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Abstract
We consider a large-scale unit commitment problem arising in medium-term simulation of energy
networks, stemming from a joint project between the University of Milan and a major energy
research centre in Italy. Optimal plans must be computed for a set of thermal and hydroelectric
power plants, located in one or more countries, over a time horizon spanning from a few months to
one year, with a hour-by-hour resolution. We propose a mixed-integer linear programming model
for the problem. Since the complexity of this unit commitment problem and the size of real-world
instances make it impractical to directly optimise this model using general purpose solvers, we
devise ad-hoc heuristics and relaxations to obtain approximated solutions and quality estimations.
We exploit an incremental approach: at first, a linear relaxation of an aggregated model is solved.
Then, the model is disaggregated and the full linear relaxation is computed. Finally, a tighter
linear relaxation of an extended formulation is obtained using column generation. At each stage,
matheuristics are run to obtain good integer solutions. Experimental tests on real-world data
reveal that accurate results can be obtained by our framework in affordable time, making it
suitable for efficient scenario simulations.
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1 Introduction

The Unit Commitment Problem (UCP) consists in finding the optimal production levels for
plants with discrete activation patterns, i.e. plants that can be turned off and on. The body
of literature on UCPs is huge and spans both theory and applications, as recent reviews like
[1] and [2] report.

The most common objective is to minimise the global cost of production. Indeed, for
global system simulations like ours, used, for instance, by power exchange authorities, the
minimisation of global costs allows to maximise also the general welfare of the system. The
UCP has traditionally been used to model thermal power plants schedules in power systems
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on daily or weekly horizons to support operational decisions. However, recent applications
have an increasing need for simulating energy networks on substantially longer periods, and
including other types of plants such as hydroelectric, nuclear and waste-to-energy plants, as
well as plants from renewable sources like wind, solar and biomass.

UCP models admit several variations that require different solving techniques. A dis-
tinctive characteristic is the length of the simulation horizon. Short-term models, from a
few hours to weeks, are used to guide operational decisions: they are detailed but relatively
small. These include complicating elements such as non-linear costs or resource consumption
functions, to accurately represent thermal units. Medium and long-term models, that aim to
support strategic decisions, are larger in size and span longer time horizons: they require
more robust and efficient solution methods, but are less detailed.

UCP models typically include inter-temporal constraints for thermal plants, that bound
or penalise the change in activity level of each unit between consecutive periods. For example,
ramping constraints limit the change in production levels, minimum up and down time
constraints prevent units from switching state too frequently, and start-up penalties model
the costs that producers incur when their plants are switched on [3]. A large body of
literature covers short-term UCPs. Among the approximated methods greedy algorithms [4]
and meta-heuristic approaches [5, 6] have been proposed. These offer flexibility, but require
fine-tuning to be effective, and provide no optimality guarantee. Mathematical programming
is employed when better control on solutions quality is needed: short-term UCPs can be
conveniently modelled as mixed-integer non-linear programs (MINLPs). Unfortunately,
these MINLPs are in general too hard to be solved on real-sized instances. Only the very
special case of single-unit has been successfully handled with exact algorithms [10]. Instead,
Lagrangian relaxation schemes [7, 8, 9] are often used to obtain good approximations.

Linear models and mixed-integer linear programming (MILP) techniques have also been
tried. Linear UCP approximations with a weekly horizon and more than 100 plants have been
effectively solved via commercial MILP solvers [11], or embedded in rounding algorithms
and used to solve real instances [12]. In [13] a branch-and-cut scheme allows to iteratively
improve a model including a piecewise linear approximation of thermal unit costs.

Instances involving up to 100 thermal units and 200 hydroelectric plants on a weekly
scenario were solved in this way. More recently, MINLP and MILP models have been coupled
in a hybrid scheme [14].

Fewer publications deal with medium-term UCPs, spanning over months or years. Recent
contributions include [15], in which a MILP model is devised for the simulation of the
annual power production in Denmark. The authors combine a set of constructive heuristics,
that compute approximated and potentially infeasible solutions, with improving methods,
that compute feasible and better solutions starting from the heuristic ones. Computational
results are reported on instances with 20 thermal plants: annual solutions are produced with
computing times ranging between 5 and 10 minutes.

In this paper we face large-scale medium-term UCPs, to be solved on time periods ranging
from a few months to the whole year. The aim is to support the simulation of the Italian
energy market, where producers bid against one another to sell energy to buyers, i.e. private
or public entities who provide energy to final consumers [16, 17]. Prices are then determined
by the interaction between demand and supply. Cross-border flows are regulated: the pricing
and the volumes exchanged are decided beforehand with a bidding mechanism according to a
forecast of the future prices or demands in both systems. Indeed, mismatches in forecasting
can cause discharges, blackouts, or simply the need to buy energy at very high prices, or sell
it at negligible ones. Plant and system level features have to be accounted for. At plant-level,
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both dispatchable (e.g. thermal units) and non-dispatchable power sources (e.g. renewable
energy units) appear in the system. The latter cannot vary their production levels according
to market players and thus their contribution to the supply is assumed to be known in
advance through forecasting. Dispatchable power sources can be of either hydroelectric or
thermal type. Hydroelectric plants, as other renewables, have negligible marginal production
costs. Thermal plants are the most critical entities to model, having significant costs for
fuel, periodic operations and maintenance, constraints and costs associated with the changes
in the production levels and plants’ states between consecutive periods. Finally, there are
cap-pricing schemes that impose penalties for pollution, namely the production of CO2 and
NOX gases, in each country and at the European level.

In Section 2 we introduce the model. In Section 3 we describe how to relax it in order to
effectively obtain lower bounds on optimal solutions. In Section 4 we describe matheuristics
and rounding procedures providing upper bounds. Finally, in Section 5 we report and discuss
computational results on real-world instances, and in Section 6 we draw some conclusions.

2 Model

In the UCP variant we consider, plants exchange production through a power network. The
network connects different zones, each hosting a set of hydroelectric and thermoelectric
plants, by means of power links of limited capacity. Each zone has its own hourly demand
to be satisfied by either plants in the zone or by import from nearby ones. Dispatching
and production decisions have to be taken hour-by-hour. Hydroelectric plants have basins
filled by lateral water inflow or pumping systems. Their production in each period linearly
depends on the outbound flow from the basin and is assumed to be costless. Thermal plants
need to be ignited and heated to be active. As such they have a binary activation state,
fixed production costs, non-zero technical minimum and reduced flexibility, i.e. they have
to maintain their state for a given amount of time. Production costs linearly depend on
production levels and include pollution penalties. Some thermal plants have “double-shaft”
technology; that is, they can switch between two working states, with one of them employing
more power units and allowing for higher production levels. In our formulation thermal
plants in each zone are partitioned in groups. Each of them is characterised by plants with
identical marginal cost. Each group is further partitioned in families, having also the same
technical minima, maxima and fixed costs.

Let T be the set of time periods. Let Z be the set of zones, Y ⊆ Z denote the subset of
zones from which energy can be exchanged with external systems, and A ⊆ Z ×Z be the set
of links between zones. Let

Hz be the set of hydroelectric plants with reservoir in zone z ∈ Z, and H =
⋃
z∈Z Hz,

Gz be the set of groups of thermal plants for zone z ∈ Z, and G =
⋃
z∈Z Gz,

Mzg be the set of families of plants for zone z ∈ Z and group g ∈ Gz,
M =

⋃
z∈Z,g∈Gz Mzg,

MD
zg ⊆ Mzg be the subset of families of plants in zone z ∈ Z and group g ∈ Gz

implementing double-shaft technology.

For each zone z ∈ Z, group g ∈ Gz and family m ∈Mzg, thermal plants are characterised
by the following data:

kzgm and kDzgm (number of plants in family m ∈Mzg and m ∈MD
zg, resp.),

ctzg and etzgm (marginal and fixed production cost at time t ∈ T , resp.),
pzgm and Pzgm (minimum and maximum power produced by plants in family m ∈Mzg,
resp.),
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pDzgm and PDzgm (minimum and maximum power produced by plants in family m ∈MD
zg,

resp., when in double-shaft mode),
onzgm and offzgm (minimum time for which plants in family m ∈Mzg have to stay active,
resp. inactive, once turned on, resp. off).

Let

T on
tzgm = {t′ ∈ T : t ≤ t′ ≤ min(|T |, t+ onzgm − 1)} ∪ {t′ ∈ T : 1 ≤ t′ ≤ (t+ onzgm − |T |)}

be the set of periods in which a plant m ∈ Mzg has to remain active if turned on at time
t ∈ T , and

T off
tzgm = {t′ ∈ T : t ≤ t′ ≤ min(|T |, t+ offzgm− 1)} ∪ {t′ ∈ T : 1 ≤ t′ ≤ (t+ offzgm− |T |)}

be the set of periods in which it has to remain inactive if turned off.
For each zone z ∈ Z, each hydroelectric plant h ∈ Hz is characterised by the following

data:
ph and Ph (minimum and maximum power produced, resp.),
P βh (maximum pumping power),
qzh and Qzh (volume available in the reservoir at the beginning of simulation, and required
to be in the reservoir at the end of simulation, resp.),
Vh (basin capacity),
αh and βh (energy conversion and pumping efficiency coefficients),
fh and nh (hourly maximum outflow and lateral inflow).

Furthermore, at each time period t ∈ T , let
btij be the maximum energy transfer capacity of link (i, j) ∈ A,
dtz be the demand of zone z ∈ Z,
Et be the price of imported energy.

We introduce, for each period t ∈ T , zone z ∈ Z and group g ∈ Gz, continuous variables
xtzg that represent the overall production level, and, for each family m ∈ Mzg, integer
variables ytzgm, yDtzgm, uptzgm, dntzgm, upDtzgm and dnDtzgm, that represent the number of
plants that are resp. active, active in double-shaft mode, switched on, switched off, entered
and exited from double-shaft mode. We also consider, for each period t ∈ T , zone z ∈ Z
and plant h ∈ Hz, continuous variables ltzh,mtzh, stzh, otzh, that represent production level,
pumping power, excess outbound flow from the basin, and reservoir volume, resp., for
hydroelectric plants.

Finally, we assume the energy distribution network to have tree topology, since this is the
case in Italy. Nevertheless our model can be extended to arbitrary structures. Continuous
variables wtij represent the amount of energy flowing through link (i, j) ∈ A at time t ∈ T ,
and imptz and exctz the energy imported from external systems and the exceeding production
in zone z ∈ Y at time t ∈ T , respectively. As explained in the introduction, cross-border flows
are regulated beforehand and unforeseen imports or exports are not expected. Therefore
imptz and exctz variables are introduced only to detect issues in data forecasting or actual
problems in the simulated system. Then Et is meant to be set to a high value to minimise
the use of imported energy and the exceeding production is assumed to be lost. Our UCP
can be formulated as the following MILP.
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min φ =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T,z∈Z,
g∈Gz,m∈Mzg

etzgmytzgm +
∑

t∈T,z∈Z
imptzEt (1a)

s. t. xtzg ≥
∑

m∈Mzg

pzgmytzgm +
∑

m∈MD
zg

(pDzgm − pzgm)yDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (1b)

xtzg ≤
∑

m∈Mzg

Pzgmytzgm +
∑

m∈MD
zg

(PDzgm − Pzgm)yDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (1c)

yDtzgm ≤ ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (1d)

uptzgm ≥ ytzgm − y(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (1e)
dntzgm ≥ y(t−1)zgm − ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (1f)
upDtzgm ≥ yDtzgm − yD(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈M

D
zg (1g)

dnDtzgm ≥ yD(t−1)zgm − y
D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD

zg (1h)

ytzgm ≥
∑

τ∈T :t∈T on
τ

upτzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (1i)

ytzgm ≤ kzgm −
∑

τ∈T :t∈T off
τ

dnτzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (1j)

yDtzgm ≥
∑

τ∈T :t∈T off
τ

upDτzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (1k)

yDtzgm ≤ kDzgm −
∑

τ∈T :t∈T off
τ

dnDτzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (1l)

o1zh = qzh ∀z ∈ Z, h ∈ Hz (1m)
o(|T |+1)zh = Qzh ∀z ∈ Z, h ∈ Hz (1n)
otzh + nth + βh ·mtzh = o(t+1)zh + stzh + ltzh ∀t ∈ T, z ∈ Z, h ∈ Hz (1o)∑
h∈Hz

αh · ltzh +
∑
g∈Gz

xtzg +
∑

(i,z)∈A

wtiz +
∑
z∈Y

imptz ≥

dtz +
∑
h∈Hz

mtzh +
∑

(z,j)∈A

wtzj +
∑
z∈Y

exctz
∀t ∈ T, z ∈ Z (1p)

ytzgm, uptzgm, dntzgm ∈ [0, kzgm] ∩ Z+
0 ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (1q)

yDtzgm, upDtzgm, dnDtzgm ∈ [0, kDzgm] ∩ Z+
0 ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD

zg (1r)
wtij ∈ [0, bij ] ∀t ∈ T, (i, j) ∈ A (1s)

stzh ∈ [0, fh], otzh ∈ [0, Vh], ltzh ∈ [ph, Ph],mtzh ∈ [0, P βh ] ∀t ∈ T, z ∈ Z, h ∈ Hz

(1t)
imptz ≥ 0, exctz ≥ 0 ∀t ∈ T, z ∈ Y (1u)

Constraints (1b) and (1c) impose that production level is 0 for inactive plants, and within
production bounds for active ones. Constraints (1d) impose that only active plants can enter
double-shaft mode. Constraints (1e)–(1h) enforce consistency between variables describing
activation patterns. Constraints (1i)–(1l) impose that activation patterns respect minimum
on and off times after switching. Finally (1m)–(1p) are flow conservation constraints ensuring
energy balance between zones and consistency with thermal and hydroelectric productions
inside each zone. The objective (1a) is to minimise the sum of production and additional
energy import costs.

SCOR’14
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Due to the peculiarity of the UCP we consider, the resulting formulation (1) is significantly
different than those previously proposed in the literature. A more detailed discussion on
modelling issues is presented in [16] and [17].

3 Lower bounds

Preliminary experiments revealed that in large scale instances (a) even solving the continuous
relaxation of formulation (1a)–(1u) (CR in the remainder) is computationally demanding,
and (b) the bound obtained in this way has a non-negligible optimality gap. Therefore, we
first propose to aggregate parts of the model, to obtain a relaxation that, although potentially
weaker, can be solved more efficiently, coping with issue (a). Then we propose a decomposed
model that has an exponential number of variables, but a reduced number of constraints. By
optimising it through column generation we are able to obtain tighter bounds, coping with
issue (b). These techniques are then meant to be used sequentially.

3.1 Aggregate Continuous Relaxation
For each t ∈ T, z ∈ Z, g ∈ Gz, let

ẽtzg = min
m∈Mzg

{etzgm},

P xzg =
∑

m∈Mzg

Pzgmkzgm +
∑

m∈MD
zg

(PDzgm − Pzgm)kDzgm

c̃tzg = ẽtzg
P xzg

.

We consider an aggregate continuous relaxation (ACR) given by the following model:

min φ̃ =
∑

t∈T,z∈Z,
g∈Gz

c̃tzgxtzg +
∑

t∈T,z∈Z
imptzEt (2a)

s. t. 0 ≤ xtzg ≤ P xzg ∀t ∈ T, z ∈ Z, g ∈ Gz (2b)
(1m)− (1p)

that intuitively is a linear continuous model obtained by removing all integer variables, and
by approximating the piecewise-linear cost function of each thermal group in each period,
which may be non-continuous or non-differentiable, with a continuous linear lower-bound.

Model (2) can be shown to provide weaker bounds than CR, unless each group is composed
by a single unit, in which case they coincide. On the other hand it can be solved more
efficiently than CR as it is smaller and can be formulated as a network flow problem, for
which well-known exact polynomial time algorithms can be used.

3.2 Decomposed model
For all z ∈ Z, g ∈ Gz,m ∈Mzg let

Szgm = {
(
ŷutzgm, ŷ

uD
tzgm, ûp

u
tzgm, ûp

uD
tzgm, d̂n

u

tzgm, d̂n
uD

tzgm

)ᵀ
t∈T
|(1d)− (1l), (1q)− (1r)}

be the set of feasible activation patterns of thermal plants of a given family on the whole
horizon. The following linear program represents the Dantzig-Wolfe reformulation [18] of the
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continuous relaxation of model (1), where the feasible region defined by constraints (1d)–(1l),
(1q)–(1r) has been replaced by the convex hull of its extreme integer points:

min φ̂ =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

z∈Z,g∈Gz,
m∈Mzg,u∈Szgm

γuzgm(
∑
t∈T

ŷutzgmetzgm) +
∑

t∈T,z∈Z
imptzEt (3a)

s. t. xtzg ≥
∑

m∈Mzg,
u∈Szgm

(ŷutzgmpzgm + ŷuDtzgmp
D
zgm)γuzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (3b)

xtzg ≤
∑

m∈Mzg,
u∈Szgm

(ŷutzgmPzgm + ŷuDtzgmP
D
zgm)γuzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (3c)

∑
u∈Szgm

γuzgm = 1 ∀z ∈ Z, g ∈ Gz,m ∈Mzg (3d)

γuzgm ∈ [0, 1] ∀z ∈ Z, g ∈ Gz,m ∈Mzg, u ∈ Szgm (3e)
(1m)− (1u)

The reformulation details are omitted. Indeed, without loss of optimisation potential, each
set Szgm can include only those patterns corresponding to extreme integer points. For each
such a point u ∈ Szgm, integer coefficients ŷutzgm and ŷuDtzgm represent the number of plants
that are active in normal and double-shaft mode, resp., in the corresponding pattern. Each
variable γuzgm is 1 if pattern u ∈ Szgm is fully selected, 0 if it is not selected at all. Fractional
values are feasible: constraints (3d) and (3e) enforce that a linear convex combination of
points in Szgm is selected for each z ∈ Z, g ∈ Gz,m ∈ Mzg. Constraints (3c) and (3b) are
the reformulated counterparts of constraints (1c) and (1b), resp..

I Proposition 1. The lower bound provided by (3) is at least as tight as that given by CR.

The proof follows immediately by the Dantzig-Wolfe decomposition principle [18].
Model (3) contains a combinatorial number of variables. In fact, neglecting double shaft

and inter-temporal constraints, |Szgm| = k
|T |
zgm. Therefore we optimise it by means of column

generation techniques: we start with a restricted model where each set Szgm is replaced by
a subset Szgm containing only patterns generated by heuristics. Then we iteratively solve
the restricted model, obtain a vector of dual variables, and search for columns of negative
reduced cost by solving the following pricing problem, for each z ∈ Z, g ∈ Gz and m ∈Mzg:

min πuzgm = (
∑
t∈T

ŷutzgmetzgm)− ηzgm+

−
∑
t∈T

(ŷutzgmpzgm + ŷuDtzgmp
D
zgm)λzgm −

∑
t∈T

(ŷutzgmPzgm + ŷuDtzgmP
D
zgm)µzgm (4a)

s. t. (ŷutzgm, ŷuDtzgm, ûputzgm, ûpuDtzgm, d̂n
u

tzgm, d̂n
uD

tzgm)t∈T ∈ Szgm (4b)

where λzgm, µzgm and ηzgm are the dual variables associated with constraints (3b), (3c) and
(3d), resp..

If any column of negative reduced cost is found, then the corresponding pattern is inserted
in Szgm, and the process is iterated; otherwise, the optimal solution of the restricted model
is optimal also for the full model, and therefore the process is halted.

We point out that each model (4), although being an integer linear program, asks to
optimise a single family of plants, in a single zone and a single group. This makes it still
manageable by general purpose solvers even for long time horizons.

SCOR’14
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4 Upper Bounds

In order to obtain good feasible integer solutions quickly, we designed several upper bounding
heuristics [16, 17]. Two of them showed appealing results: an alternating matheuristic to be
run after ACR and CR, described in subsection 4.1, and a rounding heuristic to be run at
each column generation iteration, described in subsection 4.2.

4.1 Plan&Combine
As soon as an initial relaxation is computed, we run the following matheuristic, that we
indicate as “Plan&Combine” (P&C). Intuitively, we first fix production levels and search
for activation patterns of minimum cost for which the production levels are feasible (Plan).
Then, we fix activation patterns and optimise production levels (Combine). We iterate Plan
and Combine phases until no more changes are made in either phase.

Plan: for each t ∈ T, z ∈ Z, g ∈ Gz, let

x̃tzg ∈ [0,
∑

m∈Mzg

Pzgmkzgm +
∑

m∈MD
zg

(PDzgm − Pzgm)kDzgm]

be a given set of feasible production levels.
We compute the minimum cost activation patterns allowing such production levels by

solving the following integer linear program:

min φPlan =
∑

t∈T,z∈Z,
g∈Gz,m∈Mzg

etzgmytzgm (5a)

s. t. x̃tzg ≤
∑

m∈Mzg

Pzgm|Mzg|+
∑

m∈MD
zg

(PDzgm − Pzgm)|MD
zg| ∀t ∈ T, z ∈ Z, g ∈ Gz (5b)

(1d)− (1l)

It is easy to note that (5) decomposes in one independent subproblem for each t ∈ T, z ∈
Z, g ∈ Gz, making it well solvable with general purpose solvers.

Combine: for each z ∈ Z, g ∈ Gz,m ∈Mzg, let(
ỹtzgm . . . ỹ

D
tzgm

)ᵀ
t∈T ∈ Szgm

be a feasible activation pattern. We compute the minimum cost production respecting
minimum and maximum power levels by solving the following linear program:

min φC =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

z∈Z,g∈Gz,
m∈Mzg

etzgmỹtzgm +
∑

t∈T,z∈Z
imptzEt (6a)

s. t. xtzg ≤
∑

m∈Mzg

Pzgmỹtzgm +
∑

m∈MD
zg

(PDzgm − Pzgm)ỹDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (6b)

xtzg ≥
∑

m∈Mzg

pzgmỹtzgm +
∑

m∈MD
zg

(pDzgm − pzgm)ỹDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (6c)

(1d)− (1l)

that is comparable in complexity to ACR (2).
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The P&C heuristic works as follows: for each i ∈ N+
0

1. let x̃i be a feasible vector of production levels.
2. (plan) solve mod.(5) yielding activation patterns ỹi

3. (combine) solve mod.(6) yielding a feasible solution U i+1 for the original model (1). Let
x̃i+1 be the corresponding production levels for thermal plants

4. if x̃i 6= x̃i+1 then i := i+ 1, go to step 2. Otherwise stop.
It is worth noting that a solution given by a ‘plan’ step is always feasible for the subsequent

‘combine’ step, and a solution given by a ‘combine’ step is always feasible for the ‘plan’
step of the subsequent iteration. Hence the solutions produced never worsen during the
iterations of P&C. It follows also that loops may occur only between solutions with the same
value. Therefore, the convergence of P&C is guaranteed by considering a lexicographic order
between solutions as a secondary objective function.

4.2 Column Generation rounding
At each column generation iteration we search for good integer solutions with the following
Rounding Heuristic (RH). After pricing, we consider model (3): for each z ∈ Z, g ∈ Gz and
m ∈Mzg, we fix to one the γuzgm variable of highest fractional value, and we fix to zero all
the remaining variables. Ties are broken according to the lexicographic order. In this way, no
more integer variables are left free, and model (3) becomes a linear program: by optimising
it using a suitable algorithm, like dual simplex, we obtain a full UCP solution.

5 Implementation and Results

We combined our algorithms to produce Upper Bounds (UB) and Lower Bounds (LB) on
the optimal solution value with the following approach:
1. Solve ACR (obtain LB); run P&C starting from ACR optimal xtzg values (obtain UB).
2. If (UB = LB) then stop (optimality is proved).
3. Solve CR (update LB); run P&C starting from CR optimal xtzg values (update UB).
4. If (UB = LB) then stop (optimality is proved).
5. Populate sets S̄zgm with solutions from steps 1 and 3, and from a pricing round using as

dual values those corresponding to constraints (1c) and (1b) in the CR solution.
6. Run column generation until convergence, using RH at each iteration, updating UB.
7. Output the best UB found as final UB, and the final solution of model (3) as LB.
That is, we incrementally compute tighter bounds at the expense of higher computing efforts,
stopping as soon as upper and lower bounds match.

We implemented our algorithms in AMPL [19], using IBM ILOG CPLEX 12.4 for solving
both MILPs and LPs. CPLEX network simplex algorithm was used to solve ACR and Plan
instances, while the barrier algorithm was selected for column generation LPs, including
those in RH. P&C was stopped as soon as no improvements in the solution values were
obtained, as in preliminary experiments no further improvement occurred afterwards. In
each test, column generation was stopped after a time limit of 3600s.

We performed a set of experiments on a notebook equipped with an Intel Core 2 Duo
1.2GHz processor, 4GB of RAM and running a Linux Operating System. As a benchmark,
we used real data collected by RSE S.p.A.. They refer to the Italian energy market, and
consist of |Z| = 7 zones in a tree network, three of which connected to external markets,
148 thermal plants partitioned in |G| = 98 groups and |M | = 103 families, and |H| = 34
groups of hydroelectric plants. Thermal plants are split in three parts, the first including 68
plants having minimum on and off times of 12 and 6 hours, resp., the second including 48
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Table 1 CPLEX performance on Italian Energy Market data.

Size Id Size after presolving CPU time (s) gap %
Constraints Continuous var. Integral var. Binary var.

1 month

1 152,541 110,184 13,870 67,158 - 33.34
2 152,360 110,050 13,853 67,104 - 19.52
3 151,649 109,485 13,750 66,852 3396 0.0
4 151,578 109,451 13,740 66,836 1452 0.0
5 151,624 109,477 13,753 66,831 842 0.0
6 152,406 110,075 13,864 67,112 - 41.55
7 152,266 109,956 13,855 67,062 - < 0.01
8 152,492 110,149 13,861 67,150 - 45.22
9 152,147 109,879 13,819 67,013 - 0.11
10 152,218 109,932 13,829 67,043 - 18.29
11 152,311 109,992 13,838 67,093 2454 0.0
12 151,774 109,591 13,813 66,908 - 19.65

2 months

1 304,887 220,249 27,721 134,246 - 31.42
2 302,960 218,771 27,478 133,544 - 48.63
3 304,033 219,579 27,616 133,931 - < 0.01
4 304,776 220,149 27,725 134,199 - 36.53
5 304,423 219,867 27,646 134,080 - 46.56
6 303,740 219,332 27,595 133,864 - 40.79

3 months

1 456,617 329,831 41,493 201,113 - 47.41
2 455,838 329,210 41,386 200,855 - 59.97
3 457,109 330,187 41,563 201,281 - 57.96
4 456,073 329,383 41,460 200,918 - 57.11

6 months 1 912,782 659,305 82,904 402,076 - 60.74
2 913,597 659,919 83,019 402,375 - 60.15

12 months 1 1,826,563 1,319,378 165,951 804,489 - -

plants having minimum on and off times of 60 and 20 hours, resp., and the third including
32 plants with no constraints on minimum on and off times.

Demand data are given, and planning decisions required, for the full year with a hour-by-
hour resolution, that is considering T = 8760 time slots. Besides testing our algorithms on the
full 12 months horizon, we extracted three sets of instances corresponding to single months
(12 instances, T = 730), pairs of consecutive months (6 instances, T = 1460), quarters (3
instances, T = 2190) and semesters (2 instances, T = 4380). The price of imported energy
Et was set to a very high value: our algorithms were always able to find solutions requiring
neither energy import nor excess.

First, as a term of comparison, we performed a set of test by running the CPLEX MILP
solver with default settings using model (1). The corresponding results are reported in
Table 1 whose columns contain, in turn, instance size and reference, number of constraints,
continuous, integer and binary variables after presolving, CPU time spent in optimising (or
dash when a time limit of 4800s was hit), optimality gap at the end of computation. It can
be noticed that such an approach leaves in general very large gaps even for small instances;
CPLEX is able to close such a gap on four cases only, but the required computing time
is very high. This preliminary check stresses the need for more computationally effective
methods.

Then, we ran a set of tests with our incremental approach. In order to highlight the
behaviour of each step of our method, and the relative impact of ACR and CR, we measured
also intermediate bounds. Our results are reported in Table 2, which is composed by four
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Table 2 Computational results of the incremental approach on Italian energy market data.

Size Id
Continuous Lower Bounds Plan&Combine P&C + column generation

ACR CR after ACR after CR ACR init CR init
Time (s) Time (s) Time (s) Gap % Time (s) Gap % Iter. Gap % Iter. Gap %

1 month

1 7 30 46 3.55 70 0.38 30 1.44 42 0.22
2 6 25 38 3.02 64 0.33 34 0.59 42 0.17
3 7 25 39 2.89 65 0.30 42 0.41 50 0.17
4 7 19 43 3.26 70 0.36 40 0.64 30 0.35
5 6 22 39 3.07 61 0.32 38 1.44 44 0.13
6 6 25 38 3.17 64 0.30 36 0.31 48 0.14
7 7 26 45 3.10 68 0.29 34 0.54 41 0.16
8 7 39 42 4.55 87 0.34 32 1.86 40 0.34
9 8 33 42 3.20 71 0.29 36 0.52 37 0.15
10 7 31 40 3.13 71 0.35 38 0.72 39 0.17
11 7 27 44 3.10 67 0.32 39 0.45 44 0.15
12 7 25 51 3.55 75 0.30 48 0.36 49 0.13

2 months

1 13 86 99 3.23 173 0.35 18 0.79 20 0.19
2 14 84 81 2.94 168 0.33 17 0.42 20 0.12
3 15 98 107 3.01 188 0.32 14 0.63 16 0.16
4 18 69 97 3.57 171 0.32 18 0.75 19 0.18
5 13 105 79 3.07 192 0.29 18 0.44 18 0.19
6 13 105 80 3.00 194 0.31 19 0.67 20 0.15

3 months

1 23 178 153 3.09 321 0.34 11 0.76 12 0.23
2 25 155 153 3.10 319 0.35 12 1.02 13 0.16
3 25 112 176 3.39 271 0.30 12 0.64 11 0.28
4 23 132 228 2.91 266 0.31 11 0.65 13 0.16

6 months 1 53 396 395 3.37 910 0.34 5 0.63 5 0.27
2 59 303 379 3.44 891 0.33 6 1.29 4 0.22

12 months 1 125 1195 1301 3.50 - - - - - -

blocks. The first block contains the instance size and reference. The second one contains
the CPU time needed to compute ACR and CR. The third one refers to the P&C heuristics,
and consists of two sub-blocks, reporting the cumulative CPU time needed to run both ACR
and P&C (resp. CR and P&C) and the optimality gap (UB −LB)/LB obtained, where UB
is the value produced by P&C and LB is that given by ACR (resp. CR). The final block
refers to the column generation process, and also consists of two sub-blocks, reporting the
number of column generation iterations performed within the time limit and the optimality
gap reached, when the sets S̄zgm are initially populated with heuristic solutions obtained by
running P&C after either ACR or CR.

For the 12 months full instance, the last six columns are marked with a dash, as we
encountered out-of-memory problems while running P&C after CR. Therefore also the column
generation process could not be started. As can be noticed by looking at columns in the
second block, ACR can be computed five to ten times faster than CR. Results in the third
block show that the subsequent effort for computing P&C is instead similar, but P&C on
CR solutions produces much better approximations, always reaching an optimality gap lower
than 0.4%. Finally, column generation is able to reduce the optimality gap, consistently
reaching values below 1%, even if very few iterations are made. Computing times tend to
increase slowly as the size of the instance increases, while the optimality gaps remain stable.
A closer look at the computational details of our simulations reveal that Pricing and Plan
models are easy to solve: CPLEX is able to solve most of the instances via presolving, and
in any case is able to prove optimality at the root node of the branch-and-bound tree by
performing a few LP iterations. As an overall assessment, best quality results are obtained
with column generation, when the RMP is initialised with P&C using CR solutions. However,
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such an approach is not viable on the full-scale instance. Instead, P&C using ACR solutions
shows to offer a good trade off between solutions quality and computational scalability.

Due to the peculiar features of our problem, no direct comparison with methods from the
literature is possible. However, with respect to similar applications like [15] we were able to
tackle instances (a) involving 7 times more thermal plants and including (b) minimum up/-
down constraints, (c) double shaft operating modes, (d) hydroelectric plants and (e) requiring
energy transfers among zones, with a comparable computing effort and solutions quality.
Moreover, the algorithms proposed in [15] require the fine-tuning of several parameters, while
ours are almost parameter-free.

6 Conclusions

We faced a large-scale medium-term UCP arising in practice, introducing both compact and
extended MILP models. We designed an incremental approach, computing lower bounds
of increasing complexity and accuracy, and upper bounds exploiting the corresponding
relaxations. We performed experiments on instances spanning a time horizon of up to one
year. In all our tests, solutions within a few percentage points from optimality can be found
very early in the incremental optimisation process. On instances with a time horizon up to
six months and hour-by-hour resolution, our incremental approach reaches last stage, and
provides solutions that, for practical purposes, are provably within negligible distance from
optimality.
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