
PhD degree in Molecular Medicine (curriculum in Molecular Oncology) 

European School of Molecular Medicine (SEMM), University of Milan 

Settore disciplinare: Bio/11  

	  

	  

ROLE	  OF	  THE	  POLYCOMB	  GROUP	  PROTEINS	  

IN	  THE	  ADULT	  INTESTINAL	  STEM	  CELLS	  

HOMEOSTASIS	  	  

 

Alessandra Rossi 

IEO,	  Milan	  	  

Matricola	  n.	  R09402	  

	  

	  

	  

Supervisor:	   Dr.	  Diego	  Pasini	  

IEO,	  Milan	  	  

	  

	  
	  
	  
	  
	  
	  
	  
	  
	  

Anno	  accademico	  2013-‐2014	  
  



	  II	  

  



	   III	  

Table of Contents 

List of Abbreviations                 V 

Figure Index                   VIII 

Abstract           1 

Chapter 1: Introduction        3 

1.1 Chromatin remodeling in transcription        3 

1.2 Polycomb group proteins         4 

1.3 PRC2: structure and function        5 

1.4 PRC1: structure and function        7 

1.5 PcG proteins recruitment         8 

1.6 PcGs biological functions        11 

1.7 Small Intestine as a model system to study PcGs roles in adult tissue homeostasis 15 

1.8 Intestinal architecture         15 

1.9 Intestinal Stem Cells         18 

1.10 Intestinal signaling pathways        22 

1.11 Colorectal cancer         31 

Aims           35 

Chapter 2: Materials and Methods      37 

2.1 Ethic statements          37 

2.2 Mice and treatment        37 

2.3 Villi, Crypt and LGR5+ ISCs isolation       39 

2.4 Immunohistochemistry (IHC) and immunofluorescence (IF)    39 

2.5 Western Blot          40 

2.6 Real-Time PCR          40 

2.7 TUNEL Assay          41 

2.8 Organoids culture         41 

2.9 SW480 cell line          42 

2.10 FACS analysis and FACS sorting       42 

2.11 Cell tracking : LacZ mice        42 



	  IV	  

2.12 RNA-Sequencing       43 

2.13 Chromatin Immunoprecipitation-Sequencing       44 

2.14 Luciferase Reporter Assay        45 

Chapter 3: Results         47 

3.1 PcG proteins role inregulating adult tissue homeostasis     47 

3.2 PRC1 activity is required for the intestinal homeostasis trough  

 a Ink4a-Arf independent mechanism        48 

3.3 PcG proteins are express and active in the intestinal crypts    51 

3.4 PRC1 activity is required for the intestinal homeostasis trough  

 a cell-autonomous mechanism        53 

3.5 PRC1 activity is required for the ISCs homeostasis trough  

 a mechanism that is cell-death independent      55 

3.6 PRC1 activity is directly required for the self-renewal of the ISCs trough  

 a Ink4a-Arf independent mechanism         59 

3.7 Dissection of the transcriptional program controlled by PRC1 in the ISCs   67 

3.8 PRC1 inactivation induces a up-regulation of the Zic proteins that, in turn, can  

 directly inhibit the transcriptional activity of the ß-Catenin/Tcf4 complex   75 

3.9 PRC1 activity impairs the progression and maintenance of small intestinal tumors 83 

Chapter 4: Discussion        87 

4.1 PRC1 roles in the intestinal homeostasis       87 

4.2 PRC1 roles in the ISCs homeostasis       88 

4.	  PRC1 implication in CRC         90 

4.4 PRC1 vs PRC2          91 

 

Chapter 5: Appendix         93 

 5.1 PRC2 role in gut homeostasis and CRC       93 

References          97 

 

  



	   V	  

List of Abbreviations 

AEBP2    AE binding protein 2 

ALPI    Alkaline phosphatase 

APC    Adenomatous polyposis coli 

ASCL2    Achaete-scute like2 

BMP    Bone morphogenic protein 

CBCs    Crypt-base columnar cells 

ChIP-Seq   Chromatin Immunoprecipitation-Sequencing 

CKI    Casein kinase I 

CRC    Colorectal cancer 

Cre     Causes recombination 

DIPG    Diffuse intrinsic pontine gliomas  

dKO    Double knockout  

DLBCL    Diffuse large B-cell lymphoma 

DMEM    Dulbecco's modified Eagle's medium 

DNA    Deoxyribonucleic Acid 

EDTA    Ethylenediaminetetraacetic acid 

EED    Embryonic ectoderm development 

EGF    Epidermal growth factor 

ESC    Embrionic stem cells 

EZH1    Enhancer of zeste 1  

EZH2    Enhancer of zeste 2 

FACS     Fluorecent Associated Cell Sorting 

FL    Follicular lymphoma 

GFP    Green fluorescent protein 

GSK3β    Glycogen synthase kinase 3β 

H&E    Hematoxilin and Eosine  

H2AUbq   Histone H2A lysine K119 mono ubiquitin 

H3K27me1   Histone H3 lysine K27 monomethylated 

H3K27me2   Histone H3 lysine K27 dimethylated 

H3K27me3   Histone H3 lysine K27 trymethylated 



	  VI	  

HES    Hairy/enhancer of split 

HNPCC   Hereditary non-polyposis colorectal cancer 

IF     Immunofluorescence 

IHC    Immunohistochemistry 

IP     Intraperitoneal 

ISCs    Intestinal stem cells 

JARID2    Joumanji D2 

KMT    Lysine methyltransferase 

LEF    Lymphoid enhancer factor 

LoxP     Locus of crossover in phage P1 

LRCs    Label-retaining cells 

LYS    Lysozyme 

MDS    Myeloid Dysplastic Syndromes  

ncRNA    Non-coding RNAs 

NICD    Notch intracellular domain 

OLFM4    Olfactomedin 4 

PcG    Polycomb group proteins 

PCGFs    Polycomb group RING fingers 

PCL1-2-3   Policomb-like 1-2-3 

PIP2    Phosphatidylinositol-4,5-diphosphate 

PIP3    Phosphatidylinositol-3,4,5-triphosphate 

pRB    phosphorylated Retinoblastoma protein 

PRC1    Polycomb Repressive Complexes 1 

PRC2    Polycomb Repressive Complexes 2 

PRE    Polycomb response elements 

PTI    Post-tamoxifen injection 

Rbp46    Retinoblastoma binding proteins 46 

Rbp48    Retinoblastoma binding proteins 48 

RNA-Seq   RNA-Sequencing 

RT-qPCR   Quantitative reverse transcription PCR  

RTK    Receptor tyrosine kinase 

RYBP    RING1 and YY1 Binding Protein  



	   VII	  

SMA1    Smooth muscle a-actin 

SOS    Son of sevenless 

ß-NPT    ß-naphthoflavone 

SUZ12    Suppressor of zeste 12 

TA     Transient amplifying 

TAM    Tamoxifen 

TCF    T cell factor 

TFF3    Trefoil factor 3 

TGFβ    Transforming growth factor β 

TSS    Transcription start site 

TUNEL    TdT-mediated dUTP Nick-End Labeling 

WB    Western Blot 

WNT    Wingless integration site 

WT    Wild type 

ZIC     Zinc finger of the cerebellum 

 

 

 

  



	  VIII	  

Figures Index 

 

Introduction 

Figure 1.1 Schematic rappresentation of PRC2 H3K27 methylation effects   7 

Figure 1.2 Biochemical structure of the different PRC1 complexes    9 

Figure 1.3 Hierarchical models for recruitment of PcGs to target genes   11 

Figure 1.4 Model of PcG regulation of cellular proliferation     14 

Figure 1.5. Tissue anatomy of the adult small intestine and of the colonic epithelium  19 

Figure 1.6 Histological location and biological interaction of intestinal stem cells 

and their niche         24 

Figure 1.7 The β‐catenin‐dependent or canonical Wnt signalling pathway   26 

Figure 1.8 Interaction between EphrinB ligandsand EphBreceptors direct cellular  

localization and migratory behavior within the crypt    28 

Figure 1.9 Multistep model of colon cancer progression     34 

Results 

Figure 3.1  Loss of PRC1 activity in adult mice induce severe defects in the  

homeostasis of the intestinal epithelium      48 

Figure 3.2 Loss of Ring1a-Ring1b not reveals apparent defects in the  

intestinal epithelium after 5 days      49 

Figure 3.3 Loss of Ring1a-Ring1b induces loss of normal intestinal  

architecture after 8 days       50 

Figure 3.4 Isolation of crypt and villi fractions from mice small intestine   51 

Figure 3.5 Efficient Ring1b deletions in the crypts.      52 

Figure 3.6 PRC1 activity is required for the in vitro mini-gut formation.   54 

Figure 3.7 Specificity of the Ring1b conditional alleles deletion in the Lgr5+ ISCs  56 

Figure 3.8 Efficiency of the PRC1 loss of function in the Lgr5+ ISC compartment  57 

Figure 3.9 Ablation of PRC1 activity in the ISCs induces loss of  

physiological intestinal architecture       58 

Figure 3.10 Crypt degeneration in PRC1 KO mice is a cell death-independent process 59 

Figure 3.11 Loss of PRC1 activity induce the exhaustion of the GFP+ ISCs   61 



	   IX	  

Figure 3.12 Loss of PRC1 activity induces the exhaustion of the GFP+ ISCs  

trough a Ink4a/Arf-independent mechanism     62 

Figure 3.13 Loss of PRC1 activity induces the exhaustion of the Lgr5-LacZ+ ISCs  64 

Figure 3.14 PRC1 activity is required for the in vitro organoids formation   66 

Figure 3.15 Gate setting for the GFP+ ISCs sorting      68 

Figure 3.16 High-throughput Ring1b and H2AUbq location analysis in ISCs and crypts 70 

Figure 3.17 Transcriptional changes between WT and Ring1a-Ring1b dKO ISCs  71 

Figure 3.18 Localization profiles of Ring1b and H2AUbq at the up and down  

regulated genes in the Ring1a-Ring1b dKO ISCs    72 

Figure 3.19 Loss of PRC1 activity in the ISCs induce the up-regulation of gene  

involved in pattern specification processes     73 

Figure 3.20 Loss of PRC1 activity triggers a loss of lineage identity    74 

Figure 3.21 Loss of PRC1 activity induce the expression of Wnt antagonist   76 

Figure 3.22 Zic cluster is a direct target of the PRC1 activity     77 

Figure 3.23 Zic cluster is directly regulated by PRC1     78 

Figure 3.24 Zic1 and Zic2 directly bind TCF4      79 

Figure 3.25 Zic1 and Zic2 inhibit TCF/LEF transcriptional activity    80 

Figure 3.26 Loss of PRC1 activity induces TCF4 and ßcatenin degradation    81 

Figure 3.27 Loss of PRC1 activity induces TCF4 delocalization    82 

Figure 3.28 Loss of PRC1 activity fully inhibited the ßcatenin induce adenomas  84 

Appendix 

Figure 5.1  PRC2 role in the intestinal homeostasis      94 

Figure 5.2  PRC2 role in the ISCs homeostasis      95 

	   	  



	  X	  

	  



	   1	  

 

 

Abstract 

 

Polycomb group proteins (PcG) are among the most important gatekeepers that 

ensure the correct establishment and maintenance of cellular identity in 

metazoans. This occurs by modifying chromatin through the activity of two 

Polycomb Repressive Complexes (PRC1 and PRC2) that deposit H2A 

ubiquitylation and H3K27 methylation respectively, in order to guarantee 

repression of their target genes. Although the development of PRC2 inhibitory 

compounds is becoming a very promising strategy for specific cancer treatment, 

the controversial role of PcG proteins, acting as oncogenes or tumor suppressors 

in a tissue/cancer specific manner, prompt us to further investigate the role PcG 

proteins in regulating adult tissue homeostasis. Using different genetic models, we 

have found that PRC1 activity is required for the integrity of the mouse intestinal 

epithelia. More in detail, PRC1 activity is required for the self-renewal of the 

intestinal stem cells (ISCs) via a cell-autonomous mechanism that is independent 

of Ink4a-Arf expression. Using high-throughput transcription and location analysis, 

we have dissected the direct transcriptional pathways regulated by PRC1 in ISC 

showing that PRC1 inactivation induces a loss of ISC identity as a result of a 

massive up-regulation of non-lineage specific transcription factors that can directly 

inhibit the transcriptional activity of the ß-Catenin/Tcf4 complex. Overall, we 

propose that PRC1 control the self-renewal of ISC by positively sustaining Wnt 

transcriptional activity also in the presence of oncogenic mutations that 

constitutively activate the Wnt pathway in intestinal tumors.   
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Chapter 1: 

Introduction 

 

Chromatin represents a signal transduction platform for extracellular or 

intracellular signals that regulates all genome functions, including gene 

expression, DNA replication and genome stability. Upstream signals can be 

translated by chromatin into either transient or permanent and heritable 

information allowing the adaptation of the cells to the changing environment as 

well as their lineage specification and/or identity maintenance.  

Chromatin is a structure formed by DNA, histone proteins, non-histone proteins 

and RNA that allows the storage of DNA within the nucleus. Both histones and 

DNA present different modifications of which the best characterized include 

histones methylation, acetylation, ubiquitination, and phosphorylation as well as 

the methylation cytosines within DNA CpG di-nucleotides (Jenuwein and Allis, 

2001). 

While chromatin is a clear barrier to access DNA it also become an extremely 

powerful tool to fine-tune the usage of our genetic information and to protect it 

from different type of stresses or insults.  

 

1.1 Chromatin remodeling in transcription 

Chromatin remodeling is the dynamic modification of the chromatin architecture 

that allows accessing the condensed genomic DNA to different factors including 

the proteins belonging to the transcription machinery. These processes include 
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remodeling of the structure, composition and positioning of nucleosomes and play 

indispensable roles to guide where, when, and which genes should be switched on 

or off in transcription.  

Histone modifications are crucial to control the activation or the repression of 

gene expression by altering ether the interaction of specific factors with 

nucleosomes or by acting as recognition surfaces for the recruitment or exclusion 

of diverse regulatory factors.  

These modifications are deposed by chromatin-modifying enzymes and despite 

the enzymatic activities that catalyze the deposition and removal of histones and 

DNA modifications have been identified and characterized, a complete functional 

understanding of the molecular function of these modifications is far from been 

completed. Moreover, the deregulation of the activity of different chromatin-

modifying enzymes is a frequent event in different diseases and, for this reason, 

they attract a lot of attention also as novel potential pharmacological targets. In 

this scenario, polycomb repressive complexes (PRC) are particularly interesting 

for their role in maintaining transcriptional repression during development and 

differentiation as well as for their essential role in controlling cell proliferation and 

tumor growth. 

 

1.2 Polycomb group proteins 

Polycomb group proteins (PcG) are chromatin-associated proteins involved in 

gene silencing in a cell type specific manner. They are among the most important 

gatekeepers that ensure the correct establishment and maintenance of cellular 

identity in metazoans (Bracken and Helin, 2009). PcGs were originally discovered 

in Drosophila Melanogaster as important regulators of development and tissue 

morphogenesis mediating Hox gene repression. Consistent with this, in mammals 
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PcGs have been shown to be essential for many biological process including 

development, differentiation and cell proliferation (Simon and Kingston, 2013).  

PcG proteins are a large protein family highly evolutionarily conserved that 

includes diverse biochemical features. At a molecular level, they are classified in 

two distinct multiprotein complexes named polycomb repressive complex 1 and 2 

(PRC1 and PRC2) that ubiquitinilate the lysine 119 on histone H2A or methylate 

lysine 27 of histone H3 (H3K27) respectively. PRC2 and PRC1 exist in several 

different forms that play partially redundant functions. 

 

1.3 PRC2: structure and function 

The core of PRC2 is formed by the catalytic subunit Enhancer of zeste 1 or 2 

(EZH1 or EZH2) and by the structural proteins Suppressor of zeste 12 (SUZ12) 

and Embryonic ectoderm development (EED). The most important auxiliary 

proteins that modulate PRC2 activity and its recruitment to specific promoters 

include Retinoblastoma binding proteins 46 and 48 (RbAp46/48), Policomb-like1-3 

(PCL1-3 also known as PHF1, MTF2, PHF19), the AE binding protein 2 (AEBP2) 

and the Jumanji D2 (JARID2) proteins (Tavares et al., 2012) (Pasini et al., 2010).  

The two different EZH paralogue proteins contain both a SET domain with 

lysine methyltransferase (KMT) activity specific for H3K27 (Cao et al., 2002) and 

are mutually exclusive within the PRC2 complex (Shen et al., 2008). They retain a 

cell type specific expression, different chromatin binding capabilities and an in vitro 

different KMT activity. Experimental evidences suggest that H3K27me3 is mainly 

achieved through EZH2 and to a lesser extent via EZH1 activity. Ezh2-null mice 

die in utero, while Ezh1 knock out (KO) mice have no overt defects. These data 

reflected the compensatory functions of EZH2 in the absence of EZH1 and, on the 

contrary, the fact that EZH1 can also compensate only to some extent EZH2 

(Ezhkova et al., 2011).  
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Although the best-characterized activity of PRC2 is the tri-methylation of 

H3K27, (Cao et al., 2002) our laboratory has recently shown that PRC2 controls 

the deposition of all forms of H3K27 methylation (me1, me2 and me3) modifying 

more than 80% of total H3 (Ferrari et al., 2014) (Bracken and Helin, 2009) (Figure 

1.1).  

The mechanisms by which H3K27me3 actually promotes gene silencing 

include: i) the recruitment of the PRC1 and other silencing factors to the chromatin 

sites, ii) the antagonism with activating H3K27Ac, iii) the impairment in the 

recruitment of the transcriptional machinery (Simon and Kingston, 2013). 

 

            

 

Figure 1.1 Schematic representations of PRC2 H3K27 methylation effects. PRC2 

deposits all H3K27 methylation states in spatially defined genomic domains. H3K27me1 

accumulates within expressed genes and promotes transcription. Setd2-dependent H3K36me3 

regulates H3K27me1 versus H3K27me2 intragenic deposition. Diffused H3K27me2 protects 

from aberrant K27 acetylation, ensuring enhancer control. H3K27me3 deposition induces the 

transcriptional repression of the target genes. Figure from (Ferrari et al., 2014) 
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1.4 PRC1: structure and function 

Using proteomic and genomic analysis different laboratories have reveled the 

existence of six distinct PRC1 sub-complexes (Figure 1.2), all containing the 

Ring1A/B ubiquitin E3-ligases associated with a distinct PCGF subunit and an 

exclusive set of associated polypeptides. All these complexes retain specific 

chromatin localization, biochemical proprieties and molecular/biological function 

(Gao et al., 2012). Ring1A and Ring1B are the mutually exclusive catalytic 

subunits of all PRC1 that mono-ubiquitylate the H2AK119 in order to mediate gene 

silencing. This is done throughout chromatin compaction, witch reduces chromatin 

accessibility for chromatin remodelers and transcription factors, and inhibits RNA-

PolII activity (Margueron and Reinberg, 2011). Loss of Ring1b led to embryonic 

lethality at 9.5 days post coitum (d.p.c), while Ring1a-null mice display 

substantially no phenotype and no reduction in H2AUbq suggesting full 

compensation mediated by Ring1b. However, Ring1b and Ring1a double KOs 

present more severe phenotype leading to a rapid block in pre-implantation 

development (2-cell stage) (Posfai et al., 2012) 

Canonical PRC1 complexes contain CBX (CBX2, 4, 6, 7 or 8), PHC (PHC1, 2 

or 3) and PCGF2 or PCGF4 subunits (BMI1 and MEL18 respectively) and seem to 

be recruited to chromatin through the CBX binding on the H3K27me3 deposited by 

PRC2. In contrast, RING1 and YY1 Binding Protein (RYBP) (and its paralogue 

YAF2) are the constitutive subunit of non-canonical PRC1 complexes (PRC1-

PCGF1, 3/5, 6) and results mutually exclusive with CBX proteins when associate 

with the canonical PCGF2/4 (PRC1-PCGF2/4RYBP).  

RYBP-containing PRC1 complexes are the ones responsible for the majority of 

the H2AUbq repressive marks on chromatin. In particular the deposition of 

H2Aubq is largely under the control of the PRC1-PCGF1, a complex that contain 

the histone H3K36me3/2 demethylase KDM2B, able to bind CpG-rich DNA 



	  8	  

regions, and the protein BcoR, SKP1 and USP7 (Gao et al., 2012) (Blackledge et 

al., 2014) (Scelfo et al., 2014).  

Functional characterization in ESC indicates that the PRC1-RYBP containing 

complexes predominantly regulate cellular metabolism and the M phase of 

meiosis, whereas those containing CBX are associated with cell differentiation 

choices during early development (Morey et al., 2013). 

 

 

 

 

Figure 1.2 Biochemical structure of the different PRC1 complexes. The picture 

summarizes the existence of functionally distinct PRC1 subcomplexes. Specific PCGF proteins, 

in association with either CBXs or RYBP/YAF2, define the functional and biochemical nature of 

the complexes. PCGF2 and PCGF4 or PCGF3 and PCGF5 play redundant functions, as the 

biochemical composition of the PRC1 complexes formed by these proteins was identical. Figure 

from (Scelfo et al., 2014) 

 

1.5 PcG proteins recruitment 

PcG proteins are recruited to specific loci in the genome in a cell-type specific 

fashion. In Drosophila melanogaster, PcG recruitment occurs at Polycomb 

response elements (PRE) and requires the interaction of PcG proteins with a 

specific set of DNA binding transcription factors. In mammals, the mechanisms of 

PcG recruitment to specific DNA sites are still poorly understood: these structures 
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are not conserved and PREs do not seem to exist. Mammalian genome wide 

studies have shown that PcG proteins associate preferentially at CG rich genomic 

regions (Mikkelsen et al., 2007) however the molecular mechanisms that regulate 

such association remain elusive. DNA and histone modifications also play a key 

role in recruiting or stabilizing PcGs to their target loci. In particular, different PRC1 

and PRC2 subunits are able to bind specific histone modifications (Deaton and 

Bird, 2011) (Fischle et al., 2003) (Min et al., 2003) (Wysocka et al., 2005) (Simon 

and Kingston, 2013).  

PcGs are furthermore recruited to chromatin through a direct interaction with 

DNA binding protein (Simon and Kingston, 2013) (Pasini et al., 2010) and finally 

can functionally interact with Long ncRNA molecules that determines or contribute 

to PcG target specification (Lee et al., 1999) (Rinn et al., 2007) (Yap et al., 2010). 

 

The most accepted hierarchical model for the binding of Polycomb complexes 

to target genes involves the dependency of PRC1 recruitment from PRC2-

mediated deposition of H3K27me3 (Figure 1.3a). This mechanism of recruitment 

was exemplified by the large co-localization on chromatin of the two complexes 

and by the discovery that the chromodomain of the CBX proteins specifically bind 

H3K27me3 (Fischle et al., 2003) (Min et al., 2003).  

However, recent evidence clearly showed that different PRC1 sub-complexes 

are recruited to target promoters independently of PRC2 (thus defined as non-

canonical). Moreover, more recent reports have further challenged the canonical-

model showing that PRC2 binds directly to H2AK119 mono-ubiquitylated 

nucleosomes and that non-canonical PRC1 activity is required to mediate PRC2 

recruitment at target sites in vivo (Blackledge et al., 2014) (Cooper et al., 2014) 

(Kalb et al., 2014) . 
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These studies suggest a positive feedback loop at PcG target genes, in which 

H2AUbq deposited by the non canonical PRC1complexes (PRC1-PCGF2/4RYBP 

and PRC1-PCGF1, 3/5, 6) stimulates the PRC2 binding and the deposition of 

H3K27me3, which in turn facilitate recruitment of canonical PRC1 complexes 

(PRC1-PCGF2/4CBX) containing CBX proteins and stimulate PRC2 activity. Finally, 

PRC2 binds directly H3K27me3 through the WD40 domain of EED, suggesting a 

potential mechanism that maintains PRC2 binding at target sites independently of 

the underling DNA sequence during DNA replication and cell division. Overall, 

although the exact mechanisms of recruitment remain an open issue, is likely that 

multiple mechanisms play simultaneous roles in regulating the stabilization of 

these complexes at CpG rich promoters (Comet and Helin, 2014).  

 

 

          

Figure 1.3 Hierarchical models for recruitment of PcGs to target genes. (a) Classical 

hierarchical model for the recruitment of PcG complexes. PRC2, in a complex with JARID2 and 

AEBP2, is recruited to nonmethylated CGIs (white circles, nonmethylated cytosines; black 
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circles, methylated cytosines) through a not fully understood mechanism that might involve 

other factors, such as DNA-binding proteins (marked by ‘?’). PRC2 recruitment leads to 

formation of H3K27me3 (red circles). The CBX subunits of canonical PRC1 can bind to 

H3K27me3, thus leading to the recruitment of this complex and to low amounts of H2A K119 

monoubiquitination. (b) The new hierarchical model suggests that PRC1 variants are recruited 

to nonmethylated CGIs, for instance by KDM2B. This leads to H2A K119 monoubiquitination 

and recruitment of PRC2 through an unknown mechanism, possibly involving unknown factors 

(marked by ‘?’). H2AK119ub1 further stimulates the catalytic activity of PRC2. Figure from 

(Comet and Helin, 2014)  

 

1.6 PcGs biological functions 

PcGs proteins are involved in the regulation of many biological processes 

including development, differentiation and cell proliferation (Sparmann and van 

Lohuizen, 2006). 

The correct establishment of cell-type specific transcription programs is of 

fundamental importance for proper embryonic development as well as to ensure 

correct cellular differentiation for tissue homeostasis in adult organisms. 

Chromatin-modifying factors often play essential roles in regulating these 

processes, ensuring maintenance of gene repression or establishing the activation 

of lineage specific genes.  

PcGs directly control the expression of cell-type specific set of genes, 

contributing to the correct establishment of lineage specific transcription programs 

(Bracken 2009) (Piunti and Pasini, 2011). By the repression of different set of 

genes PcG proteins control the differentiation capabilities of the ESC and are also 

essential in adult tissue homeostasis for proper time-controlled activation of 

lineage specific genes (Ferrari et al., 2014) (Mousavi et al., 2012) (Frangini et al., 

2013). 
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PcG proteins play an essential role in regulating proper cellular proliferation 

and, in turn, in controlling tumor growth.  

The major mechanism by which PcGs promotes cell proliferation is via direct 

transcriptional repression of the tumor suppresive INK4b-ARF-INK4a (Cdkn2a and 

Cdkn2b) locus (Bracken et al., 2007) (Dietrich et al., 2007) (Jacobs et al., 1999). 

While p16INK4a and p15INK4b binds to Cyclin/CDK complexes and inhibit cell cycle 

by blocking CDK mediated phosphorylation of the Retinoblastoma protein pRB, 

p14ARF binds to MDM2 and blocks its ability to degrade p53. Stabilization of p53 

has anti-proliferative and pro-apoptotic effects in part through the transcriptional 

activation of the Cyclin/CDK inhibitor p21. Loss of function of any of these proteins 

has growth-promoting effects and prevents cells to undergo replicative and or 

oxidative induced senescence (Gil and Peters, 2006). 

The physiological relevance for such regulation has been demonstrated in 

different genetic mouse models but the phenotype derived from loss of PRC1 or 

PRC2 activity can be only partially rescued by Cdkn2a inactivation (Bruggeman et 

al., 2005) (Voncken et al., 2003) (Chen et al., 2009) suggesting the existence of 

additional regulatory pathways that play essential roles in development and 

carcinogenesis. In fact, our laboratory has recently shown that PcG proteins are 

able to promote cell proliferation exerting a parallel control over DNA replication. 

This work showed that PcGs are directly localized at sites of ongoing DNA 

replication and that they can promote cell cycle supervising the progression of 

DNA replication independently of the functionality of the Ink4a/Arf-pRb-p53 

pathway (Figure 1.4) (Piunti et al., 2014). This finding has a particular relevance in 

the context of cancer development, where the Ink4a/Arf-pRb-p53 pathway is 

directly inactivated in most tumor types. As also shown in my thesis results, 

Cdkn2a-independent function of PcG activities are broader then expected when 

their function is analyzed in adult tissues. 
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Figure 1.4 Model of PcG regulation of cellular proliferation. The model highlights the role of 

PcGs in regulating cell proliferation trough Ink4A/Arf repression and DNA replication enhancement 

in normal cells.  From (Piunti et al., 2014) 

 

Uncontrolled proliferation is one of the hallmarks of cancer that is required for 

tumour growth and spreading (Hanahan and Weinberg, 2011). The normal cell 

cycle progression is tightly controlled by a variety of molecular checkpoints that 

supervise the biological processes, which take place in the different phases of the 

cell cycle (Medema and Macurek, 2012). Notably, the cell cycle checkpoint that 

involves the Ink4a/Arf-p53-pRb axis represents the principal barrier for the 

initiation and maintenance of neoplastic transformation (Kamijo et al., 1997) 

(Serrano et al., 1996) (Ventura et al., 2007). 

In line with the role of PcGs in the Cdkn2a repression, malignant tumours 

frequently display a strong overexpression of PRC1 and PRC2 activities that, in 

most cases, correlates with aggressiveness and poor prognosis (Piunti and Pasini, 

2011). Despite this, it has been shown that PcGs activity can also be inhibited 
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(lost) in some tumors, suggesting that PcGs can function either as an oncogene or 

a tumour suppressor, depending on its tissue and cellular context. 

The first evidence of a PcG protein having a direct role in cancer formation was 

the identification of BMI1 as a proto-oncogene that cooperate with MYC in the 

formation of B-cell Lymphomas (van Lohuizen et al., 1991).  

Concerning the role of PRC1, the Ring finger protein Bmi1 is commonly 

overexpressed in several tumors but some contradicting results on other PRC1 

components suggests that PcG oncogenic proprieties might reside in single 

subunits rather than in the complexes activities. In particular, PRC1 role in 

leukaemia presents a certain degree of controversy. For example, while Bmi1 is 

essential for AML1-ETO and PLZF-RARα induced leukemias via a mechanism 

Ink4a/Arf dependent (Boukarabila et al., 2009) it results dispensable for MLL-AF9 

driven leukemogenesis (Smith et al., 2011). This could be due to the particular 

ability of MLL-AF9 to overexpress Hoxa7 and Hoxa9 that, in turn, maintain the 

Ink4a-Arf locus repressed and promotes leukemia progression. Contrary, Cbx8 is 

required for the development of MLL-AF9 driven leukemia (Tan et al., 2011). 

In the literature, different data highlighted also a PRC2 “double-face” role in the 

oncogenic context. Ezh2 is overexpressed in several malignant tumor and a 

mutations in the catalytic SET domain of EZH2 (Y641) that induces a gain of 

PRC2 activity has been found in the germinal center lymphomas (DLBCL and FL) 

(Campbell and Tummino, 2014). In contrast, EZH2 inactivating mutations has 

been frequently reported in Myeloid Dysplastic Syndromes (MDS) and leukemic 

patients (Issa, 2013) as well as somatic mutations in the histone variant H3.3 (on 

lysine 27 (K27M) or on Glutamate 34 (G34R)) witch inhibit EZH2 enzymatic 

activity characterize the diffuse intrinsic pontine gliomas (DIPG, paediatric 

gliomas) (Schwartzentruber et al., 2012) (Lewis et al., 2013).  Similarly, essential 

subunits of the complex are also frequently mutated. For instance, Suz12 was 
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recently shown to be homozygous deleted with high frequency in peripheral 

nervous system tumors and its potential tumor suppressive proprieties validated in 

genetic mouse models (Zhang et al., 2014). 

 

1.7 Small Intestine as a model system to study PcGs roles in 

adult tissue homeostasis 

While the role of PcG proteins in embryonic development has been extensively 

characterized, very little is known about their contribution in adult tissue 

homeostasis. In this project, we decide to use mouse small intestine as a model to 

analyze in vivo the role of PcGs in regulating the homeostasis of an adult tissue 

with a fast tunover and its role in regulating stem cell functions. 

The small intestine retains a well-characterized structure with a fast turnover in 

which the stem cells are compartmentalized and the differentiation into progenitors 

and diffentiated progeny is easy to dissect along the crypt-villus axis. Moreover, 

the availability of different genetic mouse models as well as the technical 

knowledge developed through the years by different laboratories working in this 

field make the small intestine an excellent tool to study at the molecular levels the 

dynamics controlling the adult tissue homeostasis.  

Furthermore, since PcG proteins are frequently overexpressed in the intestinal 

tumors, shedding lights on the physiological roles of PRC1 and PRC2 in the 

intestinal stem cell regulation would help to understand the mechanisms behind 

the oncogenic transformation processes. 

 

1.8 Intestinal architecture 

The gut can be divided anatomically into two parts: the small intestine, 

subdivided in duodenum, jejunum and ileum, and the large intestine composed by 
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colon, caecum and rectum. The identity of each of these segments is, in part, 

specified through the expression of the homeotic transcription factor Cdx2, which 

represses the expression of genes characteristic of the stomach, and the zinc 

finger Gata4, which confers proximal identity to the duodenum and ileum. 

The small intestine main functions are the absorption of nutrients and the 

production of antimicrobial proteins in order to form a barrier against luminal 

pathogens. However, the colon mainly absorbs water back into the body and 

compacts the undigested contents to be discarded. These two diverging functions 

are mirrored at the cellular level by a different anatomical setup. The intestinal 

epithelium of both small and large intestine present invaginations into the 

submucosa called crypts of Lieberkuhn, but while the small intestine’s surface is 

maximized by millions of epithelial protrusions called villi that absorb the 

micronutrients into the blood (Figure 1.5a), the colon present a flat surface 

epithelium (Clevers and Batlle, 2013) (Figure 1.5b). 

The intestinal epithelium develops from the embryonic endoderm and, in mice, 

completes in the postnatal period by the time of weaning. The organogenesis of 

the small and large intestines could be divided in three parts: the endoderm and 

gut tube formation in early embryogenesis, villus morphogenesis and crypt 

formation. The crosstalk between the mesoderm-derived mesenchyme and the 

endoderm-derived epithelium has been shown to be fundamental for the normal 

development of the intestine. After the formation of the embryonic gut tube, signals 

from the mesenchymal cells induce epithelium evagination to form villi and 

intervillus regions. The intravillus epithelium consists of undifferentiated and 

actively dividing cells that, in the first few days after birth, invaginate into the 

mucosa to form crypts and completing gut formation (Noah et al., 2011).  

In the adult intestine, the bowel wall is composed of multiple layers, which 

include from the lumen: the mucosa, a single layer of columnar epithelial cells; the 
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submucosa containing blood vessels, lymphatics and terminal nerve fibres; the 

muscularis propria, comprising circular and smooth muscle layers; and the serosa.  

Crypts are epithelial invaginations mainly occupied by undifferentiated cells that 

harbor the proliferative potential of this tissue.  At the base of the crypts reside 10-

14 intestinal stem cells (ISCs) intercalated between paneth cells, which support 

the stem cell niche and secrete antibacterial peptides into the crypt lumen. In the 

middle of the crypt, the transient amplifying (TA) compartment is composed by fast 

cycling progenitor cells that give rise to the differentiated cells of the intestine. 

These cells expanded through four to five rounds of mitosis and migrate upwards 

along the crypt axis undergoing cell cycle arrest and terminal differentiation close 

to the intestinal lumen.  

On the contrary, villi are covered by a simple epithelium of post mitotic 

differentiated cells, underneath which capillaries and lymph vessels mediate 

transport of absorbed nutrients.  The most populous cells in the villus are the 

absorptive enterocytes, which function to absorb nutrients and produce hydrolytic 

enzymes, followed by the goblet cells that secrete a protective mucus barrier and 

the enteroendocrine cells that release gastrointestinal hormones. More rare 

differentiated cell types are the Tuft cells, which secrete prostanoids and sense 

luminal contents, the Cup cells, which are specialized non-absorptive cells of 

unknown function and the M cells, that reside on lymphoid Peyer’s patches and 

transport antigens from the gut lumen to the underlying lymphoid tissue.  

The intestinal epithelium is the fastest self-renewing tissue in mammals, most 

probably because of its function as barrier from physical, chemical, and biological 

insults. At the crypt base, the ISCs produce the TA cells that exit the crypt onto the 

villus 2 days after their formation and migrate till the villus tip in 5-6 days where 

they undergo apoptosis and are shed into the gut lumen. The small intestinal 

epithelium of the mouse completely renews every 3–6 days. Only the Paneth cells 
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escape this upwardly movement and migrate downward to occupy the crypt base, 

where they have a life span of 6–8 weeks (Scoville et al., 2008) (Merlos-Suarez et 

al., 2011) (Barker et al., 2012).  

 

 

                      

Figure 1.5. Tissue anatomy of the adult small intestine and of the colonic epithelium. 

(a) In the small intestine the putative stem cells (dark blue and red) reside immediately above and 

between the Paneth cells (yellow) near the crypt bottom, proliferating progenitor cells occupy the 

remainder of the crypt and differentiated cells (green) populate the villus, and include goblet cells, 

enterocytes and enteroendocrine cells. (b) In the colonic epithelium putative stem cells (dark blue) 

reside at the crypt bottom, proliferating progenitor cells occupy two-thirds of the crypt and 

differentiated cells (green) populate the remainder of the crypt and the flat surface epithelium. 

Adapted from (Reya and Clevers, 2005) 

 

1.9 Intestinal Stem Cells 

ISCs are defined as cells that give rise to all types of mature intestinal epithelial 

cells and, at the same time, replenish themselves through self-renewal. Adult stem 

cells are crucial for the physiological tissue renewal and for the regeneration after 
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injury. In several tissues, quiescent and active stem cell subpopulations have been 

found to coexist in separate yet adjoining location having separate but cooperative 

functional roles. In the field, two types of stem cells have been characterized in the 

intestine ending up in two models for intestinal stem cell identity: the stem cell 

zone model and the +4 model.  

The stem cell zone model derives from the discovery made by Cheng and 

Leblond in 1974 that have identified the crypt-base columnar cells (CBCs) as 

intestinal stem cells (Cheng and Leblond, 1974). In 1981, Bjerknes and Cheng 

proposed the existence of a stem cell-permissive microenvironment in the crypt at 

positions 1–4, portraying the CBCs as fast cycling ISCs interspersed between 

Paneth cells at the crypt base (Bjerknes and Cheng, 1981). Finally, Barker and 

colleagues have recently identified a single marker to specifically label these stem 

cells: the leucine-rich orphan G-protein-coupled receptor Lgr5/GPR49. This 

elegant work shown, via lineage tracing experiments, that the murine crypts 

contain 10-15 long lived Lgr5+ CBCs that persist for at least 60 days. These ISCs 

divide every 24 hours under homeostatic conditions and generate, through its TA 

daughters, 16 to 32 differentiated epithelial cells per day (Barker et al., 2007). The 

Lgr5+ ISCs have been also demonstrated to be resistant to irradiation and 

sensitive to canonical WNT modulation, and that they have also the capability to 

initiate the morphogenesis in vitro generating ever-expanding three-dimensional 

intestinal epithelial organoids that retain their original organ identity (Sato et al., 

2009) (Yan et al., 2012).  

In the +4 model Potten and colleagues, based on a technique called long-term 

label retention, localized the ISCs (represented by the label-retaining cells LRCs), 

4 cells up from the crypt base, directly above the Paneth cell zone. +4 LRCs are 

multipotent, quiescent, undergo self-renewal under physiological conditions and 

are sensitive to radiation and insensitive to Wnt perturbation (Potten et al., 1974). 
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In 2008, Sangiorgi and Capecchi, proposed the protein Bmi1 as molecular marker 

for the +4 ISCs in vivo and demonstrated that upon quantitative loss of the Lgr5+ 

population or crypt injury the Bmi1 expressing ISCs start to proliferate to clonally 

repopulate multiple contiguous crypts and villi (Yan et al., 2012) (Sangiorgi and 

Capecchi, 2008). Other markers proposed for the +4 LRCs are the telomerase 

reverse transcriptase mTert (Montgomery et al., 2011), the Pan-ErbB negative 

regulator Lrig1 (Powell et al., 2012), the RNA binding protein Musashi-1 (Msi-1) 

(Potten et al., 2003) and the Hopx atypical homeodomain protein (Takeda et al., 

2011).  

In this scenario, the Lgr5+ ISCs, which ensure the regenerative capacities of 

the intestinal tissues under homeostatic conditions, and the +4 LRCs, which are 

an injury-induced reserve ISC population during epithelial repair, coexist and work 

coordinately. In addiction, the mitotically active Lgr5+ cells can give rise to the 

quiescent +4 cells, and vice versa, implying a high level of plasticity. 

The discovery that these two stem cell populations resident in distinct niches 

can interconvert suggest that after tissue damage the loss of Lgr5+ cells is 

tolerated because it is compensated by the activation of the Bmi1-expressing stem 

cell pool (Tian et al., 2011) (Takeda et al., 2011).  

It was also recently observed that Lgr5+ ISCs are able to generate a population 

of quiescent cells that are short lived under homeostatic conditions (2–3 weeks) 

but can be recalled to the stem cell state when the tissues are damaged. This 

dedifferentiation process by which the observed “reserve of stem cells” can be 

recalled to the stemness is, on the contrary, prevented by a negative feedback 

from either active stem cells or their progeny. In particular, Buczacki and 

colleagues reported that Paneth precursor cells could persist for several weeks in 

a quiescent state before maturing, revert back into Lgr5+ stem cells following crypt 

damage (Buczacki et al., 2013). Similar observations have been made for the 



	   21	  

proliferative TA cells (Barker et al., 2012) and for the precursors of the intestinal 

secretory cells, Dll1+ cells (van Es et al., 2012), that upon loss of the ISC pool, 

can revert to become cycling Lrg5+ ISCs, presumably by direct contact with 

Paneth cells.  

 

Stem cells are defined by both their ability to make more stem cells, a property 

known as ‘self-renewal’, and to produce cells that differentiate. All stem cells can 

use two different strategies of division:  the asymmetric cell division, whereby 

generates a daughter stem-cell and a cell committed to differentiation; and the 

symmetric cell division, in which the daughter cells are destined to acquire the 

same fate, both stem cells or both differentiated. 

In literature, two mechanisms have been formulated by which the ISCs divide 

and accomplish homeostasis. The first one states that, under homeostatic 

conditions, an ISC preferentially divides asymmetrically giving rise to one ISC and 

one TA committed cell, which differentiates toward one of the different types of 

mature epithelial cells. While, after intestinal injury or tissue expansion, the ISC 

undergoes symmetric division giving rise to two stem cells that replace the 

damaged ones. In this model the balance between the two modes of division is 

controlled by developmental and environmental signals in order to maintain 

appropriate numbers of stem and differentiated cells. 

The second and more accredited mechanism supports the idea that the fate of 

the two cells generated from the ISC division is not intrinsically established, but 

can be defined after division. More in details, the Clevers’ laboratory demonstrated 

that most Lgr5+ISCs divisions occur symmetrically by using a multicolour Cre–

reporter mice that allow the fate mapping of individual stem cells (Snippert et al., 

2010). Moreover they showed that cell fate is determined after ISC division, 

potentially by neutral competition for the available niche space at the crypt base 
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and for available Paneth cell surface (Sato et al., 2011b). Consequently, the 

restricted niche space and the symmetric ISCs division induce the crypt to tend 

toward clonality in a period of 1-6 month from its formation (Snippert et al., 2010).  

 

1.10 Intestinal signaling pathways 

The ISCs niche is located at the base of the crypts where Paneth cells and 

pericryptal myofibroblasts control stem cells self-renewal, proliferation and 

differentiation through a variety of signaling pathways among which the principal 

and well-characterized are: Wingless integration site (Wnt) signaling, Bone 

morphogenic protein (BMP) signaling, Notch cascade and Epidermal growth factor 

(EGF) signaling. (Figure 1.6b-c) 

Paneth cells are considered the source of essential stem cell niche factors. 

Only the Notch ligands Dll1 and Dll4 that are presented by Paneth cells to 

neighboring Lgr5+ stem cells are essential in vivo, whereas the secreted EGF and 

Wnt3 ligand are redundant with other sources of growth signals. In fact, Paneth 

cell depletion decreases the ISCs derived organoids formation efficiency in vitro, 

while in vivo it results in the concomitant loss of Lgr5-CBC cells (Sato et al., 

2011a; Sato et al., 2011b)  

Pericryptal myofibroblasts and smooth muscle cells surround the crypt base 

and contribute to the niche environment by providing signaling factors like Wnt 

ligands, EGF and BMP inhibitors, which maintain the stem cells in an 

undifferentiated state and control their proliferation. In addition, pericryptal 

myofibroblasts have various functions including tissue repair, organogenesis, the 

mediation of ephitelial-mesenchymal interactions and the control of extracellular 

matrix metabolism. 

The homeostasis in the gut is regulated by opposing gradients along the 

crypt/villus axis of BMP and WNT pathways, which cross talk in an antagonistic 
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manner. The cells at the base of the crypt are the ones exposed at the higher 

levels of Wnt ligand, which form a sort of gradient of Wnt signaling pathway along 

crypt-villus axis that decreases toward the crypt top. Conversely, BMP is 

expressed on differentiated cells along the villus, and its expression decreases 

from the crypt-villus junction toward the base of the crypt. Aberrant activation of 

WNT signalling and loss of BMP signals represent the two main alterations leading 

to the formation of intestinal tumours (Wakefield and Hill, 2013) (Figure 1.6a). 

 

 

 

Figure 1.6 Histological location and biological interaction of intestinal stem cells and their 

niche. (a) Scheme of intestinal epithelial structure and stem cells. Spatial gradients of Wnt, BMP, 

and EGF signals are formed along the crypt axis. (b) Cartoon of the stem cell niche. Lgr5+ 

intestinal CBC cells intimately adhere to Paneth cells and receive signals for stem cell 

maintenance. (c) Three signals (EGF, Notch, and Wnt) are essential for intestinal epithelial 

stemness, whereas BMP negatively regulates stemness. For full Wnt activation in the intestinal 

epithelium, R-spondin–Lgr4/5 signal is required. Adapted from (Sato and Clevers, 2013)  
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WNT signaling 

Wnt constitutes the key pathway to maintain the proliferative/undifferentiated 

state of intestinal epithelial cells as well as to couple cell positioning with cell 

proliferation, cell cycle arrest or differentiation. 

Wnt signaling includes canonical and noncanonical pathways. The canonical 

one is the main active in the intestine and is β-catenin/T cell factor dependent.  

In the absence of Wnt signals, free cytosolic β-catenin is sequestered and 

targeted for degradation via the β-catenin destruction complex composed by 

tumor-suppressors adenomatous polyposis coli (APC), Axin, casein kinase I (CKI) 

and glycogen synthase kinase 3B (GSK3β). Upon β-catenin binding to the 

destruction complex, CKI phosphorylates β-catenin at Ser 45, which allow its 

consequent Ser/Thr phosphorylations by GSK3β that results in its ubiquitination 

and proteosomal degradation by β-TrcP. Within the nucleus, lymphoid enhancer 

factor (LEF) and T cell factor (TCF) transcription factors remain bound to their 

corepressors such as Groucho repressing Wnt pathway target genes.  

Among the nineteen different Wnt ligands that have been described in 

mammals the ones responsible for canonical Wnt signalling in the small intestine 

are Wnt3, Wnt6 and Wnt9B. These Wnt ligands initiate the canonical Wnt pathway 

by binding to the Frizzled receptor (FZD5–7) and the low-density lipoprotein-

related protein coreceptor (LRP5 or LRP6) on the target cell surface. The 

engagement of the Wnt receptor complex results in the inactivation of the β-

catenin destruction complex that allow β-catenin accumulation and translocation to 

the nucleus. Within the nucleus, b-catenin is recruited to Wnt-responsive elements 

where it displaces the corepressors Groucho/TLE and transiently converts 

LEF/TCF factors into transcriptional activators that drive Wnt-specific 

transcriptional programs (Clevers and Nusse, 2012) (Scoville et al., 2008) (Figure 

1.7).   
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Many interacting partners of the β-catenin/TCF complex have been identified 

and the majority of them are involved in modifying histones (such as the histone 

acetyltransferases CBP, p300, and Tip60), rearranging nucleosomes (such as 

SWI/ SNF and ISWI) or promoting the association of TCF/ β-catenin with the RNA 

polymerase II complex (such as members of the Mediator complex and 

components of the Paf1 complex) (Schuijers et al., 2014) (Mosimann et al., 2009).  

To fine tuning this pathway in ISCs, it has been shown that the binding of R-

spondin to LGR4/LGR5 receptors potentiates the WNT signals (de Lau et al., 

2011), while, the Znfr3/Rnf43-dependent ubiquitination of Frizzled receptors 

negatively controls it (Koo et al., 2012).  

 

 

 

Figure 1.7 The β‐catenin‐dependent or canonical Wnt signalling pathway. This pathway 

centres on β‐catenin, which, together with the DNA‐binding T cell factor/lymphoid enhancer factor 

(TCF/LEF) family protEin,function as a transcription factor to control Wnt target genes. A subset of 

these target genes are constitutively inhibited by pioneering nuclear TCF, which recruits 

transcriptional corepressors (left panel) to Wnt response elements (WREs). In the default state, β‐
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catenin is constitutively degraded by the cytoplasmic degradation complex, which comprises axin, 

adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β) and casein kinase 1 

(CK1). Phosphorylation of Ser and Thr residues in the β‐catenin amino terminus by this complex 

triggers SCF (SKP1, Cullin, F‐box)/β‐TrCP‐mediated polyubiquitylation and proteasomal 

degradation of β‐catenin. On Wnt ligand binding, the degradation complex is inhibited by 

dishevelled (DVL) and β‐catenin translocates to the nucleus, where it replaces TCF‐bound 

corepressors (such as groucho; middle panel) or co‐imports additional TCF to occupy WREs (right 

panel). Once bound to WREs through TCF, β‐catenin functions as a scaffold to recruit an auxiliary 

machinery of co‐activators that are involved in chromatin remodelling and control of RNA 

polymerase II to induce Wnt target gene expression. LGS,Legless; LRP,low‐density lipoprotein 

receptor‐related protein; PP2A, protein phosphatase 2A. From (Mosimann et al., 2009)  

 

Wnt signaling is known to play several roles within the intestine.  

First of all, it promotes cell proliferation, cell cycle progression and DNA 

replication through the upregulation of the β-catenin target genes, such as 

CyclinD1 and cMYC. The Wnt/Myc signaling pathway is central for the initiation of 

colorectal cancer (CRC) and for promoting hyperplasia, invasion, angiogenesis 

and metastasis. On the contrary, the complete loss of β-catenin in the intestinal 

epithelium of adult mice results in the absence of proliferating cells within 2 days, 

the loss of crypts within 4 days, and the occurrence of death from intestinal failure 

by 6 days (Fevr et al., 2007) (Myant and Sansom, 2011).  

β-catenin also has a central role in cell fate determination maintaining stem and 

progenitors cells in an undifferentiated state and specifying secretory lineage 

development through an early tripotential progenitor. On the contrary, it is not 

required for enteroendocrine maturation in the adult (Scoville et al., 2008). 

Finally, Wnt plays a key role in the maintenance of cellular boundaries as well 

as in the establishment of the migratory path determining the position of the 

intestinal epithelial cells along crypt-villus axis on the basis of its differentiation and 
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proliferative status. More in details, the Wnt gradient defines cell positioning by 

controlling the expression of the EphB receptor, a transmembrane tyrosine kinase, 

and the Ephrin-B ligands, a family of membrane anchored proteins.  Upon cell-to-

cell contact and ligand–receptor engagement, intracellular signalling is induced in 

a bidirectional manner regulating actin cytoskeleton dynamics that results in cells 

repulsion. In the intestine the EphB2/3 receptors expression is highest at the 

bottom of the crypt, close to the putative Wnt source, while Ephrin-B1/2 ligands 

gradient become strongest near the crypt-villus junction. The deregulation of 

EphB2 expression correlates with tumor progression within the intestine because 

acquisition of invasive proprieties may require the loss of this molecule (Merlos-

Suarez and Batlle, 2008) (Batlle et al., 2002).   

 

 

 

Figure 1.8 Interaction between EphrinB ligandsand EphBreceptors direct cellular 

localization and migratory behavior within the crypt. Cell location dictates cell state by 

defining exposure levels to secreted molecules and niche interactions. A gradient of Ephrin 

B1/B2 ligands exists within the crypt with cells at the crypt-villus junction expressing high levels 

of these molecules. An opposing gradient of EphB2 expression exists beginning at the crypt 
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base. Thus the level of Ephrin B ligand and Wnt-induced EphB expression determines cell 

location. Interestingly, Paneth cells express EphB3 and no Ephrin B ligands, thereby restricting 

these cells to the crypt base. CBCs express both EphB3 and EphB2 while LRCs express high 

levels of EphB2, thereby restricting upward migration of these cell types and ensuring that they 

are localized near their respective niches (Scoville et al., 2008). 

 

BMP signaling 

BMP belongs to the transforming growth factor B (TGF-B) family. It prevents 

crypt formation and ISC self-renewal and favors the maturation of the secretory 

lineage (Haramis et al., 2004). The BMP ligand induces the dimerization of the 

BMP receptors type I and type II. In the activated receptor complex, the 

constitutively active type II receptor phosphorylates the type I thus providing a 

binding site for the downstream receptors regulated SMADs (R-SMAD1, 5, 8). This 

receptor-mediated phosphorylation allows the R-SMADs to form heteromeric 

complexes with SMAD4. The activated SMAD complexes accumulate in the 

nucleus and directly regulate transcription, both positively and negatively.  

BMP4 and other BMP ligands are expressed in mesenchymal cells of the 

intravillus and intercrypt regions, as well as in mesenchymal cells adjacent to the 

intestinal stem cells. This signalling is active in the intestinal stem cells and in the 

differentiating cells of the villus, but not in the cells of the proliferative zone. 

Several BMP antagonists (including gremlin1/2, noggin and chordin1) are 

expressed in subepithelial myofibroblasts at the crypt base, where they contribute 

to the maintainance of the stem cell niche and override the BMP signalling in a 

regulated manner allowing WNT-driven stem cell self-renewal. 

 

Notch signaling 

Notch signaling plays a critical role in the intestinal epithelial cell fate by 

regulating the choice between absorptive versus secretory lineage differentiation. 
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This pathway induces a lateral inhibition for the secretory lineage differentiation 

program and, in turn, favors the commitment towards the absorptive one. 

Secretory cells present the Notch ligands delta-like Dll1 and Dll4 or jagged-1 to the 

neighboring TA cells that expose the receptor Notch1/2.  The engagement of 

Notch by its ligands leads to a proteolitic cleavage of the receptor by the γ-

secretase. This induces the release of the Notch intracellular domain (NICD) and 

its translocation into the nucleus. Hence, NICD interacts with the nuclear effector 

RBP-J activating the expression of the transcription factor hairy/enhancer of split 

(Hes) that, in turn, suppresses the gene program for secretory differentiation and 

increases cell proliferation (Pellegrinet et al., 2011). On the contrary, when the 

stem cell daughters lose the contact with the Dll1/4 expressing Paneth cells, they 

down regulate Notch receptor and up-regulate Dll1, setting their own secretory 

fate.  

 

EGF signaling  

The ability of cells to sense their environment and decide whether survive or die 

is dependent largely upon growth factors. EGF is the key growth factor regulating 

cell survival. In both the developing and adult mouse intestine, the EGF pathway 

exerts strong mitogenic effects on stem and TA cells providing a permissive signal 

for ISC proliferation and for the survival of undifferentiated epithelial cells.  

The EGF binding to its corresponding receptors (EGFRs or ErbB1s) causes 

their dimerization and activation through the trans-tyrosine phosphorylation of their 

intracellular kinase domain. This leads to the activation of downstream signalling 

cascades such as the RAS/extracellular signal regulated kinase (ERK) pathway, 

the phosphatidylinositol 3-kinase (PI3K) pathway and the Janus kinase/Signal 

transducer and activator of transcription (JAK/ STAT) pathway.  

- The RAS/ERK pathway  
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This pathway promotes cell proliferation, inhibition of apoptosis and, thus, cell 

survival. EGF activates the ERK pathway through the binding of Grb2 to the 

phosphorylated EGFR. Grb2 activation results in the recruitment of the son of 

sevenless (SOS) protein to the activated receptor dimer. Then, SOS activates 

RAS, which in turn activates RAF-1. So, RAF-1 can phosphorylate MEK1 and 

MEK2, which activate ERK1 and ERK2, respectively.  

- PI3K/AKT pathway 

This pathway is controlled by many types of cellular stimuli or toxic insults and 

represents the nodal point between a niche-derived permissive signal and the 

stress-induced instructive signals, adjusting ISC proliferation to environmental 

conditions.  

The lipid kinase PI3K is composed by a regulatory subunit, p85, and a catalytic 

subunit, p110. The p85-p110 complex is normally inactive and localized in the 

cytoplasm. Upon ligand binding and receptor tyrosine kinase (RTK) 

autophosphorylation, PI3K molecules are recruited at the cell membrane and 

activated. There, PI3K phosphorylates the phosphatidylinositol-4,5-diphosphate 

(PIP2) at the 3-position on the inositol ring, forming phosphatidylinositol-3,4,5-

triphosphate (PIP3). PIP3 levels mediate the recruitment of the Akt (PKB) and 

PDK1 kinases to the membrane activating Akt through its phosphorylation at the 

residues Thr308 and Ser473. Phosphorylated Akt, in turn, can phosphorylate 

multiple targets, through which it exerts an antiapoptotic effect, promotes cell cycle 

progression and increases mRNA translation with subsequent cell growth. The 

focal control point for the PI3K pathway is represented by the PTEN phosphatase 

that converts PIP3 into PIP2 counteracting Akt activation. 

- JAK/STAT pathway 

Another signaling cascade initiated by EGF is the JAK/STAT pathway, which is 

also implicated in cell survival responses. JAK phosphorylates STAT proteins 
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localized at the plasma membrane leading to their translocation to the nucleus 

where they activate the transcription of genes associated with cell survival 

(Henson and Gibson, 2006) (Suzuki et al., 2010).  

 

1.11 Colorectal cancer 

CRC is one of the leading causes of cancer death in industrialized country. It is 

a disease of the large intestine derived from the mucosal lining of the bowel wall. 

Most CRCs are sporadic and the risk factors include older age, male gender and 

lifestyle factors (high intake of fat, alcohol or red meat, obesity, smoking and lack 

of physical exercise). People with inflammatory bowel disease, like ulcerative 

colitis and Crohn's disease, have higher risk of CRC formation. Less than 5% of 

cases are due to underlying genetic disorders. The most common CRC disposition 

syndromes are the hereditary non-polyposis colorectal cancer (HNPCC) or Lynch 

syndrome, which is present in about 3% of people with CRC and the familial 

adenomatous polyposis (FAP) that is the cause of 1% of CRC cases. The HNPCC 

is induced by mutations in the MLH1, MSH2, MSH6, PMS2, or EPCAM genes, 

which are involved in the repair of mistakes occurring during DNA replication. 

While the FAP patients carry a germ line mutation within the APC gene, which is a 

negative regulator of the WNT- β-catenin pathway. 

CRC results from an accumulation of genetic and epigenetic aberrations in 

colon ephitelial cells that transforms them into adenocarcinomas (Figure 1.9). 

Chromosomal instability, microsatellite instability and aberrant CpG island 

methylation are responsible for genetic instability in colorectal cancer, causing the 

successive mutation of target cancer genes. The initiating event of intestinal 

carcinogenesis is an activating mutation in the Wnt-pathway (commonly the loss of 

APC or activating mutations in β-catenin) that leads to the β-catenin stabilization 

and to the subsequent constitutive transcription of β-catenin/TCF complex target 



	  32	  

genes (Bienz and Clevers, 2000). These mutations, which are found in up to 80% 

of CRC cases, trigger the expansion and the transformation of the intestinal cells 

and lead subsequently to the development of adenomatous polyps. For the cancer 

progression, the tumor initiating cells require the acquisition of further mutations in 

other oncogenes and tumor suppressor genes. Another key early event involved in 

the transition from normal epithelium to premalignant colon polyps is the RAS 

genes mutation. KRAS and BRAF are mutated in up to 50% of CRC cases and 

their constitutive activation maintains the aberrant proliferation of the cancer cells 

coupled with genetic and epigenetic instabilities. Moreover, large adenomas and 

early carcinomas frequently present the deletion of the long arm of chromosome 

18q with SMAD4, a downstream component of the BMP pathway, as well as 

mutations in TP53 that cause lack of recognition and elimination of abnormal DNA 

damaged cells (Reya and Clevers, 2005) (Walther et al., 2008).  

Epigenetic alterations, as well as gene mutations, contribute to the 

pathogenesis and the molecular heterogeneity of this cancer. Aberrant DNA 

methylation occurs in the majority of CRC and has a fundamental role in both 

initiation and progression. In particular, the global DNA hypo-methylation induce 

genomic instability while the local hyper-methylation of promoters associated to 

CpG islands induces aberrant gene silencing (Lao and Grady, 2011) (de Sousa et 

al., 2011).  

Also aberrant histone modifications play an important role in cancer 

development. In line with this PcG proteins, and in particular EZH2 (Benoit et al., 

2012) (Fussbroich et al., 2011) and BMI1 (Maynard et al., 2014) (Kreso et al., 

2014), have been found up-regulated in CRC, silencing genes that have a role in 

cell differentiation, proliferation or cell adhesion.  
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Figure 1.9 Multistep model of colon cancer progression. Progression from normal epithelium 

through adenoma to colorectal carcinoma is characterized by accumulated abnormalities of 

particular genes. Chromosomal instability (CIN), microsatellite instability (MSI) and aberrant CpG 

island methylation cause the successive mutation of target cancer genes, which can occur at any 

point in the adenoma–carcinoma sequence. The initial step in tumorigenesis is that of adenoma 

formation, associated with loss of adenomatous polyposis coli (APC). Larger adenomas and early 

carcinomas acquire mutations in the small GTPase KRAS, followed by loss of chromosome 18q 

with SMAD4, which is downstream of transforming growth factor-β (TGFβ), and mutations in TP53 

in frank carcinoma.  

 

Colon cancer shows marked heterogeneity in their cellular morphology, 

proliferative index, genetic lesions and therapeutic response and have a 

hierarchical organization that resembles that of normal colon tissue. ISCs have 

been favored candidates for targets of transformation because of their inherent 

capacity for self-renewal and their longevity, which would allow the sequential 

accumulation of genetic or epigenetic mutations required for oncogenesis.  

In mouse models of intestinal tumors, the ISCs are the only ones able to form 

tumors in secondary and subsequent xenografts transplant generation as well as 

to metastases in vivo, confirmed that stem cells are the cell of origin for intestinal 
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cancer (Barker et al., 2009) (Dieter et al., 2011). Apc deletion in long-lived LGR5+ 

stem cells, but not in short-lived transit-amplifying cells, leads to their 

transformation within days and to the formation of a microadenoma that grows and 

develops into macroscopic adenomas within 3-5 weeks (Barker et al., 2009).  

Nevertheless, any cell with proliferative capacity could serve as a cell of origin 

in cancer, if it acquires mutations that re-instigate self-renewal capacity and 

prevent differentiation to a post-mitotic state (Visvader, 2011). In fact recently has 

been shown that tumor initiating mutations can occur in both Lgr5+ ISCs or in 

more differentiated Lgr5- cells, as long as these initially negative cells 

dedifferentiate and re-express Lgr5 (Schwitalla et al., 2013).  
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Aims 

 

The biological activity of PcG proteins as master regulators of differentiation has 

been studied in large details during embryogenesis; nonetheless, the role that PcG 

proteins have in adult tissue homeostasis still remains poorly characterized. 

Indeed, the activity of PcG proteins is frequently altered in several human tumors 

via different genetic, transcriptional and epigenetic alteration whose mechanistic 

role remains poorly understood. For this, the study of PRC activity is become 

particularly important in light of the great interest and effort that has been put in 

developing pharmacological strategies to inhibit PcG activity for cancer therapeutic 

purposes and of the controversial nature of PcG activity in cancer development 

(oncogenic vs. tumor suppressor). 

The intestinal epithelium is an attractive model for the in vivo study of adult 

stem cell biology, cell differentiation and carcinogenesis since the combination of 

its well-defined crypt-villus architecture and its intensive self-renewal process. In 

addition, the identity of the ISCs remains essentially uncharacterized, with 

implications for understanding gastrointestinal cancer, repair after intestinal injury 

and normal physiology. Finally, tumors arising from this tissue are one of the major 

causes of cancer death in industrialized countries and display frequently 

overexpression of PcG proteins.  

In fact BMI1, an essential component of the PRC1, as well as the PRC2 core 

proteins EZH2, EED and SUZ12 are known to be unregulated in human CRC but 
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despite this, the physiological role of PcG proteins in colon development and CRC 

formation remains poorly characterized.  

For these reasons my project aimed to investigate the role of the PRC1 and 

PRC2 complexes in crypt homeostasis, cancer predisposition and colon cancer 

formation. Interrogation of the functions of PRCs in the context of intestinal 

development will shed light on the roles of PcG activity in adult stem cell 

regulation. This will not only provide important contribution to understand the 

normal mechanisms that regulate stem cell fate and tissue homeostasis, but could 

also provide novel insights about the mechanisms that promote and maintain 

colon cancer.  
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Chapter 2: 

Materials & Methods  

 

2.1 Ethic statements 

 All mouse work has been conducted in accordance with the Italian and 

international legislations. 

 

2.2 Mice and treatment  

Ezh2f/f C57BL6 mice containing loxP sites flanking exons coding for the 

catalytic SET domain of Ezh2 (Su et al., 2003) and Ring1a-/-/Ring1bf/f C57BL6 

mice with constitutive inactivation of the Ring1a locus by insertion of a PGK-HPRT 

deletion cassette (del Mar Lorente et al., 2000) and with loxP sites flanking exons 

3-5 of the Ring1b (Cales et al., 2008) have been crossed with transgenic mice that 

express the Cre recombinase under the Rosa26 promoter (Rosa26-CreERT2 mice) 

(Hameyer et al., 2007), CYP1A1 promoter (AhCre mice) (Ireland et al., 2004) or 

Lgr5 promoter (Lgr5-eGFP-CreERT2 mice) (Barker et al., 2007). These breeding 

give rise to R26-Ezh2f/f mice, R26-Ring1a-/-Ring1bf/f mice, AhCre-Ezh2f/f mice, 

Lgr5-Ezh2f/f mice and Lgr5-Ring1a-/-Ring1bf/f mice.  

Cre (causes recombination) is a bacteriophage enzyme that directs 

recombination between two strands of DNA at specific sequences called loxP sites 

(“locus of crossover in phage P1”) (Oumard et al., 2006). Upon the Cre mediated 
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excision of a particular DNA region, normal gene expression is considerably 

compromised or terminated.  

A common method facilitating the spatial control of genetic alteration involves 

the selection of a tissue-specific promoter to drive Cre expression in certain 

tissues. In our studies we have placed the Cre transcription unit under the control 

of Rosa26 promoter, CYP1A1 promoter or Lgr5 promoter leading to induce 

removal of targeted gene sequences in the entire body, in the intestinal epithelia or 

in the ISCs respectively. 

In transgenic Ahcre mice, Cre expression is inducible from a cytochrome P450 

promoter element that is transcriptionally up-regulated in response to lipophilic 

xenobiotics such as ß-naphthoflavone (ß-NPT) (3 intra peritoneal injection of 200ul 

each of a solution of 12mg/ml ß-NPT).  

Differently, in the Rosa26-CreERT2 and in Lgr5-eGFP- CreERT2 mice, Cre is 

fused to a modified fragment of the estrogen receptor (CreERT2), which sequesters 

Cre outside of the nucleus where it cannot direct recombination. In the presence of 

estrogen receptor antagonists (e.g. tamoxifen), Cre rapidly relocates into the 

nucleus where it directs recombination. Upon the introduction of tamoxifen (3 intra 

peritoneal injection of 200ul each of a solution of 10mg/ml tamoxifen) the CreERT2 

construct is able to penetrate the nucleus and induce targeted mutation. 

Tamoxifen itself is a prodrug, having relatively little affinity for the estrogen 

receptor. It is metabolized in the liver by the cytochrome P450 to active 

metabolites such as 4-hydroxytamoxifen (4-OHT) and N-desmethyl-4-

hydroxytamoxifen (Desta et al., 2004).  

We also generated new strains that carry a Cre-inducible constitutively active 

form of ß-Catenin (ß-Cateninlox(ex3)/lox(ex3)) (Harada et al., 1999) or the Rosa26/Lox-

stop-Lox-LacZ transgene (Barker et al., 2007) in the Lgr5-eGFP-CreERT2 and 
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Lgr5-Ring1a-/-Ring1bf/f mice background (Lgr5-CatnbΔEx3 ; Lgr5-Ring1a-/-/Ring1bf/f-

CatnbΔEx3 ; Lgr5-LacZ ; Lgr5-Ring1a-/-/Ring1bf/f-LacZ respectively).   

Finally, starting from the cyclin-dependent kinase inhibitor 2A (Cdkn2a) KO 

mice (Serrano et al., 1996) we generate the R26-Ring1a-/-/Ring1bf/f-Cdkn2a-/- and 

the Lgr5-Ring1a-/-/Ring1bf/f-Cdkn2a-/-mice. 

 

2.3 Villi, Crypt and LGR5+ ISCs isolation 

Isolated small intestines were opened longitudinally, the villi were removed by 

scraping and single crypts were isolated from mouse intestine by EDTA-based 

Ca2+/Mg2+ chelation. More in detail the intestine was chopped into around 5 mm 

pieces, washed with cold PBS and incubated in 2 mM EDTA with PBS for 30 

minutes on ice. After, tissue fragments were vigorously suspended by using a 10-

ml pipette with cold PBS 1% fetal bovin serum (Euroclone) and this fraction was 

passed through a 70-µm cell strainer (BD Bioscience) obtaining a supernatant 

enriched for crypts that was used for organoids culture or single cell dissociation.  

For single cell dissociation, isolated crypts were incubated in DMEM 

(Dulbecco's Modified Eagle's medium) for 30 min at 37°C with trypsin (Sigma), 

DNaseI (800 U/ml) (Roche) and ROCK inhibitor Y-27632 (10 uM) (Selleckchem). 

Dissociated cells were passed through cell strainer with a pore size of 40-µm and 

resuspended in PBS.  

 

2.4 Immunohistochemistry (IHC) and immunofluorescence (IF) 

Immunohistochemistry on paraffin embedded small intestine tissues were 

performed using antibodies against Lysozime (DACO), H3K27me3 (Cell 

Signaling), H2AK119Ubq (Cell Signaling), KI67 (Abcam) and β-catenin (Cell 

Signaling). Immunofluorescence on agarose embedded small intestine tissue 
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(Snippert et al., 2011) were performed using antibodies against Ezh2 (LEICA), 

H3K27me3 (Cell Signaling), Ring1B (Home-made) H2AK119Ubq (Cell Signaling), 

Lysozime (DACO) or used Alcian blue and DAPI. The secondary antibodies were 

conjugated with peroxidase, Alexa-488 or Jackson-Cy3. Immunohistochemistry 

and immunofluorescence images were taken by bright field microscope or 

confocal microscopy with a Leica SP2. 

 

2.5 Western Blot 

Western blot (WB) was performed using antibodies against Ezh2 (Hybridoma 

home made), Ring1B (MBL), H3K27me3 (Active Motif), Histone H3 total (Abcam), 

H2AK119Ubq (Cell Signaling), Histone H2A total (Cell Signaling), Vinculin (Home 

made), Zic2 (Abcam), FLAG-Tag (Home made), TCF4 (Cell Signaling) and β-

catenin (Cell Signaling).  

To obtain a whole cell extract, cell pellets were suspended in high salt buffer 

(20mM Tris–HCl pH8.0, 300mM NaCl, 10% glycerol, 0.2% Igepal) with fresh 

addition of a protease inhibitor cocktail (Roche), sonicated once for 10-30 seconds 

and left 20 minutes on ice. The cell debris was removed by centrifugation at 1300 

rpm for 20 minutes. Protein concentration of the supernatant was determined 

using a BIO-RAD Protein Assay. 

 

2.6 Real-Time PCR 

RT-qPCR has been performed on 7500 ABI RT-qPCR machines using 

Promega GO Taq following manufacturer instructions and using 200 nM primer 

mix.  PCR Primers were designed using Primer3 program. The parameter that 

we used were: size of amplicone 120-140bp, primer size 18-27bp, Tm range 

58-62°C and primer GC% 20-80%. 
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2.7 TUNEL Assay 

The TUNEL System (Roche) is designed for the specific detection and 

quantitation of apoptotic cells within a cell population. It measures nuclear DNA 

fragmentation, an important biochemical hallmark of apoptosis in many cell types. 

The Fluorometric TUNEL System measures the fragmented DNA of apoptotic cells 

by catalytically incorporating fluorescein-12-dUTP at 3´-OH DNA ends using the 

enzyme Terminal Deoxynucleotidyl Transferase (TdT), which forms a polymeric 

tail using the principle of the TUNEL (TdT-mediated dUTP Nick-End Labeling) 

assay. The fluorescein-12-dUTP-labeled DNA can then be visualized directly by 

fluorescence microscopy or quantitated by flow cytometry. The experiments were 

performed according to the manufacturer’s instructions. 

 

2.8 Organoids culture 

To grow three-dimensional intestinal epithelial organoids we took advantage of 

a well-established in vitro culture system published by Clevers laboratory (Sato et 

al., 2009). Crypts or ISCs released from murine small intestine were mixed with 50 

ul of Matrigel (BD Bioscience) and plated in 24-well plates. After polymerization of 

Matrigel, in each well were added 500 µl of crypt culture medium containing a 

cocktail of R-spondin, EGF, and Noggin that represents the minimal, essential 

stem cell maintenance factors cocktail (Advanced DMEM/F12 Invitrogen ; 10–50 

ng/ml EGF Peprotech ; 500ng/ml R-spondin1 and 100ng/ml Noggin Peprotech). 

Growth factors were added every day and the entire medium was changed every 4 

days. The images of crypt organoids were taken by stereomicroscope. 

To induce CreERT2 nuclear translocation, cells were treated with 500 nM of 4-

hydroxytamoxifen (4-OHT, Sigma) dissolved in absolute ethanol (Panreac). 
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2.9 SW480 cell line 

SW480 is a colon cancer cell line, which expresses a truncated form of APC. 

This truncation of APC leads to its loss of function and prevents the proper 

assembly of the β-catenin destruction complex, which results in the accumulation 

of non-complexed β-catenin and in the constitutive activation of this signaling 

pathway. 

SW480 cells were grown in adhesion in DMEM containing 10% fetal bovine 

serum, 2mM glutamine, 100 U/ml penicillin and 0,1 mg/ml streptomycin in a 37°C 

5% CO2 incubator. 

 

2.10 FACS analysis and FACS sorting 

The staining was performed using antibodies against H2AK119Ubq (Cell 

Signaling), Ring1B (Home-made) and CD24 (eBioscience). The secondary 

antibodies were conjugated with the Alexa-647 fluorofore. The acquisition was 

carried out on Fluorecent Associated Cell Sorting (FACS) Calibur and analyzed 

using FLOW JO software.  

The percentage of maximum (% of Max) was used to normalize the FACS 

staining. This normalization is important to compare relative numbers of events 

having a fixed Y-axis scale. 

GFP positive cells were sorted by flow cytometry (MoFlo; Aria). Single GFP+ 

viable epithelial cells were gated by forward scatter and side scatter parameter, 

and by negative staining for propidium iodide (PI).  

 

2.11 Cell tracking : LacZ mice 

Lineage tracing is an in vivo targeting approach by which it is possible to follow 

the fate of target cells as they undergo deletion or overexpression of the gene of 
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interest. To do so we used the Lox-stop-Lox-LacZ transgene (Barker et al., 2007) 

that carries a loxP-flanked DNA STOP sequence preventing expression of the 

downstream lacZ gene. When crossed with a Cre transgenic strain, the STOP 

sequence is removed after Cre induction and lacZ is expressed in cells/tissues 

where the Cre is expressed.  

 

2.12 RNA-Sequencing  

Starting with total RNA extracts from the ISCs Ring1a-Ring1b WT or dKO, the 

messenger RNAs were purified using polyA selection and the libraries were 

prepared using the TruSeqTM RNA Sample Preparation Kit. The libraries were 

sequenced on the Illumina HiSeq200 next-generation sequencing platform and 

analysed with the support of a bioinformatician working in our laboratory.  

RNA-Sequencing (RNA-Seq) Analyses:  

- The sequencing data were aligned to the mouse reference genome mm9 

using the Tophat software and the differentially expressed genes (DEGs) were 

identified with the DESeq2 software. For downstream analysis we only considered 

genes with a minimum fold change difference greater than or equal to 4 and with 

adjusted p-value less than 0.05.  

- To see the fate of DEGs expression in other tissues we downloaded RNASeq 

data in aligned format for different tissues from the mouse ENCODE project. 

RPKM for individual gene is computed and data were subjected to quantile 

normalization. Expression levels of DEGs in these tissues were extracted and 

further presented as heatmaps/boxplots. Heatmap represents expression data in 

form of z-score. 

- Canonical pathways annotation of DEGs was performed using Ingenuity. 

Biological process and protein domain annotation were carried out using DAVID. 
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2.13 Chromatin Immunoprecipitation-Sequencing  

We optimized the standard protocol for chromatin immunoprecipitation ChIP 

(Frank et al., 2001) to perform ChIP-Sequencing (ChIP-Seq) analyses starting 

from a low amount of cells. Briefly intestinal crypts dissociated at single cell level 

and FACS sorted Lgr5-GFP+ ISCs were isolated from murine small intestine, 

exposed to a crosslinking agent (1% formaldehyde for 10 min), lysed in SDS lysis 

buffer and the chromatin was extracted and sonicated into 800–1000 bp 

fragments. Immunoprecipitation was performed in 500ul of IP buffer using 3-5ug of 

antibody and 20ul of magnetic beads (Dynabeads). The ChIP was performed 

using antibodies against H2AK119Ubq (Cell Signaling), Ring1b (Home-made) and 

TCF4 (Cell Signaling). Purified DNA was then sonicated with the Covaris to obtain 

DNA fragment at 200 bp with which we performed RT-qPCR analysis or prepared 

the libraries to be sequenced. The libraries were sequenced on the Illumina 

HiSeq200 next-generation sequencing platform and analysed with the support of a 

bioinformatician working in our laboratory.  

ChIP-Sequencing Analysis:  

- Sequencing data were aligned to mouse reference genome (mm9) using 

bowtie. Alignments were executed favoring only unique alignments. Further 

duplicates were removed for downstream analysis. Peak calling for Tcf4, Ring1b 

and H2AUbq was performed with macs2. For Ring1b and H2AUbq, we generated 

broader peaks by enabling-broad option in macs2. Only peaks with p-value less 

than 10-7 were used for analysis. 

- For profiling, we extended 5kb both up and downstream from either the 

summit of the peaks for Tcf4 data or from TSS for Ring1b/H2AUbq. Each 

extended region was further broken down into smaller bins of 50bp in size. For 

individual region of interest, normalized reads with in each bin was computed and 

averaged over complete dataset. 
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- Motif Analysis: For predicting the motif under Tcf4 binding sites, we 

considered summit of every peak and extended 50 bp both up and down-stream. 

Sequence were retrieved from genome and motif analysis was performed using 

ChIP-MEME, in which motif prediction was performed using MEME and then the 

enriched motif is matched against known database of motifs (JASPAR CORE 

vertebrate and uniprobe mouse) using TOMTOM. 

 

2.14 Luciferase Reporter Assay 

To evaluate β-catenin/Tcf-4 transcriptional activity, we used a pair of luciferase 

reporter constructs, TOP-FLASH and FOP-FLASH. Plasmids of TOP-FLASH (with 

3 repeats of the Tcf-binding site) or FOP-FLASH (with 3 repeats of a mutated Tcf-

binding site) were transfected into SW480 cells. Luciferase activity was measured 

with the dual-luciferase reporter assay system, with Renilla luciferase activity as 

an internal control, 48h after transfection. In addition, in the cells were also 

cotransfected different nanograms (0-5-50-500ng) of plasmids containing Zic1 or 

Zic2 sequences. The experiments were performed according to the manufacturer’s 

instructions. 
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Chapter 3: 

Results  

 

3.1 PcG proteins role in regulating adult tissue homeostasis 

With the goal to characterize the role of PcG proteins in adult tissues, we 

crossed Rosa26-CreERT2 (Hameyer et al., 2007) mice with Ezh2f/f mice (Su et al., 

2003) or Ring1a-/-/Ring1bf/f mice (Cales et al., 2008; del Mar Lorente et al., 2000) 

in order to potentially achieve systemic inhibition of H3K27 methylation or 

H2AK119 monoubiquitination (H2AUbq) respectively under the control of the OHT 

inducible CreERT2.  

Rosa26-CreERT2/Ezh2-/- mice did not present any evident dysfunction after 30 

days from deletion of the Ezh2 alleles or macroscopic defect in other organs (data 

not shown).  

Differently, five days post-tamoxifen injection (PTI) Rosa26-CreERT2-Ring1a-/-

/Ring1b-/- (R26-Ring1a-/-/Ring1b-/-) mice started to lose body weight resulting in a 

~30% lost at day 9. Visual inspection of double KO (dKO) mice revealed rectal 

hemorrhages and eventually death. Mice had to be sacrificed for ethical reasons 

within 8-10 days (Figure 3.1a). More in detail, the autopsy revealed large areas of 

necrosis in the intestine and no gross defects in other organs (Figure 3.1b).  
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3.2 PRC1 activity is required for the intestinal homeostasis 

trough a Ink4a-Arf independent mechanism 

Giving the fundamental role of the PcG complexes in targeting and stable 

silencing the Ink4a/Arf locus, we decided to test if this effect was dependent of 

G1/S checkpoint activation. Thus, we coupled the Ring1a-/-/Ring1bf/f alleles with a 

mouse model deficient for both Ink4a-Arf products p16 and Arf (Cdkn2a-/-) 

(Serrano et al., 1996) in a Rosa26-CreERT2 background (R26-Ring1a-/-/Ring1bfl/fl-

Cdkn2a/- mice). After tamoxifen injection, the R26-Ring1a-/-/Ring1bf/f-Cdkn2a/- mice 

started to lose body weight (Figure 3.1a) and die indistinguishably from the 

Ink4a/Arf proficient mice. Consistently, anatomical inspection at 8-10 days also 

revealed comparable intestinal defects (Figure 3.1b). 

 

 

 

 

Figure 3.1 Loss of PRC1 activities in adult mice induce severe defects in the homeostasis of 

the intestinal epithelium. (a) Curve of the body weight followed by time of the R26CreERT2, 

R26CreERT2-Ring1a-/-/Ring1bf/f Cdkn2a+/+ and R26CreERT2-Ring1a-/-/Ring1bf/f-Cdkn2a-/- mice treated 

with tamoxifen. Each time point is the mean of 7, 5 and 4 mice respectively. The weights are 

normalized on the body weight at time 0.  (b) Autopsy of one representative mouse for each group 

sacrified at day 8 PTI. 
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Histological analysis performed on small intestine from R26-Ring1a-/-/Ring1b-/- 

mice 5 days PTI reveal no apparent morphological defects and no differences in 

the proliferating compartment even though the intestinal epithelium was devoid of 

H2AUbq, which was still persisting in the cells of lamina propria and muscolaris 

propria (Figure 3.2).  

 

 

 

Figure 3.2 Loss of Ring1a-Ring1b not reveals apparent defects in the intestinal 

epithelium after 5 days. Hematoxylin-Eosin (H&E), KI67 and H2AUbq IHC of small intestine 

sections derived from R26CreERT2-Ring1a-/-/Ring1bf/f or R26CreERT2-Ring1a-/-/Ring1b-/- mice sacrified 

at 5 days post corn-oil or tamoxifen injection. Right panels show a magnification of the H2AUbq 

staining in crypts and villi. White arrowheads indicate the H2AUbq positive cells in the PRC1 WT 

intestinal epithelia and the H2AUbq negative cells in the PRC1 KO. 
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However, 3 days later, the Hematoxilin and Eosine (H&E) analysis of intestinal 

samples explanted 8 days PTI clearly revealed a loss of normal intestinal 

architecture in R26-Ring1a-/-/Ring1b-/- mice, irrespectively on the Ink4a/Arf status, 

with nearly complete crypt loss and large areas of erosion and ulceration (Figure 

3.3). 

 

 

 

Figure 3.3 Loss of Ring1a-Ring1b induces loss of normal intestinal architecture after 8 

days. H&E IHC of small intestine sections derived from R26CreERT2-Ring1a+/+/Ring1bf/f, R26CreERT2-

Ring1a-/-/Ring1b-/--Cdkn2a+/+ or R26CreERT2-Ring1a-/-/Ring1bf/f-Cdkn2a-/- mice sacrified at 8 days post 

corn-oil or tamoxifen injection. 

 

   

Overall, our results demonstrate that the loss of Ring1a-Ring1b induces a 

strong impairment in the intestinal architecture within 8 days, suggesting a 

fundamental role of PRC1 complex in the biology of the gut. Moreover the 

phenotype that we observed in the R26-Ring1a-/-/Ring1b-/-Ink4a/Arf proficient mice 

was indistinguishably from the ones of the Ink4a/Arf deficient, suggesting a PRC1 

mechanism independent of cell cycle checkpoints activation. 
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3.3 PcG proteins are express and active in the intestinal crypts  

Considering the extensive intestinal defects observed using R26-Ring1a-/-

/Ring1b-/- mice, we decided to concentrate our attention on the function of PRC1 in 

the intestinal homeostasis. To study PcG activities in the intestinal crypts, we 

developed a protocol to isolate crypt and villi fractions from mice small intestine 

(Figure 3.4a). We first checked the purification efficiency by real-time quantitative 

PCR (RT-qPCR) analysis determining the expression of specific markers for crypt 

and villi preparations. The loss of expression of the Smooth muscle a-actin 

(SMA1) was used as a specific marker for myofibroblast to control the purity of our 

epithelial preparation. Importantly, high expression levels of the ISCs markers 

Lgr5, Ascl2, Olfm4 as well as lysozyme (Lys) for paneth cells were all strongly 

enriched in the crypt fraction. Consistent with this, the goblet cells marker Tff3 and 

the enterocyte marker Alpi were preferentially detected in the villi fraction (Figure 

3.4b). Overall these results, demonstrate the high efficiency of our purification 

procedure. 

           

Figure 3.4 Isolation of crypt and villi fractions from mice small intestine. (a) Representation of 

the crypy-villus axis. (b) Relative expressions by RT-qPCR of Lgr5, Ascl2, Olfm4, Sma1, Lyz1, Tff3 

and Alpi in C57/BL6 small intestine crypts and villi fractions. TBP was used as a normalizing 

control. 
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In the gut of R26-Ring1a-/-/Ring1b-/- mice, the efficient loss of Ring1b expression 

and the almost complete disappearance of H2AUbq were confirmed by western 

blot (WB) using extracts of purified crypts (Figure 3.5). 

Differently, the same levels of H3K27me3 has been found in the WT and dKO 

crypts further stressing the specificity of our results and suggesting that PRC2 is 

not affected by loss of PRC1 activity (Figure 3.5). Moreover the presence of both 

H3K27me3 and H2AUbq modifications throughout the crypts suggest that PcG 

proteins are express and active in this compartment.  

                  

Figure 3.5 Efficient Ring1b deletions in the crypts. Western blot analysis of small intestine 

crypts derived from R26CreERT2-Ring1a-/-/Ring1bf/f or R26CreERT2-Ring1a-/-/Ring1b-/- mice sacrified at 

5 days PTI, using Ring1b, H2AUbq and H3K27me3 antibodies. H3 total antibody was used as a 

loading control. 
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3.4 PRC1 activity is required for the intestinal homeostasis 

trough a cell-autonomous mechanism  

To further investigate whether loss of PRC1 activity directly affects intestinal 

epithelial cells homeostasis independently from the local environment, we used a 

recently established in vitro culture system to grow three-dimensional intestinal 

epithelial organoids called “mini-guts” (Sato et al., 2009). In a canonical time 

course, cultured purified intestinal crypts form symmetric cyst structures within 6 

hours that develop within one day in budding structures similar to in vivo crypts. 

After 48 hours, the organoid structure consists in a central lumen lined by villus-

like epithelium surrounded by crypt-like domains.  

We have isolated crypts from R26-Ring1a-/-/Ring1bf/f mice proficient or deficient 

for Cdkn2a and cultured them in vitro. After two days, half of the organoids were 

exposed to OHT treatment to induce Ring1b deletion. Consistent with the in vivo 

results, loss of PRC1 activity caused a complete regression of the intestinal crypts 

leading to crypt degeneration within 96 hours regardless of Ink4a/Arf expression 

(Figure 3.6).  
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Figure 3.6 PRC1 activity is required for the in vitro mini-gut formation. Mini-gut in vitro 

culture of single isolated crypts derived from R26CreERT2-Ring1a-/-/Ring1b-/--Cdkn2a+/+ or R26CreERT2-

Ring1a-/-/Ring1bf/f-Cdkn2a-/- mice. After the formation of organoids at 48h, the cells were treated 

with EtOH or 4-OHT in order to induce Ring1b deletion. Organoids fate was checked at 96h. 
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3.5 PRC1 activity is required for the ISCs homeostasis trough a 

mechanism that is cell-death independent  

To be sure that the phenotype observed with the Rosa26CreERT2 model was not 

an indirect effect of global PRC1 loss of function, we decided to further 

characterize the relevance of the PRC1 activity in the intestinal epithelium taking 

advantage of conditional knockout mouse models that allow deletion of PRC1 

activity in vivo exclusively in the gut. Given that the gut epithelium completely 

renews every 3–6 days (in mice), we induced loss of PRC1 function specifically in 

ISCs by using the Lgr5-eGFP-CreERT2 model background (Barker et al., 2007) 

crossed in a Ring1a-/-/Ring1bf/f. This mouse model allows the expression of the 

eGFP and CreERT2 transgene specifically in the Lgr5 expressing ISCs. This 

expression occurs as mosaic in the intestinal crypts with a frequency that gradually 

decreases from the duodenum to the colon (not all crypts are positive for the 

transgene expression but all ISC within a single crypt express the transgene 

consistent with the ISC clonality of intestinal crypts in mice). Such non-uniform 

expression is a powerful tool that allows studying proteins activity without affecting 

the overall functionality of the intestinal epithelia, minimizing indirect effects.  

Taking advantage of the transgene mosaicism, we evaluated the deletion of the 

conditional alleles in the Lgr5+ ISC compartment by comparing GFP positive 

(GFP+) (and CreERT2 expressing ISC) and GFP negative (GFP-) crypts in the 

same sections. The staining of agarose-embedded small intestine slices derived 

from tamoxifen treated Lgr5-Ring1a-/-/Ring1b-/- mice 6 days PTI showed a strong 

reduction of Ring1B-positive and H2AUbq-positive cells in GFP+ crypts compared 

to wild type and GFP negative crypts (Figure 3.7).  
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Figure 3.7 Specificity of the Ring1b conditional alleles deletion in the Lgr5+ ISCs. 

Confocal images of Ring1b and H2AUbq IF (red) done on small intestinal crypts sections derived 

from Lgr5eGFP-CreERT2 or Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f mice sacrified at 6 days PTI. Lgr5–GFP+ 

stem cells are green. Counter stain: DAPI (blue). White dashed lines highlight the GFP+ crypt 

borders.  
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Moreover, the fact that Lgr5-eGFP-CreERT2 transgene expresses GFP 

specifically in ISCs, allows us to isolate these cell population by Fluorecent 

Activated Cell Sorting (FACS) sorting and verified the efficient loss of Ring1B 

expression and H2AUbq deposition in the GFP+ ISC compartment. RT-qPCR 

analyses of sorted GFP+ ISCs from Lgr5-Ring1a-/-/Ring1b-/- mice 6 days PTI 

showed an almost complete loss of Ring1a and Ring1b transcripts compared to 

the WT GFP+ cells (Figure 3.8a). WB analysis confirmed a strong reduction in 

Ring1B and H2AUbq protein levels (Figure 3.8b).  

 

 

 

Figure 3.8 Efficiency of the PRC1 loss of function in the Lgr5+ ISC compartment. (a) 

Relative expression by RT-qPCR of Ring1a and Ring1b in sorted GFP+ ISCs from Lgr5eGFP-CreERT2 

and Lgr5eGFP-CreERT2-Ring1a-/-/Ring1bf/f mice 6 days PTI. TBP was used as a normalizing control.  

(b) Western blot analysis of small intestine ISCs derived from Lgr5eGFP-CreERT2 or Lgr5eGFP-CreERT2 

Ring1a-/-/Ring1bf/f mice 6 days PTI, using Ring1b and H2AUbq antibodies. H2A total antibody was 

used as a loading control.  

 

 

To determine the effect on crypts homeostasis induced by the loss of PRC1 

activity in ISCs, we performed different staining comparing crypts of WT or 

Ring1a-Ring1b dKO mice at 7, 15 or 30 days PTI. The H&E staining of the Lgr5-

Ring1a-/-/Ring1b-/- intestine sections revealed at 7 days a normal morphology of 
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the crypt-villus units except for the presence of a moderate accumulation of mucus 

in the bottoms of several crypts. At 15 days, the morphology of the epithelium 

belonging to specific crypts started to change, the crypts became smaller and 

mucus accumulated in an excessive and abnormal way at the bottom of these 

crypts suggesting altered cellular functionality. At 30 days, these changes were 

more dramatic, the transgenic epithelium started to present degenerated crypts 

that totally lost cell integrity at their bottom where mucus was further accumulated. 

After 7 days from Ring1b deletion, in situ staining using an H2AUbq specific 

antibody demonstrated the complete loss of histone H2A ubiquitylation in all ISCs 

and TA cells of specific crypt-units. Such loss was maintained after 30 days in the 

KO crypts. The staining for KI67, a specific marker for proliferating cells, 

underlined a decreased number of proliferating ISCs at 7 days PTI, while the 

proliferation rate of the TA compartment was not affected. At 15 and 30 days, the 

entire H2AUbq negative crypts lost completely KI67 staining suggesting that 

impaired cell proliferation spread from the KO ISCs (Figure 3.9). 

 

 

 

Figure 3.9 Ablation of PRC1 activity in the ISCs induces loss of physiological intestinal 

architecture. H&E, H2AUbq and Ki67 IHC of small intestine derived from Lgr5eGFP-CreERT2or 
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Lgr5eGFP-CreERT2-Ring1a-/- Ring1bf/f mice sacrified at days 7, 15 and 30 PTI. Right panels show a 

magnification of the staining. Black dashed lines highlight the WT or the supposed Ring1B KO 

crypt borders. 

	  

 

To evaluate if the loss of PRC1 activity compromise the intestinal architecture 

by triggering apoptosis in ISCs, we performed a TUNEL assay on the small 

intestine of Lgr5 mice Ring1a-Ring1b WT or dKO at 15 and 30 days PTI. TUNEL 

is an established method for detecting DNA fragments that represents a 

characteristic hallmark of apoptosis. Cells at the tips of the villi undergo 

physiologicall apoptotic death and served as positive staining control. This 

experiment clearly showed that at 15 and 30 days PTI both WT or dKO crypts did 

not present any evident sign of apoptosis suggesting that crypt degeneration in 

PRC1 KO mice was not the result of cell death (Figure 3.10). 

 

 

Figure 3.10 Crypt degeneration in PRC1 KO mice is a cell death-independent process. 

Confocal images of H2AUbq IF (green) merged with TUNEL assay (red) done on small intestinal 

epithelium sections derived from Lgr5eGFP-CreERT2 or Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f mice sacrified 

at 15 and 30 days PTI. The tip of the villi was used as positive control for the TUNEL assay since 

marks the physiological apoptotic cells. Counter stain: DAPI (blue).  
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3.6 PRC1 activity is directly required for the self-renewal of the 

ISCs trough a Ink4a-Arf independent mechanism 

Considering the severe defects observed in the Lgr5-Ring1a-/-/Ring1b-/- crypts, 

we further investigated the consequence of PRC1 loss in ISCs homeostasis. First 

of all, we tested if neither Ring1a inactivation or tamoxifen treatment in WT mice 

could affect the viability of GFP+ ISCs compared to the untreated Lgr5-eGFP-

CreERT2 control mice (Figure 3.11b). FACS analysis of single cells isolated from 

the crypts of Lgr5-Ring1a-/-/Ring1bf/f mice at different time points PTI showed that 

the number of GFP+ cells in the dKO mice at 7, 15 or 30 days was significantly 

decreased respect to the WT counterpart (Figure 3.11a). In particular, a time 

dependent reduction of GFP+ ISCs was reproducibly observed starting from one-

week PTI reaching the highest levels, up to 78% reduction, after one month 

(Figure 3.11a).  Accordingly, FACS staining using Ring1B and H2AUbq specific 

antibodies showed that, in GFP+ cells, the Ring1B and H2AUbq was reduced at 7 

days PTI demonstrating the specific inactivation of PRC1 activity in cells 

expressing the transgene (Figure 3.11d). These analyses at 30 days PTI showed 

almost total positivity for Ring1B and H2AUbq, further suggesting a counter 

selection for PRC1 depleted cells (Figure 3.11d). Mouse embryonic fibroblasts 

(MEF) derived from R26-Ring1a-/-/Ring1bf/f mice treated with OHT were used as 

specificity control for the Ring1B and H2Aubq antibodies in FACS staining (Figure 

3.11e).  

Consistent with the staining counterselection, the residual GFP+ ISCs in 

tamoxifen treated animals were escapers from CreERT2 recombination as a 

second round of tamoxifen administration, induced the exhaustion of also this ISC 
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population (Figure 3.11c) accompanied by a reduction of Ring1B expression and 

H2AUbq deposition (Figure 3.11d). 

 

 

 

Figure 3.11 Loss of PRC1 activity induce the exhaustion of the GFP+ ISCs. (a) Scheme of 

the experiment. FACS plot represented the GFP+ ISCs derived from small intestinal crypts of 

Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f mice scarified at days 0, 7, 15 and 30 PTI. Small intestinal crypts 

of a C57/BL6 mice was used as negative control for the GFP. The quantification represents the 
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mean of seven independent experiments. (b) FACS analysis represented the GFP+ ISCs derived 

from small intestinal crypts of Lgr5-EGFP-CreERT2 mice treated or not with tamoxifen and from 

Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f not treated mice sacrified at day 15. The quantification represents 

the mean of two independent experiments. (c) Scheme of the experiment. FACS plot represented 

the GFP+ ISCs derived from small intestinal crypts of Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f mice 

treated with tamoxifen at day 0 and, after 30 days, sacrified or treated a second time with 

tamoxifen. This second group of mice was sacrified after 7 or 15 days from the second injection 

(30+7 or 30+15). The quantification represents the mean of two independent experiments. (d) 

FACS histogram represented the GFP+ ISCs that are Ring1b+ or H2AUbq+. The analysis was 

done comparing the ISCs derived from small intestinal crypts of Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f 

mice scarified at days 0, 7, 30 and 30+7 PTI. The experiment was normalizing by using in the Y 

axis the % of Max. The quantification represents the mean of two independent experiments. (e) 

FACS histogram represented MEF cells that are Ring1b+ or H2AUbq+. The analysis was done 

comparing MEF derived from the R26CreERT2-/Ring1a-/-/Ring1bf/f mice treat with EtOH or OHT and 

analyzed at day 7. The experiment was normalizing by using in the Y axis the % of Max. 

 

 

Importantly, consistent with the data presented in Figure 3.11, FACS analysis 

performed on GFP+ ISC isolated from Lgr5-Ring1a-/-/Ring1bf/f-Ink4a/Arf-/- mice, 

showed a comparable exhaustion of GFP+ ISCs observed in the Ink4a/Arf 

proficient mice at 15 days PTI further demonstrating the independent function of 

PRC1 in regulating ISC homeostasis from its ability to repress the Cdkn2a locus 

(Figure 3.12). 

 

These data strongly suggest a role for PRC1 in maintaining intestinal epithelium 

homeostasis by preserving self-renewing capacity of ISCs independently from 

Ink4a/Arf expression.   

 



	   63	  

                

 

Figure 3.12 Loss of PRC1 activities induces the exhaustion of the GFP+ ISCs trough a 

Ink4a/Arf-independent mechanism. Scheme of the experiment. FACS plot represented the GFP+ 

ISCs derived from small intestinal crypts of Lgr5eGFP-CreERT2-Ring1a-/-/Ring1bf/f-Cdkn2a-/- mice 

scarified at days 0, and 15 PTI. The quantification represents the mean of four independent 

experiments.  

 

 

In order to demonstrate that loss of GFP expression corresponds to a loss of 

ISC, we performed a lineage tracing experiment using a Rosa26/Lox-stop-Lox-

LacZ allele (Barker et al., 2007). Lineage tracing is the identification of all progeny 

of a single cell and represent an essential tool for studying stem cell properties in 

adult mammalian tissues. By crossing Lgr5-Ring1a-/-/Ring1bf/f with Rosa26/Lox-

stop-Lox-LacZ mice, we aimed to characterize the role of PRC1 activity in 

regulating ISCs without the need of extracting cells from the tissue. Such 

experiment clearly showed that despite the LacZ allele was efficiently recombined 

in both PRC1 proficient and deficient animals (Day4 Figure 3.13), the loss of 

PRC1 activity resulted in a rapid exhaustion of LacZ+ ISCs depicted by the 

gradual decrease of LacZ positive cells up to their compleatly disappearance at 30 

days PTI (Figure 3.13). 
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Figure 3.13 Loss of PRC1 activity induces the exhaustion of the Lgr5-LacZ+ ISCs. Lgr5–

LacZ expression of small intestine derived from Lgr5eGFP-CreERT2-R26-LSL-LACZ Ring1a+/+Ring1b+/+ 

and Lgr5eGFP-CreERT2-R26-LSL-LACZ Ring1a-/-Ring1bf/f treated with tamoxifen and scarified at days 

4, 8, 15 and 30 PTI.  
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Finally, to demonstrate that the stem cell exhaustion induced by loss of PRC1 

activity is a direct effect of Ring1b deletion in the stem cell compartment and does 

not involve signals from the niche, we cultured in vitro ISCs isolated by FACS-

sorting from Lgr5-Ring1a-/-/Ring1bf/f mice. The ex vivo culture system established 

by Sato et al. in 2009 allows the propagation of organoid structures containing all 

differentiated cell types present in normal intestinal epithelium (Mini-gut) (Sato et 

al., 2009). The addition of Wnt3A to the combination of growth factors applied to 

growth ISC, allowed to obtain spheroid-like structures that allow the expansion of 

the stem-cell compartment (Sato et al., 2011). Indeed, spheroids show Wnt-

dependent indefinite self-renewing properties but display a poorly differentiated 

phenotype.  

Accordingly with our in vivo results, when we cultivated in a Wnt3A conditioned 

media the Lgr5 -Ring1a-/-/Ring1bf/f ISCs the addition of 4-OHT impaired the ability 

of the Ring1a-/- Ring1b-/- ISCs to form spheroids (Figure 3.14). Moreover, upon 

removal of Wnt3A, the control spheroids formed typical crypt-like structures while 

the addition of 4-OHT largely impaired the ability of spheroids to bleb and develop 

in proper mini-guts (Figure 3.14). Together, these results prove that PRC1 activity 

is required for ISCs homeostasis independently from the stem cell niche signals. 
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Figure 3.14 PRC1 activity is required for the in vitro organoids formation. In vitro culture of 

GFP+ ISCs derived from Lgr5eGFP-CreERT2-Ring1a-/-Ring1bf/f mice small intestine. The cells were 

cultivated using a Wnt3a conditioned medium in the presence or absence of 4-OHT for 48h to 

allow the spheroids formation. The quantification represents the number of cysts per well after 48h.  

Then we removed the Wnt3a from the control spheroids in the presence or absence of 4-OHT and 

grow them for other 48h to allow the formation of the mini guts structures. The quantification 

represents the relative percentage of crypt-like structures after 48h from the Wnt3a removing. 
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3.7 Dissection of the transcriptional program controlled by 

PRC1 in the ISCs 

To obtain further insights regarding the transcriptional pathways that are under 

the control of PRC1 activity in the ISC compartment, we determined the 

expression profile of the Lgr5-Ring1a-/-/Ring1b-/- ISCs taken at PTI time point prior 

to their exhaustion (6 days PTI) and determined genome wide gene expression by 

RNA-seq analysis. In addition, the RNA-seq results were coupled to chromatin 

immuno-precipitation sequencing (ChIP-seq) performed in purified WT ISCs using 

Ring1B and H2AUbq specific antibodies to identify bona fide direct PRC1 target 

genes in the stem cells. 

To achieve this, we developed a procedure that maximizes the isolation of 

Lgr5+ ISCs from the small intestine of the Lgr5-eGFP-CreERT2 mice. Using this 

isolation procedure, we were able to collect about 200.000 GFP+ ISC per mouse, 

which corresponds to approximately 4-5% of the total isolated crypts’ cells. To 

determine the quality of the purification, we measured by RT-qPCR GFP and CRE 

expression in the sorted cells with respect to the bulk crypt population (Figure 

3.15a). To further verify the purity of the sorted ISCs, we observed that the 

isolated GFP+ cells expressed high levels of ISC markers (Lgr5, Ascl2, Olfm4), 

and low levels of markers of differentiated intestinal cells (Lyz1, Tff3, Alpi) (Figure 

3.15a). However, the sorted ISC population displayed a relatively high expression 

of the paneth cells marker lysozyme. This result could be a consequence of ISC-

paneth doublets echoed by their known strong physical contact (Figure 3.15b), as 

also reported by Sato and colleagues (Sato et al., 2011b). To test this, we have 

stained the cells purified from crypts preparation with the paneth specific marker 

CD24 (Sato et al., 2011b) to identify this doublets population within our GFP+ 

cells. This analysis clearly showed that ISC:Paneth doublet scattered differently 
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then single ISC in our FACS profile  allowing us to easily exclude this population 

during sorting (Figure 3.15c). Indeed, expression analysis performed on the two 

distinct populations of GFP+ sorted cells on the basis of the FSC-SSC 

parameters, displayed significantly less lysozime expression in the left population 

(green box) then in the right (red box) (Figure 3.15d) demonstrating an increased 

purity of ISCs with our isolation procedure. 

 

 

 

Figure 3.15 Gate setting for the GFP+ ISCs sorting. (a) Relative expression by RT-qPCR of 

GFP, CRE, Lgr5, Olfm4, Ascl2, Lyz1, Tff3 and Alpi in sorted GFP+ ISCs compared to total 

intestinal pool of cells. TBP was used as a normalizing control. (b) Confocal images of IF done on 

small intestinal crypt sections derived from Lgr5eGFP-CreERT2 mice. Lgr5–GFP+ ISCs are green and 

the lysozyme expressing cells (Paneth cells) are red. Counter stain: DAPI (blue). (c) In the first 

panel FACS plot represented the GFP+ ISCs from Lgr5eGFP-CreERT2 small intestinal crypts. In the 

second and third panel FACS plots of dissociated single cells from Lgr5eGFP-CreERT2 small intestine 

marked with the paneth surface marker CD24. Double positive event for GFP and CD24high (red 

box) or low (green box) are gated by CD24 and GFP signal parameter or by Forward scatter and 

GFP signal parameter. On the fourth panel is represented the setting gate that was used to sort the 

GFP+ ISCs for RNA-Seq and Chip-Seq analysis. (d) Relative expression by RT- qPCR of Lgr5 and 
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Lyz1 in sorted GFP+ ISCs CD24low compared to the GFP+ ISCs CD24high. TBP was used as a 

normalizing control.  

 

To determine the genome wide activity of PRC1 proteins, we performed ChIP-

seq analyses using antibodies specific for H2AUbq and Ring1B. We have 

optimized the ChIP protocol to perform ChIP-seq analyses of histone modifications 

using ~100.000 cells per ChIP-seq and ~500.000 cells/sample for chromatin-

associated proteins.  

This analysis identified 13217 H2AUbq peaks and 853 Ring1B peaks in 

preparations of whole intestinal crypts and 4124 H2AUbq peaks and 266 Ring1B 

peaks in purified ISCs. Most Ring1B and H2AUbq peaks identified in ISCs 

overlapped with peaks identified in whole crypts preparations (97% and 84% for 

Ring1B and H2AUbq, respectively) (Figure 3.16). Moreover, by comparing the 

Ring1B and the H2AUbq occupancy in the same population, we found that the 

Ring1B protein is almost entirely bound to H2AUbq positive areas (Figure 3.16) 

consistent with its unique role in depositing this modification. 
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Figure 3.16 High-throughput Ring1b and H2AUbq location analysis in ISCs and crypts. 

Venn diagrams representing the genome-wide overlap of Ring1b and H2AUbq peaks in ISCs and 

crypts derived from Lgr5eGFP-CreERT2 mice small intestine. In the lower panel genome-wide overlap of 

Ring1b and H2AUbq peaks in the ISCs or in the crypts derived from Lgr5eGFP-CreERT2 mice small 

intestine.  

 

The analysis of the RNA-Seq profile of the Ring1a and Ring1b loci clearly 

showed the lack of transcription from the whole locus or from exons 3-5 

respectively upon tamoxifen treatment (Figure 3.17a). We applied a stringent cut-

off in order to maximize the level of control for false positives without missing 
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biologically interesting and relevant genes. By using a fold change cut-off of +/- 4 

(FC4), we found 376 up-regulated and only 42 down-regulated genes in Lgr5-

Ring1a-/-/Ring1b-/- ISCs compared with the WT ISCs, accordingly with the role of 

PRC1 as transcriptional repressor (Figure 3.17b).  

 

 

 

Figure 3.17 Transcriptional changes between WT and Ring1a-Ring1b dKO ISCs. (a) 

Scheme of the Ring1a and Ring1b transgene. Squared RNA-Seq genomic snapshots represented 

the expression of the Ring1a gene and of the Ring1b specific locus, which has been flanking by 

LoxP sites, in Lgr5eGFP-CreERT2 and Lgr5eGFP-CreERT2-Ring1a-/-/Ring1b-/- ISCs 6 days PTI. (b) Volcano 

plot depicting significant differentially expressed genes in red (42 down-regulated genes and 376 

up-regulated genes) between the WT and Ring1a-Ring1b dKO ISCs derived from Lgr5eGFP-CreERT2 

and Lgr5eGFP-CreERT2-Ring1a-/-/Ring1bf/f mice 6 days PTI. We used like cut-off a FC4. 

 

In order to dissect the direct transcriptional regulation by PRC1 of these up and 

down regulated genes, we combined the high-throughput transcription data and 

the location data generated by ChIPseq. 

These analyses showed that H2AUbq was enriched around the TSS of nearly 

90% of the up-regulated genes and 30% of the down regulated whereas Ring1B 
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was enriched in around the 25% of the up-regulated genes and is almost not 

present at the TSS of the down-regulated genes (Figure 3.18a - 3.18b) stressing 

the directness for gene de-repression upon loss of PRC1 activity. These 

percentages increased up to 100% for H2AUbq and nearly 70% for Ring1B if the 

same analysis is applied to genes that were totally repressed in WT ISCs (Figure 

3.18c). 

 

 

 

Figure 3.18 Localization profiles of Ring1b and H2AUbq at the up and down regulated 

genes in the Ring1a-Ring1b dKO ISCs. (a) Average ChIP-seq profile of Ring1b protein and 

H2AUbq modification around TSS of up and down regulated genes. Both RNA-Seq and ChIP 

sequencing was performed on ISCs derived from Lgr5eGFP-CreERT2 and Lgr5eGFP-CreERT2-Ring1a-/-

/Ring1bf/f mice 6 days PTI. (b) Barplot showing proportion of promoters of all up (blue) and down 

(red) regulated genes positive for Ring1b and H2AUbq. (c) Barplot showing proportion of 

promoters of all up regulated genes (blue) and its sub population (red, where the basal levels of 

expression is less than 0.5 fkpm) positive for Ring1b and H2AUbq. 
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The functional annotation of the down and up regulated genes in the PRC1 

dKO ISCs showed a strong enrichment for the up regulated genes involved in 

biological processes linked with pattern specification process, development and 

morphogenesis (Figure 3.19).  

 

             

 

Figure 3.19 Loss of PRC1 activity in the ISCs induce the up-regulation of gene involved 

in pattern specification processes. Biological processes enriched with up regulated genes. 

 

In order to determine if the up-regulation of these genes is indicative of a 

premature ISC differentiation or to a loss of intestinal lineage identity, we checked 

the expression levels of the up-regulated genes respect to the expression data 

from different tissues including the whole small-intestine (please note that this 

sample includes also the differentiated part of the small-intestinal which account 

for its larger proportion) available from the ENCODE database. This analysis 
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revealed that the genes up-regulated by loss of PRC1 activity are generally 

expressed in other tissues and result lowly expressed in the small-intestine. This 

strongly suggests that loss of PRC1 activity triggers a loss of lineage identity 

rather then a premature ISC differentiation. Consistently, the down regulated 

genes result highly expressed specifically in the small-intestine lineage (Figure 

3.20a-b).  

 

 

 

 

Figure 3.20 Loss of PRC1 activity triggers a loss of lineage identity. (a) Heatmap showing 

expression in z-score form of up and down regulated genes in different tissues. Darker blue/red 

signifies higher/lower expression of a gene in that specific tissue. (b) Distribution of expression of 

up and down regulated genes in different tissues. Data same as a. 

 

 

3.8 PRC1 inactivation induces an up-regulation of the Zic 

proteins that, in turn, can directly inhibit the transcriptional 

activity of the ß-Catenin/Tcf4 complex 
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The evaluation of the signaling pathways potentially involved in the onset of the 

phenotype, underline the presence of the Wnt/β-catenin signaling (Figure 3.21a), 

which constitutes the key pathway to maintain the proliferative and undifferentiated 

state of the intestinal epithelial cells (Fujimi et al., 2012). In addition, the only 

functional domain that was significantly enriched among the group of up-regulated 

genes was transcription factors (TF) containing a homeobox-domain (Figure 

3.21b). Although is known that PcGs can control homeo-domain TFs transcription, 

such exclusivity was very striking. A functional hand-by-hand search in the 

published literature revealed that several of these homeo-domain TFs, such as 

HoxB13, Sox17, Zic1 and Zic2, could act as Wnt antagonists potentially inhibiting 

the transcriptional activity of the ß-Catenin/Tcf4 complex. 

For example, RNA-Seq genomic snapshots presented in figure 3.20b showed the 

up-regulation of the Zic and Sox genes upon loss of PRC1 activity in Lgr5-Ring1a-

/-/Ring1b-/- ISCs (Figure 3.20b). Moreover Ring1b and H2AUbq ChIP-seq profiles 

in the Lgr5-eGFP-CreER T2 ISCs demonstrate that all these genes are direct target 

of the PRC1 activity (Figure 3.21c). Together, these data suggest that PRC1 could 

preserve the ISCs identity by maintaining the transcriptional repression of direct 

negative regulators of Wnt-TCF4 transcriptional program.  
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Figure 3.21 Loss of PRC1 activity induce the expression of Wnt antagonist. (a) Top 

canonical pathways enriched with up regulated genes. (b) Functional domain enriched with up 

regulated genes. (c) Screenshot of genomic locus with genes showing presence of Ring1b and 

H2AUbq and their expression levels in WT and Ring1a/Ring1b KO ISCs derived from Lgr5eGFP-

CreERT2 and Lgr5eGFP-CreERT2-Ring1a-/-/Ring1bf/f mice 6 days PTI. 

 

Among the most up-regulated genes we focus our attention on the Zic genes 

due to their genetic interaction with ß-Catenin activity in the Xenopus development 

(Fujimi et al., 2012). RT-qPCR analysis in the R26-Ring1a-/-/Ring1b-/- purified 
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crypts (Figure 3.22a) as well as in the Lgr5-Ring1a-/-/Ring1b-/- ISCs (Figure 3.21b) 

confirmed the up regulation of the Zic genes, and in particular of the Zic1, Zic2, 

and to a lesser extent of Zic5. The efficient loss of Ring1B and of H2AUbq as well 

as the ZIC2 overexpression in the PRC1 KO crypts (Figure 3.22a) and ISCs 

(Figure 3.22b) was further validated at a protein level by WB analysis.  

 

      

 

Figure 3.22 Zic cluster is a direct target of the PRC1 activity. (a) Relative expression by RT-

qPCR of the Zic cluster (Zic1-5) in intestinal crypts from R26CreERT2 and R26CreERT2-Ring1a-/-/Ring1b-

/- mice 6 days PTI. Western blot analysis of small intestinal crypts derived from R26CreERT2 and 

R26CreERT2-Ring1A-/-/Ring1B-/- mice 6 days PTI, using Ring1b and Zic2 antibodies. Vinculin was 

used as loading control. (b) Relative expression by RT-qPCR of the Zic cluster (Zic1-5) in sorted 

GFP+ ISCs from Lgr5eGFP-CreERT2 or Lgr5eGFP-CreERT2-Ring1a-/-/Ring1b-/- mice 6 days PTI. TBP was 

used as a normalizing control. Western blot analysis of small intestine ISCs derived from Lgr5eGFP-
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CreERT2 or Lgr5eGFP-CreERT2-Ring1a-/-/Ring1b-/- mice 6 days PTI, using Ring1b and Zic2 antibodies. 

Vinculin was used as loading control.  

 

Similarly, PRC1 direct association to the different promoters of Zic1-5 loci was 

confirmed in whole crypt preparation using Ring1B and H2AUbq specific 

antibodies in direct ChIP analysis on the purified crypts using R26-Ring1a-/-

/Ring1b-/- animals as specificity control (Figure 3.23).  

                        

 

Figure 3.23 Zic cluster is directly regulated by PRC1. Ring1b and H2AUbq ChIP on the 

R26CreERT2 and R26CreERT2-Ring1a-/-/Ring1b-/- purified small intestinal crypts couple with RT-qPCR 

analisys on the Zic cluster (Zic1-5). 

 

TCF4 represents the key transcription factor that mediates Wnt dependent 

transcriptional response in the intestinal epithelium. First we investigated the ability 
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of Zic1 and Zic2 to bind to the TCF4 transcriptional complexes. We expressed 

Zic1 and Zic2 independently in the colon adenocarcinoma cell line SW480 that 

present constitutive activation of the WNT/β-catenin signaling pathway due to ß-

Catenin stabilization induced by APC inactivation. Co-immunoprecipitation 

experiments demonstrated the ability of both Zic1 and Zic2 to efficiently interact 

with the TCF4 transcriptional complex (Figure 3.24) suggesting a potential direct 

interference with ß-Catenin/TCF4 transcriptiaonl activity.  

 

 

 

Figure 3.24 Zic1 and Zic2 directly bind TCF4. Endogenous TCF4 Co-immunoprecipitation 

with Flag-tagged Zic1 and Zic2 in SW480 cells. 

 

Indeed, when assayed in a classical TOP/FOP assay (TOP is a ß-Catenin 

responsive artificial promoter in front of the Luciferase gene while FOP is the same 

promoter carrying a TCF4 mutated binding site), Zic1 and Zic2 expression 

inhibited TCF4 dependent transcription in a dose dependent manner (Figure 3.25).  
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Figure 3.25 Zic1 and Zic2 inhibit TCF/LEF transcriptional activity. Human colon 

adenocarcinoma cell line SW480 was transduced with WT (Top) or mutant (Fop) TCF/LEF firefly 

luciferase reporter and a renilla luciferase virus, and the TCF/LEF transcriptional activity was 

calculated by dividing the TOP/renilla ratio by the FOP/renilla ratio. SW480 cells containing Top or 

Fop luciferase reporter were infected with different concentration of expression plasmid containing 

FLAG-Zic1 or FLAG-Zic2 and the TCF/LEF reporter activity was measured. Zic1 or Zic2 expression 

was assessed by western blot.  

 

These findings indicate that Zic1 and Zic2 proteins interact physically to 

potentially inhibit TCF4 transcriptional activity. To better understand the 

consequences of this interaction on the TCF4-β-catenin mediated transcriptional 

activity in vivo, we further investigate the levels of the DNA occupancy of Tcf4 and 

β-catenin. The WB analysis performed on purified Rosa26-CreERT2-Cdkn2a-/- 

crypts WT or KO for Ring1a-Ring1b showed that, in the gut epithelia, loss of PRC1 

activity induces a strong loss of Tcf4 expression and a strong decrease of β-
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catenin levels (Figure 3.26). This was not a consequence of reduced transcription 

(determined by RNA-Seq results) but rater an effect on protein stability/translation.  

 

         

Figure 3.26 Loss of PRC1 activity induces TCF4 and ßcatenin degradation. WB analysis of 

small intestinal crypts derived from R26CreERT2 and R26CreERT2-Ring1a-/-/Ring1b-/- mice 6 days PTI, 

using ßcatenin and TCF4 antibodies. Vinculin was used as loading control. 

 

 

Importantly, ChIP-seq analysis on wild type and R26CreERT2-Ring1a-/-/Ring1b-/--

Cdkn2a-/- crypts showed a diffuse reduction in Tcf4 chromatin occupancy (Figure 

3.27a). De novo motif discovery underneath the Tcf4 peak summits perfectly 

predicted the known Tcf4 DNA binding site further highlighting the specificity of our 

ChIP-seq results (Figure 3.27b). These results support the Figure 3.26 data and 

demonstrate a global inhibition of Tcf4 transcriptional potential in PRC1 deficient 

cells. 
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Figure 3.27 Loss of PRC1 activity induces TCF4 delocalization. (a) Heat map representing 

normalized intensities of TCF4 around (5kb up and down) the summit of its binding sites in WT 

crypt and average profile of TCF4 around (5kb up and down) the summit of its binding sites in WT 

crypt. (b) Predicted motif (upper panel) and its corresponding known annotated motif (lower panel) 

from the underlying sequences of TCF4 binding sites in WT crypt.  

 

Overall our results suggest that up-regulated Zic1 and Zic2 (as well as of other 

homeo-domain TFs) could bind directly TCF4 to inhibit its transcriptional potential 

displacing the complex form chromatin promoting its degradation. 
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3.9 PRC1 activity impairs the progression and maintenance of 

small intestinal tumors 

To test if the loss of PRC1 activity could interfere in vivo with the activity of ß-

Catenin downstream to its stabilization, we generated a new strain that carries a 

Cre-inducible constitutively active form of ß-Catenin (CatnbΔEx3) (Harada et al., 

1999) in the background of Lgr5-Ring1a-/--Ring1bfl/fl mice. The deletion of the exon 

3 of the Catnb gene results in the production of a stabilized ß-Catenin protein that 

cannot be longer phosphorylated by GSK-3ß and degraded. This model has been 

shown to induce a hyper-activation of the WNT-ßcatenin pathway upon Ex3 

deletion that results in the formation of adenomatous intestinal polyps. Consistent 

with this, the expression of constitutively stabilized β-catenin in PRC1 proficient 

LGR5+ ISCs led to the diffuse formation of adenomas within 30 days. Strikingly, 

the concomitant ISCs-specific Ring1a-Ring1b deletion completely abrogates the 

formation of small intestinal adenomas suggesting that loss of PRC1 activity 

inhibits in vivo ß-Catenin activity downstream to its stabilization further highlighting 

that PRC1 could play an essential role in the development of intestinal tumors 

(Figure 3.28). The H&E staining performed on small intestine sections from Lgr5-

CatnbΔEx3 and Lgr5-Ring1a-/-/Ring1bf/f- CatnbΔEx3 mice at 30 days PTI revealed the 

presence of many adenomas in PRC1 proficient animals while PRC1 loss of 

function correlated with a normal tissue morphology of the crypt-villus epithelium. 

Ki67 staining showed a massive increase of proliferating cells in the tumoral tissue 

that was restricted to a normal proliferation in the absence of PRC1 activity. Such 

phenotype was further evident in the aberrant localization of the paneth cells in 

adenomas and their normal localization at the base of the crypt in the PRC1 

deficient guts (Figure 3.28). The absence of H2AUbq negative crypts one month 

PTI suggest that PRC1 deficient ISCs are counter selected also in the presence of 
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a constitutive active form of ß-Catenin in vivo, which is in line with the model of 

homeo box-dependent interference with the ß-Catenin/Tcf4 transcriptional activity.  
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Figure 3.27 Loss of PRC1 activity fully inhibited the ßcatenin induce adenomas. 

Hematoxylin-Eosin, H2AUbq, Ki67 and Lyz IHC done on the small intestine sections derived from 

Lgr5eGFP-CreERT2-CatnbΔEx3 or Lgr5eGFP-CreERT2-Ring1a-/-/Ring1bf/f-CatnbΔEx3 mice scarified at day 30 

PTI. 

 

Taken together all our data support a model in which PRC1 control the self-

renewal of ISCs by positively sustaining Wnt transcriptional activity. Most 

important this control is maintained also in the presence of oncogenic mutations 

that constitutively activate the WNT/β-catenin signaling pathway, which 

representing the main cause of CRC occurrence. 

Thus, we conclude that loss of PRC1 activity impairs the progression and 

maintenance of small intestinal tumors. 
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Chapter 4: 

Discussion 

 

Polycomb group proteins have been subjects of intense study as it is now clear 

that they are essential to maintain the identity of several cell types, regulating both 

differentiation and proliferation by maintaining repressive chromatin environments. 

Different essential components of both PRC1 and PRC2 are also involved in many 

developmental diseases and in a range of different hematological and solid 

tumours. For these reasons, PcGs attract a lot of attention also as novel 

pharmacological targets. Although the biological activity of PcG proteins in 

embryonic stem cells and during embryogenesis has been well characterized, 

comprehensive studies on the role of polycomb complexes in adult tissues 

homeostasis are still missing. 

 

 4.1 PRC1 roles in the intestinal homeostasis  

With the goal to characterize the role of PcG proteins in adult tissues, we have 

discovered that the global loss of PRC1 activity in adult mice induces severe 

defects in the homeostasis of the intestinal epithelium. This was further confirmed 

by the observation that the specific ablation of PRC1 activity in the ISCs induced a 

rapid loss of the intestinal architecture. In fact, histological analyses of small 

intestine explanted from these mice revealed the presence of H2AUbq negative 

degenerating crypts that appeared as shrinking cystic crypts filled with mucus and 

eosinophilic debris with a reduced number of cells. This degeneration is the 
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outcome of a cell death-independent process, since these crypts did not display 

any increase in the apoptotic cell number. On the other hand, a gradual reduction 

of Ki67-positive proliferating cells from the bottom of the degenerated crypts 

through the transient amplifying compartment indicates impairment in cell 

proliferation. 

Even if the main mechanism by which PcGs control cell proliferation is the 

direct transcriptional repression of the Ink4a/Arf locus, consistent with previous 

findings of our laboratory (Piunti et al., 2014), our data demonstrate that PRC1 

controls intestinal homeostasis and the ISCs fate independently of Ink4a/Arf-p53-

pRb cell cycle checkpoints regulation. This finding becomes particularly relevant in 

the context of tumour development where loss of Ink4a/Arf, pRb and/or p53 

response is a hallmark of CRC development as well as of most tumour type 

(Hanahan and Weinberg, 2011). 

 

 4.2 PRC1 roles in the ISCs homeostasis 

 Our data demonstrate that the specific loss of function of PRC1 activity in ISCs 

induced a rapid exhaustion of the stem cell pool via a cell-autonomous process 

that does not involve signaling crosstalk between ISCs and the niche. Combining 

high-throughput transcription and location analysis we have dissected the direct 

transcriptional pathways regulated by PRC1 in ISCs demonstrating that PRC1-

mediated exhaustion of ISC is likely a result of loss of ISC identity. Our RNA-Seq 

analysis indicate a strong enrichment of genes involved in biological processes 

linked with pattern specification, development and morphogenesis and strongly 

suggest that loss of ISC identity is the result of a massive up-regulation of non-

lineage specific transcription factors that can directly inhibit the transcriptional 

activity of the ß-Catenin/Tcf4 complex. 
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Among the most up-regulated genes we found different Zic proteins that are 

zinc-finger-type transcription regulators widely conserved in eumetazoans, which 

regulate ectodermal and mesodermal development in vertebrate embryos. It has 

been shown the existence of five Zic genes (Zic1–5) that partly share 

spatiotemporal expression profiles and functions. Importantly, these proteins are 

deregulated in several types of tumors and in a recent paper it was demonstrated 

that in Xenopus Zic3 is able to suppress Wnt/β-catenin signaling suggesting a new 

mechanism by which Zic3 can fine tuning the activity of this pathway (Fujimi et al., 

2012). Based on this report, we focus our attention on the Wnt/β-catenin signaling. 

Our results clearly demonstrate that loss of PRC1 activity leads to the up-

regulation of the Zic cluster and that, at least Zic1 and Zic2, can target directly 

TCF4 and inhibit β-catenin-mediated transcriptional activation through the TCF4-β-

catenin complex chromatin delocalization and/or degradation. 

Overall our data suggest that PRC1 indirectly control the Wnt/β-catenin 

signaling pathway downstream of β-catenin stabilization at the level of the 

transcription factor TCF4 that represent the platform on which β-catenin or 

Groucho/TLE associate to respectively stimulate or repress Wnt-dependent 

transcription (Clevers and Nusse, 2012).  

The PRC1 Wnt/β-catenin signaling modulation may have important implications 

in several biological processes since this pathway is widely involved in virtually 

every aspect of embryonic development as well as in homeostatic self-renewal 

and regeneration of various tissues and organs. Moreover the deregulation of the 

canonical Wnt signaling pathway is also correlated with tumorigenesis, congenital 

disorders, and degenerative diseases. 
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 4.3 PRC1 implication in CRC  

Consistently with our data, we found that the phenotype induced by the loss of 

PRC1 activity cannot be rescued by forcing the activation of β-Catenin. In fact, the 

loss of PRC1 activity in ISCs that activate and stabilize ß-Catenin, fully inhibited 

the formation of intestinal adenomas, suggesting that loss of PRC1 impairs ß-

Catenin activity downstream to its activation. 

This finding could have a particular importance in the tumoral context as for 

~80% of CRC the initiating event is an activating mutation in the Wnt-pathway that 

leads to the ß-Catenin stabilization (Bienz and Clevers, 2000). 

The current therapeutic strategy for most CRC patients includes surgical 

resection of the tumor and chemotherapeutic treatment that are effective just at 

early stages. In fact, the frequent complication in CRC is the relapse of the tumor 

after therapy. Moreover, the risk of cancer recurrence is linked to the stage of the 

disease at the time of diagnosis (Merlos-Suarez et al., 2011). For these reasons 

CRC represent one of the leading causes of cancer death in industrialized country 

and it remains crucial unveil new pharmacological strategies to treat more 

effectively late stages tumors.  

Considering the fundamental PRC1 role in the maintenances of the intestinal 

homeostasys is difficult to consider it as a non-cytotoxic target for therapy options. 

However, since the PRC1 action as a canonical Wnt signaling enhancer is 

downstream β-catenin activation, we believe that characterizing this circuit of 

regulation uncovering its molecular insights a valuable strategy to provide 

additional knowledge that could be useful for CRC therapy.  

In these regards, to draw a landscape of the PcG activity also in developed 

CRCs, we are planning to study the role of the PRC1 in the intestinal cancer stem 

cells population derived from the Lgr5-Ring1a-/-/Ring1b-/--CatnbΔEx3 mice. This will 

allow us to determine the impact that PRC1 inactivation could have over the 
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transcription profile of the ß-Catenin-induced tumor as well as to identify novel 

targetable proteins involved in colon cancer initiation and maintenance. 

 

 4.4 PRC1 vs PRC2 

In conclusion our data support a model in which PRC1 directly maintain 

intestinal stem cell compartment, independently from the Ink4a/Arf locus, by 

repressing non-lineage-specific genes that antagonize TCF4-dependent 

transcription. Loss of PcG activity causes a global loss of stem cell identity, without 

triggering a specific differentiation program, leading to stem cell exhaustion. Our 

work provides a novel mechanism for Wnt signaling enhancement via PRC1 

activity and suggests that the mechanism by which loss of Ring1a-Ring1b is 

sufficient to induce crypt degeneration is via an up-regulation of Zic1 and Zic2 and 

potentially by other homeodomain TFs, which in turn interacts with TCF4 and 

interferes with the transcriptional activation by β-catenin. 

On the other hand, by using different mouse models, we have also 

demonstrated that global loss of Ezh2 activity is dispensable for intestinal 

homeostasis (Appendix). Considering the changes in the Polycomb hierarchy, this 

finding strongly supports the idea that, in the intestinal context, PRC1 activity is 

largely EZH2 independent and potentially also PRC2 independent.  

Recent papers showed the existence of six major groups of PRC1 complexes, 

each containing a distinct PCGF subunit, a Ring1A/B ubiquitin ligase, and a 

unique set of associated polypeptides. Among these, only the canonical PRC1 

complexes are recruited to chromatin through the ability of the CBX proteins to 

bind the H3K27me3 deposited by PRC2. In contrary, the non-canonical PRC1 

complexes result PRC2 independent and seem to be responsible for the majority 

of the H2AUbq repressive marks on chromatin (Scelfo et al., 2014). 
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Together, our data stress the independence of PRC1 activity from the 

H3K27me3 deposition in regulation ISC homeostasis. This further suggests that 

non-canonical PRC1 complexes play a major role in regulating intestinal 

homeostasis. Thus, it could be of great interest to dissect the role of the different 

PRC1 sub-complexes in gut maintenance as well as in CRC formation. This would 

be of great help to understand the mechanisms behind PRC1 activity that regulate 

stem cell fate and tissue homeostasis, as well as to provide further information for 

alternative strategies for cancer therapy. To follow this new line of investigation, 

we will generate the mouse models caring conditional alleles for each distinct Pcgf 

protein in order to characterize the differential role of each PRC1 sub-complex in 

the gut field.   

 

 

 

 

 

 

 

 

 

 

 



	   93	  

 

 

Chapter 5: 

Appendix 

 

 5.1 PRC2 role in gut homeostasis and CRC 

 Consistent with the absence of intestinal defect that we found in the Rosa26-

CreERT2/Ezh2-/- mice, the phenotypical evaluation performed in the gut using 

specific conditional knockout mouse models confirmed that Ezh2 activity is 

dispensable for the intestinal homeostasis and further suggested that PRC2 could 

have a restricted role in defining secretory lineage identity in the mouse intestine. 

 More in detail, by using an AhCre-Ezh2f/f mouse model, that allows Ezh2 

inactivation in the entire intestinal epithelia (Ireland et al., 2004) after Cre induction 

with ß-naphthoflavone (β-NPT), we discovered that loss of Ezh2 activity severely 

reduces H3K27me2 and H3K27me3 (Figure 5.1a) without any gross effect on the 

intestinal architecture (Figure 5.1b). However, lysozyme and alcian-blue staining 

showed a delocalization of paneth cells that tend to converge phenotypically 

towards goblet cells. These cells start to secrete mucus that results rich in 

lysozyme (Figure 5.1b). Although loss of Ezh2 could be compensated by Ezh1, 

these data strongly suggest that the effects observed upon PRC1 loss of function 

are almost totally independent from the deposition of H3K27me3. 
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 Figure 5.1 PRC2 role in the intestinal homeostasis. (a) Western blot analysis of the AhCre-

Ezh2f/f mice crypts at 0, 7, 45 and 90 days post β-NPF injection. This analysis showed that the loss 

of Ezh2 expression and the decrease of H3K27me2 and H3K27me3 occurs at day 7 and are 

maintained up to 90 days from Ezh2 deletion. (b) Hematoxylin-Eosin staining performed on small 

intestine sections from AhCre-Ezh2f/f mice revealed a normal morphology of the crypt-villus 

epithelium except for the presence of small areas of infiltrated lymphocyte and cells of the immune 

response. Staining with lysozyme specific antibodies, showed an aberrant positivity in cells 

localized in the upper part of the crypts, which could suggest a delocalization of paneth-cells over 

the crypt-villi axis. Alcian-blue staining, that marks glycoproteins released in the mucus by the 

goblet cells, marked these apical lysozime-expressing cells, suggesting that paneth cells tend to 

converge phenotypically towards goblet cells. 

 

To further characterize the relevance of the PRC2 activity in the ISCs 

compartment, we induced Ezh2 deletion specifically in the Lgr5+ ISCs by using 

Lgr5-Ezh2f/f mice (Barker et al., 2007). Even though Ezh2 conditional alleles were 

efficiently deleted (Figure 5.2a-b), the number of Ezh2 KO GFP+ ISCs within the 

crypts did not change compared to WT control in FACS analysis (Figure 5.2c) as 

well as in lineage-tracing experiments with the previously presented lox-STOP-lox 
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LacZ allele (Figure 5.2d). In conclusion our data strongly suggest that loss of Ezh2 

does not affect intestinal homeostasis neither impair ISCs overall viability.  

 

 

 

Figure 5.2 PRC2 role in the ISCs homeostasis. (a) Western Blot analyses of sorted GFP+ 

ISCs from Lgr5-Ezh2f/f mice showed an almost complete loss of EZH2 at 15 days PTI compared to 

GFP+ ISCs from corn oil treated Lgr5-Ezh2f/f mice used as wild type control. (b) Ezh2 IF analyses 

performed on the small intestine section derived from Lgr5-Ezh2f/f mice sacrified at 15 days PTI 

show a specific Ezh2 deletion in the GFP+ crypts compared to the neighboring GFP- crypts. (c) 

Measuring by FACS the number of GFP+ ISCs at different time points post-injection in Lgr5-Ezh2f/f 

mice show that Ezh2 deletion did not affect the overall viability of the ISCs. In fact, in four 

independent experiments we observed that after 7, 15 or 30 days post-injection the number of 

GFP+ cells isolated from Lgr5-Ezh2-/- mice was comparable with the GFP+ cells from Lgr5eGFP-CreER 

T2 animals. (d) Lineage-tracing experiment on the Lgr5-Ezh2f/f–R26-LSL-LACZ mice show that 

Lgr5-LacZ positive crypts can be observed even after 30 days in both the Ezh2 WT and KO tissue 

confirming the viability of the ISCs EZH2 KO. 
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Since Ezh2 is frequently overexpressed in colon cancer (Fussbroich et al., 

2011) but is non-essential for gut homeostasis, this prompts us to investigate 

whether Ezh2 could have a more essential role in the development of intestinal 

tumors. 

In order to study the in vivo relevance of PRC2 activities in CRC formation and 

maintenance, we decided to use a well-established carcinogenic protocol (Neufert 

et al., 2007) that is based on the administration of the mutagenic agent 

azoxymethane (AOM) followed by three administration of the inflammatory agent 

dextran sodium sulfate (DSS). This procedure induces the development of multiple 

large adenomas already after 10 weeks from treatment, which closely resembles 

spontaneous CRCs formation in humans.  

 Our preliminary results suggest that loss of Ezh2 activity did not prevent colitis-

induced colorectal tumors neither impaired the maintenance of CRC growth (data 

not shown). These data support the idea that CRC initiation and maintenance are 

EZH2 independent and potentially also PRC2 independent. However, the loss of 

Ezh2 could be partially compensated by its homolog Ezh1 during tumour formation 

even if H3K27 methylation is more modestly contributed by EZH1 (Ezhkova and 

Lien 2011). To further address these possibilities and better dissect the role of 

PRC2 in intestinal homeostasis and CRC formation, we will: i) continue to 

characterize the role Ezh2 using upon ß-Catenin activation using CatnbΔEx3 ßCat-

exon3 mouse model; ii) we will perform the same experiments presented for Ezh2 

using a conditional mouse model for the essential pRC2subunit Eed (Eed f/f), 

which completely abrogate PRC2 activity independently of the expression of the 

Ezh1 or Ezh2 catalytic subunits. 
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