1|n1+γ|x2 − y2|n2+γ
(5.5)

whenever |x1 − x′1| < |x1 − y1|/2 and |y2 − y′2| < |x2 − y2|/2.

Now we give the definition of biparameter singular integral operator of Caldeón-Zygmund

type associated to para-accretive functions. We recall that bC0,δ
0 (Rn) is defined in Definition

4.1.

Definition 5.2. Let b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) be para-accretive functions and

define b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn. A linear operator

T that is continuous from bC0,δ
0 (Rn) into (b̃C0,δ

0 (Rn))′ for some 0 < δ ≤ 1 is a biparameter

singular integral operator of Calderón-Zygmund type associated to b, b̃ if

〈Mb̃TMbf, g〉 =

∫
Rn
K(x, t)f(t)g(x)b̃(x)b(y)dx dy

is an absolutely convergent integral whenever f, g ∈ C0,δ
0 (Rn) and⋃

x1,y1∈Rn1
supp(f(y1, ·)) ∩ supp(g(x1, ·)) =

⋃
x2,y2∈Rn2

supp(f(·, y2)) ∩ supp(g(·, x2)) = ∅.

We end this section stating the boundedness properties that we will need to assume for

our operator T in order to prove our Tb theorem. Before, we recall what a normalized bump

is.

Definition 5.3. A function φ ∈ C∞0 (Rn) is a normalized bump of order m ∈ N if supp(φ) ⊂
B(0, 1) ⊂ Rn and for all α ∈ Nn

0 with |α| ≤ m

‖∂αφ‖L∞(Rn) ≤ 1.

Then,

Definition 5.4. Let T be a biparameter singular integral operator of Calderón-Zygmund

type associated to b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn, where

b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) are para-accretive functions. We say T satisfies

the biparameter weak boundedness property if there exists m ∈ N such that the following

holds: let ϕj, ψj ∈ C∞0 (Rnj) be normalized bumps of order m. Let x = (x1, x2) ∈ Rn and

R1, R2 > 0. Assume that either b1ϕ
x1,R1

1 or b̃1ψ
x1,R1

1 has mean zero and that either b2ϕ
x2,R2

2

or b̃2ψ
x2,R2

2 has mean zero. Then∣∣∣〈Mb̃TMb(ϕ
x1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣ . Rn1
1 R

n2
2 , (5.6)
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where ϕxj ,Rj(uj) = ϕ
(
uj−xj
Rj

)
.

Definition 5.5. Let T be a biparameter singular integral operator of Calderón-Zygmund

type associated to b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn, where

b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) are para-accretive functions. We say T satisfies the

mixed biparameter weak boundedness property if there existsm ∈ N and 0 < γ ≤ 1 such that

the following two conditions hold: (1) Let be R1, R2 > 0, x1, y1 ∈ Rn1 with |x1 − y1| > 4R1,

and x2 ∈ Rn2 and let ϕj, ψj ∈ C∞0 (Rnj) be normalized bumps of order m. Then∣∣∣〈Mb̃TMb(ϕ
y1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣ . Rn1
1 R

n2
2

(R−1
1 |x1 − y1|)n1

. (5.7)

Further assume that either b1ϕ
y1,R1

1 or b̃1ψ
x1,R1

1 has mean zero and that either b2ϕ
x2,R2

2 or

b̃2ψ
x2,R2

2 has mean zero. Then∣∣∣〈Mb̃TMb(ϕ
y1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣ . Rn1
1 R

n2
2

(R−1
1 |x1 − y1|)n1+γ

. (5.8)

(2) Let be R1, R2 > 0, x2, y2 ∈ Rn1 with |x2 − y2| > 4R2, and x2 ∈ Rn2 and let ϕj, ψj ∈
C∞0 (Rnj) be normalized bumps of order m. Then∣∣∣〈Mb̃TMb(ϕ

x1,R1

1 ⊗ ϕy2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣ . Rn1
1 R

n2
2

(R−1
2 |x2 − y2|)n2

. (5.9)

Further assume that either b1ϕ
x1,R1

1 or b̃1ψ
x1,R1

1 has mean zero and that either b2ϕ
y2,R2

2 or

b̃2ψ
x2,R2

2 has mean zero. Then,∣∣∣〈Mb̃TMb(ϕ
x1,R1

1 ⊗ ϕy2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣ . Rn1
1 R

n2
2

(R−1
2 |x2 − y2|)n2+γ

. (5.10)

Definition 5.6. A biparameter singular integral operator satisfies the biparameter Tb =

T ∗b̃ = 0 condition if the following two conditions hold: (1) Let ψ1 ∈ C∞0 (Rn1), ψ2, ϕ2 ∈
C∞0 (Rn2), and ηR ∈ C∞0 (Rn1) such that ηR = 1 on B1(0, R) ⊂ Rn1 and supp(ηR) ⊂
B1(0, 2R) ⊂ Rn1 . If b1ψ1 has mean zero and either b2ϕ2 or b2ψ2 has mean zero, then〈

T (b1 ⊗ b2ψ2), b̃1ψ1 ⊗ b̃2ϕ2

〉
:= lim

R→∞
〈Mb̃TMb(ηR ⊗ ψ2), ψ1 ⊗ ϕ2〉 = 0, (5.11)〈

T (b1ψ1 ⊗ b2ψ2), b̃1 ⊗ b̃2ϕ2

〉
:= lim

R→∞
〈Mb̃TMb(ψ1 ⊗ ψ2), ηR ⊗ ϕ2〉 = 0, (5.12)

and (2) let ψ2 ∈ C∞0 (Rn2), ψ1, ϕ1 ∈ C∞0 (Rn1), and ηR ∈ C∞0 (Rn2) such that ηR = 1 on

B2(0, R) ⊂ Rn1 and supp(ηR) ⊂ B2(0, 2R) ⊂ Rn2 . If b2ψ2 has mean zero and either b1ϕ1 or

b1ψ1 has mean zero, then〈
T (b1ψ1 ⊗ b2), b̃1ϕ1 ⊗ b̃2ψ2

〉
:= lim

R→∞
〈Mb̃TMb(ψ1 ⊗ ηR), ϕ1 ⊗ ψ2〉 = 0,
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T (b1ψ1 ⊗ b2ψ2), b̃1ϕ1 ⊗ b̃2

〉
:= lim

R→∞
〈Mb̃TMb(ψ1 ⊗ ψ2), ϕ1 ⊗ ηR〉 = 0.

5.2 The proof of the theorem

In this section we finally prove our Tb theorem.

Theorem 5.7. Let b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) be para-accretive functions, and

define b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn1+n2. Also let T be a

biparameter operator of Calderón-Zygmund type associated to b and b̃. If T satisfies the weak

boundedness property, mixed weak boundedness properties, and the Tb = T ∗b̃ = 0 conditions,

then T can be continuously extended to a bounded linear operator on Lp(Rn) for 1 < p <∞.

To prove our theorem, we need the following fundamental lemma.

Lemma 5.8. Suppose b1, b̃1 ∈ L∞(Rn1) and b2, b̃2 ∈ L∞(Rn2) are para-accretive functions,

and define b(x) = b1(x1)b2(x2) and b̃(x) = b̃1(x1)b̃2(x2) for x = (x1, x2) ∈ Rn. Let T be

a biparameter singular integral operator of Calderón-Zygmund type associated to b and b̃

with standard biparameter kernel K. Also assume that Mb̃TMb satisfies the biparameter

weak boundedness and the mixed weak boundedness properties. Define Θ~k for ~k ∈ Z2 by

integration against its kernel θ~k, as in (4.10), where

θ~k(x, y) =
〈
Mb̃TMb(s

b1
k1

(·, y1)⊗ sb2k2(·, y2)), db̃1k1(x1, ·)⊗ db̃2k2(x2, ·)
〉
. (5.13)

Then Θ~k for ~k ∈ Z2 is a collection of Littlewood-Paley-Stein operators and∫
Rn1

θ~k(x, y)b̃1(x1)dx1 =

∫
Rn2

θ~k(x, y)b̃2(x2)dx2 = 0.

Proof. Fix x, y ∈ Rn such that |x1 − y1| ≤ 2−k1+2 and |x2 − y2| ≤ 2−k2+2. Then using (5.6)

|θ~k(x, y)|

= 22k1n122k2n2

∣∣∣∣〈Mb̃TMb

(
φ
x1+y1

2
,2−k1+2

1 ⊗ φ
x2+y2

2
,2−k2+2

2

)
, φ

x1+y1
2

,2−k1+2

3 ⊗ φ
x2+y2

2
,2−k2+2

4

〉∣∣∣∣
. 2k1n12k2n2 . Φn1+γ

k1
(x1 − y1)Φn2+γ

k2
(x2 − y2).

where φ1, φ2, φ3, φ4 are normalized bumps of order m (up to a constant multiple independent

of x, y, and ~k) of the form

φ1(u1) = 2−k1n1sb1k1

(
2−k1+2u1 +

x1 + y1

2
, y1

)
φ2(u2) = 2−k2n2sb2k2

(
2−k2+2u1 +

x2 + y2

2
, y2

)
,
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φ3(v1) = 2−k1n1db̃1k1

(
x1, 2

−k1+2v1 +
x1 + y1

2

)
φ4(v2) = 2−k2n2db̃2k2

(
x2, 2

−k2+2v2 +
x2 + y2

2

)
.

It is not hard to verify that 2k1n1φ
x1+y1

2
,2−k1+2

1 (u1) = sk1(u1, y1) for u1 ∈ Rn1 and likewise

for the other three terms. This completes the proof of (4.5) when both x1, y1 and x2, y2 are

close. Now fix x, y ∈ Rn such that |x1 − y1| > 2−k1+2 and |x2 − y2| > 2−k2+2. It follows that

supp(sb1k1(·, y1)) ∩ supp(db̃1k1(x1, ·)) = supp(sb2k2(·, y2)) ∩ supp(db̃2k2(x2, ·)) = ∅.

Then we can use the kernel representation of T to write

|θ~s(x, y)| =
∣∣∣∣∫
R2n

K(u, v)sb1k1(v1, y1)db̃1k1(x1, u1)sb2k2(v2, y2)db̃2k2(x2, u2)b̃(u)b(v)du dv

∣∣∣∣
.

∫
R2n

|K(u, v)−K(x1, u2, v1, v2)−K(u1, x2, v1, v2) +K(x1, x2, v1, v2)|

× |sb1k1(v1, y1)db̃1k1(x1, u1)sb2k2(v2, y2)db̃2k2(x2, u2)|du dv

≤
∫
|yi−vi|<2−ki

∫
|xi−ui|<2−ki

|x1 − u1|γ|x2 − u2|γ

|x1 − v1|n1+γ|x2 − v2|n2+γ
22k1n122k2n2du dv

≤
∫
|yi−vi|<2−ki

∫
|xi−ui|<2−ki

2k1(2n1−γ)2k2(2n2−γ)

(|x1 − y1|/2 + 2−k1)n1+γ(|x2 − y2|/2 + 2−k2)n2+γ
du dv

.
2−γk12−γk2

(|x1 − y1|+ 2−k1)n1+γ(|x2 − y2|+ 2−k2)n2+γ
= Φn1+γ

k1
(x1 − y1)Φn2+γ

k2
(x2 − y2).

Fix x, y ∈ Rn such that |x1 − y1| ≤ 2−k1+2 and |x2 − y2| > 2−k2+2. Then we can write

|θ~s(x, y)| =
∣∣∣〈Mb̃TMb

(
sb1k1(·, y1)⊗ sb2k2(·, y2)

)
, db̃1k1(x1, ·)⊗ db̃2k2(x2, ·)

〉∣∣∣
= 22k1n122k2n2

∣∣∣∣〈Mb̃TMb

(
φ̃y1,2

−k1
1 ⊗ φ

x2+y2
2

,2−k2+2

2

)
, φ̃x1,2

−k1
3 ⊗ φ

x2+y2
2

,2−k2+2

4

〉∣∣∣∣ ,
where

φ̃1(u1) = 2−k1n1sb1k1(2
−ku1 + y1, y1) and φ̃3(v1) = 2−k1n1db̃1k1(x1, 2

−kv1 + x1)

again are normalized bumps of order m (up to a constant multiple independent of x, y, and

~k). Since |x2 − y2| > 4 · 2−k2 , we can apply (5.10) to obtain the following estimate.

|θ~k(x, y)| . 22k1n122k2n2

(
2−k1n12−k2n2

(2k2|x2 − y2|)n2+γ

)
.

2k1n12k2n2

(1 + 2k2|x2 − y2|)n2+γ
. Φn1+γ

k1
(x1 − y1)Φn2+γ

k2
(x2 − y2).
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A similar argument using (5.8) proves that (4.5) holds when |x1−y1| > 2−k1+2 and |x2−y2| ≤
2−k2+2. This verifies that θ~k satisfies condition (4.5) for all x, y ∈ Rn. Now to verify (4.6),

recall that for W ∈ (C∞0 (Rn))′, f ∈ C∞0 (Rn), and x ∈ Rn, F (x) = 〈W, fx〉 is a differentiable

function where ∂xiF (x) = 〈W, (∂xif)x〉. Then θ~k is differentiable, and we can estimate

|∇x1θ~k(x, y)|2 =

n1∑
j=1

∣∣∣〈Mb̃TMb(s
b1
k1

(·, y1)⊗ sb2k2(·, y2)), ∂x1,j(d
b̃1
k1

(x1, ·))⊗ db̃2k2(x2, ·)
〉∣∣∣2

. 22k1(n1+1)22k2n2 ,

since 2−k1(n1+1)∂x1,j(d
b̃1
k1

(x1, ·)) is again a normalized bump for x1 = (x1,1, ..., x1,n1) ∈ Rn1 (up

to a constant multiple independent of x, y, and ~k). Therefore

|θ~k(x, y)− θ~k(x
′
1, x2, y)| ≤ ||∇x1θ~k(x, y)||L∞ |x1 − x′1| . 2k1n12k2n2(2k1|x1 − x′1|).

This proves that θ~k verifies (4.6) via the equivalence in Remark 4.10. By the same argu-

ment, it follows that θ~k verifies (4.7)-(4.9). Now by the continuity of T from bCδ
0(Rn) into

(b̃Cδ
0(Rn))′, we have that∫

Rn1

θ~k(x, y)b̃1(x1)dx1 = lim
R→∞

〈
Mb̃TMb(s

b1
k1

(·, y1)⊗ sb2k2(·, y2)), λR,k1 ⊗ db̃2k2(x2, ·)
〉

where

λR,k1(u1) =

∫
|x1|≤R

db̃1k1(x1, u1)b̃1(x1)dx1.

Note that for |u1| > R+ 2−k1 , we have |u1−x1| ≥ |u1| − |x1| > 2−k1 and hence λR,s1(u1) = 0

for such u1. Also for |u1| < R − 2−k1 and x ∈ supp(db̃1k1(·, u1)), it follows that |x1| ≤
|u1| + |u1 − x1| < R. Since Db̃1

k1
b̃1 = 0, λR,s1(u1) = 0 for |u1| < R − 2−k1 . That is

supp(λR,s1) ⊂ B(0, R+ 2−k1)\B(0, R− 2−k1). Now take R > |y1|+ 2−k1+1 so that λR,k1 and

sb1k1(·, y1) have disjoint support. Now we split into two cases: (1) where |x2 − y2| ≤ 2−k1+2

and (2) where |x2 − y2| > 2−k2+2.

Case 1: (|x2 − y2| ≤ 2−k1+2) Here we take R > 2−k1+6 + 2|y1|. Consider

B = {B(u1, 2
−k1) : u1 ∈ supp(λR,k1)},

which is an open cover of supp(λR,k1). Then by Vitali’s covering lemma, there exists finite

collection {B1, ..., BJ} ⊂ B of disjoint balls such that {3B1, ..., 3BJ} forms an open cover
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of supp(λR,k1). Let cj ∈ Rn1 be the center of Bj for each j = 1, .., J . Fix χ ∈ C∞0 (Rn1)

such that χ = 1 on B(0, 1) and supp(χ) ⊂ B(0, 2). Let χ̃j(u1) = χ
( u1−cj

3·2−k1
)
, and it follows

that χ̃j = 1 on 3Bj and χ̃j is supported inside 6Bj. Finally define the partition of unity for

3B1 ∪ · · · ∪ 3BJ ,

χj(u1) =
χ̃j(u1)∑J
k=1 χ̃k(u1)

for j = 1, ..., J.

Let m ∈ N0 be the integer specified by the weak boundedness and mixed weak boundedness

properties for MbTMb. It follows that

ηj(u1) =
1

max|α|≤m ||∂α(λR,k1χj)||L∞
χj(2

−k1+3u1 + cj)λR,k1(2
−k1+3u1 + cj)

is a normalized bump of order m for each j = 1, ..., J . Note that for each β ∈ Nn1
0 with

|β| ≤ |α| ≤ m

|∂βλR,k1(u1)| ≤
∫
|x1|≤R

|∂βu1d
b̃1
k1

(x1, u1)b̃1(x1)|dx1

≤ 2k1|β|
∫
Rn1

|∂βu1d
b̃1
k1

(x1, u1)b̃1(x1)|dx1 . 2k1|β|.

The importance here is that this estimate does not depend on R; it does depend on k1 and

β, but since we are taking a limit in R for a fixed k1 and |β| ≤ m, this is not of consequence.

Likewise for |β| ≤ |α| ≤ m and u ∈ supp(λR,k1) ∩ 3Bj

|∂βχj(u)| =

∣∣∣∣∣∂β
[

χ̃
(
3
u1−cj
2−k1

)∑J
k=1 χ̃k

(
3
u1−cj
2−k1

)]∣∣∣∣∣ = 3|β|2|β|k1

∣∣∣∣∣
∣∣∣∣∣∂β
[

χ̃∑J
k=1 χ̃k

]∣∣∣∣∣
∣∣∣∣∣
L∞(B(0,1))

≤ Aβ2|β|k1 ,

for some constant Aβ > 0 depending only on β ∈ Nn1
0 . Note that we use χ̃j ∈ C∞0 (Rn1) and∑J

k=1 χ̃k ≥ 1 on supp(λR,k1)∩3Bj. Again the importance here is that this estimate does not

depend on R; it does depend on k1, β, and derivatives of χ, but that is not a problem. Also

define φ(u1) = 2−k1n1sb1k1(2
−k1+3u1 + y1, y1), and it follows that φ is a normalized bump up to

a constant multiple. We now use that

J∑
j=1

max
|α|≤m

||∂α(λR,k1χj)||L∞η
cj ,2
−k1+3

j (u1) =
J∑
j=1

χj(u1)λR,k1(u1) = λR,k1(u1),

φy1,2
−k1+3

(u1) = 2−k1n1sb1k1

(
2−k1+3u1 − cj

2−k1+3
+ y1, y1

)
= 2−k1n1sb1k1(u1, y1),



120 CHAPTER 5. A REDUCED BIPARAMETER TB THEOREM

and since R > 2−k1+6 + 2|y1|, it follows that

|cj − y1| ≥ |cj| − |y1| ≥ R− 2−k1 − |y1| > 2−k1+6 − 2−k1 ≥ 4 · 2−k1+3.

Then we can apply (5.7) in the following way∣∣∣〈Mb̃TMb(s
b1
k1

(·, y1)⊗ sb2k2(·, y2)), λR,k1 ⊗ db̃2k2(x2, ·)
〉∣∣∣

≤
J∑
j=1

max
|α|≤m

||∂α(λR,k1χj)||L∞
∣∣∣〈T (φy1,2

−k1+3 ⊗ sk2(·, y2)), η
cj ,2
−k1+3

j ⊗ db̃2k2(x2, ·)
〉∣∣∣

≤
J∑
j=1

Ak1,m
2k2n22−k1n1

(2k1 |y1 − cj|)n1
.

J∑
j=1

Ak1,m
2k2n22−2k1n1

Rn1
= Ak1,m

2k2n22−2k1n1

Rn1
J,

where Ak1,m = max
|β|+|γ|≤m

2k1(|β|+|γ|)Aγ.

Now we use that B1, ..., BJ is a disjoint collection of open sets to estimate J :

J . 2−k1n1

J∑
j=1

|Bj| = 2−k1n1

∣∣∣∣∣
J⋃
j=1

Bj

∣∣∣∣∣ ≤ 2−k1n1|B(0, R + 2−k1+3)\B(0, R− 2−k1+3)|

. 2−k1(n1+1)Rn1−1.

Note that each Bj ⊂ B(0, R + 2−k1+3)\B(0, R − 2−k1+3) since cj ∈ supp(λR,k1) ⊂ B(0, R +

2−k1+3)\B(0, R− 2−k1+3) and each Bj has radius 2−k1 . Therefore∣∣∣〈Mb̃TMb(sk1(·, y1)⊗ sk2(·, y2)), λR,k1 ⊗ db̃2k2(x2, ·)
〉∣∣∣

. Ak1,m
2−k1(2n1+γ)2k2n2

Rn1
2−k1(n1+1)Rn1−1 = Ak1,m

2−k1(n1−1)2k2n2

R
,

which tends to zero as R→∞. This completes the proof for the first case.

Case 2: (|x2 − t2| > 2−k2+2) Since λR,k1 and sk1(·, y1) have disjoint support, we can use the

full kernel representation for T to compute∣∣∣〈Mb̃TMb(s
b1
k1

(·, y1)⊗ sb2k2(·, y2)), λR,k1 ⊗ db̃2k2(x1, ·)
〉∣∣∣

=

∣∣∣∣∫∫
R2n

K(u, v)sb1k1(v1, y1)sb2k2(v2, y2)λR,k1(u1)db̃2k2(x2, u2)b̃(u)b(v)du dv

∣∣∣∣
.

∫∫
R2n

1

|u1 − v1|n1|u2 − v2|n2
|sb1k1(v1, y1)sb2k2(v2, y2)λR,k1(u1)db̃2k2(x2, u2)|du dv
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.
∫∫
R2n

2k2n2

(|u1| − |t1| − |t1 − v1|)n1
|sb1k1(v1, y1)sb2k2(v2, y2)λR,k1(u1)db̃2k2(x2, u2)|du dv

. 2k2n2R−n1

∫
Rn1

|λR,s1(u1)|du1 . 2k2n22−k1R−1,

which again tends to zero as R → ∞. Therefore θ~k has integral zero in x1, and a similar

argument proves that it has integral zero in x2 as well.

By symmetry, it follows that each of the following define collections of biparameter

Littlewood-Paley-Stein operators:

θ2
~k
(x, y) =

〈
Mb̃TMb(s

b1
k1

(·, y1)⊗ db2k2(·, y2)), db̃1k1(x1, ·)⊗ sb̃2k2(x2, ·)
〉
,

θ3
~k
(x, y) =

〈
Mb̃TMb(d

b1
k1

(·, y1)⊗ sb2k2(·, y2)), sb̃1k1(x1, ·)⊗ db̃2k2(x2, ·)
〉
, and

θ4
~k
(x, y) =

〈
Mb̃TMb(d

b1
k1

(·, y1)⊗ db2k2(·, y2)), sb̃1k1(x1, ·)⊗ sb̃2k2(x2, ·)
〉
.

Furthermore, these kernels satisfy∫
Rn1

θ2
~k
(x, y)b̃1(x1)dx1 =

∫
Rn2

θ2
~k
(x, y)b2(y2)dy2 = 0,∫

Rn1

θ2
~k
(x, y)b1(y1)dy1 =

∫
Rn2

θ2
~k
(x, y)b̃2(x2)dx2 = 0, and∫

Rn1

θ2
~k
(x, y)b1(y1)dy1 =

∫
Rn2

θ2
~k
(x, y)b2(y2)dy2 = 0.

Finally, we are able to prove Theorem 5.7

Proof. Let Sb~k = Sb1k1 ⊗ S
b2
k2

and S b̃~k = S b̃1k1S
b̃2
k2

, where Sb1k1 , S
b2
k2

, S b̃1k1 , and S b̃2k2 be the approxi-

mations to identity with respect to b1 and b2 respectively constructed in (4.1). Also define

Db1
k1

= Sb1k1+1 − S
b1
k1

, Db2
k2

= Sb2k2+1 − S
b2
k2

, Db̃1
k1

= S b̃1k1+1 − S
b̃1
k1

, Db̃2
k2

= S b̃2k2+1 − S
b̃2
k2

, Db
~k

= Db1
k1
Db2
k2

,

and Db̃
~k

= Db̃1
k1
Db̃2
k2

. It follows that MbjS
bj
kj
Mbjfj → bjfj and MbjS

bj
−kjMbjfj → 0 in bjC

δ
0(Rnj)

as kj →∞ for j = 1, 2, whenever fj ∈ C0,1
0 (Rnj) and∫

R
nj

fj(xj)bj(xj)dxj = 0.

This was proved originally in [DJS85], and the proof is also available in [Har13a]. It follows

that MbjS
bj
kj
Mbf → bf and MbjS

bj
−kjMbfj → 0 in bCδ

0(Rn) as kj →∞ for j = 1, 2, whenever

f ∈ C0,1
0 (Rn) and ∫

Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 = 0.
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Let f, g ∈ C0,1
0 (Rn) such that∫

Rn1

f(x)b(x)dx1 =

∫
Rn2

f(x)b(x)dx2 =

∫
Rn1

g(x)b̃(x)dx1 =

∫
Rn2

g(x)b̃(x)dx2 = 0.

Then by the continuity of T from bCδ
0(Rn) into (b̃Cδ

0(Rn))′,

〈Mb̃TMbf, g〉 = lim
N2→∞

〈
Mb̃2

TMb2S
b2
N2
Mbf, S

b̃
N2
Mbg

〉
−
〈
Mb̃2

TMb2S
b2
−N2

Mbf, S
b̃2
−N2

Mb̃g
〉

=
∑
k2∈Z

〈
Mb̃2

TMb2S
b2
k2+1Mbf,D

b̃2
k2
Mb̃g

〉
−
〈
Mb̃2

TMb2D
b2
k2
Mbf, S

b̃2
k2
Mb̃g

〉
=
∑
k2∈Z

lim
N1→∞

〈
Mb̃TMbS

b2
k2+1S

b1
N1
Mbf,D

b̃2
k2
S b̃1N1

Mb̃g
〉

+
〈
Mb̃TMbD

b2
k2
Sb1N1

Mbf, S
b̃2
k2
S b̃1N1

Mb̃g
〉

−
〈
Mb̃TMbS

b2
k2+1S

b1
−N1

Mbf,D
b̃2
k2
S b̃1−N1

Mb̃g
〉
−
〈
Mb̃TMbD

b2
k2
Sb1−N1

Mbf, S
b̃2
k2
S b̃1−N1

Mb̃g
〉

=
∑

k1,k2∈Z

〈
Mb̃TMbS

b2
k2+1S

b1
k1+1Mbf,D

b̃2
k2
Db̃1
k1
Mb̃g

〉
+
〈
Mb̃TMbD

b2
k2
Sb1k1+1Mbf, S

b̃2
k2
Db̃1
k1
Mb̃g

〉
+
〈
Mb̃TMbS

b2
k2+1D

b̃1
k1
Mbf,D

b̃2
k2
S b̃1k1Mb̃g

〉
+
〈
Mb̃TMbD

b2
k2
Db1
k1
Mbf, S

b̃2
k2
S b̃1k1Mb̃g

〉
=

∑
k1,k2∈Z

4∑
j=1

〈
Θj
~k
Mbf,Mb̃g

〉
where Θj for j = 1, 2, 3, 4 are defined as follows with their respective kernels

Θ1
~k

= Db̃
~k
Mb̃TMbS~k+1;

θ1
~k
(x, y) =

〈
Mb̃TMb(s

b1
k1+1(·, y1)⊗ sb2k2+1(·, y2)), db̃1k1(x1, ·)⊗ db̃2k2(x2, ·)

〉
,

Θ2
~k

= Db̃1
k1
S b̃2k2Mb̃TMbS

b1
k1+1D

b2
k2

;

θ2
~k
(x, y) =

〈
Mb̃TMb(s

b1
k1+1(·, y1)⊗ db2k2(·, y2)), db̃1k1(x1, ·)⊗ sb̃2k2(x2, ·)

〉
,

Θ3
~k

= S b̃1k1D
b̃2
k2
Mb̃TMbD

b1
k1
Sb2k2+1;

θ3
~s(x, y) =

〈
Mb̃TMb(d

b1
k1

(·, y1)⊗ sb2k2+1(·, y2)), sb̃1k1(x1, ·)⊗ db̃2k2(x2, ·)
〉
,

Θ4
~k

= S b̃~kMb̃TMbD
b
~k
;

θ4
~s(x, y) =

〈
Mb̃TMb(d

b1
k1

(·, y1)⊗ db2k2(·, y2)), sb̃1k1(x1, ·)⊗ sb̃2k2(x2, ·)
〉
.

By Lemma 5.8, θ1
~s satisfies (4.5)-(4.9) and∫

Rn1

θ1
~k
(x, y)b1(x1)dx1 =

∫
Rn2

θ1
~k
(x, y)b2(x2)dx2 = 0.
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By the biparameter Tb = T ∗b = 0 assumption on T , we also have∫
Rn1

θ1
~k
(x, y)b1(y1)dy1 =

∫
Rn2

θ1
~k
(x, y)b2(y2)dy2 = 0.

Then by Theorem (4.16),∑
~k∈Z2

∣∣∣∣∫
Rn

Θ1
~k
f(x)g(x)dx

∣∣∣∣ . ‖f‖Lp(Rn)‖g‖Lp′ (Rn).

The same holds for Θj
~s when j = 2, 3, 4, and so it follows that

| 〈Tf, g〉 | ≤
4∑
j=1

∑
~k∈Z2

∣∣∣∣∫
Rn

Θj
~k
f(x)g(x)dx

∣∣∣∣ . ‖f‖Lp(Rn)‖g‖Lp′ (Rn).

Therefore, by density, T can be extended to a bounded operator on Lp for 1 < p <∞.





Chapter 6

An extension problem

In this chapter, we apply our reduced biparameter Tb theorem to solve the holomorphic

extension problem we presented in the Introduction.

The problem we are dealing with can be stated as follows. Given an appropriate Lipschitz

boundary surface Γ = Γ1 × Γ2 ⊂ C2 and a function g : Γ→ C, there is a function G that is,

holomorphic on (C\Γ1)× (C\Γ2) satisfying

g(z) = g++(z)− g+−(z)− g−+(z) + g−−(z), (6.1)

for z = (z1, z2) ∈ Γ, where

g++(z) = lim
t1,t2→0+

G(z1 + it1, z2 + it2), g+−(z) = lim
t1,t2→0+

G(z1 + it1, z2 − it2), (6.2)

g−+(z) = lim
t1,t2→0+

G(z1 − it1, z2 + it2), g−−(z) = lim
t1,t2→0+

G(z1 − it1, z2 − it2).

For now we leave the sense in which (6.1) holds and the sense that the limits in (6.2) hold

unspecified, but these things will be defined later in this section.

Now we define what is our Lipschitz boundary surface Γ. Let L1, L2 : R→ R be Lipschitz

functions with Lipschitz constants λ1 and λ2 respectively. Define

γ1(x1) = x1 + iL1(x1);

γ2(x2) = x2 + iL2(x2);

γ(x) = (γ1(x1), γ2(x2)),

for x = (x1, x2) in R2.

125
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Definition 6.1. We say that

Γ := Γ1 × Γ2 = γ1(R)× γ2(R)

is a product Lipschitz surface with small Lipschitz constants if the Lipshitz constants λ1 and

λ2 of L1 and L2 are both smaller than 1.

Definition 6.2. The upper half space associated to Γ is defined HΓ1 ×HΓ2 where

HΓj = {γj(xj) + itj : xj ∈ Z, tj > 0}.

We also define Lp(Γ) for a product Lipschitz surface Γ as follows: given a product Lips-

chitz surface Γ = γ1(R)×γ2(R), let Lp(Γ) be the collection of measurable functions g : Γ→ C

such that

‖g‖pLp(Γ) =

∫
R2

|g(γ(x))|p|γ′1(x1)γ′2(x2)|dx1 dx2 <∞.

Our goal is to prove the following theorem.

Theorem 6.3. Let Γ be a product Lipschitz surface with small Lipschitz constants in C2

defined by γ = (γ1, γ2) : R2 → C2. Assume that

lim
|x1|→∞

γ1(x1)

x1

= c1 and lim
|x2|→∞

γ2(x2)

x2

= c2

for some c1, c2 ∈ C. If g ∈ Lp(Γ) for some 1 < p < ∞, then there exists a function

G : (C\Γ1) × (C\Γ2) → C that is a holomorphic extension of g, where (6.1) and the limits

in (6.2) hold in Lp(Γ).

To prove Theorem 6.3, we take an approach related to the ones in [MM77, Cha79, Fef79,

GS79, Ste79, CF80], which uses the boundedness of biparameter and partial Hilbert trans-

forms. In place of the Hilbert transforms, we define biparameter and partial Cauchy integral

transforms for z = (z1, z2) ∈ Γ and appropriate g : Γ→ C,

CΓg(z) = lim
t1,t2→0+

Ctg(z); Ctg(z) =
1

(2πi)2

∫
Γ

z1 − ξ1

(z1 − ξ1)2 + t21

z2 − ξ2

(z2 − ξ2)2 + t22
g(ξ)dξ,

Cp1Γ g(z) = lim
t1,t2→0+

Cp1t g(z); Cp1t g(z) =
1

(2πi)2

∫
Γ

z1 − ξ1

(z1 − ξ1)2 + t21

t2
(z2 − ξ2)2 + t22

g(ξ)dξ,

Cp2Γ g(z) = lim
t1,t2→0+

Cp2t g(z); Cp2t g(z) =
1

(2πi)2

∫
Γ

t1
(z1 − ξ1)2 + t21

z2 − ξ2

(z2 − ξ2)2 + t22
g(ξ)dξ.
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Remark 6.4. The limits defining CΓ, Cp1Γ , and Cp2Γ are taken in the following pointwise sense:

given c ∈ C and ct ∈ C for t = (t1, t2) ∈ (0,∞)2, we say ct → c as t1, t2 → 0+ if for all ε > 0,

there exists δ > 0 such that 0 < t1, t2 < δ implies |ct − c| < ε. We also define convergence

in normed spaces as t1, t2 → 0+: given a normed function space X, F ∈ X, and Ft ∈ X for

t = (t1, t2) ∈ (0,∞)2, we say Ft → F as t1, t2 → 0+ if ‖Ft − F‖X → 0 as t1, t2 → 0+.

The operators CΓg, Cp1Γ g, and Cp2Γ g are defined initially as pointwise limits, and we will

prove later that these limits hold in Lp(Γ) as well for 1 < p < ∞ and appropriate g. A

crucial part of the proof of these convergence results is the Lp(Γ) boundedness of CΓ, Cp1Γ ,

and Cp2Γ , which we state now in Theorem 6.5.

Theorem 6.5. Let Γ be a product Lipschitz surface with small Lipschitz constant in C2

defined by γ = (γ1, γ2) : R2 → C2. Assume that

lim
|x1|→∞

γ1(x1)

x1

= c1 and lim
|x2|→∞

γ2(x2)

x2

= c2

for some c1, c2 ∈ C. Then operators CΓ, Cp1Γ , and Cp2Γ are bounded on Lp(Γ) and for g ∈ Lp(Γ)

lim
t1,t2→0+

Ctg = CΓg, lim
t1,t2→0+

Cp1t g = Cp1Γ g, and lim
t1,t2→0+

Cp2t g = Cp2Γ g

in Lp(Γ) when 1 < p <∞.

We will prove Theorem 6.5 in Section 6.3 using our biparameter reduced Tb theorem in

the same spirit David-Journé-Semmes used their Tb theorem to prove Lp bounds for Cauchy

integral transform in [DJS85].

6.1 The holomorphic extension

In this section we prove Theorem 6.3 assuming the validity of Theorem 6.5. The proof

of the latter theorem will be provided in later sections.

Let Γ a product Lipschitz surface with small Lipschitz constants λ1 and λ2 as defined in

Definition 6.1. It follows that

0 < 1− λ2
j ≤

(xj − yj)2 − (Lj(xj)− Lj(yj))2

(xj − yj)2
=
|Re [(γj(xj)− γj(yj))2] |

(xj − yj)2
≤ 2,

therefore, Re [(γj(xj)− γj(yj))2] and (xj−yj)2 are comparable with constants only depending

on the Lipschitz constants of γ, not on xj and yj.
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We also remark that the norms of g and g ◦ γ are comparable in the following sense: for

any g ∈ Lp(Γ),

‖g ◦ γ‖pLp(R2) ≤ ‖(γ
′
1)−1‖L∞(R)‖(γ′2)−1‖L∞(R)‖g‖pLp(Γ) ≤ ‖g‖

p
Lp(Γ)

≤ ‖γ′1‖L∞(R)‖γ′2‖L∞(R)‖g ◦ γ‖pLp(R2) ≤ 2‖g ◦ γ‖pLp(R2). (6.3)

Note that since Re[γ′j(xj)] = 1 for all xj ∈ R, we have |γ′j(xj)| ≥ Re[γ′j(xj)] = 1 for all

xj ∈ R.

Now, given a function g : Γ → C, we define for ω = (ωt1 , ωt2) = (z1 + it1, z2 + it2) ∈
(C\Γ1)× (C\Γ2) where (z1, z2) ∈ Γ and t1, t2 6= 0,

G(ωt1 , ωt2) =
1

(2πi)2

∫
Γ

g(ξ)dξ

(ξ1 − ωt1)(ξ2 − ωt2)
. (6.4)

It follows that

G(ωt1 , ωt2) =
1

4

∫
Γ

(
pt1(z1 − ξ1)pt2(z2 − ξ2)− qt1(z1 − ξ1)qt2(z2 − ξ2)

+ iqt1(z1 − ξ1)pt2(z2 − ξ2) + ipt1(z1 − ξ1)qt2(z2 − ξ2)

)
g(ξ)dξ,

where

ptj(ωj) =
1

π

tj
ω2
j + t2j

and qtj(ωj) =
1

π

ωj
ω2
j + t2j

for ωj ∈ C.

Finally, for t = (t1, t2) ∈ (0,∞)2, g1 : Γ1 → C, g2 : Γ2 → C, g : Γ→ C, and z = (z1, z2) ∈ Γ,

we define the operators

Pt1g1(z1) =

∫
Γ1

pt1(z1 − ξ1)g1(ξ1)dξ1, Pt2g2(z2) =

∫
Γ2

pt2(z2 − ξ2)g2(ξ2)dξ2,

and Ptg(z) =

∫
Γ

pt1(z1 − ξ1)pt2(z2 − ξ2)g(ξ)dξ.

We use the indices of Pt1 , Pt2 , and Pt to identify the operators.

Remark 6.6. Note that Ptg = Pt1Pt2g for g : Γ→ C, where we use the notation

Pt1g(z) =

∫
Γ1

pt1(z1 − ξ1)g(ξ1, z2)dξ1 and Pt2g(z) =

∫
Γ2

pt2(z2 − ξ2)g(z1, ξ2)dξ2

This is an abuse of notation, but it is clear in context which operator is being used.
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We start with a lemma about the convergence of the operators Pt1g, Pt2g, and Ptg for

g ∈ Lp(Γ).

Lemma 6.7. Let Γ be a product Lipschitz surface with small Lipschitz constants in C2 and

g ∈ Lp(Γ) for some 1 < p <∞. Then

lim
t1→0+

Pt1g = g, lim
t2→0+

Pt2g = g, and lim
t1,t2→0+

Ptg = g,

where each limit holds in the topology of Lp(Γ) and pointwise almost everywhere on Γ.

Proof. We first verify that Ptj1 = 1 for each j = 1, 2. Let R > 0 and

ER = {zj ∈ Γj : |zj| ≤ R} ∪ {zj ∈ C : |zj| = R, Im zj > Lj(Re(zj))}.

ER is a closed, and for R sufficiently large, it defines the boundary of an open, simply

connected region UR = {zj ∈ C : |zj| < R, Im(zj) > Lj(Re(zj))}. For zj ∈ Γj,tj > 0, and R

sufficiently large, it follows that zj + itj ∈ UR and zj − itj /∈ UR. Then

tj
ξj − (zj − itj)

is holomorphic in ξj on UR for such zj, tj, and R. Using the decay of ptj and a residue

theorem, it follows that∫
Γj

ptj(zj − ξj)dξj = lim
R→∞

1

π

∫
ER

tj
(ξj − (zj + itj))(ξj − (zj − itj))

dξj

= lim
R→∞

1

π

2πi tj
(zj + itj)− (zj − itj)

= 1.

Consider the following parameterized versions of Pt, Pt1 , and Pt2 : for f : R2 → C and x ∈ R2

P̃t1f(x) =

∫
R

pt1(γ1(x1)− γ1(y1))γ′1(y1)f(y1, x2)dy1,

P̃t2f(x) =

∫
R

pt2(γ2(x2)− γ2(y2))γ′2(y2)f(x1, y2)dy2, and

P̃tf(x) = P̃t1P̃t2f(x) =

∫
R2

pt1(γ1(x1)− γ1(y1))pt2(γ2(x2)− γ1(y2))γ′1(y1)γ′2(y2)f(y)dy.

The kernels of P̃t1 , P̃t2 , and P̃t are

p̃t1(x1, y1) = pt1(γ1(x1)− γ1(y1))γ′1(y1), p̃t2(x2, y2) = pt2(γ2(x2)− γ2(y2))γ′2(y2),
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and p̃t(x, y) = p̃t1(x1, y1)p̃t2(x2, y2), respectively.

Note that P̃tj1(xj) = Ptj1(γj(xj)) = 1 for all xj ∈ R. Also, since the Lipschitz constant of

L1 and L2 are small, it follows that

|p̃tj(xj, yj)| =
1

π

∣∣∣∣ tj|γ′j(yj)|
t2j + (γj(xj)− γj(yj))2

∣∣∣∣ ≤ tj
t2j + (1− λ2

j)(xj − yj)2
.

t−1
j

(1 + t−1
j |xj − yj|)2

.

Then {p̃tj : tj > 0} forms an approximation to the identity on R for each j = 1, 2. Fix

g ∈ Lp(Γ) for some 1 < p <∞. It follows that g ◦ γ ∈ Lp(R2), and hence that g ◦ γ(·, x2) ∈
Lp(R) for almost every x2 ∈ R. Now fix x2 ∈ R outside of an appropriate exceptional set,

so that ‖g ◦ γ(·, x2)‖Lp(R) <∞. It follows that g ◦ γ(·, x2) ∈ Lp(R) and hence that

lim
t1→0+

‖P̃t1(g ◦ γ)(·, x2)− g ◦ γ(·, x2)‖Lp(R) = 0.

By dominated convergence, it also follows that

lim
t1→0+

‖P̃t1(g ◦ γ)− g ◦ γ‖pLp(R2) =

∫
R

lim
t1→0+

‖P̃t1(g ◦ γ)(·, x2)− g ◦ γ(·, x2)‖pLp(R)dx2 = 0.

Therefore P̃t1(g ◦γ)→ g ◦γ in Lp(R2), and in light of (6.3) it easily follows that Pt1g → g in

Lp(Γ). By symmetry, it follows that Pt2g → g in Lp(Γ) as well. Now for g ∈ Lp(Γ), we verify

that Ptg → g in Lp(Γ) as t1, t2 → 0+ for 1 < p <∞, as defined in Remark 6.4. First, define

M1 to be the Hardy-Littlewood maximal function acting on the first variable of a function

f : R2 → C, i.e.

M1f(x) = sup
I3x1

1

|I|

∫
I

|f(y1, x2)|dy1,

where the supremum is taken over all intervals I ⊂ R that contain x1. It is not hard to

verify that M1 is bounded on Lp(R2) for 1 < p ≤ ∞ and that |Pt1h(γ(x))| .M1(h ◦ γ)(x)

uniformly in t1 > 0 for any h ∈ Lp(Γ). The Lp(Γ) convergence of Ptg follows:

lim
t1,t2→0

‖Ptg − g‖Lp(Γ) ≤ lim
t1,t2→0

‖Pt1(Pt2g − g)‖Lp(Γ) + ‖Pt1g − g‖Lp(Γ)

. lim
t1,t2→0

‖M1(P̃t2(g ◦ γ)− g ◦ γ)‖Lp(R2) + ‖Pt1g − g‖Lp(Γ)

. lim
t2→0
‖P̃t2(g ◦ γ)− g ◦ γ‖Lp(R2) + lim

t1→0
‖Pt1g − g‖Lp(Γ) = 0.

In the last line, we use that P̃t2(g◦γ)→ g◦γ in Lp(R2) and that Pt1(g◦γ)→ g◦γ in Lp(R2).

This completes the proof of the Lp(Γ) convergence properties. Now we prove the pointwise
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convergence results. For g ∈ Lp(Γ), it follows that g ◦ γ(·, x2) ∈ Lp(R) for almost every

x2 ∈ R. For a fixed x2 ∈ R outside of an appropriate measure zero set, by the Lebesgue

differentiation theorem it follows that

lim
t1→0+

P̃t1(g ◦ γ)(x1, x2) = g(γ(x1, x2))

for almost every x1 ∈ R. Hence P̃t1(g ◦ γ)→ g ◦ γ as t1 → 0+ pointwise almost everywhere

in R2 and hence that Pt1g → g as t1 → 0+ pointwise almost everywhere in Γ. By symmetry,

P̃t2(g ◦ γ) → g ◦ γ as t2 → 0+ pointwise almost everywhere in R2 and hence that Pt2g → g

as t2 → 0+ pointwise almost everywhere in Γ.

Now we verify the pointwise convergence for Ptg on Γ. Fix x ∈ R2 such that P̃t1(g ◦
γ)(x) → g ◦ γ(x) as t1 → 0+ and ‖g ◦ γ(·, x2)‖Lp(R) < ∞, which is true for almost every

x ∈ R2. Now we bound

|P̃t(g ◦ γ)(x)− g ◦ γ(x)| ≤ |P̃t1(P̃t2(g ◦ γ)− (g ◦ γ))(x)|+ |P̃t1(g ◦ γ)(x)− (g ◦ γ)(x)|

.
∫
R

pt1(γ1(x1)− γ1(y1))|P̃t2(g ◦ γ)(y1, x2)− (g ◦ γ)(y1, x2)|dy1

(6.5)

+ |P̃t1(g ◦ γ)(x)− (g ◦ γ)(x)|.

We verify that the first term of (6.5) tends to zero as t1, t2 → 0+: let ε > 0. Since P̃t2(g ◦
γ)(y1, x2) → (g ◦ γ)(y1, x2) pointwise as t2 → 0+ for almost every y1 ∈ R, there exists

δ > 0 such that 0 < t2 < δ implies |P̃t2(g ◦ γ)(y1, x2) − g ◦ γ(y1, x2)| < ε for almost every

y1 ∈ R such that |x1 − y1| ≤ 1 (recall we have fixed x1 and x2). The selection of δ does not

depend on y1 as long as it is within the compact set defined by |x1 − y1| ≤ 1. Now we take

0 < t1, t2 < min(δ, ε)/(1 + ‖g ◦ γ(·, x2)‖Lp(R)), which is possible since x ∈ R2 was selected so

that ‖g ◦ γ(·, x2)‖Lp(R) is finite. Then∫
R

pt1(γ1(x1)− γ1(y1))|P̃t2(g ◦ γ)(y1, x2)− g ◦ γ(y1, x2)|dy1

. ε

∫
|x1−y1|≤1

pt1(γ1(x1)− γ1(y1))dy1

+

∫
|x1−y1|>1

t1(|P̃t2(g ◦ γ)(y1, x2)|+ |g ◦ γ(y1, x2)|)
(γ1(x1)− γ1(y1))2 + t21

dy1

. ε+ t1

∫
|x1−y1|>1

(|P̃t2(g ◦ γ)(y1, x2)|+ |g ◦ γ(y1, x2)|)
(x1 − y1)2

dy1
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. ε+ t1

(
‖P̃t2(g ◦ γ)(·, x2)‖Lp(R) + ‖g ◦ γ(·, x2)‖Lp(R)

)(∫
|x1−y1|>1

dy1

(x1 − y1)2p′

) 1
p′

. ε+ t1‖g ◦ γ(·, x2)‖Lp(R) . ε.

It follows that the first term of (6.5) tends to zero as t1, t2 → 0+ for almost every x ∈ R2.

The second term in (6.5) also tends to zero as t1, t2 → 0+ since x was chosen so that

P̃t1f(x) → f(x) as t1 → 0+. Again using (6.3), it easily follow that Ptg → g as t1, t2 → 0+

pointwise almost everywhere on Γ.

Now we prove Theorem 6.3 assuming Theorem 6.5; we will prove Theorem 6.5 in the

next chapter.

Proof. Let 1 < p < ∞, g ∈ Lp(Γ), and define G as in (6.4). Note that p−tj(zj − ξj) =

−ptj(zj − ξj) and q−tj(zj − ξj) = qtj(zj − ξj) for tj 6= 0, zj ∈ Γj, and j = 1, 2. Then it follows

that for (z1, z2) ∈ Γ and t1, t2 > 0, we have

G(z1 + it1, z2 + it2) =
1

4

(
Ptg(z)− Ctg(z) + iCp1t g(z) + iCp2t g(z)

)
,

G(z1 + it1, z2 − it2) =
1

4

(
−Ptg(z)− Ctg(z)− iCp1t g(z) + iCp2t g(z)

)
,

G(z1 − it1, z2 + it2) =
1

4

(
−Ptg(z)− Ctg(z) + iCp1t g(z)− iCp2t g(z)

)
,

G(z1 − it1, z2 − it2) =
1

4

(
Ptg(z)− Ctg(z)− iCp1t g(z)− iCp2t g(z)

)
.

By Theorem 6.5, it follows that CΓg, Cp1Γ g, C
p2
Γ g ∈ Lp(Γ) and Ctg → CΓg, Cp1t g → C

p1
Γ g, and

Cp2t g → C
p2
Γ g as t1, t2 → 0+ in Lp(Γ). Then for z = (z1, z2) ∈ Γ

g++(z) =
1

4

(
g(z)− CΓg(z) + iCp1Γ g(z) + iCp2Γ g(z)

)
,

g+−(z) =
1

4

(
−g(z)− CΓg(z)− iCp1Γ g(z) + iCp2Γ g(z)

)
,

g−+(z) =
1

4

(
−g(z)− CΓg(z) + iCp1Γ g(z)− iCp2Γ g(z)

)
, and

g−−(z) =
1

4

(
g(z)− CΓg(z)− iCp1Γ g(z)− iCp2Γ g(z)

)
.

Then it also follows that (6.1) holds, i. e. g = g++ − g+− − g−+ + g−−, as Lp(Γ) functions.

It is also not hard to verify that G(ω1, ω2) is holomorphic for (ω1, ω2) ∈ (C\Γ1) × (C\Γ2):

for ζ = (ζ1, ζ2) ∈ (C\Γ1)× (C\Γ2), we have the following power series representation

G(ω1, ω2) =
1

(2πi)2

∞∑
k1,k2=0

(∫
Γ

g(ξ)dξ

(ξ1 − ζ1)k1+1(ξ2 − ζ2)k2+1

)
(ω1 − ζ1)k1(ω2 − ζ2)k2 ,
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when |ω1− ζ1| < dist(ζ1,Γ1)/2 and |ω2− ζ2| < dist(ζ2,Γ2)/2. Therefore, G is a holomorphic

extension of g.

6.2 Bounds for the biparameter Cauchy Integral Trans-

form

In this section, we use Theorem 5.7 to prove bounds for CΓ and its parameterized version

C̃Γ, which we define now. For appropriate f : Rn → C, define

C̃ΓMbf(x) = lim
t1,t2→0+

∫
R2

γ1(x1)− γ1(y1)

(γ1(x1)− γ1(y1))2 + t21

γ2(x2)− γ2(y2)

(γ2(x2)− γ2(y2))2 + t22
f(y)b(y)dy,

where b(y) = γ′1(y1)γ′2(y2). We call this the parameterized version of CΓ since

C̃ΓMbf(x) = CΓ(f ◦ γ−1)(γ(x)),

and furthermore, the Lp(Γ) bound for CΓ can be reduced to Lp(R2) bounds for C̃Γ via (6.3).

It is not hard to see that the kernel of C̃Γ is

1

(γ1(x1)− γ1(y1))(γ1(x2)− γ1(y2))
,

which is a biparameter Calderón-Zygmund kernel. In the next proposition, we prove that C̃Γf

is well-defined for appropriate f : Rn → C and hence CΓg is also well defined for appropriate

g : Γ→ C.

Define the complex log function with the negative real branch cut, that is, for z ∈ C we

define

log(z) = ln(|z|) + iArg(z),

where ln : (0,∞)→ R logarithm base e function with positive real domain and Arg(z) is the

principle argument of z taking values in (−π, π]. Note that for u ∈ (0,∞), ln(u) = log(u);

we use this notation to emphasize when the input is real versus complex.

Proposition 6.8. Assume that Γ satisfies the hypotheses of Theorem 6.3. For all f ∈
C∞0 (R2) and x ∈ R2,

C̃Γ(bf)(x) =
1

4π2

∫
R2

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
∂y1∂y2f(y)dy.
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Also, for all f, g ∈ C∞0 (R2), the pairing
〈
C̃Γ(bf), bg

〉
can be realized as any of the following

absolutely convergent integrals:

1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
∂y1∂y2f(y)g(x)b(x)dy dx,

1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
f(y)∂x1∂x2g(x)b(y)dy dx,

− 1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
∂y1f(y)∂x2g(x)b(x1, y2)dy dx,

− 1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
∂y2f(y)∂x1g(x)b(y1, x2)dy dx.

Proof. We first note that for xj, yj ∈ R

qtj(γj(xj)− γj(yj))γ′j(yj) =
1

π

γj(xj)− γj(yj)
(γj(xj)− γj(yj))2 + t2j

γ′j(yj)

= − 1

2π
∂yj log

(
(γj(xj)− γj(yj))2 + t2j

)
. (6.6)

The derivative of log is well defined here since we defined it with the negative real branch cut,

and for all xj, yj ∈ R, we have Re
(
(γj(xj)− γj(yj))2 + t2j

)
≥ t2j > 0. Now for f ∈ C∞0 (R2)

and x ∈ R2, we compute the following pointwise limit

C̃Γ(bf)(x) = lim
t1,t2→0+

∫
R2

qt1(γ1(x1)− γ1(y1))qt2(γ2(x2)− γ2(y2))f(y)γ′1(y1)γ′2(y2)dy

= lim
t1,t2→0+

∫
R2

[
− 1

2π
∂y1 log

(
(γ1(x1)− γ1(y1))2 + t21

)]
×
[
− 1

2π
∂y2 log

(
(γ2(x2)− γ2(y2))2 + t22

)]
f(y)dy

= lim
t1,t2→0+

1

4π2

∫
R2

[
log
(
(γ1(x1)− γ1(y1))2 + t21

)]
×
[
log
(
(γ2(x2)− γ2(y2))2 + t22

)]
∂y1∂y2f(y)dy

=
1

4π2

∫
R2

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
∂y1∂y2f(y)dy.

We integrate by parts in y1 and y2 above, and the boundary terms vanish since f is compactly

supported. Also to justify the last inequality, note the following holds for all xj 6= yj, so that

we can apply dominated convergence: the following pointwise limit exists

lim
t1,t2→0+

log
(
γj(xj)− γj(yj))2 + t2j

)
∂y1∂y2f(y) = log

(
γj(xj)− γj(yj))2

)
∂y1∂y2f(y),
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and the integrand is dominated by an integrable function function independent of t1, t2 < 1/4

| log
(
(γj(xj)− γj(yj))2 + t2j

)
| ≤ | ln

(
|(γj(xj)− γj(yj))2 + t2j |

)
|+ π . | ln

(
(xj − yj)2

)
|+ 1.

Since ln(| · |) is locally integrable and f ∈ C∞0 (R2), we may apply dominated convergence in

the last line above. Now take f, g ∈ C∞0 (R2), and it immediately follows that〈
MbC̃ΓMbf, g

〉
=

1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
× ∂y1∂y2f(y)g(x)γ′1(x1)γ′2(x2)dy dx.

We also have that〈
MbC̃ΓMbf, g

〉
= lim

t1,t2→0+

1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2 + t21

)
log
(
(γ2(x2)− γ2(y2))2 + t22

)
× ∂y1∂y2f(y)g(x)γ′1(x1)γ′2(x2)dy dx

= lim
t1,t2→0+

∫
R4

qt1(γ1(x1)− γ1(y1))qt2(γ2(x2)− γ2(y2))

× f(y)g(x)γ′1(y1)γ′2(y2)γ′1(x1)γ′2(x2)dy dx

= lim
t1,t2→0+

1

4π2

∫
R4

[
∂x1 log

(
(γ1(x1)− γ1(y1))2 + t21

)]
×
[
−∂y2 log

(
(γ2(x2)− γ2(y2))2 + t22

)]
f(y)g(x)γ′1(y1)γ′2(x2)dy dx

= lim
t1,t2→0+

− 1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2 + t21

)
× log

(
(γ2(x2)− γ2(y2))2 + t22

)
∂y2f(y)∂x1g(x)γ′1(y1)γ′2(x2)dy dx

= − 1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
× ∂y2f(y)∂x1g(x)γ′1(y1)γ′2(x2)dy dx.

Here we integrate by parts in x1 and y2 and use dominated convergence in essentially the

same way as above. A similar argument verifies the other formulas for
〈
C̃Γ(bf), bg

〉
.

Note that we cannot use properties of logs to replace the integrand above by

4 log (γ1(x1)− γ1(y1)) log (γ2(x2)− γ2(y2)) .
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This is because Re [(γj(xj)− γ(yj))
2] > 0 for xj 6= yj, and furthermore recall that we showed

that Re [(γj(xj)− γ(yj))
2] ≥ (1−λ2

j)(xj−yj)2. So this term avoids the branch cut of log, but

Re [γj(xj)− γ(yj)] may change sign, which causes problems with the complex log function.

The next lemma prove an estimate we need later.

Lemma 6.9. Suppose Lj : R → R is a Lipschitz function with small Lipschitz constant

λj < 1 for j = 1, 2, and define γ(x) = (γ1(x1), γ2(x2)) = (x1 + iL1(x1), x2 + iL2(x2)). If

ψ ∈ C∞0 (R) is a normalized bump of any order with mean zero, then

sup
uj∈R,Rj>0

∣∣∣∣∫
R

log
(
(γj(xj)− γj(yj))2

)
R−1
j ψ

(
uj − yj
Rj

)
dyj

∣∣∣∣ . 1,

where the suppressed constant does not depend on ψ, xj, or γ.

Proof. Let ψ ∈ C∞0 (R) be a normalized bump with integral zero. For |uj − xj| ≤ 2Rj∣∣∣∣∫
R

log
(
(γj(xj)− γj(yj))2

)
R−1
j ψ

(
uj − yj
Rj

)
dyj

∣∣∣∣
≤ ‖ψ‖L

∞

Rj

∫uj−xj+Rj
uj−xj−Rj

∣∣log
(
(γj(xj)− γj(xj + yj))

2
)
− log(R2

j )
∣∣ dyj

≤
∫ 3

−3

(
ln

(
|(γj(xj)− γj(xj +Rjyj))

2|
R2
j

)
+ π

)
dyj

.
∫ 3

−3

(1 + | ln(|yj|)|)dyj . 1.

Here we use that for |yj| ≤ 3

(1− λ2
j)|yj|2 ≤

|(γj(xj)− γj(xj +Rjyj))
2|

R2
j

≤ (1 + λj)
2|yj|2 ≤ 4|yj|2 ≤ 36.

Now for |uj − xj| > 2Rj, we estimate as follows∣∣∣∣∫
R

log
(
(γj(xj)− γj(yj))2

)
R−1
j ψ

(
uj − yj
Rj

)
dyj

∣∣∣∣
≤ ‖ψ‖L

∞

Rj

∫uj−xj+Rj
uj−xj−Rj

∣∣log
(
(γj(xj)− γj(xj + yj))

2
)
− log

(
(γj(xj)− γj(uj))2

)∣∣ dyj
. 1 +

1

Rj

∫uj−xj+Rj
uj−xj−Rj

∣∣∣∣ln( |γj(xj)− γj(xj + yj)|2

|γj(xj)− γj(uj)|2

)∣∣∣∣ dyj
. 1 +

1

Rj

∫
|yj−(uj−xj)|<Rj

∣∣∣∣ln( |yj|
|uj − xj|

)∣∣∣∣ dyj
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≤ 1 +
1

Rj

∫
|yj−(uj−xj)|<Rj

∣∣∣∣ln( |uj − xj|+ |yj − (uj − xj)|
|uj − xj|

)∣∣∣∣ dyj
+

1

Rj

∫
|yj−(uj−xj)|<Rj

∣∣∣∣ln( |uj − xj|
|uj − xj| − |yj − (uj − xj)|

)∣∣∣∣ dyj
≤ 1 +

1

Rj

∫
|yj−(uj−xj)|<Rj

(ln(3/2) + ln(2))dyj . 1.

This completes the proof.

Now we prove that C̃Γ satisfies the hypotheses of Theorem 5.7.

Proposition 6.10. Assume that Γ satisfies the hypotheses of Theorem 6.3. Then, the oper-

ator MbC̃ΓMb satisfies the weak boundedness and mixed weak boundedness properties, where

b(x) = γ′1(x1)γ′2(x2) for x = (x1, x2) ∈ R2.

Proof. Let ϕj, ψj ∈ C∞0 be normalized bumps, x ∈ R2, and R1, R2 > 0. Then∣∣∣〈MbC̃ΓMb(ϕ
x1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣
=

1

4π2

∣∣∣∣∫
R4

log
(
(γ1(u1)− γ1(v1))2

)
log
(
(γ2(u2)− γ2(v2))2

)
× (ϕx1,R1

1 )′(v1)(ϕx2,R2

2 )′(v2)ψx1,R1

1 (u1)ψx2,R2

2 (u2)du dv

∣∣∣∣
≤ 1

4π2

∫x1+R1

x1−R1

∫x2+R2

x2−R2

∣∣∣∣∫
R2

log
(
(γ1(u1)− γ1(v1))2

)
log
(
(γ2(u2)− γ2(v2))2

)
×R−1

1 (ϕ′1)x1,R1(v1)R−1
2 (ϕ′2)x2,R2(v2)dv

∣∣∣∣ du . R1R2.

The last inequality holds due to Lemma 6.9. Then C̃Γ satisfies the weak boundedness prop-

erty. we first verify (5.7). Let x1 ∈ R, R1 > 0, and ϕj, ψj ∈ C∞0 (R) be normalized bumps.

Then for x1, x2, y2 ∈ R and R1, R2 > 0 such that |x1 − y1| > 4R1∣∣∣〈MbC̃ΓMb(ϕ
y1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣
= lim

t1,t2→0+

∣∣∣∣∫
R2

qt1(γ1(u1)− γ1(v1))ϕy1,R1

1 (v1)ψx1,R1

1 (u1)γ′1(v1)γ′1(u1)dv1 du1

∣∣∣∣
×
∣∣∣∣∫
R2

qt2(γ2(u2)− γ2(v2))ϕy2,R2

2 (v2)ψx2,R2

2 (u2)γ′2(v2)γ′2(u2)dv2 du2

∣∣∣∣
≤ lim

t1,t2→0+

∫
R2

|qt1(γ1(u1)− γ1(v1))| |ϕy1,R1

1 (v1)ψx1,R1

1 (u1)γ′1(v1)γ′1(u1)|dv1 du1
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×
∣∣∣∣∫
R2

log
(
(γ2(u2)− γ2(v2))2

)
(ϕy2,R2

2 )′(v2)ψx2,R2

2 (u2)γ′2(u2)dv2 du2

∣∣∣∣
= lim

t1,t2→0+
At1 ×Bt2 .

To estimate At1 , we use the kernel estimate for qt1 to conclude the following bound.∫
R2

|qt1(γ1(u1)− γ1(v1))| |ϕy1,R1

1 (v1)ψx1,R1

1 (u1)γ′1(v1)γ′1(u1)|dv1 du1

.
∫
R2

1

|u1 − v1|
|ϕy1,R1

1 (v1)ψx1,R1

1 (u1)|dv1 du1

.
R2

1

|x1 − y1|
=

R1

(R−1
1 |x1 − y1|)

.

For the second term, we argue exactly as in the full weak boundedness case using Lemma

6.9:

Bt2 .
∫
R

∣∣∣∣∫
R

log
(
(γ2(u2)− γ2(v2))2

)
R−1

2 (ϕ′2)y2,R2(v2)dv2

∣∣∣∣ |ψx2,R2

2 (u2)|du2

.
∫
R

|ψx2,R2

2 (u2)|du2

. R2.

Therefore C̃Γ satisfies (5.7). To prove (5.8), fix x1, x2, y2 ∈ R, R1, R2 > 0, and ϕj, ψj for

j = 1, 2 as above, but furthermore assume (without loss of generality) that γ′1ψ
x1,R1

1 has

mean zero. Since |x1 − y1| > 4R1∣∣∣〈MbC̃ΓMb(ϕ
y1,R1

1 ⊗ ϕx2,R2

2 ), ψx1,R1

1 ⊗ ψx2,R2

2

〉∣∣∣
≤ lim

t1,t2→0+

∫
R2

|qt1(γ1(u1)− γ1(v1))− qt1(γ1(x1)− γ1(v1))| |ϕy1,R1

1 (v1)ψx1,R1

1 (u1)γ′1(v1)γ′1(u1)|dv1 du1

×
∣∣∣∣∫
R2

log
(
(γ2(u2)− γ2(v2))2

)
(ϕy2,R2

2 )′(v2)ψx2,R2

2 (u2)γ′2(u2)dv2du2

∣∣∣∣
= lim

t1,t2→0+
Ãt1 ×Bt2 .

By the support properties of ϕ1 and ψ1, we may assume that |y1−v1| ≤ R1 and |x1−u1| ≤ R1

to estimate the following part of the integrand from Ãt1 :

|qt1(γ1(u1)− γ1(v1))− qt1(γ1(x1)− γ1(v1))|

=

∣∣∣∣(γ1(u1)− γ1(v1))(γ1(x1)− γ1(v1))2 − (γ1(x1)− γ1(v1))(γ1(u1)− γ1(v1))2

[(γ1(x1)− γ1(v1))2 + t21][(γ1(u1)− γ1(v1))2 + t21]
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+
(γ1(u1)− γ1(v1))t21 − (γ1(x1)− γ1(v1))t21

[(γ1(x1)− γ1(v1))2 + t21][(γ1(u1)− γ1(v1))2 + t21]

∣∣∣∣
≤ |γ1(u1)− γ1(v1)| |γ1(x1)− γ1(v1)| |γ1(x1)− γ1(u1)|

[(γ1(u1)− γ1(v1))2 + t21][(γ1(x1)− γ1(v1))2 + t21]

+ t21
|γ1(u1)− γ1(x1)|

|(γ1(u1)− γ1(v1))2 + t21| |(γ1(x1)− γ1(v1))2 + t21|

.
|u1 − v1| |x1 − v1| |x1 − u1|
|u1 − v1|2|x1 − v1|2

+
|x1 − u1|
|x1 − v1|2

.
R1

|x1 − y1|2
.

In the last line, we use that |x1 − y1| > R1/4, |x1 − u1| ≤ R1, |y1 − v1| ≤ R1,

|u1 − v1| ≥ |x1 − y1|/2, and |x1 − v1| ≥ |x1 − y1|/2.

It easily follows that

Ãt1 .
R1

|x1 − y1|2

∫
R2

|ϕy1,R1

1 (v1)ψx1,R1

1 (u1)|dv1 du1 .
R3

1

|x1 − y1|2
=

R1

(R−1
1 |x1 − y1|)2

,

as required in (5.8) with n1 = γ = 1.

This verifies the first mixed weak boundedness properties (5.7) and (5.8) for CΓ, and the

other two conditions follow by symmetry.

Proposition 6.11. Assume Γ satisfies the hypotheses of Theorem 6.3. The operator C̃Γ

satisfies the Tb = T ∗b̃ = 0 conditions with b(x) = b̃(x) = γ′1(x1)γ′2(x2) for x = (x1, x2) ∈ R2.

Proof. Let ηR ∈ C∞0 (Rn1) be as above, ϕ1, ψ1 ∈ C∞0 (Rn1), and ψ2 ∈ C∞0 (Rn2) such that

γ′1ψ1 and γ′2ψ2 have mean zero. We use Proposition 6.8 to compute〈
C̃Γ(γ′1ηR ⊗ γ′2ϕ2), γ′1ψ1 ⊗ γ′2ψ2

〉
=

1

4π2

∫
R4

log
(
(γ1(x1)− γ1(y1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
× (ηR)′(y1)ϕ′2(y2)ψ1(x1)ψ2(x2)γ′1(x1)γ′2(x2)dy dx

=
1

4π2

∫
R4

log
(
(γ1(x1)− γ1(Ry1))2

)
log
(
(γ2(x2)− γ2(y2))2

)
× η′(y1)ϕ′2(y2)ψ1(x1)ψ2(x2)γ′1(x1)γ′2(x2)dy dx

=

∫
R2

FR(x1)

(∫
R

log
(
(γ2(x2)− γ2(y2))2

)
ϕ′2(y2)dy2

)
ψ1(x1)ψ2(x2)γ′1(x1)γ′2(x2)dx,

where FR(x1) =

∫
R

log
(
(γ1(x1)− γ1(Ry1))2

)
η′(y1)dy1.

Since η ∈ C∞0 (R), it follows that η′ has mean zero. Note also that Re(c1) = 1 since

γ1(x1) = x1 + iL1(x1) and L1 is real-valued, so log(y2
1c

2
1) is well defined for y1 6= 0. Recall
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the definition of c1 in the hypotheses of Theorem 6.3. Hence we can also write FR(x1) in the

following way.

FR(x1) =

∫
R

[
log
(
(γ1(x1)− γ1(Ry1))2

)
− log

(
R2
)]
η′(y1)dy1

=

∫
R

log

(
(γ1(x1)− γ1(Ry1))2

R2

)
η′(y1)dy1.

Now we note that for all x1 ∈ R and y1 6= 0

lim
R→∞

log

(
(γ1(x1)− γ1(Ry1))2

R2

)
= lim

R→∞
log

(
y2

1

(γ1(x1)− γ1(Ry1))2

y2
1R

2

)
= log(y2

1c
2
1).

Recall that we have assumed γ1(u1)/u1 → c1 as |u1| → ∞. For R large enough so that

supp(ψ1) ⊂ B(0, R/2), it follows that for x1 ∈ supp(ψ1) and y1 ∈ supp(η′) ⊂ B(0, 2)\B(0, 1)

|γ1(x1)− γ1(Ry1)|2

R2
≥ (1− λ2

1)
|x1 −Ry1|2

R2
≥ (1− λ2

1)
R2 − |x1|2

R2
≥ 1− λ2

1.

We also have

|γ1(x1)− γ1(Ry1)|2

R2
≤ 4|x1 −Ry1|2

R2
≤ 4|x1|2

R2
+ 4|y1|2 ≤ 20

Therefore ∣∣∣∣log

(
(γ1(x1)− γ1(Ry1))2

R2

)
η′(y1)

∣∣∣∣ . η′(y1).

Then by dominated convergence,

lim
R→∞

FR(x1) =

∫
R

log(y2
1c

2
1)η′(y1)dy1 = c.

Now FR(x1) → c for some constant c ∈ C, which does not depend on x1. Since FR(x1) is

bounded independent of x1, we apply dominated convergence again to conclude

lim
R→∞

〈
C̃Γ(γ′1ηR ⊗ γ′2ϕ2), γ′1ψ1 ⊗ γ′2ψ2

〉
=

∫
R2

c

(∫
R

log
(
(γ2(x2)− γ2(y2))2

)
ϕ′2(y2)dy2

)
× ψ1(x1)ψ2(x2)γ′1(x1)γ′2(x2)dx

= c

(∫
R

ψ1(x1)γ′1(x1)dx1

)(∫
R2

log
(
(γ2(x2)− γ2(y2))2

)
ϕ′2(y2)ψ2(x2)γ′2(x2)dy2 dx2

)
= 0.

Here we use that γ′1ψ1 has mean zero. By symmetry, this holds when γ′1ϕ1 has mean zero in

place of γ′1ψ1. Hence the C̃Γ(b) = 0 condition is satisfied, and the adjoint condition follows

by symmetry.
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By Theorem 5.7, we conclude that C̃Γ can be extended to a bounded linear operator on

Lp(R2) for 1 < p < ∞. Hence CΓ can be defined for g ∈ Lp(Γ) for 1 < p < ∞, and for

g ∈ Lp(Γ), it follows that

‖CΓg‖pLp(Γ) =

∫
R2

|C̃ΓMb(g ◦ γ)(x)|p|γ′1(x1)γ′2(x2)|dx

≤ ‖γ′1‖L∞‖γ′2‖L∞‖C̃Γ‖pLp,Lp
∫
R2

|(g ◦ γ)(x)|pdx

≤ 4‖(γ′1)−1‖L∞‖(γ′2)−1‖L∞‖C̃Γ‖pLp,Lp
∫
R2

|g(x)|p|γ′1(x1)γ′2(x2)|dx ≤ 4‖C̃Γ‖pLp,Lp‖g‖
p
Lp(Γ).

Furthermore for f ∈ C∞0 (R2), there exists a constant Cf,p > 0 such that

|C̃tMbf(x)|p ≤ Cf,p

(
χ|x1|≤2R0 +

1

|x1|p
χ|x1|>2R0

)(
χ|x2|≤2R0 +

1

|x2|p
χ|x2|>2R0

)
,

where R0 is large enough so that supp(f) ⊂ B(0, R0/2). Then by dominated convergence,

it follows that

lim
t1,t2→0+

C̃tMbf = C̃ΓMbf in Lp(R2).

One can argue by density to verify that C̃Γ extends to all of Lp(R2) and that C̃tf → C̃Γf in

Lp(R2) for f ∈ Lp(R2) as t1, t2 → 0+ for all 1 < p <∞.

It easily follows that for g ∈ Lp(Γ) where 1 < p <∞

lim
t1,t2→0+

Ctg = CΓg

in Lp(Γ). This completes the proof of the first part of Theorem 6.5, pertaining to CΓ.

6.3 Bounds for the partial Cauchy Integral Transform

Like in the last section, we define the parameterized versions of Cp1Γ and Cp2Γ , for f ∈
C∞0 (R2) and x ∈ R2

C̃p1Γ Mbf(x) = lim
t1,t2→0+

C̃p1Γ Mbf(x), where

C̃p1t Mbf(x) =

∫
R2

qt1(γ1(x1)− γ1(y1))pt2(γ2(x2)− γ2(y2))f(y)b(y)dy,

C̃p2Γ Mbf(x) = lim
t1,t2→0+

C̃p2t Mbf(x), where
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C̃p2t Mbf(x) =

∫
R2

pt1(γ1(x1)− γ1(y1))qt2(γ2(x2)− γ2(y2))f(y)b(y)dy.

We prove these bounds by applying the single parameter Tb theorem from [DJS85]. We

outline the proof that C̃p1Γ and C̃p2Γ are bounded on Lp(Γ). The details can be deciphered

from the previous more complicated biparameter versions. Define for f1, f2 : R → C and

x1, x2 ∈ R

C̃Γ1Mγ′1
f1(x1) = lim

t1→0+

∫
R

qt1(γ1(x1)− γ1(y1))f1(y1)γ′1(y1)dy1,

C̃Γ2Mγ′2
f2(x2) = lim

t2→0+

∫
R

qt2(γ2(x2)− γ2(y2))f2(y2)γ′2(y2)dy2.

The following propositions are routine given the proofs of Propositions 6.8, 6.10, and 6.11.

Proposition 6.12. Assume Γ satisfies the hypotheses of Theorem 6.3. For all f ∈ C∞0 (R2)

and x ∈ R2,

C̃p1Γ (bf)(x) =
1

2π

∫
R

log
(
(γ1(x1)− γ1(y1))2

)
∂y1f(y1, x2)dy1,

C̃p2Γ (bf)(x) =
1

2π

∫
R

log
(
(γ2(x2)− γ2(y2))2

)
∂y2f(x1, y2)dy2.

Also, for all f, g ∈ C∞0 (R2), the pairings
〈
C̃p1Γ (bf), bg

〉
and

〈
C̃p2Γ (bf), bg

〉
can be realized as

any of the following absolutely convergent integrals:〈
C̃p1Γ (bf), bg

〉
=

1

2π

∫
R3

log
(
(γ1(x1)− γ1(y1))2

)
∂y1f(y1, x2)g(x)b(x)dy1 dx,〈

C̃p1Γ (bf), bg
〉

= − 1

2π

∫
R3

log
(
(γ1(x1)− γ1(y1))2

)
f(y1, x2)∂x1g(x)b(y1, x2)dy1 dx,〈

C̃p2Γ (bf), bg
〉

=
1

2π

∫
R3

log
(
(γ2(x2)− γ2(y2))2

)
∂y2f(x1, y2)g(x)b(x)dy2 dx,〈

C̃p2Γ (bf), bg
〉

= − 1

2π

∫
R3

log
(
(γ2(x2)− γ2(y2))2

)
f(x1, y2)∂x2g(x)b(x1, y2)dy2 dx.

Proposition 6.13. Assume Γ satisfies the hypotheses of Theorem 6.3. The operator C̃Γ1

and C̃Γ2 satisfies the single parameter weak boundedness property.

Proposition 6.14. Assume Γ satisfies the hypotheses of Theorem 6.3. The operator C̃Γ1

and C̃Γ2 satisfies the cancellation conditions C̃Γ1(γ
′
1) = C̃∗Γ1

(γ′1) = C̃Γ2(γ
′
2) = C̃∗Γ2

(γ′2) = 0.
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Then by the Tb theorem of David-Journé-Semmes [DJS85], it follows that C̃Γ1 and C̃Γ2

are bounded on Lp(R). It follows that for f, g ∈ C∞0 (R)∣∣∣〈C̃p1Γ (bf), bg
〉∣∣∣ =

1

2π

∫
R

∣∣∣∣ lim
t1→0+

∫
R2

log
(
(γ1(x1)− γ1(y1))2 + t21

)
× ∂y1f(y1, x2)g(x)γ′1(x1)dy1 dx1

∥∥∥∥ γ′2(x2)|dx2

=
1

2π

∫
R

∣∣∣∣ lim
t1→0+

∫
R2

qt1(γ1(x1)− γ1(y1))f(y1, x2)γ′1(y1)g(x)γ′1(x1)dy1 dx1

∥∥∥∥ γ′2(x2)|dx2

=
1

2π

∫
R

∣∣∣〈C̃Γ1(γ
′
1 f(·, x2)), γ′1g(·, x2)

〉∥∥∥ γ′2(x2)|dx2

.
∫
R

‖f(·, x2)‖Lp(R)‖g(·, x2)‖Lp′ (R)dx2 ≤ ‖f‖Lp(R2)‖g‖Lp′ (R2).

Therefore C̃p1Γ is bounded on Lp(R2) for 1 < p <∞, and by symmetry C̃p2Γ is as well. Again

it follows that for f ∈ Lp(R2)

lim
t1,t2→0+

C̃p1t Mbf = C̃Γ1Mbf and lim
t1,t2→0+

C̃p2t Mbf = C̃Γ2Mbf in Lp(R2),

and for g ∈ Lp(Γ)

lim
t1,t2→0+

Cp1t g = Cp1Γ g and lim
t1,t2→0+

Cp2t g = Cp2Γ g in Lp(Γ).

This completes the proof.

Remark 6.15. The comment after Proposition 6.11 and Proposition 6.14 together prove

Theorem 6.5.
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tingales régulières à deux indices. C. R. Acad. Sci. Paris Sér. A-B, 288(4):A267–

A270, 1979.

[BS89] Harold P. Boas and Emil J. Straube. Complete Hartogs domains in C2 have
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Z., 224(4):519–553, 1997.



BIBLIOGRAPHY 151

[NRSW89] A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger. Estimates for the Bergman
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opérateurs de Calderón-Zygmund vectoriels. C. R. Acad. Sci. Paris Sér. I Math.,

297(8):477–480, 1983.

[Rud69] Walter Rudin. Function theory in polydiscs. W. A. Benjamin, Inc., New York-

Amsterdam, 1969.

[Sem90] Stephen Semmes. Square function estimates and the T (b) theorem. Proc. Amer.

Math. Soc., 110(3):721–726, 1990.

[Ste67] E. M. Stein. Singular integrals, harmonic functions, and differentiability proper-

ties of functions of several variables. In Singular integrals (Proc. Sympos. Pure

Math., Chicago, Ill., 1966), pages 316–335. Amer. Math. Soc., Providence, R.I.,

1967.

[Ste70] Elias M. Stein. Boundary values of holomorphic functions. Bull. Amer. Math.

Soc., 76:1292–1296, 1970.

[Ste73] E. M. Stein. Singular integrals and estimates for the Cauchy-Riemann equations.

Bull. Amer. Math. Soc., 79:440–445, 1973.



152 BIBLIOGRAPHY

[Ste79] Elias M. Stein. A variant of the area integral. Bull. Sci. Math. (2), 103(4):449–

461, 1979.

[Str86] Emil J. Straube. Exact regularity of Bergman, Szegő and Sobolev space projec-

tions in nonpseudoconvex domains. Math. Z., 192(1):117–128, 1986.

[Wei69] Barnet M. Weinstock. Continuous boundary values of analytic functions of

several complex variables. Proc. Amer. Math. Soc., 21:463–466, 1969.


