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Introduction

This thesis is divided into two parts, which deal with two similar problems, but with a
different perspective.

The first part is devoted to the study of the Hardy spaces H?, p € (1, c0), on non-smooth
worm domains (see below) and the mapping properties of the Szegé projection associated to
these spaces. Naively, given a domain €2, the starting point is a space H?(2) of holomorphic
functions on €2 that respect some growth condition and that admit boundary values on 0f2.
To these spaces, we can associate an operator S that extends a function F defined on
0f) to a a holomorphic function SqF' defined on 2. Our interest is to study the mapping
properties of the operator S between the spaces LP(092) and HP(2). Once we have proved
that the range of Sq is contained in HP(f2), we can consider a new operator related to Sg.
Since every function SqF in HP(Q2) admits a boundary value function, say S/Q\F , defined
on 0D we consider the operator F +> 55?7 , the so-called Szegé projection operator, and
we are interested in studying its mapping properties. We remark that the Szeg6 projection
associates to a function F defined on 9 another function SF o defined on 052, but we also
obtain an intermediate holomorphic function SqF which belongs to a specific functional
space and our interest in also in this space. In particular, we face this problem considering
as domain () some non-smooth versions of the worm domain. It turns out that the Szegd
projection of these domains has an integral representation and can be studied using the
classical theory of Calderén-Zygmund operators.

In the second part we have again an operator of the kind F' +—» Sf'g\z_f/? , but we only require
that the intermediate function SqF' is holomorphic on €2, without worrying if it belongs to
some specific functional space HP. More specifically, the domain we consider is the perturbed
upper half space Hr, x Hp, where Hr, is the perturbed half plane Hr, = {z; +iL;(z;) +it; :
z; € R, t; > 0} with L, Lipschitz functions. The operators that arise in this setting are

biparameter singular integral operators whose studying of the mapping properties is delicate.

il
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For this reason, the focus is more on the operators than on the properties of the holomorphic

extension of the starting function.

We briefly describe here the main results we have obtained and illustrate the relationship

with related results in the literature.

Szego kernel and projection on non-smooth worm

domains

The smooth worm domain W = Wj was first introduced by Diederich and Forneess in
[DF77] to provide counterexamples to certain classical conjectures about the geometry of

pseudoconvex domains. For 8 > 7, the worm domain is defined by
W ={(21,22) € C*: |2y — 522 < 1 — p(log ||}, (1)

where 7 is a smooth, even, convex, non-negative function on the real line, chosen so that
n~'(0) = [-B+5%, 83— 3] and so that W is bounded, smooth and pseudoconvex. See [KP08al
for a history of the study of the worm domain. Diederich and Fornaess introduced this domain
to provide an example of a smooth, bounded and pseudoconvex domain whose closure does
not have a Stein neighbourhood basis. Nearly 15 years after its introduction, the interest
in the worm domain has been renewed since it turned out to be a counterexample to other
important conjectures. Starting from ground-breaking works of Kiselman [Kis91] and Barrett
[Bar92], Christ [Chr96a] finally proved that the worm domain does not satisfy the so-called

Condition R. A domain 2 satisfies Condition R if the Bergman projection P, associated to

the domain © maps C*>(Q2) to C>=(£2).

We recall that, given a domain €2 in C", the Bergman projection Py of 2 is the Hilbert
space projection P : L?(Q) — A2(Q2) where A%(Q) is the closed subspace of L?*(§2) consisting
of holomorphic functions. It turns out that F, has an integral representation, namely

Pof(z) = j Koz w) f(w)dA(w),

Q

where Kq(z,w) = Kq(w, z) is the Bergman Kernel.
The interest in Condition R dwells in the fact that it is closely related to the boundary

regularity of biholomorphic mappings as it has been shown in works of Bell [Bel81] and



Bell and Ligocka [BL80]. Specifically, in [BL80] it is proved that given a biholomorphism
® : ) — Qy between smoothly bounded, Levi pseudoconvex domains of C", one of which
satisfies Condition R, then ® extends to a C*> diffeomorphism ® : O — Q.

Due to the results of Christ’s, it is natural to deeply investigate the Bergman kernel of
the worm domain. This has been done extensively by Krantz and Peloso in [KP07],[KP08a]
and [KP08b]. Following [Kis91] and [Bar92], they studied the LP-mapping properties of the
Bergman projection associated to two non-smooth versions of the original worm domain,

namely
Dﬁ = {(Cl,<2) € CZ . Re({lefilog‘@'z) > O, | lOg |<2‘2‘ < ﬂ - g}

and

T T
D), = {(ZI,ZQ) € C?: |Imz —log || < 3, |log|ef? < B - 5}.

Notice that the slices of D for each fixed 2, are half-planes in the variable z;, while the slices
of Dj for each fixed 2, are strips in the variable z;. These two domains, firstly introduced in
[Kis91], are biholomorphically equivalent and, even if their geometry is rather different from
the one of the original smooth worm, they are a model for Wy as it can be seen in [Bar92]. In
[KPO08b], the mapping properties of the Bergman projection are studied by giving an explicit
computation of the kernels K Dy, and Kp,. We remark that the actual computations are made
for the domain Dj since it has an easier geometry and with the restriction that 8 > 7. It is
then possible to recover the Bergman kernel of Dg thanks to the well-known transformation
rule for the Bergman kernel under biholomorphism. The more complex geometry of Dg is
echoed also in the regularity of the Bergman projection. The L” mapping properties of the
Bergman projection of Dj; are better than the ones of the Bergman projection of Dyg.
Recently, Krantz, Peloso and Stoppato studied in [KPS14] the mapping properties of the
Bergman projection of another unbounded worm domain W,,. This domain can be thought

as a limit of the original smooth worm domain. Namely,

Wao = {(51,22) € €21 |z — e 82P 2 < 125 2 0}

In [KPS14], the authors proved some results concerning the mapping properties of the
Bergman projection of W, in L” and Sobolev scale. The authors observe that the approach
they use to deal with W,, may be useful to study the original worm domain of Diederich

and Fornaess.
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The first part of the thesis fits in this investigation of the geometry of the worm domain.
We focus on the non-smooth worm domain Dj; with the restriction that 3 > 7 and we define
the Hardy spaces HP(Dj), p € (1,00), as follows. For every p € (1,00), we define the Hardy

space HP(Dj) as the functional space

HP(Dj) = {F holomorphic in D : HFH%I,(DH = sup L,F(t,s) < oo},
(t78)€[07§)><[076_§)
where,
L,F(t,s)

1 1
J |F(:E—i—z'(s+t),6562”9)|pd9dx+J J ‘F(IE—Z'(S-l—t),e_ge%w)‘pdeda:
0 R Jo

:JR

1 1
+ J J |F (z+i(s — t), e%e%w) ‘p dfdx + J J |F (z—i(s — t), e’%e%w) ‘pdex.
R JO R Jo
We are then computing a growth condition on copies of the distinguished boundary

0D}y = 01Dy U 0,Dj3 U O3Dj3 U 04D

, where,
01Dy = {(zl,zz) €C?:Imz = B,log|z)? =8 — g}
%D = {(Zl"z?) € C?:lmz = —mloglal* =8 - 3}7
%Dy = {(zl’ZQ) € C*:Imz = —f,log|[* = - (5 - 9}
91l = {(Zl’z2) € C?:Imz = —(8—m),log|z|* = - <ﬁ - g)}

Notice that we can identify each 9;Dj with R x T.

We prove that every function F' in HP(Dj) admits a boundary value function F in
LP(0Dj) such that proper restrictions of F' converges to F in norm and pointwise (Theorems
2.37, 2.38, 2.45 and 2.46) and we denote with HP(0Dj) the space of functions in LP(9D})
which are boundary values of function in H?(Dj). Thus, we construct the operator S D,

associated to Dj; and we prove the following results (Theorem 2.32).

Theorem. The operator SD,'B extends to a bounded linear operator
SDZ% . LP(0Dj) — HP(Dyj)

for every p in (1,00).
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The operator S D, has an integral representation by means of the so-called Szeg6 kernel,
that is,

Sp, () = [ Koy (5 OF () d.

oD’
5
Following [KP08b], we perform an explicit computation of the principal singularities of the

kernel K D, (Theorem 2.17). Then, we consider the Szegé projection S, D))» the operator that

associates to a function F' the boundary value function S D%F of S D%F . One can think of
the Szegd projection as a boundary analogue of the Bergman projection. The regularity
properties of the Szeg6 projection and its relationship with the Bergman projection have
been intensively studied for a large class of domains in many papers. We cite [PS77, Boa85,
Str86, Boa87, BCS88, BS89, NRSW89, Che91, BS91, MS97, Chr96b, LS04, CF11], among
others. The worm domain is not included in any of the known situations, so we want to
investigate if its pathological geometry affects the regularity of the Szeg6 projection as it
does in the Bergman case.

The work presented here on the non-smooth worm domain Dj; would like to be a starting
point for this investigation. Thus, we focus on the LP and W*2? mapping properties of
the operator S D) Here W*?2 denotes the classical Hilbert-Sobolev space of order k. The
geometry of Dj allows to reduce our problem in two complex variables in a problem in one
complex variable and the Szegé projection of Dj can be seen as an infinite sum of the Szegd
projections of strips in the complex plane properly weighted. Using techniques of the theory

of multipliers operators we prove the following result (Theorems 2.28 and 2.29).

Theorem. The Szego projection §DIB extends to a bounded linear operator

SD% : Lp(aDg) — Hp(é?Dg)
for 1 < p < oo. Moreover, for all k > 0, gp/ﬁ extends to a bounded linear operator
Spy, : WH(D}) — W*2(0Dj).

Therefore, in analogy with the Bergman case, our theorem shows that §D/ﬁ has good
mapping properties with respect to the L? and W*2? norms.

Unlike the Bergman case, in general, we do not have a transformation rule for Szego
kernels under biholomorphism, so the study of Sp, and S D, turns out to be more complicated
and the research is still on-going. Our goal in the future is to investigate the Szeg6 projection

of Dy and, ultimately, of the original worm of Diederich and Fornaess.
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Holomorphic extension on product Lipschitz surfaces in

two complex variables

The results presented here have been obtained in collaboration with Jarod Hart of Wayne
State University [HM14]. Starting from a holomorphic extension problem we prove some re-
sults pertaining biparameter singular integrals operators and Littlewood-Paley-Stein theory.
It is well known that the standard one parameter Hilbert transform is intrinsically related
to the boundary behaviour of holomorphic functions in the half-plane H = {x +it € C: x €
R,t > 0}. Given a function f € LP(R) for 1 < p < oo, one can extend f to a holomorphic

function

Flatit) = — J}R P _f(y)

dy; f R, t # 0.
omi oy forreR ¢

This function F' is a holomorphic extension of f in the the sense that I’ is holomorphic on
C\R and f(x) = fy(z) — f_(x) for x € R, where

fi(z) = lim F(x+it) and f_(z)= lim F(x —it).

t—0t t—0t

These limits hold almost everywhere in R and in LP(R). It also follows that fi = 2(+1 +
iH)f where [ is the identity operator and H is the Hilbert transform

~ fim © Ty
1) = Jim | )y

The setting we just described can be generalized to a Lipschitz perturbed upper half space
of the form Hr = {y(z) +it € C: 2z € R,¢ > 0} where v : R — C is a Lipschitz graph. The
holomorphic extension result corresponding to the one in the last paragraph is the following:

given a function g € LP(T") for 1 < p < 0o, one can extend ¢ to a holomorphic function

G(z—i—it)zij #dﬁ; for €T, t #0,
LE—

27i (2 +1t)

which is a holomorphic extension of g in the the sense that G is holomorphic on C\I" and

9(z) =g+ (2) — g_(2) for z € I', where

g+(2) = lim G(z +it) and g¢_(x)= lim G(z —it)

t—0+ t—0+
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and these limits exist in LP(I"). The boundary values of G can be realized in this setting as

well by g4 (z) = 3(+1 +iCr)g(z), where Cr is the Cauchy integral transform

Crg(z) = lim 1L (z;fg@dg.

t—0t T Jp (2 —&)2 +t2

Progressing from the extension problem on H to the one on Hr was not an easy feat. It
took more than 40 years from the proof of LP bounds for the Hilbert transform to prove the
L? bounds for the Cauchy integral transform along Lipschitz curves with small constants,
which was due to Calderén [Cal77]. The proof for a general Lipschitz constant appeared
some years later in works of Coifman, McIntosh and Meyer [CMM82a, CMMS82b]. Later,
new proofs and generalizations appeared in the work of David, Journé and Semmes [DJS85],
Jones [Jon89], and Christ [Chr90], among others.

There are results similar to the ones above in the product setting. Let us consider the
product upper half plane H x H in C?. Then, one can extends a given function f in LP(R?),

p € (1,00), to a holomorphic function

J fy)
(27)% Jrz (1 — (21 + 1)) (y2 — (22 + it2))
with t,t, # 0. This function F' is a holomorphic extension of f in the the sense that F' is
holomorphic on (C\R) x (C\R) and f(z) = fi+(z) — fi—(x) — f-1(x) + f-_(z) for x € R,

where

F(z+it) = dy; for x € R?, t = (t1,t9)

f++($) = lim F(l’l + it1, To + itg), f+_(l') = lim F(CB1 + it1, To — itg),

t1,t24)0+ tl,tg%o*'

foi(x) = lm F(zx; —ity,xg +ite), and f__(x)= Um F(x; —ity,z9 —ils).

t1,to—01 t1,ta—01

These limits hold almost everywhere in R? and in L(R?). In this situation, it follows that
fex =3(x1+iHy)(£1+iH>)f(x) where H, f and H,f are the Hilbert transforms applied
to the first and second variable of f respectively. These operators H;, Hy, and HiH, are
sometimes called the partial and biparameter Hilbert transforms, which are bounded on
LP(R?), see e.g. [Fef81, FS82]. These boundedness results are related to the biparameter
Hardy space theory that is addressed in [MM77, GS79, Gun80, CF80, Fef81, FS82, Fef86,
Fef87], among many others. Many of these articles work on the polydisk instead of products
of upper half planes, but working in these two settings is essentially equivalent; look, for
example, in [GS79].



The problem we deal with is a generalization of this situation since we work in a perturbed
half-space.

Let L, Ly : R — R be Lipschitz functions and define vy (z1) = 1 + iLy(21), 72(x2) =
Ty + ilo(x3), and y(z) = (y1(x1),v2(22)) € C? for x = (x1,22) € R? Then, we call
[ =T x Ty =7 (R) x %2(R) a product Lipschitz surface in C?. We say that I is a product
Lipschitz surface with small Lipschitz constants if the Lipschitz constants A\; and Ay of L
and L, respectively are both smaller than 1. The upper half space associated to I' is defined
to be Hr, x Hr,, where Hr, = {v;(z;) +it; : z; € R, t; > 0}. We also define LP(T") for a
product Lipschitz surface I" as follows: given a product Lipschitz surface I' = v (R) x 12(R),
let LP(I") be the collection of measurable functions g : I' — C such that

911y = JRQ (v (@)IP 171 (1)75 (w2) |y divy < oo

Given a function g : I' — C, we define for w = (wy,,ws,) = (21 + it1, 29 + it2) , where
(21,22) € I and 1,15 # 0, the function

o g9(§)d¢
Gy, wry) = (27i)2 L (&1 —wy) (& — Wtz).

We prove the following result.

Theorem. Let I' be a product Lipschitz surface with small Lipschitz constants in C? defined
by v = (71,7%) : R? — C%. Assume that
lim Y1(71) = ¢ and lim Ya(z2)
lz1|—=o0 X1 |z2| =00 XTo
for some c1,co € C. If g € LP(I") for some 1 < p < oo, then the function G : (C\I'1) x
(C\I'z) — C is a holomorphic extension of g such that, for z = (z1,2) € T,

= Ca,

9(2) = 94+(2) = 94-(2) — 9—+(2) + 9——(2),
where,

gi+(2) = lim  G(zy +ity, 29 + its),

t1,to—01

g+— (Z) = lim G(Zl + itl, 29 — itg),

t17t2~>0+

g-+(2) = lim G(z —ity, 29 + ity),

t1,to—01

g——(2) = lim G(z —ity, 2o —its).

t1,to—01

and the limits hold in LP(T).
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We prove the above theorem using the approach David, Journe and Semmes used to
apply their T theorem to prove LP bounds for Cauchy integral transform in [DJS85]. For

this, we prove the following reduced biparameter Tb theorem.

Theorem 0.1. Let by, by € L®°(R™) and by, by € L>®°(R™) be para-accretive functions, and
define b(z) = by (x1)ba(2) and b(x) = by (21)by(2) for & = (21, x5) € R, Also let T be a
biparameter operator of Calderdn-Zygmund type associated to b and b. If T satisfies the weak
boundedness property, mized weak boundedness properties, and the Tb = T*b =0 conditions,

then T' can be continuously extended to a bounded linear operator on LP(R™) for 1 < p < co.

There have been a number of results for biparameter singular integral operators of
Calderén-Zygmund type, going back to R. Fefferman, Stein, and Journé, among others.
There were different versions of 7T'1 theorems proved in R. Fefferman-Stein [FS82], Journé
[Jou85], Pott-Villaroya [PV11], Ou [Oul3|, and [HLT]. In fact, [Oul3] includes a biparam-
eter T'h theorem as well. The formulation of the Th theorem in this work is different than
the one in [Oul3], and even the definitions of biparameter Calderén-Zygmund operators are
different. In Chapter 5, we define biparameter singular integral operators relying only on
continuity in test function spaces, a full kernel representation, and testing conditions on nor-
malized bumps, whereas in [Oul3] the singular integral operators addressed are required to
have full and partial kernel representations as well as some a priori partial L? bounds. The
Th theorem formulated in this work is a natural extension of the single parameter theory.
Unfortunately, it is still not a full characterization of L” bounds for biparameter Calderén-
Zygmund operators since difficulties of working with product BM O persist, but this reduced
Tb =T*b = 0 theorem is sufficient to prove the holomorphic extension result we stated. Even
though we will only apply Tb theorem when n; = ny = 1, we prove it for general dimensions

ni,ng € IN. Our strategy for the proof is to decompose the operator T,

(Tf,9) =Y (Of.9),
kez?
where O are smooth truncations of T'. These truncations ©; are biparameter Littlewood-
Paley-Stein operators, which have been studied extensively in the single parameter setting,
see e.g. [DJ84, DJS85, Sem90, Han94]. There are a few results for biparameter Littlewood-
Paley-Stein operators due to R. Fefferman, Stein, and Journé [Fef81, FS82, Fef86, Jou85],

among others. All of these results are for operators of convolution type. We prove estimates
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for the square function associated to a larger class of operators including non-convolution
operators, which we call biparameter Littlewood-Paley-Stein operators. In particular, we
prove bounds for square function operators associated to biparameter Littlewood-Paley-Stein

operators, defined by

Sf(x) =" |0pf () (2)

kez
for x € R™ and appropriate f : R* — C.

Theorem 0.2. Let by € L®(R™) and by € L>®(R"?) be para-accretive functions, and define
b(z) = bi(z1)ba(22) for v = (x1,22) € R™¥™2. Also let Oy for k € 72 be a collection of

biparameter Littlewood-Paley-Stein operators with kernels 0. If

Lm O (x, )by (y1)dyr = J 0:(, y)ba(y2)dyz = 0

R"™2

for all k € R? and =,y € R", then ||Sfl|lwmny S |flle@ny for all f € LP(R™) when
1 < p < oo. Note that S is the square function operator defined in (2)

The formulations and proofs of Theorems 0.1 and 0.2 were introduced by Hart, Lu and
Torres [HLT] in a slightly different setting, where b = b = 1. Here, we reproduce the
proofs from [HLT], and address the additional technical difficulties that arise when accretive
functions b and b are used in place of 1.

Some other boundary value problems related to the ones we described can be found in

[Boc44],[Wei69],[Ste67, Ste70, Ste73],[FKN81],[JK82],[KP87],[Jac73],[Kra80, Kra07] among

others.

The thesis is organized in the following way. In Chapter 1 we recall and prove some
results related to the Hardy space theory for the symmetric strip Sz = {z € C : |Im 2| < 5}.
The boundedness results of the singular integrals which arise in this setting are a direct
consequence of the standard theory of Calderén-Zygmund convolution operators, but we
include most of the proofs since we perform some explicit computations which will be used
in the later chapters. The Hardy spaces on the non-smooth worm domains are discussed
in Chapter 2. In Chapter 3 we perform an explicit computation of the integral kernel
of the Szegd projection studied in the previous chapter. In Chapter 4 we develop some

biparameter Littlewood-Paley-Stein theory which will be used in Chapter 5 to prove our
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reduced biparameter Tb theorem. Finally, in Chapter 6 we discuss the extension problem in
the setting of the perturbed half-space.
Unless specified, we will use standard and self-explanatory notation. We will denote by

C, possibly with subscripts, a constant that may change from place to place.
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Part 1

Szego kernel and projection on
non-smooth worm domains






Chapter 1
Hardy Spaces on the symmetric strip

In the Introduction we mentioned that the non-smooth worm domain Dj can be sliced
in strips. This feature of Dj will be fundamental in the development of the Hardy spaces
H? (D’ﬁ) since it will allow us to use the theory of Hardy spaces on a strip. Hence, we recall

here some results concerning the H?(S3) spaces where Sg is the symmetric strip
Sg={z+iyeC: |yl <p}.

The results contained in this chapter are well known. We refer also to [BK07]. The
boundedness results of the singular integrals which arise in this context are consequence of
the standard theory of Calderén-Zygmund convolution operators, but, to the best of the
author’s knowledge, they do not appear explicitly in the literature. Thus, we include most
of the proofs since we perform some computations which will be used in the chapters that

follow.

After defining the space H? (D/B)’ in the first part of the chapter we focus on the Hilbert
case p = 2; we prove that every function F' in H 2<DIB) admits a boundary value function
Fin L?(0D}) such that ||F||H2(D%) = ||f||L2(D%). This fact allows us to prove that H?(Sj)
is a Reproducing Kernel Hilbert space (see e.g. [Aro50]) and we compute explicitly its
reproducing kernel. A primary role in proving these results is played by the Paley—Wiener
Theorem for the strip (Theorem 1.2). In the second part of the chapter, we extend the
results obtained for the space H?(Ss) to the spaces HP(Sg), p € (1,00).

For every p € (1,00), the Hardy space for the strip Sz is the functional space
HP(S3) = {f holomorphic in Sg : || f| sr(s,) < o<},

3
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where

1 sy = o || 1ste+ i+ [ 156l ao]. (L)

0<y<p

The proof of the next proposition is elementary and we leave the details to the reader.

Proposition 1.1. Let K a compact subset of Sg. Then, for every f € H?(Sg), it holds
sup |f(z)| < CP,K”fH?{p(Sﬂ)’
zeK

where Cy, i is a constant which depends only on p and the compact set K.

1.1 Case p=2

We start stating the Paley—Wiener Theorem for a strip, which relates the growth of a
holomorphic function in a strip with the growth of the Fourier transform of its restriction to

the real line. Then, we study the boundary behaviour of functions in H?(Sg).

Theorem 1.2. (Paley—Wiener Theorem for a strip) Let fo in L*(R). Then the

following are equivalent:

(i) fo is the restriction to the real line of a function ' holomorphic in the strip Sg such
that

amjwmx+dey<m;
ly|<B IR

(ii) e’ fy € L2(R).

Moreover, the following relationship holds

Proof. See [PW8T]. O

Remark 1.3. The notation used in the statement of the Paley-Wiener Theorem will be

consistently used throughout this work.
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The Paley—Wiener Theorem turns out to be extremely useful since it reduces the studying
of holomorphic functions in a strip to the studying of some L? functions on the real line via
the Fourier Transform. Using the Paley—Wiener Theorem we will prove that each function
in H?(Ss) admits boundary values in L?*(9.S5).

Proposition 1.4. Let F' € H?*(Ss) and for every y in [0, ) define

£) = || 1P+ i vt | (PP a).

Then
||F||§12(5B) = sup L(y)
0<y<B
= lim L(y)

y—=p~
— | 1o cnizag de.
R

Proof. By the Paley—Wiener Theorem, we get

1 —2y€| £ i vE| £
3= | e horde+ 52 [ P

:27r

—~ | 1@ cnizue dg
R

L(y)

and the conclusion follows. O

Remark 1.5. The previous proposition establishes an isometry between the Hardy space
H?(Sj) and a weighted L? space of the real line.

Now we show that each F'in H?(Ss) admits boundary values in L*(9Ss). Since 055 has
two components, when we consider a function, say G, defined on 0S5 we mean a couple of
functions (Gy, Gy) where G is defined on 0,Sp := {x +if : © € R} and G, is defined on
0555 :={x —iB : x € R}. Hence, the norm L?(9Ss) is given by

1G 205, = JR Gy (x +iB)[? dx + JR Gz — iB)|? da. (1.3)

Notice that both 0,53 and 9,55 can be identified with the real line R.

The Paley—Wiener Theorem guarantees that the following definition is meaningful.
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Definition 1.6. Given a function F in H2(S3), we define on 855 the function F = (Fy, F3)

where

Bz +if) = % JR e~ it e (1.4)
and
Fy(z —if) == % LR % foei™ de. (1.5)

Proposition 1.7. Let F be a function in H2(Ss) and consider F in L2(0Ss) defined as

above. Then,
i [ F(+ i) = B2y, = 0
and

lim ||[F(- — iy) — Fa|lr2a,5,) = 0.

y—pB~
Proof. We only prove the convergence on the component 9,53 of the boundary. The result
for 0555 follows analogously. We have

IFC+ i) = Fillogy = | [P+ iv) - Fia+ iB)P da
R

= 50 | lehie) - e o) de

1[>® . L[ sz
<1 L O d“%J_of 25| fy ()2 de

™

< 0Q.

By the Dominated Convergence Theorem we can conclude. O

Remark 1.8. We will constantly use the notation of Definition 1.6 to denote the boundary

values of a function in H?(Sg).

From Proposition 1.7 and Proposition 1.4 we can deduce that H?(Sj) is a Reproducing
Kernel Hilbert space. In fact, each function F in H?(S3) admits a boundary value function
F such that

1 o
IF s = 7 | O Chi2ge) de



1.1. CASEp =2 7

:J |ﬁ1(x+iﬂ)|2 dx—i—J |ﬁ2(x—iﬁ)|2 dx
R R
= [|F|1Z20s,)-

Therefore, we can endow H?(Sz) with a inner product; namely, given F' and G in H?(Ss),

we define

(F,G) s, = <ﬁ>é>L2(asﬁ)

= JR Fy(z +iB8)Gy(z + if) dx + LR Ey(z —if)Ga(x — if3).

Furthermore, Proposition 1.1 ensures that the point-evaluation functionals are bounded on

H?(Sg). In conclusion, we have the following result.

Proposition 1.9. The Hardy space H?(Sg) is a Reproducing Kernel Hilbert space with the
inner product (F, G}HQ(SB) = <ﬁ, 6>L2(asﬁ)‘ Thus, there exists a function K : Sg x Sg — C
such that

(i) for all z,w in Sp, K(z,w) = K(w,2);
(ii) for all z in Sg, K (-, 2) belongs to H?*(Sg);

(iii) for all F' in H?(Sg) and z in Sg we have f(z) = ([ K 2) sy

Such a function K is called reproducing kernel of H*(Sg).
In general it is very hard to find an explicit formula for the reproducing kernel of a space,
but, in our setting, the Paley—Wiener Theorem helps us once again.

Theorem 1.10. The reproducing kernel of H*(Ss) is the function

1 1
K(z,w) = %m (1.6)

Proof. Let F be a function in H%(Sg). Then,

1

F) = 5 | @ ae

:J Fi(z+iB)K,(z + i, 2) dm+J Fy(z — i) Kz —if, 2) da
R R

-lLamﬁ@%@@&+%i;W%@%m@%

:27r
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-2 JR Fol€)l€, 2) (=€) Ch25¢] de,

where ko(-, z) is the restriction to the real line of K(-,z). We deduce that

1 e—iE{

ko(€,2) = 2 Ch2Bg

therefore
1 —~ .
K(w,2) = o LR Ro(€, 2)ei€ de

1 ei(wfz)ﬁ
_ EL{ G & (1.7)

Notice that for (w, 2) in Sg x Ss the above integral is absolutely convergent. So, our problem
is now to compute the integral
iTE
J T e
r Ch[253¢]
where |Im 7| < 23. We conclude this computation using the Residue Theorem. Suppose 7

is such that Re 7 > 0. Consider the function g,(¢) = <" and, chosen a number R > 0,

Ch[25¢]
the rectangle R of vertices (=R, 0), (0, R), (R, i35) and (=R, i35). Then
T d¢ = ) T 1 ;
|, a(¢) dc = 2riResigr.i )
where (—im)e ’
LA —ap)” 1 g
Reslgr i35l = I —Eineg ~ 2m¢
and
R - =
| 0@y ac=| 1o - gute v izl de+ | ilonlr i6) - g.(R 4 i6)) de
aR R 20 0
Now
R o B R iTé B eiT€eT 28
|01 =see iz = | i ~ anpacs o)
_Im R 6”5
=0+ F) [ g 4
while

i

J:ﬁ ilgr (R +i€) — g (— R + i€)] dg' < 2Sh[Im 7R] LQ [SK2[28R] + cos?(25€)]3

|4

e*&ReT

™
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Sh[Im 7 R]

< O SupaR] -

Hence, when R tends to 0, we have

g

JO g0 (R +i€) — gr(— R +i€)] dé — 0

uniformly in 7 when 7 varies in a compact subset of Sy5. In conclusion

1 z(w zZ)¢
Rlw2) = 47rJ 65]5

Ch[2
47T R—)ooJ

=25 Ch[%< —7)]

as we wished. Notice that we performed the computation for 7 = w — Z such that Re 7 >

0; the computation when Re 7 < 0 follows analogously integrating along the rectangle of
vertices (—R,0), (0, R), (R, — and (—R, —iZ O

i35) '55)-

Remark 1.11. For every fixed 2 € Sj the function K(, 2) is well-defined on Sz. Hence, the
boundary value functions K; (-, z) and K(-, z) are simply the restrictions of K (-, z) to 0153
and 0,55 respectively.

Having proved that H?(Ss) is a Reproducing Kernel Hilbert space, we have that every
function F' of H?(Ss) is reproduced by integration against K, that is,

F(z) = (F, K (5 2)) sy
= LR Fi(z+iB)K(z,z +if) dv + LR Fy(z —iB)K(z,z — iB) dzx

We show that we can actually produce functions in H?(S3) via integration against the kernel

K. We have the following proposition.

Proposition 1.12. Let be F = (Fy, Fy) a function in L*(0Sg), that is, Fy and Fy are
functions in L*(R). Let us define the function

SF(z) := J}R Fi(2)K(z,x +1if) dv + JR Fy(z)K(z,x —ip) dz
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Then, the operator F' — SF is a bounded linear operator

such that

Moreover

S L2<855) — HQ(Sg)

ISEm2(s5) < [[Fl|L2(0s,)-

RGOyt B
SF\(z+if) = F [W] @+7[3 Ch[%(-)]] )
N | » ﬁl() 1 AQ(‘)eQB(-)
SFy(x —if) =F [m} () +F [2Ch[25(‘)]]($).

(1.8)

(1.9)

Proof. First of all we must prove that the function SF' is holomorphic in Sz. In order to do

so we prove that

J Fiz + iB)K (2, + i) dz
R

is uniformly bounded in z varying in a compact subset K of Sz and 7 = 1, 2. If we prove this,

then, for every closed curve 7 in S, Fubini’s theorem and the holomorphicity of K(z,z+i/)

for every z in R would assure that

L,

hence, the holomorphicity of SF'. So, for every z in a compact subset K of S,

Hence,

Fi(zr +i8)K((,x +iB) dxd( = J

R

J Fi(x +iB)K((,z +1iB) d(dx =0,
N

: 1 1
Kz @+ i)l = 28| Ch[Z(z — z +if)]|
L !
2B [ShQ[ﬁ(Rez — )] + cos?[(Im 2 + 5)]]%
1 1
< — 1
T2 [ShQ[ﬁ(Rez—x)] + Ck|?

zeK
< O,k || F1l| 22 (m)-

SHPJ |Fi(z +iB)K (2,2 +iB)| do < [ K[z, - + iB]|| 2w | F1 ]| 22wy
R
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Analogusly we obtain the estimate

supJ |Fy(z —iB)K(z, v —if)| dz < Cy k|| Fal|12(w)

zeK JR
and thus the holomorphicity of SF' on Sz. Using Theorem 1.10 and Parseval’s identity we
obtain that

1 [ F(&)e Peiz 1 [ Eb(&)ePeizt
Am Jr  Ch[25¢] Am Jr  Ch[25¢]
L TE (e @m0 [ Fy(-)em==B)0)
:]-"1[ ]Rez +J—"1[ Re ). 1.10
20npa] 1Y STeTeEI0) M A
Plancherel’s theorem leads now to the estimate
HSF”%I?(SB) < HFlH%?(lR) + ”FQH%Q(R)‘
Another application of Parseval’s identity shows that
lim || SF(- + iy) — SF1|| 2m) = 0
y—pB
y—p
as we wished. O

Remark 1.13. We stress that if we start with a couple of functions (F, F») which already
are boundary values of a functions F in H?(S5), then (1.8) and (1.9) coincide with (1.4) and
(1.5), respectively, as expected. This can easily seen by means of the Paley—Wiener Theorem

once again.

So far we have defined a space of holomorphic functions H?(Ss) and proved that every
function F in this space admits boundary values (Fy, F5) in L2(9Ss). These functions Fy
and I, are defined by (1.4) and (1.5) and they are boundary values of F in the sense of
Theorem 1.7. Moreover, we proved that H?(Sj) is a Reproducing Kernel Hilbert space and
we showed in Theorem 1.12 how to obtain a function in H*(Sg) given any couple of fuctions
(Fy, Fy) in L2(Ss). Since to every function in F' in H%(Ss) we can associate a function F
in L?(0S3), we can see H?(S5) as a subspace of L?(9S3). To remark this point of view we

introduce the notation
H%(0S5) := {G = (G1,Gy) € L*(9Sp) : IF € H?(Sp) s.t. (G1,Go) = (F1, %)}, (1.11)

Notice that Proposition 1.1 assures that H?(9Ss) is a closed subspace of L?(0Ss). Thus, we

can summarize what we have seen so far in the following theorem.
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Theorem 1.14. The operator

S L*(0S5) — H?*(9Sp)
(Fy, Fy) — (SFy, SFy) (1.12)
defined by (1.8) and (1.9) is a Hilbert space orthogonal projection operator.
Remark 1.15. The operator S associates to a couple of functions (F7, F3) in a new couple
of functions (SFy,SF,). We will costantly use the compact notation F — SF meaning

(1.12). If we need to be more specific and indicate which component of the boundary 0S5

we are interested in, we will use the notation with subscripts.

Definition 1.16. The operator S : L*(0Ss) — H?*(0Sp) is called Szegd projection.

1.2 Casel<p< o0

In this section we prove the validity of Theorem 1.14 for every p in (1, +00), that is

Theorem 1.17. The Szeqd projection S extends to a bounded linear operator

S: LP(9S5) — HP(DS;)
(F1, Fy) = (SF1, SFs)

for every p € (1, 00),

The operator S acts on a couple of functions (Fy, Fy), but, by linearity, it suffices to prove
our boundedness results for initial data of the form (Fy,02) or (01, F,) where the functions
0;, i = 1,2, are the constant functions zero.

Let us focus now on F' = (Fy,0;) and suppose that Fy is in LP(R) N L?(R). The situation

for the couple (04, F,) is analogue. Then, for every x + iy in Sg, we have

Fl(.)e(yw)(-)] 1 J Fi(u) Ju (1.13)

SF(x +iy) = .7-“_1{ 2 ChR2A ] ) = % R Ch[ﬁ(x —u+i(y+ f3))]

and

_ T () e—280)
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—~ P I YO NN PR Fi(y)
SFalw+ip) =7 {2 Ch[w(-)]]( =5, SERr Iy R

All the above operators are multipliers operators, therefore they admit a representation via
a convolution kernel. The convolution kernels of the operators F' +— SF and F — SF 2
are immediately obtained by Theorem 1.10 and 1.12. Later we will find explicitly also the
convolution kernel of the operator F' +— SF 1-

Proposition 1.18. Let F' = (Fy,02) be in LP(0Sg), p € (1,00). Then,

By ()~ m=+50) Fi(y)
2 Ch[26] } (Rez) = 23 J Ch[5(Rez — y + i(Imz + B))]

SF(z)=F! { dy

is in HP(Sg). Moreover, there exists a constant C, such that
1S E | mr(ss) < Cpll 'l o osp)-
Hence, S is a bounded linear operator S : LP(0Sz) — HP(Sp).

Proof. The holomorphicity of SF' on Sg follows as in the proof of Proposition 1.12. It remains
to prove that ||SF||ms(s,) < 0o. For every fixed y such that |y| < 3, the operator

. Fi(-)ew+A0)

is a multiplier operator trivially bounded on LP(R) since the multiplier

e (y+B8)¢
2 Ch[2A¢]

my(§) =

is a Schwartz function for every fixed y with |y| < S. We prove that the norm of this
multiplier operator is bounded by a constant which does not depend on y. We do it showing

that m,, satisfies Mihlin’s multiplier condition uniformly in y (see, for instance, [Gra08, Thm.

5.2.7]). We have

L) - [t (% Chl25g] — 26e~ e Shizfe)

ac" Ch*[243¢]
- %MCM?BQ + Sh(26¢]] + 8 — y] | Shi26¢]] + B[ Chl25¢] + Sh{25¢]] ‘
< g;f; ] [251 Ch[28¢] + Sh[26¢]| + 5 — y]| Sh[%&]”
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=I+1I.

It is easily seen that

— 25%] Ch[26¢] + Shi2¢]|
is bounded and decays exponentially when [{| — oo for every y such that |y| < |3]. About
11 we have
e~ (y+B)¢
= G~ vl e

< [B—yle” (y+P)E o —28¢]

Hence, we have exponential decay for every y such that |y| < 8 when £ — +o0. If £ & —o0,

we obtain
II=1[p— y]e(ﬁfy)é
€18 — e
€l
Y]
=T
Hence, we can conclude that sup | dgmy } = . Moreover,

sup ||my||re = 1.
lyl<B

Thus, Mihlin’s multiplier theorem implies
J ISF(z + iy)|? de < cpJ Py ()P do
R R
_ cpJ F(2)]? de. (1.16)
R
The proof is complete. O

It remains to prove that SF(- + iy) — SFi(- + i8) and SF(- + iy) — SFa(- — iB) in
LP(R), p € (1,00). The latter limit is easily obtained using (1.13) and (1.15). In fact,

Fi(x —u) Fi(x —u)
LR [Ch[ﬁ(uﬂ(wﬁ))] Ch[Zul g

p

dx

J}R R J
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<[P J ! S dul ’

- P g ICh[G(u+i(y + B))]  Chljpy]

=0 (1.17)
as y tends to —f7.

To show that SF(- + iy) — 5’771( + i) as y tends to S~ is more complicated to prove

and we start proving that it holds in a weak sense when F' is regular.

Proposition 1.19. Let F' = (Fy,02) be in LP(0Sg) where Fy is a Schwartz function. Then,
for every y such that |y| < 5, SF(- + iy) converges weakly L to Sf\Fl( + 1) as y tends to

B, pe(l0).
Proof. For every Schwartz function G we have

e~ WA (&)=

Jip | Sre s T = i | g 0
_ [ eR©F
~J, e SO

= J 5771(:1:)@ dzx,
R

where we can to switch the limit and the integral by Dominated Convergence Theorem. [

Therefore, if we prove that SF(- +iy) admits a limit in a stronger sense, the limit has to
be SF 1, at least when F' is regular. To make our notation lighter, instead of computing the

limit lim,_,5- SF(- + ty), we compute the equivalent limit lim._,o+ SF[- +i(8 — ¢)], where

e~ (2B,

1 F(z —y)
——J Chl : dy

2 15
_ b Chlgglsinl5] 4 . Sh[F]cos[F]
28 JRF( v) Sh?[Z4] + sin?[Z£] W 23 JRF(”T v) Sh?[4] + sin®[5Z] 4
= [K. = F)(z) — i[K. * F](x). (1.18)

Thus, we can study the convolution kernels K. and INQ separately.
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Proposition 1.20. The family of functions

L1 chlsil)
2" = B S g

is a summability kernel for e — 07,

Proof. We have

1 1 Ch[45] sin[75]
JR|K ()] de §JR K.(z) da @LR L
1 1
B JR 1+ a2
=1.

Ch[Z%] sin| %= Ch[Z%] sin |25
[ oonBnE | S
|z|>8 Sh [4—] -+ sin [4—] |z|>8 Sh [45]
— 0
as € tends to 0. Hence, the proposition is proved. O]

Now, for suitable functions ¢, we define

1 ) m 1 J ()

dx
Sh[w—ﬁ] 26 E—)O+ ‘wz|>5 Sh[ﬂ—ﬂ]

(p,p-v.
where ¢ is a Schwartz function. It is not hard to prove that p.v. Sh[m] is a well-defined
tempered distribution.

Theorem 1.21. The operator

T:S(R) — S(R)
1
Su[zz]

© = p.. * 0 (1.19)

extends to a bounded linear operator
T:LP(R) — LP(R)

for every 1 < p < o0.
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Proof. This is a standard fact; see e.g. [Gra08, Thm

L 4.4.1].

17

Let us denote by 7T, the truncated operator associated to T, that is,

F(z

ﬂﬂwzj
\Z—;|>s Sh[

—y)

] dy.
43

We compare the operator T, and the convolution with the kernel [?E obtaining the following

result.

Proposition 1.22. Let F be a function in LP(R).

Then,

lim ||K. % F — T.F|| Lomy — 0

e—0t

for every p in (1,00).

Proof. 1t holds

K. F(x) —T.F(z) = . % F(x),

where
Sh[%] cos|75]
SW?[Z2] Fsin®[75]

Ho(y)

Sh[%] cos|75]

if |35 <e

1 ™y

Sh?[F4]+sin’[35]  Sh

48

7] if |75 > e

We show that the family of functions J#. is a multiple of a summability kernel. We have

J ’Sh[E” COS[E dy — %
|<e Sh?[Z¥] 4 sin?[ %] T
8
T
_28
=
— Cg,
with Cs < 00, as € tends to 0F.
Moreover,
J Sh[75] cos[ 5] 1 a
75 | Sh?[T4] +sin®[f5]  Sh[ZH]

e Shit] cos|ZE
2[]¢¢ "
o Sh7[t] 4 sin®[T5]
re h
2 Shlt] "
o Ch7[t] — cos?[73]
rChle] 1
——— dt
. 2= cosﬁﬁ]
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Sh{75](cos[35] — 1)
Bﬂy ‘ dy + J
B[ 75] + sin®[ 5] |22

<|
|151>e
7Ty)

< (1 —cos —

46

dy

1
|>e Sh[%]

|7y
48

— Cg
where again Cz < 00, as € tends to 07. Thanks to these estimates we can conclude that
sup | ()] dy < .
e Jr

Using analogue estimates, it is easy to see that, for every ¢ > 0,

i | ) dy =0
e—07t ly|>6
At last,
J He(y) dy =0
R

since ¢ is odd. Therefore, we can conclude that for every F' in LP(R)
|k F—0-F|p =K. F—T.F|1» — 0
as ¢ tends to 0. O

Proposition 1.20 and Proposition 1.22 together prove that

lim SF[z+i(8—¢)] = 2F —iTF, (1.20)

e—0t

where the limit is in LP. Moreover, by density, by the uniqueness of the limit and by

Proposition 1.19, we can conclude that

lim SF[-+i(8 —¢)] = 2F — iTF

e—0t

= §F1(+Zﬂ)

o ﬁ(.)e—zﬁo
- [2%[%(»@' (1.21)

We sum up everything in the following theorem.
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Theorem 1.23. The Szegd projection S extends to a bounded linear operator

S : Lp(855) — Hp(aSg)
(F1, Fy) s (SFy, SF3)

for every p € (1,00).

Proof. As we already remarked, it is enough to prove the theorem for F' = (F3,02) and
G = (04, F,) and then use linearity. We prove the result for F', the case of G being completely
analogous. Thus, (1.17) and (1.21) guarantees that SFy and SF; are boundary values of
the H?(S3) function SF defined in Proposition 1.18. Moreover, by (1.16),

|ﬁﬁmm%m=JQ§E@mewdx+LJ§£@—wmvdx
<G| IR@P ds
R
—¢,| 1F@p d
2Sp
= CpHFH]Zp(asﬁ)-
The proof is complete. O

We conclude the chapter with a theorem which states that SF in HP(Ss) converges to

its boundary value function ST mnot only in norm, but also pointwise almost everywhere.

Theorem 1.24. Let F = (F, Fy) be a function in LP(0Ss), p € (1,00). Then,

lim SF(z + iy) = SFy(z + if) lim SF(z+iy) = SFy(z — iB)

y—B8~ y——p38*

for almost every x in R.

Proof. As usual, we work with F' = (F7,0,). By (1.17),

. e . _ T —u 1 — 1 u
|SF(z +1y) — SFa(z —if)| = JRFl[ ]{Ch[ﬁ(u+i(y+5))] Ch[ﬁﬂ]] !
1 ,

v
du]

< || F1]| e (m) “
R

—0

Ch[&(u+i(y+p)] ChlH]
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as y — —f~!. By (1.18) and Proposition 1.22,

lim SF(x +iy) = lim SF(x+1i(8 —¢)

y—B- e—0t
= lim [K.«F —iK,* F
Eggl+[ * iK. x Fl(x)
= lim [K.* F —iT.F](z).
Ei>0+ |: * ! }(.%)

Now,
lim K, % F(z) = 2F(z)

e—0t
almost everywhere thanks to Proposition 1.20. The pointwise convergence of }?6 x Fis a
consequence of the boundedness of the maximal truncated operator associated to T.F. We
do not report the proof, but we refer to [Gra08, Theorems 2.1.14 and 4.4.5]. n



Chapter 2

Hardy Spaces on the non-smooth

worm domain Dlﬁ

In this chapter we develop the theory of Hardy spaces on the domain Dj. We refer to
the Introduction and the bibliographic references therein for background results on worm
domains.

We focus attention on the non-smooth worm domain

T s
DIB = {(21,22) € C*:|Imz — log|zl?| < BL | log\22|2| <p - 5}, (2.1)

where 3 is assumed to be 8 > w. This domain is biholomorphically equivalent to the domain

Dg = {(Zl,ZQ) € C?: Re(zel8l=l") > 0, | log |22|2| < B - g} (2.2)

via the map
v D//g — Dﬁ
(21, 22) — (€71, 29)
and

U~ Dg— Dj
(¢, G) = (LoglGre ™8 12F] 1 ilog |Go)?, G2),

where Log(() is the Principal Logarithm.

21
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Inspired by [Kis91], Barrett used the domains Dg and Dj as models to study the
(ir)regularity in Sobolev scale of the Bergman projection of the smooth worm W. Later,
in [KP07], [KP08a] and [KP08b], Krantz and Peloso studied the LP mapping properties of
the Bergman projection of Dg and Dj by an explicit computation of the Bergman kernel.
The actual computation of the kernel are made for the domain D/B since it has an easier
geometry. It is then possible to recover the kernel of Dg by the transformation rule of the
Bergman kernel under biholomorphism. Unlike the Bergman case, in general, we do not
have a transformation rule for the Szeg6 kernel. At the moment, we are able to study the
mapping properties of the Szegd projection of Dj only. The research on Dj is on-going and

our goal in the future is to study the Szegé projection of the smooth worm W.

This chapter is organized as follows. ~After defining the spaces H?(Dj) , we focus on the
case p = 2. Using Fourier analysis, we see that H 2(D%) can be decomposed in orthogonal
subspaces and we see which relationship exists between these subspaces and the space H?(Sp)
of the previous chapter. We prove that every function of H 2(D’ﬁ) admits boundary values and
that H 2(D’B) is a Reproducing Kernel Hilbert space. Thus, we define the Szeg6 projection
of H?(D}) and, following [KP08b], we provide an explicit formula for the reproducing kernel
K D)- We conclude the first part of the chapter proving a Paley—Wiener theorem in this
setting and proving a regularity result for the Szegd projection in Sobolev scale.

In the second part of the chapter we extend the results to the case p € (1,00). We study
the mapping properties of the Szeg6 projection in LP-scale and we show that the spaces
HP(Dj}) admit a decomposition similarly to the Hilbert case. In addition, we conclude the
chapter proving a Fatou type theorem, that is, we prove that an appropriate restriction of a

function in H? (Dg) converges to its boundary value function pointwise almost everywhere.

2.1 The spaces H"(Dj)

Let us focus on

Dlﬁ = {(21,22) e C?: ‘Imzl — log|22|2| < g,

log|2f*| < 8- Z

where 8 > m. This domain is rotationally invariant in the 2z, variable and we can represent

it in the plane (Im 2, log|z3|) as in Figure 2.1.

Remark 2.1. Notice that definition of Dj; (as well as the one of Dy and W) requires only
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that 3 > 7. For simplicity of the arguments, we restrict ourselves to the case 8 > . This is
not a serious constraint since, at least in the case of Bergman spaces and Bergman projection,

the most interesting situations occur when 3 tends to +oc.

The feature which makes the analysis on D% easier than on Dg is the following. Let

z1 € C such that |Im 2| < § be fixed; then, as it is elementary to check, the set
D/ﬁ(zl) = {22 eC: (21,22) S D/IB}

is connected. This is not the case for the domain Dg and the main difference between the
two domains.
As we already mentioned, the domain Dj; can be sliced in strips. More in detail, let us

fix zp € C such that |log|z|?| < 8 — 5; then, the set
7r
Diy(z2) ={z1 € C: (21,22) € D} = {z1 € C: [Imz —log|zf’| < 5}

can be identified with a strip centered in log |23|* and width equals to 7. All these charac-
teristics will be reflected in our results. The rotationally invariance in the z;-variable will
allow us to use the theory of Fourier series, while the “strip-like” geometry in the z;-variable
will make the results of Chapter 1 available.

In order to define Hardy spaces on Dj; we need to establish a HP-type growth condition
for holomorphic functions on Dj. We do this by restricting the functions to copies of the
distinguished boundary D} of Dj. In detail, the distinguished boundary D7 is the set

0Dy = 01Dy U 0,D}3 U 03Djy U 04D
where
01Dy = § (21, 22) € C?:Imz = B,log|z|* =3 — g},
82D5 (21, 22) )eC?: Imzlzﬂ—ﬂ,log|z2|2:ﬁ—g};
(21, 22) Imzlz—ﬁ,log\z2|2:—(B—%)};
(z

04Dy = § (21, 22) Ile:—(ﬁ—ﬂ'),lOg’ZQ’Q:—(ﬁ—g)}.

For every p € (1,00), we define the Hardy spaces HP(Dj) as the functional space

HP(Dj) = {F holomorphic in Dj || F[[7,, Dy = sup L,F(t,s) < oo},
(t:)€[0,5)x[0,6—-3)
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1
log |22 log |2o| = 3 (Imz; + g)

] —(B-m)

@ = — — —

Figure 2.1: A representation of the domain Dj in the (Im zy,log |2[)-plane.

where

L,F(t,s)

I,

1
+J J |F (z+i(s —t),e2e®™)|" dfdz —|—J
R

0 R

1 1
J |F(x—l—i(s—|—t),e§e2m9)|pd9dx+J J ‘F(x—Z'(S—l-t),e_%e%w)‘pcwdx
R

0 0

1
J |F (z—i(s — 1), e’%e%w) |p dfdzx.
0

We emphasize that the domain Dj is not a product domain, while, on the other hand,

every component 0;Dj of the distinguished boundary is and it can be identified with R x T.

Remark 2.2. Since dDj has four different components, we can think of a function F' €
LP(0Djy) as a vector F' = (Fy, Fy, F3, Fy) where each function F}, is thought as defined on
Dy =R xT, k=1,2,34 and

4 4
"F‘|ip(8D23) = Z HF’CHZZ,P(@CD%) = Z HFkHiP(RXT)'
k=1 k=1

As in the case of the strip, it is not hard to prove that convergence in HP(Dj) implies

uniform convergence on compact subsets of Dj.
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Proposition 2.3. Let K a compact subset of Dy and F a function of H?(Dj). Then

sup [F(z1,22)] < Ok [ Fl
(z1,22)eK
Using only the definition of HP(Dj}), we can immediately prove that every function F
in H?(Dj) admits a boundary value function F' = (Fy, Fy, F3, Fy) in LP(0Dj) at least in a
weak-* sense.
We need to restrict the holomorphic function F' to copies of the distinguished boundary
8D’5 inside the domain. Since dDj is union of four disjoint components, we denote by F, ,S”S)

such restrictions, k = 1,...,4. They are defined as follows.

Definition 2.4. Let I' be a function in H?(Dj), p € (1,00). For every (¢,5) € [0,3) x
0,8 — %), we define

9 s+t g

t gl’gQ = F(ReC1 +Z ﬁ ImChe %(5 2 )§2)7

s) —1 _1g_m g

i Q@QZFﬁmQ+% ngﬁéw22@%

ts =F(R st I L(B-Z+s)
'(¢1,G) == F(Re ¢ +1i ﬁ m(,e &)

tS ClaCQ :F(Recl—i-’lﬁ ImCl, %ﬁ 5+s) CZ)

Each function F, ,Et’s) is a well-defined function in LP(9,Dj), k = 1,2,3,4.

Proposition 2.5. Let F' be a function in HP(Dj), p € (1,00). Then, there exist a function
F = (ﬁl, ﬁg,ﬁg,ﬁ) in LP(0Dj) and a subsequence (t,s)n, such that, for every function G
in P (R x T),

J FU((1, G)G (G, G) d<1d<2—>J F1(G1, ) GG, ) dGidgy
oD, oD}

as n tends to +00 and k =1,...,4.

Proof. Let (t,s)m, a sequence such that (¢,s), — (5,8 — 5) as m — +o0. Then, {F,Et’s)m}
is a bounded set in LP(R x T'). By the Banach-Alaoglu Theorem, there exists a subsequence
{F, k(t’s)m"} converging in the weak-* topology to a function ﬁ’, in LP(R x T). The conclusion
follows from the definition of weak-* topology. O]
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2.2 Casep=2

In this section we study the Hardy space H 2(D;g) according to this plan:

we first decompose H 2(D'ﬁ) as direct sum of subspaces 7-[]2 using the rotational in-
variance in the second variable and the theory of Fourier series (Proposition 2.6 and
Remark 2.15) ;

using such a decomposition we show that each F' € H Z(D,IB) admits boundary values
in L*(0D}) (Proposition 2.13);

we show that H?(Dj}) is a Reproducing Kernel Hilbert space by identifying the inner
product in H 2(D’ﬁ) as an L? inner product on the distinguished boundary (Theorem
2.14);

we describe the Reproducing Kernel of H*(D7}) (Theorem 2.17);

we define the Szegé projection operator (Theorem 2.26) and we formulate a Paley—
Wiener Theorem for the domain Dj; (Theorem 2.27);

we study the Sobolev regularity of the Szeg6 projection (Theorem 2.28).

We adapt a decomposition introduced by Barrett [Bar92], while providing some details

for the reader’s convenience.

Proposition 2.6. Let I be a function in H*(Dj). Then F(21,2) = >,y fi(21)2 where

the series converges pointwise and each function f; belongs to the Hardy space H*(Sg).

Proof. If F'is a function in H*(Dj) and (21, 22) is a point of Dj, it is immediate that

1
J F (1, |22] )2 df < oo,
0

Thus, by the theory of Fourier series in L*(T), we get

1
F(a, ]22|62”9)e*2m'j9 d@] 2miiv2

F(z1,22) = Fla, |22]e®™) = ) ”

jez Y0

= Z [Jl F(z1, €% 2y)e ™0 d@]
0

JEZ
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= Z‘F}(ZIJ’ZQ)J

jEZ

where the convergence is pointwise for every (21, 22) in Dj.

Notice that the function

1
Gj(Zl,ZQ) = [J F(2176i622)672m]‘0 do Z;j
0

is holomorphic in Dj and depends only in |z|. Hence, it must be locally constant in 2.
As we already stressed, for all z, the set Dj(z1) = {22 € C : (21,22) € Dj} is connected,
therefore G(21,22) = fj(21). Since Fj(21,22) = f;(21)# is holomorphic on D}, it follows
that f; is holomorphic on the strip S = {z +iy € C : |y| < 5}.

Finally, we have

oo > sup LoF(t, s)
(t.)

= sup Z LoF(t,s)
(t.5)

> supmin{e’*, e 7} {J | filz +i(s +t)] ‘2 dq:}
(t,s) R

> Cj||fj||?‘[2(55)7
therefore each f; belongs to H?(Sg). O
Remark 2.7. A few comments on the last proposition:

— we proved that F(z1,2) = 3 Fj(z1,2) = 3. f;(21)73. Notice that each function Fj
j€z jez
satisfies the equality

Fi(z, ewzQ) = eijeFj(zl, 29).

Thus, we define the following subspaces of H*(D7). For every j in Z,

M ={F € H*(Dj) : F(z1,€"2) = ¢ F(21, 20) }; (2:3)

— since each function f; belongs to the Hardy space H?(Sg), all the results contained in
the previous chapter are available. In particular, we know that the each function f;

admits a boundary value function fNJ in L*(0Sg).
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Remark 2.8. The connectedness of the set Dj(z1) = {22 € C : (21,22) € Dj} for every

fixed z; has a primary role since it permits to split the variables in each function Fj.

We now use the Paley-Wiener Theorem for the strip to compute the H*(DY) norm of

each function Fj.

Proposition 2.9. Let Fj(z1, 2) = f;(21)2) be a function in H; and ];; in L*(0Sg) a boundary

value function for f;. Then,

7'r

N \

Ifl+ (8~ 2)]”?{2(5 )t

s
2

1Fl 22 = {
# eI = (8= Dl
o .
= J]R | fj0(&[* Ch(m€) Ch[(25 — 7)(€ — %)] “

In particular,
sup LoFi(t, s) = lim LyF;(t,s).
) i(t:5) (L) (5.6-3) ()

Proof. By the Paley—Wiener Theorem we get

I = [(J o+ ils + )P+ + ils — )P+
(t,s) R

1 — (s — )P 4 |fy(a —i(s + 1)) fs)dx]
= smp j [F0(€)[? Ch[26€] Chs(2€ — )] de. (2.4)

where f;0 = ijR’ that is, the restriction of f; to the real line, and fj,o is its Fourier transform.
The Paley-Wiener Theorem assures that e”l' fj,o is in L?(R). Hence, using the Dominated

Convergence Theorem, we obtain

3

sup Lo Fj(t, s) <

ur LR sup | f,0(€)|? Ch[2t€] Chls (26 — j)] de

(t,s)

LR i 5o(€)” Chi2ee] Chls(2¢ — )] de

~tim = | 1/50(6) Chi2e€) Chls(2¢ = )] de

(t,8) T

2
s
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=2 | 1fl©)F Chlre Chl28 = m)is )

In conclusion,

sup Lo(t,s) = lim Lo(t,s).
(5) 2(t, 8) () ,6-1) 2(t, 8)

Since now we know that the supremum is obtained for (t,s) = (3,8 — 5), we do not have

to see the norm of F; necessarily from the Fourier transform side. Therefore, we have

||FJ||§ = JR <|f~](ZL‘ + iﬁ)|2@j(ﬂ—§) + |f;(l’ + Z(ﬁ - 7T))|26j(’8_g)—|—
+ |J§(ZE — (B — 7r))|2€—j(3—%) + |E(x _ iﬁ)‘2€_j(5_g))dx

= DL+ 8 = D) Bgsg) + e DUL —iB = D) asy) (25)

2

O]
Remark 2.10. Notice that

2| 1ot cnlre) onigzs - m)(e - 1 e (2:6)

can be thought as a weighted norm of the Hardy space of the strip H?(S5). We denote with
H ]2(55) the Hardy space of the strip equipped with this weighted norm. We remark that
HZ(Sp) is the standard unweighted Hardy space H%(S3) and the different norms of the spaces
H JZ(D’B) are all equivalent when j varies. In conclusion, the previous proposition shows that
Fj + f; is an isometry between H #(Dj) and L3(0Ss) where

13llz2(os, J | f50(€)” Ch[x&] Ch[(28 — ) (& — gn dg
= J (Ifj(x +iB)[2eT 08 4| fi(x £ (8 — w))|2eij<ﬁ—%>> dz.
R

We stress that in the above norm the function J? appears evaluated at heights +if8 and
+i(8—n); while f(z+i8) truly are boundary values, it trivially holds that f(z+i(3—7)) =
flz £i(f —m)).

Proposition 2.11. Let be ' a function in H*(Dj). Then

1E W 20 = fupzﬁz Zsupﬁz = > IE e,

JEZ JEZ (t9) JEZ

where the supremum is taken for (t,s) varying in [0, %) x [0,8 — 7).
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Proof. We already know that || F||? H2(py,) = SUD > jez LaFj(t, s); it trivially follows from the
(t.s)

orhogonality of trigonometric monomials. We would like to prove that it is possible to switch

the supremum with the sum, i.e.

supZ£2F (t,s) Zsup[ig

(t:5) JEZ jGZ

Since we know from Proposition 2.9 that sup £oF}(t,s) = %m; LyF;(t,s), we can conclude
(t,s) t,s
using the Monotone Convergence Theorem. [

We sum up everything we have seen so far in the following theorem.

Theorem 2.12. Every function F(z1,z) in H*(D}) admits a decomposition

F(z,29) ZF 21, %2) ij(zl)ZQ

JEZ JEZ

where each f; belongs to H7(Ss) and

1E N2y = D I Fillzm,) = > Iillzzs,)-

JEZ JEZ

Moreover,
N

HF_SNF||H2(D’B) = ||F— Z FjHHQ(Dg) —0

j=—-N

as N tends to +o00.

Proof. The only thing we still have to prove is the norm convergence of Sy F'. From Propo-
sition 2.6 we have the pointwise convergence, while the previous proposition assures that

{SNF} is a Cauchy sequence in H?*(Dj). Hence, the conclusion follows. O

Finally, we are able to prove that a function F' € H 2(D’ﬁ) admits boundary values in
L?(0D}). We denote with Fk(t’s), k =1,2,3,4, the functions defined in Definition 2.4.

Proposition 2.13. Let F(z1,2) = 3. f;(21)2) a function in H?*(Dj). For (C1,¢2) € 0Dy
J€Z
define

§1,C2 = ng (G1)¢

JEZ

Then F,Et’s) — F in L*(0nDj) as (t,s) = (5,8 —5), k=1,2,3,4.



2.2. CASEp =2 31

Proof. Theorem 2.12 guarantees that F is well defined. We prove the proposition only 0, Dj,
thus (¢1,¢) = (z + i, ez~ 2)e?). The proof for k = 2,3,4 is similar and we omit it. We

want to prove that
~ 1 s ; ,S l ) 2
J ’F(x +i8,e2(F=2)eif) F(t )(x +if,e2872)e) | dxdh — 0
RxT
as (t,s) = (5,06 —%). Since F' is in H*(Dj), it holds

o t,s (t,s
IF = F" a0 = D IE = B 20, < 0

JEZ

Moreover, ||ﬁj - Fl(t S)||L2 @Dy 0 as (t,s) = (5,8 —%). By Monotone Convergence

Theorem for decreasing sequences, we can switch the sum and the limit obtaining

. o t,s t,s
lim | IF = By = 3 i F = B

(tvs)ﬁ(%ﬁ*% icZ %(27/3 ﬂ-)
=0.
The conclusion follows. O
Thus, we proved that a given function F(z1,22) = > .y fi(z1)2} admits a boundary

value function FV(C:[,CQ) =2 ez ]?;-(Cl)ﬁg in LQ(aDg). Moreover, as expected, it holds the
identity

1EN 20 = 1F | 220m3)- (2.7)

This fact allows to prove that H 2(D’B) is a Reproducing Kernel Hilbert space by identifying

the inner product in H 2(D’ﬁ) as an L? inner product on the distinguished boundary.

Theorem 2.14. The Hardy space H2(D,’8) is a Reproducing Kernel Hilbert space with the
iner product
(F, G>H2(D’) = <Fv G>

L2(D%)

4 -
Z J{)kD’ Cla CZ) (Cl, Cg) dCldCQ (28)

Proof. 1t follows from (2.7) and Proposition 2.3. O
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Remark 2.15. In conclusion, we proved that the space H 2(D’ﬁ) admits an orthogonal de-

(D) =P (2.9)

jez
where the H}’s are the subspaces of H?(D}) defined in (2.3)

composition

Before investigating the reproducing kernel K D, of H Z(D%)7 we investigate the reproduc-
ing kernels of the subspaces HJQ The particular structure of each 7-[]2 and Proposition 2.9

allow us to look for the kernels of the spaces H;(Sg).

Proposition 2.16. The reproducing kernel of sz(Sﬁ) is the function

1 61(21*5)5
kj(21,29) = &

m LR Ch[r€] Ch(2 — m)(€ - §)]

Proof. Given z; in Sg, by Remark 2.6, we have

Fe2) = = | Ao(@0Fil€, 22) Ch(me) Ch{26 — m)(€ — J)] e
T IR

1 ¢ iz
~ 5 | e e

where the last equality holds since f belongs to H?(Ss). It follows

e~ 1728

—_

kjo(€, z2) = ACh(n€) Ch[(26 —m)(E — )]

Using the inverse Fourier transform we finally obtain

) - 1 ei(z1—22)¢
ila,22) = o LR Ch[r¢] Ch[(28 — m) (€ — 1))

d¢.

The reproducing kernel of H 2(D/’B) is then given by

KD/ [(whwz 21722 Z w1,w2 (2172’2)]
JEZ
= ZWQjZ_ijj(wh 22)
JEZ

ei(wl —Z)E

=2 | orom e e
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2.2.1 Asymptotic expansion of the kernel K D,

Following [KPO08b|, we obtain an asymptotic expansion for the kernel K D) Since the

proof is long and technical, we do not report it here, but we refer to Chapter 3.

Theorem 2.17. Let B > m and define vg = # Let h be fixed such that

-7

13
%<h<m1n<§,%>.

Then there exist functions Fi, F5,G1,...,Gs, E and E that are holomorphic in w and anti-
holomorphic in z, for w = (wy,ws) and z = (z1, 22) varying in a neighborhood of D}, and
remain bounded, together with all their derivatives, for w,z € D), as | Re(w;, — Z1)| — +00.
Then,

_(wp—m)w
—sgn(Re(w1—21)) L 21 8

KDIB(w, 2)=e K(w,z) + e~ sgr®e(wr—=)(@i=2Dh g () )

where

Fl(’LU,Z) FQ(’LU,Z)
K(w7 Z) = i(wy —27)+7 + i(wy—27)—7 + E(w7 Z)

1 — (wezp)e™ = 1 — (wyzp)e™ =

= Ki(w, 2) + Kz (w, z) + E(w, 2)

and

I}(w,z) _ G1(w, 2) Go(w, 2)

i(wy —Z)+m i(wy —Z7)—m

[1—(wezm)e = ] [1—(wm)e 2 |
Gs(w, z)

1 — (wom)e T [1 — (wyZ)e 3]

Gy(w, 2)
[ — (wsz)e 7 [i(wy — 1) + 26]
Gs(w, 2)
1= (wem)e = i(w, — 71) — 28]
Ge(w, z)

i(wy—zp)—m

[1— (wzm)e 2 J[1 = (wyzm)e P3)]
Gr(w, 2)
[i(wy — Z1) + 26][1 — (wazz)e”P~2)]

+ +

_|_

+

+

+

+ +
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Gs(w, z)
[i(w1 —71) = 2B][1 — (waZ)e’ 2]
= K (w,2) + ...+ Kg(w, z) + E(w, 2).

+

+ E(w, 2)

Remark 2.18. A comment about the singularities of K D, is required. We have the following

facts:

— for w,z € D’ﬁ the terms K; and I?l become singular only if

. _i(wy—z) 4w
WoZo — € 2

This can happen only if log |ws|* — Im(w;) — § and log |zs| — Im(z1) — 5. Thus, K;
and K, are singular only when both w and 2 tend to the right oblique boundary line

of the domain in Figure 2.1;

— the terms K5 and I?Q are similar to K and K 1 and they are singular on the left oblique

boundary line of the domain in Figure 2.1;

— the term Kj is singular when

WoZgy — 6_@ or WoZg — e (5=3),
Thus, K 3 is singular when both w and z tend either to the lower horizontal or the right
oblique boundary line on of the domain in Figure 2.1. Notice that the term is more
singular when wyZy — e¢~¥~2) and (w; — z1) — 2(8 — 7) since the singularities add
up. Therefore, [?3 is more singular on the component of the distinguished boundary
34D’B;

— the term K is singular when
_ _i(wl—ﬁ)+7r _
WoZy —> € p or Im(wy — z7) — 20.
Therefore, I?4 is singular when both w, z tend to the right oblique boundary line of
the domain of Figure 2.1. The term becomes more singular on the component of the

distinguished boundary 0, Dj;

— the singularities of [?5 are similar to the ones of K, and the worst situation is when
both w, z tend to 3 D;



2.3. THE SZEGO PROJECTION OF Dj 35

— the singularities of [?/6 are similar to the ones of K. 3. The term in singular both w and
z tend to left oblique or the upper boundary line of the domain in Figure 2.1and it

becomes more singular on 0, Dj;
— the term K7 becomes singular when
WoZe — €772 or Im(w; —z1) — 205.

Therefore, the term becomes singular when both w and z tend to the upper boundary

line of the domain in Figure 2.1 and, like [?4 it is more singular when w, z tend to
81D23:

— the last term [?8 is symmetric to I?7. It is singular when w, z tends to the lower

boundary line of the domain in Figure 2.1 and it is more singular when w, z tend to

03D'G .

2.3 The Szegd projection of Dj

To conclude the study of H?(Dj) it remains to prove that the integration against the
kernel Kp, actually produces functions in H 2(Dp).
We start the section proving two propositions on the convergence of the series which

defines the kernel K D,

Proposition 2.19. Let us consider KD%(Z,C) = KD%[(21,22)7 (C1,C2)] where (C1,¢2) € ODj

and (21, z2) varies in a compact set K C Dj. Then,

kj(zl,é‘l)%fé} <00

sup

ez (2:0eK oD
Proof. We prove the proposition supposing that ({1, (s) is in 81D/’3. The general case will
follow analogously. In order to estimate the size of k;, suppose for the moment that j < 0.
Then,

6—[1111 Zl+ﬁ]£

[kj(21, )| = [ks (21, +38)] < L Chlre] Ch[(25 — )& — D]
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- (J_OO+JO+EOO) Chilré] ceh_[[(j;iﬁ:)@_ ) %

It follows that

3 o~ lIm z1+6]¢ ; 3 o Im 21+ 8J¢ ;
| araamer—me—g = | emen
e~i(=5) b (B-1m=1)
£ —Im 2z
0 o~ lIm z1+6]¢ ; § e-lma+Ble ;
Jé Ch[r¢] Ch[(28 — m)(§ — 1] §N Jo e—mEe(2B-m)(E—3) §
. j(ﬁiz)e—%[lmzlﬁ’)ﬁ—%ﬂ 1
— 2 N
¢ Imz +368—21 '
+o0 e~ [Im 21 +8]¢ p too  o—lImzi+8)¢ y
Jo Ch[m€] Ch[(25 — m)(€ — 1)] F Jo emee2A-m(E=3) ¢
Ji(B=%)
_o &
Imz + 30
Notice that all these estimates do not depend on Re (; and the term
67%[Imz1+3,8727r] -1
Imz +38 — 27
is not singular when Im z; 4+ 36 — 27 — 0. Finally,
> |l et Dk (20,0 + i) <
§<0
C ellogleoP+5—Imz]  dlloglea~Imar+5] _ dllogleaP+36-%]  4[36—§mtlog ]
<
- Z{ £ —1Imz; * Imz + 38 — 27 * Imz + 383

7<0

and it is immediate to see that we get a uniform bound for (21, z9) € K. Analogous compu-

tations prove the estimate for the sum over positive j’s. O

By the property of Reproducing Kernel Hilbert spaces, we know that KDb[(zl, 22), (4, 4]
is in H?(Dj}) for every fixed (21, 22) in Dj. In particular, Kp,[(z1,22), (-, )] admits boundary
values in L*(0Dj). Notice that for (21, z) fixed in Dj, the kernel KD%[(Zl_,Zz), (-, )] is well-
defined on 0Dy, thus its boundary value function is just its extension to Dj. Regarding the

L?(0D}) norm of Kp,[(21,22), (-, )] we have the following estimate.
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Proposition 2.20. Let K be a compact subset of D/’B. Then,

sup || Kpy[(21, 22), (- )]l r2(omy) < Ch, (2.11)
(zl,zz)EK

where Ck is a constant which depends on K.
Proof. We prove the proposition for only one of the component of the distinguished boundary;,

say 01Dj5. The computation for the other three components is analogue. Therefore, by

Proposition 2.12, we get

. g 2
e3[4 1 4 25]‘ dydx

=02L£

JEZ
o - (Imz1+5)
S| «
ez ‘Ch [26¢€] Ch[(QB —7m) (& — % )

where in the last equality we used Plancherel’s theorem. The computation continues similarly

to the computation in the proof of Proposition 2.19. O

Remark 2.21. In order to have more readable proof, as we did in the previous chapter for
the strip Sp, we can think to have a function F' in LQ(aD’B) such that F' = (Fy,0q,03,04)
where 0;’s are constant zero fuctions. The results for a general F' will follow by linearity,

since, as element of L*(0DY),

(£, Fy, F3, Fy) = (F1,02,03,04) + (01, F, 03,04) + (01, 02, F3,04) + (01, 02, 03, Fy).
Notation. Given a function F in C5°(R x T), we denote with FgF(£, 7) the Fourier trans-
form of F in the first variable and the jth Fourier coefficient in the second, i.e.

w_ L[
FaF(€) = 5| | Ple)e e dya,

Proposition 2.22. Let F = (Fy, Fy, F3, F}) a function in LQ(aDg). Then, the function

SF(21,22 <F K )ﬁ(zlaZQ)DLz(aDg) :Z<FkaK[("')7(Z1722)]>L2(@k[)%)

k=1
is in H*(Dj). Moreover,
ISF| 20y < I1F L2 omy)-
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Proof. We prove the proposition for a function F in L2(8D’5) of the form F' = (Fy, 0q,03,04).
Therefore, by Plancherel’s theorem,

1F oy = | PGP derdes

oD}

1
:JJ |Fi(2 + 8, €222 2 dadp
0

:—ZJ | FrFy(E7)[ dE,

JEZ

The holomorphicity of SF' follows using the estimate in Proposition 2.20 and an argument
analogue to the one used in Proposition 1.12. It remains to prove that SF satisfies the H?

growth condition. To simplify notation, we set Fy(x + i/, e2(#~5)e2m) .= F\(x,0). Thus,

SF(u+iv,re*™) = (u+ v 1”62””)]>L2(8D,)

(F,
J J (x,0) Zk u+ v, x + i) 2T 03 (B=5) o=2misb g1,
JEZ
e (v+8)( .F]RFl( )
Chlm-] Ch[(28 — m)(- — 3)]

Y et E

JEZ

1
4
Hence,
1 s
J J |SF[u+i(s+1t),e2e*™]|” dydu
R Jo

_ LZGJ(S+BE)J ’ 6_(5+t+5)ff]RF1(7 ) ’2 dg
Ch[wg]

S Ch[(28 - m)(§ - §)]
Ly e,
81 Jr! Ch 7r§ Ch[(28 —m)(€ — 3)]
ZJ ’]—"RFl £ ‘ de. (2.12)
ez
Taking the supremum for (t,s) € [, ) x [0, 3 — §) we obtain
1
IS a2(py) < <Pl 2y < (1 l|z20my) (2.13)

and the conclusion follows. O
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Remark 2.23. We report for completeness the explicit expression of SF' given a general
initial data F' = (F, Fy, Fs, Fy) in L*(0Dj). Let (u + 4v,7*™) in Dj, then

—(v+8)(") =
SF(U—FZ'U,TG%W erez 2mJ’Y]:R1 [C € FrE1(+,7) : ] (u)
1 h[m] Ch[(28 — m)(- — 2)]
1 Cialmy o e~ +8=m)0) T Fy (-, §)
+ = rjeg(ﬁ—g)e%rzgvf—l , (u)
4 Z " | Chjr] Ch[(26 — m)(- — §)]
1 em) omis [ RO RE(-))
+ = 7«36*5(5*5)62myyf—1 s (u)
4 J% ® | Ch[r] Ch[(28 — 7)(- — D)+
1 i(gom) omis [ @m0 FR Fy(-, )
+ — rje_5(5_5)62W2]7f_1 ) (u)
4 ; "1 Chlr] Ch[(28 — 7)(- — )
(2.14)

Since SF is a function in H*(D}), we know it admits a boundary value function SF. We

show an explicit formula of SF.

Definition 2.24. Given (Fy, Fy, F3, Fy) in LQ((‘?D%), we define

SFy (x4 B, 3Dy = = JGZZ iy ci[ﬂ_?é;j();ﬂﬂi)g?ﬁ(é;) (2)
I Xs Ch[w(f c&lszﬁ;((—j)n «
I 2, G cig;('—@)(- —o)
g :Ch[w-iﬁwﬁ[)g;ﬁ}:i-)— %)1: o
" Th
LR e
T _ch[ﬂ.f;:[(];“}%(;;?. - %)1: "




40 CHAPTER 2. HARDY SPACES ON THE NON-SMOOTH WORM DOMAIN Dj

o2 T FrFi(-,7) 2.
T Z [ Cufrjcnl(2s - m( 0|
2(8=3) 2] = 2™ Fri(, /.\) X
SFslw —if,e730" . jezz n [Ch[ ] Ch[(28 — m)( —%)]]()
1 2mijy —1 _ ew(')FlRFZ('J) ]
P i Ch[(2ﬁ—7r)( —oy| ™
1 smigy 1 | €D OFR Fy(-, ) -
L G ]Ch[(%—ﬂ)( mry] K
1 2mijy -1 _ e(w—ﬂ('_%)}—]}{ﬂ(‘vi) ] )
*12 T Gones - mi - ) @
et . _lg_=w 2miy] . 1 2mijy —1 eiﬂ(.)-/—'.RFl(H})
SFale —i(B —m), e e ]'_Zjezze 75| Gl Chl(25 — m)( — 3) )
1 2Ty -1 | FrFs(-,7) ] .
L an ]Ch[(2ﬁ—7r)( o]
1 p2miin -1 i e2h-m FIRF?)( }\) _ -
12 _Ch[w-JCh[@ﬁ—w)(-—%)}_ =)

1 3 28-m)(=4) g=() T F (-
+ _ZGQMJ'YF]gl € € Fr 4( 7j ) (LL’)
12 | Chfr ] Ch[25 — 7)( — D)
Proposition 2.25. Let F' = (Fy, Fy, F3, Fy) a function in Lz(ﬁD/’B). Then,
lim  [[SF(-+i(s +1),e2e>™0) = SFy(- +i, €2 De2™O)|| L2 gom) = 0;
(t,s5)—=(5.8-%)

» l%mﬁ ISF(-+i(s —t),e2e>™0)) — SFy[- 4+ (8 — 7r),e%(ﬁ_g)e%i(')]Hp(RXm = 0;
t,s)—(5,—%

lim ||SF( —i(s+1),e77¥0) - SFs( —ipe 2= 2niC )HL2 rxT) = 0;
(t.8)=(5:8-3)

lim |SE(-—i(s —t),e 2>0)) — SF4[ (B—?T),e_%(ﬁ_Z)ezm M L2@xm) = 0;
(tvs)%(gvﬁ_g)

Proof. We compute only one of the four limits for a simpler function F' of the form F' =

(F1,09,03,04). The other limits follow analogously. We have

. 2 2mi(- OT l T
ISF(-+i(s +1),e2e*™0)) — Sy (- +iB,e2 2™ O || Lo gooqy =
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1 e HB—E)E— ) o= (FH0E _ o= (26-m)Ep—TE 2
- 3| |Feed) j &
T ez R Chlr¢] Ch[(26 — m)(€ = 3)]
1 ~ |2
1 .
<g 2| [AAed|
JEZ
< 0.

By the Dominated Convergence Theorem, we can conclude. The conclusion for a general

function F follows by linearity as explained in Remark 2.2. O

Let us define
H*(0Dj}) := {G = (G1,Ga,G3,Gy) € L*(0D}y) : 3F € H*(D}) st. G = F}.

From Proposition 2.3 we deduce that H*(0D}) is a closed subspace of L*(0D%).

Everything we proved so far can be summarized in the following theorem.

Theorem 2.26. The operator

S: L*(0D},) — H*(dD})
<F17F27F37F4) — (ﬁ’hﬁ%ﬁ&ﬁﬁ)

is a Hilbert space orthogonal projection operator. We call S : L*(0Dj) — H*(0D}) the Szegd

projection operator.

We conclude this section with a Paley—Wiener type of result.

Theorem 2.27. (Paley—Wiener Theorem for Dj) Let F' = (I, Iy, F3, Fy) be a function
in L*(0D}). Then, F is in H*(OD}) if and only if there exists a sequence of functions {g;}
such that .
N J
> | 1P Chire chi(25 - m)(e - ) d¢ < o0
jez 'R 2

and

Fy(z 4B, e2(F~3)e2m) = Z frj(x + iﬁ)e%(ﬁ’%)e%m;
jez
Byl +i(8 —),e2#"De*™) = 3" fojx +i(8 -

JEZ

g)]e%(ﬁ—%)e%iv.

I
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Fg(%-iﬁ,e 2 B-%) 27rz'y Zf?»j I—Zﬁ % 27rzy'y

JEZ

Fyz —i(8 — ), o3 )e27] Zf4] x—i(B 2)]6—%(6—%)627”'7’

JEZ

where, for every j € 7.,

file + 8] = Fg* e P0g,()] (@);

fosla +i(8 = m)] = F [ 0g,()] (@);
failw+i8) = Fg* |, (@);

fugle = i(8 = m) = Fg* 40 g,()| (@),

Proof. Suppose that F' belongs to H 2(8Dr’3). Then, the conclusion follows from Proposition
2.12. Conversely, let {g;} be a sequence which defines F' = (Fy, Fy, Fs, Fy) as in the hypoth-
esis. It follows that SF belongs to H?(Dj) and the formulas in Definition 2.24 guarantee
that E\Fk = Fj, k=1,2,3,4. The proof is complete. O

2.3.1 Sobolev regularity

We conclude this section on H 2(D’ﬁ) studying the regularity of the Szegd projection S in

Sobolev norm. For every k& > 0, let us consider the Sobolev space

4
W*oDj) = {F = (I, Fy, I3, Fy) HFHIZ/Vk(aD;a) = Z HE|’12/I/’C(8¢D’B)} :
=1

where

120y = ZJ (1+ 52+ 5 FaP (. )] de.

JEZ

We prove that the Szeg6 projection S preserves the regularity of functions.

Theorem 2.28. The Szegd projection S is a bounded linear operator

S: Wk@D}) — Wk(oD))
<F17F27F37F4> = (57?1175/'\}/?2751\}%37*%4)

for every k > 0.
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Proof. We only show explicitely that ||ﬁ11||vvk(al%) < ||F1||Wk(8qD;3); the computation for
the other term is similar. Moreover, by Remark 2.2, it is enough to prove the theorem for
F = (F1,05,03,04). For such a function F, it holds

28-m)(—4%) o=7() o,
Tla i3, A0 D) = g [Ch[ JGhizA =) i(in) o
2

JGZ

Thus,

||§Fl||%vk(alpg) = % % J}R(l + 57+ &) FrSF1(E )] d
1 ] e~ (28-m)(6~%) o—7E
T 16 = LR Ch[r¢] Ch[(28 — ) (& — )]
= 1SGH32(0m)-

2

(1472 + )| FaFi(e, )] de

where

=S e [ O T )] @)

€z
By hypothesis, the function G* is in L?>(R x T), therefore,
||SF1||%Vk(alpg) = ||SG]1€||%2(8D;3)

< |G*|| 72ty

= ||F1||3vk(alp;3)-

The conclusion follows. O

2.4 Case 1 <p< oo

In this section we extend the results we have seen so far to the case p € (1,00). In detalil,

— we show that the Szego6 projection can be realized as a composition of simpler operators

we are able to study and we extend Theorem 2.26;

— we prove that the space HP(Dj), p € (1,00), admits a decomposition analogous to
(2.9) for the case p = 2 (Proposition 2.39);
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— we prove a Fatou-type theorem; that is, we prove that an appropariate restriction
of a function F'in HP(Dj), p € (1,00), converges to its boundary value function F

pointiwise almost everywhere (Theorem 2.45).

One of the goals of this section is to prove the following boundedness result the for Szeg6

porjection.
Theorem 2.29. The Szegd projection S extends to a bounded linear operator
S LP(OD}) — HP(9D})
(Fy, Fy, F3, Fy) > (SFy, SFy, SFs, SF,)
for every p € (1,00).

As already pointed out in Remark 2.2, it is enough to prove the theorem for F'in LP(9D7)
of the form F' = (Fy,04,03,04), where F} is a function in LP(R x T). From now on we will
always think to work with a function F' in LP(R x T) of such a form unless specified. Keeping

this in mind, the formulas in Definition 2.24 reduce to

O 0 1(B=T) 2mivy _ lz amijy 1 | € PO De T O FR Fy (-, ) .
SFi(z+1iB,e ey = 1 2 ™I Fr [ i Ch[(Qﬁ — 71-)( - %)] (x); (2.15)
—~ ) 1 x B 26-m)(—3) F Fi(-,7)

_ 5(8—%) 271'2’)/ _ 2mig RL1 )
SFolz +1i(8—m),e e JEEZ 2T ! [Ch[ TCBI2E = ) = %)]] (z); (2.16)
SF. (2 — i, e~ 30D e2mimy = L 2mijy F-1 Fuli( ) :
SF3(x—if,e ™) = 1 jEEZ > Fr [Ch[ TOR@5 — )= I (7); (2.17)

SF j —32 e2m] 2mijy e " FRFi(J)
e =3 =), A D] = G By [cm JO[8 —m)( - %)J@.

Moreover, if (x 4 iy,7¢*™) is in D}, the formula (2.14) reduces to

().

(2.19)
We observe that the operators F +— g\F/i,i = 1,2,3,4, and F' — SF,; are well defined on
the set

4Ch[r] Ch[(28 — 7)(- — 2)]

} (B39~ D =GO Fo Py (-
Sy,sF<£IZ’,"}/) — SF(.I'-'-Zy 62627”7 ZGZWU'yfﬁl [6 2 2/e"\2 R '1( 7])
2

JEZ

{F(%v) =Y Fz, )™ F(-j) € CSO(R)},

#j<oco
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where the sum is on a finite number of j’s. Moreover,

Proposition 2.30. For every p € (1,00),

l-llLp & xT)
{Z F(z,j)e? v : F(-, j) GC'{)’O(R)} =LP(R xT).

fj<oo
Proof. Let F' € LP(R x T)), then F(z,-) is in LP(T) for almost every x € R. Therefore,

N

lim Jl ‘F(:p,y) - Z F(x,7)e 2mijy |

N—oo

dy = 0.

Since the partial sum operator is uniformly bounded for 1-dimensional Fourier series, by

Dominated Convergence Theorem, it follows

1 N
A o |P
lim J J )F(x,’y)— F(x,j)e*™
N—+o00 R Jo j:Z—N

Now, fix £ > 0 and let N(g) such that

N(e)

J“Fgm S Flajemnl|

j=—N(e)

dydx = 0.

dydr < £P.

For every function F(-, ) there exists a function F(-, ) in C5°(R) such that

“R F(e,}) - F(z, )|’ dx} <5

B =
™

Thus,

3=

N(e)

[ [ 3 Fugenr

0 j=—N(e)

dvdm

B =

N(e)
F(z,v) Z F(z j) 2rijy |

J=—N(e)

drydx

IA
5 i
S

hSA

1, N

+ LRJ ) | S (@, ) — Fa, )| dyda

< 2e

" )

where we used triangle inequality and the hypothesis on F( j) to estimate the sum in j.

The proof is complete. O
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Proposition 2.31. Let F' = (Fy,0,,03,04) be a function in LP(ODj). Then, for every
p € (1,00),
15y.sF [l e @0y) < CollFllrony),

where the constant C, does not depend on y and s.

N
Proof. Let be Fi(z,v) = Y. Fi(x,7)e*™7 as in Proposition 2.30. Then,
j=—N

SysF' (2, 7) = [Ny s 0 A F(2,7),

where
N - j
1 e (BEeE-d) ‘
AsF(2,7) = 5 i —FrF1(€,5)e™ d
:9) 2wLw§%? Oh[(@5 —my(e g e
1 N - j .
= Q—J > (€ = 5)FrFi(€, j)e dé (2.20)
TR 2
and
N F 1 e—(%—8+y)£]__ . it
y.s <x77)—'§;:LR‘75£EEi—' rF1E, 7)e™ d€
1 / iz
:Q_J My () FrFu(€,7)e™ dE. (2.21)
IR

We recall that y and s are such that (z + iy, e2¢?™7) is in Dj, thus |s| € (0,8 — ) and

ly — 5| € (0, 5). Following the proof of Proposition 1.18, we obtain that m; _ is a multiplier
of LP(R) for every p € (1,00) with norm independent of y and s. Thus the operator A
extends to a bounded linear operator LP(R x T) — LP(R x T) for every p € (1,00). About

As we have

1

AsE(x,7) = 5 JR

2T IO () FrFy (6 + 2, j)ei™ de
2 2

J

_1J
o )R .

J

M= 11+

T m () Frle O R (-, 1)](€)e™ de.

-N

Therefore, by a change of variables and the periodicity of the exponential function,

1
RxT R JO

= 2 | EOm Ol RN de| o
j=—N
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N

=[] e[ mto 3 Fle ORI de

L.l

Following again the proof of Proposition 1.18 we obtain that m is a multipliers of LP(R)

p
dxdry

N

ijﬁms(f)ﬂ{{ Z e_i%(')F1(~,j)ez7rij7:| (€)ei*€ de

p
d .
o | xdry

Jj=—N

for every p € (1,00) with norm indepedent of s. Therefore, if we prove that the function

S e it Fy(t, §)e?™ is in LP(R x T), we will obtain the L boundedness of the operator
j=—N
As. By a change of variables and the periodicity of the exponential function, we have

L

N ‘ N p
eIt Fy(t, §)e¥™ Y drydt

) o= [

= HFlH]]ip(]RX'E)

Fi(t,j)e*™

< Q.

Finally,

R JO

IN

1 -1
J J |SysF(z,7)|" dyda J [[Ay,s © A F(,7)| dyda
R Jo
Gy

r 1
<, J |F(x,7)‘pd7dx,
0

as we wished.

]

The last proposition allows us to prove that the operator S extends to a continuous

operator with respect to the LP norm.

Theorem 2.32. Let F' = (Fy,02,03,04) a function in LP(ODj). Then, for every p € (1,00),

the operator S extends to a bounded linear operator

S Lp(é?D/’B) — Hp(DI'@).
Proof. Suppose that F' = (F},0y,03,04) is a function in LP(0D%) N L2(8D’ﬁ). Then, Propo-
sition 2.22 assures that SF' is holomorphic on Dg. Moreover,

||SF||Z]){P(D’5) = sup L,SF(t,s)

(t.5)€[0,5)x[0,6—%)
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= i}ll:)) ||Ss+t,sF||]£p(]R><1r) + HSs—t,sFH]zp(]qur)

+ HSf(ert),stH]]ip(]RxT + HS (s—1), FHLp (RxT)
< CpHF”Z[)/P(RXT) (2.22)

with (), independent of ¢ and s thanks to Proposition 2.31. Thus, we proved the theorem
when F is in LP(0D}) N L*(0D}). Suppose now that G is a general function in LP(9Dj}).
Then, there exists a sequence {G,,} C LP(0D}) N L*(0D7}) such that [|G — Ghllropy) — 0

as n tends to oo. From Proposition 2.31 we obtain
ISIG = Gulllry) < CollG = Ghllrony),

thus SG,, — SG in HP(Dj). It remains to prove that the function SG is holomorphic on
Dj;. From the first part of the proof and Proposition 2.3 we know that the functions SG,’s

are holomorphic on D/’8 and

sup |S[Gn — Gnl(21,20)] < Cyl||G — G ||H,, )

(zl,zg)EK

for every compact set K C Dj. It then follows that SG is holomorphic on Dj. n

It remains to prove that (2.15), (2.16), (2.17) and (2.18) are boundary values for SF. At
the moment, we focus on (2.15) and we fix some notation. We have
Ttl,sF(x7'7> = [‘S/’\Fjl - Ss+t,sF] (.Z‘,’y)

S g o= (28-m)(—1) = () _e—(ﬁ—%+s)(~—%)e—(%+t)(~)}_ R
—_= € ; RL1 .JJ
! 4 Chr(-)] Ch[(28 = m)(- = 3)]

()

JEZ

= >N E! [l () FrF )] (@) + Y e mbl ) FE )] ()
JEZ JEZ

= T3 F(w,7) + T, F(x, ), (2.23)

where

e ) 1{ 6—(g+t)£M€—(2ﬁ— m(E=3) 4 o= (8 —§+5)(€—§)} 1

(S 3 Ch[ré] Ch[(28 — m)(¢ — 1)) N
1[ e 45 +t)£} F(zﬁw)(é%) — e(5§+5)(5—§)} :l[ml,ll
8| Chjrel Ch[(28 — 7)(¢ — 3)] 8
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Thus, the operator Tt%;l can be seen as a composition of two operators, that is,
1,1 -
1, F(z,7) = [As 0 2| F(x,7), (2.24)

where, A, and Z;, acting on a suitable function G, are defined by

AG(z,7) = Z

e2migy [ o—(28-m)(E=%) 4 o~(B-F+s)(E-1) i
| FrG(E.J)e™ de;
R

& Ch{(28 — m)(¢ - §)]
- - 1 e~ _ o (5H1)¢ o
=,Gr,7) = %JR Chrg— FRO(E e e

The situation for the operator 7}17;,[[ is analogue. We have
T3 F(w,7) = A 0 ZF(z,7), (2.25)

where the operators A, and =} are defined by

2y [ o= (28-m)(E=3) _ o~ (B-F+s)(E—3) i
NG =Y j FaG(€, )¢ de;
R

o Ch{(28 — m)(¢ - §)]

1 e ™ e (e
=G = —

= FrG(&,7)e™ dE.
o rG(E7) 3
So, in order to obtain information on the mapping properties of the operator Tgs, we

/

study the operators A, =, A, and =} separately. The realization of Ttl’s as composition of

these operators is particularly effective since the parameters t and s become, in some sense,

independent.

Proposition 2.33. The operator Ay extends to a bounded linear operator
A : LP(RxT) - LP(R xT)

for every p € (1,00). Moreover,

sup | As]l, < oo (2.26)
se[ovﬁ_g)

N ..
Proof. Let G(z,v) = Y. G(z,7)e*™7 be a function as in Proposition 2.30. Then, similarly
j=—N
to the proof of Proposition 2.31 for the operator \s, we obtain

JR E |AG(z,7)|” dyde = JR E

N

J}R w]—“ﬁ { Z ei%(')(.)G(.7j)627rij7:| () de

P
dydx.
2T Lhd

j=—N
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By Mihlin’s condition (see, for instance, [Gra08, Thm. 5.2.7]), we obtain that the function
e—(28-mE | o—(B—F+s)
Ch{(25 — m)¢]
identifies a multiplier operator that is bounded on LP(R) for every p € (1,00) and that

m?!(¢) = (2.27)

N o
satisfies (2.26). Notice also that the function Y €'2°G(z,5)e?™7 is in LP(R x T). In fact,
N

j=—N

1 1 N
J J Z iZ xG(l‘ ]) 2mijy dvdﬁ—J J Z 627r7,j'y
rJo | 2y <

where we performed a change of variables and used the periodicity of the exponential func-

dydx < oo,

tion. Finally, by Fubini’s theorem,

1 1 m2! N . p
MGl drdo= | | || ™ { ] ()ede| dady
JIR Jo } ‘ 0Jr|JR 2 :Z_
1 N
S J J z :cG {23' ] 27r7,j'y d.’L’d’Y
1 N
= CPJ J Z G(z,7)e amin | dxdry.
oJrl, 7y
By Proposition 2.30, the proof is complete. O
Proposition 2.34. The operator =, extends to a bounded linear operator
Z :LP(RxT)— LP(RxT)
for every p € (1,00). Moreover,
sup 1=, < oo. (2.28)

tel0,5)

Proof. By Mihlin’s condition we obtain that the function m;" (¢) is a LP(R) multipliers for
every p € (1,00) which satisfies (2.28). By Fubini’s theorem we conclude. O

Proposition 2.35. The operator =; extends to a bounded linear operator
i LP(RxT)— LP(RxT)

for every p € (1,00). Moreover,

sup |||, < oo
t€l0,73)
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and

1iH% ||EtG||Lp(R><T) =0
t—%

2
for every function G in LP(R x T).

Proof. The boundedness of =; follows once again by Mihlin’s condition, while the limit is
computed as in (1.20) for the strip Sx. O

Proposition 2.36. The operator A/, extends to a bounded linear operator
AN LP(RxT)— LP(R x T)
for every p € (1,00). Moreover,

sup  [JALl, < oo
s€[0,6—5

and

lim[[ALG s = 0

S—}ﬁ—a

for every function G in LP(R x T).
Proof. The proof follows similarly as the proofs of Proposition 2.33 and Proposition 2.35 [

Thanks to the last proposition, we can finally prove the norm convergence of a function

in H?(Dj) to its boundary value function.

Theorem 2.37. Let F' = (F1,02,03,04) be a function in LP(OD}). Then, for every p €
(1,00),

lim  [|SepisF — SF1| ot = 0. (2.29)

(ts)—=(5.8-3)
Proof. From (2.23), it is enough to prove that HTtl,;IHp and ||7}17;Il|lp tends to 0 as (t,s) —

(3,8 — 5). Thus, using Proposition 2.33 and Proposition 2.35,

J |Tt1,§IF($77)|p drdy = J HAS o Et]F(x,7)|p dxdry
RxT

RxT
< CJ 12 F(2,7)|" dedy
RxT

— 0
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as (t,s) — (3,8 — 5). Similarly, using Proposition 2.34 and Proposition 2.36, we get
| paa deay = | JiEe MiP@a) dedy
RxT RxT
< OJ |ALF (2,7)]" dwdy
RxT
— 0
as (t,s) = (5,8 — 5). The proof is complete. ]

Following the same scheme, we can prove that we have convergence in norm to the

boundary values also on the other components of the distinguished boundary.

Theorem 2.38. Let F' = (Fy,02,03,04) be a function in LP(OD}). Then, for every p €

(1,00),
Im  ||Se_ssF — SFy| 10 = 0; 2.30
L. [Ss—t, 2|l (RxT) (2.30)
lim “S_ (s+1), F SFB”LP RxT) = O (231)
(t,8)=>(5.8—%
lim ”S—(s—t),—sF - 57?14”LP(]R><T) =0. (2.32)

(tvs)ﬁ(gvﬂ_g)

Proof. We have

T2 F(z,7) = [SFy — Sy, F)(,7)
_Z 2 Fl [mt8(7 NFrF (-, ] +Z i Fl [ 211(_ ’)]-"]RFl(',j)}(I)

JEZ JEZ
= T3 F(w,7) + T3 (0, 7);
TtgsF(x ) = [51/73—5— (s+8),—sF](@,7)
= e md DT )| () + D e mi ) FR R ()| (2)
JEZ JEZ
=T33 Fa, ) + Tf’sﬂ(% );
T F(2,7) = [SF3 — S_(_p—F)(,7)
=Y e mil )]-"]RFl N @)+ 30 e i ) FrFi( )] @)

JEZ JEZ

=T F(x,y) + T5 (2,7),
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where
m? (€, j) = 1[1 — e(gt)j [6(25ﬂ)( -5 4 e(ﬂg+s)(£§)].
ta &0 = 1T Clifg] Ch[(26 — m)(€ — )] !
(e ) = L[LE e T [T TR - Oy
sl Chl Chl@3-mE-3
mi () = 5[ e‘@—“f} [Lre ~(p-5-ad) )
b TR L Cnlng] I len]@s—m)E— D))
miy (€,5) = 1[1+6 s t)gH 1 — en-5-96Ed) }
PIS 8 Ch[wg] Ch[(26 — m)(€ — 1)|I’
mil (€, 5) = 1[ (WH 1 4 e (B-5-9E4) |
i 8 Chhf] Ch[(28 — m)(¢ — 1)]
m;l,H(g j) = l[eﬂﬁ + @—(2+t)£} [ ] — o (B-%-s )(5_%) }
MR G IR IYCNEE R I
The conclusion follows by an argument similar to the proof of Theorem 2.37. O

Finally, we are able to prove Theorem 2.29.

Proof. (Theorem 2.29) As pointed out in Remark 2.2, it is enough to prove the theorem for
F = (F1,05,03,04). For such a function F, the thesis follows combining (2.22), Theorem

2.37 and Theorem 2.38.
O]

2.4.1 A decomposition of H?(Dj)

In this section we prove that the the space H?(Dj;) admits for every p € (1,00) a decom-

position

"(Dy) = EPH (2.33)
JEZ

analogously to (2.9) for the case p = 2. We recall that, for every j € Z,
={F € H(D}) : F(z,e"™"%) = > F(z,2)} .

Thus, we will prove that given a function I in HP(Dj), there exist functions F}’s such that

lim

N
N—oo H

F- )Y F

j=—N

=0,

H? (D))
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where each function Fj belongs to HY.

We begin proving this result for functions which belong to the range of the operator S.
As usual, without losing generality, we work using simplified initial data. Given a function
F = (F1,02,03,04) in LP(0D}), we define

N —(B—T4s)(—L) —(T_g . A
Z i e~ B3+ (=) e~ (G=5t0)0) Fp Fy (-, ) (x)

4 Chlm] Ch[(28 — m)(- — 3)]

Sy F(x + iy, e2e?™7) =

N
Z F(x + iy, e2e*™7).

Notice that each function S;F' trivially belongs to ’H? )
Proposition 2.39. Let I = (F1,0,,03,04) be a function in LP(D}), p € (1,00). Then,

Proof. For almost every function x € R, the function Fi(z,-) is in LP(R). Thus, the L?

convergence of one-dimensional Fourier series guarantees that

1
i | 1Fiey) ~ B @)l d =0,

N—oo ]
where F{™V) () = Z;V:_ ~ Fi(z,7)e*™. By the Dominated Convergence Theorem we can

conclude that

N—oo

1 1
lim J J |Fi(z,7) —Fl(N)(x,”y)]p dydx :J lim J |Fi(z,7) —Fl(N)(a:,y)]p dydx
R Jo rR N7 Jo
0

Thus we can conclude that

Jim | £~ P HLP(@D’) — 0,

where F(N) = (FI(N), 02, 03,04). By definition, it holds

N ~(B=5+)( D)= G st Fp Fy (-,
» iy . e 2 2’e ‘2 7])
S[F(N)Kl’ + iy, e2 62 ’Y) Z 2 J'Yf]Rl 4Ch[7T] Ch[(QB _ 7-(-)( I_R ll)]

]:—N 2

= Sy F(x + iy, e2e*™)

()
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N
= Y SiF(x+iy,ete™™)

Jj==N

and it is easily seen that S; I € H(Dj). Finally, using estimates (2.22), we get

Jim |SE = SnF|ae(py) = Jim |ISF — S[F(N)]HHP(DQB)
< Cp lim [|F— F™ ooy,
=Gy Jim [|Fy = B oy
= 0.
The proof is complete. O

So far we proved that every function which is in the range of S admits a decomposition
SF =Y S;F
JEZ
where the equality is meant in H?(Dj) and each S;F" belongs to H}(Dj). To obtain (2.33)

it remains to prove that the operator S is surjective on H?(Dj). We already know this the

case for the case p = 2, therefore the following result will be useful.

Proposition 2.40. For every p in (1,00), we have

H(D,) 0 Be (DY) " = HP (D).

Proof. For every € > 0 and z; € S consider the function

- B 1
G ) = 1428 +iz]

Since G° is bounded, it follows that F'- G is in H?(Dj) for every function F' € HP(Dj),
p € (1,00). Moreover, F-G¢ belongs to H*(Dj;)NH?(D}). In fact, let (t,s) € [0,5)x[0, 6-5),
then

0 0

Jl JR IFla+i(s + ), 3G + i(s + 1)]|° dudy < Jl U|F|2<1 +J|F|2>l} dy

1 1
SJ J |GE[z +i(s +1)])? dxdv—i—J J |Flz+i(s+t),e2e*™]|P dady
R R

0 0
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< C(&) + 1 F Ml (o)

Analogue estimates hold for the other terms of the norm HP(Dj). Thus, for every fixed
e > 0, the function F-G* is in H*(Dj;) N H?(Dj) and FG* = S[]*:\GTE]. Notice that G° admits
a continous extension to D_/B’ therefore FGe = F G*, where F is the weak-* limit of F (see

Proposition 2.5). Now,

1
hm I1F' = FG*|[ 3 DY) < lim supJ J (F — FG%)[x +i(s + 1), 52> P dody+
R

5—)0*( t,s) Jo

1
+ lim supJ J (F — FG®)[z £ i(s — t), eT2e> )P daxdy.
R

5—>0Jr (t,s)

We focus on one of these term; the computation for the other terms is similar. Therefore,

1
lim supJ J ((F — FG)[z +i(s + t),e2e*™ || dvdy =
R

e—=0t (t,5) Jo

1
= lim supJ J |Flz +i(s + t), e2e”™[1 — G*[x +i(s + 1)]] " dwdy
R

e—0t (t,s)

1
< lim suphmmfj J |Fla+i(s +8), 3™ [(G° — G +i(s + £)]]|” dedy
R

=0t (15) 6201 Jg

1 B o
= lim suplim IHfJ J |S[F(G° — G°)][z + i(s + t), e2e*™]|" dudy

e=0t (15) 0201 Jg

< lim sup liminf ||S[F (G5 - GE)]HI;H(D’B)

=0t (1) 00
< C, lim li alha G* /
p lim lim inf | (G° = G|l ony)

=0,

where in the last two lines we used the boundedness of the operator S and the Dominated

Convergence Theorem. The proof is complete. ]
Finally, we can now prove that the operator S is surjective on H?(Dj).

Proposition 2.41. Let F' be a function in HP(Dj), p € (1,00). Then, there erists F in
LP(ODj) such that F = SF.

Proof. From the previous proposition we know there exists a sequence {G,} of functions
in H*(Dj) N H?(D}) such that ||[F — Grllr(py) — 0. Since Gy, is in HP(Dj), there exists
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o7

G, = (E}Vn’l, @7172,@;,3, évnA) in LP(0Dj) such that, with the notation of Proposition 2.12,

for k=1,.

4,

fo,}f)(éu Go) =7 évn,k(Cla (2)

where the convergence is weak-* in L?(R x T), k =1,2,3,4. Now

G = Gullony = swp | (= GulH(G1, ) dasdG
(9D2i

/
HeL? (9D%)
1H]|, =1

4
= s S| (G- GalH(GG) dad
HeL? (9D%) k=17 0iDj
[l =1

4

= sup » lm LJ%”@WW@@MmQ
B

HELpl(an) k=1 (tzs)ﬁ(iwg_j)
1 Hllr =1

4
. t,S ,S
<O dm NG = G e,
i=1""

S CHGn - GmHHP(D%)

Thus, the sequence {G,} is a Cauchy sequence in LP(0D}) which admits a limit G in
LP(0D}). We recall that, since G, is a function in H?*(Dj) N H?(D}), then G, = SG,,. Now,

for every fixed € > 0, there exists N(e) such that for every n > N(¢), it holds

Therefore,

17— Gullincon < < and G = Gllurony <=

IF = SGllur(py) < |F = Gullae(oy) + |Gn — SGll s,
<e+1SG = SCllunpy)
<e+Gn = Gllrony)

< 2,

where we used the boundedness of the operator S. Since this holds for every £ > 0, we can

conclude that F = SG and the proposition is proved.

]
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Remark 2.42. Theorem 2.37 and Theorem 2.38 show that every function in the range of S
tends to its boundary values in norm. The previous proposition allows to conclude that this

is true for every element of H?(Dj), p € (1, 00).

Remark 2.43. Proposition 2.39 and Proposition 2.41 together prove the decomposition
(2.33).

2.4.2 Pointwise convergence

We conclude this chapter proving a Fatou-type theorem. We prove that an appropriate
restriction of a function F' in HP(Dj), p € (1,00), converges to its boundary value function
F also pointwise almost everywhere . As usual, we prove our results in a simplified situation.
The general case follows by linearity. Let ' = (Fy,0g,03,04) be a function in LP(9Dj), then
we proved that, for example,

1
lim J J ‘SF[x—’—@'(S-}-t),@%eQﬂ'i’Y] _ SF[IE‘*‘iﬂ,B%(ﬂ_g)eQﬂ—i’y] p d/ydx —0.
R JO

(t:s)=(5.8—%)

In general, to prove a pointwise convergence result, we expect that we need to put some
restrictions on the parameters ¢ and s. For example, also in the simpler case of the polydisc
D?*(0,1) = D(0,1) x D(0,1), we are able to prove the almost everywhere existence of the
pointwise radial limit

lim G(r 20 o™
)
(7‘1 77‘2)—>(1,1)

for a function G in HP(D?) under the hypothesis that the ratio }:—:; is bounded (see, for
example, [Rud69, Chapter 2, Section 2.3]).

At the moment, we are able to prove a pointwise convergence result which depends only
on one parameter. It would be interesting to determine a larger approach region to the
distinguished boundary dDj.

We need the following lemma.

Lemma 2.44. Let Sy be the strip Sg ={z=x+1y € C: |y| < B}. Let G = (G4+,G_) be a
function in LP(0Sg), p € (1,00). Then the function

G, (e @O0 4 G_()e~w=H0)

Gl ) = F e N ()] Chi28 — (= 3

()

belogs to HP(Sg) for every integer j.
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Proof. Without losing generality and to simplify notation we suppose G = (G, 0). Thus,

Gi(-)e~ w0 ] @
)JCh[(28 —7(- =]

SG(z +iy) = F* [4 Chir(-

If G is in LP(R) N L*(R), then

| () (v+6). Ch[28()]
SGo+iy) =F~ | 4Ch[n(-)] Ch[(28 — m)(- — 1) Ch[%’(-)]] (@)
—(y+B8)(
=5 QCh 28(-) ]
where
R Ch[26()IG() N
i lzch[ (ICh{(2 - m)( = %>]]( )

= F 7 m()GO)] (@)

Since m is bounded and G belongs to LPNL? the function ¢ is well defined. From Proposition
1.18 we deduce that SG is H?(Sg). The conclusion for a general function G in LP(R) follows
by density. O]

Theorem 2.45. Let I = (F1,0q,03,04) be a function in LP(0Dj), p € (1,00). Then,

hrﬁn SFx +it, e (9~ )™ = SF, [z + 140, ez 2)e2m] (2.34)
t—pB~

for almost every (z,v) € R x T.
Proof. By (2.23), we want to prove that

priin oy [€72P0 I (B=5) o~ (B+D)() o3 (6-5)(1+5)
i€ i 272

= ZS;F(az,v)‘ -0

JEZ

for almost every (z,7) € R x T when ¢ tends to 5~. Let € > 0 be fixed. Then,

H(x,v) € R x T :limsupL;(z,v) > 6}‘

t—p~
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<>

JEZ

{x7 JERXT: hmsup|5t ($,7)|>a]},

where the a;’s are positive and ) = e. We claim that the sets in the right-hand side

JEZ
of the previous inequality are all of measure zero. Following the proof of Theorem 2.37 we
obtain that

lim ||S§(F)||LP(JRxT) = 0. (2.35)
t—p~
Therefore, it is enough to prove the existence of the pointwise limit

5 o~ (B () o3 (B=5) 1+ 5)
lim €297 Fy!

v {4 Ch(m(-)] Ch[(28 — m)(- — §)]

for almost every (x,v) € R x T.

Fafi( )] @)

To prove this, it is sufficient to prove that

1m 7(ﬁ+t)(')]:1RG(‘) T
A Fa {4 Chir()] Chl(28 — m)( %J (@)

exists for almost every z in R and for every function G in LP(R), p € (1,00). The existence

of this last limit follows immediately from the lemma and Theorem 1.24. O]

Analogously we can prove the pointwise convergence of SF' to the other components of
oDs.

Theorem 2.46. Let I = (F1,0q,03,04) be a function in LP(0Dj), p € (1,00). Then,

lin, Pl +it, 5e*™) = SFala 4 i(8 — 5,502

t=(6-5)"
hn% SF[x + it, o35 (B )eQWify] _ ﬁ’s[x — B, e*%(ﬁf%)e%ri'y];
t—
lim  SFz+ite? 62“”] §f74[x —i(B — f)’ e*%(ﬁ*g)eﬁriﬂ/]
t—=—(B—35)" 2

for almost every (x,v) in R x [0,1).

Remark 2.47. We proved the previous theorems for functions that belong to the range of
the operator S. From Proposition 2.41 we can conclude that the results are true for every
function in H?(Dj),p € (1, 00).



Chapter 3

The reproducing kernel of H Q(Dlﬂ)

We report here the proof of Theorem 2.17. The proof is obtained following the arguments
in [KPO08b]. We recall that

G i(w1—21)€
Kp [(21, 22), (wy, ws)] = Y —222 . 7 9
pyl(21, 22), (w1, ws)] JEZZ 87 JR Ch[r¢] Ch[(28 — 7)(€ — 2)] ‘

The proof is based on a direct computation of the sum which defines K D) To simplify the

notation we define ,
6275

Ii{r) = JR Chlr€] Ch[(26 — 7)(€ — 4)]

Then, we would like to compute the sum

d.

> L(m)N, (3.1)

JEZ
where the couple (7, A) belongs to the set
D' ={(r,\) € €*: |Tm7 —log |AP| < e @) < [N < "3}

To compute I;(7) we use the Residue Theorem. We denote g;(¢) the holomorphic function

eiTC

%) = Gl Chi2B = m(c = I

About the function g;, we have the following result whose easy proof we do not report.
Proposition 3.1. The function g; is holomorphic in the plane except at the points

61
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1 1 '
g:i(§+k), ke, gzwﬁ(§+k>+%, ke,

s Moreover

2B—m "

where vg =

ir(L+i2)

J . .vs e
Res | g;,=+t1— | ==+ . — .
(gJ 27 "2 ) i(28 — 7) Ch [r (4 +%2)]
To compute I;(7) we shall distinguish two cases according to whether Re7 > 0 or Re7 <
0. Let us focus now on the case Rer > 0. We shall use the method of contour integrals.
As contour of integration we choose the rectangular box vy centered on the imaginary axis
with corners N 410, —N + 0, N 4+ ¢h and N — ¢h where h is chosen so that

1

By the Residue Theorem we have the following result.

Proposition 3.2. Let § > w and fix h as above. We define

R;(T) = 2mi - Res (gj, ‘% + 2%) , Ji(T) = J}jo({ +ih) d€.

Then, for all j in Z.,

Proof. By the Residue Theorem, we have

JiVN g;(&) d = R;(T) + JNN g;(€ +ih) d¢ — @Jhgj(zv +i€) dé

0

- 0
~i| g-N i de
h

Thus, we want to show that the integrals along the vertical sides go to zero. It holds

h 6i7'[NJriy]

iJhgj(N-i—Zf) e :@'J e

0 o Chlm(N +iy)] Ch[(28 — m)(N + iy — 3)]
Therefore,

h h e~ Re(r)y—Im7N
[ e ae| < | dy

0 0 e2BNe(28-m3
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00 o Re(r)y—Im TN
< J

—d
- 0 e2ﬁN€(25*7")% 4

—0

uniformly when 7 varies in a compact subset of Sy5 and N goes to infinity. The proof when
Re7T < 0 is completely analogous, but we integrate along the analogue rectangular box in
the bottom half-plane. O

So, we have splitted the sum (3.1) into two different sums. Namely,

S TLION =Y RN 4+ ()N

JEZ JEZ JEZ

where the couple (7, \) belongs to the domain

D ={(r,\) € C*: [Im7 — log ||| < me T8 <) <o)}
We focus on the sum of the R;. Unless specified, we are always supposing to work with 7
such that Rer > 0.
Before stating a result concerning the sum of the 1?;, we remark that the following equality
will have a prominent role in our computation. Let a,b in R such that a # 0, then

—2sgn(a)(a+ib
6|a| — 26—isgn(a)b 1— e <58 (a)(a+ib) (3 2)
Ch(a + ib) 1 4+ e—2sgn(a)(atib) | ° :

Proposition 3.3. There exists a function E(r,)\) which is smooth in a neighborhood of D

such that

R(T,A) = Ri(r)N (3.3)

JEZ

iWVB iwuB i
4vg e 2 ez e 2z 1
= TV T+ + iT—m + E T? )\ + RINZ IS
e { [/\65r — 1] [ 1—JXe 2 4 Ch[zf]}

The convergence of the series is uniform on compact subsets of D.

Proof. From the previous results we have

27rez‘7(%+z‘7)

(7) = 2mi - Res .7 i) = J
Rj(r) =2mi- R <9J72 2) (26 —m)Ch 7 (5 +i%)]
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_ 2V56”(]+’ =)
 Ch[r(3+i%)]

Our problem is then to compute the sum

/\

v
5
§+i) rig e\

2v5¢" N = g2 . 3.4
LarGrm] "M L akEad)] )

JEZ JEZ

If we consider only the sum on the right-hand side of the previous equation, from (3.2), it

follows
igT g _ Jm ™a
N iir . et(d) 2‘7(])( 2 i3 )
> o —226W N e
JEZ Ch [W (5 + Z JEZ s 1+ e 25 +i7)
=2(F-F+G),
where

e 0(j) = sgn(j);

igT

e F=F(1,\)=> e
Jj#0

Aje—g(\mwﬁoo));

« B=B(r,)) =Y < z(wwaf’m) TG
- I

o T GFivE) )

J#0
_ 1
TG
About F, we have
F=e¢2 Ze] 272N 4 e 2 Zeﬂ 27 2) N
Jj<0 j>0
iy 1 iy A T
o [+—w] R e (3.5)
ez —1 1— e 2

Im7t+4+7m

and the convergence of the two series is guaranteed exactly when e mE A <e

We analyze now the error term F. It results

iT+3m iT—37m

3imvg )\] e] P} _ 3imvg )\.7 e]
E =€ @ Z 1 _|_ e (j-‘ril/g) + 2 2 Z 1 _|_ e—7l'(j+il/5) :

7<0 7>0
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It is easy to prove that there exists a constant ¢ > 0 such that |1 4+ e ™@W+#3| > ¢ > 0 for

Im7—37 Im7+437
2

every j. Hence the series which define E converge when e= 2z < [\ < e

Imr—7m Imr+4+7m

an annulus strictly larger than e 2= < |A] < e z . Thus the sums of the two series are

which is

smooth and bounded, with all derivatives smooth and bounded, on a neighborhood of the
closure D’ of D'.

In conclusion, we have

R(r\) 4vg @# N e_m;ﬁ e T
T, 7 it N
e | | e =1 1— e 2

as we wished. O

+ E(1,\) +

It remains to compute J;(7) and then Y J;(7)M. We recall that

7 J' i (E+ih) "
’ r Ch[m(¢ + h)] Ch[(28 — m)(§ + ih — j/2)]
From equation (3.2) we obtain
1
Ch[m (£ + ih)] Ch[(28 — 7)(§ — 3)]
o—isgn(§)mh—isgn(¢—3)(28—m)h e—2sgn(é)[m(E+ih)] o—2sgn(€—3)[(28—m)(E—§+ih)]
oIl +(28—m) e~ 14 e 2sm@rEHn] | —2sen(e-3)((26-m) (€~ S +ik)]
Let us define o(¢) = e~isen(©mh—isen(€-$)(28-mh  Then we have
_r 1 2 3
Ji(r) = 4e (M(7) = BV (7) = EP (1) + EP(7)) (3.6)
where
M et d 3.7
r i€ [ p—2sen(§)[m(E+ih))
(1 € € .
n i€ [ o—2sen(6—)[(28—m)(E—§+ih)]
ED () — € , | , 3.9
i ()= | )T s o e e | (39)
n ir T e 2sen(E)[m(E+in)]
(3) . (& €
E] (7-) - I 0-(6) eﬂ-|§|+(2ﬁ7ﬂ-)‘§7%| -1 + e—2sgn(£)[w(§+ih)]1
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X

| | 3.10
14 e—25en(E=)IB—m) (€5 +ih) (310)

e—2s8n(¢—1)[(28—m) (€~ +ih)] ] ‘

Our problem has become the computation of the sum
3
> TN =4 [Z My(r)XN + >3 B (Tw] . (3.11)
JEZ JEZ k=1 jEZ

To compute the integrals (3.7)-(3.10) we will use the following scheme. If j > 0, we choose
a positive ¢ such that 0 < d < j/2 and we consider

e[ il o

é

[N
|
%
k.
+
<%

=1+&E+1T+E+ 11

Analogously, for negative j’s, we choose a positive ¢ such that j/2 < —¢ < 0 and we will

consider

J

R RS RS YRS WS 619

2

= 4+ &+ I+ & + III",

We remark that the case j = 0 is somehow special, but it could be treated in a similar way.
Also, notice that the decomposition of the integrals above make sense even for § = 0; this
choice of ¢ will be the case in the computation of the sum of the M,’s as we immediately

see.

Proposition 3.4. There exist entire functions 1;(17,X),i = 1,2,3,4, such that

28ih —2Bih 2Bih
4™ STM (1N = dem | © ¢ ¢ ,
c jEZZ () ‘ i7+25+i7—25 (iT%—QB)(l—)\e%)
L e 20 B P1(A) 4 Ua(7,A) _
(ir—28) (1 — AP 3) (it +2B8)(1 — Ae==2)) (7 — 28)(1 — Ae'F7)
¢3(T7 A) + ¢4(T7 A) iT+T Y (3].4)

(1=XeZ) (1= A B=8)) (1= AP 5)(1—Ae=T)

where

Ga(A) = AP (0-3),
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Ua(r, N) = —Ae e

Y

¢3(7-7 /\) — e (B=3) 2(B-m)ih

eT i _ ]
iT+ 28 —2m |’
. Z_B+r _ 1
\) = \e 2(B—m)ih -3 €z
Ya(m, A) = Ae © i —28+2n

Proof. First of all, we have to compute each single M;(7). In this case we choose § = 0 in

(3.12) and (3.13) so that we do not have the error terms &1, &, £ and ;. We begin focusing
on positive j’s. Therefore,

-4

I — eQﬁz’he(zﬁw)gJ' el +20)%¢ e (3.15)
_Oé s
I] = e2(B=m)ih —(26-m)% J eliT+26-2m¢ e (3.16)
s
) . ptoo
IIT = ¢ 2Piho(28-m)3 J elIT=2P)¢ g (3.17)
1+6

2

With some easy computations we obtain

—o6(iT+2 )
T — o2 | & ert2s o~ (28-m)5.
iT+ 20 ’
2(B—m)ih . )
7= _° (8-m) [6—5(¢T+25—2ﬂ) pliT—m) 3 _ (ir+28—2m) ,—(28—m)}
iT+ 208 — 27 ’
d(1t—28) )
I = _6—2,3ih € e(i’r—ﬂ’)%.
iT — 20 ’

Finally, taking § = 0, it results

28ih :

e o—(28-m)3.

iT+ 208 ’
2(B—m)ih ) )

Il = L (e(iT—ﬂ)% — e—@ﬁ—ﬂ%) :

iT + 28 — 27 ’
o—2Bih

11 = —
T — 266

(iT7—m)

j
2 .
Summing up over the positive j’s we obtain

S OM(T)N =Y (I+ 1+ IV (3.18)
7>0 7>0
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A A

2Bth A e (B—m)ih e—2Bih Y
T ar+20 [eﬁg - J Ao oa P EoA| ir—2p L—”Q" —~ J
o2Bih A \e— (B=5) g2(B—n)ih e%‘#ﬁ*ﬂ 1 o—26ih A
R 26 [ 3 )\] (1 — )\e”;ﬁ) (1 — )\e_(ﬁ—g)) T+ 20 — 2#] iT— 20 [ e )\}

Notice that we do not have a singularity when 7 — 25 — 27.

This is the computation only for the positive j’s. Analogously, using (3.13), we obtain a
result for negative j’s. Remembering that we have chosen § = 0, we have

2Bih
* e—e(ZT-l—ﬂ')%
iT + 20 ’
—2(B—m)ih . .
-4 (6(25—% _ 6(i’r+7r)%> :
1T — 20+ 2m
—2Bih .
I = -5 e@-m%,
1T — 20

Then, it results
> My(r)N
j<0
= (I"+II" + II*)N (3.19)

j<0

28ih 1 2(8—) 1 1 e~ 2Pk 1

= - it + - _T - iTHT - T

27—1—25{)\@3_1] 17'—25+27T|:)\6’8 2—1 De2" _1] iT—2B8X P72 — 1

62Bzh 1 )\672(677r)ih65—E 6%—54—71’ -1 672[%]1 1

- = + B - [ .

m ) (i —1) (e 1) [T 28 e | i T

Notice that we do not have a singularity when 7 — —23 + 27. It remains to compute
My(7); it is easy to verify that
o2Bih o—2Bih

Mo (1) = T8 =3 (3.20)

In conclusion, we found that

2Bih e (6-%) e 2Bih oI5 A
N I e v

= T+ 20 e~ (B—3) iT—268 |1 - \"T"

eT AT _ 1
1T+ 20 — 21

Ae_(ﬂ_g)e2(ﬁfﬂ')ih

(1 - Ae”;") (1= Xe -8

+
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e2Bih e—2Bih e2Bih
+ - - = - iT+m
iT+28 AT =28 (it +28)(1—Xe2")
Ae2(B—m)ih B3 e%—ﬁ%—w -1
(1= 37 5) (1= aeE7) [i7— 29 42

o—28ih

+ - 3.21
(it — 28)(1 — Ae?72) (3.21)
Simplifying the notation a little bit,
' 2Bih _o—2Bih
4 —7h M )\] — 4 —1h €
© ]E% i(7) ¢ irx23 Tir—2s
. _p2Bih . o—28ih
(iT +28)(1 — Ae™2")  (iT = 28)(1 = Ae”73)
Y1(A) n ba(m, A)
(i +2B)(1— e D) " (ir —2B)(1— re"r")
Z;03(7—7 )\) 1/}4(7-7 )\)
+ iT—T ™ _|_ s iT+T 9
(1=XeZ)(1 =X F72)) (1= XeP72)(1—Xe2)
where
Pr(A) = Ae?Phem(075); (3.22)
U (T, \) = —Ae 20he 2T (3.23)
) TiB-T _ 1
A) = Ao~ (B—D)2B-min | €2 T | 24
Ys(r,A) = de c it + 28 —2n |’ (3:24)
) Z_B+r _ 1
A) = Ne 208-mihp-5 | €2 T 1 2
Ya(r,A) = Ae © T 28+ 2n (3:25)
This concludes the proof.
m

We wish to evaluate the sums >, , Ej(k)(T))\j for k =1,2,3. We recall that we are still
supposing that Re7T > 0. We first introduce the following domains

D = {(7', A) € C?: |ImT — log |A]*| < 2,

log |A]?] < 28 — g} : (3.26)

4
D' = {(7, A) € €% [Im7 —log |AP*| < 2m,|log |A]"] < 3(28 — gw)} ; (3.27)
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Doopr = {(1,A) € C? : [Im7 — log |A]*| < 2, |A| > 0} ; (3.28)

3
Sopiin = {TEC: | Im 7| <26+§7r}. (3.29)

We notice that D',D” and D o, are all neighborhood of D.

Proposition 3.5. Let E; 1)( ) be defined as in (3.8), that is,

) eiTé e—2sgn(§)[m(§+ih)]
B = LR 7 @ d [1 + e—%gntf)[w(&ﬂh)J “

whefr'e 0-(5) — e_zSgn(é‘)ﬂ—h_zSgn(g_j/Q)(Qﬁ_ﬂ-)h Then

. o (r, ) wP(r,N)
—rh Wi — o—7h| 21 T L\ (3)
e E E(T)N =e [eﬁg — + s + W (T, N) |, (3.30)

jEZ
where \I!E) are holomorphic functions in a neighborhood of D, bounded together with all their

derivatives as | Re 7| — o0.

Proof. Notice that choosing h as we do it results that 1 4 e=2582&FE+NM] £ ( for every €.
We decompose the integral defining E](l) as in (3.12) and (3.13), according to whether j is

positive or negative. So, we recal that, for a fixed § > 0,

EV(r)=I1+&+11+&+11

when j is positive, and

EW(r) = I* + & + II" + & + 1II*

when j is negative. We start analyzing the error terms & and &. We have

0 - i
g = eing-es-mi [ gurrame TN
1 -5 1 + e2m(&+ih)

é or(Eti
+ 2O mihg—(28-m)3 Jlirr2a-2me_ €T dg
0 1 + e—2m(&+ih) 7>7

from which we deduce

B-z 0 2m(¢+ih
Z EN = Ae ! ) o2Bih pliT+28)6 2 )A de
1— NP3 s 1 + e2m(E+ih)

7>0
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2(B—m)ih ° (iT+2B8—2m)¢ 6_27T(§+’ih)
e L ‘ 14 e—2n(E+ih) dg | (3.31)

We conclude that

~(B-%
_Thzgl N = { } e e (T, N), (3.32)

_ B3
= 1— e

where We (7, ) is entire, bounded together with all its derivatives as |Re 7| — oo and Im 7
remains bounded.
To deal wih &, is a little more complicated since the integration extremes depend on j,

but we cannot compute explicitly the integral in order to proceed with the sum in j. In fact,

we have

.

) —271’ E+ih
52 _ e2(ﬁ—ﬂ')ihe—(26—7r)gj (1T+2ﬁ 2m)€ ( )

s 14+ e~ 27 (£+ih) df

NS,

[ 1S
+

' Cplys 27 (€+ih)
+e2ﬁzh6(25n);J el 25)6— ¢

1+ e—2m(§+ih) d

ok,

=J+77.

We notice that )
e—Qw(E—‘rZh)

o iRk
1+ e-2n(Etih) Z [—e 2 e g >0,

k>0
where the series converges uniformly on compact sets with bounds uniform in 7 > 0. This

allows to interchange the order of integration and summation over k. Then

i
: i (2 k
5= _62(ﬁ77r)1h67(2/3’77r)% J zT+2B 2m)€ E : 727r {Jrzh d
§-0 k>0 ‘

J
_ _62(ﬁ77r)ih67(2/3’77r)% Z [_efQﬂih} k JZ pliT+2B8—2m—2mk)€ d€.
k>0 —0

N,

Summing up on positive j’s, we obtain

J

er)\j — _2(B=m)ih Z )\je—(zﬁ—w)g Z [_6—27rih} kr 6(i7+25—27r—27rk)§d§

J
>0 §>0 E>0 30

5—7r)ihz [ —27rzh Z Me (it—7 % J (iT+25—27‘(‘)§6*2ﬂ'k(£+%)d§
—0

k>0 7>0
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B )\ iT—m—2nk 0
_ B—m)ih Z —27rzh € iTiﬂ727rk J e(i’r+26—27r—27rk)fd€
>0 _1 — ez -5
—1)e —2mi [ )\ 0 T —2m—21
- )hz ? h 67r+27l'k iT i >\:| J 6( 202 2 k)£d£
k>0 -
—m)1 —2me [ A k
) " Z ? h T+2mk—iT hg )(7_)’ (333)
ez — A
k>0 -

where ") (1) is an entire function such that

A (T)( < s [1 _ e—g(gﬁ_lmw

26 —ImT

Notice that we do not have a singularity when Im 7 — 23. The convergence of the sum

in j is guaranteed when ‘)\e”ﬂg%k < 1. This last condition is satisfied for every positive k
when the pair (7, \) belongs to Dug 2r -

We still have to study >, IIN. We have

1+6

33 — _e—gﬁz‘he(z@—w)g Z [_6—2m‘h}k JQ pliT—28—27k)¢ de.
2
k>0 2
Then,
D D DE D B e A L
3>0 3>0 k>0 5
_6—25ih2[ —27rzh Z)\j iT—T— 27rk)2J (it—2B—27k)¢ dg
k>0 7>0
A
_ 72 ih 727mh (k)
= ’ Z [W] hy (7). (3.34)

k>0

00

Here h$”(7) is an entire function such |hS

)Ae

Im 7428

< [M} and we use the fact that

iT— Tr 27k

< 1 for every positive k. In conclusion,

DN == [ [—A_A]

3>0 E>0

x [26 0 (7) 4 e 200 (7). (3.35)

We want to prove that this sum on k converges to a function holomorphic on the domain

Deo2x- To prove this is enough to assume 6 < 1/2 and to notice that, for fixed M > 0, it is



73

possible to select ko large enough so that for all k > ko, when (7, \) € Dy 9, with Im7 < M
and |\ < M| we have that

T4+2rk—iT
e 2 - )\‘ > ce™.

Thus, the sum in £ is uniform on the fixed compact set. In conclusion, we have

TN N = [ew*wwgg (7, A) + e Phud (1 N ] (3.36)

7>0

where \Ilg(r, A) are holomorphic on Dy 2., bounded together with their derivatives as
|ReT| — oo and Im7 and A remain bounded. We took care of the error terms & and

&>. With the same strategy, we now study I, II and III. We have
o6 2n(E+ih

—00

1 & e2n(etin) dg;

rofs.

) = —2m(&+ih

5 1 +€727r(§+ih) d€

_ _62(,8—7r)ihe—(26—7r)% Z [_e—2m‘h:|k r eiT+2B—2m—2mk)¢ d¢;
k>0 J
e—?ﬂ(f—i—ih)

. [too
— o 2Bih (2B-7)% (r=2)_~-
III =e e 2 J e pe Ty d§

1+6
. “+oo

— 2Bk (26-m)3 Z [_6—2m‘h] k J pliT—2B-27k)E d¢.
k>0 3+0

Then, if ‘)\6_(5_%)| < 1, we obtain

2 -6 2m(E+ih
ZD\. — (2Bih e e(if+25)£L d¢
j 26 = 1+ e2n(Etih)

]>O _]_ - /\6_ 2 —00

r —8(iT+2B+2rk
_ p2Bih 3‘ Z [_e2mh]k ? (ir+25+2mk)
eP=3) — )\ 1T+ 20 + 27k

k>0

2 [ Wi, )
__ _2Bih I\,
=e¢ -—6(57%) — )\] (3.37)

where U; is holomorphic in a neighborhood of D. In fact, let us consider

D' = {(r.2) € € |imT — log ]AP?| < 2, [log [ A1?| < 25— g} . (3.38)
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Then, on this set, the holomorphicity of W;(7,-) as a function of A for every 7 fixed is obvious,
while for the holomorphicity of W;(-, \) we have

—§(iT+2B+27k) o—2mkd

0(Im7—20)

_omin)k €
[ T+ 28 + 21k

[N

[(Re7)? + (28 + 27k — Im 7)?]
< 066(1m7—725)6727rk6'

This is true because Im7 < 23 + %71’ < 20 4 27k for all £ > 1. Thus, we have uniform

convergence. So, we can conclude that
_ o o | Wr(r, )
Th _ Th _2Bih I\,
e IN =e e —_— 3.39
where W (7, \) is holomorphic in D'.
About II, notice that

. iT+28—2n—2mk) (4 —25

I — _2(B—m)ih—(28-m)] Z [_6—2m’h}ke(i7—+26—27r—27rk)6 elirt20 a=20 1
Pt 1T+ 20 — 2w — 21k
and we do not have a singularity when i7 + 23 — 27 — 27k tends to 0.

e

iT—m—271k

If we suppose again

‘< 1, we get

2rk+m—iT

_ e2(B=m)ih \ [_67271'1'11}]“ plir+2p—2m—2xk)8 [ -7 _ ewfmf
e 2 )|

N = ——
Z 65_5—)\2 T+ 20 — 21 — 27k

5>0 k>0
Again, of course, notice that we do not have a singularity when it 4+ 28 — 27 — 27k tends
to 0. We want to say something more about the sum in k. For each M > 0 we can select kg

such that for every k > ko and (7, \) with |[Im 7| < M and |\ < M, we have

627rk+§7r—i7‘ B )\) > 627r(k+21)—]\/1 M > %eﬂk7
so that the series in k converges uniformly on the fixed compact set. We conclude that
. , Uy (T, \)
—7h j _ _ 2(B—m)ih —Th UANS
e §IIA = —e e Lﬂ_g - /\} (3.40)
J

where Uy is a function holomorphic in Dy 2.

Finally, for (7, \) in D', it holds for every positive k that /\ew‘ < 1, so the sum of

the I11’s results to be

. . ) §(it—2B—27k) A@iL:%;Qg@
T\ = —2pBih __—2mih k e | | "
Z ‘ Z[ ‘ } ZT—26—27TI€ 1—)\6w ( )

7>0 k>0
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We have to discuss the sum over £. We notice that

iT—m—2mk —Im7r—7w—27k

e |Ale
iT—m—27mk — _ o i
1 . Ae e Im‘rQTr 27k Im |:)\€11‘{2e-ri|‘
Imr—7
[Ale™ =
o 7Im7' ™

e

Im [)\GZR;T”.

iT—m—2mk

So | 22| is uniforlmy bounded in k. Moreover, since Im7 > —23 — %7? > —20—2nk
1-xe” 2
for every positive k, the series k;) [—e~2mit] g [ef::;;—:i::)} converges uniformly in 7. We then
conclude that
e IV = e ey (7, 0), (3.42)
§>0

where Wpr(7, A) is holomorphic in D’. We remark that the functions W;, W;; and W are
bounded together with all their derivative as | Re 7| — oo and Im 7 and A remain bounded.

We now focus on the sum over negative j’s. Again, we start analyzing the error terms
&y and &. We have

3 iT+2B)¢ L 2m(E+ih i (ir—2842m)¢ 2m(E+ih
£ — 2Bih—(28-m)% 2 lTHEOienEr i) dé + e 2(B—m)ih ,(28—m)% 2T elirar e (et )déf
is 1+ e2m(§+ih) ; 14+ e2m(§+ih)
2
=7J4737
If we suppose (7, A) € Dy 2r, then ‘)\ R S for every positive k, so we obtain
. 27mh}k 0 N
~\j o2 iT+2B+2m
ZJA] IBZ Z 1T+7r+27rk J (1T+ IB+ )5 d&
§<0 >0 A -1
Now, since (7,A) is in Dao ., it holds [A] > e ™ > 3" ~37 > "5 ~5 for every

positive k, so

7:T+7T+27Tk71 m4+2nk—Im T 1T+ 2nk
2

=e 2 A—e 2

7T+27rk Im 1 Imr—7m—27k
e <|)\| —e = >
7r+27rk Im T Im7—37
e <|)\| —e 2 >

m4+27rk—Im T 1 T _ Im7T—37
(& 2 e 2 — € 2

e

Vv

v
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> 0.

Using this estimates and the fact that “2 5 €TTHTERE e is uniformly bounded in k, we

can conclude that

S aN = gl (r ),
j<0

where \I/(glf) is holomorphic in Dy o,. Similarly,

27rzh] k

0
Z jj)\J - ﬂ—)Zh Z ZT+7T+27rk 1 J e(iT_2ﬁ+27r+2ﬂ—k)£ d{?

j<0 =0 A

Arguing as before, if in addition we suppose § < %, we obtain

D I0N = e 2y @, )),

7<0

where \I!‘(g is holomorphic in D or.

In conclusion we obtain

Y EN = e [ (1, A) 4 e 20 () (3.43)
§<0
where \11(521) (7, A) are holomorphic on D 2.
For &5 it results

§ o(iT—2B)& p—2m(&+ih)

- T y JO e(ir—2ﬁ+27r)€e27'r(§+ih) de + e=20h o(28-m)3 J R ' de.
s 1 + e2n(E+ih) o 1+ e2n(Erin)
It follows, for })\eﬁ_%‘ > 1,
0 2m(E+ih)
;E*AJ { - J [e‘2(ﬂ—7r)2h J_5 e(iT—2B+2m)¢ - j-—e%(f“h) d¢
4 2Pk J6 (iT—28)¢ ﬂ d§]. (3.44)
. 1+ e~ 2r(Erin)

We conclude that

: Uex
e—thg;/\J — e Th [ﬂ] 7 (3'45)

B—5 _
= P72 —1
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where W3(7) is entire.

Let us see what happens with the principal terms I*, II* and III*. We have

rof.

o _ 2pin —@o-mi [T 2z
I"=e e 2 JOO € W dé’
i_s
— _2Bih e—(25—7r)% J eliT+2B)€ Z 5+m) d¢:
—o© k>0
2o-myin ei-ni [ gr-2srame €T
II* =e - e T3 (& e 4 —
Jngé 1+ 627r(§+zh) g
=6
_ _e—Q(B—W)ihe(QB—W)% J z7’—|—27r 28)¢ Z £+zh df,
5406 k>0

. ptoo —2m(E+ih
0

1+ e—2m(§+ih)

7,T+7T+27rk

Then, if we suppose (7, ) in D', it holds })\

> 1 for every positive k, so

Z 4 25 , Z 2 h —0(iT+208+27k) 1 ( )
I*)\j ! T” |: 7.7'+1r+27rk :| 346
= = iT+ 20421k | N — 1
_ ,2mih —0(iT—=2B+2m+27k) o(tT—2p+2m+27k)
ZH*)\J‘ _ _62(ﬂ—7r)ihz _ [—e } « {e ( i G ( i
= k>027’—2ﬁ+27r+277k e zh — 1 Ae T
(3.47)
) A 1 . efliT—26-2mk)
IIT*N = =20 {—} —e2mih] " : (3.48)
; NG ; [ } iT — 28 — 27k

Notice that (7,\) € D’ implies that iT+ 28427k # 0 for every positive k, so we can conclude
that
e " Z I'N = —ePhe= ™ L (1)), (3.49)
5<0
where Wy (7, A) is holomorphic in D'. Analogously, for 3., IIT* N we have

eﬁ(iT—?,B—%rk) 66(— Im7‘—2,8)e—27r(5k

. S - S 06_27T6k
1T =26 =21l 7 [(Re7)? — (Im 7 + 283 + 27k)?]

9

where the last inequality is true since Im7 > —20 — %ﬂ' > —20 — 27k for every k > 1. So

] ) f‘rh\I/ .
e N IIN = 2 heﬂ——fl—(ﬂ , (3.50)

7<0



78 CHAPTER 3. THE REPRODUCING KERNEL OF H 2(D’B)

where Wy-(7) is holomorphic in S, 13, About (3.47) we notice that we do not have a
singularity when i7 — 25 + 2w + 27k — 0. Then, for every M > 0 and (7, ) € Do 2, such
that eM > |A] > e and |Im 7| < M we can choose ko such that for every k > kg it holds

)\eiﬂ-w;%k _ 1‘ > e_Me—I\/I+721-+27rk 1 > %EWk.
Using this last estimate we can conclude that
—1h
—7h i _ 2By | € Wi (T, A)
€ N = —e _ 3.51
> e @51

Jj<0

where Wy (7, A) is holomorphic on Ds; . It remains to study the term E(()l)(r). Using
some of the same arguments we used before it is possible to conclude that E(()l)(T) is an
holomorphic function in Sy, S We remark that all the functions W, are bounded together

with all their derivatives as | Re7| — oo and Im 7 and A remain bounded. ]

Proposition 3.6. Let

@) e’ e 2sen(6-4)[28-m) (¢~ §+ih)]
E: = | . | ;
i (7) JRU(g)ewﬁH(zB—w)lf—;l |+ o san(e D)@ mefrm) 3
where

0’(5) = e_iSgn(f)ﬂhe—isgn(g_%)(glg_ﬂ)h.
Then

(I)(l) A @(2) A
2 0N 2 BN L0 n], (52
1— e = e 2 —1

e ™h Z E](-Q)(T)/\j —eh

JEZ

where q)l(f) are holomorphic functions in a neighborhood of D, bounded together with all their

derivatives as | ReT| — 00.

Proof. We divide the integral as before. We have

. g .
I = _62,3ih6—(25—7r)% J 6(i7’+25)§ Z |:_€2(26—7r)(§—%+ih)] k dg
- k>0
Now, if (7,\) belongs to D”, we have that |\ < 737 < -0+ apd Im 7 < 3(28 —
2r) < 26+ 2k(26 — ) for every k > 1. This allows us to have

ZD\J’ _ __p2Bih Z [_62(26—7r)ih}/€ U5 6[2‘7+2B+2k(26—7r)]§:| d§Z [)\e_(ﬂ_g)(l”k)}j

7>0 k>0 7>0
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—0 —1(28-m)(1+2k
_e2ih 3 [—e2ea-min]* elir+232k(25-m | ge | A 2 (26-m)(1+2k)
—o0 1 — \e—3(28-m)(1+2k)

k>0

_ _ezﬁzh Z . - A 6—6(i7+25+2k(25_w))
=520 _ )\ | |ir +28 + %25 —7)

k>0

We can conclude that
e IV = —e " (7, ), (3.53)
>0
where ®; is holomorphic on D", bounded together with all its derivative as | Re 7| — oo and
Im 7 and A remain bounded.

About 11 we have

3

2

I] = _62(6—7r)ih6—(2,3—7r)% J 6(i7’+26—27r)§ Z |:_€2(25_7r)( —%-‘rih)] k dé“
J k>0

= 2= (25-m 3 N [_62@54)(@%*%)} ‘

k>0
, 125
X 65[ZT+2527T+219(257F)]J [’L‘r+2,3 2m+2k(28—7)|€ d&
0
= —¢ ih Z - eé[iT+2572ﬂ'+2k(25*ﬂ')]
i+ 26 — 27 + 2k(28 — )

k>0
% |:€f26[i7'+26727r+2k(2577r)] (iT=m) _ ,—(28-m)(2k+1)]

= A+ B,
where i
_ 2(28—m)ikk —6slir+28—2n+2k(28—7)] ,
A= — 2(B—m) Z [ € } ¢ (ir—m)Z
iT 420 — 2w+ 2k(26 — )
k>0
and
_ 2(28—m)ink slir+28—2m+2k(28—7)] _
B— 62(5—7r)zhz [ € ] € o(28-m)(1+2k) %
o it+25-2m+ 2k(25 — )
Then, if )\eiTT_ﬁ‘ < 1, it results

e2(28—n)i }ke SliT+28—2m+2k(28—))

A)\j Q(B 7T)’Lh)\
Z [ e _)\}Z iT+ 208 — 21+ 2k(28 — )

j>0 k>
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1
7 (1, N)

e 2z — A

where <1>§}) is holomorphic in D’. Notice that, if (7, A) € D', it holds it + 28 — 27 + 2k (25 —7)

for every positive k.

About B, if we suppose,|A| < ¢3¥~2) and § < %, we can conclude that

[ 2(28— TI')Zh:|

OliT+28—2m+2k(28-m)] )

Z BN =

7>0

=0 (r,)),

(?) is holomorphic on D’. So

where @;
ey N ="

3>0

IT—T

e

About III we have

. [t
1T — o—28ih (28-7)3 J r-2me 3 [

ot k>0

So, if ))\e;’ < 1, it holds,

e " Z IIIN = —e~The=20ih Z [—e~220-m)ik] k Z A e(28-m)(1+2k)3 J

k>0

_ 7Th 72[3111 Z

k>0

§>0 §>0

7>0

_ [e‘f"e_wih)\] Z [_6—2(26—ﬂ)ih}kj+m€
e~ T — )\ 5

k>0

We then conclude that

7Th Z M=

7>0
where ® ;7 is holomorphic in D”.

Let us see the error terms. We have

& =—

k>0

2(5 w)ih
Z iT+ 20 — 21+ 2k(28 — )

(1)
RauRs A)A + (. A)]

oh ‘PIH(T A)

_AT—T

0
o2Bih ,— (28— ;J (i+2B)¢ Z [ o228

cB-D)(1+2R) _

(3.54)
2(26— W)(f—*—i-zh)} d€.
—+o0

[

e 1iT—203—-2(28—m)k]¢ df
5+

2(28— 7rzh Z)\j iT— ﬂ-%l[ Ooe[i7-725—2(2ﬁ77r)k]£ df

li=26-226-m)KIE ¢ (3.55)

5 (3.56)

%-&-ih)] g de
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5 :
2(B—T)ih ,— (28— );J e(¢7+2/372w)gz [_ 62(26#)(5%+ih):|k d.
0

k>0

Then, if [Ae™ (#2020 < 1,
A )\] [_62(25—701%]’“

D EN == L(ﬂ—g)um) .

7>0 k>0

)

0
y [62,6th eliT+28+2026-mklE ge | 62(5ﬂ)th pliTT28 =2+ 2k (25— ] d¢. (3.57)
-5

0
If we suppose § < % and (1,\) € D', we get
ey aN = e [al)(n, ) + 0l (7, )|

7>0

(3.58)

where @gl) are holomorphic on D’.
About &, after an obvious change of variables, we have
e2(28—m)(&+ih)

(it+28-2m)&
1 4+ e2(2B—m)(&+ih) dg

0
6‘2 — _62(/8—7r)ih6(i7'—7r);J e
-5
J —2(2B—m)({+ih
2 ir-md [ r-ame € PTTER c
0 1 4+ e—2@8-m)(E+ih) 7>

)\eiTT_w) <1,

Then , if
17'2 s )\ Y .

Z EN =

7>0

where the function ®¢, is entire.
Let us see the negative j’s. We have

J
. 2T k
I _ _ewzhe—(w—w);J elir 120 3 [ §—l+zh)}
- k>0

iTH+T
i ’ > 1,

77h21*)\y _

7<0

So, if |Xe

—7h 2Bih —6
_{ e e } [_62(26w)ih}kJ' e
k>0 e

iT+7
-1

e 2
o,
—n_Pr(7) (3.60)

- 3

- iTH+T
—1

e 2
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where @+ is a function holomorphic in S,4 TR
About II* we have

.96 )
IT* = —p—2(B—m)ih (28-m)% J (iT—2B+2m)¢ Z [ o228 %—&-ih)] k .
%*5 k>0

— A+ B,

where
72(234)1'}1} k o—olit—28+2m—2k(28—)]

- ih
A=—e Z iT — 20+ 2w — 2k(28 — m)

k>0

o(26—m)5 (1+2k) :

,2(254)1-,1] k oolir—28+2m—2k(28—)]

_ ,—2(B—m)ih (ir4m)L
‘ 2 ir—28+2m —2k(2B—m)

k>0
So, choosing |A| > e3~%) in order to have |A\e(?~2)1*2K)| > 1 for every k and if Ae2" | > 1
and 0 < %, it holds
—2(2—n)i Slit—2B+2m—2k(28—)]
ZA/\]: —2(2,6’ W)zhz [ ] € _ ’
= it — (28 —m)(1 + 2k) + 7](Ae(P=2)0F2K) _ 1)
2(B—m)ih _e—228-m)ih k O[T —28+2m—2k(28—)]
SN = e g
3<0 - 130 0T =20 +2m — 2k(25 — )
We conclude that
o)
e SN = e o) () + 2T (3.61)
<0 e 2 —1

where CID%)

About IIT*,

is holomorphic on D" and CDg) is holomorphic in Sy 43

+o00
]]]* — _6—2Bih6(26—7r)% J 17' 25)5 Z |: 25 W)(E_]+Zh)i|k dé'

k>0

If (7,)\) is in D", we get

e—ThZ ]]I*A] _ —Qﬂzh Z 72(25 Tf)lh} +Ooe[i7'—26—2(26—7r)k]§ dé
Ae(B=3)(A+2k) _ q

j<0 4

= 677’ (I)H[* (7', )\), (362)
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where @7, is holomorphic on D”.

About the error terms, we have

0
£ = _2Pihglirtm) J elim 12006 3 [ 2ea-mierim] g

k>0
_ e—Q(ﬁ—w)ihe(z‘H—w)% J (iT—2B8+2m)¢ Z o226 +m)}’f de.
k>0
So, if )\e”#’ > 1,
et 2(2 'hko iT4+28+2(28—m)k
D& = > [ J eliT 25225 -mH¢ ¢
<0 — 1333 —0
e~ 2(-mih —2(28—m)ih1k ’ [iT—2B+2m—2(26—m)]¢
e[ 7| e d¢. (3.63)
Ae 2 — 1175 0
So,
. Do (T
ey EN =~ [%1 , (3.64)
=0 e 2 —1
where ®¢- is entire.
Finally,
0 ,
g; _ _6—2(5 m)ih (2,3 );J (ZT 25+27F)§Z |: ;—i—ih)]k df
k>0
o —2Bih (28— W)JJ (it— 2652[ —2(2B—n g—;’+ih)]k de.
k>0
Arguing as for (3.58), we can conclude that
ey EN = —e Mgy (1, M) (3.65)

<0
where ®g; is holomorphic on D’. It remains to consider the term E(()Q)(T); we notice that
E(SQ)(T) = E(()l)(T), therefore we already know that EéQ)(T) is an holomorphic function in
Sopy . We remark that all the functions ®, are bounded together with all their derivatives
as |Re7| — oo and Im 7 and A remain bounded. O
Proposition 3.7. Let

oiTé o—2s8n ()T (E+ih) o2 sen(&—1)[(28-m)(6—L+ih)]

BP(r) = | a© .
R

elEl+(2B=m)e=3| 1 + e~2o8n(Om(EHiR) | —2sen(¢-F)[(26-m) (€~ F+in)]
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where

o(§)
Then

6—7’h Z E(3)
J

=/

CHAPTER 3.

_ e—i sgn(f)ﬂh —isgn(&—

N =e™O(1,\),

THE REPRODUCING KERNEL OF HQ(D’B)

$)(2p—m)h

(3.66)

where © is a holomorphic function in a neighborhood of D, bounded together with all its

derivatives as | Re 1| — oo.

Proof. We divide the integral as before. We have

I — e26ih6—(25—7r)% J pliT+2B)€ Z

k>0
— 2Pih _2(2—m [_ezmh]k -
— 20ih _p2(28- 7r)zh [_emh}ke—

E—Hh Z [_62(26—7r)(5—%+ih) :
>0

L(2p—m)(1+21) J

—00

—6

e[iT+25+27rk+2l(2ﬂ—7r)]§ d§

6—6[i7’+2ﬂ+2(2ﬂ—7r)l+27rk]

iT+ 20+ 21k +20(26 — )’

1 (2p—m)(1+21)

where we have supposed (7, A) in D", so that Im 7 < 28 + 2wk + 2[(23 — 7) for every k, [l and

})\e’(ﬁ )(1420) ‘ < 1 for every positive [. Summing up on positive j’s, we obtain
) —o[iT+28+2(28—m)l+27k]
TN — (2Bih o2(28—7 __p2mih k M3 @8-m)(1+21) _ €
; ; g[ } ; iT 426 + 2wk + 21(26 — ™)
_ 2Bih Z 2(26— 7r)zh A Z - e?m’h}k g~ Or+28+2(25-m)i+2mk]
= ew—%)(l% -\ & iT + 28 + 21k + 21(268 — 7)
(3.67)
We can conclude that
e IV = e hO(r,N), (3.68)

3>0
where O; is a function holomorphic on D”.
About II we have

I =¢ —e2(36-m)

B—m)ih E
>0
-5

%
% E —27rzh J

£>0 8

—%(25—@(1+2l)

pliT+28—2m—2mk+2(28—m)]¢ d¢
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_ —m)ih Z p2(28-m) —%(2ﬂ—7r)(1+2l) Z [—G_Qﬂih} k

>0 k>0
e[i‘r+2B727rf27rk+2l(2,877r)](%76) _ lir+28-2r—2nk+21(28—m)]8
iT 426 — 21 — 21k + 21(26 — ™)

_ —7)ih Z 2(2,3 ) l Z [—6_27rih:| ’ [O + D] )

>0 k>0

X

where
675[iT+25727r727rk+21(2,377r)}e[i‘rfﬂ'fQﬂ'k]% ‘
iT+ 20 =21 — 27k +20(28 —7)
eOliT+28—2m—2mk+21(26—))] 67(2ﬁ7ﬂ-)(1+21)%
iT 4208 — 2m — 21k + 21(26 — )
Notice that we do not have a singularity when iT + 25 — 27 — 2wk 4+ 21(25 — 7) — 0. Now,

if ‘Aem <1,
Z ON — A p—dliT+28—2m—2mk+21(28—)]
>0 e~ TR AT+ 26 = 27 — 27k + 21263 — 7)’

and, if e~(-DID| < 1

Z DN =

7>0

A 65[i7+26—27r—27rk+2l(2,3—71')]
{ )(1+2) _ )\} iT+ 28 — 21 — 21k + 20(2 — 7))’

In conclusion
TS IV = e [@§}>(7, A+ 0P (r, A)] , (3.69)
§>0
where @9) is holomorphic on Dy, 2, and @g) is holomorphic on D”.
For III, supposing that (7, A) is in D”, it holds

+o0o
I = 672Bzhz f2mh k pliT—m— 2rk)d Z [_62(257r)ih]lj pliT—28—2mk—21(28—m)]¢ d¢
)

k>0 >0
65[i772,8727rk72l(2577r)]

— _p—2Bih —th (ir—m—2rk) L _—2(2B—m)ih7!
- [ 22 [ }i7—2,3—277k:—2l(25—7r)’

k>0 >0

27k

iIT—T—27
Ae 2

Summing up, if

j —201 e 2m A
ZH]/\J 2th 2 h [W} %

7>0 k>0
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65[i772ﬁ72ﬂ'k72l(257ﬂ')}

o228
XZ 27—2&—27rk—2l(2ﬁ—7r)'

>0

We conclude,
e HIN = e O (r,N), (3.70)
7>0
where Oy is holomorphic on D”.

—2sgn(&)m(¢-+ih)
Let us study the first error term £;. We set m(&) = 1j6,2gsgn<§),,<§+ih). Then, we have

81 == A + By
where
0
A _eth Z [_62(%_”)%} — (26~ (120 [+ 26+ 2A25-me (€ de;

=0 >0

0 ‘
B = ] [ ) - 25203 ),
Y150

So, if [Ae~B-D1+2)| < 1,

_ 2Bih 2(28—m)ih1! A iT+28+21(28—7))¢ .
ZA)\] 28 J Z [ e2(28-m) } [6(5—’;)(1+21) — )\} elim+28+21( )] m({) d¢;

7>0 g >0

5
i _2(B—n)ih __2(B—m)in]! A liT+28—2n+2(28—7))¢
g BN =¢ L E [—e ] L(ﬁ’;)(1+2l) — )\1 X e m(§) dg.

3>0 1>0

Now, the inner sums on [ converge uniformly for £ in [—4, §] to a smooth a function in £ and

holomorphic in A for [A| < €*#=2). We can conclude that
TS EN = [@Sj(r, ) +09(r, A)} , (3.71)
>0

where the functions @gl) are holomorphic on D”.

~25gn(€)(28—7) (E+ih)
Now we analyze the second error term. We set my(§) = 1je,25gn<§)(zﬁ,ﬂ)(wh). Then, we

have

NS,

5+
82:] +J_ =E+F,
i g

where

0
E = _62(6—7r)th Z [_6—27rih}l 6%(17 m—27l) [iT+26—27r—27rl]§m1<€) dg,

=0 ;>0
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5
F= _ezﬁth Z [_ef%m}l 6%(27— n—2ml) [iT’%’Q”l]gml(é) de.

0 >0

7.7' 7r 27k

So, if |A <1,

0
ZE/\J — _p2(B-m) J Z [—e_%ih}l [ _ w)\ng )\} e[iT+25—27r—27rl]§m1(€) de;
e - 9  _—

3>0 5 >0

j —2Bih ’ —2mih]! A lir—28—2mxl)¢
ZF)\ = —€ Z[—e } BT v (& m1(€> df
3>0 0 >0 € z = A

Now, the inner sums on [ converge uniformly in £ in [—§, ] to a smooth function in & and
holomorphic in (7, A) if Im 7 — log |A\|? > —3.
We conclude
S EN = e [0l (7, 0) + 02 (r, A)} , (3.72)
>0
where @g are holomorphic on D 2.

It remains to compute the sum on negative indices. Suppose that (7, \) is in D", then

-5
T* — (2Bih Z 2mh pliTtmt2mk)d Z [_62(26w)ih]lJ pliT+2B+2km+21(28—m))¢ de
—00

k>0 >0
—d[iT+28+2kn+21(28—))

_ _2Bih 2mh pliT+m+2mk) ] __2(2B—m)ih]! €
- Z Z[ ‘ ) iT+ 20 + 2k + 2020 — )

k>0 >0

Summing up on j, we obtain

. th}k - o—liT+2B+2km+21(28—)]

Z I\ = 2Bzh Z S Z [_62(2[3—71')1’1} : '

= i) ”*"*2” — 143 iT+ 20 + 2kT + 20(26 — )
In conclusion

e N =ehO(1,0), (3.73)
§<0
where O/« is holomorphic on D”.
About II*, it holds
IT* — o206~ w)zhz -7 m}l 1 (2B—m)(1+20) Z [_627rih]kj._ pliT—2B-+2m+2mk—21(26-m)]¢ de
1>0 k>0 3+o

o206 W)zhz o—2(26—m) } Z[ 27”’1} [C + DJ,

>0 k>0
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where

o—OliT—26+2m+2mk—21(28—7)] o § (26—)(1+21)
C = :
it — 20+ 21 + 27k —20(28 —7)

6[i7—25+27r+277k—21(26—7r)]6(i7’+7r+27rk)%

e

D = .
iT — 20 4 21 + 21k — 21(26 — ™)

Notice that C' + D is not singular when it — 25 + 27 4+ 2wk — 21(26 — ) — 0. So, if

iT+m+27k

[AlB=DA+D] > 1 and |Ae'™%

> 1, we obtain

e—5[i7—2ﬂ+27r+2k7r—2l(26—7r)]

» ooN = - ;
AeB=2)A+2) _ 1| 47 — 20 + 27 + 2km — 21(23 — 7)’

j<0

1 66[iT—2ﬁ+27r+2k7r—2l(2,3—7r)}
ZD)\j = |: iT+7m427k :| . 2 2 2 /{; 2[ 2 .
= R 1 it — 284 21 + 21k — 21(26 — )

We conclude that
N IIN = [@g,z< ) + 602 (r, A)} (3.74)
7<0
where @311 is holomorphic on D" and O H* is holomoprhic on D or.

The last term III* is given by

400
r- = *25”12 226 WWL L s @8-m(+2) Z ¢ 2min] J pliT—26-2mh—21(25-m))¢ ¢
>0 k>0 6
— 2Bk Z m l J 1 (26—m)(1+21) Z [_e—zm'h} & eOliT—28—2kmr—21(28—)]
>0 k>0 it — 20 — 2km — 2l(25 - 71')7

where we are supposing (7, ) € D”. Then

o—2(28—)i }l SliT—28—2km—21(26—)]

[
ey —98i —2mihk €
»oHry = WZ a1 2 ] L’T—Qﬁ—%w—%(%—ﬁ)

§<0 1>0 k>0

We conclude
e IV = e O (1, V), (3.75)
§<0
where O« is holomorphic in D”.

. e—25en(€) (26—7) (E+ih)
We now study the first error term £. We set n(§) = T e 2@ e m T - Then, we have

55=F

J
2

J
2

146
+J — A+ B,
-

.



where

0 A
A= _62Bth Z [_ezmh]l e[i7+26+27rl]e[ir+w+2nl}%n(£) d¢:

g >0

o )
B — _6—2(ﬂ—7r)th Z [_egm-h}l e[i7—25+27r—|—27rl]£6(i7+7r+27rl)%n(g) df.

0 >0

Thus, if

17'+7r 27l
e > 1, we obtain

i _2Bih 0 [_e%m}l [ir+28+2nl]é )
» AN = —e Z— n(€) d¢;

)\ iT+m+27l
§<0

=0 150 —1
5 [_62m‘h]l
ZBA] _ —2(6 ) J Z — 6[@'7’—2,8—&-27r+27rl}§n(§) dg
j<0 0950 Ae = —1

The inner sums converge uniformly for £ € [—§, §] to a smooth function in £ and holomorphic
in A for |[A\| > e™3(5=2), So, we conclude

o—h Zg*)\J — e Th [@ (1,A) + @52*) (T, )x)] (3.76)

where @Sl) are holomorphic functions on D"

. Now the second error term Egx.
_ e2sen(O)m(E+ih)
ni(§) = T Then, we have

0 g
ngj +J =FE+F,
-0 0

We set

where
0
o _6—2(ﬂ—w)th Z [— 206~ w)zh]l 5(28-m) (142 plir—26+2m-2A(2B-m)Ep (£) e
=0 >0
) .
Fm e [ S [t i e s 202k )
0 >0

Supposing that |Ae@=2)1+2)| > 1 we get

.
ZE)\] — _ ,—2(B—m)ih JO Z [ GQMh] lir—2B42m—21(28—7

7 e ni(§) dg;
s 1+2l
j<0 =4 ;>0 AelT= 220 —

5 . 72(2,84)@'}1}1
F)\j —QBth [ €
5 y L

[ir—2B—-21(28—7)]¢

e ni(§) d€.
Y(1+20) _

<o AelP 1

>0
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The inner sums converge uniformly for £ in [—4, 4] to a smooth function in £ and holomorphic
in A for |A\| > e73(%=2). We conclude that

S EN = [ Y+ e, /\)] (3.77)
7<0
where @(;2) are holomorphic functions on D”. H

In conclusion,

> T ()N = de™™ {Z M(r)N + >3 "B (Tw}

JEZ JEZ k=1 jeZ
o2Bih _ o~ 2Bih __p2Bih e—2Bih
eiTh |: B + B + T4+ + . B—E
iT+28 AT —=28  (ir4+28)(1—Xe27) (i1 —2B)(1— e’ 2)
wlo‘) ¢2 (T7 )‘) wi’) (Ta >‘)
- T = = (-3
(T +26) (1 = Xe”W72))  (ir —28)(1 = Ae™27) (1 —Ae" 2 )(1— e F73))
Ua(T, ) w7 x) xIr@)(T )

+ 0P (r,0)

(1=XeP5)(1—Ae2") P2 =X e (P72 — )
PSRRI S S(GRY
IT—T T+

1—)\62 e 2 —1

Moreover, we know

R(r.\) = dvg e n e~ e LB + 1
T, —  ir—= T, N1 [-TUg\
eo | [ Ae3 — 1 1—Ae'z" Ch (i75?)

where FE(7, A) is a smooth and bounded function with all derivatives smooth and bounded

+<I> (T A) + O(T, )\)}

in a neighborhood of D. In conclusion,

iTruB ’LﬂVB -
. TV 2 —72 e 2z
S LN = dyge = [ e e+ E(r, )
ez ez —1 1—De 2
[ e2sin 72,3m _2Bih o—28ih
+4e7" + —— +
|:ZT+26 7'—25 (it +28)(1 = Ae2") (i1 —28)(1 — Xef™2)
wl( ) %( 7, ) 7vb3(7—7 >\)
: ey T * = -3
(T +28)(1=Xe™P72)) © (ir —28)(1 —Ae2") (1 —Ae 2 )(1 — Ae (B9))
Ya(,\) v (r,\) w@vx> ®)
+ U (T, )+
(1=Xef5)(1—Ae2") €72 =] —B=3) )\ ()

PSR GRVNE S S(GRY
IT—T T+

+<I>(3) T, A)+O(1,\)|.
1—)\62 e 2 —1 2 (1A (A
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We recall that the above formula holds for Re7 > 0. For general 7 we have

imvg Mg\ ir—m
ZI )N = dug ¢~ sen(Ren) 52 [ i; 4o )\ij, + E(1, )
iz e -1 1—Xe =
28ih —28ih 28ih —28ih
n Jo—sEn(Ber)rh { e2h N '—e g N —e2P i e—2B _ N
iT+28 AT =20 (ir4+28)(1—Xe27) (i1 —=28)(1 — X" 2)
P1(A) N Pa(md) Ws(m A)
(it + 28)(1 — Ae~F=2)) ('7—25)(1—@”5”) (1—Xe"7)(1 — Ae (572))
AGRY ( A P ) (3)
+ + W A
(1—)«25_%)(1—)\6”5”) )\ ’8_7) A v (A

(1,0 @Y(r,\)
iTHT

R +‘I)(3) T, A) +O(1,\)|.
1—)de 2 e 2 —1 2 (1 A) ™A

Finally, recalling that 7 = w; — z7 and A = wy — Z3, we obtain

wyZs)!
Ky (an,wa). (21,22 = 30 W2 py ) =
JEZ
| e sen(Re(wn ) AR e 3" e (wymg)e T
= o ST T ST
(woZz)e™ 2 -1  1—(wyz)e 2
e~ sgn(Re(w1—21))(w1—21)h 2Bzh 72ﬁlh
Elw — = w5
+ B z17w222)] * 2 i(wy —Z7) + 25 i(wy —Z7) — 26
_62Bih —2,87,h
+ i(wy—2z7)+7m + . J— P _ +
(i(wy —27) + 28)(1 — (woB)e "7y (i(wr —71) = 2B)(1 — (wop)e %)
1 (w2%2) Vo (wy — 71, wez2)
i (i(w1 — z7) + 28)(1 — (waz)e~¥~2)) T zZ1) — 206)(1 e
(i(wr —21) = 2B8)(1 = (womm)e = )
n VY3(wy — 71, weZz) n Yy(wy — 21, weZz)

i(wy —Z])+m

L= (wpm)e”W8))  (1—(wem)e” 3)(1— (wo)e = )

‘Ilgl)(wl — 71, WaZ3) ‘1’52) (w1 — Z1, weZ)

(1 — (wyzm)e 2" )(

+ - : + 0P (w, — 71, weT)+
ef—35 — (w2z_2) e—(B-%) _ (wQZ—Z) 1 ( 1 1,2 2>
dM (w — Z1, W Zg ® (w — Z1, W Zo
2 (1 i(lwljﬁizr 2 1i<wr%>+ﬂ2 2) + @) (0 — 71, w%) + O(wy — 71, wem) |
1 — (wyzm)e™ =2 (wezz)e™ 2 -1

Simplifying a little bit, using the notation of Theorem 2.17, we obtain

KD’ (w Z) _ e—sgn(Re(wl_a))(wl—Qfl)'fﬁ K(w Z) + e—Sgn(Re(wl—H))(wl—a)th&(w 2)
B ) ) ) )

where
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Fi(w, z Fy(w, z
K(w, z) = 1 i(iiz)lfﬁ)er + 2 i(u?lfﬁ)ffr + E(w, 2)
1 —(wezz)e” 21— (weZm)e” =

= Ky (w, z) + Ky (w, z) + E(w, 2)

and
K(w,z) = Grlw,z) Ga(w, 2)
1= (weme 7] (1 (wom)e ]
+ Gs(w, z)
[1 - (w22_2>6w][1 o (UJQZ_Q)G’B_%]
+ Ga(w, z)

i(wy =) +m

[1 = (waz2)e = li(wr — Z1) + 28]
Gs(w, 2)

(1 — (wyZ)e =" fi(wy — 71) — 28]
Ge(w, 2)

(wy—Zp)—m

1= (wem)e = |1 — (woFz)e 3]

+

+

N Gr(w, 2)
[i(wy —Z1) + 26][1 — (wyzz)e” 2]
+ Gs(w, 2) + E(w, 2)

[i(wy —71) — 2B8][1 — (waZz)e” 2]
= Ki(w,2) + ...+ Ks(w, 2) + E(w, 2)

as we wished.
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Chapter 4

Biparameter Littlewood-Paley-Stein
Theory

In this chapter we develop some biparameter Littlewood-Paley-Stein theory that we will
use to prove our biparameter T'b theorem.

We work in arbitrary dimension R™ where n = ny; + ny. We will use the subscripts of
x; to distinguish between functions on R™ and R". In the first part of the chapter we
fix notation and define biparameter Littlewood-Paley-Stein operators and square functions.
Thus, we prove a reproducing formula in our setting which is the analogous of a result by

Han (Theorem 4.7) and we conclude the chapter proving Theorem 0.2.

4.1 Background results

In this short section we fix notation and recall some known results. We do not prove

these results, but we provide the references.

Definition 4.1. For 0 < § < 1, define CJ°(R") to be the collection of all 5-Holder continu-

ous, compactly supported functions f : R™ — C with norm

flx) = fly
I1£ls ZSUPM < oo
THY |ZL‘ - y|
Since CJ°(R™) is made up of compactly supported functions, it follows that || - ||s is a
norm, and we endow Co°(R™) the topology generated by the norm || - ||5. Given a function

b € L®(R™) such that b= € L=(R"), let bC’(R™) be the collection of functions bf such

95
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that f € CO°(R™). We define ||bf]|ss = ||f|ls for bf € bC?*(R™), and endow bC°(R™) the
topology generated by the norm || - ||,s. Finally, given a function space X, we define X’ to
be the continuous dual of X with the weak* topology. In our situation, we will primarily use
this definition for X = bC)) ’J(R").

For k € Z, N > 0 and z € R", define

2nk

) = Ty

The following proposition will be used in later sections.
Proposition 4.2. If M, N > n, then, for all 5,k € Z,
| - wed -y s el @y +afe-y.

Proof. Fix z,y € R and j,k € Z. Then, |z —y| < |z — u| + |u — y| for all uw € R™. Thus,
either |z —u| > |x — y|/2 or |u —y| > |z — y|/2. Then,

J n@;”(a:—u)q),iv(u—y) du <

SJ @y(x—u)q)év(u—y)duvLJ oM (z — u)0F (u —y) du
lz—u|<|z—y|/2 lu—y|>|z—y|/2
=A+ B.
Then,
2jn an
A< J . du
o >[o—yl/2 (1 + 27z —u)M (1 + 28|lu — y[)N
2Jn okn .
< , U
T (A Y)r —yl/2)M Lan (1+ 28w —y[)V
M
S CI)j (z—y).
The estimate for the term B is analogous. The proof is complete. O

Definition 4.3. For a measurable function f : R™ "2 — €, the biparameter strong maximal

function is
1

Msf(x) = su —J , dy1dys,
Sf( ) Qiagi Q1||Q2| Q1><Q2|f(y1 y2)| Yy1ay2

where the supremum is taken over cubes (); C R™ and Q)3 C R"™.
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Proposition 4.4. Let q)sz : R" — C fori = 1,2 and N; > ny. Then, for all f €
LYR™) + L= (R"),
sup (@ivll ® CDQ?) x| fl(z) < Msf(z).

k1,ko€Z
Proof. We have
@ &) e A= 1l )@ s — va) dndis
R71+n2
- Jx1—y1|§2k1 * |z1—y1|<2771 + |z1—y1|>27F1 + |21 —y1[>27F1
lza—y2|<27F2 za—yal>27F2 za—ya|<27R2 7 |zp—ya|>27R2
=1+ 1+ 1+ 1V.

We estimate explicitly the term II. The other estimates follow similarly. Thus,

I = J|331—y1|§2_k1 | (1, 52) [P0 (1 — 1) @2 (2 — y) dyndys

|za—y2|>27"2
= kiniokan
2mmtenz| f (g, yo) |
< dyd
= Z \xl—y1|§2*k1 (2]{:2‘3:2 _ y2’)N2 Y14Y2

J=0"2i—k2 < |gg—yo|<29H1 k2

i kini okan
202012 | F 1, )|
S ZJ |$1_y1|§27k1 dyldyQ

4 2iN2
I=0 7 |y —yp| <27 H1-F2

SJ MSf(x17 x2) Z 9—j(N2—n2)

J=0

S Ms(1,22)
as we wished. The proof is complete. O]
Now, we recall the definition of para-accretive functions firstly introduced in [DJS85].
Definition 4.5. A function b in L®(R") is para-accretive if b~! is in L>(R™) and there
exists a constant ¢y > 0 such that for all cubes () C R”, there exists a cube R C () such that

ﬁ JR b(z)dz

Let ¢ be a function in C§° such that ¢ is non-negative, it has integral 1 and supp(y) C
B(0,1/8). For every k € Z, let us denote . the function ¢ (z) = 28 (2%z). Define the

operator

Z Co-

Skf(z) = PiMpgy-1Pif(z)  and  Dif(z) = Spof(x) = Spf(x), (4.1)
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where

Myf(x) :=b(x)f(x) and Pof(x) = pr * f(x).

These operators were introduced in [DJS85], where it is proved that |Pyb(z)| > Ccy with the
constant C' > 0 depending only on the dimension n. This assures that the operator M p, ;)1
is well-defined. Moreover, they proved the following results. We refer to [DJS85] or [Han94]
for the proofs.

Theorem 4.6. [DJS85] For every function f in LP(R™) N LI(R™), where 1 < g < p < oo,
it holds

lim SyM,f = f and lim S°, Myf =0 (4.2)
k—o0 k—ro0
in LP(R™). Moreover,

SUf(x) = j Leyie) dy  and Dﬁ;f(a:):J bl f) dy,  (43)

n R

where the kernels b and d3 satisfy

sp(z,y) = di(z,y) =0 for 2"|z —y|[ > 1,

|sh(z, 9)| + |dy (2, )| < 2,

|sp(2,y) — sp(@, )| + i (x, y) — d (2, y)| S 27 (2% — 2'])7,
|sp(z,y) — sp(z, )| + | dy (2, y) — d(, )] S 225y — o))"

We have the following important reproducing formula.

Theorem 4.7. [Han94| Let b € L>*(R") a para-accretive function. There exist operators
52 for k € Z such that

> DIM,DiM,f = f (4.4)

kEZ,
in LP(R™) for any function f : R® — C such that |f(x)] < ®)(x) for some N > n,
1f(x) = F)| < |z —y|? for some v > 0, and bf has mean zero. Furthermore, D¢ is given
by integration against its kernel c?,l; ‘R — C,

BLf(z) =j 3 (. y) f(y)dy,

n
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and c?,l; satisfies
dh(,y)] S BF 7z —y),
|y (2, y) — do(2',y)| < (28| — o)) <q)i\7+’y<x )+ O — y)) |
| @ opwis=| & =o

n

for some N >n and 0 < v < 1.

4.2 Biparameter Littlewood-Paley-Stein operators and

square functions

Definition 4.8. A collection of functions 6; : R*" — C for k € 72 is a collection of
biparameter Littlewood-Paley-Stein kernels if for all xy,yy, 2}, y) € R™ and w9, y2, 25, 15 €
R"

02 9)] S O (= )@ (w3 — 1) (4.5)
022, y) = Ot @2, )| S (221 — 247

(O — )+ ONT ) ) O (w2 —1p)  (46)
105(x, ) — (1, 2%, y)| S (2% |2y — a5])7

X (IDQ? (1 —y1) <<I>££2+7(:E2 — Yo) + @ﬁzﬂ(:ﬂé — y2)> (4.7)
10:(2,y) — (2,91, 92) | S (28 [y — i)

X (O @y ) + O = g)) O (e — ) (48)

105(2,y) — Op(z, 51, 95) | S (27 |y2 — 5])"
x O (o — ) (PN (w2 = ) + O (@2 ) (49)
for some Ny > ny, Ny > ng, and 0 < v < 1.

Definition 4.9. We say that a collection of operators ©; for k € 72 is a collection of

biparameter Littlewood-Paley-Stein operators if

Opf(x) = J O(, ) f (y)dy. (4.10)

n

for some collection of biparameter Littlewood-Paley-Stein kernels 6} satisfying (4.5)-(4.9).
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Remark 4.10. Properties (4.5)-(4.9) hold if and only if 6; satisfies the alternate condition

set:
N/
O, y)| S Op (21 — 9@t (25 — ya),
1072, y) — Op(ah, 2o, )| S 27K 27282 (29 |2y — a]])7,
107(,y) — Op(wr, o, y)| S 2mF 272K (282 — )7
’912(1’79) 0 (1’ y17y2>| < 2mk 2n2k2(2k1|yl - ymv’?
107(z,y) — Og(@, y1, yh)| S 2mF 2m2k2 (282 yy — b)Y

for some N{ > ny, N > ny, and 0 <+ < 1.

Proof. 1t is obvious that (4.5)-(4.9) imply the above condition set since CIDZJ(Q:]) < 2king,
Assume there exist N{ > ny, NJ > ns, and 0 < 4/ < 1 such that the alternate condition
set holds and choose n € (0,1) small enough so that Ny = (1 — n)N] — 7y’ > n; and
Ny = (1 —n)Nj) — ny > ng, which is possible since Nj > n; and Nj > ng. Also define
v =nv, and it follows that

0¢(,9) = Op(ah, 22, p)] S (207 27225 oy — )7
X <Cka1{(931 — 1) + Dy (] — Z/l))ln By (w2 — y2)' "
S 2y = 2l (@0 (01— ) + O — ) ) 9N (2 — 1),
The other conditions follow by symmetry, and hence the condition sets are equivalent. [

We now prove an almost orthogonality lemma.

Lemma 4.11. Assume that ©; and Vi are operators defined by (4.10) with kernels re-
spectively 0p and vy. Also assume that 0; satisfies (4.5), (4.8), and (4.9) and that iy
satisfies (4.5), (4.6), and (4.7). If there exist para-accretive functions by € L>®(R™) and
by € L>(R™) such that

[ octesidny = | etttz =0
for j =1,2 allx € R" and ky, ks € Z, then for all k = (ky,k2), 7 = (ji, jo) € 22
M f(x)] < 2l b2 A ()

for some € > 0, where b(x) = by(x1)ba(xs) for x = (r1,x2) € R".
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Proof. Using the cancellation of ¢z and conditions (4.5) and (4.8), it follows that

|| trtwuptuystu
o

< j 62, u) — 65, 0, u2)| [5(u, ) | du

S| @l (B = ) + 00 - )
X ‘bﬁm(m — uz)q)ﬁlﬂ(m — Z/l)q)j-\fﬂ(ug — yo)du

_ 27(k1—j1)J (2j1|u1 _ yll)vq);\lh—w(ul _ yl) (q)é\?—l—v(xl _ Ul) + (I)é\?—kv(xl _ y1)>

n

X q),jc\;ﬁ”(xz — ’L@)@??JF'Y(U,Q — yo)du

CD;YI (u1 — 1) (@ZIH(QJ —uy) + (I)ivllﬂ(xl — y1)> duy

n

< 27(k1*j1) J
X J q)]k\;2+7($2 — UQ>(I)§\2[2+’Y(U2 - yg)dUQ
AR (@ivll (21 — 1) + (I)ﬁl (z1— 1)) (@2\;2(962 —y2) + (I)j-\f (22 —12)) -
By similar computations using the cancellation of ¢;, we have
|| ettt
]Rn

S 27k (‘I)Zl(iﬁl — 1) + q)ﬁl (21 — Z/l)) (q)g;(@ —y2) + <I>§Z2(:c2 - yz)) :

Then it follows that

0 MW f ()] S 27 R M f ().
Our assumptions are symmetric in ki, j; and ko, jo, so it follows that
O My f ()] S 2777 M f ().
Then taking the geometric mean of these two estimates, we have
O M5 f ()| S 27 Hl/ 2 kall2 A (),
This completes the proof. n

Lemma 4.12. Let by € L*(R™) and by € L>*(R™*) be para-accretive functions and Dle and
DZZ be the operators in (4.1). Also define Dy = DZiDZé for k € Z2. Then

2

> Df) S lle gy

kez?
Lp(R"™)

for1<p<ooand f € LP(R").
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This proof is essentially the same as the one due to R. Fefferman and Stein in Theorem
2 of [FS82]. We reproduce the argument to demonstrate that there are no problems that

arise by introducing para-accretive perturbations.

Proof. We start by viewing the operator {D,lg} defined initially from L?*(R™,¢*(Z)) into
L*(R™, ¢?(Z?)) in the following way: for {Fy,} € L*(R™, (*(Z)), define

{DPY{Fi, D) (1) = {D} Fioy (21) by hpez;  for z; € R™.

Let {F},} € L*(R™,(*(Z)). For each ky € Z, we use the square function bound for D,lg from
[DJS85], and it follows that

l[ Z |D sz T ’ d$1 J' ‘Fk2($1)|2d.1'1.
R™ R™

L kiez

Then it follows that

HDRY{Fu D Femm ey = D (JR > IDZiFkg(ﬂfl)Fdwl)

keeZ \"B" ez
<Y (] Iruteoran ) = 1F) o ce
ko€Z

That is, {D}'} is bounded from L*(R™,(*(Z)) into L*(R™,(*(Z?)). Now the kernel of
(D} '} is given by {dk1 (z1,11)} € LUP(Z),(2(Z?)) for all z1,y; € R™, where L(X,Y) for
Banach spaces X and Y denotes the collection of all linear operators from X into Y. For
fixed z1,y; € R™, the kernel {alk1 (x1,y1)} is realized as a linear operator by the scalar

multiplication: {ag,} — {dk1 (@1, Y1) @hy } (ky k)ez2- Furthermore for xy # 4

{dy (z1, y)H ce@ye@ey = sup {dp (21, y1)an, Hlewe)

H{akg}”z?(z)*

= sup H{dkl(xlayl)}”ﬁ(z)H{akg}Hﬁ(Z)
[{aky Hlp2 2y =1

= 1 (21, 1)} ey !

& |71 — g™
The last inequality is a well-known vector-valued Calderén-Zygmund kernel result, see e.g.
Coifman-Meyer [CMT78]. It also follows that

s X
{d (21, y1)} — {d (2}, y) ] ey ez2)) S nznl iL for |zy — x| < |z — /2,
|x — yl‘ 1 'Y
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Y=Y
H{di (z1:91)} = {dp (@, v | @y ey S % for [y — y1| < w1 —anl/2.

Then {D}'} is bounded from LP(R™, ¢*(Z)) into LP(R™,(*(Z?)) for 1 < p < oo by the
vector-valued Calderén-Zygmund theory developed by Benedek - Calderén - Panzone in
[BCP62] and by Rubio de Francia - Ruiz - Torrea in [RAFRTS83]. Alternatively, see Theorem
4.6.1 in Grafakos [Gra08] for a statement of the result applied here. Now we fix f € LP(R")
and define for o € R™ and ky € Z,

Fi2(ry) = D,Zi,f(w) = J dii (w2, 12) f (21, y2)dyo.
R™2

For almost every z; € R™, we have {F}?} € LP(R™,(*(Z)) and hence

SIS
VS|

J Y " Dpf(@)] | day :J > DR EE ()| day
R™1 N R™1 -
2 keZ?
= [{DZYHEFZ D o 2 (z2)

D
2

S IHEFR H o v e2(2)) :J (Z !D22f(x)|2> dry. (4.11)
R™ \pyez
Now integrate both sides of (4.11) in x9, and using the square function bound for D,Ig, it
follows that

2 - b

LRH Z ‘Déf(w)P dr S L{nl J n <Z \DZ§f ) dro | dxy

kez2 ko€

<] jR FPdee) doy =11

This completes the proof. O
We prove a lemma analogous to Theorem [Han94].

Lemma 4.13. Let by € L®(R™) and by € L>®(R"™) be para-accretive functions and b(z) =
bi(x1)ba(x) for x = (x1,25) € R™. Forj=1,2 let DZ] be as in (4.1) and 132] be as in (4.4).
Define Ebj = 5k]. MbleIZ- fork; € Z and j = 1,2. For any differentiable compactly supported
function f : R™ — C such that

LW f(x)b(x)dz, = LPM F(@)b(x)dzs = 0
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for x = (x1,x2) € R™, we have the following convergence

fm )l > BMS-f) =0
|j1|<T7|j2|<NT LP(R")

for some sequence Np > T.

Proof. Let f: R"™ — C be differentiable and compactly supported such that
J f(z)b(z)dz, = J f(x)b(x)dzy = 0.
R"™1 R"2

For each z5 € R™2, f(-,x9) is differentiable, compactly supported, and b; - f(-, z5) has mean
zero. Then by Theorem 4.7, for every xo € R™

jll_rgo Z Mb1 ) f ('7 .172) =0
ljal<T LP(R™)
Since f is compactly supported and the above quantity is bounded uniformly in 7', it follows

by dominated convergence that

p
A > Ey M, f—f

|j1|<T Lp(Rn)

p

J Jim. > Ej My, f(-m2) = f(- ) dzy = 0. (4.12)
Rz |]1|<T Lp(Rnl)

We also know that for each T" > 0, define
FWC1 122 Z Mb1 .131,372).
lj1l<T

It follows that

i (@)l < N 1By My, f(a1,22)] < 2TMyf(x) < 2T sup |f(ar,2)].

. r1€ER™1
l711<T !

Therefore F7' : R™ — C is bounded (depending on T") and compactly supported. Further-

more

[Pt (22) = Fft(g)| < ) |Bj My, f(an,00) = f(1,30)|

l711<T
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< 30| I a) = & |, DM Fa )
| TR
S 30| @l DY M o, )
lj1|<T R
S 2wy — ol D DY My, f (w1, )| (e
lj1|<T
< 2wy — ol D 1F (@1, ) lergeey < T2 f (@, ) ey 22 — vl
ljl<T
Finally, we have that
J F 1b2 LUQ d.TQ Z Mblj (l’l, Z’g)bg(ﬂ?g)dl‘g =0.
R il<T e
Then by Theorem 4.7, it follows that
lim > E;,M,Fj* — Fy! = 0.
lje|<N LP(R™2)
Then by dominated convergence
p
dm (D EgMof = ) By My f
[71]<T,|j2| <N lj11<T LP(R"™2)
p
J]Rnl ]\}vl—{noo Z ‘1\4172‘Fm1 Fj%l dxl = 0. (413)
lj2|<N LP(R"™2)

For each T' > 0, using (4.13) there exists Ny > T such that

S EMf- Y EjM,f <%.

l711<T|j2| <Nt l7I<T LP(Rn2)

This defines the sequence N7, and so now we verify the conclusion of Lemma 4.13. Let ¢ > 0.

Fix M > % large enough so that for " > M

> E M, f—f <

l71|<T

€
5
L»(R")
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Then

>, BMf—f

‘j1|<T7‘j2|<NT Lp(]Rn)
- Z E;be_ Z Ej1Mb1f + Z Ej1Mb1f_f
|j1|<T7|j2|<NT |j1‘<T Lp(Rn) ‘j1|<T Lp(IRn)
< ! + ¢ <

T 2 €.

This completes the proof. O

Finally, we prove the LP bounds for the square function associated to a collection of

biparameter Littlewood-Paley-Stein operators.

Theorem 4.14. Let by € L>®(R™) and by € L*(R"™) be para-accretive functions, and
define b(x) = by(x1)ba(z2) for x = (x1,22) € R™ T2, Also let O for k € 72 be a collection
of biparameter Littlewood-Paley-Stein operators with kernels 0;. If

Jm O (x, )by (y1)dys = J 0z, y)ba(ys)dys = 0

R"™2

for all k € 72 and z,y € R™, then
%
([T ieert]
jez

for all f € LP(R™) when 1 < p < oc.

Sl zr ey
L»(R™)

Proof. Let b(x) = by(x1)ba(x2) for @ = (21, 22) € R”, and f, gy be differentiable, compactly
supported such that

Lw f(x)b(z)dx, = J F(a)b(x)des = 0

R"™2

and

N

> gl <1

kez?
LY (R™)



4.2. BIPARAMETER LPS OPERATORS AND SQUARE FUNCTIONS 107

Let R > 1, and define

Ar(f) = Z

|k1],|k2| <R

| epas@)giots

Y

which satisfies

0< AN S| Msf@) Y laglo)lds < RISl (1.14)

|k1],| k2| <R

Let SZ‘Z, DZ; = SZ;H — Szj, 13,2, and Dy = DZiDzi be the operators defined in (4.1). Also

define EZ? = 13,2; My, DZ; and Ep = E}'E}?, where 13,2 are the operators from (4.4) that were
constructed in Theorem 4.7. Let f : R™ — C be continuous, compactly supported such that
J f(x)bl(xl)dxl = J f(.l’)bg(l’g)dl’g =0
R™1 R™2

for all x = (z1,29) € R". For T' > 1 it follows that

A< Y LR oM, —0:M, [ S By | | f(0)gele)ds

|k1|7|k2|<R ‘j1|<T7U2|<NT
+ Y > J O MyE: My f (x)g(x)dz| = Iy + IIr.
|kl lka| <R ||j1|<Tljz| <Np ' B

where Np are chosen as in Lemma 4.13. We first estimate Iy using (4.14):

Iy = Z J}R My | f(z) — Z E:Myf(x) | | gp(x)dx

|l lko| <R |7 R" 1] <T,ljz| <N

<A f— D EMf|ISR|f- >, EMf||

li1]<T|j2[ <Nt 71 <T|j2| <Nt p

which tends to 0 as 7' — oo by Lemma 4.13. Now we estimate I/ by putting the absolute

value inside and summing more terms,

Hr< Y0 | ORMEM:f(a)gp(a)dr
]Rn

k,jez?

So we now estimate II7. By Lemma 4.11, there exists € > 0 such that

O MyE; f ()| < 27 Wt Mg Do M, f ().
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Then it follows that

M0 <] Y O w)gg(o)ds

j.kez?
< J Z 95 (kv =il +ka=j2)) pq ¢ <D;be> (2)|gg(x)|dx
B 5 ez
1
9 2
<|[{ 3 amstmentsts [ams (Do)
= J
f,EEZ2 LP(R™)
1
2
;E€Z2 Lp’(]Rn)
1 1
) 2
S [MS (D;beﬂ > lggl?
j€Z2 Ip (]Rn) keZ? Lp/ (]Rn)
%
S, Z |D;be|2 5 Hf”Lp(Rn)
JEZ? Le(Rn)

In the last two lines we use the Fefferman-Stein strong maximal function bound from [FS82]
twice and the multiparameter Littlewood-Paley bound from Lemma 4.12. The estimate for

general functions f € LP(R™) follows by density. O

Remark 4.15. To prove Theorem 4.14, one does not need to assume that © for ke 72 is
a collection of biparameter Littlewood-Paley-Stein operators as initially stated in Theorem
4.14. Instead, we only need to assume that ¢ satisfies (4.5), (4.8), and (4.9). In short, we
can remove the assumption that ; satisfies conditions (4.6) and (4.7) from Theorem 4.14.
In particular, this means that the square function associated to 5}; is bounded as well: let
5,2 and 1522 be the operators constructed in Theorem 4.7. Define 5,; = 15;2 15,2 for k € 72,
and it follows that

N

> DifP? SN f e

kez?
Lr(R"™)

for all f € LP(R™) when 1 < p < o0.
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Next we prove a sort of dual pairing bound for biparameter Littlewood-Paley-Stein opera-
tors. This is the estimate that we use to bound the truncations of singular integral operators

in the next chapter.

Proposition 4.16. Let ©; be a collection of biparameter Littlewood-Paley-Stein operators
with kernels 05 for k€ 7% and by,b; € L¥(R™) and by, by € L®(R™) be para-accretive
functions. If

J (@, y)b;(y;)dy; = J O(w, y)bj(;)da; = 0
R™ R™

for j =1,2, then for all f € LP(R") and g € L” (R")

2.

k1,ko€Z

| e s@i)go)s

S 1 llze e 91l 2o gmny

where b(z) = by(x1)ba(x2) and b(x) = by (z1)ba(22) for x = (x1,25) € R™.

Proof. Let f,g be differentiable, compactly supported functions such that

J]Rnl f(@)b(z)dz, = J

R™2

fz)b(z)dzy = J

g(x)b(x)dz, = J g(x)b(x)dzy = 0.
R"™1

R™2

Define for R > 1

AR(fag) = Z

|k1],|k2|<R

Y

j 0 M, f(2)b(x)g(x)dx
.

which satisfies

0<AR(f9) S D IMsflrmn gl gy S BN lellgll - (4.15)
|k1],|k2|<R

Let SZ;, DZ? = SZ;H - SZ;, 15,2, D% = D,Ig D,IZ, and 15% = 15211 1522 befhe operators defined
in (4.1). Also define EZ; = DZ; MbjDZ; and Eg = E,IQE,IE, where DZ? are the operators
constructed in Theorem 2.3 in [Han94]. We also construct the corresponding operators with
b; replaced by l;j. Then for f,g € C{(R™) for some 0 < § < 1 where bf and bg have mean

zero and T' > 1, it follows that

AR(f, g) S [T + IIT =+ [[IT,
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where

Ir= Y J O:M, — O;M, > EEM, || f(a)Myg(x)dzl,
R

v Jka| <R |7 1] <Tljz| <N
b
m= % || feon| > B
|k1|7|k2‘<R |j1|<T7‘j2|<NT
- > E%M; | ©:M, Y. EM, || f(x)Mg(x)de|,
|m1‘<T,|m2‘<MT |j1‘<T?|j2‘<NT
lp= Y > JnE%Mg@EMbEgbe(x)MBg(m)dm,

|k1l,|k2|<R ||71|<T,|j2| <N, |m1|<T,|ma|<Mr

where Nr and Myp are chosen as in Lemma 4.13 for f and g respectively. We first estimate
It using (4.15) and Lemma 4.13:

= ¥ LR O, | fl) = Y EUMf(x) | | Mg(a)da

k1], k| <R [T i1 <T\|j2|<Nr

<Ar(f= D, EMfg|SR||f- D, EMMf 191l 2o Ry,

|j1|<T7|j2|<NT ‘j1|<Tv‘j2|<NT Lp(Rn)

which tends to 0 as T' — oco. Now we estimate [I1 again using (4.15) and Lemma 4.13,

Il = Z J I- Z E%Ml; @EMb Z E,I%Mb f(x)Mgg(:E)diE
R

|k, kol <R [TH" Im1|<T,|ma|<Mr |1]<T,lj2| <N

= Ag Z EJQbe, g— Z EEﬁMl}g

|711<T,|52| <Nt |ma|<T,|me|<Mr

SR DY, EXMf g— >, EhMg

l711<T,|j2| <Nt |m1|<T,|ma|<Mr

LP(R") LP' (Rm)

S Bl f ey |9 — > EhLMy :

|m1|<T,|ma|<Mr LP/(IR")

where I is the identity operator. This term also tends to 0 as T — oo by Lemma 4.13. So
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we are left with the third term, to estimate Ap

[k1l,|k2|<R ||71|<T,|j2|<N7,|m1|<T,|mz2|<Mr

Bl MO My, B M, f () Myg(x) da

=

n

> J My Dl M@ My ELM, f () (Dl)* Mg () da (4.16)
kjmez2 8
So we now estimate (4.16). By Lemma 4.11, there exists ¢ > 0 such that
\D%Mg@,gMbE;J fla)| S 27dmhlgmdmembl pMEDEf (), and
|D;M5@EMbE]2 f(@)] S Ms(OpMyELf)(x) < 27l ME DY f ().
Therefore we also have
|D§nM5@EMbE§f(x)’ < 2*§(|m1*k1|+\m2*k2|+|k1*]’1\+|k2*j2|M%Dé_{f(x)_ (4.17)
Using (4.17) we have
j > IMGDLMOMLENM, () D) Mgl
" jEmez
SJ' Z 2= ‘m17k1|+|m27k2\+|k1*j1\+\k2*j2|)M2 (D be>( )( Z)ﬁ) M[,g( )|d3§'
%
, : 2
< Z 9= 5 (Ima—k1|+|mo—ka|+|k1—j1|+|k2—j52]) [M% (D;be)]
J. ke LP(Rn)
3
X Z 2—§(|m1—k’1|+|m2—k2\+\k1—j1|+\k‘2—j2|)|(5%)*Ml~)g|2
j,k,meZ2 Lp,(]R")
_ )\ .
<||( 5 w2 (2ar)] (3 10kt
ez Loy | L¥' (B)
%
S D DM TP 191l o ey S NS Wl zo ) |9 2o ey
jEZ2
LP(R™)

In the last two lines we use the Fefferman-Stein maximal function bound from [FS82] twice
and the biparameter Littlewood-Paley-Stein bound proved in Theorem 4.14. Recall that the
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square function associated to (137’%)* is bounded on LP(R") for 1 < p < oo from Remark
4.15. The estimate for general functions f € LP(R") and g € L” (R") follows by density. [J



Chapter 5
A reduced biparameter 7b theorem

In this chapter we use the theory developed so far to prove a reduced T'b theorem. In the
first section we define biparameter singular integral operators of Calderon-Zygmund type
associated to para-accretive functions and we define what we called the biparameter weak
boundedness and the mixed biparameter weak boundedness properties. The second section

is devoted to the proof of our reduced T'b theorem.

5.1 Biparameter singular integral operators

We start defining standard kernels.

Definition 5.1. We say that K a standard biparameter kernel on R" = R™ x R™ if it
satisfies the following conditions:

IS Er
|21 — y1|™ |xe — yo|2

for ’$1—y1‘a‘332—y2’ #0 (5-1)

|71 — @)|V]me — 25
—_ y1’n1+7|x2 — yQ‘n2+7

|K (2, y)

(5.2)

‘K(Jf,y) - K(J’Jl?x?vy) - K(Jfl,l'é,y) + K(‘Illvxéay)’ 5 |gjl

whenever |21 — 27| < |21 — y1]/2 and |xo — 25| < |x9 — 12]/2,

1 — 1|7y — 5|7 (5.3)
— y1|n1+’y|x2 — y2|n2+'y ’

‘K((L’,y) - K(x7y£7y2) - K(xuyhyé) + K<m7y/17yé)| S |ZL‘1

whenever |y; — 41| < |z1 — y1|/2 and |y2 — 95| < |22 — 32|/2.,
[y — w2 — w5]7
J— y1|n1+7|x2 J— y2|n2+’y

(5.4)

|K(I,y) - K(a:,yi,yg) - K(:L‘l,l’é,y) + K(xlvxéayivaN 5 |£L‘1
/ /
whenever |y; — y1| < |z1 — y1|/2 and |z — 5| < |xe — ya|/2.,

113
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21— 21 ["y2 — |"

|K(l'7y) - K(m7y1ay;> - K(ZE&,JZQ,y) + K(xllvm%ylayéﬂ S |ZL'1 (55)

whenever |z1 — 2| < |r1 — y1|/2 and |y — yo| < |22 — y2|/2.

Now we give the definition of biparameter singular integral operator of Caldeén-Zygmund
type associated to para-accretive functions. We recall that bC’g ’6(]R") is defined in Definition
4.1.

Definition 5.2. Let by, by € L®(R™) and by, by € L>(R™) be para-accretive functions and
define b(z) = by (21)ba(22) and b(x) = by (x1)be(x) for & = (x1,25) € R™. A linear operator
T that is continuous from bC{*(R™) into (bCJ°(R™))’ for some 0 < § < 1 is a biparameter
singular integral operator of Calderén-Zygmund type associated to b, b if

(M;TM,f, g) = j K ()£ (£)g(2)b(2)b(y)dex dy

n

is an absolutely convergent integral whenever f, g € C’g"s(Rn) and

U supp(F(y1,) Nsupplg(z1,-)) = [ supp(f(-92)) N supp(g(:, z2)) = 0.

@151 €ER™M z2,y2 €ERM2

We end this section stating the boundedness properties that we will need to assume for
our operator T in order to prove our T theorem. Before, we recall what a normalized bump
is.
Definition 5.3. A function ¢ € C§°(R") is a normalized bump of order m € IN if supp(¢) C
B(0,1) € R™ and for all « € N} with |a] < m

Then,

Definition 5.4. Let T be a biparameter singular integral operator of Calderén-Zygmund
type associated to b(x) = by (21)ba(22) and b(x) = by (x1)by(22) for & = (21, x5) € R", where
by,by € L®(R™) and by, by € L™(R"™) are para-accretive functions. We say T satisfies
the biparameter weak boundedness property if there exists m € IN such that the following
holds: let ¢;,v¢; € C§°(R™) be normalized bumps of order m. Let x = (z1,22) € R™ and
3,Ro

Ry, Ry > 0. Assume that either bwthl or l;lwfl’Rl has mean zero and that either bys

- R
or byt)5*"* has mean zero. Then

(M My (7™ @ 322, 07 @ g ™) | § R Ry, (5.6)



5.1. BIPARAMETER SINGULAR INTEGRAL OPERATORS 115

where %1 (u;) = ¢ (“JRJ>

Definition 5.5. Let T be a biparameter singular integral operator of Calderén-Zygmund
type associated to b(x) = by (21)ba(22) and b(x) = by (x1)by(22) for & = (21, x3) € R", where
by, by € L®(R™) and by, by € L®(R"™) are para-accretive functions. We say T satisfies the
mixed biparameter weak boundedness property if there exists m € IN and 0 < v < 1 such that
the following two conditions hold: (1) Let be Ry, Ry > 0, z1,y; € R™ with |z, — y1| > 4Ry,
and zo € R™ and let ¢;,¢; € C§°(R™) be normalized bumps of order m. Then

T x T Rann2

(T My @ o522, ui ™ @ 4™ )| < (5.7)
~ (B oy =y )m
Further assume that either by?"™ or b7 has mean zero and that either byp2*™ or
byY)%>™ has mean zero. Then

R RY?

M*TMb((,Dyl’Rl ® S0362 R2) I1 Ry ® ¢$2 R2> — 1 2 ) (58)
)< b ! 2 ~ (R — )

(2) Let be Ry, Ry > 0, z2,y2 € R™ with |z — yo| > 4R,, and z, € R™ and let ¢;,1); €
C°(R™) be normalized bumps of order m. Then
R Ry?

‘<M5TMI)(S0L1B1 R ® g0242 R2) w1 Ry ® 1/)362 R2> (59)
™ (Ry s — )
Further assume that either byt or b1y has mean zero and that either byp¥™ or
byY)%>™ has mean zero. Then,
RI*Ry?
M- TMb gpzl R ® SOyz R fL"l Ry ® wxz R2> 2 . 5.10
(ot ! Sy O

Definition 5.6. A biparameter singular integral operator satisfies the biparameter Tb =
T*b = 0 condition if the following two conditions hold: (1) Let ¢, € C(R™), 1o, 0y €
CP(R™), and ng € C{°(R™) such that ng = 1 on By(0,R) € R™ and supp(ng) C

B1(0,2R) C R™. If by1y; has mean zero and either bypy or bet)s has mean zero, then
<T (b1 ® batha), bihy ® 52902> = ]%glgo (MpT My(nr @ 1b2), 1 @ @2) = 0, (5.11)
<T(b1¢1 ® bat)a), 51 & 52802> = 1%520 <MBTMb(?/)1 ® 1), MR ® pa) = 0, (5.12)

and (2) let ¥y € C(R™), 1,1 € C°(R™), and nr € C§°(R™) such that ng = 1 on
By(0, R) € R™ and supp(ng) C Bs(0,2R) C R"™. If bytpy has mean zero and either byp; or

b1, has mean zero, then

(T(brty @ b2), bripr @ byt ) 1= lim (MTMi(thy @ ), 1 @ 1) = 0
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<T(bﬂ/f1 ® batha), bipr ® 52> = }%1_{20 (M;TMy(1)1 @ 2), 1 @ nr) = 0.

5.2 The proof of the theorem

In this section we finally prove our T'b theorem.

Theorem 5.7. Let by, by € L®°(R™) and by, by € L>®°(R™) be para-accretive functions, and
define b(z) = by (x1)bs(2) and b(x) = by (21)by(2) for & = (z1,x5) € R, Also let T be a
biparameter operator of Calderén-Zygmund type associated to b and b. If T satisfies the weak
boundedness property, mixzed weak boundedness properties, and the Tb = T*b =0 conditions,

then T' can be continuously extended to a bounded linear operator on LP(R™) for 1 < p < co.
To prove our theorem, we need the following fundamental lemma.

Lemma 5.8. Suppose by, by € L>*(R™) and by, by € L>*(R"™) are para-accretive functions,
and define b(x) = by(x1)ba(x2) and b(z) = by(21)be(as) for x = (x1,22) € R™. Let T be
a biparameter singular integral operator of Calderdn-Zygmund type associated to b and b
with standard biparameter kernel K. Also assume that M;T M, satisfies the biparameter
weak boundedness and the mized weak boundedness properties. Define Oy for ke 72 by

integration against its kernel 0z, as in (4.10), where
O(r,y) = (MTMy (s (,90) @ s (o)) Al (o0, ) @ A (22,)) . (5.13)

Then Oy, for k € 72 is a collection of Littlewood-Paley-Stein operators and

J}Rnl 0 (x, )by (21)dw) = J 0 (2, )by () day = 0.

R™2

Proof. Fix x,y € R™ such that |7, —y;| < 27%%2 and |25 — y»| < 27%2%2. Then using (5.6)

107(z, )]

— 22k1 ni 22k2n2

$1;y1 2—k1+2 m2;y2 2~k +2 11-;J1 2-k1+2 mz;yz 2~k +2
M;TM, ( ¢, ® ¢y o ® ¢y
kiniokan ni+y na—+-y
S 2RM2En S B (11— y) By (22 — 1)

where ¢1, ¢, ¢3, ¢4 are normalized bumps of order m (up to a constant multiple independent

of z, y, and E) of the form

+ +
(bl(ul) = Qiklnlszll (2k1+2u’1 + %7 yl) ¢2(U2> = 27162”25222 <2k2+2u1 + %7 y2) 9
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onfon) =270y (2780004 ) ) = 2y (2 2R ).

2 2
: . 21tY1 g—kr+2 o
It is not hard to verify that 2Mmip, 2 - (u1) = sk, (ug,y1) for uy € R™ and likewise

for the other three terms. This completes the proof of (4.5) when both 1, y; and x9,y, are
close. Now fix z,y € R™ such that |z; — y;| > 27572 and |zg — yo| > 27%2%2. Tt follows that

supp(s2 (- y1)) N supp(d (21, -)) = supp(s2 (-, y2)) N supp(d2 (x5, ) = 0,

Then we can use the kernel representation of T" to write

0s(z,y)| =

J K (u, v)szl1 (v1, yl)dill (21, ul)sZi (02, /yg)d%? (22, uz)b(w)b(v)du dv
R2n

AN

J |K(U,'U) - K(.’L‘l,U27'U1,U2) - K(U1,$27'U1,'UQ) + K(l‘l,.TQ,'Ul,UQ)'
R2n

X [s% (0r, )R (1, ) 522 (v, o) b2 (a0, us )| du do

|ZL’1 - U1”Y’$2 — UZ|’y 22k1n122k2n2du dv

IA

— ni+ _ n
|ys—v; | <2~ i 4[|mi—ui|<2ki R ] e P S P e

9k1(2n1—7)9k2(2n2—7)
J|yivi|<2—’“i J|Iiui|<2_ki (|$1 - yl|/2 + 2_k1)n1+’y(|$2 - y2|/2 + 2_k2)n2+’y
27 Yo7k

<
~ Tox =l + 2755 (s — g + 272

du dv

IN

= O (@ — y) Py (w2 — )
Fix z,y € R" such that |z; — 31| < 27572 and |2y — 92| > 27%72. Then we can write

05(2, )] = |{ MMy (52 (o) @ 2, 12) L (21, ) @ (2, ))|

~ _ 22+Y2 9—ko+2 ~ —k 22+Y2 5—ko+2
M-T M, y1,27 " 7 .22 x1,27 "1 2
< bT b (gbl X ¢2 » ¥3 & ¢4

_ 02kini102kons
— 92kmio :

where
¢1 (Ul) = 2—k1n1 8211 (2_kU1 + 1, yl) and qbg(l)l) = 2—k1n1 dzll (ZEl, 2_kU1 + Il)
again are normalized bumps of order m (up to a constant multiple independent of x, y, and

E) Since |2y — yo| > 4 - 27%2, we can apply (5.10) to obtain the following estimate.

2—k1n1 2—k2n2
(272 |zo — yol )27

okinigkang - -
S (1 + 2k2|zy — g )2ty ™ O (@ = y1) @ (w2 — 2).

o] 2z
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A similar argument using (5.8) proves that (4.5) holds when |z, —y;| > 27512 and |29 —ys| <
27k2+2 This verifies that 6 satisfies condition (4.5) for all z,y € R™. Now to verify (4.6),
recall that for W € (C°(R™))', f € Cg°(R"), and x € R™, F(z) = (W, f*) is a differentiable
function where 0,,F'(x) = (W, (0y, f)*). Then 6y is differentiable, and we can estimate

ni

Vb )PP =

J=1

2

(MM} (. 30) @ S 2)), O, (A (1, ) @ 2 (22,))

5 22k‘1 (n1+1) 22k2n2 ’

since 2*’“1("1+1)8x1,].(di11(x1, -)) is again a normalized bump for z1 = (211, ..., Z1,,) € R™ (up

to a constant multiple independent of z, y, and lg) Therefore
0(2, y) — (2, 22,9)| < N[V, )l p= |21 — 2]  2Mm282 (20 2y — 1)),

This proves that 0} verifies (4.6) via the equivalence in Remark 4.10. By the same argu-
ment, it follows that 6z verifies (4.7)-(4.9). Now by the continuity of 7" from bC§(R") into
(bC3(R™))’, we have that

J;Rm O (2, y)by (21)day = Jim <M5TM1;(5211(', 1) ® 5,2 (5 42))s Ary ® dyZ (w2, )>

— 00

where

ARk, (1) :J dzll (21, u1)by (21)dz;.

|z1|<R

Note that for |u;| > R+27% we have |u; — x| > |uy| — |1 > 27 and hence gy, (u1) =0
for such u;. Also for |u;] < R—27% and 2 € supp(dzll(-,ul)), it follows that |z;| <
lur] + |uy — x1] < R. Since Dzlj)l = 0, A\ps, (1) = 0 for |u;] < R — 2%, That is
supp(Ars,) C B(0, R+ 27*)\B(0, R — 27%1). Now take R > |y;| + 27" %! so that Agy, and
5211(',%) have disjoint support. Now we split into two cases: (1) where |2y — 1p| < 275112

and (2) where |y — yo| > 27F2F2,

Case 1: (|wy — yo| < 27772) Here we take R > 275176 4 2|y, |. Consider

B ={B(u1,27") : uy € supp(Ans, )},

which is an open cover of supp(Agg, ). Then by Vitali’s covering lemma, there exists finite
collection {By, ..., By} C B of disjoint balls such that {3B,...,3B;} forms an open cover
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of supp(Ary, ). Let ¢; € R™ be the center of B; for each j = 1,..,J. Fix x € C*(R™)
such that y = 1 on B(0,1) and supp(x) C B(0,2). Let X;(u1) = x (55=), and it follows
that x; = 1 on 3B; and Y is supported inside 65;. Finally define the partition of unity for

3B,U---U3By,

X5 ()
> it X(w)
Let m € INg be the integer specified by the weak boundedness and mixed weak boundedness
properties for M,T M,. It follows that

X;(u1) = for j=1,...,J.

1

X.(Q—k1+3u1 + C')AR,k (2—k1+3u1 + C')
maXIaISm||aa(>\R,k1Xj)||Loo I J 1 J

ni(u1) =

is a normalized bump of order m for each j = 1,...,J. Note that for each § € INy* with
18] < lal <m

10 Am ()] < j 108 % (o1, w1 )b (a1) s
‘xl‘gR

<9[0 o) S 20
ny

The importance here is that this estimate does not depend on R; it does depend on k; and

B, but since we are taking a limit in R for a fixed k; and |5| < m, this is not of consequence.
T()

Likewise for || < |a| < m and u € supp(Agy, ) N 3B;
2—k1 1 52
35=s ] ‘ — 3l8l9lAlk T]
Zk 1 X ( 9F1 ) D k1 Xk

for some constant Az > 0 depending only on 5 € INj'. Note that we use x; € C5°(R™) and

o° o’

< A52|’3|k1,
L>(B(0,1))

107 x;(u)| =

Zi:l Xk > 1 on supp(Agk, ) N3B;. Again the importance here is that this estimate does not
depend on R; it does depend on ki, 8, and derivatives of x, but that is not a problem. Also
define ¢(uy) = 27F1m s} (27F1%3y, 4y, ), and it follows that ¢ is a normalized bump up to
a constant multiple. We now use that

2 k1+3

(u1) = ZXj(U1>/\R,k1 (u1) = ARy (u1),

=1

u
¢ () = 27 (2 ot 21 — yl) = 27" (ur, 1),

Z max 0% (Ar.w X)) oo
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and since R > 27776 4 2|y |, it follows that
)=l 2 les| — ] 2 R =274 — ] > 27440 g7k > 4 gk
Then we can apply (5.7) in the following way
1<MBTMb<szl Co0n) @ 20 A, @ R (2,))|

_ c..9—k1+3 7
<Zmax||@ Ot e [(T02 ™ @ s (), @ e (,))|

J
2k2n22 kin1 2k2n22 2kiny 2k2n22—2k1n1
Z Akl m 2k1 |y1 _ C Z Akl m- 5n. Ak‘l,m Rnl :]7
where Ay, ,, = max 2]“1(‘5|+|’Y|)A7‘

1Bl+v|<m
Now we use that By, ..., By is a disjoint collection of open sets to estimate J:

J

UB;

=1

J
J<ahm Y B, =2k

=1

< 27MMIB(0, R+ 27\ B(0, R — 27M+%)]

< 27k1(n1+1)Rn171'

Note that each B; C B(0, R+ 27"™3)\B(0, R — 27"%3) since ¢; € supp(Arx,) C B(0, R+
2773\ B(0, R — 27%173) and each B; has radius 27**. Therefore

‘<METMb(sk1(-, 1) @ st (92) Ay © dP (2, )>‘

27]61 (2n1+7) 2k2n2

Rm

27]{?1 (n1—1) 2k2n2

SAkl,m 2—k1(n1+1)Rn1—1 :Akl,m 0 ,

which tends to zero as R — oo. This completes the proof for the first case.

Case 2: (|zg — ta| > 27%2%2) Since Agy, and sy, (-, 41) have disjoint support, we can use the

full kernel representation for 7' to compute

(TS} () © S0 A, © s (01,0)) |

K(u, v)szll (v1, 3/1)5222 (2, Y2) AR &y (U1)d222 (2, ug)g(u)b(v)du dv

R2n

1 ~
S H}RQ P T T— |57 (v1, 1) 872 (V2 Y2) A ()2 (w2, u2) | du do
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2k2n2 -
< b b2 A v dud
~ H]RQH (|U1| — |t1| _ |t1 _ 1)1|)n1 |Sk:1 (Uh yl)ska (7}27 y2> Rk (ul) ko <x27 u2>| uav

< gkamz p=m J Ar.sy (w)]duy < 2M2m227 R Rt
R™1

which again tends to zero as R — oo. Therefore 0 has integral zero in x;, and a similar

argument proves that it has integral zero in x5 as well. O

By symmetry, it follows that each of the following define collections of biparameter

Littlewood-Paley-Stein operators:

02(w,y) = (MT My (s (s 30) © 2 (- 0)), (1, ) © 872 (@,) )
9%(.%, y) = <MBTMb<d211(> yl) ® 5222('7 y2))7 3211 (3317 ) ® dzzg (3:27 )> , and
92’(377 y) = <METMb(d211('7 yl) ® d222<7 y2))7 8211 (1’1, ) ® 8222 (va >> :

Furthermore, these kernels satisfy

ewwwmmzjewwwwmza
JR™1 R™2

6%(:67 y)bl (yl)dyl - J 0]%'(‘%', y)62($2>d5€2 - 07 a’nd
JIR"™1 R"2
Bhln)dn = | 0w )(m)di = .

Finally, we are able to prove Theorem 5.7

Proof. Let S% = S @ Si2 and S% = Sp'Sp2, where S, Sp2, Si', and S} be the approxi-
mations to identity with respect to by and by respectively constructed in (4.1). Also define
b b b b b b b b b b b b b _ b1 b
Dy, :~Sk1+1~_ S Diz = Skg1 — Skav Dy = S = Sy Dy = Siga1 — 5> D = Dy Di,
and D% = D}' D2 It follows that M, S My, f; — b; f; and M, % My f; — 0 in b;C§(R™)

as k; — oo for j = 1,2, whenever f; € Cy"' (R ) and

J fi(x)bj(x;)dx; = 0.
R™J

This was proved originally in [DJS85], and the proof is also available in [Har13al. It follows
that M, Sy Myf — bf and M, S% Myf; — 0 in bCS(R") as kj — oo for j = 1,2, whenever
f e Cy'(R") and
J f(z)b(z)dz, = J f(x)b(x)dzy = 0.
R™1

R™2
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Let f,g € Cy'(R™) such that

g(x)b(x)dz, = J g(x)b(z)dzy = 0.

R™2

LRM F(2)b(z)day :J

R™2

F(2)b(x)dws = J

R™1
Then by the continuity of 7' from bCS(R™) into (bCS(R™)),
(MTMyf.g) = lim_(My, Ty, SR Myf, Sk, Mog ) — (Mg, T My, %, My f, 5%, Myg)

== <M52TMb2S};§HMb f, Dk Mgg> . <M52TM,,2D§;‘; My, 52§M5g>

ko€Z
=Y Jlim_ (MM Sz, St Mo f, DSk, Mg ) + (MM, DY2S% My f, SR, Myg)
ko€Z

— (MT M, S}, S My f, D2 S™y, Myg ) = (MgTM,DYS", My f, SE2S™y, Myg)

= Y (MTMS S M, DD Mig ) + (MTAML DS Mo, D Mig )
k1,k2€Z

+ <M5TMb52§+1D21 M, f, D2§521M59> + <M5TMbD2§D21 M, f, 525521M59>

1 1
4
-S> (opansan)
k1,ko€Z j=1

where ©; for j = 1,2, 3,4 are defined as follows with their respective kernels

; .
OL = DEMGT M, Sz, ;

9;}5(‘%7 y) = <MBTM5(5211+1('7 yl) ® 5222-1-1('7 y2))7 dzll ($1, ) ® dzgg(l’% )> )
©2 = D SE MyTM,S) | D}

0;%(757 y) - <MBTMb(51211+1('7 yl) ® dzz(ﬂ y2))> dzll (xh ) ® 8222(‘7:27 )> )

b1 b by qb
02 = S} D2 MyTM, D, S2 5

0§(I7 y) = <METMb(dzll(7 yl) ® 82224-1('? y2))a 8211 (5(71, ) ® dzz <x2’ )> )
4 _ abpr. b.
OF = SEM;TM,D";
0%(w,y) = (MET My} (0) @ d2 (- 0)), 5 (@1,) @ 52 (22,7))

By Lemma 5.8, 61 satisfies (4.5)-(4.9) and

J eé(x7y>b1<x1)dxl = J Q,%(l’,y)bﬂ@)d@ =0.
R"™1

R™2
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By the biparameter Th = T*b = 0 assumption on 7', we also have

J 0L (. )b (31 ) s = J 0L, y)ba(y2)dyy = 0.
R™1

R™2

Then by Theorem (4.16),

2.

kez?

S 1 e 191 Lo gny -

| etz
]Rn
The same holds for @é when j = 2,3,4, and so it follows that

(THo <D >

=1 kez2

JR @%f(x)g(x)dm S HfHLP(R”)”g”LP/(]R")’

Therefore, by density, T" can be extended to a bounded operator on LP for 1 < p < oo.

123






Chapter 6
An extension problem

In this chapter, we apply our reduced biparameter T'b theorem to solve the holomorphic
extension problem we presented in the Introduction.

The problem we are dealing with can be stated as follows. Given an appropriate Lipschitz
boundary surface I' = I'; x I'y C C? and a function g : I' — C, there is a function G that is,
holomorphic on (C\I';) x (C\I'y) satisfying

9(2) = g4+(2) — g4+-(2) — g-+(2) + 9-—(2), (6.1)

for z = (21, z2) € I', where

g++(2) = lim  G(z +itq, 29 + its), gi—(2) = lim G(z +ity, 2o —ity), (6.2)
t1,to—01 t1,to—01

g-+(2) = lim G(z —ity, 29 + ity), g-—(z) = lim G(z —ity, 29 — ity).
t1,to—0t t1,to—01

For now we leave the sense in which (6.1) holds and the sense that the limits in (6.2) hold
unspecified, but these things will be defined later in this section.
Now we define what is our Lipschitz boundary surface I'. Let L, Ly : R — R be Lipschitz

functions with Lipschitz constants A\; and A\ respectively. Define

Y (21) = 21 + L1 (21);
Q(Ig) = X9 + ZLQ(IQ),

=2

V(@) = (m(21), 72(22)),
for x = (z1,79) in R2

125
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Definition 6.1. We say that
I' .= Fl X PQ = ’71(R> X VQ(R)

is a product Lipschitz surface with small Lipschitz constants if the Lipshitz constants A; and

Ay of Ly and Ly are both smaller than 1.
Definition 6.2. The upper half space associated to I' is defined Hp, x Hp, where
]HFJ = {’Yj(fbj) + itj HFES Z,tj > O}

We also define LP(T") for a product Lipschitz surface I" as follows: given a product Lips-
chitz surface I' = v, (R) x12(R), let LP(I") be the collection of measurable functions g : I' — C
such that

I9ie, = [ 962D Pt o) s i <
Our goal is to prove the following theorem.

Theorem 6.3. Let I' be a product Lipschitz surface with small Lipschitz constants in C?
defined by v = (71,7) : R? — C%. Assume that

lim Lﬂﬁ) =0 and lim 72(22)

|z1|—=00 X1 |z2| =00 XTo

:C2

for some ¢1,¢c0 € C. If g € LP(T') for some 1 < p < oo, then there exists a function
G : (C\I'1) x (C\I'y) — C that is a holomorphic extension of g, where (6.1) and the limits
n (6.2) hold in LP(T).

To prove Theorem 6.3, we take an approach related to the ones in [MM77, Cha79, Fef79,
GS79, Ste79, CF80], which uses the boundedness of biparameter and partial Hilbert trans-
forms. In place of the Hilbert transforms, we define biparameter and partial Cauchy integral

transforms for z = (z1, z5) € I and appropriate g : I' — C,

1 — &1 — &

Crylz) = lim Cole)  Cule) = e | == &) iz B O
t

CRg(z) =, lim Cg(a):  Clla( 2m L 51 +t2 (22 — 522) I,

CI}ZQg(Z):m grilmeQg() Cp2 - 27m L 12+ 13 (20 — §2)§2—i—t%g(£>d6
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Remark 6.4. The limits defining Cr, C2', and CP* are taken in the following pointwise sense:
given ¢ € C and ¢; € C for t = (t1,t9) € (0,00)?, we say ¢; — ¢ as t1,ty — 0T if for all € > 0,
there exists 6 > 0 such that 0 < ¢;,ty < § implies |¢; — ¢| < e. We also define convergence
in normed spaces as ti,t, — 07: given a normed function space X, F € X, and F; € X for
t = (t1,t2) € (0,00)%, we say Fy — F as ty,to — 07 if [|[F} — F||x — 0 as t;,ts — 0T.

The operators Cryg, C@lg, and 01329 are defined initially as pointwise limits, and we will
prove later that these limits hold in LP(T") as well for 1 < p < oo and appropriate g. A
crucial part of the proof of these convergence results is the LP(I') boundedness of Cr, C{il,

and Cf?, which we state now in Theorem 6.5.

Theorem 6.5. Let I' be a product Lipschitz surface with small Lipschitz constant in C?
defined by v = (71,7) : R? — C%. Assume that

lim Lﬂﬁ) =0 and lim 22(22)

|z1|—=00  Xq |z2| =00 XTo

:C2

for some c1, ¢y € C. Then operators Cp, CP', and C2* are bounded on LP(T') and for g € LP(T)

lim C;g =Cryg, lim CMg=cCPlly, and lim CP%g=CPg

tl,t2—>0+ tl,tg—)0+ tl,tg—)0+

in LP(T") when 1 < p < oco.

We will prove Theorem 6.5 in Section 6.3 using our biparameter reduced T'b theorem in
the same spirit David-Journé-Semmes used their T'b theorem to prove LP bounds for Cauchy

integral transform in [DJS85].

6.1 The holomorphic extension

In this section we prove Theorem 6.3 assuming the validity of Theorem 6.5. The proof
of the latter theorem will be provided in later sections.
Let I a product Lipschitz surface with small Lipschitz constants A\; and Ay as defined in
Definition 6.1. It follows that
(25 = 93)* = (Ly(5) = Ly(ys)* _ [Re[((xs) =9(w))]l
(zj — y;)? (z; — y;)? 7

0<1-X\<

therefore, Re [(v;(z;) — v;(y;))?] and (z;—y;)? are comparable with constants only depending

on the Lipschitz constants of «, not on z; and y;.
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We also remark that the norms of g and g o~y are comparable in the following sense: for
any g € LP(D),

lg 0 Y170 g2y < NV~ iz 1(32) ™ oo @y Ll oy < gl
< il 172l e @ llg © 7nmey < 2llg© VHLp(]Rz)- (6.3)

Note that since Relyi(z;)] = 1 for all z; € R, we have |vi(z;)| > Re[v}(x;)] = 1 for all
z; € R.

Now, given a function g : I' — C, we define for w = (wy,,wy,) = (21 + it1, 22 + ity) €
(C\I'1) x (C\I'y) where (z1,22) € I and t;,t5 # 0,

1 9(§)d¢
Gl wn,) = (2mi)? L (& —wi) (&2 —wiy) (64)

It follows that

G (W, wr,) = EL <pt1(21 — &1)Pes (22 — &) — @1, (21 — &) ey (22 — &2)

%i%&h—fﬂ%ﬁ@—§ﬁ+ﬁm@r—&Mm@r—&og@M§

where

1 tj 1 U.)j

(w;) = — and (w;) = ————=
poles) = 2 ) =2y

for w; € C.

Finally, for t = (t1,t2) € (0,00)%, g1 : 1 = C, go: 9 = C, g: T — C, and 2z = (21, ) €T,

we define the operators
Pugi(z1) = L P (21 — €0)g1 (1), Prygal(zs) = JF P22 — €2)g5(62)dEs,
émiﬂﬂ@=Lm@rfM%w—&M®%.

We use the indices of P, P,,, and P, to identify the operators.

Remark 6.6. Note that P.,g = P, P,,g for g : I' = C, where we use the notation

Prg(2) :J

Iy

o (21 —&1)9(&1, 22)d&  and  PLg(z) = L Py (22 — &2)g(21,&2)dEs

This is an abuse of notation, but it is clear in context which operator is being used.
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We start with a lemma about the convergence of the operators P, g, P;,g, and P.g for
g€ LP(I).

Lemma 6.7. Let I" be a product Lipschitz surface with small Lipschitz constants in C* and
g € LP(T") for some 1 < p < oco. Then

lim Ptlg:gv 11_>I{)l+ -Pth:g7 and lim Ptg:gu
2

t1—0+ t t1,to—01

where each limit holds in the topology of LP(T') and pointwise almost everywhere on T.

Proof. We first verify that P;;1 =1 for each j =1,2. Let R > 0 and
Er = {Zj S Fj : |ZJ| < R} U {Zj eC: |ZJ| =R, Iij > L](RQ(Z]))}

Er is a closed, and for R sufficiently large, it defines the boundary of an open, simply
connected region Ug = {z; € C : |z;| < R, Im(z;) > L;(Re(z;))}. For z; € T';,;t; > 0, and R
sufficiently large, it follows that z; + it; € Ug and z; — it; ¢ Ug. Then

2
& — (=5 —ity)

is holomorphic in §; on Ug for such z;, t;, and R. Using the decay of p;; and a residue
theorem, it follows that

1 t;

P, (5 — 6)dE; = lim —J 1 |

L]- I Rosem g (& — (25 i) — (25— ity)

. 1 271'2 t]’
= lim — , ,
Rovoo 0 (25 + it;) — (2 — it;)

dg;

=1.
Consider the following parameterized versions of P;, P;,, and B,: for f : R? — C and z € R?
Pof(@) = | o) = (o)} ) F o, 22)
R

P f(x) = JRpm (2(22) = 22(42))72(y2) f (21, 92)dys, and

Bf(e) = By By f(x) = j

P (i(w1) = Y1 (1)) e, (v2(2) — 71 (¥2))V1 (W) (w2) f () dy.

The kernels of f’tl, ﬁh, and P, are

P (@1,91) = po (1 (1) = W) W),  Pr(@2,y2) = P (2(2) — Y2(42)) 1 (Y2),
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and  py(x,y) = Pr, (@1, y1)Pr, (w2, y2),  respectively.

Note that f’tjl(:cj) = P, 1(7;(z;)) = 1 for all 2; € R. Also, since the Lipschitz constant of
L, and Lo are small, it follows that

1 i1 ()| _ t; - t; |
w8+ () =) G5+ (L= A =) ™ (L85 g — yy))?

Then {p, : t; > 0} forms an approximation to the identity on R for each j = 1,2. Fix
g € LP(T) for some 1 < p < oo. It follows that g o v € LP(R?), and hence that g o (-, zs) €
LP(R) for almost every xzo € R. Now fix 25 € R outside of an appropriate exceptional set,

so that ||g o y(-, z2)||r(m) < 00. It follows that g o y(-,22) € LP(R) and hence that

lim [P, (gov)(-;22) —go 7(',372)HLP(1R) = 0.
t1—0t

By dominated convergence, it also follows that

Jim 1By (g07) = g0l g = J}Rtllg{)l+ 1P (g 07)(, 22) — g 0 (-, 22) || oy w2 = 0.

Therefore P, (go7y) — go~ in LP(R?), and in light of (6.3) it easily follows that P, g — ¢ in
LP(T"). By symmetry, it follows that P,,g — ¢ in LP(T") as well. Now for g € LP(T"), we verify
that P,g — g in LP(T') as t1,to — 07 for 1 < p < 0o, as defined in Remark 6.4. First, define
M to be the Hardy-Littlewood maximal function acting on the first variable of a function

f:R?—C,ie.
1
le(l’) = sup —J ‘f(ylal'Q)‘dyl:
VEY 3 |[’ I

where the supremum is taken over all intervals / C R that contain x;. It is not hard to
verify that M; is bounded on LP(R?) for 1 < p < oo and that |P, h(y(z))| < Mi(ho~)(x)
uniformly in ¢; > 0 for any h € LP(I"). The LP(I") convergence of P.g follows:

lim [|Fig = glleory < Nim (|5 (Pog = 9)llerwy + 129 = glleer)
1,t2—0

t1,t0—

S lim [[My(Py(goy) —gov)lleemwe) + |1 Pug — gllem)

t1,t2—0

S I {|P2, (g o) = g oylleee) + im || By g — gll ey = 0.

In the last line, we use that P,,(go7y) — go~v in LP(R2) and that P, (gov) — go~y in LP(R2).

This completes the proof of the LP(I") convergence properties. Now we prove the pointwise
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convergence results. For g € LP(I'), it follows that g o y(-,z3) € LP(R) for almost every
xy € R. For a fixed x5 € R outside of an appropriate measure zero set, by the Lebesgue

differentiation theorem it follows that

lim ﬁtl(g o) (x1,x2) = g(y(x1, 22))

t1—0+

for almost every x; € R. Hence ﬁtl (go~y) = go~yast; = 07 pointwise almost everywhere
in R? and hence that P, g — g as t; — 0" pointwise almost everywhere in I'. By symmetry,
]5;2 (go) — goy as t, — 0T pointwise almost everywhere in R? and hence that P,,g — ¢
as t; — 07 pointwise almost everywhere in T'.

Now we verify the pointwise convergence for P,g on I'. Fix € R? such that ﬁtl (go
Y)(z) = goy(x) as t; — 0% and ||g o ¥(-, z2)||Lr(r) < 00, which is true for almost every

x € R?. Now we bound
|P(g0y)(@) — g o v(@)| < [Py (Pi(g07) — (g0 ))(@)| + [P (g 07) (@) = (g0 7)(x)|
S J e (1 (1) = 1 ()| Py (g 0 7) (01, 22) = (90 7) (v, 22) |y
R
(6.5)
+ P (g0 7)(@) = (g0 7)(@)].
We verify that the first term of (6.5) tends to zero as t1,t, — 07: let € > 0. Since P, (g o
Y)(y1,22) — (g © v)(y1,22) pointwise as t — 07 for almost every y; € R, there exists
§ > 0 such that 0 < ¢, < & implies | P, (g 0 7)(y1,22) — g 0 Y(y1,x2)| < € for almost every
y1 € R such that |x; — y;| <1 (recall we have fixed x; and x3). The selection of  does not
depend on y; as long as it is within the compact set defined by |21 — y1| < 1. Now we take

0 < t1,t2 <min(d,€)/(1+ ||g ov(-, x2)| Lr(r)), Which is possible since z € R? was selected so
that ||g o y(-, %2)| r(w) is finite. Then

jRptl (1) — ()P (g © 1), 2) — g © (90, 72)

< J P (1 (1) — ()
|1 —y1]<1

t1(| P9 0 ) (1, 22)| + g 0 (51, 22)|)
- Jm—yl|>1 (1) = 71())* + 13 !

Iz
< e+t1J (| Py (g o) (y1, v2)| + |2907(y1,rc2)|)dy1
lz1—y1]>1 (1 — 1)



132 CHAPTER 6. AN EXTENSION PROBLEM

L

~ dy pl
S et (1Pulg o) m)llme + llg 0 (s 22)lliowy) (J —>

o1y |>1 (T1 — Y1)

Se+tillgo(, m)llmm) Se

It follows that the first term of (6.5) tends to zero as t;,t, — 0T for almost every = € R?.
The second term in (6.5) also tends to zero as t1,ts — 07 since x was chosen so that
P, f(z) = f(x) as t; — 0%. Again using (6.3), it easily follow that P,g — g as t1,ty — 0F

pointwise almost everywhere on I'. O]

Now we prove Theorem 6.3 assuming Theorem 6.5; we will prove Theorem 6.5 in the

next chapter.

Proof. Let 1 < p < oo, g € LP(I'), and define G as in (6.4). Note that p_,(z; — &) =
—py, (25— &) and q_y (25 — &) = @, (z; — &) for t; # 0, z; € ', and j = 1,2. Then it follows
that for (z1,29) € I' and t1,t5 > 0, we have

G(z1 +itr, 2 +ity) = = (Pig(2) — Cig(2) +iCl" g(2) +iClg(2)) |

G(z1 +ity, 20 — ity) = — (—Pg(2) — Cig(2) — z'Ctplg(z) + inQg(z)) )

—~ o

G(21 — it1, 20 +its) = — (—Pig(z) — Cug(2) +iCl g(2) — iCl%g(2))

(Pig(2) = Cug(2) —iC"g(2) — iC%g(2)) .

By Theorem 6.5, it follows that Crg,Ck'g,C?g € LP(T') and C,g — Crg, C''g — CP'g, and
CPg — CPg as ty,ty — 0" in LP(I'). Then for z = (21, 2) € T

G(Zl - itl, Z9 — Ztg) =

N el i Rl o B e e
e
K

g1+(2) = 7 (9(2) — Crg(=) +iCPlg(=) + iCFg(2))
g-(2) = 7 (~9(2) ~ Crg(=) — iCPg(=) + iCl(2))
g+(2) =  (~0(2) = Crg(z) +iCPg(=) — iCi4(2)) , and
g () =  (9(2) — Crg(=) — iCP'g(=) — iCFy(2))

Then it also follows that (6.1) holds, i. e. g = g4y —g+— —g—+ + g, as LP(I") functions.
It is also not hard to verify that G(wi,ws) is holomorphic for (wy,ws) € (C\I'1) x (C\I'g):
for ¢ = ((1,¢2) € (C\I'y) x (C\I'y), we have the following power series representation

[e.9]

_ o(€)de T
Gonen) = e 3 (], g apiote ) @~ @) - @
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when |w; — (1| < dist(¢1,1'1)/2 and |we — (| < dist((2,I'2)/2. Therefore, G is a holomorphic

extension of g. O

6.2 Bounds for the biparameter Cauchy Integral Trans-

form

In this section, we use Theorem 5.7 to prove bounds for Cr and its parameterized version

5p, which we define now. For appropriate f : R™ — C, define

o — lim Y1) — n(y) Y2(2) — 72(y2)
o I B 3o g o A

where b(y) = v (y1)75(y2). We call this the parameterized version of Cr since

51“be(96) =Cr(fov ") (v(x)),

and furthermore, the LP(I") bound for Cr can be reduced to LP(R2) bounds for Cr via (6.3).
It is not hard to see that the kernel of é} is
1
(i(z1) = () (n(x2) = n(y2)’

which is a biparameter Calderén-Zygmund kernel. In the next proposition, we prove that Cr f
is well-defined for appropriate f : R” — C and hence Crg is also well defined for appropriate
g:I'=» C.

Define the complex log function with the negative real branch cut, that is, for z € C we
define

log(z) = In(|2]) + iArg(2),

where In : (0, 00) — R logarithm base e function with positive real domain and Arg(z) is the
principle argument of z taking values in (—m,7|. Note that for u € (0,00), In(u) = log(u);

we use this notation to emphasize when the input is real versus complex.

Proposition 6.8. Assume that T satisfies the hypotheses of Theorem 6.3. For all f €
Cs°(R?) and x € R?,

Celf)(e) = 7z | Tor (1) = 9(0))*) 108 ((ataz) = 72(02))?) D ()
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Also, for all f,g € C*(R?), the pairing <6’p(bf), bg> can be realized as any of the following
absolutely convergent integrals:

# Jw log ((71(x1) — 11(31))?) log ((v2(x2) — 12(y2))?) Oy, Oy, f (y)g(x)b(a)dy dex,
4%2 Jw log ((71(x1) — 71(11))?) log ((2(w2) — 12(12))?) f(y) 0, Ouy g(x)b(y)dy daz,
— 4—71T2 JW log ((1(z1) = 11(11))?) log ((12(w2) — 12(42))?) Oy f (1) Dy g(2)b(1, y2)dy dz,

— 4—;2 JW log ((71(z1) — 11(11))?) log ((12(w2) — 12(42))?) Oy f (1) 0w, g(2)b(y1, 32)dy dex.

Proof. We first note that for z;,y; € R

o) N () = L 1) = 7i(y)
Qtj(%( i) %(yj))%(yg) W(’Vj(%)—’yj(yj))Q—{—t?

- _%% log (v () — v (;))* +£5) - (6.6)

v; ()

The derivative of log is well defined here since we defined it with the negative real branch cut,
and for all z;,y; € R, we have Re ((v;(z;) — v;(y;))> +t3) > ¢ > 0. Now for f € C°(R?)
and x € R?, we compute the following pointwise limit

Cr(bf)(z) = lim LRQ G, (71(21) — 71 (W1)) a1, (V2 (22) — Y2 (y2)) f (¥) 71 (1) 72 (y2)dy

tl,t2—>0+

— lim JW [—%ayl log ((m (1) = 71(31))* + t%)]

t1,to—0TF

X {—%% log ((Y2(22) — 72(12))* + tg)} f(y)dy

= lim LLRQ [log ((n(a1) =7 (y1))* +11)]

t1,to—07F 47T2

x [log ((va(w2) = 1(y2))* +13)] 8,,0,, f (y)dy
1
== J}RZ log (i (1) = 11 (31))*) log ((v2(w2) — 72(12))?) 0,10y, f (y)dy.
We integrate by parts in y; and y» above, and the boundary terms vanish since f is compactly

supported. Also to justify the last inequality, note the following holds for all x; # y;, so that

we can apply dominated convergence: the following pointwise limit exists

Hm log (v;(x;) — v;(y))” + 3) 85,0y, f (1) =1og (v;(x;) — 7 (¥1))?) Oy, Oy f (),

t1,to—01
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and the integrand is dominated by an integrable function function independent of 1, ¢, < 1/4
[log ((vi(w5) = 2i(w))* +5) | < [ ([(y3(x) = (w3))* + 1) |+ 7 < [In (25 — 93)%) | + 1.
Since In(| - |) is locally integrable and f € C§°(R?), we may apply dominated convergence in
the last line above. Now take f, g € C§°(R?), and it immediately follows that
~ 1 2 2
<MbCrbe;9> ) log (71(z1) — 11 (y1))?) log ((v2(x2) — 72(y2))?)
R4

X Oy, Oy, ()9 ()71 (1) 73 (2) dy dv.
We also have that

<Mb6Fbe7 9>

= Jim | o ((alen) = )+ ) 10g (o) = () + )

t1,ta —0t 47T2

X 0y, 0y, f (1) g(2)7) (1) 75 (22) dy da

~ lim j g (11 (1) = 71 (92)) s (12(2) — (1)

t1,to—01 R4

X f()g(x)v1 (Y1) s (y2) 71 (21) Vs (22) dy d

— lim LJ 02, 1og (71 (1) — Y1 (y1))? + t%)}

t1, to—0t 471-2 R4

X [ o 10g ((2(22) — 12(12))* +13)] F(W)g(@)7) (y2)va(a2)dy da

J log (v (1) — () + £2)

x log( = 72(y2))” + £3) Oy f (4) 0 9(2) 71 (1) (w2) dy dex
| Tor () - 71(%))2) log ((12(22) = 72(12))?)

yzf(y> xlg(x)71 (yl)")/é(lj)dy dx.

Here we integrate by parts in x; and gy, and use dominated convergence in essentially the

same way as above. A similar argument verifies the other formulas for <6’p(b f), bg>. O

Note that we cannot use properties of logs to replace the integrand above by

4 log (v1(z1) — 71(y1)) log (v2(z2) — 72(y2)) -
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This is because Re [(y;(z;) — v(y;))?] > 0 for z; # y;, and furthermore recall that we showed
that Re [(v;(x;) — 7(y;))?] > (1=A3)(z; —y;)*. So this term avoids the branch cut of log, but
Re [v;(z;) — v(y;)] may change sign, which causes problems with the complex log function.

The next lemma prove an estimate we need later.

Lemma 6.9. Suppose L; : R — R is a Lipschitz function with small Lipschitz constant
Aj < 1 forj=1,2, and define y(v) = (v1(21),72(x2)) = (v1 + iLl1(21), 22 + iLa(22)). If

¥ € CP(R) is a normalized bump of any order with mean zero, then

~ 7

J}R log ((v;(x;) — v (w;))?) Ry ' ( R ) dy;| S

sup
uj €R,R; >0

where the suppressed constant does not depend on v, x;, or .

Proof. Let ¢ € C5°(R) be a normalized bump with integral zero. For |u; — z;| < 2R,

J}Rbg((%’(l‘j) —7(y))°) Ry ¢( R, )dya

w o U5 $J+Rj
< H }!L " llog () = (s +y5))?) — log(R3)| dy;
J Uj—Lj—It;

< J: (ln (\(%‘(%‘) - %']%’j + Rjyj))2|) N W) dy;

S| mihpay <

Here we use that for |y;| <3

() — i + Ry )2
(1 i )\?)lyj|2 < ‘(7](55]) PVJRSZJ Jy])) ‘ < (1 +/\j)2|yj|2 < 4|yj|2 < 36.
J

Now for |u; — x| > 2R;, we estimate as follows

J (’y] z;) —v;(y;)) ) 1¢( i3 >dyj
j
Ml P e (e ,
= R, R ‘Og((%(%) 7](x3+yj))) 0g ((’Yj(xj) 75 (u;) )| Yj
R i
(Ui =i+ R () — ~ (s |2
< 1+i ! n (’%(%) 5 (2, "’y;)' )‘dyj
R] uUj—CEj—Rj ”y](x]) - P)/J(uj)|
1 ;]
<1t In (—J) dy;
RJWIyr(UrIj)KRj Juj — ] !
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In (\Uj — x| + |y; — (u; _xj)’)‘dyj

luj — ;]

luj — ;] >‘
In dy;
<|Uj—fj|—|yj—(uj—$j)| ’

(In(3/2) + In(2))dy; < 1.

1

<1+ —J

B )iy —(uj—a5)|<R;
. J

B )iy —(uj—ay)|<R;

1
<1+ —J
B Jjy;—(uj—ay)|<R;

This completes the proof. O
Now we prove that 5p satisfies the hypotheses of Theorem 5.7.

Proposition 6.10. Assume that I' satisfies the hypotheses of Theorem 6.5. Then, the oper-

ator Mbgpr satisfies the weak boundedness and mixed weak boundedness properties, where

b(z) = 7i(z1)73(22) for z = (21,22) € R%.
Proof. Let ¢;,1; € C§° be normalized bumps, z € R?, and Ry, Ry > 0. Then
(MM © g5, w7 @ ™

J 108 (0 (00) = 1200 10g ((ra(02) = 22(02)))

e

X (9711 (01) (952 72) (W) (un )05 72 () du dv

1 r1+R1 pro+R2
<o)

47T x1—R1 Jxoa—Ro

X Ry (@)™ (01) Ry ()™ (va)dv

J 108 (G 60) = 70 00)2) o () = )

du S Rl RQ.

The last inequality holds due to Lemma 6.9. Then Cr satisfies the weak boundedness prop-
erty. we first verify (5.7). Let 1 € R, R; > 0, and ¢;,v; € C5°(R) be normalized bumps.
Then for z1,x9,y2 € R and Ry, R > 0 such that |z; — y1| > 4R,

‘<Mb5FMb(Qp1{17R1 ® gpgz,Rz)’wicth ® ¢§27RQ>

= lim
t1,ta—01

j o (1 1) — 71 (00)) @ (o) R (o (o s ()
RQ

X

J o (0) = ) )52 ) 02 )

< lim J e, (71 (1) = 72 ()] ™ (00) 7 (ua )1 (1)) (wa) |y duy
RQ

- t1,to—01
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X

J 108 ((n(0) = 12020 (6 (00032 ™ )

= lim Ay X By,.

t1,toa—01

To estimate A;,, we use the kernel estimate for ¢, to conclude the following bound.
J g (n(w) = (vl et o)™ () (o) () dor dug
R

1
< y1,R1 r1,R dv+ d
S|, et Ut )l
R R
Y=l (R —wl)

For the second term, we argue exactly as in the full weak boundedness case using Lemma

6.9:

Bhsj jkg«wwg—vxw»>R2<>w&ngQW?&amuw
R |[JR
S| s (ug) | dusy
R
< Ry

Therefore Cr satisfies (5.7). To prove (5.8), fix x1,22,92 € R, Ry, Ry > 0, and ¢,,; for
j = 1,2 as above, but furthermore assume (without loss of generality) that 7{@[1?1’31 has

mean zero. Since |y — y;| > 4R,
‘<MbCFMb( y1,R1 ®90§2 Rz) 1‘1 Ry ®,¢$2 R2>’

< lim J g, (71 (u1) — Y1 (v1)) = @, (v (21) — Y2 (v0)] 8™ ()™ (u ) ¥ (v1) g () | doy duy

t1,t2—0t
RQ

X

,[Rz log ((72(ua) — 72(v2))?) (95272 (02)15> " (1)) (u2) dvadus

= lim Atl X Bt2

t1 t2~>0+

By the support properties of ¢ and 11, we may assume that |y; —v;| < Ry and |x;—u;| < Ry

to estimate the following part of the integrand from Ztlz

|Ge, (71 (u1) =71 (v1)) = Gy (11 (1) — 71 (1))

_ ((u1) = 71 (v1))(n(21) = 11(v1))? — (M (@1) — 71 (v1)) (N (1) — 71 (v1))?
(1 (1) =7 (1))? + H][(n (wn) =7 (01))? + 8]
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)8 — (@) = n(v)
)2+ t3][(a(ur) — (1)) + 8]
[yi(1) = 71 (u)|
Yi(v1))? +t]
[y1(u1) — 7 ()|

(’Yl Ul) M

( (
[(v1(z1) = 71(v1)
) )
t ) —

+

71 (u1) = y1(v1)| |71 (1) — 1 (0

[(71 (1

= On(u) =m(v))? +

+t]
N (un) =y (0n)? + 81 (ra (1) = (01))? + 1|
up — U1 [T1 — V1] [T1 — UL T1 — Uy )
= vl o vl o —wi] | Jr—w] R
~ |u1_U1|2|I1—U1|2 |x1_vl|2 ~ |$1—y1|2

In the last line, we use that |x; — yi| > Ry1/4, |x1 —wi| < Ry, |y1 —vi| < Ry,
lur — v 2 [z —91]/2, and |z —wi| = 21 — pi]/2.

It easily follows that

Ry
— y1’2

J T (0 )7 oy dey < —0— = R
1 — y1 (R, |z —wn])?

A, <
tlr\.}‘xl

as required in (5.8) with ny =~ = 1.
This verifies the first mixed weak boundedness properties (5.7) and (5.8) for Cr, and the

other two conditions follow by symmetry. O]

Proposition 6.11. Assume ' satisfies the hypotheses of Theorem 6.3. The operator Cr
satisfies the Th = T*b = 0 conditions with b(z) = b(x) = ~,(x1)74(x2) for x = (x1,25) € R2.

Proof. Let nr € C§°(R™) be as above, 1,9 € CP(R™), and 1y € C§°(R™) such that

~v11 and Y419 have mean zero. We use Proposition 6.8 to compute

<Cr('ymR ® Y32), N1 ® 72w2> = % J log ((71(21) = m(y1))?) log ((72(2) — 72(32))?)
x (nr)' (Y1) 3 (y2) U1 (1) 2 (22) 71 (1) 75 (2) dy da
= 1|08 ((n ) = () ) o () = om)?)
<1 (Y1) (y2) o1 (21) 2 (22) 71 (21) 75 (22) dy d

- j Fale) (j log (1a(z2) — 72(52))?) 90'2(3/2)0@2) (2 (22 ) i,
R2 R

where Fafar) = | 108 ((n(1) = (R)?) o ()

Since n € C§°(R), it follows that 1’ has mean zero. Note also that Re(c;) = 1 since
y1(z1) = 21 +iL1(x1) and L, is real-valued, so log(yic?) is well defined for y; # 0. Recall
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the definition of ¢; in the hypotheses of Theorem 6.3. Hence we can also write Fr(x;) in the
following way.

Fr(z1) = LR [log ((mi(z1) — 71 (Ryr))?) —log (R?)] 0 (y1)dus

[ (Y 1,

Now we note that for all z; € R and y; # 0

((71(951) - ’Yl(Ryl))Z)

= lim log

lim log P
— 00

R—o00

( o (1) =1 (Ryr))?
RZ

:1 2 2 ]
Y1 V2R? ) og(yicy)

Recall that we have assumed ~;(u1)/u; — c¢; as |u;| — oo. For R large enough so that
supp(¢1) C B(0, R/2), it follows that for x; € supp(t;) and y; € supp(r’) C B(0,2)\B(0,1)

|71($1) - 71(Ry1)|2 |901 - Ry1|2 R? — |x1]2
2 Z(l—ﬁ)TZ(l—)\?)Tzl—A%
We also have
In(z1) = (Ryn)|? _ 4ley — Ryn?  4fay? 2
2 < 72 < 2 + 4|y ]© <20
Therefore
T1) — R 2
10g<(%( ) R?( o) )n’(yl) S (ya)-

Then by dominated convergence,

R—o0

lim Fg(z)) = J log(y7ct)n (y1)dy = c.
R

Now Fg(z1) — c for some constant ¢ € C, which does not depend on x;. Since Fg(z1) is

bounded independent of z1, we apply dominated convergence again to conclude
(] 1o (Gate) = atom)) ehtomlae)
R
X Y1(@1) e (z2)71 (21) 73 (22)d

= (| wtentendn ) ([ 108 (nlen) ~ 220)) chlvateson)die e

=0.

lim <5r(vinR ® Yap2), V¥ ® v;w} = J
R—o0 R

Here we use that vj1¢, has mean zero. By symmetry, this holds when 7j¢; has mean zero in
place of 7{1;. Hence the 51"((7) = 0 condition is satisfied, and the adjoint condition follows
by symmetry. O]
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By Theorem 5.7, we conclude that 51" can be extended to a bounded linear operator on
LP(R?) for 1 < p < oo. Hence Cr can be defined for g € LP(T) for 1 < p < oo, and for
g € LP(I'), it follows that

ICrolry = | | 1CeMala o) (@) P13 o))
< Ikl s | N o) @
< 0D =108 i WCel o | @ P i )b (o)ld < 41 sl

Furthermore for f € C5°(R?), there exists a constant C'y,, > 0 such that

1

~ 1
|Cthf(x)|p S Cf,p (X|:E1|§2Ro + ’ ‘pX|I1|>2R0) (X|12|§2R0 + ‘ ‘pX:L“2>2R0) )

where Ry is large enough so that supp(f) C B(0, Rg/2). Then by dominated convergence,
it follows that

lim Ct]\/[bf Cprf in LP(R?).

t1,to—01

One can argue by density to verify that Cr extends to all of LP(R?) and that C, f— Cr fin
LP(R?) for f € LP(R?) as ty,ty — 07 for all 1 < p < oo.
It easily follows that for g € LP(I") where 1 < p < o0

lim C;g =Crg

t1, to—0t

in LP(T"). This completes the proof of the first part of Theorem 6.5, pertaining to Cr.

6.3 Bounds for the partial Cauchy Integral Transform

Like in the last section, we define the parameterized versions of 0{11 and Cf?, for f €
C5°(R?) and z € R?

CP'Myf(z) = lim CP'M,f(x), where

t1,to—0T1

CP' M, f(z) = J Gy (71(71) — 11 (Y1)) Py (v2(72) — 72(y2)) f () b(y)dy,

CPMyf(z) = lim CPM,f(z), where

t1,to—0T1
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CPMS ) = | pu(n(e0) = () (atan) = ralo)) S ()bl

We prove these bounds by applying the single parameter Th theorem from [DJS85]. We
outline the proof that C?' and C?* are bounded on LP(I'). The details can be deciphered
from the previous more complicated biparameter versions. Define for fi, fo : R — C and

X1, T € R

Cr, M fi(21) = tlhiﬂﬂj G, (71(21) — 71 (y1)) fr(yr) v (1) dy,

R

Cr, My fo(2) = Jim, LR e, (V2(22) — Y2(y2)) f2(y2) 72 (y2) dya-

The following propositions are routine given the proofs of Propositions 6.8, 6.10, and 6.11.

Proposition 6.12. Assume I satisfies the hypotheses of Theorem 6.3. For all f € C§(R?)
and x € R?,

CF01)(e) = 5- | 108 ((a(e0) = (00))2) O F o, 2)n

5%)‘2(bf)(93) = % J]R log ((72(932) - 72(192))2) ayzf($1a Yo)dysa.

Also, for all f,g € C*(R?), the pairings <CN§1(bf), bg> and <C~1’12(bf),bg> can be realized as

any of the following absolutely convergent integrals:

(G 0f).bg) = 5- jw log ((72(1) = 7(2))%) Dy f (2, 72)9()blx)dy di

<C Lo > —%J log (v1(#1) = 71(11))?) f (Y1, 22)8a, g(x)b(y1, 2)dyy da,
T JRr3

<Cp2 bf), bg> % J}RS log ((72(1’2) - ’72(y2))2) aygf(%, y2)g(z)b(x)dys dz,

<51€2(bf)= bg> = —% J}RS log ((72(2) = Y2(y2))?) f(21,52) ey g(x)b(21, y2)dys da.

Proposition 6.13. Assume I' satisfies the hypotheses of Theorem 6.3. The operator 5p1

and CNFQ satisfies the single parameter weak boundedness property.

Proposition 6.14. Assume ' satisfies the hypotheses of Theorem 6.3. The operator 51"1
and C~p2 satisfies the cancellation conditions CNFI(%) = CNFI(%) = 5p2 (v%) = CNFQ (v5) = 0.
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Then by the Tb theorem of David-Journé-Semmes [DJS85], it follows that 51"1 and 6}2
are bounded on LP(R). It follows that for f,g € C5°(R)

(@ br),bo)| = o JR

_1J
C2m )R

lim LRQ log ((71(z1) =y (y1))* + 17)

t1—0t

X Oy, f(y1, 22) g () (1) dyy day || v5(22)|das

Vo (w2)|dr

i | g (1) =900 2207 () ol

t1—0t

Va(w2)|dr

S LR LG z2)l[o@yllgC o)l o rydars < [ fllome) 9] o g2y

Therefore CP' is bounded on LP(R2) for 1 < p < oo, and by symmetry C2* is as well. Again
it follows that for f € LP(RR?)

lim CP'M,f =Cr,M,f and lim CPM,f =Cr,M,f in L’(R?),

t1,to—07F t1,to—01

and for g € LP(T")

lim CMg=CPly and lim CPg=CPy in LP(T).

t1,ta—01 t1,to—0t

This completes the proof.

Remark 6.15. The comment after Proposition 6.11 and Proposition 6.14 together prove
Theorem 6.5.
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