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1 Abbreviations 
-me1    monomethylated lysine residue 
-me2    dimethylated lysine residue 
-me3    trimethylated lysine residue 
AGM   Aorta Gonads Mesonephros 
AP-1   Activating Protein-1 
ARG1   Arginase 1 
ATP   Adenosine-5’-triphosphate 
BCL6   B-cell CLL/lymphoma 6 
BM   Bone Marrow 
BMDM   Bone Marrow Derived Macrophages 
bp   base pair 
Brd4   Bromo domain 4 
Brg1   BRM/SWI2-Related Gene 1 
Brm   Protein Brahma Homolog 
BSA    Bovine Serum Albumin 
CaCl2   Calcium Chloride 
CCR2   CC-chemokine receptor 2 
cDNA   complementary DNA 
CG   Cytosine Guanine 
Chil3   Chitinase-like 3 
ChIP   Chromatin Immunoprecipitation 
ChIP-seq   Chromatin Immunoprecipitation-sequencing 
CLRs   C-type Lectin Receptors 
CO2   Carbonic acid 
CpG   CG dinucleotide 
CX3CR1  CX3C-Chemokine Receptor 1 
Cxcl    Chemokine (C-X-C motif) ligand 
DNA   Deoxyribonucleic Acid 
dNTPs   Deoxynucleotides 
DTT   Dithiothreitol 
ECM   Extra Cellular Matrix 
EDTA   Ethylenediaminetetraacetic acid 
EGR   Early Growth Response protein 
EGTA   Ethylene glycol tetraacetic acid 
ERK   Extracellular-signal-Regulated Kinases 
eRNA   Enhancer /RNA 
FBS   Fetal Bovine Serum 
FDR   False Discovery Rate 
FPKM   Fragments Per Kilobase Of Exon Per Million Fragments Mapped 
GAPDH  Gliceraldeide-3-fosfato deidrogenasi 
H2A   Histone 2A 
H2B   Histone 2B 
H3   Histone 3 
H3-H4Ac  Histone 3 /4 Acetylation 
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H3K20me3  Lysine 20 on Histone 3-me3 
H3K27Ac  Lysine 27 on Histone 3 Acetylation 
H3K27me3  Lysine 27 on Histone 3-me3 
H3K4    Lysine 4 on Histone 3 
H3K9me3  Lysine 9 on Histone 3-me3 
H4   Histone 4 
HAT   Histone Acetyltransferase 
HBSS   Henk’s Balanced Salts Solution  
HDAC3  Histone DeAcetylase 3 
HDACs  Histone Deacetylases 
HEPES   (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
Hepes-KOH  HEPES with potassium hydroxide  
HP1   Heterochromatin protein 1 
HSC    Hematopoietic Stem Cells 
IFN   Interferon 
IgG   Immunoglobulin G 
IgG   Immunoglobulin G 
IKK   kinase of IκB 
IL-   Interleukin- 
IL-1β   InterLeukin- 1 beta 
IL-4   InterLeukin- 4 
Il12b   Interleukin 12 beta 
IRAK-M  IL1 Receptor-Associated Kinase M 
IRAK3   IL1 Receptor-Associated Kinase 3 
IRFs   Interferon Regulatory Factor 
IκBα Inhibitor of the nuclear factor of kappa light polypeptide gene 

enhancer in B-cells, alpha 
JMJD2d  Jumonji Domain Containing 2d 
JMJD3   Jumonji Domain Containing 3 
JNK   c-Jun N-terminal kinase 
KD   Knock Down 
LB1   Lysis Buffer 1 
LB2   Lysis Buffer 2 
LB3   Lysis Buffer 3 
LiCl   Lithium Chloride 
LNs   Lymph Nodes 
LPS   LipoPolySaccharide 
LY6C   Lymphocyte antigen 6C 
M-CSF  Macrophage Colony-Stimulating Factor 
MDSCs  Myeloid-Derived Suppressor Cells 
MgCl2   Magnesium Chloride 
MHC II  Major Histocompatibility Complex II 
miRNAs   micro-RNAs 
MLL   myeloid/lymphoid or mixed-lineage leukemia 
MMPs   Matrix Metalloproteinases 
MPS   Mononuclear Phagocytic System 
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mRNA   messanger Ribo Nucleic Acid 
NaCl   Sodium Chloride 
NK   Natural Killer 
NLRs NOD (Nucleotide binding Oligomerization Domain)-like receptors 
NO   Nitric Oxide 
Nos2   Nitric oxide synthase 2 
NP-40    nonyl phenoxypolyethoxylethanol 
o.n.   over night 
P-TEFb  Positive Transcriptional Elongation Factor b 
p300   protein 300 
p38   protein 38 
p65   protein 65 
PAMPs  Pathogen Associated Molecular Patterns 
PBS   Phosphate buffered saline 
PCR   Polymerase Chain Reaction 
PDGF   Platelet-Derived Growth Factor 
PHF2   PHD (plant homeodomain) finger 2 
PMSF    phenylmethanesulfonylfluoride or phenylmethylsulfonyl fluoride 
PolII   Polymerase II 
polyA   Poly-Adenylated 
PRGs   Primary Response Genes 
PRRs   Pattern Recognition Receptors 
Ptgs1   Prostaglandin G/H synthase 
PU.1   Purine-rich nucleic acid binding protein 1 
RefSeq   Reference Sequence 
Rel/NF-kB Nuclear Factor of kappa light polypeptide gene enhancer in B-cells 
RETNLα  Resistin-like molecule alpha 
RIPA    Radioimmunoprecipitation assay buffer 
RLRs   Retinoic acid-inducible gene 1 (RIG1)-Like helicase Receptors 
RNA    Ribonucleic Acid 
RNA-seq   RNA-sequencing 
Rpm   Revolutions per minute 
RT   Room Temperature 
RT-qPCR  Real Time- quantitative Polymerase Chain Reaction 
SDS  Sodium Dodecyl Sulphate 
SDS-PAGE  SDS- PolyAcrylamide Gel Electrophoresis 
SHIP1   SC homology 2 (SH2) domain-containing inositol-5   
   phosphatase 1 
shRNA  short hairpin RNA 
SOCS1  Suppressor Of Cytokine Signaling  
SOD2   Superoxide Dismutase2 
SP1   Specific Protein 1 
SRGs   Secondary Response Genes 
STATs   Signal Transducer and Activator of Transcription 
SWI/SNF  SWItch/Sucrose NonFermentable 
TAK1   TGF-β Activated Kinase 1 
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TAM   Tumor Associated Macrophages 
TBP   TATA Binding Protein 
TBST   Tris Buffered Saline with Twee 
TE  Tris-EDTA 
TFs   Transcription Factors 
TGFβ1   Transforming Growth Factor-β1 
TH1/2   T helper type 1/2 
TIMPs   Tissue inhibitors of Metalloproteinases 
TIR   Toll/IL-1R homologous region 
TLR4   Toll-Like Receptor 4 
TLRs   Toll-Like-Receptors 
TNF   Tumor Necrosis Factor 
TNFα   Tumor Necrosis Factor alpha 
TRAF6  TNF Receptor-Associated Factor 6 
Treg   regulatory T cells 
Tris-HCl  Tris(hydroxymethyl)aminomethane chloride 
TSA   Trichostatin 
TSS   Transcription Start Site 
VSV-G   Vesicular Stomatitis Virus- Glycoprotein 
w/v  weight/volume 
WCE   Whole-Cell Extract  
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6 Abstract 

The chromatin of cells whose main function is to sense and react to environmental inputs, 

such as macrophages and other innate immune cells, undergoes rapid modifications in 

response to microenvironmental signals and provides general paradigms of how 

epigenomes are dynamically reorganized in a changing environment. A short exposure of 

macrophages to endotoxin (lipopolysaccharide, LPS) strongly activates transcription of 

hundreds of inflammatory genes. Conversely, a sustained stimulation results in a state of 

hypo-responsiveness to a subsequent microbial stimulation, which is commonly referred to 

as endotoxin tolerance. We used nascent RNA-seq and ChIP-seq to characterize genes and 

cis-regulatory regions that are differentially activated in unperturbed, LPS-stimulated and 

LPS-tolerized primary mouse bone marrow-derived macrophages (BMDM). We 

characterized promoter and enhancer states by mapping the methylation and acetylation 

states of associated histones and we identified differentially expressed genes by nascent 

RNA profiling. We clustered genes into different subsets based on their activity profiles 

and assigned to them enhancers with correlated dynamic behaviors. A detailed analysis of 

these datasets allowed us to dissect the mechanisms underlying functional switches in the 

macrophage gene expression program during sustained inflammation. Consistently with 

the RNA-seq data, genomic regions associated with transient genes were mainly 

characterized by transient acetylation of histone H3 lysine 27 (H3K27Ac), a mark of active 

transcription, while sustained genes were mainly associated with persistent acetylation. 

Conversely, the promoters of both transient and sustained genes maintained high levels of 

trimethylation of histone H3 at lysine 4 (H3K4me3) regardless of their transcriptional 

activity. Moreover, promoters of transient and sustained genes showed a distinct content of 

transcription factor binding sites. Sustained gene clusters displayed a significant 

enrichment in binding sites for Interferon Regulatory Factor (IRF) family transcription 

factors. The overlap between sustained genes and Interferon (IFN)-dependent genes, 
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confirm the dependence of this cluster on the IFN-β regulated feed-forward loop. In 

particular, IRF7 played a key role in the transcriptional regulation of sustained genes as 

indicated by the impact of its depletion. Transient gene clusters were mainly regulated by 

the Early Growth Response (EGR) and Nuclear factor-κB (NF-kB) family transcription 

factors, which are both downstream effectors of the TLR4 signaling pathway. Biochemical 

analysis of the key players of this signaling cascade revealed an almost complete 

exhaustion of the pathway after sustained LPS treatment, which correlated with reduced 

TRAF6 protein levels. These data suggest that the failure to reactivate those transcription 

factors that are involved in the transcriptional expression of transient genes is likely due to 

the hypo-responsive state of the TLR4 signaling pathway in cells exposed to LPS in a 

sustained manner.  
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7 Introduction 

7.1 Inflammation 

Inflammation is a complex and fundamental pathophysiological response to tissue 

malfunction or loss of tissue homeostasis, it is employed by both innate and adaptive 

immune systems to combat pathogenic intruders and involve relevant physiological roles, 

such as host defense, tissue remodeling and repair (Hotamisligil, 2006; Medzhitov, 2008). 

As it has been described in the first century by Celsus, the effects of these tightly regulated 

interactions culminate in the cardinal signs of local inflammation: rubor (redness), calor 

(heat), tumor (swelling), dolor (pain) and functio laesa (loss of function). Inflammation is 

a complex process and multiple control mechanisms must operate at different levels. The 

inflammatory response has to be regulated based on both the triggering stimulus and its 

dose, and it has to be deployed in a kinetically complex manner that suits the different 

phases of the inflammatory process. This complexity is achieved through multiple 

mechanisms that operate at different levels, including recognition of inflammatory stimuli 

by host receptors, regulation of signaling pathways activated by these receptors and 

chromatin-mediated regulatory changes that impact on gene expression (Medzhitov and 

Horng, 2009b; O'Byrne and Dalgleish, 2001). During the early phases of an inflammatory 

response, activated tissue-resident macrophages release specific chemokines (such as 

CXCL8/IL8), leading to the recruitment of neutrophils to the damaged tissue (Tester et al., 

2007) (Tian et al., 2007). Following the extravasation and tissue infiltration, neutrophils 

release preformed granule proteins which, in turn, promote the recruitment and activation 

of inflammatory monocytes (Ley et al., 2007). This type of inflammation is normally a 

localized, protective response that follows trauma or infection. If the agent causing the 

inflammatory process persists for a prolonged period of time, the inflammation may 

become chronic. Chronic inflammation can result from a viral or microbial infection, 

environmental antigens (e.g., pollen), autoimmune reactions, persistent or repeated micro-
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trauma and chemical irritants. Overall, acute inflammation is characterized by a rapid onset 

and a short duration. It is involved in the eradication of a bacterial, parasitic or viral 

infection while promoting wound healing. Chronic inflammation is characterized by 

prolonged duration with the formation of necrotic and fibrotic tissues in response to the 

sustained activity of lymphocytes and macrophages. Chronic inflammation also contributes 

to degenerative diseases such as atherosclerosis (O'Byrne and Dalgleish, 2001). 

 
7.1.1 Tissue-resident and inflammatory macrophages, 
key players of the acute phase response 

 

Macrophages are pivotal players of the inflammatory response but at the same time they 

may be involved in driving inflammatory diseases (Qiao et al., 2013). Macrophages are 

part of the mononuclear phagocytic system (MPS) and are generated by myeloid-

committed hematopoietic stem cells located in the bone marrow (Doulatov et al.; 

Geissmann et al.). Haematopoietic progenitors generated in the yolk sac give rise to 

primitive macrophages, which populate the whole embryo to originate fetal primitive 

macrophages. In parallel, haematopoietic stem cells (HSCs), generated in the Aorta-

Gonads-Mesonephros (AGM), give rise to progenitors that colonize the fetal liver and 

generate monocytes. Fetal liver-derived monocytes invade embryonic tissues, proliferate 

and differentiate into macrophages. Depending on the anatomical location, fetal liver-

derived monocytes replace almost completely the population of yolk sac-derived 

macrophages. An exception is represented by the microglia, which arise mainly from yolk 

sac-derived macrophages (Ginhoux and Jung, 2014). Adult mouse circulating monocytes 

are a non-homogeneous population of cells that includes two main subpopulations 

identifiable by their cell surface markers: the first one is defined by high expression of 

CX3C-chemokine receptor 1 (CX3CR1), low expression of the myeloid marker 

lymphocyte antigen 6C (LY6C) and no expression of the chemokine receptor CC-

chemokine receptor 2 (CCR2). These Cxcr1+Ly6CloCcr2- monocytes display patrolling 
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activity along the vascular endothelium. Instead, inflammatory monocytes are 

characterized by low level of CX3CR1, high level of LY6C and expression of CCR2, 

through which they sense the CCL2 chemokine that attracts them to inflamed tissues 

(Geissmann et al., 2003) (see Figure 5.1). The heterogeneity of macrophages reflects the 

functional specialization of these cells at different anatomical locations, as well as the 

capacity to acquire distinct phenotypes and physiological activities depending on the 

environment (Gordon and Taylor, 2005).  

 

 

Figure 7.1 Tissue Resident and Inflammatory Macrophages. Monocyte’s progenitors 
exit the bone marrow niche and differentiate in two different subtypes, according to their 
expression level of the surface marker LY6C. Tissue resident macrophages derive from 
LY6C- monocytes, while inflammatory macrophages are generated from LY6C+ 
monocytes. Depending on the local environment both tissue resident and inflammatory 
macrophages can be polarized toward a specific phenotype (Lawrence and Natoli, 2011). 
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Tissue-resident macrophages are present in most organs of the body where they can 

assume different phenotypic properties and transcriptional programs depending on the 

local milieu (Gosselin et al., 2014; Lavin et al., 2014) and contribute to tissue homeostasis. 

They either produce trophic factors and clear tissue debris, and also participate in tissue 

remodeling. They also attract other immune cells from the peripheral blood in case of 

infection and tissue damage (Murray and Wynn) (Gordon and Taylor, 2005; Krutzik et al., 

2005; Murray and Wynn). Macrophages are sub-grouped according to their anatomical 

location and functional phenotype. Specialized tissue resident macrophages include for 

example alveolar macrophages, which reside in the lungs and have an important role in 

maintaining airway immune homeostasis (Hussell and Bell, 2014). The brain tissue 

resident macrophages (microglia) prune synapses during development (Lavin et al., 2014). 

Kupffer cells in the liver are the primary cells that encounter gut-derived toxins, such as 

LPS, and orchestrate immune responses within the liver (Nakamoto and Kanai, 2014). 

Moreover, macrophages of the spleen marginal zones silence innate and adaptive 

immunity to apoptotic cells (McGaha et al.) and sub-capsular sinus macrophages of the 

lymph nodes (LNs) eradicate viral agents drained in the lymph and begin the antiviral 

humoral immune response (Iannacone et al.; Junt et al., 2007) (see Figure 7.1).  

 

7.1.2 The TLR4 pathway and the activation of the 
inflammatory response 

 

Macrophages play a role in the acute phase of the inflammatory response by recognizing 

pathogen-associated molecular patterns (PAMPs), foreign bodies (such as asbestos and 

silica among others) and dead cells, through plasma membrane and cytoplasmic receptors. 

Macrophages express a broad set of Pattern Recognition Receptors (PRRs) (Takeuchi and 

Akira), including both intracellular and transmembrane Toll-Like-Receptors (TLRs) 

(Horng et al.), C-type lectin receptors (CLRs), scavenger receptors, retinoic acid-inducible 

gene 1 (RIG1)-like helicase receptors (RLRs) and NOD-like receptors (NLRs) (Geissmann 
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et al.; Gordon and Taylor, 2005; Kawai and Akira, 2009; Takeuchi and Akira). TLRs 

mediate innate immune defense by detecting the presence of microbial pathogens and 

activating the downstream intracellular signaling pathways that lead to phagocytosis, 

cellular activation and release of cytokines, chemokines and growth factors (Elinav et al.; 

Kawai and Akira, 2009; Osorio and Reis e Sousa). Once TLR4 is activated, its intracellular 

TIR (Toll/Interleukin1 Receptor)-domain creates a docking platform for an array of 

intracellular mediators, whose activity leads to the recruitment of TNF-Receptor 

Associated Factor 6 (TRAF6) and TGF-β Activated Kinase 1 (TAK1) (Horng et al., 2001; 

Lin et al., 2010) (Medzhitov et al., 1998; O'Neill, 2008; O'Neill and Greene, 1998) 

(Kawagoe et al., 2008) and eventually the activation of the Extracellular-signal-Regulated 

Kinase (ERK) (Herbert et al.), c-Jun N-terminal Kinase (JNK), and p38 pathways and 

transcription factors such as NF-κB and the Activating Protein-1 (AP-1) (Landstrom, 

2010) (Barton and Medzhitov, 2003) (See Figure 7.2).  
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Figure 7.2 The TLR4 pathway. Pathogen recognition through the TLR4 receptor triggers 
both the MyD88-dependent and MyD88-independent pathway. The induced signaling 
cascade activates NF-kB, AP-1 and IRF3 transcription factors, resulting in the expression 
of both pro-inflammatory and IFN-dependent genes (Mogensen, 2009). 
 

TLR4 engagement results in the activation of the IκB kinase (IKK), and the activated IKK 

complex phosphorylates IκBα on the serine32 and 36 (Ser32 and Ser36), leading to its 

poly-ubiquitination. The ubiquitinated IκBα is degraded via the 26S proteasome, thereby 

inducing nuclear translocation of p65:p50 as well as other less abundant Rel/NF-kB 

hetero- and homodimers (Karin and Ben-Neriah, 2000) and the resulting production of pro-

inflammatory mediators, such as tumor necrosis factor alpha (TNFα), interleukin-1 beta 

(IL-1β), and interleukin-6 (IL-6). A precise and balanced production of these effectors is 

required to prevent pathologic inflammation (Green and Marshak-Rothstein, 2011). For 

this reason, normal inflammation is a self-limiting process eventually leading to restoration 

of homeostasis.  
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7.1.3 The resolution of the inflammatory response 

Resolution of inflammation consists of an active process that involves several tightly 

regulated biochemical and cellular mechanisms. Many negative regulators are upregulated 

upon inflammatory stimulation. Two classes of transcriptional factors are involved in 

negative regulation and they exert basal and inducible repressor functions. p50, for 

example, belongs to the first category and it is constitutively expressed. p50 homodimers 

function mainly as a transcriptional repressors of NF-kB target genes because p50 lacks a 

transcriptional activation domain (Thanos and Maniatis, 1995). On the contrary, inducible 

repressors are normally not expressed or expressed only at low levels, but are 

transcriptionally induced after an inflammatory stimulus, indicating that they are part of a 

negative feedback mechanism that limits the inflammatory response. Usually inducible 

repressors block the expression of secondary response genes (SRG), whereas basal 

repressors inhibit the expression of primary response genes (PRG) associated with CpG 

islands, which otherwise would present high basal activity (Medzhitov and Horng, 2009b). 

A possible deregulation of the factors involved in this process may lead to excessive and/or 

sustained responses. 

 

7.2 Macrophage polarization 

Depending on their activation state, cytokine profile and functional properties, 

macrophages have been classified into M1 (classically-activated) and M2 (alternatively-

activated) macrophages (Gordon, 2003; Mantovani et al., 2005; Mantovani et al., 2004). 

The M1/M2 definition is based on the cytokines that are associated with these macrophage 

phenotypes. The classical macrophage activating factor, produced by stimulated T helper 1 

(TH1)- lymphocytes and natural killer (NK) cells, is interferon‑γ (IFNγ) (Schroder et al., 

2004), while the alternatively-activated macrophages are associated with TH2‑type 

immune responses and they are activated by the cytokines interleukin‑4 (IL‑4) and IL‑13 
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(Gordon, 2003). Classically- activated macrophages are strongly positive for the Major 

Histocompatibility Complex of class II (MHCII), they protect the host organism from 

infectious agents, such as bacteria, protozoa and viruses and they play a role in anti-tumor 

immune response. Tissue injury or infection related agents, such as the bacterial 

lipopolysaccharide (LPS), with the help of recruited natural killer secreting interferon-γ, 

polarize macrophages toward the M1 phenotype (Gordon and Martinez; Lawrence and 

Natoli; Mosser and Edwards, 2008; Sica and Mantovani). Cytokines such as interferon-β 

(IFN-β), tumor necrosis factor-alpha (TNF-α) and IL-1 also promote an M1 polarization of 

macrophages (Bosschaerts et al.; Mosser and Edwards, 2008; Serbina et al., 2003). 

Reactive oxygen species and nitrogen intermediates produced by activated macrophages 

are highly toxic for the invading agents but they are also potentially harmful for the tissues 

and organ where the infection takes place. M1 macrophages produce also IL-12 and IL-23, 

which are decisive in influencing the polarization of TH1 and TH17 cells, which further 

drive inflammatory responses (Serbina et al., 2008). For all the mentioned reasons pro-

inflammatory and antimicrobial M1 macrophage responses must be finely regulated in 

order to avoid extensive collateral tissue damage to the host. Aberrant regulation of M1 

macrophages has been associated to several chronic inflammatory and autoimmune 

diseases, such as Crohn’s disease, multiple sclerosis, rheumatoid arthritis and autoimmune 

hepatitis (Kawane et al., 2006; Murphy et al., 2003; Smith et al., 2009). In contrast to pro-

inflammatory M1 cells, M2-alternatively activated macrophages are involved in resolution 

of inflammation and tissue repair, facilitate wound repair and fibrosis and also exert anti-

parasitic activities (Anthony et al., 2006; Biswas and Mantovani; Pesce et al., 2009a). M2 

macrophages express factors promoting the growth of epithelial cells and fibroblasts, 

including Transforming Growth Factor-β1 (TGF-β1) and Platelet-Derived Growth Factor 

(PDGF) (Barron and Wynn). M2 macrophages are also specialized to engross and 

eradicate dead cells, debris and various extracellular matrix (ECM) components that would 

promote tissue-damage mediated by M1 macrophages. M2 macrophages are indeed able to 



 25 

produce matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases 

(TIMPs), which control ECM turnover (Barron and Wynn; Wynn, 2004, 2008). Moreover, 

M2 macrophages produce immunoregulatory proteins such as IL-10, resistin-like α 

(RETNLα), chitinase-like proteins (Chil3/Ym1), which suppress allergic inflammation, 

and arginase 1 (ARG1), in order to regulate pro-inflammatory functions of M1 

macrophages and to start the wound healing process (Elias et al., 2005; Herbert et al.; Lee, 

2009; Pesce et al., 2009b; Reese et al., 2007; Sutherland et al., 2009). Accordingly, while 

M1 macrophages promote a TH1, TH17 response, M2 macrophages are programmed to 

release chemokines recruiting fibroblasts, TH2 cells and regulatory T (TReg) cells (Curiel 

et al., 2004; Imai et al., 1999). M2 macrophages have also been proposed to suppress 

allergic inflammation by degrading or sequestering chitin, a potent and highly abundant 

allergen in the airway (Reese et al., 2007). 

Other macrophage subpopulations/activation states have been reported in the past: 

‘Regulatory’ macrophages, similar to suppressive M2 cells, are induced by TLR agonists 

in the presence of IgG (immunoglobulin G), apoptotic cells and prostaglandins and secrete 

large amounts of interleukin-10 (IL-10) and TGF-β1 (Jenkins et al.; Sutterwala et al., 1997; 

Sutterwala et al., 1998). Tumor Associated Macrophages (TAMs) have been described 

with either protective or pathogenic roles in cancer (Sica and Bronte, 2007). Tumor M1 

macrophages can activate killing ability and amplify TH1 response, providing a 

mechanism of antitumor response (Biswas and Mantovani), while TAMs and MDSCs  

(Myeloid Derived Suppressor Cells) suppress adaptive tumor-specific immune responses, 

promote tumor progression inducing tumor growing, invasion, metastasis, stroma 

remodeling and angiogenesis (Brower; Daurkin et al.; Erreni et al.; Laoui et al.; 

Mantovani; Quatromoni and Eruslanov; Richards et al.; Tang; Wang et al.; Wu et al.). It is 

important to point out that the M1/M2 dicotomy represents only the two extremes of a 

much larger series of phenotypes and functional states that macrophages can assume. It has 
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already been well documented that macrophages can undergo dynamic transitions between 

these two different functional states, underlying the great plasticity of these cells (Mosser 

and Edwards, 2008) and the spectrum of macrophage activation phenotypes is indeed 

much broader (Murray et al., 2014) (see Figure 7.3). 

 

Figure 7.3 Dynamic and complete view of macrophage phenotypes. Each potential 
macrophage’s phenotype is compared to a spectrum of colors on a color wheel. 
Macrophages can be “red” (classically activated macrophages), “yellow” (wound healing 
macrophages) and “blue” (regulatory macrophages). Macrophages can assume many other 
phenotypes, such as the combination of these three primary colors results in several others 
shades. Moreover, these colors can be interchangeable, meaning that wound-healing cells 
may potentially become inflammatory, or anti-tumor macrophages may become pro-tumor 
macrophages (Mosser and Edwards, 2008).  

 

This kind of view may ensure that the number of “subsets” is absolutely higher than 

expected and underline the great plasticity of macrophages (Mosser and Edwards, 2008). 

Indeed, numerous studies have documented flexibility in their programming, with 

macrophages switching from one functional phenotype to another in response to the 

variable micro-environmental signals of the local milieu (Hagemann et al., 2008; 

Kawanishi et al.; Mylonas et al., 2009; Rutschman et al., 2001; Stout et al., 2005; Stout and 

Suttles, 2004) (Lavin et al., 2014) (Gosselin et al., 2014). Furthermore, a network analysis 



 27 

performed on human macrophages demonstrated that that, depending on the stimulus they 

encountered, macrophages display a full spectrum of activation rather than a discrete M1 

versus M2-polarization (Murray et al.) (Xue et al., 2014) 

7.3 Transcriptional regulation in macrophages 

 

Macrophage activation, regardless of the nature of the stimulus, leads to radical changes in 

gene expression programs (Ivashkiv; Lawrence and Natoli; Medzhitov and Horng, 2009b; 

Smale). The advent of genome wide technologies increased the possibility to unravel the 

fine macrophages’ transcriptional program. Indeed, taking advantage of the recently 

advanced techniques and experimental approaches, mainly chromatin immunoprecipitation 

(ChIP) coupled with high-throughput sequencing (ChIP-seq) and RNA-seq as well as the 

computational tools for the deconvolution of genomic data sets, it is becoming clear that 

signaling cascades and transcription factors important for macrophage activation induce 

epigenetic changes in the chromatin states (Glass and Saijo; Medzhitov and Horng, 2009b; 

Smale). The following section will introduce general and basic concepts on the chromatin 

structure underlying the transition between active and inactive transcriptional states. 

7.3.1 Epigenetic regulation of chromatin 
 

Epigenetic mechanisms, broadly defined as regulatory mechanisms associated with 

chromatin modifications, include chemical modifications (methylation, acetylation, and 

phosphorylation) of histones, methylation and hydroxymethylation of CpG DNA 

dinucleotides and noncoding-RNA-mediated chromatin changes (Ernst et al.; Margueron 

and Reinberg; Mattick; Natoli; Probst et al., 2009; Zhou et al.).  

The nucleosome is the basic building block of chromatin (Kornberg, 1974). Each 

nucleosome consist of 146-147 bp of DNA wrapped in 1.67 left-handed superhelical turns 

around a histone octamer, which is composed of two H2A-H2B dimers and a H3-H4 
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tetramer (Luger et al., 1997). Nucleosomes are connected with each other by the stretches 

of ”linker DNA” associated with the linker histone H1 that is not part of the core particle 

and controls chromatin compaction. It is now clear that nucleosomes are plastic and can 

acquire different properties (Zentner and Henikoff, 2013) through covalent post-

translational modifications of their N-terminal domains (tails). Histone tails are modified at 

several positions and by several different chemical modifications. For example, acetylation 

of histone tails at specific amino acid residues relaxes the chromatin and act as an 

activating histone mark, regardless of its location on the tail. In contrast, methylation of 

histone tails can act as either an activating or repressing mark, depending on both the type 

and location of the modification (Figure 7.4). 

These histone marks are ‘written’ and ‘erased’ by dedicated enzymes and impact on the 

activity of coactivators and co-repressors to determine the rates of transcription initiation 

and elongation. Common histone modifications of the N-terminal tail are lysine acetylation 

and methylation that are recognized by bromodomain and chromodomain or PHD family 

proteins, respectively. Acetylation has a general positive role in gene activation by 

neutralizing the positive charge of the lysine and thus inducing a chromatin decompaction. 

Instead, while the methylation of H3K4 is associated with gene activation, H3K9 

methylation for example is recognized by HP1 (heterochromatin protein 1) that mediates 

chromatin compaction and repression, and H3K27 methylation is associated with 

repression by Polycomb proteins (Shilatifard, 2008) (Cockerill, 2011). 
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Figure 7.4 Composition of nucleosomes. Nucleosome is the building block of chromatin 
The N-terminal tails of histone are subjected to post-translational modifications that 
control nucleosome functions (Sparmann and van Lohuizen, 2006). 
 

 

7.3.2 The cis-regulatory repertoire of macrophages 

Macrophages treated in vitro with LPS activate hundreds of genes expressing mediators 

and actors of inflammation, each of them being regulated in a kinetically complex and 

specific manner. Primary response genes (PRGs) are immediately activated after the 

stimulus, while secondary response genes (SRGs) and some slowly activated primary 

response genes show delayed activation after the stimulus. Those genes that can be 

induced without de novo protein synthesis are formally defined as PRGs, while SRGs 

require new protein synthesis to be activated (Herschman, 1991). These two classes of 

genes have different activity states and modes of response due to specific sequence 

features of their promoters. Promoters of PRGs, tumor necrosis factor (Tnf) or superoxide 
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dismutase2 (Sod2) for example, contain regions highly enriched of CpG dinucleotides, 

named CpG islands (Deaton and Bird; Hargreaves et al., 2009; Ramirez-Carrozzi et al., 

2009). Unmethylated CpG dinucleotides are recognized by proteins containing the CXXC 

domain and by constitutively expressed transcription factors as for example SP1 (specific 

protein 1) (Ayton et al., 2004; Deaton and Bird; Lee and Skalnik, 2005). Furthermore, the 

SET1 and MLL complexes contain the CXXC domain, thus they recognize unmethylated 

CpG promoter regions and catalyze the deposition of H3K4me3, the best known activatory 

histone mark (Lee and Skalnik, 2008). Genome wide analysis have revealed that CpG 

island-containing promoters are characterized by relative depletion of nucleosomes, 

making them easily accessible to selectively induced transcription factors, and a precise 

nucleosome free region overlapping the RNA polymerase II peaks (Ramirez-Carrozzi et 

al., 2009; Valouev et al.). RNA polII constitutively associated with CpG islands 

synthesizes immature long unspliced transcripts in unperturbed conditions (Hargreaves et 

al., 2009). After stimulation with an inflammatory signal, RNA polII is phosphorylated on 

its serine 2 of the C-terminal domain repeats, allowing transcriptional splicing and 

therefore productive transcription (Hargreaves et al., 2009; Ramirez-Carrozzi et al., 2009). 

In this manner, promoters containing CpG islands can be rapidly activated in response to 

external stimuli by inducible factors that promote increasing on acetylation of histone H4. 

Acetylation is then recognized by the bromodomain-containing adaptor protein Brd4, that 

recruits the Positive Transcription Tlongation Factor (P-TEFb). Indeed, the cyclin 

dependent kinase P-TEFb promotes elongation and pre-mRNA processing through its 

ability to phosphorylate the C-terminal domain of RNA polII (Hargreaves et al., 2009). In 

summary, CpG island enriched promoters, being pre-bound by the RNA PolII and lacking 

of any nucleosomal barrier, undergo a fast binding of activated transcription factors (such 

as NF-κB, AP-1 and IRFs) and activation in response to exogenous stimuli (Lawrence and 

Natoli) (see Figure 7.5). 
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Figure 7.5 PRGs and SRGs promoters, sequence and chromatin features. Primary 
response genes are regulated mainly by nuclear factor-κB (NF-κB) and interferon-
regulatory factor (IRF) proteins. Secondary response genes are mainly induced by 
transcription factors induced in the primary response, such as CCAAT/enhancer-binding 
protein-δ (C/EBPδ) (Medzhitov and Horng, 2009a). 

 

Secondary response genes (SRGs), such as interleukin (Il-6), nitric oxide synthase (Nos2), 

interleukin-12b (Il-12b) and some of the primary response genes, usually the slowest 

responding to LPS, such as CC-chemokine ligand 5 (Ccl5), display well-positioned 

nucleosomes at their promoters. Promoters of SRGs do not contain CpG islands and 

require a stimulus-regulated chromatin-remodeling step for the recruitment of crucial 

transcription factors (such as NF-κB) and eventually RNA polII (Hargreaves et al., 2009; 

Ramirez-Carrozzi et al., 2009). Moreover, in a de novo protein synthesis dependent way, 

the multi-molecular complex SWI/SNF is required to remodel chromatin conformation and 

make genomic DNA more accessible to transcription factor binding sites (Clapier and 

Cairns, 2009; Weinmann et al., 1999). SWI/SNF uses the energy of ATP hydrolysis to 

catalyze changes in nucleosome conformation (Imbalzano et al., 1994; Kwon et al., 1994; 

Ramirez-Carrozzi et al., 2009; Ramirez-Carrozzi et al., 2006) and it is recruited in response 

to specific transcription factors (Ramirez-Carrozzi et al., 2006) able to recognize their 

binding sites also in a condensed chromatin and capable to interact with the SWI/SNF 
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complex (Ramirez-Carrozzi et al., 2009; Ramirez-Carrozzi et al., 2006). Retroviral 

delivery of short hairpin RNA against the core Brg1 and Brm ATPase subunits of the 

SWI/SNF complexes compromise only the induction of the secondary response genes and 

primary responsive ones with delayed kinetics (Ramirez-Carrozzi et al., 2006). Moreover, 

SWI/SNF-independent promoters also exhibited constitutively high histone acetylation and 

histone H3K4 trimethylation, as mentioned before, suggesting that these promoters have a 

chromatin conformation similar to the one found in promoters of active genes (Ramirez-

Carrozzi et al., 2009; Ramirez-Carrozzi et al., 2006). Moreover, thanks to a temporal 

profiling of nascent transcripts in LPS stimulated macrophages, it has been recently 

confirmed that rapidly induced genes contain CpG-island promoters. However, 36–58% of 

SRG and PRG with delayed kinetics genes also contain CpG-island promoters, as well as 

high levels of H3K4me3, and RNA polymerase II association in unstimulated cells. 

Interestingly, non-CpG island genes are induced by a higher magnitude after stimulation 

respect to CpG island-containing genes, probably because of the control in the basal state 

operated by specific TFs (Bhatt et al., 2012). In LPS-stimulated cells, several promoters of 

the SWI/SNF dependent genes contain IRF3 consensus binding sites (Ramirez-Carrozzi et 

al., 2009). IRF3 is activated by Toll-like receptor 4 (TLR4) through TIR domain-

containing adaptor protein inducing IFN-β (TRIF) (Ramirez-Carrozzi et al., 2009). In 

IRF3-/- mice, promoters of the same genes are insensitive to restriction enzyme 

accessibility, suggesting that IRF contribute to nucleosome remodeling at these genomic 

sites (Ramirez-Carrozzi et al., 2009). In conclusion, genes displaying different states and 

modes of response to stimulation are predetermined by specific sequence features of their 

promoters (see Figure 7.5).  

Moreover, promoter states of inflammatory genes are regulated by additional mechanisms, 

including the post-translational modification of their nucleosomes. Refractory genes to 

acute induction by inflammatory stimuli are characterized by the presence of negative 

marks such as trimethylation of the histone 3 in lysine 9 and 27 (H3K9me3 and 
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H3K27me3), absence of positive marks, and inaccessibility of DNA at their promoters. 

Genes ready to be transcribed, but not in an active state are named poised and they are 

characterized by the presence of activating histone marks (H3K4me3, H3-H4Ac), a more 

relaxed chromatin conformation, and in some cases, a pre-bound RNA polymerase II (Pol 

II) is stalled near the transcription start site (TSS). Poised genes are kept transcriptionally 

silenced by co-presence of repressive histone marks, co-repressor complexes, and partially 

closed chromatin that requires additional positive histone marks and ATP-dependent 

nucleosome remodeling to provide full accessibility for transcription factors. In 

conclusion, actively transcribed genes are marked by active histone modifications, open 

chromatin configuration and ongoing transcription (Ivashkiv). 

It has been recently demonstrated in LPS-treated macrophages that dynamic changes in 

chromatin modifications correlate with transcriptional regulation, thus determining 

accessibility and binding of LPS recruited transcription factors, such as NF-kB, STATs 

and IRFs (Ghisletti et al.; Natoli). The epigenetic landscape, established during 

macrophages differentiation by master transcription factors at these genetic loci, can be 

remodeled under pro-inflammatory and polarizing stimuli (as it will be explained in more 

detailed in the following section). Accordingly, the pre-established epigenetic landscape 

helps integrate signaling over time and underlies reprogramming of cells to alter their gene 

expression responses to subsequent stimuli (Ghisletti et al.; Heinz et al.; Ivashkiv; Jin et 

al.; Natoli; Natoli et al.; Pham et al.). Transcription of inflammatory cytokines is kept 

silenced until macrophages are not properly activated by pro-inflammatory stimuli. Gene 

loci are controlled by repressors such as B cell leukemia (BCL)6 and nuclear receptors that 

recruit co-repressor complexes containing histone deacetylases (HDACs) and histone 

demethylases, thus limiting the amount of positive histone marks (Barish et al.; Glass and 

Saijo). Moreover, as it has been mentioned previously, chromatin of silenced genes is in a 

closed conformation and it is marked by negative histone modifications (H3K9me3, 

H3K27me3 and sometime also by H3K20me3) (Ramirez-Carrozzi et al., 2009; Stender et 
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al.). Once macrophages are stimulated with a pro-inflammatory stimulus, negative histone 

marks are erased by demethylases such as JMJD3, JMJD2d, AOF1, and PHF2, repressors 

and co-repressors are released and, as in the case of secondary responsive genes, chromatin 

is remodelled by SWI/SNF complexes. All together, these events allow the binding of 

signaling transcription factors to their promoters, the increasing of positive histone marks 

(mainly H3K4me3 and acetylation of histone H4) and the releasing of elongating Pol II 

(Adelman et al., 2009; De Santa et al., 2009; Hargreaves et al., 2009; Ramirez-Carrozzi et 

al., 2009; Ramirez-Carrozzi et al., 2006; Stender et al.; van Essen et al.).  

  

7.3.3 Enhancer regulation of inflammatory gene 
expression 
 

Inducible genes are regulated by a promoter located immediately upstream to the 

Transcription Start Site (TSS) and by one or more enhancers. These genomic elements 

generate a kind of platform for specific DNA-binding proteins, which recognize specific 

DNA consensus sequences. In the past, many studies were focused on the analysis of 

promoters, since they can be easily identified, being close to the TSS of each gene. Thanks 

to the recent technological advances, distant enhancers have now been identified for a 

number of pro-inflammatory genes (Ghisletti et al., 2010b). Macrophage immune response 

is finely regulated by the collaboration between promoters and enhancers, through a 

physical contact mediated by specific transcription factors (Nolis et al., 2009). 

Enhancers are distal regulatory elements located at variable distances from the 

transcription start site of the genes they regulate (Bulger and Groudine). They interact with 

the promoters of regulated genes and are major players in the tissue-specific gene 

regulation (Natoli). Technological advances in experimental techniques have been applied 

to identify and characterize enhancers. In particular, DNase I- hypersensitivity based 

approaches, or the formaldehyde assisted isolation of regulatory elements (FAIRE) assay, 

which allows the recovery of the soluble (i.e., nucleosome-free) fraction of the chromatin, 
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and the combination of chromatin immunoprecipitation (ChIP) with massively parallel 

short read high throughput sequencing (ChIP-seq), along with the progression of 

computational tools, allowed to have a genome wide mapping of the cis-regulatory 

elements, transcription factor (TF) functions and epigenetic processes involved in the 

regulation of gene transcription (Hesselberth et al., 2009; Kidder et al.; Zhou et al.) 

(Crawford et al., 2006) (Crawford et al., 2006; Gaulton et al.; Giresi et al., 2007; 

Mendenhall and Bernstein, 2008; Sabo et al., 2006) (Roy et al.) (Ernst et al.) (Rosenbloom 

et al.). The profiling of the genomic distributions of histone modifications revealed a 

peculiar chromatin signature of enhancers. Precisely, enhancers are characterized by high 

level of monomethylation of histone H3 lysine 4 (H3K4me1) and low level of 

trimethylation of the same residue (H3K4me3), which is instead high at promoters 

(Heintzman et al., 2007; Pennacchio et al., 2007; Visel et al., 2009). They are bound by 

tissues and signaling specific transcription factors (such as PU.1) and histone acetyl 

transferases, such as p300, and show active transcription of the so called eRNA (RNA 

associated to enhancers region) (De Santa et al.; Ghisletti et al.; Heinz et al.; Jin et al.; 

Natoli and Andrau). Furthermore, subsequent studies showed that H3K4me1 distributions 

are highly cell type-specific (Heintzman et al., 2009; Heintzman et al., 2007; Xi et al., 

2007). These findings indicate the essential role of enhancers in driving cell-type-specific 

gene expression programs, rather than promoters, which tend to be invariant across cell 

types. Furthermore, other studies demonstrated that enhancers, along with the peculiar 

chromatin signature, are characterized by a distinctive nucleosomal structure, being 

enriched in non-canonical histone variants, mainly the H2A variant H2A.Z (Calo and 

Wysocka, 2013; Zlatanova and Thakar, 2008). Depending on their chromatin signature, 

enhancers have been classified as active, poised and intermediate (Creyghton et al.; Rada-

Iglesias et al.). Active enhancers are characterized by a high level of H3K4me1 and 

H3K27ac, while inactive enhancers display H3K4me1 only. We can further distinguish 

inactive from poised enhancers, which display high levels of H3K4me1, sometimes 
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positive for H3K27me3 mark and negative for H3K27Ac, but they can be activated upon 

stimulation (Zentner et al.). In macrophages, histone acetyltransferases (like p300) are 

recruited to specific subsets of enhancers that are activated by LPS (Ghisletti et al., 2010a). 

Moreover, a recent genome-wide analysis confirmed that thousands of cis-regulatory 

regions gain H4 acetylation upon the pro-inflammatory stimulus LPS (Chen et al.). 

HDAC3 knock out mice show almost completely absence of LPS-induced histone 

acetylation, suggesting a role for the histone deacetylase HDAC3 in regulating acetylation 

levels at a subset of genomic regions (Chen et al.). ChIP-seq studies in macrophages 

showed that almost the entire repertoire of enhancers is constitutively bound by PU.1, a 

transcription factor constantly expressed at high levels in macrophages and required to 

induce and to maintain macrophage differentiation (Ghisletti et al.). Interestingly, although 

macrophages´ cis-regulatory regions are driven by Pu.1 and defined during differentiation, 

it has been recently shown that this landscape is plastic and can be expanded upon 

environmental insult (Ostuni et al., 2013). In this study, a new set of genomic regions that 

gained characteristics of enhancers de novo in response to stimulus were termed “latent 

enhancers” (Ostuni et al.). These results indicated that cells can acquire new functional 

properties and could incur in a partial remodelling of the available regulatory regions. 

These latent enhancers are distal regulatory elements unmarked in the unperturbed state, 

while they are marked by the master regulator PU.1 and stimulus-specific transcription 

factors only upon stimulation (Ostuni et al.). In this study, PU.1 can bind latent enhancers 

only by cooperating with other TFs activated by stimulation (e.g. STAT1 and STAT6), 

since these regulatory regions have a low affinity binding site for PU.1 (Ostuni et al.) 

(Figure 7.6). 
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Figure 7.6 Latent enhancers. Latent enhancers are regulatory elements unmarked and 
unbound in differentiated cells that are generated by stimulus-dependent TFs. Latent 
enhancers may confer short-term memory of environmental exposure (Ostuni et al., 2013). 
 
This suggests that cells benefit of a particular repertoire of enhancers specifically 

established to regulate the appropriate gene expression program under perturbed condition. 

These enhancers have a mechanism of induction and activity that is radically different 

from the one of classical enhancers, established during differentiation by cooperative 

binding of lineage-determining TFs. Moreover, in vitro, washout of the stimulus resulted in 

rapid loss of acetylation and Pu.1 occupancy, whereas residual H3K4me1 was sustained, 

thus providing an epigenomic memory of the initial perturbation (Ostuni et al.). Moreover, 

two very recent papers demonstrated that, despite their common origin, tissue resident 

macrophages gained a different set of enhancers in response to different 

microenvironmetal stimuli. Indeed, RNA-seq and ChIP-seq experiments demonstrated that 

tissue resident macrophages differentially use a common set of enhancers to induce the 

transcription of differential PU.1 partners, whose activity leads to the generation of an 

environmental specific repertoire of enhancers (Lavin et al., 2014) (Gosselin et al., 2014). 
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7.3.4 PU.1 is the master myeloid regulator that 
controls the genomic regulatory landscape in 
macrophages  

 
PU.1 (Purine-rich box 1) is a tissue-specific ets-family member that is expressed 

exclusively in cells of the hematopoietic lineage (Scott R.McKercher, 1996). Pu.1 is 

characterized by three domains: the DNA binding domain (ETS domain), with 85 highly 

conserved amino acids that recognize a purine-rich DNA site containing the core sequence 

5’-GGAA/T-3’; the transactivation domain, rich in glutamine and acidic residues, and the 

PEST domain, necessary for the protein-protein interaction and PU.1 turnover (McKercher 

et al., 1996; Scott et al., 1994). PU.1-/- mice die of severe septicemia within 48h from their 

birth, because of their lack of mature macrophages, neutrophils, B cells and T cells 

(DeKoter et al., 1998; Scott R.McKercher, 1996). Pu.1 is expressed from very early stages 

of hematopoietic differentiation (Back et al., 2005) and it affects the cell fate determination 

in a context- and dose- dependent fashion (DeKoter and Singh, 2000). Indeed, Pu.1 

expression increases along the myeloid lineage, reaching its maximum level in monocytes. 

High levels of PU.1 favour macrophage development, whereas low levels of PU.1, about 

ten-fold lower than in macrophages, are associated with B-cell development (Bakri et al., 

2005; Carotta et al., 2010; Dahl et al., 2003).  

It has been demonstrated that PU.1 is not only fundamental for macrophage differentiation, 

but it defines also almost the entire macrophage’s cistrome (Ghisletti et al., 2010). 

Genome-wide mapping of PU.1 occupancy revealed that its distribution is widespread in 

the macrophage genome (Ghisletti et al., 2010a; Heinz et al., 2010b). PU.1 binds thousands 

of H3K4me1 positive regions and displays a particular distribution in macrophages. 

Indeed, B cells show a completely different PU.1 localization, leading to different cell-type 

specific enhancer repertoires. (Ghisletti et al., 2010a; Heinz et al., 2010b). Considering the 

very early expression of PU.1, it has been proposed and then proved the hypothesis of 

PU.1 as transcription factor with pioneering activity. Pioneer factors are functionally 
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defined as sequence-specific DNA-binding proteins able to bind to their target sites when 

embedded in a nucleosomal context that is not permissive for binding of other TFs (Zaret 

and Carroll). Pioneer factors controls both the expression of inducible genes in mature 

cells and genes involved in the differentiation program of developing cells (Zaret and 

Carroll). It has been demonstrated that PU.1 can trigger a partial reprogramming of non-

myeloid cells to macrophage phenotype. Fibroblast ectopic expression of PU.1 drives the 

deposition of H3K4me1 in regions originally devoiding of this mark (Ghisletti et al., 

2010). Moreover, these data have been supported by an independent study, in which PU.1 

was fused to the estrogen receptor ligand-binding domain. Upon cell treatment with 

tamoxifen, PU.1 positive sites gained H3K4me1 (Heinz et al., 2010). Very recently, it has 

been demonstrated that PU.1 is involved in the displacement of nucleosomes, thus 

generating accessible stretches of DNA sequences and the binding of other TFs that would 

otherwise be unable to invade nucleosomal DNA (Barozzi et al., 2014; Ghisletti et al., 

2010b; Heinz et al., 2010a). Aforementioned PU.1 properties suggest its possible role in 

mediating looping between enhancers and promoters of the regulated genes. PU.1 regulates 

its own expression in hematopoietic stem cells by binding to its upstream regulatory region 

(Xi et al.) and triggering the formation of a chromosomal loop (Staber et al., 2013). 

Moreover, Pu.1 expression results to be necessary for inducing Irf8 production in dendritic 

cell progenitors. PU.1 is indeed involved in mediating the looping between a distant 

enhancer and the Irf8 promoter (Schonheit et al., 2013). How PU.1 cooperates with other 

transcription factors in order to mediate its functions is not fully understood. However, a 

genome wide study on dendritic cells showed how 25 transcription factors are distributed 

upon LPS treatment and how they temporally bind their sites. Being broadly distributed, 

PU.1 results to be included in the first class of TFs. Due to their widespread distribution, 

these TFs are very likely the chromatin openers which mediate the binding of a second 

class of TFs, primer TFs. Primer TFs, such as Junb, Irf4 and Atf3 are constitutively bound 

to DNA and they may dispose for the inducible responses. Lastly, effector TFs, NF-kB, 
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IRF, AP-1 and the STAT family members among the others, are induced upon stimulation 

and they coordinate the expression of specific groups of pro-inflammatory genes (Biddie et 

al., 2011; Garber et al., 2012; Natoli, 2010). Therefore, the potential for pro-inflammatory 

genes to be transcriptionally induced is established before stimulation by binding of TF 

subsets to their genomic cis-regulatory regions (Garber et al., 2012).  

 

7.4 Endotoxin tolerance, a complex transcriptional 
inflammatory response 
 

After an inflammatory stimulus, the expression of several hundred genes is either induced 

or repressed in macrophages (Ramsey et al., 2008) (Ravasi et al., 2007). This complex 

transcriptional response consists of multiple gene sets, or transcriptional modules, which 

encode different functional programs and that are often controlled by dedicated 

transcription factors. This feature enables autonomous control of individual transcriptional 

modules, because the transcriptional regulators that control their expression can be 

differentially regulated by positive and negative signals.  

One of the clearest examples of module-specific transcriptional regulation is provided by 

LPS tolerance. LPS/Endotoxin (ET) tolerance is a state of hypo-responsiveness to LPS 

(and other microbial stimuli) that is induced during conditions of sustained inflammation 

to limit inflammation-associated pathology. Edotoxin Tolerance has been described for the 

first time by Paul Beeson in 1946. He observed that repeated injection of typhoid vaccine 

in rabbits leads to a progressive reduction of fever induced by vaccination (Foster & 

Medzhitov, 2009). Similarly, mice, injected with a sublethal dose of lipopolysaccharide 

(LPS) were protected from a subsequent and otherwise lethal dose of LPS (Cavaillon & 

Adib-Conquy, 2006). Moreover, this study also demostrated that monocytes/macrophages 

are the principal cells responsible for the induction of ET in vivo. 
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Macrophages under the state of tolerance, meaning that they have been stimulated for 

some hours with a pro-inflammatory stimulus, are unable to express inflammatory genes, 

such as tumor necrosis factor alpha (TNFα), interleukin-1 beta (Il-1β), and interleukin-6 

(IL-6), when re-challenged with a second dose of LPS. However, they are still capable of 

inducing the expression of other genes such as IL-10 and IRAK-M (or IRAK3, a negative 

regulator of the TLR4 pathway, which mediates LPS signaling) (Porta et al., 2009b) (see 

Figure 7.7).  

 

 

Figure 7.7 Phenotype of endotoxin tolerant monocyte/macrophage. Upon sustained 
LPS stimulation, macrophages display immunosuppression properties. From (Biswas and 
Lopez-Collazo, 2009). 
 
This is an anti-inflammatory state under sustained exposure to bacterial products like lipo-

polysaccharide (LPS), observed both in vitro and in vivo (Biswas and Lopez-Collazo, 

2009). Macrophages from septic patients or from animal models of sepsis display 

alterations in the pro-inflammatory cytokines production (Valledor et al., 2010). 

Macrophages of septic patients enter into this sustained hypo-responsive state that has been 

suggested to favor secondary infections (Greisman and Hornick, 1975; McCall et al., 1993) 

(Rutenburg et al., 1965) (Valledor et al., 2010) (McCall et al., 1993). Moreover, endotoxin 

tolerance has been observed in several diseases, not only in monocytes of septic patients, 



 42 

but also in patients suffering from diseases like cystic fibrosis, acute coronary occlusion 

and kidney ischemia (Biswas and Lopez-Collazo, 2009). In sepsis, endotoxin tolerance 

may contribute to limit the inflammatory reaction and to protect from shock, but at the 

same time it increases the risk of secondary infections, which are a major cause of death in 

patients recovering from sepsis. Finally, a state that is similar to endotoxin tolerance can be 

found in tumor-associated macrophages, which can be largely assimilated to alternatively 

activated macrophages with a poor ability to promote an anti-tumor inflammatory reaction 

(Mantovani and Sica). 

 

7.4.1 The endotoxin tolerance mechanisms 

 

The specific mechanisms underlying endotoxin tolerance are only partially understood. 

Despite that, it is clear that the mechanisms responsible for this phenomenon are 

multifactorial, and likely they involve negative feedbacks at multiple levels. Endotoxin 

tolerance may be partially explained by each one of the proposed following mechanisms: 

(Scott R.McKercher) the downregulation of the TLR4-mediated signaling pathway, (Scott 

R.McKercher) changing in the NF-kB subunit composition, (Scott R.McKercher) 

epigenetic modification of the regulatory elements involved in controlling the expression 

program and (Scott R.McKercher) microRNA-mediated regulation of the endotoxin 

tolerance phenotype.  

Regarding the first point, several studies have indicated defects in the TLR4 pathway. 

Multiple levels of the signaling pathway may be involved, starting from the receptor, 

adaptors, signaling molecules, and transcription factors (Biswas & Lopez-Collazo, 2009). 

For example, the desensitization of TLR4 and decrease in TLR4-MyD88 complex 

formation have been linked to tolerized macrophages (Fan & Cook, 2004; Biswas & 

Tergaonkar, 2007). Moreover, others groups suggested the involvement of negative 

mediators of the TLR4 downstream cascade, including both degradation of proximal 
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signaling molecules, such as IRAK1, or upregulation of negative regulators, including IL-1 

receptor-associated kinase M (IRAK-M), suppressor of cytokine signaling 1 (SOCS1), SC 

homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), nuclear factor of 

kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IkBa) and the human 

Mitogen-activated protein kinase phosphatase 1 (MKP1), a dual-specificity phosphoprotein 

phosphatase (Kobayashi et al., 2002) (Beutler, 2004; Sly et al., 2004) (Nakagawa et al., 

2002). Mice lacking IRAK-M, the inhibitor of the IRAK1/IRAK4 cascade, show an 

increased inflammatory response to bacterial infection and are unable to develop LPS 

tolerance upon sustained stimulation (Kobayashi et al., 2002). 

An impairment of the canonical p65/p50 NF-κB activity has been demonstrated in 

endotoxin-tolerant murine macrophages and human monocytes (Porta et al., 2009a) due to 

over-expression of p50 NF-κB homodimers, which lack the transactivation domain and 

thus cannot trigger transcription when binding to gene promoters (Porta et al., 2009a). In 

agreement with this hypothesis, p50-/- murine macrophages cannot undergo to tolerization 

upon sustained treatment with LPS (Bohuslav et al.,1998; Wysocka et al., 2001).  

Micro-RNAs (miRNAs) have emerged as key players in selectively silencing the 

intermediates of TLR signaling cascade. MicroRNAs are a class of endogenous non-

coding RNAs highly conserved throughout evolution, which modulate the expression of 

specific genes by controlling the stability and/or the translation of target mRNAs 

(Monticelli et al., 2005) (Bartel, 2004) (El Gazzar and McCall, 2010) (Nahid et al., 2009). 

In the endotoxin tolerant state, miR146 is up-regulated and it has been suggested to be 

involved in targeting IRAK1 and TRAF6, thus preventing NF-κB activation (Nahid et al., 

2009). 

Some works have proposed the explanation that epigenetic mechanisms may explain the 

gene-specific nature of tolerance (Chen and Ivashkiv; Foster et al., 2007; Park et al.). 

Promoters of tolerized genes display a less grade of accessibility, due to a lower level of 

active histone marks and the reduced recruitment of Brg1 nucleosome-remodeling 
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complexes. By contrast, promoters of non-tolerized genes (genes that remain active) are 

characterized by a high level of active histone marks and an open chromatin conformation 

(Foster et al., 2007). This has been shown both in vitro and in vivo in peripheral blood 

monocytes from septic patients, where the promoters of IL-1β and TNFα are enriched in 

repressive chromatin marks, thus reducing the ability of the macrophage to respond to 

subsequent LPS challenges. In addition, the H3K9 histone methyltransferase G9a can bind 

the TNFα promoter during the induction of LPS tolerance and direct DNA methylation via 

the HP1-dependent recruitment of the DNA methylase Dmnt3a/b, restricting the 

transcriptional activation of those genes (Chen and Ivashkiv, 2010). 

Of note, very recently it has been shown that also tryptophan catabolism is involved in the 

establishment of ET. LPS treatment leads to the activation of the ligand-operated 

transcription factor aryl hydrocarbon receptor (Sia et al.) and the hepatic enzyme 

tryptophan 2,3-dioxygenase, which downregulate early inflammatory gene expression. 

IDO-/- (indoleamine 2,3-dioxygenase 1 knockout mice) display impaired AhR ability to 

mediate long-term regulation of systemic inflammation, thus suggesting a collaborative 

role in mediating the tolerance state {Bessede, 2014 #657}. 

.   
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8 Aims of the work 

Macrophage transition from pro-inflammatory to an anti-inflammatory phenotype, 

occurring in response to sustained microbial stimulation (endotoxin tolerance), is 

characterized by the reduced ability to produce inflammatory mediators. This property of 

macrophages is believed to have an important protective role in the short term, in that it 

reduces the local and systemic consequences of an excessive acute production of 

inflammatory molecules (Biswas and Lopez-Collazo, 2009; Medvedev et al., 2006). At the 

same time, since endotoxin tolerance is a long-lasting phenomenon, in some cases it 

amplifies the ability of the organism to defend from microbes thus favoring the frequent 

occurrence of secondary infections with a high mortality rate in patients recovering from 

sepsis. Therefore, understanding the molecular bases of macrophage reprogramming 

during the course of a sustained inflammatory response is a relevant objective that may 

have a major impact on the understanding of a whole group of disease states characterized 

by sustained inflammation.  

The objective of this project is to understand how the macrophage genome is 

reprogrammed into an anti-inflammatory state in response to prolonged microbial 

stimulation. This will provide a glimpse onto the deepest molecular roots of endotoxin 

tolerance and macrophage reprogramming.  

The project is based on the use of an ex vivo model of macrophage (bone marrow-derived 

macrophages) reprogramming in response to sustained endotoxin stimulation. We have 

applied cutting-edge genomic technologies to map regulatory regions (ChIP-seq), as well 

as nascent RNA-seq, to characterize cis-regulatory regions and genes that are differentially 

active in unperturbed, LPS-stimulated and LPS-tolerized primary mouse bone marrow-

derived macrophages (BMDM). We characterized promoter and enhancer states by 

mapping methylation and acetylation of histones and we identified differentially expressed 
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genes by nascent RNA profiling. We clustered genes into different subsets based on their 

transcriptional profiles and assigned them to enhancers with correlated dynamic behaviors.  

Once genomic regulatory regions that displayed a different state of activity in alternatively 

stimulated macropahges have been identified, we computationally analyzed the data in 

order to identify the underlying genomic determinants of diversity, namely the specific 

composition of transcription factor (TF) binding sites that account for their diverse activity 

in different functional states. These approaches provided a characterization of the genomic 

bases for the activation of alternative gene expression programs from the same 

macrophage genome. 
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9 Material and Methods 

9.1 Cells and Reagents 

Animal experiments were performed in accordance with the Italian Law (D.L.vo 116/92), 

which enforce the EU 86/609 Directive. Bone marrow-derived macrophages (BMDM) 

were isolated from 8-10 weeks old C57/BL6N (Charles River) mice and generated as 

previously described (De Santa et al., 2007). Briefly, bone marrow cells were isolated from 

mice bones and red blood cells were lysed by osmotic shock (1 minute of 0.2% of NaCl 

followed by a minute of 1.6% NaCl, in order to restore the osmotic physiological 

condition). After two washings in cold PBS, BM cells were resuspended in BM medium 

(DMEM supplemented with 30% L929-conditioned medium containing M-CSF, 20% 

FBS, 2 mM glutamine, 100 U/ml penicillin 100 mg/ml streptomycin, 0.5% sodium 

pyruvate, 0.1% β-mercaptoethanol). Cells were then plated 1x106 cells in 10 ml of BM-

medium per 100 mm petri dish. Cells were harvested at day 7-8 of differentiation. Cells 

were then stimulated with 10 ng/ml of LPS from E.Coli serotype EH100 (Alexis) or with 

100 ng/ml for the tolerization protocol. Cells were subjected to 1 hour of washing out 

before restimulation. 

293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented 

with 10% heat-inactivated Fetal Bovine Serum (FBS), 2 mM glutamine, 100 U/ml 

penicillin and 100 mg/ml streptomycin. Cells were incubated at 37°C in a 5% CO2 

humidified atmosphere. 

P50-/- macrophages were obtained by p50-/- mice, gently given by A. Sica (Saccani et al., 

2006)  

 

 

9.2 Lentiviral mediated KD 
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9.2.1 Lentiviral Constructs and Production of 
lentivirus 

pLKO.1 ShIRF7, kindly given by I. Amit, was used and IRF7-KD was validated with RT-

qPCR, using expression primers for Irf7 NM_016850 

 FORWARD  CCAGTTGATCCGCATAAGGT 

 REVERSE  GCAGAACCTGAAGCAAGAGG 

293T packaging cells were co-transfected with 6 µg of psPAX8 (encoding viral proteins 

for packaging of viral particles), 3 µg of pMD2.G (encoding the VSV-G envelope protein 

and triggers the entry of the virus in the cell to infect) and 8 µg of either plko.1 scrambled 

luc-sequence or the vector containing the irf7-directed shRNA-sequence. 293T cells were 

transfected with the CaCl2 strategy. DNA was mixed in 500 ul of water containing 62,5 ul 

of 2M CaCl2 and dissolved drop by drop onto 500 ul of Henk’s balanced salts solution 

(HBSS). 1 ml of transfection mix was added to each plate of 293T cells and left 

unperturbed for 6-8 hours. Supernatants from transfected 293T cells were collected at 48 h 

post-transfection and immediately used for infections. 

 

9.2.2 Lentiviral Transduction of Bone Marrow-
Derived Macrophages 
 

On day 0, bone marrow cells were isolated and 1,5x106 cells were seeded on a 100 mm 

plates in BM medium. On days 5 and 6 cells were infected for two consecutive days (1 

infection per day). In detail, the BM medium was removed, and the lentiviral containing 

supernatants, supplemented with 8 µg/ml polybrene and 8 µl/ml of 1 M HEPES pH 7.5, 

were added. After 8 hours, the virus-containing medium was gently removed and replaced 

by fresh BM medium. Puromycin selection (3 µg/ml) started on day 7. Assays were carried 

out at day 9. 

 

9.3 Chromatin Immunoprecipitation and Sequencing 
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(ChIP-Seq) 
 
The purpose of the ChIP assay is to determine whether a protein binds to a particular 

genomic region on chromatin. DNA-binding proteins can be covalently cross-linked to the 

chromatin, in order to fix a precise genomic localization of the protein. Cells are then lysed 

and the DNA is sheared into small fragments (around 250 bp) by sonication. 

Immunoprecipitation of Protein-DNA complexes is obtained by using specific antibodies 

and, after cross-linking reversion, the DNA can be purified. Immunoprecipitated DNA is 

identified either by PCR, using sequence-specific primers or by genome sequencing (ChIP-

seq), leading to the entire genomic localization of the protein. 

 

9.3.1 Chromatin Immunoprecipitation (ChIP) 

 

ChIP was carried out using a protocol previously described in our lab (Ghisletti et al., 

2010b). 20×106 (ChIP-seq for histone marks and Pu.1) or 100×106 (ChIP-seq for RNA Pol 

II) macrophages were fixed with 1% of formadehyde in BMDM-medium for 10 minutes. 

The cross-linking was stopped by the addition of Tris-HCl pH 7.6 for 5 minutes. Cells 

were washed three times with cold PBS, collected using a silicon scraper, pooled in a 50 

ml Falcon tube and spun at 1,500 rpm for 5 min. Chromatin was obtained with a three step 

lysis as described in the paper cited above. Briefly, pelleted cells were resuspended in LB1 

buffer (50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-

40, 0.25% Triton X-100), kept 10 min on ice to lyse the plasmamembrane and centrifuged 

at 2500 rpm for 5 min. Pelleted nuclei were washed in LB2 buffer (10 mM Tris-HCl pH 

8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) for 10 min at RT under gentle rocking 

to remove residuals of detergents and then centrifuged at 2500 rpm for 5 min. Finally, 

pellets were resuspended in LB3 buffer (10 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine). The chromatin 



 50 

was shared by sonication (amplitude 30%, 30 sec, 5-7 cycles) and the size of the DNA 

fragments was checked extracting DNA from a small aliquot (30 µl) of the suspension and 

loading it on a 1.5% agarose gel. After addition of 1% Triton X-100, the solution was 

centrifuged at max speed for 10 minutes, in order to remove cellular debris. A 50 µl aliquot 

of cell lysate was saved as whole-cell extract (WCE) and used as ChIP input. While, the 

remaining lysate was incubated overnight at 4°C with paramagnetic protein G Dynabeads 

(Invitrogen), previously coupled with 3–10 µg of antibody in PBS/BSA 0.5%. All the 

centrifugation steps were carried out at 4°C and all lysis buffers were supplemented with 1 

mM PMSF, 10 µg/ml aprotinin and 10 µg/ml leupeptin; inibitors of the proteases. Ready-

to-use beads were added to the cell lysate and gently mixed on a rotating platform o.n. at 

4°C The day after, beads were collected using a magnetic and the supernatant was removed 

and discarded. The DNA-protein complex coupled to the beads was washed 6 times with 1 

ml of Washing Buffer/RIPA modified buffer (50mM HEPES pH7.6, 500 mM LiCl, 1 mM 

EDTA, 1% NP-40, 0,7% Na-deoxycholate) for 5 min on ice, and once with 1 ml TE/50 

mM NaCl. All the procedures was performed on ice. Beads were then centrifuged at 3000 

rpm for 3 minutes at 4°C and TE buffer was discarded in order to proceed with DNA-

protein complex elution. DNA was eluted with 250 µl elution buffer (TE/SDS 2%) at 65°C 

for 15 minutes under shaking. After a centrifugation at maximum speed for 1 minute, 

beads were pulled down and the 240 ul of supernatant was collected and transferred to a 

new tube where DNA was decrosslinked overnight at 65°C in TE/2%SDS, along with the 

previously conserved WCE, supplemented with 3 volumes of elution buffer. Finally, DNA 

was diluted five-fold with PB buffer (Qiagen) and incubated 30 minutes at 37°C under 

shaking condition and purified with Qiaquick columns (Qiagen) and quantified with 

PicoGreen (Invitrogen), following manufacturer’s instructions. 

 

9.3.2 ChIP-qPCR 
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For ChIP-QPCR validation, 0,2 µl of purified DNA and 200 nM primers, diluted in a final 

volume of 20 µL in SYBR Green Fast Reaction Mix (Applied Biosystems), were used. 

Accumulation of fluorescent products was monitored for 40 cycles by real-time PCR using 

both the 7500 or 7900HT Fast Real-Time PCR System (Applied Biosystems). Each primer 

pair used in this study has been tested for linear amplification, on at least three 8-fold 

dilutions of genomic DNA and each PCR reaction generated only one specific amplicon, 

as revealed by the melting temperature profile of final products (dissociation curve). QPCR 

detection system was updated with the Fast SYBR Green Master Mix during the course of 

the presented work and the PCR cycle settings adjusted following manufacturers´ 

instructions. 

 

9.3.3 ChIP-sequencing procedure 
 
ChIP DNA was prepared for HiSeq 2000 sequencing system (Illumina) using the TruSeq 

ChIP preparation protocol (Illumina) consisting of blunting, addition of 3’-dA-overhangs, 

ligation of Illumina adapters and PCR amplification. ChIP-seq libraries were quantified 

with Agilent Bioanalyzer and cluster generation was performed hybridizing samples onto 

flow cells and amplifying them for later single-end multiplex-sequencing (36 nt) on the 

HiSeq 2000. Non-duplicated sequence-read tags with mapping quality higher than 20 were 

aligned to mm9 assembly using Fish-The-ChIP pipeline (Natoli et al., 2011). Briefly, short 

reads were subjected to quality controls and aligned to a reference genome. Obtained peaks 

were identified, annotated respect to the reference genome, and raw signal tracks were 

generated for visualization on the UCSC and IGV genome browsers. 

 

9.3.4 Chip-seq Analyses 

Non-duplicated sequence-read tags with mapping quality higher than 20 were aligned to 

the mm9 release of the murine genome using Bowtie v0.12.7 (Langmead et al., 2009). 
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Only unique alignments were retained, allowing up to two mismatches compared to the 

reference genome (options -m 1 -v 2). Peak calling was performed using MACS v1.4 

(Zhang et al., 2008). Each IP was compared to input DNA derived from bone marrow-

derived macrophages. Chromatin state were obtained using ChromHMM (Ernst et al., 

2011) . ChromHMM is an approach for the learning and analysis of chromatin states using 

a multivariate Hidden Markov Model that explicitly models the observed combination of 

marks. We trained models using 4 to 16 chromatin states, separately for each time point. In 

all four cases, adding states further than 8 did not add any other significantly different 

state. We then used the 8-states model trained on the untreated data to derive a genome-

wide segmentation for the other time points. 

 

 

9.4 Nascent RNA-seq, Total RNA and miRNA RT-qPCR 

9.4.1 Nascent RNA extraction 
 

To mimic the acute phase response, macrophages were treated for 30 minutes, 1h, 2h, and 

4h with 10 ng/ml of LPS while tolerization was obtained treating the cells for 24h with 

LPS at 100 ng/ml. Tolerized cells were then washed out of the conditioned medium and 

left resting for an hour, before re-challenging them with fresh media containing 10 ng/ml 

of LPS for the same time points as in the priming phase. 

 
Chromatin associated RNA/nascent RNA was extracted in order to evaluate the 

transcriptional dynamicity of a specific gene. Nascent RNA is the immediately formed 

RNA, in which any post-transcriptional modification has occurred. Nascent RNA is 

obtained by cellular fractionation; cytosolic and nucleoplasmic fractions were discarded 

and only RNA associated to the chromatin fraction was retained and further analyzed.    

Nascent RNA was extracted from 20x106 cells for each time point according to the 

published protocol (Bhatt et al., 2012). Subcellular fractions were prepared as described 
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before (Pandya-Jones and Black, 2009), with minor changes. While petri dishes were kept 

on ice, cells were washed twice with 10 ml of cold PBS buffer. Cells were then scraped off 

with 4 ml of PBS containing RNase inhibitor (40 U/ml) and protease inhibitors. The cell 

suspension was centrifuged at 1500 rpm for 5 min at 4°C and supernatant was discarded. 

The obtained pellets were resuspended in 200 ul of CYTOPLASMIC LYSIS BUFFER (10 

mM Tris-HCl pH 7.5, 150 mM of NaCl and 0.15% NP-40 supplemented with 200 U/ml of 

RNase inhibitor in water) using wide orifice tips, pipetting up and down 15 times and 

incubating on ice for 5 minutes. The lysate was gently layered on top of 500 ul of a chilled 

SUCROSE CUSHION (24% w/v of sucrose dissolved in the cytoplasmic lysis buffer 

without NP-40) and centrifuged at 13,000 rpm for 10 min at 4°C. Once centrifuged, the 

supernatant containing the cytoplasmic fraction was carefully removed. The remaining 

nuclei pellets were washed briefly once in PBS with RNase inhibitor and spun at 3,500 

rpm for 5 min at 4°C. After centrifugation, supernatant was discarded and nuclei pellets 

were resuspended in 200 ul of pre-chilled GLYCEROL BUFFER (20 mM Tris-HCl pH 

7.9, 75 mM NaCl, 0.5 mM EDT in glycerol 50% supplemented with 0.85 mM DTT and 

200 U/ml RNase inhibitor) pipetting up and down 10 times. 200 ul of cold NUCLEI 

LYSIS BUFFER (20 mM HEPES pH7.6, 7.5 mM MgCl2, 0.2 mM EDTA, 300 mM NaCl, 

1M UREA, 1% NP-40 in water supplemented with 0.1 mM of DTT and Aprotinin, 

Leupeptin and PMSF (in order to block proteases activity and proceed with protein 

analysis) were added and carefully mixed pipetting up and down 4 times. Each tube was 

gently mixed on a vortex for 4 seconds and incubated on ice for 1 min. Once well 

resuspended, tubes were submitted to centrifugation at 13,000 rpm for 2 min at 4°C. The 

supernatant containing the nucleoplasmic fraction was discarded and the chromatin pellet 

was washed once in cold PBS with RNase inhibitor. The washed chromatin fraction was 

centrifuged and the supernatant was removed. 50 ul of cold PBS was added to the 

chromatin pellet, well mixed pipetting up and down and 5 ul were taken off for protein 

analysis. To the remaining 45 ul, 500 ul of TRIzol were added and mixed by vortex 



 54 

vigorously. RNA extraction was obtained combining the standard TRIzol protocol and the 

usage of Qiagen RNA extraction Kit. 100 ul of chloroform was added to the 500 ul of 

TRIzol and well mixed. Tubes were incubated at room temperature for 5 min and 

centrifuged at 13,000 rpm for 15 min at 4°C, in order to separate all the three phases 

(acqueous- inter- and organic phase). The upper aqueous phase, containing RNA, was 

collected and the RNA was purified on Qiagen columns following the standard protocols 

with DNase treatment.  

 

9.4.2 Nascent RNA sequencing procedures (libraries 
preparation) 
 

RNA’ integrity was verified by Bioanalyzer and libraries were prepared using conventional 

Illumina TruSeq RNA sample preparation Kit V2, with minor modification. Specifically, 

polyA enrichment was avoided and the protocol was initiated from the RNA fragmentation 

step and sequenced on a HiSeq 2000 following standard protocols (50 bp pair with a 

sequencing depth of 50M reads). Chromatin fraction purity was confirmed by immunoblot 

analysis of total histone H3 (enriched in the Chromatin fraction), Tubulin α, and HDAC1 

to exclude cytoplasmatic and nucleoplasmatic contamination. 

9.4.3 Nascent RNA-seq Analysis 

After quality filtering according to the Illumina pipeline, paired-end reads were aligned to 

the mm9 reference genome and to the Mus musculus transcriptome (RefSeq genes) using 

TopHat (Trapnell et al., 2010). Transcript abundance was quantified using Cufflinks 2.0.2 

then differentially expressed genes were identified using Cuffdiff 2.0.2 (Trapnell et al., 

2010). For each time point, LPS-induced genes were defined as those showing a 

significantly higher FPKM compared to untreated macrophages (p <= 0.05). Tracks for the 

UCSC genome browser were generated using the uniquely alignable reads. Tracks were 

linearly rescaled to the same sequencing depth. Data visualization was achieved as custom 

tracks on the UCSC genome browser. 
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9.4.4 Heatmap of nascent RNA-seq 

The heatmap shows the counts of the reads in each nascent RNA sample of the complete 

time course. The number of reads for each LPS-induced gene was normalized per 

kilobases of exons and millions of sequenced fragments (FPKM). For visualization 

purpose, those genes showing a FPKM of zero were set to the lowest expression level that 

could be measured (excluding zeros). All values were then log2-transformed and finally 

converted to z-scores on a gene-by-gene basis. 

9.4.5 RNA-seq clustering 

In order to avoid variability due to noise in lower counts, those genes showing a FPKM 

lower than 1 were set to 1. Log2-transformed values were used to hierarchically cluster the 

regions using average linkage and 1 minus Spearman Rank’s Correlation to measure the 

distance among the dynamic changes of expression of each gene against any other 

throughout the time-course. The resulting dendrogram was cut dissected using the R 

package dynamicTreeCut (Langfelder, 2008) using method="hybrid" and 

minClusterSize=20, resulting in 12 clusters. 

 

9.4.6 Total RNA extraction and cDNA synthesis 

Total RNA was extracted using both TRIzol (Invitrogen) or RNeasy kit (Qiagen), 

according to manufacturers´ instructions. RNA was quantified by ND-1000 

spectrophotometer (NanoDrop Technologies from ThermoScientific) and its quality was 

assessed by measuring A260/A280 and A260/A230 ratios. 

Complementary DNA (cDNA) was obtained by reverse transcription with the following 

protocol: 500 ng of RNA were reverse-transcribed using ImProm-II™ Reverse 

Transcription System (Promega) according to the manufacturer´s protocol. RNA was 
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mixed to 500 ng of Random Primers in RNase free water, in a total volume of 5 ul. Each 

tube was heated at 70°C for 5 minutes, in order to denature secondary structures of RNA. 

Tubes were immediately chilled on ice and briefly spun. The RNA mix was added to a 

second reaction mix containing 1x of ImProm-II reaction buffer, 25 mM of MgCl2, dNTPs 

(10 mM each) and 1 ul of ImProm-II Reverse transcriptase, for a total volum of 20 ul. 

After an incubation of 5 minutes at 25°C (annealing), the elongation was left to proceed at 

42°C for 1 hour. The transcriptase was inactivated at 70°C for 15 min. 12 ng of cDNA 

were used for quantitative real-time PCR amplification on an ABI 7500 machine using 

SYBR Green (Applied Biosystem). Relative gene expression was calculated by 

normalizing for the expression of the housekeeping gene TBP.  

Primers used for RT-qPCR are listed here: 

Ccl5 (NM_013653) 

Forward ACCATATGGCTCGGACACCACT 

Reverse ACCCACTTCTTCTCTGGGTTGG 

Il6 (NM_031168) 

Forward CCATAGCTACCTGGAGTACATG 

Reverse TGGAAATTGGGGTAGGAAGGAC 

TBP (NM_013684)  

Forward CTGGAATTGTACCGCAGCTT 

Reverse ATGATGACTGCAGCAAATCG.  

 

9.4.7 Total RNA-sequencing (PolyA RNA libraries 
preparation) 
 

mRNA-Seq library preparation from 2 µg of total RNA was performed with the TruSeq 

RNA Sample Prep kit V2 (Illumina) according to the manufacturer’s instruction and 

sequenced on a HiSeq 2000 following standard protocols, with paired-end 50-bp. For total 

RNA-seq analysis see point 9.4.2. 
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9.4.8 miRNA analysis  

For miRNA analysis, total RNA was extracted with TRIzol reagent (Invitrogen), and used 

to perform quantitative reverse transcription-PCR (qRT-PCR) using a miRNA reverse 

transcription kit and TaqMan miRNA assays from Applied Biosystems, following the 

manufacturer's instructions. Snor202 was used as control.  

 

9.5 Western blot analysis 

Cells were washed twice with PBS, collected in 1 ml PBS using a silicon scraper, and 

centrifuged at 1500 rpm 5 min at 4°C. (All centrifugation steps were performed at 4°C and 

52 (?) protease inhibitors - 1 mM PMSF, 10 µg/ml aprotinin and 10 µg/ml leupeptin - were 

added to all the lysis buffers).  

Pellets were resuspended in RIPA-modified buffer (50 mM Hepes-KOH pH 7.6, 500 mM 

LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-Deoxycholate) and lysed 10 min on ice. Cell 

lysates were sonicated twice for 15 sec, centrifuged 20 min at max speed to remove cell 

debris and supernatant was recovered as total protein extract. 30ug of total protein extracts 

were run on a 12% SDS-polyacrylamide gels and separated proteins were transferred to a 

nitrocellulose membrane. After blocking for 1 h in TBST containing 5% of milk, each 

membrane was incubated over night at 4°C with the primary antibodies listed below. 

Infrared conjugated antibodies from Biosciences were used to detect the specific band 

using LICOR technology. α –tubulin was used as loading control. 

 

9.6 Antibodies 

Antibodies against H3K4me1 (ab8895), H3K27Ac (ab4729), H3K9me3 (ab8898), total H3 

(ab1791) and GAPDH (ab9485) were from Abcam. Anti-H3K4me3 (39159) and H4Ac 

(pan-acetyl) (39243) were from Active Motif. Anti-RNA Pol II (sc-899), and IkB-a (C21) 
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(sc-371), TRAF6 (H-274) (sc-7221), HDAC1 (H51) (sc-7872) were from Santa Cruz. 

Anti-pIRF3(Ser396) (49475), Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) were from 

Cell Signaling. Anti Tubulin-α (T9026) was from Sigma-Aldrich. The anti-Pu.1 rabbit 

polyclonal antibody was generated in-house against the N-terminus of Pu.1 (aa. 1-100; 

NP_035485.1). IRDye 800 and 680CW secondary antibodies were used for WB 

experiment.  

 

9.7 Gene ontology analysis 

Gene ontology analysis was performed for each time point. We interrogated DAVID 

(Huang da et al., 2009) and we considered all the terms significantly enriched (Benjamini-

Hochberg corrected p-values ≤ 0.05) for the following ontologies: GO Biological Process 

and GO Molecular Function. FDRs were log10-transformed and the results represented as 

histograms. 

 

9.8 Motifs Enrichment Analysis 

In order to identify over-represented motifs corresponding to known TF binding sites, 

pscan (Zambelli et al., 2009) was run on the promoter regions (-500, +250 base pairs from 

the annotated TSSs) of the genes belonging to each cluster. Statistically significant over-

represented PWMs were identified using the TSSs (defined on the same window) of the 

entire set of RefSeq genes. 
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10 Results 

10.1 Clusters of sustained and transient gene activation 

identified in tolerized macrophages by RNA-seq analysis 

 

In order to define and mechanistically dissect how the switch in the macrophage gene 

expression program during sustained inflammation in vivo is controlled by the global 

reorganization of the macrophage genomic landscape, we used the endotoxin tolerance 

model. Endotoxin tolerance is a long-lasting phenomenon, in which a sustained 

inflammatory response leads to a global rearrangement of the macrophage gene expression 

profiling (Foster et al., 2007). To characterize genes that are differentially expressed in 

unperturbed, LPS-stimulated and LPS-tolerized primary mouse bone marrow derived 

macrophages (BMDM), we used an ex vivo model of endotoxin tolerance, in which cells 

were left untreated, stimulated for 4 hours with 10 ng/ml of LPS or treated for 24 hours 

with 100 ng/ml of LPS and then challenged with a new dose of LPS (10 ng/ml) (Figure 

10.1).  

 

 

Figure 10.1 LPS tolerance model scheme. Experimental design: no treatment (0); no pre-
treatment (4h of LPS), LPS tolerization /sustained stimulation (24h), corresponding; 
pretreatment (24h) and rechallenge with LPS (+4h). 
 

We verified the endotoxin tolerance distinct expression pattern by analysing two 

representative genes (with known expression behavior (Foster and Medzhitov, 2009)) by 
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quantitative polymerase chain reaction (qPCR). Consistent with published data on LPS-

induced endotoxin tolerance, pretreatment with LPS almost completely inhibited Il-6 

production after secondary LPS challenge in primary macrophages. LPS-treated BMDMs 

displayed transient expression of Il-6 upon sustained treatment, while a sustained 

expression of the Ccl5 gene was observed. Ccl5 was highly expressed after 24 hours of 

LPS treatment, and was further induced upon secondary stimulation (Figure 10.2).  

 

 

Figure 10.2. Induction kinetics of Il-6 and Ccl5 genes. Il-6 and Ccl5 expression is 
normalized relative to the housekeeping gene Tbp. Cells were stimulated with LPS as 
indicated in Figure 10.1. Error bars represent standard deviation of three independent 
experiments.  

 

We named TRANSIENT GENES, those genes whose transcription at the secondary 

stimulation is at least three fold lower than upon the primary challenge with LPS (e.g. Il-

6); SUSTAINED GENES, those genes that are induced during the first stimulation and 

maintained a high level of expression upon sustained stimulation and/or upon rechallenge 

with LPS (e.g. Ccl5). Sustained genes include both genes that are never completely turned 

off  (Ccl5) and genes that are turned off and then reactivated upon secondary stimulation 

(Il-1a) (Figure 10.2 and Supplementary Figure 1). 
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We then moved to in-depth profiling of the in vitro model using nascent RNA-seq analysis. 

Since total RNA is affected by stabilization and degradation events, we decided to analyze 

chromatin associated RNA (Bhatt et al., 2012), to focus on the transcriptional events 

associated with LPS-induced gene expression in unperturbed, stimulated and tolerized 

cells. We fractionated cells to isolate chromatin-associated transcripts and we increased the 

kinetics adding several intermediate time points (see Figure 10.3). The purity of the 

chromatin fractions was assessed by Western blot analysis of β-tubulin, HDAC1, and 

histone H3, to confirm respectively the enrichment of the chromatin fraction and the 

absence of contamination from nucleoplasmic and cytosolic fractions (Supplementary 

Figure 2). Chromatin associated RNAs were analyzed by high-throughput sequencing, in 

order to obtain a comprehensive view of the kinetics of transcriptional induction, rather 

than what is provided by a conventional mRNA analyses. In Figure 10.3, a representative 

snapshot of the RNA-seq experiment showing the Ccl5 and Il-6 transcripts is reported. 

Analysis of nascent/chromatin-associated RNA confirmed the induction of Il-6 gene 

expression only during the primary stimulation and the sustained activation of Ccl5 gene 

(Figure 10.3). 
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Figure 10.3 Nascent RNA-seq in LPS-mediated macrophages activation and 
tolerance. Chromatin associated RNA snapshots of the Il-6 (upper panel) and Ccl5 gene 
locus (lower panel). First stimulation is depicted in yellow, the re-stimulation is depicted in 
red. 
 

Moreover, with newly transcribed RNA profiling, we could confirm that sustained genes 

consist of both persistently transcribed genes (such as Ccl5) and genes being reactivated 

with a secondary stimulation, such as Il-1a (See Supplementary Figure 1). A heatmap of 

the chromatin associated RNA-seq profiling is reported in Figure 10.4.  
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Figure 10.4. A comprehensive view of nascent RNA-seq in LPS-mediated 
macrophages activation and tolerance. High-throughput sequencing of chromatin 
associated RNA samples are reported in the heatmap. Each row corresponds to a single 
time point of the described experimental setting. The color code indicates from the lowest 
(blue) to the highest (Gazzaniga et al.) expressed gene. Differentially expressed genes were 
clustered according to their FPKM values. After log2-transformation, the values for each 
gene were converted to z-scores and genes were then hierarchically clustered. 
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A large number of genes was found to be mainly up-regulated upon 4 hours of LPS and the 

vast majority of those genes were then turned off, such as in the case of Il-6, and 

consistently with previously reported data (Foster et al., 2007). We then divided chromatin 

associated RNAs into twelve clusters based on their behaviors along the time course.  The 

defined clusters were grouped in two subsets, according to their gene expression level at 24 

hours of LPS treatment. We considered as sustained those genes that maintained at least 

25% of the maximal level of transcription recorded during the primary stimulation. We 

called them clusters with sustained transcriptional activity (Figure 10.5).  

 

Figure 10.5 Sustained transcriptional activity clusters. Sustained gene clusters are 
shown. Genes are clustered according to their expression level calculated as log2FPKM 
(Fragments Per Kilobase Of Exon Per Million Fragments Mapped. Blue bar indicates the 
level of expression at point zero, took as reference. Sustained clusters have at least the 25% 
of the maximal level of transcription recorded during the primary stimulation. Clusters are 
numbered according to the amount of genes they include. Each grey line reproduce the 
kinetic of a single gene, while the red line stand for the median behavior of all the genes. 
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Genes displaying a level of expression lower than 25% compared to the maximum level at 

the primary stimulation were grouped in clusters with transient transcriptional activity 

(Figure 10.6) 

 

Figure 10.6 Transient transcriptional activity clusters. Transient gene clusters are 
shown. Genes are clustered according to their expression level expressed as log2 FPKM 
(Fragments Per Kilobase Of Exon Per Million Fragments Mapped). Blue bar indicates the 
level of expression at point zero, took as reference. Transient clusters have less than the 
25% of the maximal level of transcription recorded during the primary stimulation Clusters 
are numbered according to the amount of genes they include. Each grey line reproduce the 
kinetic of a single gene, while the red line stand for the median behavior of all the genes. 

 

Clusters are numbered according to the amount of genes they include. Only upregulated 

genes have been taken into account. Clusters#1 and #2 are the biggest, they include 

respectively 204 and 120, while clusters #12 include only 24 genes. Each grey line 

reproduces the kinetic of a single gene, while the red line stand for the median behavior of 

all the genes. Genes belonging to each cluster are listed in the Supplementary Table 1. In 

conclusion, cluster analysis of nascent RNA-seq datasets defined two different behaviors 
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of gene expression, sustained and transient transcriptional activity. Six different clusters 

were grouped in the big family of sustained transcriptional activity, while other six in the 

transient ones. We next analyzed properties and potential mechanism underlying the 

differential gene expression program for all the defined clusters. 

10.2 Chromatin modifications are not correlated with loss 

of transcriptional activity at tolerized genes 

Since it has been previously shown that chromatin modifications play an important role in 

selective gene expression in endotoxin tolerance (Foster et al., 2007) (Foster and 

Medzhitov, 2009) (Smale, 2010), we performed ChIP-seq experiments to differentially 

characterize gene-specific chromatin modifications associated with transient or sustained 

gene regulation. We characterized cis-regulatory regions that are differentially active in 

unperturbed, LPS-stimulated and LPS-tolerized BMDMs. Figure 10.7 reports a snapshot of 

Il-27 and Ccl5 promoter and enhancer regions. 
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Figure 10.7 Regulatory regions characterization. Il-27/transient gene (left panel) and 
Ccl5/sustained gene (right panel) genomic regions are shown. Starting from the upper 
section of both transient and sustained panel, RNA-seq profiling, H3K4me1, H3K27Ac, 
PU.1, H3K4me3 and PolII occupancy are represented. 

 

ChIP experiments for Histone H3 -Lysine 4 trimethylation (H3K4me3) and –Lysine 27 

Acetylation (H3K27Ac) were performed along with Polymerase II (PolII) occupancy in 

order to identify active promoters, while Histone H3 -Lysine 4 monomethylation 

(H3K4me1) and H3K27Ac along with PU.1 transcription factor occupancy was used to 

map active enhancers, as previously described (Cheng and Zhu, 2011) (Ghisletti et al., 

2010b). Figure 10.7 shows the genomic region surrounding Il-27. This region is positively 

marked by acetylation of H3K27 only upon 4 hours of LPS treatment, while losing the 

activation state upon 24 hours and 24+4 hours. In agreement with the transcriptional 

activity of the PolII in Ccl5 locus, H3K27Ac is gained upon treatment and remain present 

up to 24 hours and even higher upon re-stimulation (Figure 10.7). Both Il-27 and Ccl5 

gained H3K4me3 only upon stimulation (Figure 10.7). Indeed, these results are in 
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agreement with previously reported data showing that late primary response genes (such as 

Ccl5 and Ccl2) and secondary response genes (such as Nos2, Il-12b, and Il-6) activation 

require chromatin remodeling events (Ramirez-Carrozzi et al., 2006) (Hargreaves et al., 

2009) (Ramirez-Carrozzi et al., 2009). Interestingly, regardless of their transcriptional 

activity (showed by total Pol II occupancy, light blue in Figure 10.7) both Ccl5 and Il-27 

genes maintained high level of H3K4me3 in the late phase of the response. Genome wide 

analysis confirmed that, consistently with RNA-seq data, genomic regions associated with 

transient genes were mainly characterized by transient acetylation of H3K27, while 

sustained genes were mainly associated with persistent acetylation both at distal (Figure 

10.8 A) and proximal (Figure 10.8 B) regulatory regions. Figure 10.8 reported the 

H3K27Ac analysis for the two largest clusters, sustained cluster#1 and transient cluster#2. 

Analysis of all the other clusters is reported in Supplementary Figure 3 (proximal regions) 

and 4 (distal regions).  
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Figure 10.8 Active chromatin modification levels at proximal and distal regulatory 
regions near transient and sustained genes. A Proximal H3K27Acetylation level near 
transient and sustained gene (analysis of cluster 1 and 2 are shown) on the left. B Distal to 
TSS-H3K27 Acetylation level. Each gene was assigned to the nearest persistent or 
transient H3K27 acetylation peak. Transient genes are significantly closer to transient 
acetylation than sustained ones while the contrary is observed for the sustained ones 
(analysis of cluster 1 and 2 are shown). 
 

A comprehensive analysis of the histone modifications characterizing sustained and 

transient gene promoters is reported in Figure 10.9. We used a machine-learning approach 

to identify the prevalent combinatorial patterns of histone modifications describing the 

complexity of chromatin profiles observed in sustained and transient promoters (Zhou et 

al.). We used antibodies for histone H3 lysine 4 tri-methylation (H3K4me3), a 

modification associated with promoters; H3K4me1, preferentially associated with 

enhancers; lysine 27 acetylation H3K27ac and pan acetylation of H4, associated with 

active regulatory regions. H3K27me3 and  H3K9me3, associated with repressed regions. 



 70 

We performed the analysis with both H3K27Ac (not shown) and total H4 Acetylation, in 

combination with H3K4me3 and H3K9me3. We obtained six different states, describing 

strong or weak promoters. At genome wide level, promoters of both transient and sustained 

genes maintained high levels of H3K4me3 regardless of their transcriptional activity, and 

not any histone modification associated with transcriptional repression such as H3K27me3 

(data not shown) or H3K9me3 was gained at transient genes promoters, indicating that 

these modifications did not correlate with loss of activity at these genes (Figure 10.9 and 

Figure 10.10).  

 

Figure 10.9 Chromatin mark combinations associated with each cluster. Each row 
shows the specific combination of marks associated with each chromatin state of each 
cluster. H3K4me3, H4Ac and H3K9me3 are considered in combination among each other. 
Genomic regions from -500 to +250 bp from the TSS have been considered. 
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Figure 10.10 Chromatin marks at promoters of genes belonging to transient and 
sustained clusters. H3K4me3, H4 Acetylation, and the H3K9me3 signal at promoters of 
genes has been calculated as median FPKM for each cluster. 

 

To confirm these findings, we next used an opposite approach, grouping all the clusters by 

their promoter chromatin properties. PCA analysis, based on the two component H3K4me3 

and H4 Acetylation levels, did not clearly discriminate clusters according to their 

expression behaviors (Figure 10.11).  
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Figure 10.11 Positive epigenetic marks based PCA analysis of sustained and transient 
clusters. Each cluster is represented with its number, red numbers correspond to sustained 
clusters, and black numbers correspond to transient clusters. 

 

The same result has been obtained by drawing a trajectory for the activatory epigenetic 

mark at TSS of each cluster. Whether the chromatin modification is involved in the 

regulation of a specific gene expression program, a “walking” of the modification level 

along the time course may be envisioned. Considering each time point, we calculated the 

median FPKM of H3K4me3 and H4 Acetylation at TSS of three representative clusters. 

While a difference in H4Ac trajectory was appreciable, likely due to the PolII 

transcriptional activity, we could not find any significant difference in H3K4me3 level 

among sustained and transient clusters (Figure 10.12).  
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Figure 10.12 Chromatin trajectories at TSS of transient and sustained clusters. 
Median H3K4me3 level (calculated as FPKM) is plotted versus median level of H4Ac for 
clusters #1, #2, #5. Each arrow represents the “walking” from a time point to the 
subsequent, the thickest arrow from UT to 4h of LPS, the middle one from 4h to 24h and 
the thinnest from 24h to 24+4h. The three clusters taken into consideration are reported in 
the lower left corner of the figure. 

 

 

Moreover, despite having a completely different expression profiling, cluster #1/sustained 

and cluster #2/transient showed almost the same level of H3K4me3, either in the 

unperturbed state or upon 24 hours of LPS treatment and upon re-stimulation.  All 

together, these results suggested a chromatin independent mechanism underlying the gene 

expression program of transient and sustained genes. 
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10.3 Transient and sustained genes clusters have different 

functional features 

We have demonstrated so far that the transcriptional activity of sustained and transient 

clusters cannot be explained by differences in epigenetic modifications. ChIP-seq data 

collected for both sustained and transient clusters did not justify such a big difference in 

their transcriptional behavior upon sustained treatment. To investigate the mechanisms 

underlying these transcriptional changes, we grouped the clusters previously defined by 

RNA-seq analysis according to their behaviors in terms of transcriptional activation. As a 

second step, motif discovery analysis was performed on promoters of genes belonging to 

these subsets in order to identify the transcription factors involved in their transcriptional 

regulation. Finally, gene ontology analysis was performed in order to identify different 

functional classes in the two subsets of genes. 

  10.3.1 Clusters characterization 

First of all, according to their behavior, we assigned to all the clusters four indices 

describing four properties (Figure 10.13).  
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Figure 10.13 Clusters characterization. A scheme of the calculated index is reported in 
panel A. Two representative genomic regions showing Irg1 (sustained) and Tnf (transient) 
genes are reported in B. A scheme of all the groups of genes clustered according to their 
rank is shown in C. 

 

Turn off index formally described the persistence or transiency of the clusters. When gene 

expression at 24 hours of LPS (calculated as FPKM) was higher than gene expression at 

point zero the Turn off index was negative (clusters #1, #3, #5, #6, #9, #11), closed to zero 

when gene expression at 24 hours was similar to the one at unperturbed state and positive 

when lower than UT (clusters #2, #4, #7, #8, #10, #12). Transient and sustained clusters 

were clearly discriminated by Turn off index. Figure 10.13 B shows two representative 

A 

B 

C 
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RNA-seq snapshots, Irg1 belonging to cluster #6 (as example of sustained activity) has a 

negative turned off index, while Tnf (belonging to cluster #4, as example of transient gene) 

has a positive turned off index (Figure 10.13). For each cluster an index for their kinetic 

was then calculated (early inducibility index). Comparing maximum level of expression at 

30 minutes-1 hours with the maximum level reached at 2-4 hours we could distinguish 

early and late induced genes. According to the definition of this index (log2 FPKM 30’-1 

hours/FPKM 2-4 hours), sustained clusters were composed of late inducible genes, while 

transient clusters of both early (clusters #4, #12, #8) and late inducible genes (clusters #2, 

#7, #10) (Figure 10.13). We next calculated the re-inducibility index, comparing gene 

expression level at every re-stimulation time point with the one at 24 hours of LPS 

treatment (log2FPKM 2nd stimulation/FPKM 24h). Transient clusters had an index value 

closer to zero than sustained clusters, formally proving the inability of these genes to be re-

induced upon restimulation (Figure 10.13). Lastly, we calculated a late activity index. 

Comparing gene expression levels at the second stimulation with those at the first 

stimulation levels (log2 maxFPKM 2nd stimulation/max FPKM 1st stimulation), we could 

differentiate clusters being mostly expressed in the late phase than in the primary one 

(Figure 10.13). 

10.3.2 Motif discovery analysis 

We next characterized the promoters of transient and sustained clusters of genes. First of 

all, we scanned promoter regions using the PSCAN algorithm in order to find over- 

represented transcription factor binding site motifs. Transient and sustained gene clusters 

were well discriminated in their binding sites composition (Figure 10.14). PWM analysis 

of three representative clusters is shown in Figure 10.14. Among the others, transient gene 

clusters showed high enrichment in EGR- and NF-kB Position weight matrices (PWMs). 

Specifically, early inducible transient genes (cluster #4) were mainly enriched in NF-kB 

PWMs, while EGR- transcription factors PWMs were mainly over-represented in late 
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inducible transient genes promoters. Sustained clusters displayed instead a high 

statistically significant enrichment in binding sites for IRF family transcription factors (See 

Figure 10.14), as shown for the case of cluster #1 (Figure 10.14). Moreover, in agreement 

with already published data (Bhatt et al., 2012), more or less 80% of transiently expressed 

gene promoters was associated with CpG islands, while only 50% of sustained genes 

promoters contained CpG islands (expected CpG island content is 65%, as obtained by 

overlapping all the transcription start sites of RefSeq genes with all the identified CpGi 

(Illingworth, 2010 #184) (Table 1). 

 

 

Figure 10.14 PWM analysis of the transient and sustained clusters. Position weight 
matrix analysis is reported for three representative clusters. Overrepresentation of 
transcription factors binding sites is ordered according to statistics (p-value). Position-
specific sequence logo showing the binding sites for NF-kB, EGR and IRF are reported. 
The relative frequency of each nucleotide is shown as height of each letter. 
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Table 1 CpG islands overlapping with the promoters of the genes in each cluster. CpG 
islands content located in promoters of genes for each cluster has been calculated. The 
number of genes overlapping with CpG islands and the observed fraction (Obs. Fraction) is 
reported along with expected fraction (Exp. Fraction). A binary description has been 
associated to enriched (Scott R.McKercher) versus not enriched (0) clusters and a p-value 
for each of them has been calculated with Chi-Square test. 

 

  10.3.3 Gene ontology analysis 

 

 Since the two different clusters of genes are regulated by different transcription factors, 

we analyzed whether transient and sustained genes belong to different functional 

categories. Using the DAVID algorithm, we found that generally, both clusters of genes 

are enriched in immune response mediators but sustained genes are mainly involved in 

viral immune responses. Gene ontology analysis for clusters #4 and #1 is reported in 

Figure 10.15. 



 79 

 

Figure 10.15 Gene Ontology analysis on the transient and sustained clusters. The two 
histograms represent the negative logarithm of the p-value evaluating the significance of 
gene ontology terms for genes belonging to Cluster #4 (transient) and Cluster #1 
(sustained). The top 10 annotation clusters are listed as derived from the DAVID 
bioinformatics tool. 

 

Since sustained genes resulted to be enriched in IRF transcription factors binding sites and 

involved in the anti-viral response, we crossed these data with previous reports on genes 

down-regulated in Irf3-/- (Table 2) and in IFN-β-response-impaired BMDM (Table 3) 

(Christine S, 2001; Ogawa, 2005). We found a significant overlap with sustained gene 

clusters #1, #6 and #11 and IRF3 dependent genes, and a significant overlap with sustained 

genes clusters #1, #3 and #11 and IFN-β dependent genes, thus suggesting the dependence 

of these clusters on the IFN-β -regulated feed-forward loop. 
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Table 2 Irf3 dependent genes overlapping with transient and sustained clusters. The 
list of genes downregulated in Irf3 KO mice derived macrophages has been crossed with 
genes belonging to each cluster. The number of genes overlapping with Irf3 dependent 
genes and the observed fraction (Obs. Fraction) is reported along with expected fraction 
(Exp. Fraction). A binary description has been associated to enriched (Scott R.McKercher) 
versus not enriched (0) clusters and a p-value for each of them has been calculated with 
Chi-Square test (Cheng et al., 2011) (Ogawa et al., 2005)  

 

 

  

Table 3 IFNb dependent genes overlapping with transient and sustained clusters. The 
list of genes downregulated in IFN-β-impaired response derived macrophages has been 
crossed with genes belonging to each cluster. The number of genes overlapping with IFNb 
dependent genes and the observed fraction (Obs. Fraction) is reported along with expected 
fraction (Exp. Fraction). A binary description has been associated to enriched (Scott 
R.McKercher) versus not enriched (0) clusters and a p-value for each of them has been 
calculated with Chi-Square test  (Cheng et al., 2011) (Ogawa et al., 2005) 
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In summary, as reported in Figure 10.16, we formally described all the clusters according 

to their turning off property, kinetics and re-inducibility. We then demonstrated that 

promoters of transient and sustained genes were well discriminated in their binding sites 

composition. Transient genes promoters were mainly enriched in EGR, and NF-kB binding 

sites, as well as they were enriched in sequences containing CpG islands. On the contrary, 

sustained gene clusters displayed a high statistically significant enrichment in binding sites 

for IRF family of transcription factors and their promoters were depleted in CpG island 

content. Moreover, gene ontology analysis suggested a specific function for sustained 

genes in mediating anti-viral response and the overlapping between sustained genes and 

IFNb dependent genes, confirmed the dependence on the IFNb-regulated feed-forward 

loop. 
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Figure 10.16 Clusters features. Transcription indices for each cluster of genes, Position 
Weight Matrix (PWM) and other features of their promoters are clustered according 
respectively to their rank, p-value and over-representation. Clusters are then manually 
ordered. 

 

10.4 IRF7 controls sustained genes transcriptional 
expression 

 

Since IRF transcription factors were found involved for sustained gene regulation, the 

expression levels of IRF transcription factors in stimulated and tolerized BMDMs were 

analyzed. As shown in Figure 10.17, chromatin associated RNA-seq data indicated that 
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among the expressed IRFs, only IRF7 was highly induced upon LPS treatment and 

maintained significant expression upon sustained stimulation. Q-PCR analysis from total 

RNA confirmed this result (Figure 10.17 lower panel), suggesting that IRF7 may have a 

key role in the transcriptional regulation of sustained genes.  

 

Figure 10.17 IRFs expression. A. IRF- family members expression in BMDMs. 
Chromatin associated RNAs for IRFs family members are reported. Expression has been 
calculate as FPKM and reported for each time point of the designated experimental setting. 
B. IRF7 mRNA expression. For each time point, mRNA expression was measured by Q-
PCR and expressed as fold change relative to TBP (Tata Binding Protein). 

 

Previous studies already showed that IRF7 is upregulated upon LPS stimulation, due to the 

autocrine loop created by IFN-β (Oganesyan et al., 2006) (Doyle et al., 2002) and a very 

recent publication reported a role for IRF7 in the transition from M1 to M2 phenotype in 

brain derived macrophages (Cohen et al., 2014). Considering the similarity between M2 

macrophages and LPS tolerized macrophages, a potential role of IRF7 in the regulation of 
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sustained genes may be envisioned. A possible working model is that IRF7 may promote 

its own promoter activity, thus sustaining its own expression (Figure 10.18). Sustained Irf7 

expression may thus be sustained even in the absence of active signaling. 

 

Figure 10.18 IRF7 feed forward loop. A scheme of the IRF7 feed forward loop activity is 
reported. In response to LPS, IFN-β is induced via a pathway dependent on the adapter 
TRIF, which controls the activation of the transcription factor IRF3 (29). IRF3 directly 
controls transcription of the Ifn-β gene, whose product is rapidly released to activate an 
autocrine and paracrine loop that is ultimately responsible for a secondary wave of gene 
induction that includes classic IFN-β–regulated genes (30). Therefore, Irf3-dependent 
genes include direct IRF3 targets (e.g., Ccl5) (30) and IFN-β–regulated genes such as Irf7. 
The latter are activated by a trimeric complex composed of Stat1, Stat2, and Irf9, which 
was initially indicated as IFN-stimulated gene factor 3 (Isgf3). Irf7 binds both its own 
promoters, thus leading to an autocatalytic control of its gene expression, and promoters of 
its direct target containing the specific trimeric matrix. 

 

To validate this hypothesis we depleted Irf7 by lentivirus-mediated shRNA delivery. We 

used lentiviral vectors expressing either Irf7-specific or control shRNAs (pLKO.1shIrf7 

and pLKO.1shLuc, respectively). Depletion resulted in a ca. 80-90% reduction in Irf7 

mRNA level, as quantified by qPCR analysis of the transcript (Figure 10.19). 
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Figure 10.19 Irf7 depletion affects Ccl5 expression in the late phase response. BMDM 
were infected either with lentiviruses expressing an shRNA anti Irf7 (plkoshIRF7/red) or a 
scrambled sequence anti luciferase (plkoshLuc/blue). A. Irf7 depletion. Irf7 knockdown is 
assessed by qPCR analysis. B. Ccl5 expression. Ccl5 expression has been verified for each 
of the three experiments in both plkoLuc and plkoIRF7 conditions. Both qPCR data are 
reported as fold change relative to TBP (Tata Binding Protein) and data are representative 
of three independent experiments. Error bar denotes the standard deviation of the mean. 

To evaluate the impact of Irf7 depletion at a genome wide level, total RNA-seq experiment 

was performed in untreated bone marrow derived macrophages, LPS-stimulated and LPS 

tolerized macrophages. A snapshot of four genomic regions is reported in Figure 10.20. 

The transcriptional activity of sustained genes was affected by Irf7 depletion, as 

demonstrated by Ccl5 and Cxcl2 expression, respectively belonging to sustained cluster #1 
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and #cluster8. Despite that, some of the very late sustained genes (such as Mmp9) were not 

changed in their kinetics after Irf7 depletion. Most importantly, the effects of Irf7 removal 

were established only in the late phase of the response, while not affecting the expression 

of both sustained and transient genes at 4 hours of LPS. Figure 10.20 shows an example of 

a transient gene (Sdc4), whose transcriptional program was unperturbed by Irf7 depletion. 

 

Figure 10.20 Irf7 controls sustained transcriptional activity of sustained genes. Total 
RNA-seq was performed in unperturbed, 4h, 24h and 24+4h of LPS stimulation. The 
distribution of RNA-seq reads at the Ccl5, Cxcl2, Mmp9 and Sdc4 locus is shown. Time 
points are indicated at the left and scale on the right. In red scramble shLuc, in blue shIrf7 
transcripts are reported. 
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In Figure 10.21 the global quantification of Irf7 KD impact is reported. Genes belonging to 

sustained cluster #1 and transient cluster #2 showed different impact of Irf7 deficiency. We 

calculated the median expression of the transcripts in both shLUC and shIrf7 conditions. 

The log2ratio of FPKM at 4 hours and 24 hours of LPS treatment versus FPKM at 

unperturbed state is plotted in the presented box plot (Figure 10.21). As expected, only 

shIrf7 median expression of sustained cluster #1was statistically significantly reduced 

compare to shLuc (Figure 10.21). 

 

Figure 10.21 IRF7 KD decreases cluster #1 genes transcription upon sustained 
stimulation. The box plots indicate the log2 ratio between the designated time point and 
conditions and control expression. 

All together these results suggested a role of IRF7 in mediating the long lasting 

transcriptional activity of sustained genes, while not affecting the acute phase response. 
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10.5 Transient genes are controlled by a multifactorial 
mechanism 

As previously reported in Figure 10.14 and 10.16, Position Weight Matrix analysis 

(PSCAN) indicated that transient genes were mainly regulated by EGR- and NF-kB 

transcription factors, downstream effectors of the TLR4 signaling pathway. Biochemical 

analysis of the key players of this signal cascade revealed an almost complete exhaustion 

of the pathway after sustained LPS treatment (Figure 10.22). 

 

Figure 10.22 Effects of sustained LPS treatment on the TLR4-mediated signaling 
pathway. Immunoblot analysis of total IκBα and phosphorylated (p-) IRF3 and JNK in 
mouse primary macrophages stimulated for 24 h with LPS (100 ng/ml) and challenged for 
various times with LPS (10 ng/ml). Tubulin was used as an internal loading control. The 
data represent one representative experiment of three independent replicates. 

 

Phosphorylation of JNK, IRF3 transcription factors and degradation of IkB-α were 

completely downregulated at 24 hours post-LPS treatment. Restimulation of tolerized 

macrophages with LPS did not reactivate these pathways, or at least not at the same level 

as in the primary stimulation. Non-tolerized BMDMs responded to LPS with a robust and 

prolonged degradation of IκBα and transient phosphorylation of the MAPKs, JNK and the 
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transcription factor IRF3. In LPS tolerized marophages, LPS-induced degradation of IκBα 

was abrogated almost completely and activation of MAPKs was much lower, as well as 

activation of IRF3 protein (Figure 10.22), thus suggesting the exhaustion of the TLR4 

pathway. TNF Receptor-Associated Factor 6 (TRAF6) degradation has been reported to be 

involved in the termination of TLR4 firing, as show in (Zhao et al., 2012). We then 

examined the involvement of TRAF6 in the LPS tolerance establishment. In our 

experimental setting, TRAF6 was down-regulated at protein level (Figure 10.23), both at 

sustained stimulation (up to 96 hours of LPS treatment) and upon restimulation of tolerized 

cells.  

 

Figure 10.23 Effects of sustained LPS treatment on TRAF6 degradation. Degradation 
of TRAF6 is reported. Macrophages were treated with LPS for the designated time. 
Tubulin was used as an internal loading control. The data represent one representative 
experiment of three independent replicates. 
 
 
As it has been proposed in the literature, TRAF6 is a primary target of miR-146a, which is 

induced upon LPS through NF-kB activity (Taganov et al., 2006). We thus envisioned a 

possible role for miR-146a in our experimental settings. First of all, we checked miR-146a 

level upon LPS treatment, both in acute and late sustained stimulation. miR-146a was 

highly upregulated by LPS treatment (Figure 10.24). Most importantly, miR-146 

expression was maintained at a high level up to 72 hours after LPS removal (Figure 10.24 

lower panel). This suggested that the failure of re-activation of those transcription factors 

that are involved in the transcriptional expression of transient genes is likely due to the 

hyporesponsive state of the TLR4 signaling pathway due to miR-146a activity. 
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Figure 10.24 miR-146a expression upon sustained stimulation. RT-PCR analysis 
monitoring miR-146a expression in BMDM upon LPS treatment at the designated time 
point. In the lowe chart, miR-146a expression is evaluated upon LPS treatment and 
removal of the stimulus for 48h. Data are reported as fold change relative to sno202. 

 

As it has been published, p50-/- mice cannot undergo to tolerization upon sustained 

treatment with LPS (Porta et al., 2009b), and it has been already demonstrated that p50-/- T 

cell cannot upregulate miR-146 upon stimulation (Yang et al., 2012). We then analysed 

miR-146 expression in p50-/- macrophages (Figure 10.25). As expected, p50-/- 

macrophages were unable to upregulate miR-146a upon LPS treatment, thus suggesting its 

involvement in the maintenance of the tolerization state. 
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Figure 10.25 miR-146a expression in p50-/- macrophages. Quantitative RT-PCR (qRT-
PCR) analysis of miR-146a levels in BMDM derived from WT mice or p50-/-. microRNA 
levels are reported as fold change relative to snoRNA202.  

 

Our data suggest that the transcriptional control of transient genes is obtained by complex 

and tightly regulated events, probably involving more than one mechanism. Proteins 

specifically induced in the late phase of the LPS response may be involved in the transient 

transcription of these genes. To this purpose, we searched for pathways enriched in the 

cluster #5, which included lately activated sustained genes. Gene Set Enrichment Analysis 

(GSEA) revealed a statistical significant enrichment for proteins belonging to the TGF-β 

pathway. Indeed, Clusters #5 included some of the SMAD family members and some Id 

proteins (Figure 10.26), which are known to be component of the TGF-β pathway 

(Derynck and Zhang, 2003). 
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Figure 10.26 Cluster #5 is enriched in proteins encoding genes belonging to the TGF-
β signaling pathway. Gene set enrichment analysis in genes belonging to cluster #5. 
Genes were sorted (x axis) from left to right based on their relative level of expression in 
the second stimulation vs. first LPS treatment. Genes up-regulated in the secondary 
stimulation, belonging to cluster #5 and included in the enriched TGF-β pathway are listed 
in the diagram on the right.  

 

As already demonstrated, Id proteins are strongly induced by TGF-β (Gratchev et al., 

2008). Moreover, they act as inhibitors of transcription by binding E-box transcription 

factors, thus preventing E-box mediated transcriptional activation of CpG island-promoter 

containing genes (Mantani et al., 1998). Moreover, since transient genes are enriched in 
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CpG islands containing promoters, we envisioned a possible role for Id proteins in their 

control. In order to validate this hypothesis, we checked the protein level of the Id. (Figure 

10.27)  

 

10.27 Id1 is upregulated upon LPS restimulation. Upregulation of Id1 is reported. 
Macrophages were treated with LPS for the designated time. GAPDH was used as an 
internal loading control. The data represent one representative experiment of three 
independent replicates. 

 

 

 

Id1 is potently upregulated upon restimulation, even more than upon primary LPS 

treatment. These preliminary data suggested a possible role of Id1 in mediating the turning 

off of transient genes. 

In summary, a multifactorial mechanism is responsible for the LPS tolerance establishment 

and attenuation of the expression of pro-inflammatory genes. We have demonstrated that 

the key players of the TLR4 signaling cascade revealed an almost complete exhaustion of 

the pathway after sustained LPS treatment due to TRAF6 degradation by miR-146 activity. 

This suggests that the failure of re-activation of those transcription factors that are involved 

in the transcriptional expression of transient genes is likely due to the hyporesponsive state 

of the TLR4 signaling pathway. Moreover, a role for TGF-β pathway may be envisioned 

and the involvement of Id proteins will be object of future research. 
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11 Discussion 

Innate immune response is necessary to defend multicellular organisms against pathogen 

invasion, but in case of either too strong or too long response, innate immunity can be 

deleterious, causing the pathological manifestations of both acute and chronic 

inflammatory disorders. The inflammatory response must be tightly regulated, due to the 

potential dangerous effects of pro-inflammatory mediators, such as reactive oxygen species 

(Park et al., 2009) (Takeuchi and Akira, 2010). Thus, cells of the immune system must 

engage a multilayered control system to keep innate immunity and inflammatory responses 

under control. In both the human and mouse, macrophages exert different roles during a 

canonical inflammatory process, like the one elicited by exposure to microbial products or 

by necrosis of tissues. During the initial phases, macrophages recruited at the inflammation 

site acquire a typical inflammatory profile consisting in the release of several soluble 

mediators of the inflammatory response, while in case of sustained tissue damage 

macrophages start to express very low levels of inflammatory cytokines and chemokines 

but high levels of anti-inflammatory molecules and proteins involved in tissue repair. A 

similar transition from an inflammatory to an anti-inflammatory state is observed, both in 

vitro and in vivo, after prolonged exposure to bacterial products like lipo-polysaccharide 

(LPS) (Biswas and Lopez-Collazo, 2009). Macrophages that have been stimulated with 

LPS for a few hours are unable to reactivate the expression of inflammatory genes when 

exposed to a second LPS dose. However, they are still able to induce the expression of 

many other genes, including Il-10 and Irak-M (or Irak3, a negative regulator of the TLR4 

pathway, which mediates LPS signaling). This state of relative refractoriness to LPS re-

stimulation is commonly referred to as endotoxin tolerance and results in a global and 

persistent switch of the gene expression program. The precise mechanisms underlying 

endotoxin tolerance are only partially known. It is clear that some inflammatory signal 

transduction pathways are strongly down-regulated in endotoxin-tolerant macrophages 
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(Biswas and Lopez-Collazo, 2009). However, this does not suffice to explain the stability 

over several days, and even weeks, of the reprogrammed state. Moreover, the vast majority 

of the published works have pointed the attention on the mechanisms explaining how the 

immune response is attenuated upon sustained stimulation, while ignoring the events 

underlying the maintenance of the expression of a big set of genes involved in the anti-

inflammatory response. 

In this study, we show that LPS sustained stimulation triggers the activation of distinct 

classes of genes, transient genes and sustained genes. Transient genes are up-regulated 

upon a few hours of LPS treatment and they are switched off upon sustained stimulation. 

On the contrary, sustained genes remain active even under long lasting stimulation or they 

are switched off upon sustained stimulation, but they can be reactivated when re-

challenged with LPS. Genome wide profiling of chromatin associated RNAs allowed us to 

elucidate the mechanisms underlying both transient and sustained inflammatory gene 

expression. We experimentally analyzed stimulated and tolerized macrophages treated 

with LPS at different time points and we clustered all the upregulated genes according to 

their transcriptional activation behavior. Of note, the vast majority of sustained genes is 

upregulated upon LPS and maintains their transcriptional activity for long time, while 

relative few of them turn off transcription at 24 hours of treatment and they reactivate it 

upon re-challenge with LPS.  

Until now, the most likely explanation for the memory of the tolerant state seemed to 

reside in a stable epigenetic reprogramming whereby inflammatory/transient genes are 

persistently shut down and anti-inflammatory/sustained genes are conversely made 

accessible and active (Foster et al., 2007). Since a genome wide study on epigenetic 

changes in tolerized macrophages was still lacking, we spotted cis-regulatory genomic 

regions to understand how the genomic information is alternatively used in different 

conditions. A simple model is that the gene expression switching observed both in vivo and 
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in vitro in tolerance states, reflects a stable change in the genomic regulatory landscape and 

specifically a stable change in the accessibility and usage of the available genomic 

regulatory information when cells shift from a phenotype to the other. We used ChIP-seq 

technology to map cis-regulatory regions of unperturbed, LPS treated and LPS tolerized 

macrophages. Genome wide analysis revealed that both transient and sustained genes 

maintain an accessible chromatin state, regardless their inactive or active transcription. In 

the late phase of the LPS response, we noticed an overall decreased acetylation in 

promoters and enhancers surrounding transient genes, while a persistent acetylation can be 

found at cis-regulatory regions of sustained genes. These results suggest an expected and 

logical correlation between acetylation of histones and polymerase II (Pol II) activity. On 

the contrary, methylation of histone H3 lysine 4 is maintained in the long lasting response, 

regardless of the transcriptional activity of the genes. H3K4me3 presence in the promoter 

of transient genes should generate an accessible chromatin configuration, allowing the 

reactivation of the gene in case of stimulus re-challenge. Despite that, transient genes are 

not reactivated in the presence of fresh stimuli, at least in our experimental conditions. We 

then analyzed two histone marks, H3K27me3 (trimethylation on Lys 27 of histone 3) (data 

not shown) and H3K9me3 (trimethylation on Lys 9 of histone 3), known to be associated 

with transcriptional repression (Kim and Kim, 2012). The promoters of transient genes do 

not acquire any negative histone marks in the late phase of the response. Thus, we exclude 

that the deposition of negative epigenetic marks play a role in the silencing of transient 

genes. Overall, our data suggest that chromatin modifications do not fully explain the 

complex transcriptional response of tolerized macrophages or at least we do not yet have 

the write marks tested. 

 

To define the mechanisms underlying the transcriptional changes in the tolerant state, 

motifs discovery analysis was performed on promoters of transient and sustained genes. 
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Analysis of position weight matrix enrichment was able to discriminate sustained and 

transient genes in their binding site composition. Indeed, promoters of transient genes are 

mainly enriched in NF-kB and EGR- transcription factor binding sites, while sustained 

genes mainly in IRF/STAT matrices. These results suggest a role for different specific 

transcription factors in the fine regulation of the two subsets of genes.  

Since Position Weight Matrix analysis indicated that transient genes were mainly regulated 

by EGR- and NF-kB transcription factors, downstream effectors of the TLR4 signaling 

pathway, we checked the TLR4 pathway members activity. As reported before, sustained 

LPS treatment leads to a complete exhaustion of the signaling cascade, thus explaining the 

impairment in activation of downstream transcription factors. Genes under control of TFs 

with an impaired transcriptional activity due to the signaling cascade exhaustion are not re-

expressed, even in the presence of an open chromatin conformation. Our data indicate that 

this state of persistent unresponsiveness is generated and controlled by the degradation of 

the TRAF6 mediator, which is degraded by a parallel upregulation of its inhibitory 

miRNA, miR-146a. However, we did not formally demonstrate the involvement of miR-

146 in the establishment of the refractoriness state of tolerized cells. In order to validate 

the possible involvement of miR-146a on the reduction of TLR4 signaling, we will test the 

effects of miR-146a antagonists on the secondary response to LPS in macrophages. 

The endotoxin tolerance phenotype is multifactorial and involves the interaction of many 

regulatory pathways (Biswas and Lopez-Collazo, 2009). We checked for pathways 

specifically involved in the secondary response to LPS. Sustained cluster #5 (cluster of 

genes mainly upregulated in the secondary response) show a peculiar upregulation of 

several component of the TGF-β pathway. In particular, several Id proteins (Ids) are 

upregulated upon sustained stimulation, suggesting a possible role for the Id family 

members in the maintenance of the tolerance state. Impairment of upregulation of Id 

proteins, will probably deregulate the Id- mediated inhibition of E-Box factors on CpG 
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island containing promoters, thus suggesting the possibility that transient genes (enriched 

in CpG islands) may be transcriptional reactivated in case of re-challenge. Therefore, in the 

sustained stimulation, Id proteins may be under TGF-β control (being TGF-β an activator 

of Id proteins (Gratchev et al., 2008)) and may be involved in the negative control of CpG 

islands containing genes. In order to validate this hypothesis, we will deplete Id proteins in 

BMDM tolerized macrophages and we will test their impact on the transcription program 

of transient genes.  

Finally, IRF transcription factors were found enriched in the promoters of sustained genes. 

We checked the gene expression level of all the IRFs in LPS stimulated and tolerized 

macrophages and we found that IRF7 is the only one to be upregulated and sustained at 

high levels in the late phase of the response. Moreover, recent finding proposed IRF7 as a 

player in the pro- to anti- inflammatory phenotype transition (Cohen et al., 2014). Since 

tolerized macrophages display overall an anti- inflammatory phenotype (Pena et al., 2011), 

we considered IRF7 as a good candidate for the control of expression of sustained genes. 

We propose that sustained genes can retain the ability to be expressed even in the absence 

of active signaling by TLR4 because of an IRF7-dependent feed forward loop. Once 

activated, IRF7 may keep high its own transcription by regulating its own promoter, thus 

generating an autocatalytic mechanism of sustainment. This could be a simple strategy 

developed by innate immune cells to keep anti-microbial responses active while preventing 

damage to the host organism, by switching off the production of pro-inflammatory 

mediators. In order to assess the involvement of IRF7 in expression of the sustained genes, 

we evaluated by RNA-seq the impact of IRF7 depletion on persistently expressed genes 

and we found out that removal of IRF7 had a dramatically impact on transcription of 

sustained genes.  

In conclusion, this study suggests that the differential expression of LPS-regulated genes 

during sustained LPS stimulation might be simply determined by activation and 
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availability of sequence specific transcription factors controlling specific subsets of genes 

rather than being dictated by epigenetic, chromatin-mediated mechanisms. 
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12 Supplementary Figures  

 

 

Supplementary Figure 1. Il-1a locus. Chromatin associated RNA snapshots of the Il-1a 
locus. 
 

 
 

 
 

 

Supplementary Figure 2. Chromatin fraction quality control. HDAC1, Tubulin and 
histone H3 are reported. Macrophages were treated with LPS for the designated time. The 
data represent one representative experiment of three independent replicates. 
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Supplementary Figure 3. Active chromatin modification levels at proximal regulatory 
regions near transient and sustained genes. Proximal to TSS-H3K27 Acetylation level. 
Each gene was assigned to the nearest sustained or transient H3K27 acetylation peak. 
Transient genes are significantly closer to transient acetylation than sustained ones while 
the contrary is observed for the sustained ones. 
 
 

!

Supplemetary(Figure(1.!Gene!clusters!representation!

!

!

Supplementary( Figure( 2.! Proximal! to! TSSNH3K27Acetylation! level! near!
transient!and!persistent!genes!on!all!the!clusters.!!
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Supplementary Figure 4. Active chromatin modification levels at distal regulatory 
regions near transient and sustained genes. Distal to TSS-H3K27 Acetylation level. 
Each gene was assigned to the nearest sustained or transient H3K27 acetylation peak. 
Transient genes are significantly closer to transient acetylation than sustained ones while 
the contrary is observed for the sustained ones. 
 



 104 

13 Supplementary Tables 

 Supplementary Table 1. List of genes in the various clusters 

 

!CLUSTER!1 !CLUSTER!2 !CLUSTER!3 !CLUSTER!4 !CLUSTER!5 !CLUSTER!6
1110018G07Rik 2310004I24Rik 6530402F18Rik 2010002N04Rik 1300002K09Rik 1600014C10Rik
1110038F14Rik 4632415L05Rik 9030625A04Rik 3110003A17Rik 1700071M16Rik A230028O05Rik
1810029B16Rik 4921513D23Rik Apobr 5930434B04Rik 1700123I01Rik Adora2b
2010106G01Rik 4932438H23Rik Arhgef3 6330409N04Rik 4933433H22Rik Aoah
2810474O19Rik 4933412E12Rik BC006779 Atm 9130014G24Rik Apol9b
5730508B09Rik 4933426M11Rik Batf Bach1 Acsl1 Arid5b
6230427J02Rik 9430076C15Rik Bckdhb Bcl2a1b Ankrd24 B430306N03Rik
9330175E14Rik AW011738 Bcl2a1a Bcl2a1d Antxr1 Bcl6
A130040M12Rik Adamts4 Bcl3 Ccl2 Art2aSps Casp3
A530032D15Rik Adora2a Birc2 Ccl3 Bst1 Cfb
AA467197 Anxa6 Birc3 Ccl4 Bzrap1 Clec2d
AI504432 Arhgap23 Car13 Ccl9 Cd1d1 Clic5
AW112010 Arid1a Casp4 Ccrl2 Cd38 Ddx60
Abtb2 Arid4a Ccng2 Ccrn4l Cebpb Dst
Adap2 Armcx6 Cd40 Cd14 Clec4d Dusp28
Agrn Asb13 Cpd Cd83 Cxcl16 F830016B08Rik
Arhgef12 Atp10a Cxcl10 Cdk6 Cxcl3 Fam116b
Ascc3 Atp11a Cybb Cdkn1a D330045A20Rik Fcgr1
Atad1 BC016423 D8Ertd82e Cited2 D730048J04Rik Fmnl2
BC013712 BambiSps1 Dcbld2 Clic4 Ell2 Fpr2
BC094916 Casp7 Dgkh Csf1 Fbxo40 Gbp10
Batf2 Ccdc86 Dyrk2 Csrnp1 Flrt2 Gbp11
Bcl9 Ccnd2 E330016A19Rik Denr Flrt3 Gbp4
Bfar Ccnj Ebi3 Dnaja2 Ggct Gbp6
Bst2 Cd164 Ehd1 Dpep3 Glrx Gm11435
Bzw2 Cd69 Ext1 Dse Gm14023 Gm12185
C130026I21Rik Cdyl2 Ezr Dusp1 Gm5150 Gm14085
C3 Cenpj Fas Dusp16 Grina Gm14446
Calcrl Ch25h Flnb Dusp2 H2SM2 Gm16675
Casp1 Cish Fnbp1l Errfi1 H2SQ6 Gm4841
Ccdc25 Cnn3 Foxp4 Fam129a Hmox1 Gm4951
Ccl5 Col18a1 Gbp5 Fam133b Id1 Gm5424
Ccnyl1 Col27a1 Gch1 Fam177a Id3 Gm5506
Cd274 Cst7 Gm11428 Fchsd2 Il1a Gm6034
Cept1 Cxcl9 Gpr84 Fosl2 Inpp5j Gm7609
Cmpk2 Cycs Gpr85 Gadd45b Itga5 Gpr31c
Crlf3 Daam1 Hat1 Gm12216 Jag1 Has1
Csf3r Dll1 Hivep1 Gm614 Klra2 Hcrt
Ctsc Dync1i2 Hk2 Gm6377 LOC100038947 Il18bp
D14Ertd668e Edn1 Hspbap1 Gpr132 Ly6a Inhba
Daxx Enpp4 Ifi203 Gtf2f1 Ly75 Irg1
Dck Fam26f Ifih1 Hdac1 Mdm2 Itgal
Dcp2 Fam82a2 Igsf6 Icam1 Met Kcnh4
Ddx58 Gca Il1b Icam4 Olfr1445 Lcn2
Diap2 Gm6524 Il2rg Icosl Pcdh7 Lrrc16a
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Dram1 Gnb4 Jazf1 Il10 Pde5a Lrrc8c
Epsti1 Gng12 Katna1 Irf1 Pdpn Mefv
F730043M19Rik Gpr126 Klf7 Itgav Pilrb1 Mmp14
Fam102b Gypc Lcp2 Junb Pla2g7 Ms4a4c
Fcgr2b Hap1 Malt1 Klf6 Ppap2b Ms4a4d
Fcgr4 Hdc Mcm10 Maff Ptger2 Nos2
Fgl2 I830077J02Rik Med26 Mapkapk2 Rab20 Phyh
Gbp2 Ikzf1 Mllt6 Marcksl1 Rasgrp1 Pion
Gbp3 Il13ra1 Mrpl39 Mmp13 Saa3 Pla2g4a
Gbp7 Il6 Myd88 Mt1 Sh2b2 Prdx5
Gbp9 Inpp5b Nfkb1 Mtmr14 Siglece Procr
Glipr2 Insl6 Nfkb2 Ndrg1 Sirpb1a Ptges
Gm12250 Itga4 Nfkbie Nfkbia Sirpb1b Pydc3
Gm4902 Klf8 Nod2 Nfkbib Slamf9 Pydc4
Gm5431 Kpna3 Nupr1 Nfkbiz Slc22a4 Sipa1l1
Gm6904 Kremen1 Ogfr Nfxl1 Slc7a11 Slc28a2
Gm6907 Lap3 Optn Niacr1 Slfn4 Slc7a2
Gm7030 Larp1 Otud5 Nudt9 Smad6 Slfn1
Gpd2 Lcat Pde4b Pabpc1 Smad7 Smpdl3b
Gphn Lhx2 Pgap2 Phxr4 Snx18 Stxbp3a
Gsdmd Lipg Pgs1 Pim1 Spic Tarm1
H2ST10 Lrch1 Phldb1 Plek Tgm2 Trim34b
H2ST22 Mcc Pnp2 Ppp1r15a Tnfrsf1b Ttc39b
Hck Minpp1 Ppp6r1 Ptger4 Wnk2 Uba7
Herc6 Mmp25 Prpf38a Rasgef1b Zswim4
I830012O16Rik Mndal Ptgs2 Rcsd1
Ifi204 Naaa Rab11fip1 Rel
Ifi205 Noc4l Rap2c Rgs1
Ifi35 Otud1 Relb Rnd3
Ifi44 Phf6 Rhbdf2 Sbds
Ifit1 Phip Ripk2 Sdc4
Ifit2 Pik3r6 Rnf135 Sept11
Ifit3 Plcb3 Rnf19b Slc12a4
Igf2bp2 Plekha2 Samsn1 Slc2a6
Igtp Plekha4 Serpine1 Slc35b2
Iigp1 Plod3 Skil Socs7
Ikbke Pnpt1 Slamf7 Srgn
Il15 Pou2f2 Slc31a2 Stat5a
Il15ra Ppa1 Slc44a1 Swap70
Il18 Ppargc1b Socs3 Tfec
Il27 Ppfibp1 Sod2 Tlr2
Il4ra Ppm1k Sowahc Tnf
Irf2 Prdm9 Spred1 Tnfaip2
Irf7 Prnp Stx6 Tnfaip3
Irgm1 Prpf4 Tagap Tnfsf9
Irgm2 Psme1 Tax1bp1 Tnip3
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Isg15 Rassf4 Tiparp Ube2f
Isg20 Rcl1 Tra2a Zfp36
Jak2 Rcn1 Traf1 Zyx
Kcna3 Rgs14 Trex1
Klf3 Rnd1 Ube2l6
Lass6 Sbno2 Vasp
Lgals9 Sco1 Vcam1
Lpar1 Sema4c Wdr59
Lztfl1 Serpina3g Zfp800
Man2a1 Sertad3
Map2k4 Setdb2
Mapkbp1 Sgk3
Mcmbp Slc30a4
Mfsd7a Sntb1
Mier3 Sos1
Mlkl Spata13
Ms4a4b Spsb1
Ms4a6d Steap4
Msr1 Tbc1d13
Mtdh Tmem86b
Mthfr Tmprss2
Mtus1 Tnfsf10
Mx1 Tnfsf15
Mx2 Trim36
Mxd1 Upp1
Myo10 Usp12
N4bp1 Usp42
Naa25 Vezt
Ncrna00085 Ythdf1
Nlrc5
Nod1
Notch1
Nr3c1
Nt5c3
Nxf1
Oas1b
Oas1g
Oas3
Oasl1
Oasl2
P4ha1
Papd7
Parp10
Parp11
Parp12
Parp14
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Parp4
Parp8
Pcgf5
Peli1
Phf11
Plagl2
Pml
Pnp
Ppp1r15b
Psmb10
Psmb8
Psmb9
Pstpip2
Pyhin1
Rapgef2
Rbl1
Rgl1
Rin2
Rnf31
Rsad2
Samhd1
Sec24b
Sh3bp4
Slc25a12
Slc4a7
Slco3a1
Slfn3
Slfn8
Slfn9
Snx10
Socs1
Sp100
Sp140
Src
St7
Stat2
Tap1
Tap2
Tapbp
Tifa
Tlr3
Tmem170b
Tmem2
Tmem67
Tnfrsf14
Tor3a
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Tpst1
Traf2
Trim21
Trim26
Trim30a
Trim30b
Trim30d
Tspo
Txn1
Ubash3b
Ubr4
Usp18
Usp25
Vcan
Vps54
Whamm
Xaf1
Xrn1
Zbtb5
Zcchc2
Zufsp
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!CLUSTER!7 !CLUSTER!8 !CLUSTER!9 !CLUSTER!10 !CLUSTER!11 !CLUSTER!12
6030422M02Rik 3010026O09Rik 1200009I06Rik 5031414D18Rik Akt3 4933437F05Rik
A430084P05Rik 9130230L23Rik Abcc1 AB124611 Ankib1 Ccr3
Adamts6 A3galt2 Akap13 Abhd16a Arid5a Cdk5r1
Adora3 Apol8 Akap2 Alpk1 Atf3 Chaf1b
Aldh1b1 Arl5b Akna Atp13a1 Ccl12 Clcf1
Angpt1 BC031781 Arl5c B630005N14Rik Ccl7 F3
Arhgef37 Bcl2l11 Atp2b4 Brwd3 Cd86 Frmd6
Arl4a Btg2 Bcor Cmtm6 Chd7 Htr2a
Asap3 C920009B18Rik Bcorl1 Csrp1 Dennd1a Htra4
Bco2 Cpm Cacnb3 D1Ertd622e Dock10 Ifnb1
C1ra Cxcl1 Cdc42ep2 Dgka Eif2ak2 Iglon5
Casp12 Cxcl2 Clec4e Dr1 Etv6 Il12b
Ccdc101 Dhx40 Dennd4a Etnk1 Fam53c Irf4
Cd200 Dnajb4 F11r Etv3 Fndc3a Lrrc63
Crim1 Dusp4 Fam20c Golga3 H3f3b Map3k5
Dpy19l1 Dusp5 Fscn1 Gpr108 Hivep2 Mybbp1a
Fap Dusp8 Gja1 Gramd1a Il1rn Olr1
Fbn1 Egr1 Gm8909 Hmgn3 Marcks Prkab2
Fcrl5 Egr2 H2SQ4 Hn1 Mnda Pvr
Fcrlb Egr3 H2SQ8 Hsd17b11 Mt2 Rhof
Flt1 Ets2 Hivep3 Iqsec2 Nfil3 Sele
Gfi1 Fam71a Hspa1a Irf8 Ralgapa2 Sh3bgrl2
Gm13315 Fos Hspa1b Itpr1 Ranbp2 Tmem200b
Gm15987 Fosb Ift57 Ktn1 Rictor Zbtb10
Gm9895 Gdf15 Jdp2 Mertk Sik3
Ifitm7 Gem Kctd12 Nlgn2 Slfn2
Il12rb1 Glp2r Lphn2 Nono Slfn5
Il2ra Gm4980 Myo1g Prkx Stx11
Itgb1bp2 Gtf2ird2 Nfkbid Rhoc Tet2
Itgb8 Ier2 Nle1 Rps6ka3 Tlk2
Klrk1 Ier3 Nr4a3 Slc12a9 Tmod3
Mfsd6l Ifngr1 Orai2 Slc25a22 Zcchc6
Nox1 Ifrd1 Plagl1 Stard7
Ovol1 Irgq Plaur Tgs1
Pdk3 Irs2 Prdm1 Tle3
Pecam1 Jun Ptch1 Tmem131
Pla2g16 Kcnj2 Slc25a37
Pla2r1 Kdm6b Sphk1
Plod2 Mmp12 Sqstm1
Pou3f1 Mybpc3 St3gal1
Rab3ip Myc Stim2
Rac3 Nlrp3 Tnfrsf11a
Rpgrip1l Nr4a1 Tpbg
Rtn1 Odc1 Trpm4
Sectm1a Olfr1444 Tshz1
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Sell Olfr920 Ttc39c
Slamf1 Osgin2 Vash1
Slc16a1 Osm Zc3h12c
Tex14 P2ry2 Zhx2
Tmem176a Phlda1
Tmtc2 Plau
Trip6 Plk2
Tuba8 Pmaip1
Uaca Rcvrn
Xkr8 Rgs2
Zeb1 Trib1
Zfp811
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