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Abstract

A model-dependent amplitude analysis of B± → DK± with D → K0
Sπ+π− decays is performed using 

proton–proton collision data, corresponding to an integrated luminosity of 1 fb−1, recorded by LHCb at 
a centre-of-mass energy of 7 TeV in 2011. Values of the CP violation observables x± and y±, which are 
sensitive to the CKM angle γ, are measured to be

x− = +0.027 ± 0.044+0.010
−0.008 ± 0.001,

y− = +0.013 ± 0.048+0.009
−0.007 ± 0.003,

x+ = −0.084 ± 0.045 ± 0.009 ± 0.005,

y+ = −0.032 ± 0.048+0.010
−0.009 ± 0.008,

where the first uncertainty is statistical, the second systematic and the third arises from the uncertainty of 
the D → K0

Sπ+π− amplitude model. The value of γ is determined to be (84+49
−42)◦, including all sources 

of uncertainty. Neutral D meson mixing is found to have negligible effect.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The CKM phase γ (γ ≡ arg[−VudV ∗
ub/VcdV ∗

cb], also known as φ3) is the angle of the CKM 
unitarity triangle that is least constrained by direct measurements. The precise determination of 
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γ is an important aim of current flavour physics experiments. It can be measured directly in tree-
level processes, for example in B± → DK± decays where D is a superposition of the flavour 
eigenstates D0 and �D0 decaying into the same final state. Sensitivity to γ arises from the inter-
ference between b → u and b → c quark transitions. Since B± → DK± decays are expected to 
be insensitive to physics processes beyond the Standard Model (SM), this measurement provides 
a reference value against which other observables, potentially affected by physics beyond the 
SM, can be compared.

The determination of γ (using B± → DK± decays) from an amplitude analysis of the D
meson decay to the three-body quasi-self-conjugate K0

Sπ+π− final state was first proposed in 
Refs. [1,2]. The method requires knowledge of the D → K0

Sπ+π− decay amplitude across the 
phase space and, in particular, its strong phase variation. The model-dependent approach, as 
used in Refs. [3–8], implements a model to describe the D decay amplitude over the phase 
space. This unbinned method allows for full exploitation of the statistical power of the data. 
A model-independent strategy, employed by the LHCb [9] and Belle [10] Collaborations, uses 
CLEO measurements [11] of the D decay strong phase difference in bins across the phase space.

Neglecting the effects of charm mixing, the amplitude for B± → D(→ K0
Sπ+π−)K± decays 

can be written as a superposition of Cabibbo favoured and suppressed contributions,

AB− ∼ Af + rBei(δB−γ )Āf ,

AB+ ∼ Āf + rBei(δB+γ )Af , (1)

where rB is the magnitude of the ratio of the interfering B± decay amplitudes, δB is the strong 
phase difference between them, and γ is the CP-violating weak phase. The amplitudes of the D0

and �D0 mesons decaying into the common final state f , Af ≡ 〈f |H|D0〉 and Āf ≡ 〈f |H|�D0〉, 
respectively, depend on two squared invariant masses of pairs of the three final state particles, 
chosen to be m2+ ≡ m2

K0
Sπ+ and m2− ≡ m2

K0
Sπ− . Assuming that no direct CP violation exists in 

the D meson decay, the amplitudes Af and Āf are related by Āf (m2+, m2−) = Af (m2−, m2+). 
A direct determination of rB , δB and γ can lead to bias [3], and hence the Cartesian CP violation 
observables, x± = rB cos (δB ± γ ) and y± = rB sin (δB ± γ ), are used, where the “+” and “–” 
indices correspond to B+ and B− decays, respectively.

This paper reports measurements of (x±, y±) made using B± → D(→ K0
Sπ+π−)K± decays 

selected from pp collision data, corresponding to an integrated luminosity of 1 fb−1, recorded 
by LHCb at a centre-of-mass energy of 7 TeV in 2011. The data set is identical to that used in 
Ref. [9]. The measured values of (x±, y±) place constraints on the CKM angle γ .

2. The LHCb detector

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector in-
cludes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding 
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet 
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift 
tubes placed downstream of the magnet. The combined tracking system provides a momentum 
measurement with a relative uncertainty that varies from 0.4% at low momentum, p, to 0.6% at 
100 GeV/c, and an impact parameter measurement with a resolution of 20 µm for charged parti-
cles with large transverse momentum, pT. Different types of charged hadrons are distinguished 
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using information from two ring-imaging Cherenkov detectors [13], providing particle identifi-
cation (PID) information. Photon, electron and hadron candidates are identified by a calorimeter 
system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter 
and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of 
iron and multiwire proportional chambers.

The trigger consists of a hardware stage, based on information from the calorimeter and muon 
systems, followed by a software stage, which applies a full event reconstruction. The software 
trigger requires a two-, three- or four-track secondary vertex with a large sum pT of the tracks 
and a significant displacement from any primary pp interaction vertex (PV). At least one track 
should also have large pT and χ2

IP with respect to any primary interaction, where χ2
IP is defined as 

the difference in χ2 of a given PV reconstructed with and without the considered track. A multi-
variate algorithm [14] is used to identify secondary vertices consistent with decays of b hadrons.

Large samples of simulated B± → D(→ K0
Sπ+π−)K± and B± → D(→ K0

Sπ+π−)π± de-
cays are used in this study, along with simulated samples of various background decays. In the 
simulation, pp collisions are generated using PYTHIA 6.4 [15] with a specific LHCb config-
uration [16]. Decays of hadronic particles are described by EVTGEN [17], in which final state 
radiation is generated using PHOTOS [18]. The interaction of the generated particles with the 
detector and its response are implemented using the GEANT4 toolkit [19,20] as described in 
Ref. [21].

3. Candidate selection and sources of background

The criteria used to select B± → D(→ K0
Sπ+π−)K± and B± → D(→ K0

Sπ+π−)π± can-
didate decays from the data are described below. The B± → D(→ K0

Sπ+π−)π± decays are 
used to measure the acceptance over phase space, as they have almost identical topologies to
B± → D(→ K0

Sπ+π−)K± decays, but a much higher branching fraction [22]. Apart from the 
B± candidate invariant mass range, the selection requirements are identical to those used in 
Ref. [9] and are summarised here for completeness.

Candidate K0
S mesons are reconstructed from two oppositely charged well-measured tracks; 

those with tracks reconstructed in the silicon vertex detector are known as long candidates and 
those with tracks that cannot be formed in the vertex detector are known as downstream can-
didates. A requirement of χ2

IP greater than 16 (4) with respect to the PV is made for the long
(downstream) pion tracks. The PV of each candidate B± meson decay is chosen to be the one 
yielding the minimum χ2

IP. To reduce background from random track combinations, the cosine of 
the angle between the momentum direction of the K0

S meson candidate and the direction vector 
from the PV to its decay vertex is required to be greater than 0.99.

The K0
S candidates are combined with two oppositely charged tracks to reconstruct D meson 

candidates; the tracks combined with a long (downstream) candidate must have χ2
IP greater than 

9 (16) with respect to the PV. For all D meson candidates, requirements of χ2
IP greater than 9 with 

respect to the PV and cosine of the angle between the momentum and direction vectors greater 
than 0.99 are made. It is required that the vertex separation χ2 between the reconstructed D and 
K0

S meson decay vertices is greater than 100, where the vertex separation χ2 is defined as the 
change in χ2 of a vertex which is reconstructed including the particles originally contributing to 
the other vertex. The reconstructed D meson candidate invariant mass is required to be within 
±25 MeV/c2 around the known value [22]. The K0

S candidate invariant mass must be within 
±15 MeV/c2 around the known value [22] after a refit to constrain the D meson mass [23].
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The B± meson candidates are reconstructed from the combination of a D meson candidate 
with a pion or kaon directly from the B± vertex, hereafter called the “bachelor” track. The bach-
elor track is required to have χ2

IP greater than 25 with respect to the PV. To separate B± → DK±
and B± → Dπ± decays, good discrimination between pions and kaons is required using PID 
information. The χ2

IP of the reconstructed B± candidate with respect to the PV is required to be 
less than 9, and for long (downstream) candidates the cosine of the angle between its momentum 
and direction vectors must be greater than 0.9999 (0.99995). The B± vertex separation χ2 with 
respect to the PV must be greater than 169. In addition, the reconstructed D meson decay vertex 
is required to have a larger longitudinal displacement from the PV than the B± decay vertex.

Each selected candidate decay is refitted with additional constraints on the K0
S and D meson 

masses and on the pointing of the B momentum to the PV, so that improved resolution in the 
phase space of the D decay is obtained. A refit quality requirement of χ2 per degree of freedom 
less than 5 is made. If more than one selected candidate is found to originate from the same pp

collision event, the candidate with the lowest value of refit χ2 per degree of freedom is retained.
Several sources of potential background are studied using simulation. These include two cat-

egories of combinatorial background: a real D → K0
Sπ+π− decay combined with a random 

bachelor track (random Dh), or a D → K0
Sπ+π− candidate reconstructed with at least one 

random final state track (combinatorial D). Cross-feed background arises from B± → D(→
K0

Sπ+π−)π± decays misidentified as B± → D(→ K0
Sπ+π−)K± decays (or vice versa), and 

contributes a large fraction of the selected B± → D(→ K0
Sπ+π−)K± candidates. Partially re-

constructed candidates from decay modes containing a D → K0
Sπ+π− decay, such as B± →

D∗h± (where D∗ represents D∗0 or �D∗0 and h± represents a K± or π±), B(s) → DK∗ (where 
B(s) represents B0

(s) or �B0
(s) and K∗ represents K∗0 or �K∗0) and B± → Dρ± decays, are also ex-

pected to contribute. The contributions from charmless B± decays, B± → D(→ K0
SK±π∓)h±

decays, B± → D(→ K0
SK+K−)h± decays and B± → D(→ π+π−h+h−)h± decays are found 

to be negligible.

4. Analysis strategy

The analysis is performed in two distinct parts. The fractions of signal and background are 
determined with a phase-space integrated fit to the invariant mass distributions, mDh, of selected 
B± → D(→ K0

Sπ+π−)K± and B± → D(→ K0
Sπ+π−)π± candidates, shown in Fig. 1. This 

is followed by a fit to determine the CP violation observables (x±, y±) and the variation in 
efficiency over the phase space of the D → K0

Sπ+π− decay. The relative signal and background 
yields and the parameters of the B± invariant mass probability distribution functions (PDFs) are 
fixed to the values determined in the first stage.

4.1. Invariant mass fit of B± candidates

An unbinned extended maximum likelihood fit to the invariant mass distributions of the 
B± candidates determines the signal and background fractions. The samples of B± → D(→
K0

Sπ+π−)K± and B± → D(→ K0
Sπ+π−)π± candidates are fitted simultaneously in an invari-

ant mass range of 4779 MeV/c2 < mDh < 5779 MeV/c2. The long and downstream candidates 
are fitted separately.

For the fit to the B± → D(→ K0
Sπ+π−)K± invariant mass distribution, the total PDF is com-

posed of a signal and several background components. The signal (B± → DK±) is described by 
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Fig. 1. Invariant mass distributions for (a) B± → D(→ K0
Sπ+π−)K± long, (b) B± → D(→ K0

Sπ+π−)π± long, 
(c) B± → D(→ K0

Sπ+π−)K± downstream and (d) B± → D(→ K0
Sπ+π−)π± downstream candidates. The fit 

results, including signal and background components, are superimposed. The lower plots are normalised residual dis-
tributions.

the sum of a Crystal Ball [24] and a Gaussian function with common means. The Crystal Ball 
tail parameters, the width of the Gaussian function and the relative fractions of both functions 
are fixed to values obtained from simulated data. An exponential function describes the two cat-
egories of combinatorial background candidates. Cross-feed candidates are characterised by a 
Crystal Ball function with tails on both upper and lower sides. The mean and tail parameters of 
the function are fixed to results from simulation. Partially reconstructed background contributions 
are described by various functions with parameters fixed to values obtained from simulation. 
Both B and B± decays that give rise to candidates with similar invariant mass distributions 
are described by a single fit component: the candidates from B± → D∗K± and B → D∗∓K±
decays are both described using the sum of two pairs of Gaussian functions, where the Gaus-
sian functions in each pair have a common mean and independent widths. For the combined 
background contribution from partially reconstructed B± → D∗π± and B → D∗∓π± decays, 
labelled D∗π , the sum of two Crystal Ball functions, each with tails on both upper and lower 
sides, is used. A background composed of candidates from B → Dρ0 and B± → Dρ± decays, 
labelled Dρ, is described by the sum of a Gaussian and an exponential function. A Gaussian 
function is included for background candidates partially reconstructed from B → D∗∓ρ± and 
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B± → D∗ρ± decays. The background contribution from partially reconstructed B → DK∗ de-
cays is modelled by the convolution of an ARGUS function [25] with a Gaussian function; the 
same convolution of functions is used for candidates reconstructed from Bs → DK∗ decays.

For the fit to the B± → D(→ K0
Sπ+π−)π± mass distribution, the same PDFs are used for 

signal, combinatorial and cross-feed background contributions as for the fit to the B± → D(→
K0

Sπ+π−)K± distribution. The analogous function parameters are fixed to the results of fits to 
simulation. Again, functions are also included for partially reconstructed background candidates, 
with all parameters fixed to values obtained from simulation. The sum of two pairs of Gaussian 
functions, labelled D∗π , is used for the background from partially reconstructed B± → D∗π±
and B → D∗∓π± decays. Partially reconstructed B → Dρ0 and B± → Dρ± decays are de-
scribed by the convolution of an ARGUS function with a Gaussian function. A Gaussian function 
is used to describe background from partially reconstructed B → D∗∓ρ± and B± → D∗ρ± de-
cays.

In the simultaneous fit, the mean values of the signal functions in B± → DK± and B± →
Dπ± are constrained to a common value.

The yield of the cross-feed component in the fit to the B± → DK± (B± → Dπ±) distribution 
is fixed with respect to the signal yield in the B± → Dπ± (B± → DK±) distribution, using 
knowledge of the efficiency and misidentification rate of the PID criterion separating the B± →
DK± and B± → Dπ± candidate samples. Large calibration samples of kaons and pions from 
D∗± → D(→ K∓π±)π± decays, kinematically selected from data, are reweighted to match the 
kinematic properties of the bachelor tracks in the B± → Dπ± long and downstream candidate 
samples and are then used to determine the relevant efficiencies. The remaining background 
yields are free to vary in the fit, as are the remaining PDF parameters and the ratio of the signal 
yields.

Since it is not possible to separate the two components of combinatorial background with the 
fit to the B± invariant mass distributions, the yield of combinatorial D background candidates 
is estimated from data using B± → Dh± decays, where the D is reconstructed to decay to two 
same-sign pions (D → K0

Sπ+π+ and charge conjugate). These “wrong-sign” decays are subject 
to the selection criteria described in Section 3.

4.2. CP asymmetry fit

The distributions in the D → K0
Sπ+π− decay phase space for positively and negatively 

charged B± → D(→ K0
Sπ+π−)K± and B± → D(→ K0

Sπ+π−)π± candidate decays are 
fitted simultaneously using an unbinned maximum likelihood fit to determine the CP vio-
lation observables (x±, y±) and the variation in efficiency over the phase space. Although 
B± → D(→ K0

Sπ+π−)π± decays are expected to exhibit interference analogous to B± →
D(→ K0

Sπ+π−)K± decays and therefore be sensitive to γ , the magnitude of the ratio of in-
terfering D decay amplitudes, rB±→Dπ± , is expected to be an order of magnitude smaller than 
rB for B± → D(→ K0

Sπ+π−)K± decays. It is therefore possible, to a good approximation, to 
neglect the suppressed contribution to the B± → D(→ K0

Sπ+π−)π± decay amplitude and use 
B± → D(→ K0

Sπ+π−)π± decays to obtain the efficiency variation as a function of m2+ and 
m2−, which is modelled as a second-order polynomial function. This assumption is considered as 
a source of systematic uncertainty.

The candidates are divided into eight subsamples, according to K0
S type (long or downstream), 

the charge of the bachelor track, and whether the candidate is identified as a B± → DK± or 
B± → Dπ± decay. The negative logarithm of the likelihood,
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− lnL = −
∑

s

∑
k

ln

(∑
c

Nc · pmass
cs

(
(mDh)k; �P mass

cs

) · pmodel
cs

((
m2+,m2−

)
k
; �P model

cs

))
,

(2)

is minimised; in this expression, c indexes the candidate categories (signal or background type), 
s indexes the subsample, and k identifies each decay candidate. Nc is the candidate yield for cat-
egory c, and pmass

cs is the invariant mass PDF, pmodel
cs is the normalised D decay model described 

below, �P mass
cs are the mass PDF parameters, and �P model

cs are the D decay model parameters for 
category c and subsample s. It should be noted that (x±, y±) are included in the parameter list 
of the B± → DK± signal category and the B± → Dπ± cross-feed category, which arises from 
misidentification of B± → DK± decays. The normalisation of pmodel

cs depends on the efficiency 
variation over the phase space. The yields and parameters of the mass PDFs are fixed to the 
results obtained in the B± invariant mass fit. To avoid inadvertent experimenter’s bias in the de-
termination of the CP violation parameters, the values of the observables (x±, y±) are masked 
until the measurement technique has been finalised.

The model describing the amplitude of the D → K0
Sπ+π− decay over the phase space, 

Af (m2+, m2−), is identical to that used by the BaBar Collaboration in Refs. [5,26]. It incorpo-
rates an isobar model for P-wave (which includes ρ(770), ω(782), Cabibbo-allowed and doubly 
Cabibbo-suppressed K∗(892) and K∗(1680)) and D-wave (including f2(1270) and K∗

2 (1430)) 
contributions. A generalised LASS amplitude for the Kπ S-wave contribution (K∗

0 (1430)) and a 
K-matrix with P-vector approach for the ππ S-wave contribution are also included in the model. 
All parameters of the model are fixed in the fit to the values determined in Ref. [26].1

The fit is performed using refitted candidates with a B± invariant mass lying within 
±50 MeV/c2 around the known value [22], corresponding to an invariant mass region of approxi-
mately ±3σ around the signal peak. Although the full description of the mass PDF provides valu-
able constraints for the background within the mass window, only those backgrounds with signifi-
cant contributions are included in the CP asymmetry fit. The yields of the signal and incorporated 
background contributions are given in Table 1. For the B± → DK± subsamples, the cross-feed, 
combinatorial D, random Dh, D∗π , Dρ and Bs → DK∗ background categories are included 
in the fit. The cross-feed contribution is assumed to be distributed in the phase space of the 
D → K0

Sπ+π− decay according to the D0 → K0
Sπ+π− (�D0 → K0

Sπ+π−) decay model in the 
B− → DK− (B+ → DK+) case. Combinatorial D background candidates are expected to be 
distributed non-resonantly over the phase space. The distribution of random Dh candidates is as-
sumed to be an incoherent sum of the D0 → K0

Sπ+π− and �D0 → K0
Sπ+π− decay models. Both 

B± → D∗π± and B → D∗∓π± decays are represented by the inclusion of a D0 → K0
Sπ+π−

(�D0 → K0
Sπ+π−) decay model in the B− → DK− (B+ → DK+) case. The Dρ component 

of the invariant mass fit is composed of candidates from B → Dρ0 and B± → Dρ± decays; the 
distribution of candidates from B → Dρ0 over the D → K0

Sπ+π− decay phase space is assumed 
to be an incoherent sum of the D0 → K0

Sπ+π− and �D0 → K0
Sπ+π− decay models, whereas 

the candidates from B± → Dρ± are accounted for with a D0 → K0
Sπ+π− (�D0 → K0

Sπ+π−) 
decay model for the B− → DK− (B+ → DK+) case. Background Bs → DK∗ candidates are 

1 The model implemented by BaBar [26] differs from the formulation described therein. One of the two Blatt–
Weisskopf coefficients was set to unity, and the imaginary part of the denominator of the Gounaris–Sakurai propagator 
used the mass of the resonant pair, instead of the mass associated with the resonance. The model used herein replicates 
these features without modification. It has been verified that changing the model to use an additional centrifugal barrier 
term and a modified Gounaris–Sakurai propagator has a negligible effect on the measurements.
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Table 1
Signal and background yields for components contributing to the CP asymmetry fit, in the region ±50 MeV/c2 around 
the known B± meson mass.

Fit component B± → DK±, long B± → DK±, downstream

Signal 217 ± 17 420 ± 27

Backgrounds

Cross-feed (from B± → Dπ±) 35.9 ± 0.7 76 ± 1

Combinatorial D 5+7
−3 31+11

−9
Random Dh 28+5

−8 45+18
−19

D∗π 0.36 ± 0.08 6 ± 7

Dρ 2.2 ± 0.5 4 ± 11

Bs → DK∗ 0.9 ± 0.2 4 ± 2

Fit component B± → Dπ±, long B± → Dπ±, downstream

Signal 2906 ± 56 5960 ± 80

Backgrounds

Cross-feed (from B± → DK±) 27 ± 2 53 ± 3

Combinatorial D 15+19
−10 99+36

−27
Random Dh 76+15

−22 146+33
−41

D∗π 6.6 ± 0.4 22.0 ± 0.7

assumed to be distributed according to the �D0 → K0
Sπ+π− (D0 → K0

Sπ+π−) decay model 
in the B− → DK− (B+ → DK+) case. For the B± → Dπ± subsamples, contributions from 
cross-feed, combinatorial D, random Dh, and D∗π background types are included in the fit. 
The cross-feed candidates in B± → Dπ± arise from misidentification of the bachelor track of 
B± → DK± decays; the candidates are assumed to be distributed accordingly. The remaining 
combinatorial and D∗π background contributions are assumed to be distributed as described 
above.

Figs. 2–5 show the B± → D(→ K0
Sπ+π−)π± and B± → D(→ K0

Sπ+π−)K± candidate 
Dalitz plot distributions and their projections, with the results of the fit superimposed. The re-
sulting measured values of (x±, y±) are

x− = +0.027 ± 0.044,

y− = +0.013 ± 0.048,

x+ = −0.084 ± 0.045,

y+ = −0.032 ± 0.048,

where the uncertainties are statistical only. The corresponding likelihood contours are shown in 
Fig. 6.

5. Systematic uncertainties

Systematic uncertainties on the measured values of (x±, y±) arising from various sources are 
considered and summarised in Table 2. Unless otherwise stated, for each source considered the 
CP asymmetry fit is repeated with the efficiency parameters and (x±, y±) allowed to vary, as 
in the nominal fit to data. The resulting differences in the values of (x±, y±) from the nominal 
results are taken as systematic uncertainties.
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Fig. 2. Dalitz plot and its projections, with fit result superimposed, for B− → Dπ− candidates; m2± ≡ m2
K0

Sπ± and 

m2
0 ≡ m2

π+π− . The lower parts of the figures are normalised residual distributions.

The fractions of signal and background are estimated with a fit to the B± candidate invariant 
mass distributions. To find the systematic uncertainties in (x±, y±) arising from the uncertainties 
in these fractions, the shapes and yields of the individual mass PDF contributions are modified 
and the fit repeated. The largest changes in (x±, y±) arise from modifications to the cross-feed 
and total combinatorial background components. The uncertainties are therefore evaluated by 
repeating the CP asymmetry fit with the cross-feed and total combinatorial background yields 
independently varied by their statistical uncertainties.

The yield of combinatorial D background is estimated using wrong-sign candidates selected 
from data. The systematic uncertainties arising from these estimates are found by repeating the 
CP asymmetry fit to data with the yields varied by the statistical uncertainties shown in Table 1. 
Corresponding variations in the random Dh background yield are made, so that the total combi-
natorial background yield, obtained from the B± invariant mass fit, is unchanged.

In the B± invariant mass fit, a component PDF for partially reconstructed B± → D(→
K0

Sπ+π−)μ±ν background is not included. The systematic uncertainty arising from this omis-
sion is found by repeating the CP asymmetry fit to data with a contribution from this background. 
The upper limits on the yields and the mass functions are found by applying muon identification 
requirements to the bachelor tracks of data candidates, and are kept constant in the fit.
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Fig. 3. Dalitz plot and its projections, with fit result superimposed, for B+ → Dπ+ candidates; m2± ≡ m2
K0

Sπ± and 

m2
0 ≡ m2

π+π− . The lower parts of the figures are normalised residual distributions.

In the CP asymmetry fit, the background fractions obtained from the invariant mass fit to B±
candidates are used for both B+ and B− candidates. This neglects any detection asymmetries 
for the charged bachelor tracks. The CP asymmetry fit is repeated with the central value of 
the charged kaon asymmetry, (−1.2 ± 0.2)% [27], introduced for the signal and background 
components where the bachelor is expected to be a kaon.

In the CP asymmetry fit, combinatorial D background candidates are assumed to be dis-
tributed non-resonantly over the phase space of the D → K0

Sπ+π− decay. The CP asymmetry 
fit is repeated with the D decay model changed to the sum of a phase-space distribution and a 
K∗±(892) resonance; the fractions of the two components are fixed by a study of the Dalitz plot 
projections of data.

The D decay model included in the CP asymmetry fit for random Dh background candidates 
is an incoherent sum of the two D → K0

Sπ+π− decay amplitudes because it is equally likely 
for a D0 or �D0 meson to be present in an event. The CP asymmetry fit is repeated with the 
decay model changed to include the central value of the D0 − �D0 production asymmetry of 
(−1.0 ± 0.3)% [28].

The yield of Bs → DK∗ partially reconstructed background candidates is very low in the 
signal invariant mass region, but in the CP asymmetry fit the candidates are assumed to be 
distributed in the same way as the suppressed component of signal B± → DK± over the 
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Fig. 4. Dalitz plot and its projections, with fit result superimposed, for B− → DK− candidates; m2± ≡ m2
K0

Sπ± and 

m2
0 ≡ m2

π+π− . The lower parts of the figures are normalised residual distributions.

D → K0
Sπ+π− decay phase space and could therefore appear in particularly sensitive regions. 

To estimate the systematic uncertainty arising from the assumed distribution, the CP asymmetry 
fit to data is performed with the D decay model for this background changed to the favoured 
component of the signal B± → DK± decay model.

In order to allow the candidate detection, reconstruction and selection efficiency variation 
across the phase space of the D → K0

Sπ+π− decay to be found from B± → Dπ± data candi-
dates, the amplitudes from the suppressed decays B− → �D0π− and B+ → D0π+ are assumed 
to be negligible. The systematic uncertainty arising from this assumption is estimated by re-
peating the CP asymmetry fit to data with an additional term in the signal B± → Dπ± and 
cross-feed B± → DK± decay models, representing the suppressed decay amplitudes. The values 
of rB±→Dπ± , δB±→Dπ± and γ are fixed in the additional term; various rB±→Dπ± and δB±→Dπ±
values are assumed (rB±→Dπ± = 0.01, 0.015; δB±→Dπ± = 0◦, 90◦, 180◦, 270◦, 315◦), but in all 
cases γ is set to 70◦.

The efficiency variation across the D → K0
Sπ+π− decay phase space is parametrised in the 

CP asymmetry fit by a second-order polynomial function in the variables m2+ and m2−. To esti-
mate the uncertainty arising from this, the CP asymmetry fit to data is repeated with the efficiency 
parametrisation fixed and variations of the polynomial coefficients made. A fit with a third-order 
polynomial function is also performed, with the efficiency parameters and (x±, y±) allowed to 
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Fig. 5. Dalitz plot and its projections, with fit result superimposed, for B+ → DK+ candidates; m2± ≡ m2
K0

Sπ± and 

m2
0 ≡ m2

π+π− . The lower parts of the figures are normalised residual distributions.

Fig. 6. Likelihood contours at 39.35%, 86.47%, 98.89% and 99.97% confidence level for (x+, y+) (blue in the web 
version) and (x−, y−) (red in the web version).
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Table 2
Absolute values of systematic uncertainties. The CP asymmetry fit bias is considered as a one-sided uncertainty and is 
included in the quadrature sum on that side only.

Source δx−(×10−3) δy−(×10−3) δx+(×10−3) δy+(×10−3)

Background yields
Cross-feed 0.21 0.96 0.65 0.26
Total combinatorial 1.1 3.5 1.7 2.7
Combinatorial D 1.0 4.3 2.7 4.9

Inclusion of semileptonic background 3.1 2.8 0.63 3.2
Charged kaon detection asymmetry 0.022 0.030 0.0041 0.025
Amplitudes for backgrounds

Combinatorial D 3.5 3.4 4.7 6.4
Random Dh 0.10 0.16 0.066 0.16
Bs partially reconstructed 0.59 0.59 0.15 0.73

rB±→Dπ± 1.8 1.9 1.6 1.1
Efficiency over the phase space 5.7 0.35 6.9 0.31
CP asymmetry fit bias +5.7

−0
+5.1
−0

+0
−1.3

+2.6
−0

Total experiment or fit related +9.6
−7.8

+9.0
−7.4

+9.1
−9.2

+9.6
−9.2

Total model related 1.0 3.0 4.6 8.4

Table 3
Model related systematic uncertainties for each alternative model. The relative signs indicate full correlation or anti-
correlation.

Description δx−(×10−3) δy−(×10−3) δx+(×10−3) δy+(×10−3)

(a) K-matrix 1st solution −0.1 0.04 0.3 −2
(b) K-matrix 2nd solution −0.09 −0.3 0.1 −0.5

(c) Remove slowly varying part in P -vector −0.1 −0.3 0.1 −0.8

(d) Generalised LASS −0.7 −2 3 7
→ relativistic Breit–Wigner

(e) Gounaris–Sakurai 0.08 −0.8 0.1 0.8
→ relativistic Breit–Wigner

(f) K∗(1680) m + δm −0.06 −0.6 0.2 0.3
(g) m − δm −0.1 −0.2 −0.1 −1
(h) Γ + δΓ −0.06 −0.4 −0.05 −0.4
(i) Γ − δΓ −0.2 −0.3 0.3 −0.5

(j) f2(1270) m + δm −0.1 −0.3 0.1 −0.5
(k) m − δm −0.1 −0.4 0.09 −0.5
(l) Γ + δΓ −0.1 −0.3 0.08 −0.5
(m) Γ − δΓ −0.1 −0.4 0.1 −0.5

(n) K∗
2 (1430) m + δm −0.08 −0.4 0.08 −0.4

(o) m − δm −0.1 −0.3 0.1 −0.5
(p) Γ + δΓ −0.1 −0.4 0.07 −0.4
(q) Γ − δΓ −0.1 −0.3 0.1 −0.5

(r) rBW = 0.0 GeV−1 −0.2 −0.4 −0.1 −0.3
(s) rBW = 3.0 GeV−1 −0.3 −0.3 1 −0.4
(t) Add K∗(1410) and ρ(1450) −0.1 −0.3 0.02 −0.7
(u) Helicity formalism −0.5 −2 −3 4
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vary. The changes in the values of (x±, y±), compared to the nominal results, are taken as the 
systematic uncertainties arising from the efficiency parametrisation.

The CP asymmetry fit is verified using 1000 data-sized simulated pseudo-experiments. In 
each experiment the number and distribution of candidates is generated according to the fit result 
from data. The obtained values of (x±, y±) show a small bias when compared to the values used 
for the simulation; these biases are included as systematic uncertainties.

To estimate the systematic uncertainty arising from the choice of amplitude model descrip-
tion of the D → K0

Sπ+π− decay, CP asymmetry fits with alternative model descriptions are 
performed on large samples of simulated decays. For each alternative model, one element (for ex-
ample, a resonance parameter) of the nominal model is altered. One million B± → Dπ± and one 
million B± → DK± decays are simulated with the model used for the nominal CP asymmetry 
fit, and with the Cartesian parameters fixed to the fit result. For the nominal model and each alter-
native model, a CP asymmetry fit to the B± → Dπ± sample is performed with the coefficients 
of each resonance of the model allowed to vary. Values for the Cartesian parameters (x±, y±) are 
then obtained from a CP asymmetry fit to the B± → DK± sample, with the resonance coeffi-
cients fixed from the results of the fit to the B± → Dπ± sample. The signed differences in the 
values of (x±, y±) from the nominal results are taken as the systematic uncertainties, with the 
relative signs between contributions indicating full correlation or anti-correlation.

In the alternative models considered, the following changes, labelled (a)–(u), have been ap-
plied, resulting in the uncertainties summarised in Table 3:

– ππ S-wave: The F -vector model is changed to use two other solutions of the K-matrix (from 
a total of three) determined from fits to scattering data [29] (a), (b). The slowly varying part 
of the non-resonant term of the P -vector is removed (c).

– Kπ S-wave: The generalised LASS parametrisation, used to describe the K∗
0 (1430) res-

onance, is replaced by a relativistic Breit–Wigner propagator with parameters taken from 
Ref. [30] (d).

– ππ P-wave: The Gounaris–Sakurai propagator is replaced by a relativistic Breit–Wigner 
propagator (e).

– Kπ P-wave: The mass and width of the K∗(1680) resonance are varied by their uncertainties 
from Ref. [31] (f)–(i).

– ππ D-wave: The mass and width of the f2(1270) resonance are varied by their uncertainties 
from Ref. [22] (j)–(m).

– Kπ D-wave: The mass and width of the K∗
2 (1430) resonance are varied by their uncertainties 

from Ref. [22] (n)–(q).
– The radius of the Blatt–Weisskopf centrifugal barrier factors, rBW, is changed from 

1.5 GeV−1 to 0.0 GeV−1 (r) and 3.0 GeV−1 (s).
– Two further resonances, K∗(1410) and ρ(1450), parametrised with relativistic Breit–Wigner 

propagators, are included in the model (t).
– The Zemach formalism used for the angular distribution of the decay products is replaced by 

the helicity formalism (u).
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The total covariance matrix is determined to be

Vmodel =

⎛
⎜⎜⎜⎜⎜⎝

x− y− x+ y+
1.12 2.80 −0.95 −5.40

2.80 8.89 −1.21 −16.87

−0.95 −1.21 21.59 5.97

−5.40 −16.87 5.97 69.87

⎞
⎟⎟⎟⎟⎟⎠

× 10−6 (3)

resulting in total systematic uncertainties arising from the choice of amplitude model of

δx− = 1.0 × 10−3,

δy− = 3.0 × 10−3,

δx+ = 4.6 × 10−3,

δy+ = 8.4 × 10−3.

Table 2 summarises the systematic uncertainties arising from all sources. Except for the un-
certainty due to the fit bias, the absolute values of the uncertainties are added in quadrature 
(assuming no correlation) to obtain the total experiment or fit related uncertainties. The CP
asymmetry fit bias is considered as a one-sided uncertainty and is included in the quadrature 
sum on that side only. The model related systematic uncertainty is also shown in the table, for 
comparison.

6. Constraints on γ , rB and δB

The results for the CP violation observables (x±, y±) are used to place constraints on the 
values of γ , rB and δB , adopting the procedure described in Refs. [9,10].

There is a two-fold ambiguity in the solution for γ , rB and δB ; choosing the solution that 
satisfies (0 < γ < 180)◦ leads to the results

γ = (
84+49

−42

)◦,
rB = 0.06 ± 0.04,

δB = (
115+41

−51

)◦,

where the uncertainties include statistical, experimental systematic and model related systematic 
contributions. Fig. 7 shows the contours of p-value projected onto the (γ, δB) and (γ, rB) planes.

7. Effect of neutral D meson mixing

Assuming uniform lifetime acceptance, the measurements of the Cartesian parameters docu-
mented in this paper are corrected for the effects of D mixing as described in Ref. [32],

xcorr± = x± + ymix

2
,

ycorr± = y± + xmix

2
,

where xmix and ymix are the parameters of neutral D meson mixing.
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Fig. 7. Projections of the p-value regions onto the (γ, δB) and (γ, rB) planes with all sources of uncertainty taken into 
account.

Since CP violation in the charm sector has been neglected in the analysis, the world average 
values of the mixing parameters without CP violation (xmix = (0.53+0.16

−0.17) ×10−2, ymix = (0.67 ±
0.09) × 10−2) [33] are taken for correction, yielding the values

xcorr− = +0.030 ± 0.044+0.010
−0.008 ± 0.001 ± 0.00045,

ycorr− = +0.016 ± 0.048+0.009
−0.007 ± 0.003 ± 0.00085,

xcorr+ = −0.081 ± 0.045 ± 0.009 ± 0.005 ± 0.00045,

ycorr+ = −0.029 ± 0.048+0.010
−0.009 ± 0.008 ± 0.00085,

where the first uncertainty is statistical, the second systematic, the third arises from the D de-
cay amplitude model and the fourth is the uncertainty associated with the values of the mixing 
parameters. The change in the value of γ due to this correction is less than 1◦.

8. Conclusions

Candidate B± → D(→ K0
Sπ+π−)K± decays are used to perform an amplitude analysis in-

corporating a model description of the D → K0
Sπ+π− decay. The data used correspond to an 

integrated luminosity of 1 fb−1, recorded by LHCb at a centre-of-mass energy of 7 TeV in 2011.
The resulting values of the CP violation observables x± = rB cos (δB ± γ ) and y± =

rB sin (δB ± γ ) are
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x− = +0.027 ± 0.044+0.010
−0.008 ± 0.001,

y− = +0.013 ± 0.048+0.009
−0.007 ± 0.003,

x+ = −0.084 ± 0.045 ± 0.009 ± 0.005,

y+ = −0.032 ± 0.048+0.010
−0.009 ± 0.008,

where in each case the first uncertainty is statistical, the second systematic and the third is due 
to the choice of amplitude model used to describe the D → K0

Sπ+π− decay. The results place 
constraints on the magnitude of the ratio of the interfering B± decay amplitudes, the strong 
phase difference between them and the CKM angle γ , giving the values rB = 0.06 ± 0.04, δB =
(115+41

−51)
◦ and γ = (84+49

−42)
◦. Neutral D meson mixing has a negligible effect on the parameters 

rB , δB and γ .
These results are consistent with, complementary to, and cannot be combined with, those 

obtained by the LHCb model-independent analysis of the same data set [9]. The results are also 
consistent with world average values [34,35].
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