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Abstract

We propose a feedback control mechanism for the squeezing of the phononic mode of a mechanical
oscillator. We show how, under appropriate working conditions, a simple adiabatic approach is able
to induce mechanical squeezing. We then go beyond the limitations of such a working point and
demonstrate the stationary squeezing induced by using repeated measurements and reinitialization of
the state of a two-level system ancilla coupled to the oscillator. Our nonadaptive feedback loop offers
interesting possibilities for quantum state engineering and steering in open-system scenarios.

The development of the first generation of devices based on the paradigm of quantum technology requires the
design of feasible schemes for quantum control. A considerable body of work has been recently produced in this
sense [1] and a few significant test-bed demonstration have been reported. Proposals for the fast cooling of the
vibrations of trapped ions and micro mechanical oscillators based on simple controlling schemes [2] have been
put forward recently. Moreover, techniques for the achievement of quantum optimal control have been
extended to the dynamics of quantum many-body systems [3].

However, anumber of hurdles are clearly on the route towards the full grounding of such schemes, ranging
from strong environmental effects to the difficulty of addressing directly fragile quantum systems. Such
challenges are even more important for devices exploiting mesoscopic systems, which display enhanced
sensitivity to environmental decoherence.

An architecture that seems to offer a chance to bypass such hindrances combines simple (effective) spin
systems and vibrating micro- or nanostructures [4] and aims at building hybrid devices of enhanced flexibility
(thanks to the possibility of tuning the mutual coupling strengths amongst the various parts of the system) and
robustness (enforced by the possibility to address the spin subsystem without affecting the oscillator) [5].
Interesting experimental demonstrations have been performed in this sense [6], and recent endeavours have
shown the possibility to engineer mechanisms able to enforce nonclassical features in massive mechanical
systems [7]. Yet, the route towards the consolidation of such methods is still long.

Here we contribute to the aforementioned quest by presenting a scheme that exploits a ‘hybrid” architecture
of the form sketched earlier to achieve large squeezing of a harmonic oscillator via a feedback-assisted protocol
built on repeated projections of an ancillary qubit and its reinitialization . We demonstrate significant steady-
state squeezing in a wide range of operating regimes of the system. In particular, our scheme does not require the
time-gated switching on/off of the qubit-oscillator interaction, and thus relaxes significantly the degree of
control required for the implementation of the protocol that we propose. Our scheme is, in this working
principle, very close to the current design of hybrid configurations for the control of quantum harmonic
oscillators embodied by massive mechanical structures [5, 6] and can be applied to superconducting microstrip
resonators coupled to superconducting qubits, a scenario that might be useful for the achievement of large
squeezing of itinerant microwave radiation [8].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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1. Effective interaction models
We consider the coupling between a qubit and an oscillator regulated by the Hamiltonian model
iy = (0/2)6. + 0n(d%a + 1/2) + g 6, (a + a'), (1)

where we have assumed units such that 7 = 1 throughout the manuscript, @,, is the frequency of the oscillator
(with annihilation and creation operators @ and 4"), @, is the transition frequency between the levels{|g), |e)} of
the qubit, gis the interaction strength, and Gjis the j = x, y, z Pauli matrix. Finally, we have introduced the

slowly varying quadrature operator £, = d + d', whose squeezing properties will be addressed here. This model
can be physically embodied by a few systems, including the case of a mechanical resonator (endowed with a
magnetic tip) coupled to a nitrogen-vacancy centre in diamond exposed to a strong transverse magnetic field [9]
or the interaction between a nanomechanical resonator and a Cooper-pair box [10]. An alternative scenario is
provided by an intracavity atom that interacts with an externally driven cavity mode. Thelatter is, in turn,
coupled through radiation pressure to the vibrational mode of a mechanical cavity end-mirror [11], as is typical
of cavity-optomechanical settings [12]. In this context, equation (1) would be achieved by assuming the bad-
cavity limit and eliminating adiabatically the field mode so to obtain a direct coupling between the atom and the
mechanical mode. All these systems offer wide tunability of the relevant parameters as well as the possibility to
prepare the state of the qubit and read it out accurately. A further configuration would involve a superconducting
quantum interference device in the charge regime coupled with a microstrip resonator [13]. However, here we
focus on mechanical bosonic systems for which the nonclassical features we are interested in remain to be
demonstrated experimentally.

We move to a rotating frame defined by the free qubit Hamiltonian ﬂqubit = w,0, / 2, obtaining

Hy g (1) = wpda + ge® 6,2 + ge™ 6 _%,. (2)

As we consider the large detuning regime § = w, — @,, > g, we can average over the fast rotating terms and
thus perform the adiabatic elimination of the qubit excitations as described in [14]. This procedure yields the
effective Hamiltonian

) ) 1 [+ ¢ U S .
Hes = Hy + —[hT, h] = w,afa + £ 6, @ x1, (3)
Wy Wg,

where we have defined 7, = w,,4'd andh = g6 _x1. An alternative approach to the achievement of the very same

effective model is the use of the Schrieffer-Wolff transformation § = e#z.% ®(@+4") [15], When applied to 71;,
such transformation projects the qubit-oscillator dynamics in the low-lying energy subspace. In fact, by using
the operator-expansion formula truncated to the second order in g/w,, we get

Siu8" ~ 7, + iziwu[&y, 6. )(a+a) + igz%':&y(d - a)
2

+ i—afrz(ﬁ + &T)z +0(g%ad). (4)

By ignoring highly oscillating terms, we obtain the effective model in equation (3). Notice that under the
assumption of strong coupling g < w, between qubit and harmonic oscillator, we shall retain the term
containing X* [ 16]. The presence in such a term of 4> and 42 suggests the possibility to enforce squeezing in the
state of the oscillator. In what follows, we prove such intuition correct and carefully characterize the squeezing
mechanism that we achieve.

2. Stabilizing the evolution

The mechanism embodied by equation (3) would require a precise gating of the interaction between the qubit
and the oscillator to achieve mechanical squeezing. Ideally, though, we would like to bypass such necessity and
enforce nonclassical features on the stationary state of the oscillator. To achieve this, we consider Hamiltonian
H, and complement the interaction at hand with a dissipation channel, whose role is to stabilize the properties of
the oscillator to steady-state conditions. In order to keep our approach as general as possible, we consider the
oscillator interacting with a phononic bath at a finite temperature populated by ny, thermal phonons. The
corresponding evolution is thus described by the master equation

2
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p= —i[ﬂb ,0] + 7<”th + 1)£[&]P + Wlthﬁ[ﬁT]P (5)

with £ [A]lp = Ap Al - (ATA/) + pATA) / 2 atrace-preserving Lindblad super-operator and y the coupling rate
with the bath. To show that our approach is successful in achieving the anticipated squeezing, we consider the
large-detuning limit so that we can use the effective model Fl o instead of H, in equation (5) and carefully choose
the initial preparation of the qubit. The intuition that we aim at exploiting consists of noticing that if the qubit is
prepared in an eigenstate of 6,, we can replace 6, — +1in Heg and thus achieve an effective Hamiltonian that
affects only the harmonic oscillator and is quadratic in the relevant operators, thus ensuring the solvability of the
dynamical equation. In line with such an intuitive approach, in the remainder of this work, we consider the case
of a qubit initially prepared in|e).

Let us now address the solution of the dynamical model explicitly. The quadratic nature of the effective
model discussed earlier and the assumption of an initial Gaussian state of the harmonic oscillator allow us to
make use of the powerful framework of Gaussian states. These are completely specified by their vector of first
moments (f) and covariance matrix (CM) 6 whose elementsare s = Tr [{#}, ix}e ] — 2 Tr [fjo ] Tr [#ro ],

where @ is the density matrix of the oscillator and # = (%, £,) [with X, = i (4" — d)]is the vector of the
oscillator quadrature operators. The master equation can be converted into the following set of dynamical
equations

9,(t) = A(P),
0:6 = A6 + 6A" + D, (6)

where we have introduced the drift matrix A = i6, Her — yI/2 with Heg the Hamiltonian matrix given by

Hoi = # THegr #/2. The matrix D = y 2ny + 1)1, with I being the identity matrix, is responsible for diffusion.
Equations similar to the one for ¢, which is of the well-known differential Lyapunov matrix form, are key for the
study of the conditions for stability in control theory [17] and help address the dynamics of quantum systems
subjected to open-loop and feedback-control mechanisms [18].

Itis physically reasonable and experimentally motivating to assume that the oscillator is initially at thermal
equilibrium with its environment. This is the case, for instance, for micro- and nanomechanical oscillators,
which are typically fabricated on substrates sustaining spurious background phononic modes at a given
temperature [ 19]. Needless to say, other experimentally motivated examples can be identified. We thus consider
the initial thermal state

0(0) = Z% |m) (|

withm = (e#®n — 1)7! the average phonons of the oscillator, 3 the inverse temperature, and |7) an element of
the Fock basis. Under such assumptions, we can analytically solve the differential equation for &, looking in
particular for the steady-state solutions. In the following we set 1 = ny, as the oscillator in the equilibrium with
the bath described by equation (5). One can check that in the presence of dissipation (i.e., fory # 0), the
dynamical system is always stable, as the sufficient condition lim,_, ., (eA*) = 0 is always satisfied. In this case, the
oscillator reaches a steady state characterized by the following values of the variances and covariance of the
quadrature operators

a2 B 8g%w,,
AXf = (1 + Znth) 1 - wa(yz N 40)31) , (7)
i 32¢* + 8gw,p
e = (1 " znth) b 16¢%w,,w, + a)uz(yz + 4(0,%,) ®)
2
Ainin) = —— r{1+ o) ©

T 16¢°%w,, + a)u(y2 + 4a),f1) '

In the previous equations, (1 + 2ny,) is the variance of the quadratures of a harmonic oscillator preparedin a
thermal state and detached from the ancilla (that is, for g= 0). An example of the behaviour of A% and A%}
against time and for ny, = 0 is reported in figure 1. As can be seen by inspecting the first of equation (7), for

Ny = 0 quantum squeezing of the X, quadrature (i.e., A% < 1) isachieved forany ¢ > 0. At nonzero
temperatures, A%, is reduced with respect to the variance of a thermal state, thus showing noise reduction below
the corresponding thermal shot noise. More explicitly,
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Figure 1. Time evolution of the two variances Aﬁlz (blue dashed line) and Aﬁzz (red solid line) in dB-scale for the harmonic oscillator
initialized in the vacuum state withw,, = 0.1 g,y = 0.1 gandw, = 15g.
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Figure 2. Time evolution of the renormalized variance A% in dB-scale. The harmonic oscillator is initialized in a thermal state having
i = ny, thermal phonons; we consider w,, = y = 0.1 g and two different choices of w,: @, = 50 g [panel(a)] andw, = 8 g [panel
(b)]. The solid green curves correspond to the numerical simulations, with different average numbers of thermal phonons (from

bottom to top: ny, = 0.2, 0.3, 0.4, 3.0), while the dashed blue curves correspond to the effective evolution governed by Heg (which is
insensitive tony,).

A%E 8¢ @,

. <1 (10)
16¢°%w,, + w, (y2 + 4w,f,)

Similar to what is found for mechanical systems at the quantum level (cf [20, 21]), we will refer to such effect as
thermomechanical squeezing. Quite remarkably, such effect does not depend on the actual value of gand is

achieved for any non-null value of such parameter, thus showing the inherent efficiency of the protocol
proposed herein.

3. Numerical simulation of the ideal model

As was made clear throughout its derivation, equation (7) depends crucially on the validity of the performed
adiabatic elimination and the ability to keep the qubit in the state it has been initially prepared into |e)
throughout the evolution. Such a possibility is not certain as far as model 4, is concerned, although we expect
that for large values of § such a condition is met with good accuracy. The scope of our analysis herein is to test
such expectations in a measurable way.

We thus proceed to fully simulate the evolution guided by 74, and compare the corresponding results for the
squeezing of the harmonic oscillator to the analogous quantity achieved using equation (7). As shown in figure 2,
itis indeed the case that a large value of § results in values of A% 3 very close to the degree of squeezing achieved
via the true dynamics. Quantitatively, we find a degree of squeezing of about 1 dB for gt > 50 [cf figure 2(a)].
While the agreement between the two predictions is perfect as far asny, = 0, the increasingly thermal nature of

the initial state of the harmonic oscillator results in only very small differences in the long-time values of Ax g (we
remind that T:Ieff is insensitive to ny,).
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Somewhat expectedly, by relaxing the assumption of large detuning, we significantly worsen the
performance of the protocol, and considerable deviations from the ideal results are found. Indeed, moderate or
small values of 6 favour transitions between the two logical states of the qubit, thus making the basic assumption
on top of which our effective scheme is built (the qubit should remain in state |e) throughout the whole
evolution) no longer tenable. As a consequence, a d-dependent threshold value of gt exists starting from which
we do not observe any squeezing. Unfortunately, this holds also for the case reported in figure 2. Therefore, in
order to enforce squeezing in the steady state of the oscillator, we need to implement some additional form of
control. The description of such mechanism is the focus of the next section.

4. Feedback-loop mechanism for steady-state squeezing

In order to effectively force the qubit to remain in its initial state, we rely on the implementation of a feedback-
loop scheme based on the repeated measurement of the qubit’s energy and its conditional projection on |e).
More specifically, our feedback-assisted scheme can be described as follows:

o Wecall p (t;) the state of the qubit-oscillator system at a given time o, and @ 5, the dissipative map [with the
Hamiltonian part given by equation (3)] describing its evolution within an interval At.

e Attimet; = fy + At, we measure the qubitin the{|g), |e)} basis.

o Ifthe outcome of the projection reveals a transition of the qubit to its logical ground state |g), the spin-flip
operation 6, is applied on it. Otherwise, the system is evolved in time for another interval A¢.

The average state of the system that arises from the application of the scheme noted earlier reads
p(n) =pe(n) ®le)el + po (1) ® o 18)(8] 6 (11)

where gy (1) = (k| @4:p (t9)]k) /p, is the conditional state of the oscillator when the qubit is found in state

|k) (k = g, e) and py is the corresponding detection probability. The protocol described earlier is then iterative
until the oscillator reaches a steady state at which the variance of the x| quadrature stabilizes around a dynamics-
dependent value. A scheme close in spirit to ours has been implemented to prepare a microwave radiation field
in a Fock state [22].

A few comments are in order. First, it should be clear that the choice of At is important for the success of the
scheme. Its value results from the delicate trade-off between the intuition necessity to perform the qubit
projective measurement as often as possible (so to maintain ), ~ 1and thus mimic faithfully the ideal behaviour
that would arise from H) and the need to wait for enough time to let the squeezing build up. The latter request
is due to the fact that the effective Hamiltonian Heg results from a second-order process and thus is ‘slow’ with
respect to the natural timescales of the system.

Let us now characterize the performance of the protocol by first addressing the case of a zero-temperature
bath (i.e., ny, = 0). In figure 3(a) we report the value of the variance A% 2 of quadrature %, at steady state, against
the time interval A¢. Clearly, the degree of squeezing is a nonmonotonic function of At that results in an
oscillating behaviour. The minima of such function correspond to At = 2pzn/w, (p € Z),i.e., multiples of the
time taken by the qubit to make a transition between its states. The choice of p = 1 allows for the achievement of
the largest degree of squeezing as a compromise between the coherent protocol and the dissipative mechanism.
In the rest of our study, we will assume At = 27/, even for the cases of ny, # 0.

Having determined the optimal size of the time interval for the evolution, we now establish a performance
benchmark by comparing the ideal results that would arise from the dynamical equation (6) to the results
obtained through the numerical simulations based on ; and those arising from the implementation of the
feedback-loop protocol optimized as discussed earlier. In figure 3(b) we show that the feedback-assisted
protocol reproduces closely the evolution induced by the effective model in equation (3), resulting in a degree of
squeezing at the steady state that is comparable to the value achieved via equation (7). As expected, no steady-
state squeezing is achieved if no feedback is implemented. We thus conclude that the mechanism implemented
throughout the feedback-assisted protocol is indeed able to closely resemble the desired effective squeezing
Hamiltonian, at least for the case of a zero-temperature bath.

Before moving to the assessment of the case with ny, # 0, we aim at providing further insight into the
phenomenology of the squeezing process implemented through our qubit-assisted protocol. In order to do so,
in figure 4 we show snapshots of the evolution of the Wigner function
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(a) (b)
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Figure 3. (a): Steady-state variance A%Z obtained via the feedback protocol, against the corresponding time-step At written as a
fraction of the two-level system period T' = 27/w,. The points correspondingto At = T, 2 T are highlighted as they allow for optimal
squeezing, (b): Variance A% in dB-scale against gt. The numerical simulation of the optimized feedback protocol (purple curve)
agrees with the analytical solution described by the effective Hamiltonian Heg (blue dashed curve). The green curve, showing no
steady-state squeezing, illustrates the results of the numerical simulation without feedback. In both plots we have used n, = 0,

w, =8g,w, =y=0.1g.

(b)

Figure 4. Snapshots of the evolution of the Wigner function corresponding to the state of the harmonic oscillator for ny, = 0,
@, =8¢,w, =y=0.1g,andgt=0 [panel(a)],7 [(b)],and 70 [(c)].

W(x, y, t) = % / Tr [ p (1) D () Je 00 d% (12)

adt—a*a ;

associated with the state of the harmonic oscillator. Here D (a) = e is the displacement operator of
amplitudea = a, + ia;. As gt grows, squeezing clearly builds up starting from the initial vacuum state, as seen
from the evident anisotropy of the Wigner function. To illustrate such effect, we have picked up a few significant
instants of time. Panel(b) shows the Wigner function corresponding to the first minimum displayed in the
purple curve in figure 3(b). Panel(c) is for gt = 70, when the dynamical degree of squeezing is the same as at the
steady state. In figure 5 we compare the purity of the oscillator when the feedback protocol is implemented with
what is achieved in the absence of it. Clearly, the steady state of the oscillator has a higher purity when its
evolution is assisted by the reinitialised two-level system. Therefore, this analysis reinforces the idea that the
feedback-assisted protocol that we have devised progressively projects the state of the harmonic oscillator onto a
high-purity squeezed state.

Finally, we assess the effects that the bath temperature has on the squeezing performance. As in the zero-
temperature case, we observe that the feedback-assisted scheme is able to obtain results qualitatively similar to
those achieved through equation (2), even for moderate values of the detuning, where the nonassisted protocol
fails. In particular, the behaviour of the renormalized variance A% 3 is only slightly affected by the temperature of
the bath, which is evidence of the similarity of performance between the feedback-assisted scheme and the ideal
one, which is indeed independent of ny,. Figure 6(a) shows de facto insensitivity to the bath temperature for any
value of ny, < 0.5 and only small deviations from the zero-temperature case for larger values of such parameter.
Squeezing below the vacuum limit, on the other hand, can be achieved only for ny, < 0.3, as observed in
figure 6(b).
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Figure 5. We plot the purity of the state of the oscillator against the dimensionless interaction time g¢. The green (purple) line is for the
dynamics of the oscillator without (with) feedback-assisted protocol. Other parameters are the same as in figure 4.
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Figure 6. (a): Time evolution of the renormalized variance A% in dB-scale when the feedback protocol is implemented and with

w, =y = 0.1 gandw, = 8 g (solid lines). The oscillator is initialized in a thermal state with an average number of phonons equal to
the one of the corresponding thermal bath. From bottom to top (considering the steady-state values): ny = {0.2, 0.3, 0.4, 1, 3, 5}.
Notice that the curves corresponding to the three lower values of 114, are almost superimposed. The dashed blue line shows the time
evolution of A%} for the effective Hamiltonian (its value does not depend on the number of thermal phonons 714,). (b): Time evolution
of the variance A%, in dB-scale when the feedback protocol is implemented, for the same values of the parameters characterizing the
system. From bottom to top: ny, = {0.2, 0.3, 0.4, 1, 3, 5}.

5. Analysis of the qubit survival probability

Aswe pointed out earlier, without the feedback loop, no steady-state squeezing can be achieved. Following the
discussions made earlier on the working principles of our protocol, a significant figure of merit for the
performance of the squeezing mechanism is embodied by the excited-state survival probability p, of the qubit.
This is plotted in figure 7 for four different values of ny,. The figure reveals that, with our feedback-assisted
protocol, the probability of excitation of the qubit is always kept very close to 1, whereas it quickly fades when the
protocol is not used. Upon inspection of equation (3), we realize that for a qubit prepared in|g), the harmonic
oscillator would be effectively squeezed in a direction opposite to that corresponding to the case of its
initialization in|e). Therefore, if the qubit is not maintained in its excited state, squeezing along opposite
directions in phase space is performed, leading to a steady state with large fluctuations in the quadratures. This
ultimately leads to the washing out of the effective mechanism.

More quantitatively, while for small values of ny, (i.e., in cases such that quantum squeezing is expected at
steady state), the qubit survival probability is kept by the feedback protocol at values larger than 95%, a thermal
bath enforces lower values of such probability. As a consequence, no quantum squeezing is obtained. However,
the difference with the case where no feedback is implemented is evident, thus leaving room for
thermomechanical squeezing.

6. Conclusions

We have proposed a feedback-assisted protocol for the steady-state squeezing of a harmonic oscillator. The
protocol requires only a limited degree of control over the system, and is thus close to the current experimental
state of the art. Contrary to procedures based on the time-controlled interaction between the qubit and the

7
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Figure 7. Probability p, against the dimensionless time gt for initial thermal states of the oscillator and corresponding bath with
nn = {0, 0.2, 1, 3} [panels (a), (b), (c), and (d), respectively]. Other parameters have the same values as in figure 6. The numerical
simulation with repeated measurements (blue curve) keeps p, at large values at the steady state, thus enabling the squeezing of the
oscillator. Conversely, the purple curve (numerical simulation without repeated measurements) shows a decreasing p,. The
corresponding steady state exhibits no squeezing.

oscillator, our proposal is resource efficient, as it is based on an always-on interaction that does not need to be
tuned. Itis interesting to compare the performance of our scheme to the case of parametric driving and driven
dissipative architectures. The steady state of parametrically driven oscillators can be squeezed by, at most, 3 dB
before entering self-oscillatory regimes [23]. When compared to such limit, our scheme is found to perform very
well, achieving a steady-state reduction of Aﬁlz ~ 2 dB. Atshort evolution times, we can achieve values
surpassing this performance and comparing well with schemes based on amplitude modulation of the optical
driving of mechanical devices [24]. The combination of continuous quantum measurements and closed-loop
feedback operated on the oscillator [25], or the combination of detuned parametric driving and oscillator
position measurements [26], can surpass the 3 dB steady-state bound (and thus beat our scheme). However, this
is achieved at the price of nearly ideal (quantum nondemolition) measurements and challenging feedback
mechanisms on the oscillator. Squeezing values well beyond the 3- dB limit can be achieved dynamically using
multi tone drivings and clever reservoir engineering [27], or squeezed drivings [28]. Such proposals require the
engineering of the environmental system, and it remains to be seen whether replacing this pre-requisite with the
use of the feedback mechanism discussed here would actually ease the achievement of mechanical squeezing.

While this point is best addressed when explicitly designing an experimental setup, and is thus beyond the
scope of the present proposal, we would remark that our scheme can be applied to a range of experimental
situations, leaving at the same time room for interesting extensions addressing the area of dissipative quantum-
state engineering [29] of harmonic motion, where one could achieve qubit-assisted squeezing in the state of the
oscillator.
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