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ABSTRACT 

The treatment of glioblastoma (GBM) still represents a tremendous clinical challenge, with 

the average survival that is not exceeding 14 months. Given the lack of reliable prognostic 

markers and druggable targets in GBM, several years ago our lab’s interest focused on 

Chloride intracellular channel-1 (CLIC1), a protein belonging to a class of chloride 

channels that does not fit the classical paradigm of ion channels proteins. CLIC1 proteins 

can exist as both soluble globular protein and integral membrane protein with ion channel 

function. Upon oxidative stress, CLIC1 translocates from the cytoplasm to the plasma 

membrane where it exerts its function as a chloride (Cl-) channel. CLIC1 is overexpressed 

in several human solid tumors, including gliomas. In this study we demonstrated that 

CLIC1 silencing in cancer stem cells (CSCs) isolated from human GBM patients 

negatively influences both proliferative capacity and self-renewal properties in vitro and 

impairs the in vivo tumorigenic potential. Moreover, CLIC1 expression inversely 

associates with GBM patient survival, thus suggesting a potential exploitation of CLIC1 as 

a new molecular therapeutic target and a possible outcome predictor. CLIC1 has been 

identified as a secreted protein and detected in exosomes released from different cell types, 

including primary tumors.  Extracellular vesicles (40-1000 nm) (EVs) are secreted by 

virtually all cell types that arise from the invagination and the budding of the limiting 

membrane of late endosomes (hence called multivesicular bodies, MVB). We showed that 

CLIC1 is a protein localized within EVs isolated by GBM cell lines and GBM-derived 

CSCs and by tuning CLIC1 expression within EVs it is possible to modulate cellular 

response to EVs both in vitro and in vivo.  

Taken together, our data suggest that CLIC1 plays an important role in regulating GBM 

proliferation and tumorigenic status, experimental evidences hint the possible transmission 

of these features to recipient cells by EV secretion.  
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1. INTRODUCTION 
 

1.1. Brain tumors 

The World Health Organization (WHO) classification system groups gliomas into 4 

histological grades defined by increasing degrees of undifferentiation, anaplasia and 

aggressiveness  (Table 1) (Louis D.N. et al., 2007). Malignant gliomas (WHO III-IV) are a 

group of oncological diseases characterized by heterogeneous cellular composition and 

diffuse invasiveness. These tumors diffusely infiltrate the surrounding normal tissue and 

have a high tendency for malignant progression making them fatal. Over the last years our 

knowledge about brain tumors has increased significantly, especially important progresses 

have been made by research on glioblastoma (GBM), the most aggressive among brain 

tumors, and unfortunately the most common (Dolecek T.A. et al., 2012). The 

demonstration of the existence of cancer stem cells has focused scientific community’s 

attention on some issues such as the identification of the cell of origin of these tumors and 

the characterization of cells resistant to conventional therapies. The development of new 

animal models and large-scale genomic analyses of these tumors allowed the identification 

of mutations that drive tumor development. International organizations that join institutes 

around the world, such as the Cancer Genome Atlas (TCGA), were created with the 

mission of understanding ‘the molecular basis of cancer through the application of genome 

analysis technologies’ and selected GBM as the first cancer type for study, based on its 

uniformly poor prognosis and limited treatment options (Brennan C.W., TCGA Research 

Network, 2013). TCGA permitted collection of huge amount of data on brain tumors and 

the creation of web-tools freely accessible by the entire scientific community. Sadly, 

despite some advances in treatment, the overall survival of GBM cases is still not that 

different than it was several years ago. 
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1.1.1. Epidemiology of gliomas 

Gliomas are the most common primary tumors of the central nervous system, they account 

for the 77% of primary malignant brain tumors with approximately 10’000 deaths and 

13’000 new cases annually occurring in the US (Central Brain Tumor Registry of the 

United States); the 60-70% of this enormous social burden is represented by GBMs. 

Individuals of all ages can be afflicted but they are most common among elderly adults 

with a peak around 50 - 55 years. Men are slightly more prone to these neoplasms. 

Furthermore, the incidence is 2 - 3 times higher in white than in black people (Wen and 

Kesari, 2008). Prognosis is poor and the median survival is 14.6 months (Stupp R. et al.,  

2007); only few patients survive for three or more years. Main risk factors are high dose 

radiation, hereditary syndromes and increasing age. Only 5% of patients have a family 

history of gliomas: in most cases they are affected by rare genetic syndromes, such as 

neurofibromatosis type 1 and 2, the Li-Fraumeni syndrome and Turcot’s syndrome. 

However the genetic bases of malignant gliomas have not been identified yet.   

 

1.1.2. Morphological classification of gliomas 

Gliomas are classified according to the WHO guidelines (Louis D.N. et al., 2007). This 

classification system is based mainly on histopathology, according to morphological 

similarities between tumor cells and normal glial cells, cytoarchitecture and 
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immunohistological marker profile. The WHO divides the diffuse gliomas into three main 

categories: astrocytomas (related to astrocytes), oligodendrogliomas (related to 

oligodendrocytes) and oligoastrocytomas (related to a mixture of these two cell types). 

Furthermore, a grading system was created as a scale of malignancy. Four grades (I, II, III, 

and IV) distinguish astrocytomas and two grades (II and III) oligodendrogliomas and 

oligoastrocytomas. Lower grade astrocytomas (grade I-II) are well differentiated, have 

increased cell density and some cellular anomalies or atypias, but in general they resemble 

the non-neoplastic tissue. These gliomas are biologically indolent. Tumors of higher grade 

(grade III tumors) are anaplastic with nuclear atypia, increased vessels and cell density and 

elevated mitotic activity. The grade IV astrocytoma, also known as GBM, exhibits the 

additional presence of microvascular proliferation, necrosis and diffuse infiltration 

throughout the brain parenchyma, which denote the fully malignant state. The moniker 

“multiforme” derives from the varied morphological features of this tumor, in which 

heterogeneous cell populations with high degree of cellular and nuclear polymorphism and 

numerous giant cells coexist with area of high cellular uniformity. 

GBM can be divided into two main subtypes on the basis of clinical presentation and 

biological and genetic differences (Furnari F.B. et al., 2007, Ohgaki H. et al., 2007) (Figure 

1). Primary GBMs occur de novo with no antecedent lower grade pathology, typically in 

patients older than 50 years of age. On the contrary secondary GBMs are quite rare and are 

manifested in younger patients as low grade or anaplastic astrocytomas that transform over 

a period of 5-10 years into GBM. Late-stage mixed gliomas or oligodendrogliomas can 

also resemble GBM (Miller C.R. et al., 2007). Primary and secondary GBMs present 

distinct genetic alterations affecting similar molecular pathway. Primary GBMs are 

characterized by Epidermal growth factor (EGFR) amplification and mutations, loss of 

heterozygosity of chromosome 10q, deletions of Phosphatase and tensin homolog (PTEN) 

and p16. Secondary GBMs are more frequently characterized by mutations in p53 tumor 

suppressor gene, over-expression of Platlet-derived growth factor receptor (PDGFR), 
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abnormalities in the p16 and retinoblastoma (Rb) pathways, and loss of heterozigosity of 

chromosome 10q. Despite the genetic differences and their distinct clinical course, primary 

and secondary GBMs are morphologically indistinguishable and respond similarly to 

conventional therapy, but they may respond differently to targeted molecular therapy (Wen 

P.Y. and Kesari S., 2008; Stupp R. et al., 2007) (Figure 1). 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Landscape of Pathway Alterations in GBM. Alterations affecting canonical 
signal transduction and tumor suppressor pathways are summarized for 251 GBM with 
both exome sequencing and DNA copy number data. (A) Overall alteration rate is 
summarized for canonical PI3K/MAPK, p53 and Rb regulatory pathways. (B) Per-sample 
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expansion of alterations. Mutations (blue), focal amplifications (red) and homozygous 
deletions are selected and selected by function. Missense, nonsense and frame-shift 
mutations are included. (Adapted form Brennan C.W. et al., 2013) 
 

1.1.3. Genetic abnormalities in gliomas 

Numerous molecular abnormalities are linked to the pathogenesis of different glioma 

variants. The comparative genomic analyses (CGH) and the large-scale integrated genomic 

analyses (Cancer Genome Atlas Research Network 2008; Parsons D.W. et al., 2008) have 

resulted in more comprehensive analyses of the molecular aberrations underlying 

gliomagenesis. TCGA has so far accumulated expression, copy number alterations and 

sequencing data from hundreds of histologically confirmed GBMs and has 

comprehensively catalogued the genomic anomalies associated with GBM. Furthermore, 

the biological relevance of many of these molecular abnormalities to the process of 

gliomagenesis has been confirmed by mouse modeling studies (Huse J.T. and Holland E.C. 

et al., 2009). Genetic alterations characteristic of astrocytic glioma lead to aberrant 

activation of key signaling pathways mainly those involved in mitogenic signaling and cell 

cycle control. 

 

1.1.3.1 Growth factor pathways 

Alterations of the receptor tyrosine kinases (RTKs) and their associated downstream 

pathways occur in a large percentage of diffuse gliomas and appear to be critical to 

oncogenesis in these tumors. Genomic amplification and activating mutations in the EGFR 

locus occur almost exclusively in primary GBMs and represent the most prevalent RTK-

associated molecular abnormality in malignant glioma (~45% of GBM). About half of the 

tumor with EGFR amplification express a constitutively autophosphorylated variant of 

EGFR, known as EGFRvIII, that lacks the extracellular ligand-binding domain (exon 2 

through 7) (Libermann et al., 1985; Frederick L. et al., 2000; Pelloski C.E. et al., 2007; 

Furnari F.B. et al.,2007). 
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Enhanced PDGF signaling, either through receptor (PDGFRA) amplification/mutation or 

through ligand over-expression has been found to be a common feature of low grade 

glioma along with a significant subset of GBMs (Westermark B. and Nistlér M., 1995).  

Although activating mutations in PDGFRA are uncommon (Clarke I.D. and Dirks P.B., 

2003), frequent co‑expression of both the receptor and its ligand, most commonly PDGFB 

indicates the potential for autocrine or paracrine loops boosting oncogenic signaling 

through the PDGF network. Hepatocyte growth factor (HGF) and its RTK MET (also 

known as HGFR) appear to operate in a smaller subset of GBMs (Abounader R. and 

Laterrra J., 2005), as does the RTK ligand insulin-like growth factor 2 (IGF2) (Soroceanu 

L. et al., 2007). Common signal transduction pathways activated by growth factors are the 

mitogen-activated protein kinase (MAPK) pathway, which is involved in proliferation and 

cell cycle progression, and the PI3K-Akt-mTOR pathways, which are involved in the 

inhibition of apoptosis and cellular proliferation. Further dysregulation of the downstream 

Phosphoinositide 3-kinase (PI3K) – Akt – mammalian target of rapamycin (mTOR) and 

Ras-MAPK signaling pathways also exists in the majority of malignant gliomas 

(Cairncross et al., 1998). Mutations in the catalytic or regulatory domain of PI3K that are 

hypothesized to lead to its constitutive activation occur in 15% of GBMs (Cancer Genome 

Atlas Research Network, 2008). Notably, PTEN and neurofibromin 1 (NF1), important 

negative regulators of the PI3K-AKT-mTOR and Ras-MAPK networks, respectively, are 

frequently mutated or deleted in GBM (36% and 18%, respectively), and loss of PTEN at 

the protein level is found in more than 80% (Cancer Genome Atlas Research Network, 

2008). 

 

1.1.3.2 Cell cycle regulators  

P53 and RB functions are inhibited by mutations or copy number alterations in at least 

87% and 78% of GBM, respectively (Cancer Genome Atlas Research Network 2008). 

Additionally, mutations in the TP53 gene frequently characterize low-grade astrocytomas 
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and the secondary GBMs into which they evolve (Louis 1994). The Rb tumor suppressor 

pathway has been shown to be defective in a significant number of high-grade gliomas of 

both astrocytic and oligodendroglial lineage, either by inactivating mutations in RB1 itself 

or amplification of its negative regulators cyclin-dependent kinase 4 (CDK4) and, less 

frequently, CDK6 (Costello J.F. et al., 1997, Henson J.W. 1994). Analogously, 

amplification of the p53 antagonists mouse double minute 2 homolog (MDM2) and 

MDM4 have also been found in distinct subsets of Tp53‑intact GBMs (Halatsch M.E. et 

al., 2006), as mutations and/or deletions in the CDKN2A locus that encodes both INK4A 

and ARF, which are crucial positive regulators of RB and p53, respectively (Kraus J.A. et 

al., 2000). 

 

1.1.3.3. Other genetic alterations 

Integrated genomic analysis has facilitated the identification and characterization of 

additional genes involved in glioma pathogenesis. Missense mutations in isocitrate 

dehydrogenase 1 (IDH1) are found in a significant number of GBMs that tend to occur 

mostly in younger patients with more protracted clinical courses (Parsons D. et al., 2008). 

These point mutations are restricted exclusively to the R132 residue in the active site 

region of the protein in which they disrupt hydrogen bonding with its substrate (Parsons D. 

et al., 2008, Bredel 2009, Yan H. et al.,  2009). Interestingly, a separate group of gliomas 

harbour mutations in the IDH1 homologue IDH2 at the analogous residue (R172). Further 

investigations have shown that mutations in IDH1 and IDH2 are present in high 

proportions of grade II and III astrocytic and oligo dendroglial tumours (72–100%) along 

with secondary GBMs (85%), but are largely absent in primary GBMs (5%) (Yan H. et al.,  

2009, Hartmann C. et al., 2009). Furthermore, across all histological types of diffuse 

glioma, IDH mutations tend to segregate with other low-grade glioma-associated genomic 

abnormalities, such as TP53 mutations and 1p/19q deletion, and are not associated with 

EGFR amplification and chromosome 10 loss, anomalies occurring frequently in primary 
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GBM (Yan H. et al., 2009). These findings define an oncologic pathway for low-grade 

gliomas and the malignant tumors into which they evolve, which is distinct from that used 

by de novo primary GBM. The IDH1 mutation is associated with longer survival 

(Hartmann C. et al., 2010) of patients with secondary GBM and thus may be a highly 

valuable prognostic biomarker (von Deimling A. et al.,  2011). IDH mutational status has 

also been linked with DNA methylation profiles in diffuse glioma. Recent analysis by 

TCGA has demonstrated a small subset of GBM (8.8%), which exhibit a CpG island 

methylator phenotype (G-CIMP) characterized by stereotyped hypermethylation of CpG 

islands in over 1,500 loci across the genome (Noushmehr H. et al., 2010). G-CIMP-

positive GBMs exhibit increased frequency of characteristic copy number alterations 

(CNAs) in 8q and 10p and are highly enriched for IDH mutations (Turcan S et al., 2012). 

By report, approximately 87% of G-CIMP-positive versus 5% of G-CIMP-negative tumors 

were IDH-mutant, combining TCGA data with a validation tumor set. The striking 

correlation between G-CIMP and IDH mutation tracks across all diffuse glioma variants, 

especially in lower-grade astrocytomas and oligodendrogliomas. 

  

1.1.4. Molecular classification of gliomas. 

The WHO histological classification of gliomas has shown a high prognostic power, 

however considerable variability in clinical outcome among patients within each individual 

diagnostic category still exists. This is mainly due to the molecular complexity of gliomas 

and it has created the need of a more accurate classification of gliomas. The identification 

of prognostically distinct molecular subtypes within morphologically undistinguishable 

glioma subsets is also crucial. Gene expression profiling studies have been used to identify 

subclasses of gliomas based on transcriptional signatures. Earliest studies identified gene 

expression differences among morphologically defined gliomas. Differentially expressed 

genes were found among GBMs and lower grade gliomas (Rickman D.S. et al 2001; Nutt 

C.L. et al 2003; Shirahata M. et al 2007; Fuller G.N. et al 2002; Shai R. et al 2003; Li A. et 
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al, 2009), primary and secondary GBMs (Godard S. et al., 2003; Shai R. et al., 2003), adult 

and pediatric brain tumors (Faury 2007) or a variety of morphologically defined glioma 

subtypes (Godard S. et al., 2003; Shai R. et al., 2003; van den Boom J. et al., 2003). These 

studies confirmed that morphological differences among gliomas are reflected at the 

mRNA level. In some cases gene expression profiles classify diagnostically challenging 

malignant gliomas in a manner that better correlates with clinical outcome than standard 

pathology does (Nutt C.L. et al 2003, Shirahata M. et al 2007). Several schemes for 

classifying GBM subtypes based on expression signatures have been proposed in the past 

several years (Freije W.A. et al., 2004; Nigro J.M. et al., 2005; Phillips H.S. et al., 2006; 

Verhaak R.G. et al., 2010; Vital A.L. et al., 2010).  The first relevant study carried out by 

Phillips and colleagues divides a cohort of malignant gliomas, comprised of both WHO 

grade III and IV, into three molecular subtypes named Proneural, Proliferative, and 

Mesenchymal in recognition of the key features of the molecular signatures associated with 

each group (Figure 2). The proneural subtype is defined by genes implicated in 

neurogenesis. It is associated with better outcome than either of the other two tumor 

subtypes. In contrast, the proliferative and mesenchymal gene signatures are defined by 

proliferation- and extracellular matrix/invasion-related genes, respectively, and are both 

associated with poor outcome. GBMs with Proliferative signatures have an elevated 

proliferation index (MIB-1) in tumor cells, whereas GBMs of the Mesenchymal subtype 

show evidence for increased angiogenesis.  
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The authors speculated that poor outcome of Proliferative and Mesenchymal tumors may 

be differentially associated with a high rate of tumor cell proliferation or angiogenesis, 

respectively. Prognostic significance of molecular subtype was validated in an independent 

cohort of 184 gliomas of various histological types. Remarkably, nearly all WHO grade III 

tumors (65 out of 73 gliomas) fell into the proneural subgroup, along with a subset of 

GBMs occurring in younger patients with prolonged disease courses. Moreover recurrent 

tumors, although mostly retaining their initial transcriptional subclassification, seemed to 

significantly shift their mRNA signatures towards the mesenchymal profile. On note, a 

recent work has identified a set of master regulator transcription factors, the most 

important of which are the signal transducer and activator of transcription 3 (STAT3) and 

CCAAT/enhancer-binding protein beta (C/EBP β), which seem to mediate the expression 

of the mesenchymal phenotype and so enhance GBM aggressiveness (Carro M.S. et al., 

2010). An additional clustering analysis using transcriptional data obtained by the TGCA 

on 200 primary GBMs has established four distinctive GBM subtypes, namely Proneural, 

Neural, Classical, and Mesenchymal (Verhaak R.G. et al., 2010).  Significant similarities, 

but not entirely overlap, were found between the mesenchymal and proneural phenotypes 

described in Phillips’ and Verhaak’s works. Unlike previous studies, the TCGA proneural 

subtype is not associated with improved prognosis in the TCGA data set consisting solely 

of grade IV astrocytoms, but it is in the validation of the data sets (Phillips H.S. et al, 2006; 

Madhavan S.Z.J. et al., 2009) containing lower-grade gliomas. Conversely, re-analysis of 

the TCGA data using Phillips’ molecular subtype designations confirmed a slightly more 

favorable prognosis of the “Phillips-proneural” relative to “Phillips-

mesenchymal/proliferative” GBMs. Because of the huge amount of molecular data 

available for these tumors (TCGA, 2008) recurrent genomic aberrations in each molecular 

Figure 2. Molecular signature of different subclass of gliomas. Adapted from J  
Neurol Neurosurg Psychiatry 2012 



 
	
  

19	
  

subtype were identified. The proneural subtype is more diffused in younger patients, as 

found in previous studies (Phillips H.S. et al., 2006; Lee J. et al., 2008), and harbours 

frequent PDGFRA amplification and point mutations in IDH1, TP53 mutations and loss of 

heterozigosity, PIK3CA/PIK3R1 mutations. The proneural group shows high expression of 

oligodendrocytic development genes (such as PDGFRA, NKX2-2 and oligodendrocyte 

transcription factor 2 [OLIG2]) and this signature contained several proneural development 

genes as well as doublecortin (DCX), delta-like 3 (DLL3), aschaete-scute homolog 1 

(ASCL1) and transcription factor 4 (TCF4) (Phillips H.S. et al., 2006). The neuronal 

subtype was characterized by the expression of neuron markers such as NEFL, GABRA1, 

SYT1 and SLC12A5. The classical subtype was characterized by frequent EGFR 

amplification and EGFRvIII mutations and a distinct lack of TP53 mutations and 

CDKN2A deletion. The mesenchymal subtype was typified by deletion of NF1, TP53, and 

PTEN genes and displayed expression of mesenchymal markers, such as CHIL3 (also 

known as YKL40) and MET, as described elsewhere (Phillips H.S. et al., 2006). Moreover, 

higher overall necrosis, microvascular proliferation and inflammatory infiltrates are 

frequent in mesenchymal GBM, while necrosis typically lacks in the proneural subtype. 

Using a proteomic analysis three proteomically-defined subclasses of GBM have been 

identified. These subclasses are characterized by protein- and phosphorylation-level 

signaling abnormalities in the EGFR, PDGFR, and NF1 pathways and correspond to 

classical, proneural, and mesenchymal subtypes of GBM, respectively (Brennan C.W. et 

al., 2009). Analysis of epigenetic changes from TCGA GBMs identified a distinct subset of 

samples with characteristic promoter methylation alterations, indicating the existence of a 

G-CIMP (Noushmehr H. et al 2010). G-CIMP tumors were mainly secondary or recurrent 

GBMs and were tightly associated with IDH1 mutations and displayed distinct copy-

number alterations. Patients with G-CIMP positive tumors were younger and survived 

longer than G-CIMP negative GBM patients. Integration of DNA methylation data with 

gene expression data showed that G-CIMP positive tumors represented a subset of 



 
	
  

20	
  

proneural tumors. In the end, G-CIMP could be used to further refine the expression-

defined groups into an additional subtype with clinical implications. 

Several studies have been published on the identification of glioma subtypes based on gene 

expression profiles, but no consensus gene expression profile in malignant gliomas 

reproducibly associates with patient outcome across independent datasets. However, the 

first gene expression profile based diagnostic test is currently being evaluated in two 

prospective, randomized clinical trials (Colman H. et al., 2010).  A 9-gene profile (AQP1, 

CHI3L1, EMP3, GPNMB, IGFBP2, LGALS3, OLIG2, PDPN, and RTN1) predictive of 

clinical outcome was identified for the development of a qRT-PCR assay performed on 

FFPE samples. On the basis of the logistical difficulties in obtaining fresh frozen tumors 

for DNA microarray based assays, such an assay is absolutely critical for successful 

clinical implementation with FFPE GBMs, which constitute the vast majority of clinical 

samples. In summary, molecular sub-typing now has the potential to become a readily 

implemented clinical test that may guide future treatment decisions. 

 

1.1.5. Brain tumor therapy 

1.1.5.1 Glioma diagnosis 

Patients with a malignant glioma may present a variety of symptoms including headache, 

confusion and loss of memory, neurological deficits and personality changes. The 

diagnosis of malignant gliomas is usually made by magnetic resonance imaging (MRI), 

computer tomography (CT) or positron emission tomography (PET). The images typically 

show an enhancing mass surrounded by edema. GBMs frequently have central areas of 

necrosis and more extensive peritumoral edema than those associated with anaplastic 

gliomas. 

 

1.1.5.2. Glioma prognosis 
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Despite decades of research and clinical trials, life expectancy for glioma patients has not 

improved considerably and is only about 2-3 years for anaplastic astrocytoma and 15 

months for GBM (Stupp R. et al., 2007). There are several reasons why it has been so 

difficult to find new effective therapies against glioma. First, drug delivery is limited by 

the blood-brain-barrier impediment and the distorted glioma vessels (Weis S.M. and 

Cheresh D.A., 2005). Second, the invasive nature of gliomas makes the complete surgical 

resection of the tumor impossible. Third, tumor cells also have a strong intrinsic attitude 

for malignant progression and some cells, supposedly the cancer stem cells, are resistant to 

therapy. Lastly, over-expression of proteins involved in DNA repair machinery could 

dampen the effects of radio- and chemotherapy (Bao S. et al., 2006). 

 

1.1.5.3 Treatment 

The standard treatment for gliomas is the surgical resection, radiotherapy and 

chemotherapy using alkylating agents. The size and localization of the tumor is important 

for the possibility to perform optimal surgery (Bergenheim et al. 2007). Due to their 

invasive growth, gliomas indeed are impossible to completely resect. Surgical elimination 

of the tumor reduces the symptoms caused by mass effect and seems to give a modest 

survival advantage to the patient. For patients with GBM, the median survival from time of 

diagnosis is about three months without treatment. After treatment with surgery and 

postoperative temozolomide and radiotherapy, the survival increases to 14.6 months (Stupp 

R. et al., 2007). O-6-methylguanine-DNA methyltransferase (MGMT) is an important 

repair enzyme that contributes to resistance to temozolomide. Methylation of MGMT 

promoter silences the gene, decreasing DNA repair activity and increasing the 

susceptibility of the tumor cells to temozolomide. Treatment with temozolomide in GBM 

patients with MGMT promoter methylation prolonged the survival to 2 years (Hegi M.E. et 

al., 2005). For oligodendrogliomas, PCV chemotherapy (procarbazine, lomustine and 

vincristine) treatment after surgery and radiation is the more commonly used (Cairncross 
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G. et al., 2006). Several approaches have been used to target individual signaling 

molecules involved in gliomagenesis. Particular interest has focused on inhibitors of RTKs 

and their downstream effectors and on inhibitors of angiogenesis. EGFR is one of the most 

widely expressed RTK in human gliomas, so several EGFR inhibitors have been developed 

(Castillo et al. 2004). Gefitinib (ZD1839, Iressa™) (Rich J.N. et al., 2004) and erlotinib 

(Tarceva®) (Prados M.D. et al., 2006) have been investigated in recurrent gliomas with 

limited activity. An alternative approach has been developed based on a vaccination 

strategy against the constitutively activated EGFRvIII (Sampson J.H. et al., 2008). CDX-

110™ is a peptide-based vaccine that targets the tumor specific mutated segment of 

EGFRvIII (Heimberger A.B. and Sampson J.H., 2009), it is currently in phase II/III 

randomized studies with radiation and temozolomide. Therapies directed towards the 

PDGFR pathway include many different putative targets (Grossman S.A. et al., 2001; Kilic 

T. et al., 2000). Imatinib (Gleevec®), a tyrosine kinase inhibitor specific for Abl kinase, c-

KIT and PDGFR, has been demonstrated to have only limited anti-tumor activity in 

patients with recurrent malignant glioma (Raymond E. et al., 2008; Wen P.Y. and Kesari 

S., 2008). PDGFR antagonists might target the pericytes to preferentially block 

angiogenesis in established tumors (Sennino B. et al., 2007). Since angiogenesis is a 

hallmark of malignant glioma and affects drug delivery, anti-angiogenic treatment could be 

of value in combination with already existing treatment modalities. The VEGF signalling 

pathway is the cornerstone in angiogenesis, so most anti-angiogenic therapies target VEGF 

or VEGFR. Bevacizumab (Avastin®) is a humanised anti-VEGF165 mAb. Promising 

results from a phase II study with bevacizumab in combination with irinotecan was 

reported in patients with recurrent high-grade glioma (Vredenburgh J.J. et al., 2007). 

However, there are emerging problems with both developing treatment-resistance and 

adverse effects associated with anti-VEGF therapy such as disturbance of VEGF-

dependent physiological functions and homeostasis in the cardiovascular and renal 

systems, wound healing and tissue repair. This promotes the search for novel 
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antiangiogenic therapies. VEGF-trap (aflibercept) is a soluble VEGF receptor binding 

VEGF-A, -B, and PDGF and has been shown to be effective in both initial and advanced 

phase of tumor development in a preclinical tumor model (Gomez-Manzano C. et al., 

2008). This substance is now in phase II trial in recurrent glioma that is not responding to 

temozolomide. Cediranib (AZD2171, Recentin™) is a RTK inhibitor of VEGFR 1-3, 

PDGFR and c-KIT. It is currently in phase III clinical study in recurrent GBM where 

patients are randomised between treatment with cediranib alone, cediranib in combination 

with lomustine (an alkylating agent) or lomustine with placebo. Using MRI, it is also 

shown that cediranib normalizes tumor vessels in GBM and alleviates edema (Batchelor 

T.T. et al., 2007). Other VEGFR inhibitors that may be active against malignant glioma 

include the VEGFR/PDGFR inhibitors vatalanib (PTK 787), pazopanib (GW 786034), 

sorafenib, and sunitinib; the VEGFR/EGFR inhibitor vandetanib (ZD6474); the adnectin-

based CT 322; and the VEGFR/c-Met kinase inhibitor XL 184 (Norden A.D. et al., 2008).  

A huge amount of signaling pathways and potential targets in malignant glioma has been 

described. Many clinical studies are ongoing. For summary of potential targets see Figure 

3. 
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Figure 3. Major signaling pathways in malignant gliomas and the corresponding 
targeted agents in development for GBM. Adapted from Wen and Kesari, 2008. 

 

It is naive to believe that there will be one single treatment to cure all gliomas; rather the 

combination of multiple treatment strategies will have the best effect. Possibly, future 

patients will be given selected and individually targeted treatments based on the 

expression/mutation analysis of that particular patient’s tumor. Ideally, treatment could be 

tailored to achieve highest possible efficacy depending on expression of growth factors and 

mutated genes. Strong efforts are made to effectively target tumor stem cells that will be 

discussed in the next chapter. These cells are believed to survive both radiation and 

chemotherapy and can generate new tumor cells during recurrence. 

 

1.2. Cancer stem cells in solid tumors 

Tumors are composed of a heterogeneous population of cells that exhibit different states of 

differentiation and proliferation capacity. At least two models have put forward to account 

for heterogeneity: the “cancer stem cell” (Bonnet D. and Dick J.E., 1997; Reya T. et al., 

2001) and the “clonal evolution” (Nowell P.C., 1976; Campbell L.L. and Polyak K., 2007) 

models (Figure 4). 
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Figure 4. Cancer stem cells and clonal evolution models. 
(a)In a normal tissue the cellular hierarchy comprising stem cells, which progressively 
generate more restricted progenitor cells and ultimately all the mature cell types that 
constitute the tissue. (b) In the clonal evolution model all undifferentiated cells have 
similar tumorigenic capacity. (c) In the cancer stem cell model, only the CSC can generate 
a tumor, based on its self-renewal properties and proliferative potential. (d) The two tumor 
models are not mutually exclusive- Initially, tumor growth is driven by a specific CSC 
(CSC1). With tumor progression, another distinct CSC (CSC2) may arise due to clonal 
evolution of CSC1. This may result from the acquisition of an additional mutation or 
epigenetic modification. This more aggressive CSC2 becomes dominant and drives tumor 
formation. Adapted from Visvader and Linderman, 2008. 

 
 

The “cancer stem cell” model proposes that the growth and progression of many tumors 

are driven by a small subpopulation of cancer cells with stem-like features. These cells 

share important properties with normal tissue stem cells, including self-renewal (by 

symmetric and asymmetric division) and differentiation capacity, albeit aberrant. This 

implies that many cancers are hierarchically organized in much at the same manner as 

normal tissues. Just as normal stem cells differentiate into phenotypically diverse progeny 

with limited differentiation potential, CSCs also differentiate into phenotypically non-

tumorigenic cells that compose the bulk of the cells in the tumor. The CSC model posits 

that differences in tumorigenic potential among cancer cells from the same patient are 

largely epigenetically determined, because it is implausible that only rare cancer cells have 

a genotype permissive for extensive proliferation. However, there is no direct evidence that 

tumorigenic cells differ from non-tumorigenic cells as a result of epigenetic rather than 

genetic differences (Shackleton M. et al., 2009). In the “clonal evolution” model all the 

cells have similar tumorigenic capacity. The mutated cells with a growth advantage are 

selected and expanded, with the cells in the dominant clone having a similar potential for 

generating tumor growth. The clonal evolution model holds that genetic and epigenetic 

changes occur over time in individual cancer cells. If such changes confer a selective 

advantage they will allow individual clones of cancer cells to out-compete with other 

clones. Clonal evolution can lead to genetic heterogeneity, conferring phenotypic and 

functional differences among the cancer cells within a single patient (Shackleton M. et al., 
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2009). It is important to note that the clonal evolution and the cancer stem cell model are 

not mutually exclusive in cancers that follow a stem cell model, as cancer stem cells would 

be expected to evolve by clonal evolution (Barabe F. et al., 2007). Thus, if a mutation 

conferring self-renewal or growth properties advantages occurs, a more dominant cancer 

stem cell may emerge among the others. For example, the leukemic stem cells that 

maintain chronic myeloid leukemia despite imatinib therapy would be selected to develop 

imatinib resistance mutations over time by clonal evolution (Shah N.P. et al., 2007).  

The first evidence for the existence of CSCs came from acute myeloid leukemia (Bonnet 

D. and Dick J.E., 1997; Lapidot T. et al., 1994), in which a rare subset of cells comprising 

0.01-1% of the total population could induce leukemia when transplanted into 

immunodeficient mice. These concepts and experimental approaches were then applied to 

solid tumors such as breast (Al-Hajj M. et al., 2003), brain (Singh S.K. et al., 2004) and 

colon (Dalerba P. et al., 2007; Ricci-Vitiani L. et al., 2007) cancers. 

Most studies on cancer stem cells follow a common scenario: a marker or a combination of 

markers is found to be expressed in a heterogeneous fashion in a certain tumor type. On the 

basis of this marker heterogeneity or using markers of normal stem cells of the same organ, 

subpopulations of cells are sorted from primary tumors and transplanted into 

immunodeficient mice by limiting dilution; then, that tumor growth is scored some weeks 

or months later. Different capacity for tumor initiation between tumor cell subsets can be 

interpreted as evidence for the presence of CSCs in the primary tumor (Figure 5). 
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Figure 5. Testing the Cancer Stem Cell Model. 
The tumor is dissociated into single cells using conditions optimized to maximize the 
preservation of cell viability and surface marker expression. The cells are sorted by flow 
cytometry using specific cell surface markers. The tumorigenicity of all cells is tested using 
xenotransplantation assays in immunocomprpmised mice. Adapted from Shackleton M. et al., 
2009.  
 
 
According to the CSC model only a specific subset of cancer cell population should be 

able to sustain in vivo tumor growth, whether all other subsets should not. The transplanted 

tumors contain mixed populations of tumorigenic and non-tumorigenic cancer cells, thus 

recapitulating at least some of the heterogeneity of the parental tumor. However, the most 

convincing demonstration of CSC identity comes from serial transplantation of a cellular 

population into the animal model, which is the only true demonstration of self-renewal 

ability of a cancer cell. The frequency of cancer stem cells is highly variable between solid 

tumors of the same type.. Recent mathematical analyses have further indicated that CSCs 

in advanced tumors may not occur as a small fraction (Kern S.E. and Shibata D., 2007). 

Extensive in vivo limiting dilution analyses are required to determine the frequency of 

CSCs within solid tumors (Bonnefoix T. et al., 1996). This may eventually allows 

correlation between CSCs frequency, tumor grade and clinical outcome. It is also 

important to note that the nature of the xenograft model used and the site of transplantation 

influence the determination of stem cell frequency. The efficiency of human cell 

engraftment can be significantly influenced by the presence of residual immune effector 

cells in recipient mice (Quintana E. et al., 2008). The xenogeneic immune response that 

mice mount against human cells can reduce the ability of human cancer cells to engraft in 

mice, underestimating the frequency of human cancer cell with tumorigenic potential. On 

the other hand it is also clear that immune cells have a role in the progression of many 

tumors and this highly artificial animal model may not represent the true in vivo niche. The 

activity of tumor cells can also be influenced by an altered vascular environment, which 

creates the stem cell niche. Thus, the development of orthotopic transplantation assays is 
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crucial. The concept that cancer growth can be sustained by cancer stem cells leads to the 

necessity of new and more effective antitumor treatments. According to the CSC model, 

therapeutic approaches that do not eradicate the CSC compartment are likely to achieve 

little success; they might kill the majority of tumor cells and induce temporary regression 

of gross tumor lesions but fail to prevent disease relapse and metastatic dissemination 

(Figure 5). 

 

1.2.1 Neural Stem Cells 

Neural stem cells (NSCs) are multipotent cells within the brain capable of self-renewal and 

differentiation into all major cell types of the central nervous system (neurons, astrocytes 

and oligodendrocytes) (Mayer-Proschel M. et al., 1997; Rao M.S. et al., 1998) (Figure 6). 

During development NSCs are found in the ventricular zone of the central nervous system. 

In the adult brain, NSCs are primarily restricted to two areas: the subependymal zone of 

the lateral ventricles and the subgranular zone of the dendrite gyrus within the 

hippocampus. In the hippocampus, NSCs integrate functionally into the granule cell layer 

(Cameron H.A. and McKay R.D., 2001). In the rodent brain, progeny from neural stem 

cells of the subventricular zone migrate along the rostral migratory stream to the olfactory 

bulb to differentiate into local interneuron (Luskin M.B., 1993; Lois C. et al., 1996). In the 

human brain, migration of neuroblasts toward the olfactory bulb may occur via alternate 

routes (Sanai N. et al., 2004; Curtis M.A. et al., 2007). Persistence of NSCs in the adult 

reflects their role in endogenous repair mechanisms and maintenance of normal brain 

functions. Adult neurogenesis is likely to have a crucial role in the neurobiological basis of 

learning and memory (Aimone J.B. et al., 2006). 
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Figure 6. Resistance Mechanisms in Glioma Cells. 
Normal neural stem cells self-renew and give rise to multipotential progenitor cells that 
form neurons, oligodendroglia, and astrocytes. Glioma stem cells arise from the 
transformation of either neural stem cells or progenitor cells (red) or, less likely, from 
differentiation of a oligodendrocytes or astrocytes (thin red arrows) and lead to malignant 
gliomas. Glioma stem cells are relatively resistant to standard treatments such as radiation 
and chemotherapy and lead to re-growth of the tumor after treatment. Therapies directed at 
stem cells can deplete these cells and potentially lead to more durable tumor regression 
(blue). Adapted from Wen P.Y. et al., 2008. 
  

1.2.3 Glioma stem cells (GSCs) 

The presence of stem cells in brain tumors has been demonstrated in several studies (Singh 

S.K. et al., 2003 and 2004; Galli R. et al., 2004; Hemmati H.D. et al., 2003; Ignatova T.N. 

et al., 2002; Yuan X. et al., 2004). However the isolation of brain tumor cells with 

tumorigenic capacity, tested in vivo using the xeno-transplantation assay, was initially 

reported independently by two groups (Singh S.K. et al., 2004; Galli R. et al., 2004). 

Although they arrived at similar conclusions, they used different approaches for isolating 

brain tumor stem cells: the cell sorting based on selection for the cell surface marker 

CD133 (Singh S.K. et al., 2004) and the neurosphere assay (Galli R. et al., 2004). 
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1.2.3.1 Isolation of glioma stem cells using cell surface markers 

The first prospective in vitro and in vivo identification and characterization of a putative 

CSC from human brain tumors was based on cell sorting for the neural stem cell surface 

marker CD133 (Singh S.K. et al., 2003, 2004). Uchida and colleagues sorted human fetal 

brain cells for CD133 expression highly enriching for stem cell properties in vitro and in 

vivo (Uchida N. et al., 2000). Then CD133 was used to sort fresh human brain tumors. In 

vitro, CD133-positive cells formed clonogenic neurosphere colonies, proliferated and 

could be induced to differentiate into mature neural cell lineages that were characteristic of 

the mature lineages seen in the patient’s original tumor (Singh S.K. et al., 2003). Moreover 

CD133-positive brain tumor cells were highly enriched for tumor initiating activity in vivo. 

As few as 100 CD133-positive cells were able to initiate fatal infiltrative tumors in 

immunocompromised NOD/SCID mice after orthotopic transplantation. Injection of 

100000 CD133-negative cells did not lead to tumor formation, although viable human 

tumor cells could be identified in the mouse brains four months after transplantation, 

suggesting that these cells were viable, but were no longer be able to initiate tumor 

formation. Serial passage of CD133-positive cells re-isolated from the primary transplant 

and injected into secondary recipient was also shown. It is important to note that sorting for 

CD133 enriches for cancer stem cells and does not definitively identify them. Furthermore 

several studies have questioned the utility of CD133 in the isolation of glioma stem cells 

(Brescia P. et al., 2013). Hence, a number of cell surface markers have been proved useful 

for the isolation of GSCs, including CD15 (Son M.J. et al., 2009), CD44 (Anido 2010), 

Integrin-α6 (Lathia J.D. et al., 2010), ABCB5 as well as Hoechst33342 exclusion by the 

side population cells (Harris M.A. et al., 2008, Bleau A.M. et al., 2009). Notably none of 

these markers are exclusively expressed by the GSCs and in all the tumor samples, 

highlighting the necessity of additional and more specific markers or the use of 

combinatorial markers.  

1.2.3.2 Isolation of glioma stem cells using the neurosphere assay 
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In serum-free culture, in the presence of mitogens including epidermal growth factor (EGF) 

and fibroblast growth factor (FGF), human brain tumor stem cells can be grown as single 

cell–derived colonies, namely neurospheres (Singh S.K. et al., 2003; Hemmati H.D. et al., 

2003; Galli R. et al., 2004; Ignatova T.N. et al., 2002; Yuan P.Y. et al., 2004). The 

neurosphere assay was initially used by Reynolds and Weiss in 1992 to isolate 

neurospheres from the mouse striatum (Reynold 1992) and was subsequently used to 

successfully enrich tumor-initiating cells from brain tumors (Singh S.K. et al., 2003; 

Hemmati H.D. et al., 2003; Galli R. et al., 2004; Ignatova T.N. et al., 2002; Yuan P.Y. et 

al., 2004). These assays are currently used as the standard in vitro method for identifying 

the presence of stem cells derived from both tumor and non-tumor tissues (Chaichana K. et 

al., 2006; Reynolds B.A. and Rietze R.L., 2005; Vescovi A.L. et al., 2006). Similar sphere-

forming assays are also used in other stem cell systems, including skin (Toma J.G. et al., 

2001), breast (Matsuda M. et al., 2004) and pancreas (Seaberg R.M. et al., 2004). The 

selective serum-free conditions, in which the neurosphere assays is carried out, allow the 

stem-like cells to continually divide and form multipotent clonal spheres, while the more 

differentiated cells incapable of self-renewal and multipotency die off with serial passages 

(Chaichana K. et al., 2006; Hemmati H.D. et al., 2003; Reynolds B.A. and Rietze R.L., 

2005) (Figure 7). 
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Figure 7. Isolation, perpetuation and differentiation of brain tumor stem cells in culture. 
The neurosphere assay in a serum-free culture system that allows the isolation of stem cells 
based on their exclusive and extensive self-renewal potential. Adapted from Vescovi A.L. 
et al., 2006. 
 
 
Notably, on mitogen removal and in addition of serum the cells can be differentiated into 

neurons, astrocytes and oligodendrocytes. The assay thus provide culture conditions that 

permit competent cells to exhibit the cardinal stem cell property of self-renewal over an 

extended period of time, so generating a large number of progeny that can differentiate into 

the primary cell types of the tissue from which they were obtained (Louis S.A. et al., 2008). 

Neurosphere initiating cells isolated from adult human GBM had stem-cell characteristics: 

extensive self-renewal, multipotency and the capacity both to initiate new tumors that 

recapitulate the histological features of the parental tumor, when transplanted into the brain 

of immunodeficient mice (Galli R. et al., 2004). Most importantly, in vivo studies have 

shown that neurosphere formation is a significant predictor of clinical outcome in glioma 

patients, independent from Ki67 proliferation index, and is a robust, independent predictor 

of glioma tumor progression (Larks D.R. et al., 2004). Hence the neurosphere assay has 

become the method of choice to study neural and brain tumor stem cell populations in 

vitro. However, it is associated with some limitations. Neurospheres are composed by a 

heterogeneous cell population that consists of stem cells, together with progenitors and 

more differentiated cells (Reynolds B.A. et al., 1996; Suslov O.N. et al., 2002). Only the 

stem cells can exhibit extended self-renewal over serial passages (Louis S.A. et al., 2008), 

while the progenitor cells may not be able to form neurospheres for more than six passages 

(Chaichana K.L. et al., 2006) and the terminally differentiated cells are not able to form any 

sphere. Several evidences have indicated that the majority of spheres are derived from 

progenitor cells with limited self-renewal capabilities which do not generally survive 

beyond six passages (Louis S.A. et al., 2008; Reynolds B.A. et al., 1996). Cultures that fail 

to survive more than six passages are more likely to be derived from progenitor cells 

(Reynolds B.A. et al., 2005), as suggested by the finding that spheres differentiated prior to 
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establishing clonal ability (>6 passages) typically only display astrocyte characteristics 

(Louis S.A. et al., 2008). However, a true separation of stem cells and progenitor cells in 

the neurosphere assay remains problematic. Thus, the use of sphere cultures for elucidating 

and interpreting the biological and molecular characteristics of GSCs could give rise to 

misleading results (Chaichana K.L. et al., 2009). It is notable that individual cells 

dissociated from neurospheres show distinct proliferative potentials: some form abortive 

colonies, whereas others form larger colonies of variable size (Liu Q. et al., 2009). Recent 

studies have found that spheres >2 mm in diameter show high proliferative potential and 

multilineage differentiation over time, whereas smaller spheres have limited proliferation 

potential and typically only differentiate into cells with an astrocyte phenotype (Louis S.A. 

et al., 2008). Thus, larger neurospheres (>2 mm) are more likely to be derived from stem 

cells, rather than from progenitor cells with limited proliferative and differentiating 

capacities (Louis S.A. et al., 2008). Besides being used to enrich GSCs, neurosphere assays 

are also widely adopted to estimate stem cell frequencies by counting secondary 

neurosphere formation (Reynolds B.A. et al., 2005), however an estimation of stem cell 

frequency based on the number of secondary neurospheres could significantly overestimate 

stem cell number because of the existence of confounding spheres derived from progenitors 

(Reynolds B.A. et al., 2005). The in vivo limiting dilution assay made inoculating 

progressive lower number of cells in the mouse brain, could be a more accurate assay to 

calculate the stem cell frequency in the neurosphere. Moreover, the transplantation of 

individual glioma spheres into mouse brains, and the serial transfer of the xenograft tumors 

through mice for several passages could demonstrate the in vivo self-renewal ability of 

GSCs (Harris M.A. et al., 2008). The ability to grow human brain tumor cells as 

neurospheres is variable. GBM cells are most easily grown in these conditions, but other 

types of brain tumors, such as medulloblastoma and ependymoma, can be grown only for 

short periods in neurosphere conditions. (Taylor R.E. et al., 2005). Nevertheless, 

application of serum-free growth conditions to GBMs has enabled growth of cell lines that 
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retain the same genotype of the patient’s primary tumor (Vik-Mo E.O. et al., 2010), and 

which show stable stem cell properties in vitro and more faithful generation of models of 

the disease after xenotransplantation in vivo (Lee J. et al., 2006). These methods clearly 

show the advantages of serum-free–based culture methods for studying human brain tumor 

cells, and suggest that serum-based cultures have limited utility. 

 

1.2.4 Cell of origin of gliomas 

The term cancer stem cell does not imply that this tumor cell derives from a normal stem 

cell. It is not yet clear whether cancer-initiating events occur in NSCs, progenitors or 

differentiated cells. However, NSCs are reasonable candidates as cell of origin of brain 

tumor stem cells, because their long existence may subject them more easily to acquisition 

of multiple gene abnormalities necessary for tumorigenesis (Dalerba P. et al., 2007; 

Hanahan D. and Weinberg R.A., 2000). Currently there is experimental evidence in mouse 

brain tumors for cell of origin from stem cells and progenitor cells as well as more 

differentiated cells (Holland E.C. et al., 2000; Uhrbom L. et al., 2002; Bachoo R.M. et al., 

2002; Liu C. et al., 2011) (Figure 5). It is also of relevant note that brain tumors of different 

phenotypes, in different locations, with different genetic mutations, may have different cell 

of origin (Stiles C.D. et al., 2008). Identifying the cell of origin of brain tumor may be 

important for several reasons. The particular cell in which an oncogene is expressed may 

determine the subsequent phenotype and resulting aggressiveness of the tumor, suggesting 

that different treatments could depend on the cell of origin of the tumor.  

 

1.2.5 Glioma stem cell niche (Figure 8) 

Stem cell biology is strongly supported by a specialized microenvironment or stem cell 

niche. Stem cell niches are complex dynamic entities that actively regulate stem cell 

function (Scadden D.T., 2006), in particular their self-renewal and fate. Calabrese and 

colleagues demonstrated that stem cells from various brain tumors, including GBM, are 
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maintained within vasculature niches that mimic the neural stem cell niche (Calabrese C. et 

al., 2007). Notably, co-transplanting brain tumor stem cells and endothelial cells into 

immunocompromised mice, the initiation and growth of tumors in the brain were 

accelerated by the endothelial derived factors. Brain tumor stem cells seem to have potent 

angiogenic properties and can recruit vessels during tumorigenesis. It was shown that 

CD133-positive human GBM produced high level of VEGF and formed highly vascular 

and hemorrhagic tumors in the brains of immunocompromised mice. Furthermore, treating 

CD133-positive cells with bevacizumab blocked their ability to induce endothelial cell 

migration and tube formation in culture, and initiate tumors in vivo (Bao S. et al., 2006). 

Moreover it was observed that GBM stem cells directly differentiate into endothelial cells 

lining tumor vessels (Ricci-Vitiani L. et al., 2010; Wang R. et al., 2010).  As well as 

regulating stem cell proliferation and cell-fate decisions, niches also have a protective role 

defending stem cells from environmental insults (Moore K.A. and Lemischka I.R., 2006).  

 

 

 

 

 

 

Figure 8. The normal and malignant stem cell niche. (A) Stylized view of the normal 
sub-ventricular zone (SVZ) neural stem cell niche. Neural stem cells (NSCs, type B cells) 
interact inti- mately with ependymal cells (E), blood vessels (BV) and various other cell 
types including progenitor and support cells (OC). NsC function may be regulated by 
various diffusible factors derived from the surrounding cells, as well as the cerebrospinal 
fluid (broken lines; for example, growth factors, pigment epithelium-derived factor (PEDF) 
and bone morphogenetic proteins (BMPs)). Additional regulation might be provided by 
direct cell contacts (red solid lines; for example, NOTCH receptor- ligand signals) and the 
extracellular matrix (ECM). (B) glioblastoma cancer stem cells (CSC) are found in 
intimate contact with the aberrant tumour vasculature (TBV). CSC can secrete diffusible 
factors such as VegF, which recruit TBV to the niche. In turn, TBV and other glioma cells 
(OGC) secrete factors that maintain aberrant CSC self-renewal. Mutations in CSC might 
also enable aberrant, intrinsic self-renewal (solid line). Adapted from Gilbertson RJ et al., 
2007. 
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1.2.6 Implications of glioma stem cells in the therapy 

From a clinical perspective, the cancer stem cell concept has significant implications, as 

these cells need to be eradicated in order to provide long-term disease free survival (see 

Figure 5). Cancer stem cells are thought to be resistant to chemotherapy and targeted 

therapy, through active mechanisms. They often express higher level of drug-resistance 

proteins such as ATP-binding cassette sub-family G member 2 (ABCG2) and ABCG5 and 

multidrug resistance protein 1 (MDR1) transporters. Human CD133-positive GBM cells 

were shown to be resistant to radiation therapy, retaining a clonogenic and tumorigenic 

potential, because of a more potent activation of DNA damage checkpoint mechanisms. 

This repair mechanism has been shown to be targetable through pharmacologic inhibition 

of the checkpoint kinases Chk1 and Chk2, which renders the CD133 GBM cells more 

radiosensitive (Bao S. et al., 2006). Glioma stem cells might be protected further from 

conventional therapies by factors within the vasculature niche. Treatments that disrupt 

aberrant vascular stem cell niches could therefore prove active against gliomas, because 

they might also function to disrupt stem cell maintenance. Calabrese and colleagues 

showed that treating GBM-bearing mice with bevacizumab depleted tumor blood vessels 

and caused a dramatic reduction in the number of GBM stem cells and the growth rate of 

the tumor (Calabrese C. et al., 2007).  Also pathways regulating neural stem cell 

proliferation and differentiation might be targeted in brain tumor treatment. Promotion of 

tumor stem-cell differentiation may be an important strategy for treatment of brain tumor 

stem cells. Vescovi et al (Piccirillo S.G et al., 2006) have shown that BMPs, which 

normally induce astrocyte differentiation from normal neural precursors, have been shown 

to promote GBM cell differentiation in vitro and in vivo, reducing stem cell tumorigenicity 

in vivo. Another possibility is to target the process of GSC differentiation into endothelial 

cells in the tumor (Ricci-Vitiani L. et al., 2010; Wang R. et al., 2010). Signaling pathways 

that regulate stem-cell self-renewal and proliferation, such as Notch, Shh, and Wingless 

pathways are potentially important targets in the therapy against glioma stem cells.  
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1.3. Extracellular Vesicles 

1.3.1. Microvesicles and Exosomes 

Intracellular communication, a key element of multicellular organization, can occur either 

directly by cell-cell contact or by means of molecules secreted into the extracellular 

environment. In the last two decades, a third way of signalling emerged as equally prominent: 

Extracellular Vesicles (EV). The EV compartment encompasses two distinct groups of 

vesicular structures often classified for size, morphology and biogenesis: microvesicles (MVs) 

and exosomes (Figure 9). MVs are usually referred as vesicles deriving from plasma membrane  

(PM) domains that, after bending and consequent sealing of the membrane, are released into the 

extracellular environment as bilayered vesicles (Cocucci E. et al., 2009). Historically, 

exosomes were identified more than three decades ago as 40-100 nm vesicles of unkown origin 

produced by a variety of cell types (Trams E.G. et al., 1981). Years later, immunoelectron 

microscopy allowed the identification of these small vesicles inside large multivesicular 

endosomes (MVE) fused with the PM (Harding C. et al., 1983; Pan B.T. et al., 1985); this 

evidence gave rise to controversial reaction among the scientific community since MVE were 

long considered as pre-degradative compartments fated to full degradation by fusion with 

lysosomes. Ten years later, it was observed that even B lymphocytes and dendritic cells are 

able to release exosomes following the fusion of MVBs with the membrane (Raposo G. et al., 

1996). Afterwards, MVE and exosomes were detected in a variety of other cell types including 

cytotoxic T lymphocytes, platelets, mast cells, neurons, oligodendrocytes, Schwann cells and 

intestinal epithelial cells (Simons M. and Raposo G. , 2009; Thery C. et al., 2009); in the end it 

is likely that virtually all cells are endowed with the capacity of producing and secreting 

exosomes. Vesicles with the characteristics of exosomes have been identified in body fluids as 

well: semen (Ronquist G. and Brody I., 1985), blood (Caby M.P. et al., 2005), urine (Pisitkun 

et al., 2004), saliva (Ogawa Y. et al., 2011), milk (Admyre C. et al., 2007), amniotic fluid (Asea 

A. et al., 2008), ascites (Andre et al., 2002), cerebrospinal fluid (Vella L.J. et al., 2007), and 

bile (Masyuk A.I. et al., 2010).  The gold standard currently accepted for exosome purification 
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consists in collecting the serum-free medium of growing cells and performing serial steps of 

differential centrifugations aimed to separate low-density exosomes from protein aggregates 

and other non-membranous particles. Purified exosomes share the same size with intraluminal 

vesicles (ILVs) stored in the MVBs where they come from: 40-100 nm. Although MVs are 

generally bigger in size (up to 1 mm), MVs originating from the PM may also fall in the 40-100 

nm range (Booth A.M. et al., 2006). Higher rates of purification can be achieved by 

immunoadsorption using an exosomal protein (usually a tetraspanin like CD63) as probe 

(Wubbolts R. et al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. EV Biogenesis. Microvesicles (MVs) rise as outward buddings of the PM, 
conversely exosomes are inward buddings of the membrane of multivesicular endosomes 
(MVE) (Adapted from Raposo G. and Stoorvogel W., 2013) 
 

1.3.2. Molecular Cargoes  

As a product of the endocytic pathway, exosomes share with endosomes a variety of cargoes 

(e.g. Rab GTPase, SNAREs, Annexins and Flotillin), protein involved in endosomal maturation 

and in MVB biogenesis (e.g. Alix and Tsg101) (van Niel G. et al., 2006), and transmembrane 

proteins like tetraspanins (CD63, CD81, CD82, CD53 and CD37) (Hemler M.E., 2003; Zöller 

M., 2009). The lipidic structure of exosomes is also peculiar and different from the one of the 

PM, with a marked enrichment in cholesterol, sphingomyelin and ceramides at the expense of 

their phosphatidylcholine and   phosphatidylethanolamine contents (Wubbolts R. et al., 2003). 
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Recent reports have shown that exosomes may also act as carriers of genetic information, 

transferring both messenger and micro RNAs to target cells (Ratajczak J. et al., 2006; Valadi H. 

et al., 2007; Skog J. et al., 2008). Recent studies have also suggested that T cells exosomes can 

selectively incorporate miRNAs that are subsequently conveyed to dendritic cells where they 

are able to act on their original targets (Mittelbrunn et al., 2011; Montecalvo A. et al., 2012); 

moreover analysis of vesicular RNA showed the presence of other non-coding RNAs in 

addition to mRNAs and miRNAs. Several RNAs were found enriched in exosomes compared 

to cellular RNAs thus leading to the possibility that RNAs could be actively selected for 

vesicular incorporation (Ratajczak J. et al., 2006; Valadi H. et al., 2007) (Figure 10).   ExoCarta 

database (http://www.exocarta.org) comprehends a list of lipids, proteins and RNAs identified 

so far in EVs derived from different cell types; no distinction between MVs and exosomes has 

been made so far. General efforts are aimed to the standardization of protocols able to purify 

MVs and exosomes more and more efficiently, thus reaching deeper levels of comprehension. 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Schematic representation of exosome molecular cargoes. (Colombo M., Raposo 
G. and Thèry C., 2014) 
 

1.3.3. Biogenesis of EVs and cargo incorporation 
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MVs and exosomes differ for both their entire biogenesis and mechanisms of secretion. MVs 

are formed and released at the level of the PM, where the process starts with a bending of the 

PM, followed by an active process that culminates with the narrowing of PM rim, the final seal 

and release of the vesicles (similar to what happen in cytokinesis during late stages of mitosis). 

There are actually membrane structural similarities between MVs and apoptotic vesicles, being 

both of them originated by PM curvature and shedding.  Exosome formation starts at the 

surface where clathrin aggregates allow PM budding and the formation of clathrin-coated 

vesicles (CCVs) that following detachment and clathrin recycling become Early Endosomes 

(EEs). EE membrane undergoes structural rearrangements that ultimately lead to the inward 

invagination of the bilayer and the formation of ILVs in Late Endosome (LE) pouch that is 

hence called MVB. MVB can become secretory, by fusion with the PM and release of its 

content in extracellular environment, or be fated to ultimate degradation by lysosome mediated 

processing (Figure 11).  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Process of exosome formation and release into the urine. Ub, ubiquitin; AP, 
adaptor protein; ESCRT, endosomal sorting complex required for transport; ALIX, ALG-2 
interacting protein X. Adapted from Pisitkun T. et al., 2004 
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MVBs fated to secretion or degradation show some biochemical differences, since secretory 

vesicles are enriched in cholesterol  (Möbius W. et al., 2002) while are depleted in their 

lysobiphosphatidic acid content (White I.J. et al., 2006). Behind exosome biogenesis resides the 

endosomal sorting complex responsible for transport (ESCRT) a highly conserved complex 

made up of a core of four multimers (ESCRT-0, -1, -2, -3) and accessory proteins (e.g. Vps4 

and Alix). ESCRT-0, -1 and -2 are responsible for binding with ubiquitinated endosomal 

transmembrane proteins and their recruitment, while ESCRT-3 allows membrane invagination 

and ILV scission (Hurley J.H., 2010). However, ESCRT-mediated ILV formation is not the 

only mechanisms adopted by cells to produce exosomes; several studies have reported that in 

oligodendroglial cells exosome production is mediated by sphingomyelinase, an enzyme that 

converts sphingomyelin to ceramide and consequently can generate deformation of the 

membrane leading to ILV formation (Trajkovic K. et al., 2008). Nevertheless, in 2011 van Niel 

and colleagues observed exosome production in cells without ESCRT machinery and ceramide 

synthesis, thus suggesting an alternative way to produce and secrete ILVs. As for the loading of 

cytosolic proteins onto exosomal vesicles, it is supposedly linked to chaperon proteins (Thery 

C. et al., 2001).   A small group of proteins has been identified to physically interact with 

exosomal tetraspanins and other transmembrane proteins like MHC II. Proteins like Hsp70, 

Hsp90, 14-3-3 e and PKM2 belong to this group and each one of them may play a role in the 

selection of molecules fated to be internalized within exosomes (Buschow S.I. et al., 2010). 

RNA loading onto exosomes is determined by specific sequences that specifically fate the RNA 

molecule to vesicular internalization (Batagov A.Q. et al., 2011); other studies suggest that 

ESCRT-2 might be responsible for loading RNA into exosomes, given its ability to bind RNA 

molecules (Irion U. and St Johnston D., 2007). Likewise, cargo internalization in MV is largely 

unknown; it is supposed that cytoplasmic proteins might undergo oligomerization and bind to 

PM proteins that recruit them within the new-formed MV (Shen B. et al., 2011). 

The discovery of microRNAs (miRNAs) changed our understanding of the regulation of 
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gene expression. Distinct patterns of miRNA expression have been observed in many 

cancers, including GBMs, and the functional significance of some of these miRNA 

alterations is beginning to emerge. Only recently, researchers have focused on the possible 

role of miRNA in the microenvironmental communication of glioblastoma, primarily 

through the release and uptake of EVs. The analysis of EV/microRNA networks suggests 

that they can affect the tumor microenvironment in different ways (Figure 10): (i) direct 

reprogramming of cells in the tumor microenvironment (ii) indirect reprogramming of cells 

in the tumor microenvironment, or (iii) modification of the extracellular 

microenvironment. These mechanisms, separately or in combination, may be utilized for 

sensitization to therapy. EVs are avidly taken up by cells in culture where they can change 

such target cells’ translational, transcriptional, and proteome profile. In fact it has been 

shown that the delivery of this tumor-derived EV cargo (Al-Nedawi K. et al., 2008) 

becomes functional in recipient cells (Montecalvo A. et al., 2012). EVs carrying oncogenic 

and tumor-suppressive proteins such as EGFR, EGFR variant III, PDGFRA, Met, and 

PTEN have been discovered in several models of high-grade gliomas (Bronisz A. et al., 

2014). The contents of gliomas derived EVs also were found to be deregulated in hypoxia 

(Kucharzewska P. et al., 2012) and after radiation (Arscott W.T. et al., 2013). In these 

studies, hypoxia-inducible factor 1 or PDGFRA was found to be overexpressed. Likewise, 

pro-oncogenic and tumor-suppressive microRNAs (miR-34a, miR-128, miR-1, miR-26) 

directly targeting these and many other factors have been documented as deregulated in 

GBM cells (Li Y. et al., 2009). Therefore, EVs appear to provide a significant mode of 

communication between tumor cells (Figure 12). 
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Fig. 12. The ways of action of EV/microRNAs in the microenvironment. (A) Direct 
reprogramming of cells in the tumor microenvironment by microRNA transfer, (B) indirect 
reprogramming of cells in the tumor microenvironment by miR-dependent targeting of EV 
cargo, (C) modification of extracellular microenvironment by miR-dependent alteration of 
EV release, (D) therapy sensitization by delivering therapeutic microRNA/anti-microRNA 
(Adapted from Godlewski J. et al., 2014) 
 

1.3.3. Exosome-to-cell interaction 

EV mechanism of action occurs by means of the physical interaction between the vesicle and 

target cell, with the former transferring cargo molecules, proteins, lipids and RNAs, within the 

host. Several studies reported this kind of interaction to be cell type specific, like in the case of 

B cell-derived exosomes showing a specific affinity for follicular dendritic cells harbouring 

lymphoid follicles (Denzer K. et al., 2000); analogously, intestinal epithelial exosomes 

preferentially interact with dendritic cells PM rather than with B or T lymphocytes (Mallegol J. 

et al., 2007). Exosome-cell specificity appears to rely on adhesion molecules expressed on the 

exosomal membrane, like integrins (Clayton A. et al., 2004).  It has also been suggested that 

differences in tetraspanin levels on exosomal membrane could influence exosome-cell 

interaction and therefore explain exosome selectivity both in vitro and in vivo, by means of the 
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fine tuning of tetraspanin-associated proteins like integrins (Hemler M.E., 2003). Once stable 

interaction is established, exosomes can either merge with target cell PM and release their 

cargoes within or undergo internalization through the endocytic pathway; in this case exosomal 

membrane can fuse with endosome one, thus spreading molecular cargo within recipient cells. 

 

1.3.4. EVs in physiologic and pathologic conditions 

In the central nervous system (CNS), astrocytes, neurons and oligodendrocytes secrete 

exosomes that tightly regulate the chemical interaction among these different cell types 

(Lachenal G. et al., 2011). EVs actively induce neuron myelinisation, axon elongation and 

neuron survival (Wang Z. et al., 2011). EVs are also considered major players in the 

progression of several CNS disease driven by the aberrant accumulation of proteins: prions 

(Fevrier  B. et al., 2004), b-amyloid peptides (Rajendran L. et al., 2006), superoxide dismutase 

(Gomes C. et al., 2007) and a-synucleins (Emmanouilidou E. et al., 2010) are secreted via the 

endocytic pathway within EVs. Alpha-synucleins were recently detected in patients plasma and 

cephalorachidian fluid thus paving the way to the opportunity to exploit EVs as a source of 

viable biomarkers in neurodegenerative disorders (Simpson R.J. et al., 2009). In 2008, Al-

Nedawi and colleagues explored the possibility for a malignant cell to transfer oncogenes to 

target cells via EVs. Gliomas often express the constitutively active form of EGFR, called 

EGFRvIII; this truncated form of the receptor is capable alone of activating the whole pathway 

downstream to the EGFR. The authors treated glioma cells EGFRvIII-negative with EGFRvIII-

expressing EVs with the resulting activation of the EGFR pathway downstream EGFR with 

MAPK and Akt pathway activation, morphology changes and increased proliferation capacity 

(Al-Nedawi K. et al., 2008). The same year, another lab showed that GBM cells secrete EVs 

containing angiogenic proteins, mRNAs and miRNAs; these vesicles interact with endothelial 

cells and stimulate their aberrant proliferation to support the growing of the tumor cells (Skog 

J. et al., 2008). Furthermore, fibroblast and normal epithelial cells treated with EVs isolated 
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from GBM cell lines are endowed with tumoral-traits, anoikis resistance and increased survival 

(Antonyak M et al., 2010).  

 

1.3.5. EVs and clinical implications for GBM treatment 

EVs are loaded with proteins, nucleic acids, lipids and metabolites reflecting their cell of origin. 

Since EVs can be detected and isolated from virtually every biological fluid, it is of notable 

interest the possibility to exploit EVs as carriers of a set of markers that may be indicative of 

GBM progression. While the concept of liquid biopsy is often associated to haematological 

tumors or to circulating tumoral cells, in GBM this is not an option, given the lack of 

circulating tumoral cells in patient blood stream; combining their relative abundance in GBM 

cells extracellular environment and their ability to cross the blood brain barrier (BBB), EVs can 

circumvent this limitation. Beyond their diagnostic value, it is also conceivable an exploitation 

of EVs for prognostic purposes, testing the expression of viable reliable prognostic markers like 

EGFRvIII and IDH1.  

 
1.4. Chloride Intracellular Ion Channel – 1 (CLIC1) 

1.4.1. Structure 

The family of chloride intracellular ion channel (CLIC) is made up of small proteins with just a 

putative transmembrane domain. Proteins belonging to this group are widely and differently 

expressed. Even marked by intracellular localization, several of these proteins can be isolated 

from the plasma membrane. CLIC1, the first member of CLIC family, is a protein consisting of 

241 amino acids. It has a molecular weight of 26.9 kDa and a pI of 4.85 as estimated by the 

DNAStar software (Lasergene) (Valenzuela M.S. et al., 1997). CLIC1 shows a 47.7% helical 

content and an 8.3% sheet content according to the crystal structure (Harrop S.J. et al., 2001); it 

contains six cysteine residues, one of which, Cys24, is found in the active site.  Until the 

structure of CLIC4 was published in 2005 (Littler D.R. et al., 2005), CLIC1 was the only 

member of the CLIC family of proteins to have its crystal structure solved. CLIC1 is a 
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relatively flat protein that folds in two domains, a C-terminal and a N-terminal domain, linked 

by a proline-rich region that is thought to bestow an amount of plasticity upon the domain 

interface (Harrop S.J. et al., 2001). The N-terminal domain harbors a canonical thioredoxin 

region (bababba motif) (Martin J.L., 1995). The larger C-terminal domain is structurally all a-

helical. CLIC1 forms a highly negatively charged loop between helix 5 and 6 (Pro147 – 

Gln164); this loop is extremely flexible and is supposed to play a central role in protein – 

protein interactions and membrane insertion (Harrop S.J. et al., 2001). The evidence that a 

region of CLIC1 was shielded from protein K digestion implied CLIC1 ability to span the 

membrane (Tulk B.M. and Edwards J.C., 1998). Harrop and colleagues were the first to 

hypothesize that CLIC1 forms a channel in plasma membranes, the N-terminal domain of the 

protein should undergo rapid unfolding and quick refolding to be properly inserted into the 

lipid bilayer. CLIC1 also harbors a glutathione (GSH) binding site within its N-terminal 

domain. GSH covalently binds Cys24 thus allowing the formation of a disulfide bond. Several 

studies reported CLIC1 to form a non-covalent dimeric entity following oxidation by means of 

hydrogen peroxide (Littler D.R. et al., 2004). This transition, reversible upon reduction, is due 

to the establishment of a disulphide bond between Cys24 and Cys59 of CLIC1 in its 

monomeric form and results in a major structural transition, particularly in the N-terminal 

domain, that ultimately leads to he exposure of a hydrophobic surface (Figure 13). 
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Figure 13. CLIC1 structural rearrangement. (A) Schematic representation of CLIC1 
reduced form and (B) CLIC1 morphological change following oxidation. Adapted from Littler 
D.R. et al., 2005. 
 

 This hydrophobic surface may represent the membrane-docking interface in vivo where the 

monomer is believed to undergo similar alterations to its N-terminal domain before interacting 

with the membrane. CLIC1 dimer is less globular than the dimers formed by other members of 

the GST superfamily and can be compared with the unusual elongated dimer of the class Kappa 

enzyme (Ladner J.E. et al., 2004). The oxidized CLIC1 dimer can still form chloride channels 

as can the reduced protein, and both Cys24 and Cys59 were shown to be essential for CLIC1 

channel formation (Littler D.R. et al, 2004). The only other member of the CLIC family that is 

known to form a homodimer is CLIC6 (Griffon N. et al., 2003). This protein dimerises in 

solution at its GST-like C-terminus but nothing else is known about the structure or properties 

of the CLIC6 dimer. CLIC4 has been shown to form a homotrimer under non-reducing 

conditions (Li Y. et al., 2006). This trimer is formed in the absence of disulphide bonds and 

proves that hydrogen bonds and hydrophobic contacts may be all that is required for a CLIC 

protein to muiltimerise. 

 

1.4.2. Pathological role 
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CLIC1 appears to have a main role in all the diseases that involve oxidative stress (Averaimo S. 

et al., 2010). Indeed, CLIC1 was reported to contribute in activated microglia cells to the 

production of reactive oxygen species (ROS), a process well studied for its role in the 

progression of pathologies like Alzheimer (Milton R. et al., 2008). Since 2008, a series of 

publications started pointing out CLIC1 as a protein involved in different kinds of epithelial 

cancers: gastric carcinoma (Chen C.D. et al., 2007), colorectal cancer (Petrova D.T. et al., 

2008), hepatocellular carcinoma (Huang J.S. et al., 2004) and more recently brain tumors 

(Kang M.K. et al., 2008; Setti M. et al., 2013). In these types of tumors CLIC1 is thought to 

play a major contribution in determining cell aggressiveness, regulating key-processes like 

proliferation, migration and metastatic behaviour. In 2000, one of the first electrophysiological 

studies carried out on this newly identified chloride ion channel identified CLIC1 on the PM of 

CHO-K1 cells in G2/M transition (easily identified for their round shape); moreover, CLIC1 

inhibition by IAA-94 specific blocker led to global cell cycle lengthening (Valenzuela M.S. et 

al., 2000). Physiological fluctuation in ROS levels might explain this behaviour and partially 

explain CLIC1 involvement in regulating cell cycle progression (Menon S.G. and Goswami 

P.C., 2007). Several studies highlighted CLIC1 potential involvement in cellular migration and 

tumor metastatization, like in colorectial cancer and endothelial cells (Tung J.J. and Kitajewski 

J., 2010). CLIC1 could exert its control on cell motility by regulating either cellular volume or 

cytoskeletal dynamics. Other works have shown how several members of CLIC family seem to 

be capable of binding cytoskeletal elements: CLIC5A is tightly bound to cortical actin in 

placenta microvilli (Berryman M. and Bretscher A., 2000), CLIC4 interacts with both 

microtubules and actin-related elements (Berryman M. and Goldering, 2003), CLIC1 ion 

channel activity was found to be impaired by F-actin pointing out possible physical interactions 

(Singh S.K. et al., 2007).  

 

1.4.3. Secreted CLIC1 
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Given the lack of proper peptides signalling for either PM insertion or secretion, CLIC1 tends 

to float into the cytoplasm in its soluble form. In 2007, Ulmasov and co-workers described 

CLIC1 intracellular localization in pancreatic and colorectal carcinoma cell lines (Panc1, T84 

respectively). Immunofluorescence stainings showed CLIC1 distribution homogeneously 

scattered throughout the entire cell, with a more marked cytoplasmic rather than nuclear 

localization. Co-localization analyses showed no expression of CLIC1 in endoplamic reticulum 

and Golgi apparatus, in lysosomes and in trans-Golgi vesicular network; conversely, CLIC1 

expression was appreciable in the endocytic and exosomal compartment (Ulmasov B. et al., 

2007). CLIC1 has been detected in exosomes derived from renal tubular epithelial cells and 

urine (Pisitkun T. et al., 2004), mast cells (Valadi H. et al., 2007), B cells (Buschow S.I. et al., 

2010), bladder carcinoma (Welton J.L. et al., 2010), breast carcinoma (Staubach S. et al., 

2009), colorectal carcinoma (Mathivanan et al., 2009); CLIC1 is one of the top scoring proteins 

in ExoCarta database. In 2009, CLIC1 was detected by Enzyme-linked Immunosorbent Assay 

(ELISA) in the medium of nasopharyngeal carcinoma cell lines, and similarly CLIC1 was 

found at sensibly higher levels in the blood of patients affected by nasopharyngeal carcinoma 

thus proposing CLIC1 as a viable biomarker (Chang Y.H. et al., 2009). In 2012 Tang and 

colleagues exploited a murine model of ovarian carcinoma and detected CLIC1 in the serum of 

xenografted mice; they identified and increased expression of CLIC1 together with cathepsin D 

and peroxiredoxin in xenografted mice rather than healthy counterparts (Tang et al., 2012).   
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2. MATERIALS AND METHODS 

 

2.1. Preparation of cell suspensions from patient tumors 

This study was approved by the Ethical Committee for human experimentation of IEO 

(European Institute of Oncology) and all patients signed an approved consent document 

prior to surgery. Surgical specimens of tumors were collected at the Neurosurgery Dpt. at 

IRCCS Istituto Clinico Humanitas and examined by a neuropathologist to verify that each 

case met criteria for GBM and to select a tissue fragment with high content of viable tumor 

tissue. Each tissue specimen was minced in to small pieces and maintained in sterile saline 

at room temperature. One piece of the mincate was fixed in formaldehyde solution (38%) 

and successively paraffin-embedded; the remaining tissue was dissociated into single cell 

suspension in warmed EBSS (Earle’s Balanced Salt Solution) containing papain (2 mg/ml) 

(Worthington Biochemical), EDTA (0.8 mg/ml) and L-Cystein (0.8 mg/ml) at 37C for 1-2 

hours. The dissociated tumor was filtered through a 70 micron filter and washed a 

minimum of three times prior to culturing. 

 

2.2. Neurosphere culture 

Neurosphere cultures were maintained in neurosphere culture medium consisting of 

DMEM-F12 1:1 (Dulbecco’s Modified Eagle Medium – Ham’s F12 Nutrient Mixture) 

medium (Invitrogen) supplemented with B27 Supplement (Invitrogen), EGF (20 ng/ml), b-

FGF (10 ng/ml) (PeproTech) and 2 ug/ml Heparin (Sigma), at 37°C in a 5% CO2 

humidified incubator. All cultures were passaged by mechanically dissociation when 

spheres reached approximately 300-500 microns in diameter, and cell counts were 

performed at the time of passage. For cultures passaged at intervals longer than one week, 

media containing fresh growth factors was added twice weekly.  
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To established neurosphere cultures, dissociated tumor cells were seeded at an initial 

density of 1-2 x 105 cells/ml. Sorted populations from each tumor case were matched for 

plating density. 

 

2.3. Lentiviral mediated CLIC1 silencing 

Short hairpins specific for human CLIC1 (5’-GATGATGAGGAGATCGAGCTC-3’) and for 

firefly luciferase (5’-CGTACGCGGAATACTTCGA-3’) mRNA were cloned into XhoI/HpaI 

sites of PLentiLox 3.7 lentiviral vector. PLentiLox 3.7 and packaging plasmids 

(vpMDLg/pRRE, pRSV-REV and pMD2G) were amplified in the E.Coli-strain Top10, purified 

using a QUIAGEN MAXI KIT (Quiagen, Valencia, CA), and transfected in human HEK 293T 

cell line by calcium phosphate according to established procedures (TronoLab). After overnight 

transfection, the culture medium was replaced with DMEM supplemented with 10% FBS. Viral 

particles were collected 48h post transfection and concentrated using PEG-it (Mountain View, 

CA). Transducing unit (TU) concentration was then determined by Green Fluorescent Protein 

(GFP) expression. Single cell suspensions derived from GBM neurospheres were infected with 

104 TU/ml. 72 hours after infection, transduced cells were selected with 1.5 mg/ml puromycine 

(Sigma-Aldrich, St. Louis, MO). Interference efficiency was evaluated 72 hours post selection 

by western immunoblot analysis. 

 

2.4. Western blotting  

Primary antibodies: CLIC1 (mouse monoclonal, 1:1000, clone CPTC-CLIC1-1 Millipore, 

Billerica, MA), Vinculin (mouse monoclonal, 1:10000, clone HVIN-1, Sigma Aldrich, St. 

Louis, MO), CD63 (mouse monoclonal, 1:50, clone FC-5.01 18-7300 Invitrogen ), tsg101 (goat 

polyclonal, 1:1000, sc-6037 Santa Cruz, CA,USA), GM130 (mouse monoclonal, 1:500, 

610822, Becton Dickinson, Franklin Lakes, NJ, USA). 

Neurosphere and EV samples were lysated  on ice in 50-100 ml of lysis buffer (50 mM Tris–

HCl buffer [pH 8], 10 mM CaCl2, 5mM EGTA [pH 8], 250 mM NaCl , Glycerol 10%, triton-x 
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100 1%) containing a cocktail of proteinase inhibitors (50 mM NAF , 10 mM NAPP ,10mM 

NaOrtoV , PMSF [0.1mg/ml], Leupeptin , Apoprotinin ). Concentration of protein lysates was 

assessed by Bradford assay (Biorad, Hercules, CA). Each lysate (Whole cell extracts: 10 µg, 

EV lysates: 2 µg) was loaded onto a SDS-polyacrylamide gel electrophoresis (PAGE) under 

reducing conditions, and resolved proteins were transferred on to Nitrocellulose Transferring 

membranes (Protran ®, Indianapolis, IN) of 0.2 µm pore size. After blocking with 5% nonfat 

dry milk in Tris-Buffered Saline and Tween 20 (TBS-T [50mM Tris, 150mM NaCl, 0.05% 

Tween 20]), membranes were incubated overnight at 4°C with primary antibodies. Antibody 

binding was assessed by horseradish peroxidase (HRP)-conjugated secondary antibody 

(1:10000, Sigma Aldrich, St. Louis, MO). Immunoreactive bands were detected with ECL 

western blotting reagents (GE Healthcare Bio-Sciences, Pittsburgh,PA). Immuno-precipitation 

was carried out with 20 µg of anti-GFP  antibody (sc-9996, Santa Cruz, CA, USA) on 2mg of 

whole cell extract overnight at 4°C. Membranes were blotted anti-CLIC1. 

 

2.5. Quantitative RT-PCR analysis 

Total RNAs from cell samples was isolated by RNAeasy Mini kit (Quiagen, Valencia, CA). 

Total RNAs from normal brain tissues (n=20) and astrocytic tumors of different grades (n=13 

WHO grade II, n=28 WHO grade III and n=20 WHO Grade IV) were a generous gift of Maria 

Stella Carro (University of Freiburg, Germany). RNAs from each sample (1mg) were 

retrotranscribed using ImProm-II Reverse Transcriptase (Promega, Madison, WI) at the 

following temperature steps: 25°C for 5’, 42°C for 60’, 70°C for 10’. Quantitative real time 

PCR (qRT-PCR) analysis was then performed by 7,500 Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA) with Syber Green PCR Master Mix (Applied Biosystems, Foster 

City, CA). Threshold cycle (CT) values for each gene were normalized to TATA-Box Binding 

Protein expression levels (TBP) for cell samples and to Hypoxanthine 

PhosphoRibosylTransferase expression levels (HPRT1) for FFPE samples. The sequence of 

primers was the following: CLIC1 fw: 5’-GTTGACACCAAAAGGCGG-3’, rev: 5’-
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TCTCCAGATTGTCATTGAGTGC-3’;TBP fw:5’-TGCACAGGAGCCAAGAGTGAA-3’, 

rev:5’-CACATCACAGCTCCCCACCA-3’ ; HPRT1 fw:5’-

TGACCTTGATTTATTTTGCATACC-3’,rev:5’-CGAGCAAGACGTTCAGTCCT-3’.  

 

2.6. Clonogenic assay 

The colony forming cell assay, also referred to as the methylcellulose assay, is an in vitro 

assay used in the study of stem cells. The assay is based on the ability of progenitors to 

proliferate and differentiate into colonies in a semi-solid media in response to growth 

factors stimulation. The colonies formed can be enumerated and characterized according to 

their unique morphology. The standard protocol was used with minor modifications. The 

cells were resuspended in D-MEM/F12 medium with growth factors and an equal volume 

of Methylcellulose (StemCell Technologies) was added; the methylcellulose concentration 

in the final cell mixture was approximately 1.27%. 1.5 mL (3000 cells) of the final cell 

mixture was added to a 35 mm culture plate with grid (at least three plates were prepared 

for each condition). The medium was spread evenly by gently rotating the plate. Three 

sample plates and an uncovered plate containing 3 - 4 mL sterile water, necessary to 

maintain the humidity necessary for colony development, were placed in a 100 mm culture 

plate and covered. The cells were incubated for 14 - 16 days at 37° C and 5% CO2, 

avoiding disturbing the plate during the incubation period to prevent shifting of the 

colonies. The colonies were scored at the end of the incubation period. Individual colonies 

were identified and counted using an inverted microscope and the scoring grid. Colonies 

consisting of at least 40 cells were counted. 

2.7. MTT Assay 

U87MG were harvested in 96-well plates at the density of 3000 cells 

U87MG and mechanically dissociated neurospheres were seeded in 96-well plates at the 

density of 3000 cells per well. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT, 50mg/ml) was added and, after incubation for 4 hours, crystals were dissolved in 
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DMSO. Cell viability was evaluated by CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (Promega, Madison, WI).  GBM cells were treated with EVs 50 mg/ml and 

cell viability was assessed after 120 hours of incubation.Three independent replicates were 

considered for each experiment.  

 

2.8. Cell cycle analysis and apoptosis  

For apoptosis analysis, infected cells (GFP+) were first fixed in 1% formaldehyde for 20 

minutes on ice, washed once in PBS and fixed again in ethanol 75% for 30 minutes on ice. 

Fixed cells were incubated in Propidium Iodide (2.5 µg/ml) and RNAse (250 µg/ml) for 12 

- 16 hours at +4oC and analyzed by flow cytometry. 

 

2.9. Immunofluorescence analysis 

Primary antibodies: CLIC1 (mouse monoclonal, 1:1000, clone 356.1, Santa Cruz 

Biotechnology, Santa Cruz, CA), Sox2 (rabbit polyclonal, 1:500, ab15830, Abcam, Cambridge, 

UK), Nestin (rabbit polyclonal, 1:200, ABD69, Millipore, Billerica, MA), GFAP (rabbit 

polyclonal, 1:500, Z0334, DakoCytomation, Glostrup, Denmark), BrdU (mouse monoclonal, 5 

mg/ml, BD Biosciences, Franklin Lakes, NJ), Cleaved Caspase-3 (rabbit polyclonal, 1:500, 

Cell Signaling, Danvers, MA). Confocal images and live-microscopy images were generated 

with a Leica SPII spectral confocal microscope (Leica Microsystems, Wetzlar, Germany). 

Neurospheres were mechanically dissociated until single cell suspension was achieved and let 

adhere onto Polysine Slides (Thermo Scientific, Waltham, MA) for 40’. Cells were fixed with 

4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Cells were then 

permeabilized with 0.1% Triton-X for 10’ and blocked with a 5% Bovine Seum Albumin 

(BSA) in PBS for 30’. Primary antibodies were used at room temperature (RT) for 60’. 

Fluorescein isothiocyanate (FITC)-conjugated or cyanine dye (Cy3)-coniugated secondary 

antibodies were applied at RT for 60’. Nuclei were counterstained with DAPI (1:5000). The 
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quantitative comparison between CLIC1 expression and expression of other stem/progenitors 

and/or differentiated markers was performed independently by two blinded operators. 

 

2.10. Proximity Ligation Assay (PLA) 

Samples were processed for PLA according to manufacturer’s instructions (OLink Bioscience, 

Sweden) using the DuoLink in situ Orange detection reagent. Then, for complete detection of 

the expression levels of the targeted molecules, coverslips were incubated with antibodies (see 

previous section). Primary antibodies employed for PLA were: CD63 (mouse monoclonal, 

1:50, clone FC-5.01 18-7300 Invitrogen ), CLIC1 (rabbit polyclonal, 1:500, sc-134859 Santa 

Cruz, CA, USA). 

2.11. Immunohystochemistry (IHC) 

All sections were counterstained with Mayer’s haematoxylin and visualized using a bright field 

microscope. Tissue slices were incubated overnight at 4°C with the following primary 

antibodies: CLIC1 (mouse monoclonal, 1:1000, clone 356.1, Santa Cruz Biotechnology, Santa 

Cruz, CA), anti-Nuclei (mouse monoclonal, 1:1000, clone 3E1.3, Millipore, Billerica, MA), 

GFP (rabbit polyclonal, 1:1000, sc8334, Santa Cruz Biotechnology, Santa Cruz, CA). 

 

2.12. Isolation of EVs 

GBM cell lines were grown in DMEM with 10% (vol/vol) FBS. Cultures were then 

washed in triplicate and grown in serum-free medium for 48 h. The same approach was 

adopted for GBM-derived CSC. These media were collected and treated according to 

standard procedures (Thèry et al., 2006); media underwent serial centrifugation (500g for 

10’, 1200g for 20’, 10’000g for 30’), they were 0.22-µm syringe filtered, and then, 

ultracentrifuged at 100’000g for 60’. 

 

2.13. Electron microscopy (EM)  
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For routine electron microscopy (EM), purified exovesicles were fixed with 1% glutaraldehyde 

for 1 h, washed, post-fixed with 1% reduced osmium tetroxide for 1 h, washed, post-stained 

with 0,3% thiocarbohydrazide; refixed in the OsO4 and embedded into Epon. Ultrathin sections 

were placed on formvar-coated grids or slot-grids. Immune-EM analysis was performed as 

previously described (Polishchuk et al., 1999; Beznoussenko, et al., 2007). Briefly, purified 

exovesicles were fixed with 1% glutaraldehyde and centrifuged. The pellet of purified 

exovesicles was embedded into gelatine and cryo-sections were prepared according to the 

standard procedure and cryo-sections were placed on slot-grid and labelled with antibodies 

against CLIC1 and CD63 (KMC8, 10 mg/ml) with subsequent labelling with protein A 

conjugated with 10 and 15 nm gold particles (UMC Utrecht, 1:60). Grids were observed at 200 

kV with a Tecnai 20 (FEI Company). Size of individual vesicles was measured on 5 different 

pictures taken at 10,000x magnification for each EV preparation, using the software integrated 

into the Tecnai20 electron microscope software. Primary antibodies: anti-CD63 (rabbit 

polyclonal, 1:1000, sc-15363, Santa Cruz, CA, USA), anti-CLIC1 (rabbit polyclonal, 1:500, sc-

134859 Santa Cruz, CA, USA). 

 

2.14. Nanoparticle tracking analysis (NTA) 

We used the light-scattering characteristics of 488 nm laser light on microvesicle preparations 

undergoing Brownian motion injected by continuous flow into the sample chamber of an LM10 

unit (Nanosight, Amesbury, UK). Three videos of 60-90 seconds were recorded of each sample. 

Data analysis was performed with NTA 3.0 software (Nanosight). The diffusion coefficient and 

hydrodynamic radius were determined using the Stokes–Einstein equation, and results were 

displayed as a particle size distribution. Data are presented as the average and standard 

deviation of the three video recordings. Since NTA is most accurate between particle 

concentrations in the range of 2x108 to 2x109/ml, when samples contained higher numbers of 

particles, they were diluted before analysis and the relative concentration calculated according 

to the dilution factor. Control 100 and 200 nm beads were supplied by Nanosight. NTA of a 
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small sample of any given preparation revealed that they were essentially monodisperse, 

excluding the problem of aggregation, which may significantly impact on a biological system. 

2.15. Label-free Mass Spectrometry 

Peptide mixtures were analyzed by online nano-flow liquid chromatography tandem mass 

spectrometry (LC-MSMS) using an EASY-nLC™ 1000 (Thermo Fisher Scientic, Odense, 

Denmark) connected either to an Q-Exactive (Thermo Fisher Scientific) or LTQ-OrbitrapVelos 

(Thermo Fisher Scientific) through a nanoelectrospray ion source. For nUHPLC, the nano LC 

system was operated in one column set-up with a 25 cm analytical column (75 µm inner 

diameter, 350 µm outer diameter) packed with C18 resin (ReproSil, Pur C18AQ 1.9 µm, 

Dr.Maisch, Germany) configuration. Solvent A was 0.1% FA in ddH2O and solvent B was 

80% ACN with 0.1% FA. Samples were injected in an aqueous 1% TFA solution at a flow rate 

of 500 nl/min. Peptides were separated with a gradient of 5-40% solvent B over 200 min 

followed by a gradient of 40-60% in 5 min and 60-95% over 5 min at a flow rate of 250 nl/min 

in the EASY-nLC 1000 system.  For HPLC analysis instrument connection, solvent 

composition and gradients were as described before but analytical column were packed with a 

different C18 resin (ReproSil, Pur C18AQ 3 µm, Dr.Maisch, Germany). The Q-Exactive 

instrument was operated in the data-dependent mode (DDA) to automatically switch between 

full scan MS and MSMS acquisition. Survey full scan MS spectra (from m/z 300-1150) were 

analysed in the Orbitrap detector with resolution R=35,000 at m/z 400. The five most intense 

peptide ions with charge states ≥2 were sequentially isolated to a target value of 3e6 and 

fragmented by Higher Energy Collision Dissociation (HCD) with a normalized collision energy 

setting of 25%. The maximum allowed ion accumulation times were 20 ms for full scans and 

50 ms for MSMS and the target value for MSMS was set to 1e6. The dynamic exclusion time 

was set to 25s. Standard mass spectrometric conditions for all experiments were: spray voltage, 

2.4 kV; no sheath and auxiliary gas flow. Raw data has been analyzed by label-free software 

MaxLFQ that is completely integrated into MaxQuant software 
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2.16. Animal experiments 

An intracranial orthotopic model was utilized for evaluation of cell tumorigenicity (Uchida 

et al. 2000). Cells from dissociated neurospheres were resuspended in 2 µl of PBS and 

stereotaxically injected into the nucleus caudatus (coordinates: 0.7 - 1 mm posterior, 3 mm 

left lateral, 3.5 mm in depth from the dura) of 5-week-old female CD-1 nude mice. The 

mice were maintained until development of neurologic signs and then killed for the 

analysis of tumor histology and immunohistochemistry. CD-1 nu/nu mice were housed in 

plastic cages and were kept in a regulated environment (22 ± 1°C; 55 ± 5% humidity), with 

a 12 h light/dark cycle (lights on at 7:00 A.M.). Food and water were available ad libitum.  

T2-weighted MR images were obtained using a 9.4-T magnet (Varian) and tumor areas 

were calculated from resulting images on a single scan in 3 mice per group using ImageJ 

software. Experiments involving animals were performed in accordance with the Italian 

Laws (D.L.vo 116/92 and following additions), which enforces EU 86/609 Directive 

(Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, 

regulations and administrative provisions of the Member States regarding the protection of 

animals used for experimental and other scientific purposes).  

 

2.17. Statistical Analysis 

To determine differences within group pairings we used either Bonferroni’s correction, when 

samples analyzed showed homogeneous variances, or Tamhane’s test, to analyze samples with 

non-homogeneous variances. Co-localization analysis was studied using Cohen’s test to 

determine inter-rater agreement between categorical items, in our case marker positivity. 

Significance of Cohen K index was obtained by applying a Chi-square test to positivity and 

negativity frequencies in compared conditions. In Kaplan-Meier curves, survival differences 

were compared by log-rank analysis. For the in vivo limiting dilution assay, tumor formation 

frequency and statistical significance were evaluated with the extreme limiting dilution analysis 

function (http://bioinf.wehi.edu.au/software/elda/).  
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3. RESULTS 

 

3.1. CLIC1 expression in patients affected by Glioblastoma  

CLIC1 has been proposed as an ion channel widely expressed in a variety of human cancers, so 

we wanted to look into CLIC1 expression in human glioblastomas (GBM) compared to the 

other members of CLIC family. To do that we analyzed the expression of CLIC family 

members in the National Cancer Institute’s Repository for Molecular Brain Neoplasia Data 

(REMBRANDT) (Madhavan S et al., 2009) and we found CLIC1 and CLIC4 as the only 

members differentially expressed in GBM compared to healthy samples (Figure 14), with the 

former showing the greater difference between expression in gliomas and in control (non-

tumor) samples (Figure 15) (F test for disomogeneous variances: F= 106.56; df=2 and 385; p 

<< 0.001; ANOVA with Tamhane’s multiple comparison test: Non-tumor vs Grade II-III p << 

0.0001, Grade II-III vs Grade IV p << 0.0001).  

 

 

 

 

 

 

 

 

Figure 14. CLIC expression in brain tumors. mRNA levels of CLIC family members in control (non-
tumor) brain tissues, astrocytomas (WHO grades I-III) and glioblastomas (WHO grade IV) derived from 
REMBRANDT database. Median values are depicted; Error bars represent 95% confidence intervals. ** 
p < 0.001 and *** p < 0.0001 of differences between averages of indicated pairs calculated by ANOVA 
with Tamhane’s multiple comparison test; n.s.: not significant.  
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Figure 15. CLIC1 expression level in human gliomas. Box-plot showing CLIC1 mRNA levels in 
control (non-tumor) brain tissues, astrocytomas (WHO grades I-III) and glioblastomas (WHO grade IV) 
derived from REMBRANDT database. The solid lines within the boxes represent the median value; the 
boxes show the 25th and 75th percentile range of CLIC1 mRNA levels; maximum and minimum values 
are depicted as horizontal bars; circles represent outliers. ** p < 0.001 and *** p < 0.0001 of differences 
between averages of indicated pairs calculated by ANOVA with Tamhane’s multiple comparison test; 
n.s.: not significant.  
 

Analysis of CLIC1 transcript levels in relation to patient survival derived from REMBRANDT 

revealed that CLIC1 expression inversely associated with patient survival, suggesting a 

potential exploitation of CLIC1 as an outcome predictor (CLIC1low vs CLIC1high survival: Chi 

square= 74.35, d.f. = 1, log-rank p-value < 0.001) (Figure 16 A). Likewise, we obtained 

analogous results narrowing down the analysis to the subgroup consisting of GBM patients 

alone  (Chi square= 10.99, d.f.= 1, log-rank p-value < 0.01) (Figure 16 B).  

 

 

 

 

 

 

Figure 16. CLIC1 expression and patient prognosis. Association of CLIC1 mRNA expression with 
patient prognosis: (A) Kaplan-Meier survival plot based on patient data from REMBRANDT database. 
(B) Kaplan-Meier survival plot based on subgroup from REMBRANDT database comprising only 
GBM patients. In each graph, patient samples have been divided into CLIC1 low-expressing tumors 
(CLIC1low, blue) and CLIC1 high-expressing tumors (CLIC1high, red) based on whether the tumors had 
CLIC1 mRNA levels that were less than or grater than median levels. (WHO grade IV) derived from 
REMBRANDT database. 
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GBMs have been classified in molecular subtypes according to gene expression signatures 

(Phillips HS et al., 2006; Verhaak RG et al., 2010). Phillips et al. defined three sub-types 

(Proneural [PN], Proliferative [PROL], Mesenchymal [MES]) close to those described by 

Verhaak et al, who used data from The Cancer Genome Atlas (TCGA, Nature 2008) to describe 

four distinct subtypes (Proneural [PN], Neural [N], Classic [CL] and Mesenchymal [MES]). 

Thus, we analysed CLIC1 expression using both Phillips’ and Verhaak’s microarray data sets. 

We found that CLIC1 expression was always significantly higher in the mesenchymal subtype 

compared to the others (Figure 17 A and B) (Phillips’.dataset –  ANOVA with Tamhane’s 

multiple comparison test: PN vs each of the others, always p << 0.001, PROL vs. MES p = 

0.002. Verhaak’s dataset –ANOVA with Tamhane’s multiple comparison test: N vs. each of the 

others, always p < 0.001, MES vs. each of the others, always p < 0.001, N vs. CL p = 0.990).  

 

 

 

 

 

 

 

 

Figure 17. CLIC1 distribution in the different molecular subclasses. Association of CLIC1 mRNA 
levels with GBM subtypes (Proneural [PN], Proliferative [Prolif], Neural [N], Classical [CL] and 
Mesenchymal [MES]): microarray data set from Phillips’ (A) and from Verhaak’s works (B) were 
examined. In both panels the solid lines within the boxes represent the median value; the boxes show the 
25th and 75th percentile range of CLIC1 mRNA levels; maximum and minimum values are depicted as 
horizontal bars; circles represent outliers. ** p < 0.001 and *** p < 0.0001 of differences between 
averages of indicated pairs calculated by ANOVA with Tamhane’s multiple comparison test; n.s.: not 
significant.  
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To further evaluate the extent of CLIC1 overexpression in human gliomas, we examined 

CLIC1 expression level in a distinct set of normal brain tissues (n=20) and astrocytic tumors of 

different grades (n=13 WHO grade II, n=28 WHO grade III and n=20 WHO Grade IV). CLIC1 

was weakly expressed in normal brain specimens and its expression increased with tumor 

grade, reaching the highest levels in GBMs. Notably, GBM subgroup displayed a marked 

heterogeneity in CLIC1 expression (Figure 18).  

 

 

 

 

 

 

 

 

 

 

Figure 18. CLIC1 expression in astrocytic tumors. CLIC1 expression levels by qRT-PCR in normal 
brain specimens (n=20) and in astrocytic tumors of different grades (n=13 WHO grade II, n=28 WHO 
grade III and n=20 WHO Grade IV). The solid lines represent the mean value; Error bars represent 95% 
confidence intervals. *** p < 0.0001 of differences between averages of indicated pairs calculated by 
ANOVA with Tamhane’s multiple comparison test; n.s.: not significant. 
 

We isolated GBM stem/progenitor cells from surgically resected human GBM specimens and 

cultured them as neurospheres by using previously established conditions (Ortensi et al.). We 

next assessed CLIC1 expression level in GBM derived neurosphers. Similarly to the results 

obtained for brain tissues, GBM stem/progenitor cells expressed significantly higher level of 

CLIC1 mRNA compared to normal human progenitor cells (NPCs), with variable degrees 

among the tumor samples analyzed (Figure 19).  
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Figure 19. CLIC1 expression in patient-derived GBM neurospheres. CLIC1 expression levels by 
qRT-PCR in different patient-derived GBM neurospheres. Experiments were performed in triplicate; 
error bars represent 95% confidence intervals. 
 

Considering that GBM-derived neurospheres are a mixed population of stem, progenitor and 

differentiated cells, we investigated CLIC1 localization within the neurosphere.  A specific 

CLIC1 antibody (Figure 7) revealed a colocalization between CLIC1 and putative 

stem/progenitor cell markers (Sox2, Nestin) (Lee J et al., 2006), showing that CLIC1 is 

enriched in the stem/progenitor cell compartment of the neurosphere (Figure 20).  

 

 

 

 

 

 

 

 

 

 

Figure 20. CLIC1 distribution within the neurosphere. Representative images of CLIC1 
immunostaining in GBM-derived neurospheres. Dissociated neurospheres were fixed and processed for 
immunofluorescence (CLIC1, red; Sox2, Nestin and GFAP, green; DAPI, blue; merge, yellow). Scale 
bar = 50 µm. 
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The frequency of CLIC1 colocalization with either Sox2 or Nestin has been quantified and 

evaluated by Cohen’s kappa index (Carletta J. et al., 1996) demonstrating that the frequency of 

co-localization observed was significantly higher (Cohen’s kappa index close to 1.0) than what 

would be expected from stochastically behaving-markers (Cohen’s kappa index close to 0.0) 

(Table 2).  

 

 

 

 

 

 

Table 2. . Cohen’s K close to 1 for highly associated markers, close to 0 for unrelated markers. The 
significance of observed K values has been evaluated by means of Chi square test. Immunostained cells 
were counted at 20X magnification, five fields for each sample (average cell number per field was 150). 
Three independent experiments were performed. 
 
 

To further characterize CLIC1 co-localization with putative stem cell markers we performed 

FACS analysis in two different patient derived neurospheres (GBM#7 and GBM#10), 

analysing CLIC1, Nestin and GFAP expression levels. We found that the majority of cells (85-

95%) was nestin-positive, and only a small percentage of cells, as few as 10%, was GFAP-

positive. Moreover, we detected a positive correlation between CLIC1 and Nestin expression (r 

= 0.8 and 0.6 in hGBM#7 and hGBM#10 respectively), on the other hand no correlation has 

been scored between CLIC1 and GFAP expression (r=0.2 and 0.05 respectively) (Figure 21).  
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Figure 21. CLIC1 association with stem cell markers. GBM-derived neurospheres have been 
dissociated and labeled with CLIC1 antibody in association with either the neural stem cell marker 
Nestin or the astrocyte marker GFAP. Flow-cytometry analyses are depicted. Slopes of the fitting curves 
(hGBM#7NESTIN= 0.501, hGBM#7GFAP= 0.061, hGBM#10NESTIN= 0.531, hGBM#10GFAP= 0.016) and the 
reported correlation values (hGBM#7: RNESTIN= 0.81, RGFAP= 0.21; hGBM#10 RNESTIN= 0.64, RGFAP= 
0.02), point out a better correlation of CLIC1 with Nestin than with GFAP. 
 
 

3.3. CLIC1 chloride current in normal and tumoral neurospheres 

CLIC1 can exist as both soluble globular protein and integral membrane protein with ion 

channel function depending on the tissue and on the oxidative status. After oxidative stress 

CLIC1 is able to translocate into plasma membrane where it acts as a Cl- channel. Thus, we 

studied CLIC1 localization in normal human progenitor cells and GBM-derived neurospheres 

isolated from different patients. Immunofluorescent staining of not permeabilized cells revealed 

that CLIC1 is constitutively localized on the plasma membrane of GBM-derived neurospheres 

(Figure 22, upper panel); in contrast, NPCs did not show a plasma-membrane staining (Figure 

22, lower panel).  
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Figure 22. CLIC1 subcellular localization in normal and tumoral neurospheres. Representative 
images of CLIC1 immunostaining in not permeabilized normal and tumoral human neurospheres. 
Dissociated neurospheres were fixed and processed for immunofluorescence (CLIC1: red; DAPI: blue). 
Cells were analyzed using confocal laser scanning microscopy and a single optical x-y-plane section is 
shown. Scale bar = 10 µm. NPC: normal human progenitor cells; hGBM#7: neurospheres isolated from 
GBM#7 patient. 
 

Western blotting analysis of cell fractions obtained from NPCs and hGBM#7 cells showed 

CLIC1 enrichment in the plasma membrane of human tumoral neurospheres (Figure 23), 

consistent with the result obtained in other GBM derived neurospheres (Figure 24).  

 

 

 

 

 

 

 
Figure 23. Plasma membrane localization in GBM- and neural stem cell-derived  neurospheres. 
Western blotting analysis of CLIC1 expression levels in whole cell lysates (left panel) and plasma-
membrane and cytoplasm-containing fractions (right panel) derived from normal (NPC) and tumoral 
neurospheres (hGBM#7). Na+,K+ Pump and GAPDH expression were examined to assess the purity of 
plasma-membrane and cytoplasmic fractions respectively. Reversible Ponceau staining was used as a 
control for equal protein loading. 
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Figure 24. CLIC1 subcellular localization in several GBM-derived neurospheres. Representative 
images of CLIC1 immunostaining in not permeabilized normal and tumoral human neurospheres. 
Dissociated neurospheres were fixed and processed for immunofluorescence (CLIC1: red; DAPI: blue). 
Cells were analyzed using confocal laser scanning microscopy and a single optical x-y-plane section is 
shown. Scale bar = 20 µm. hGBM#7-22: neurospheres isolated from GBM#7-22 patient.  
 

To unravel if CLIC1 constitutively localized on cell plasma membrane functions as ion 

channel, we measured CLIC1 ion channel activity by perforated patch clamp technique in 

NPCs and hGBM#7 cells. Cl- currents mediated by CLIC1 were isolated using the specific 

inhibitor indanyloxyacetic acid–94 (IAA94), and normalized to the total current (ITot) in the 

corresponding cell (IIAA94 / ITot%). Interestingly, we found that CLIC1-mediated currents 

(IAA94-sensitive currents, IIAA94) were more represented in tumoral cells (GLM: p-value < 

0.001 related to cell type, and p=0.4311 related to membrane potential) (Figure 25). Taken 

together, these results demonstrate increased CLIC1 expression and activity in tumoral stem-

progenitor cells compared to the normal counterparts. 
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Figure 25. CLIC1 functional activity in GBM- and neural stem cell-derived neurospheres. CLIC1-
mediated Cl- currents measured by perforated patch clamp technique in normal (NPC) and tumoral 
(hGBM#7) neurospheres. Cl- currents mediated by CLIC1 (IIAA94) were isolated using the specific 
CLIC1 inhibitor indanyloxyacetic acid–94 (IAA94), and normalized to the total cell current (ITot) 
(IIAA94/ITot%). Average values derived from five independent experiments were represented. Error bars 
represent 95% confidence intervals. GLM test of between-subjects effects: F for “potential” = 1.44, d. f. 
= 4, p = 0.235 (n. s.); F for “cell type” = 36.17, d. f. = 1,  p = 0.001; F for variables interaction = 1.30, d. 
f. = 8, p = 0.266 n. s. No significance for interaction means a similar pattern of IIAA94 / ITot change for 
different cell types at different membrane potential values, even if average IIAA94 / ITot  values are 
different between different cell types. 
 
 

3.4. Chloride ion current upon CLIC1 knock-down in GBM-derived neurospheres.  

To disclose CLIC1 role in GBM stem/progenitor cells, we silenced CLIC1 expression in 

patient-derived GBM neurospheres by cloning short-hairpin RNA oligonucleotides specific 

against human CLIC1 mRNA (sh) in a lentiviral vector containing green fluorescent protein 

(GFP) and puromycine resistance gene as reporters. The same vector containing an shRNA 

targeting the luciferase mRNA sequence was used as control (Non Targeting, NT). Interference 

efficiency was confirmed by western blot: CLIC1 was silenced by nearly 90% in different 

samples (Figure 26). 
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Figure 26. CLIC1 silencing in GBM-derived neurospheres. Western blotting analysis showing the 
efficiency of CLIC1 silencing in GBM neurospheres isolated from 4 patient samples. Dissociated 
neurospheres were transduced with lentivirus carrying either non-targeting shRNA (NT) or CLIC1 
shRNA (sh). Mouse embryonic fibroblasts derived from CLIC1 knocked out mice (MEF CLIC1-KO) 
were used as negative controls. Vinculin was used as loading control. 
 

In order to sort out whether the reduction in total CLIC1 protein level was associated with a 

modification in the amount of the Cl- current mediated by this protein, we performed perforated 

patch clamp experiments in NT and CLIC1 silenced cells derived from two different patients 

(hGBM#7 and hGBM#10). Representative experiments from NT and sh cells are reported 

(Figure 27 A). Cell currents have been measured before (Total) and after IAA94 or 4,4'-

Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) addition to the bath solution. The 

corresponding Current/Voltage relationships clearly show a IAA94-sensitive current in NT 

cells but not in sh cells (Figure 27 B).  

 

 

 

 

 

 

 

 

Figure 27. CLIC1 silencing and ion channel activity. Representative current traces (total, IAA94-
sensitive and DIDS-sensitive currents) from control (NT) and CLIC1 silenced (sh) cells derived from 
hGBM#10 neurospheres, and elicited by different potential steps (from -60 mV to 60 mV). 
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In all the cells analyzed from both hGBM#7 and hGBM#10 neurospheres, we found that 

control cells always displayed a IAA94-sensitive current while CLIC1 silenced cells 

consistently showed the absence of a detectable CLIC1-mediated Cl- current (Generalized 

Linear Model [GLM]: p-value < 0.0001 related to cell type, and p=0.979 related to membrane 

potential) (Figure 28 A). The other Cl- currents in the cells, isolated using the inhibitor 4,4'-

Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS-sensitive currents, IDIDS), were comparable 

(GLM: p-value=0.068 related to cell type, and p=0.010 related to membrane potential) (Figure 

28 B). These results corroborate the effects of CLIC1 silencing onto CLIC1 expression and ion 

channel activity, revealed as the lack of IAA94-sensitive current in CLIC1 silenced cells.  

 

 

 

 

 

 

 

Figure 28. CLIC1 silencing and ion channel activity. The current-voltage relationships for the 
corresponding experiments in B and D. (A) CLIC1 sensitive currents (IIAA94) were isolated using the 
specific CLIC1 inhibitor indanyloxyacetic acid–94 (IAA94), and normalized to the total cell current 
(ITot) (IIAA94/ITot%). (B) The other Cl- currents in the cells were evaluated by the inhibitor 4,4'-
Diisothiocyano-2,2'-stilbenedisulfonic acid (IDIDS) and normalized to the total cell current (ITot) 
(IDIDS/ITot%). Average values derived from four independent experiments were represented. Error bars 
represent 95% confidence intervals. GLM test of between-subjects effects on IIAA94/ITot values: F for 
“potential” = 0.108, d. f. = 4, p = 0.979 (n. s.); F for “cell type” = 50.038, d. f. = 1,  p < 0.001; F for 
variables interaction = 0.058, d. f. = 4, p = 0.993 n. s. no significance for interaction means a similar 
pattern of IIAA94/ITot change for different cell types at different membrane potential values, even if 
average IIAA94/ITot  values are different between different cell types. GLM test of between-subjects 
effects on IDIDS / ITot values: F for “potential” = 4.031, d. f. = 4, p = 0.01; F for “cell type” = 3.590, d. f. = 
1, p = 0.068; F for variables interaction = 0.085, d. f. = 4, p = 0.986. No significance for interaction 
means a similar pattern of IDIDS/ITot change for different cell types at different membrane potential 
values. 
 

3.5. Self-renewal and proliferative capacity of CLIC1 silenced neurospheres  

We next investigated the role of CLIC1 in regulating the maintenance and the growth of GBM 

neurospheres. In vitro self-renewal capacity of CLIC1 silenced and control cells was evaluated 
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by methylcellulose assay. Single cells were plated in semi-solid medium, single clones counted 

after 15 days and the clonogenic cells were calculated as percentage of the total number of 

seeded cells. CLIC1 silenced cells formed significantly less (hGBM#7 NT: 11.63±5.23%, sh: 

3.83±1.75%; hGBM#9 NT: 14.86±3.37%, sh: 3.20±0.71%; hGBM#10 NT: 14.00±3.23%, sh: 

3.35±0.98%; p-value<0.01 in all experiments) (Figure 29 A) and smaller colonies (NT: 

502.5±56.85 mm; sh: 264.0±13.50 mm. p-value < 0.01. N=5) (Figure 29 B), with a lower 

cellular content compared to control cells (NT: 830.00±119.22 cells, sh: 483.33±85.68 cells. 

p<0.01) (Figure 29 C).  

 

 

 

 

 

 
Figure 29. Effects of CLIC1 silencing on neurosphere size. (A) Representative microphotographs of 
control (NT) and CLIC1 silenced (sh) neurospheres formed in methilcellulose-containing medium after 
15 days in culture. Scale bar = 300 µm. (B) Quantification of the maximal diameters of control (NT) 
and CLIC1 silenced (sh) hGBM#7 neurospheres. Ten neurospheres for each sample were analysed. (D) 
Quantification of hGBM#7 neurosphere cell number. Ten neurospheres for each sample were picked, 
dissociated and the cell number was determined. 	
  
 

When spheres generated at the first plating were dissociated and single cells were seeded on 

metyl-cellulose, control cells formed spheres with significantly high efficiency, while CLIC1 

silenced cells generated only few small spheres, suggesting reduced self-renewal capacity 

(Figure 30 A). Interestingly, there was no difference in clonogenic capacity between CLIC1 

silenced and control cells at the third re-plating when CLIC1 silenced cells re-expressed the 

protein (Figure 30 B and C).  
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Figure 30. Effects of CLIC1 silencing on clonogenic potential. Neurosphere formation assay. (A) The 
clonogenic capacity of control (NT) and CLIC1 silenced (sh) cells was evaluated by plating cells in 
methilcellulose-containing medium. After 15 days, each plate was examined under a light microscope, 
and the total number of neurospheres was determined. (B) The clonogenic capacity og NT and sh 
neurospheres was assessed upon serial passaging. (C) Western Immunoblot of primary, secondary and 
tertiary colonies showed a marked reduction of shCLIC1 interference. Vinculin was exploited as loading 
control.  Three independent experiments were performed; error bars represent 95% confidence intervals; 
* p < 0.05, ** p < 0.001, *** p < 0.0001. 
 

Furthermore, CLIC1 silencing strongly reduced cellular growth kinetics in all patient-derived 

GBM neurospheres analyzed, as shown by MTT assay (hGBM#7: F=233.5, d.f.=1, p-

value<0.001; hGBM#9: F=208.5, d.f.=1, p-value<0.001; hGBM#10: F=62.8, d.f.=1, p-

value<0.001) (Figure 31).  

 

 

 

 

 

 

Figure 31. CLIC1 affects proliferation capacity of GBM-derived neurospheres. The growth of 
control (NT) and CLIC1 silenced (sh) cells isolated from 3 patient samples was measured by 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Three independent experiments 
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were performed; error bars represent 95% confidence intervals; ** p<0.001. GLM tests of between-
subjects effects showed statistically significant difference in all patients for the relative cell growth 
according to the time, the interference, and the interaction between those two variables. 
 

Consistent with cell proliferation data, CLIC1 silencing strongly reduced the percentage of 

BrdU positive cells in GBM derived neurospheres (hGBM#7 NT: 64.32±3.93%, sh: 

12.09±2.25%; hGBM#9 NT: 28.58±2.58%, sh: 14.48±0.18%; hGBM#10 NT: 41.39±0.80%, 

sh: 18.61±1.32%. p-value<0.05 in all hGBM analyzed) (Figure 32). 

 

 

 

 

 

 

 

Figure 32. BrdU incorporation assay. Control (NT) and CLIC1 silenced (sh) neurospheres isolated 
from 3 patient samples were subjected to BrdU incorporation assay: BrdU-positive cells were quantified 
by immunofluorescence. Immunostained cells were counted at 20X magnification, five fields for each 
sample (average cell number per field was 150). Three independent experiments were performed; error 
bars represent 95% confidence intervals; * p < 0.05, ** p < 0.001, *** p < 0.0001. 
 

However, cell cycle analysis showed no alteration in cell cycle progression (Figure 33 A). 

Moreover, no difference in the percentage of apoptotic cells between CLIC1 silenced and the 

control cells was detected (Figure 33 B and C). Together, these data indicate that CLIC1 

downregulation affects the ability to steadily propagate GBM neurospheres.  
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Figure 33. CLIC1 silencing and ion channel activity. (A) Cells were fixed and stained with PI for the 
DNA content analysis by using flow cytometry (FACS). The cell cycle distribution within the total cell 
population is shown as histograms with the percentage of cells in the cell cycle phases indicated for NT 
and CLIC1 silenced (sh) cells. The results are representative of three experiments. (B) Apoptosis 
detection in CLIC1 silenced (sh) and NT cells. The percentages of apoptotic cells in the cultures were 
analysed by PI staining for DNA content analysis by using flow cytometry (FACS) or (C) by 
immunofluorescent detection of cleaved caspase 3. Results shown are relative to three independent 
experiments; error bars represent 95% confidence intervals; p values are two-sided (Student t test).  
 
 

3.6. GBM stem / progenitor cell proliferation and CLIC1-mediated chloride current  

To determine whether the effect of CLIC1 silencing on GBM stem/progenitors’ growth is 

dependent on its function as ion channel, we treated GBM neurospheres with a specific CLIC1 

antibody. We performed electrophysiological recordings in perforated patch clamp 

configuration on cells derived by mechanically dissociated neurospheres, to test the antibody 

efficacy in blocking CLIC1-mediated Cl- currents. Upon CLIC1 antibody addition, a reduction 

of total current was observed, but no further reduction was detected following IAA-94 addition  

(Figure 34 A and B upper panels); similar results were obtained by treating cells first with IAA-

94 and then with the specific CLIC1 antibody (Figure 34 A and B middle panels) (ANOVA 

with Tamhane’s multiple comparison test for IAA94/CLIC1 antibody treatment: p-

value<<0.0001). No alteration in total current was measured treating the cells with a mouse 

isotype antibody (IgG) as control (Figure 34 A and B lower panels) (ANOVA with Tamhane’s 

multiple comparison test for IgG antibody treatment: p-value=0.66). Overall, these data prove 

the efficacy and the specificity of CLIC1 antibody in blocking CLIC1-mediated Cl- currents.   
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Figure 34. Effects of CLIC1 antibody treatment on GBM neurospheres. (A and B) The effect of 
CLIC1 antibody on CLIC1 currents has been assessed by perforated patch clamp technique. (A) 
Representative whole cell current traces recorded in the perforated patch configuration at 50 mV from 
NT and CLIC1 silenced (sh) cells derived from hGBM#10 cells are shown. (B) Quantification of the 
different treatments as in (A) on whole cell current traces. Average values derived from four 
independent experiments were represented. The significance of the differences in relative total current 
after Tahmane’s test for disomogeneous variances is shown: n. s. = not significant, *** p < 0.0001. 
 
 

We next treated GBM neurospheres with different doses of CLIC1 antibody (1, 5 and 10 

mg/ml) and measured the percentage of viable cells after 72 hours. The blockage of CLIC1 

activity decreased cell growth in a dose dependent manner (Figure 35). 
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Figure 35. Effects of CLIC1 antibody treatment on GBM neurosphere viability. Effect of CLIC1 
antibody on GBM neurospheres derived from hGBM#7 and hGBM#10 patients. GBM neurospheres 
were treated with increasing concentrations of CLIC1 antibody (1, 5 and 10 µg/ml) for 72 hours and cell 
viability was monitored by MTT assay; error bars represent 95% confidence intervals; three 
independent experiments were performed. The difference between cell viability at different antibody 
concentrations and reference average viability in control conditions has been evaluated by Bonferroni’s 
test. The significance of the differences is shown: * p < 0.05, *** p < 0.0001. 
 

The maximal biological effect was observed at the highest doses tested (10 µg/ml) in cells that 

express higher levels of CLIC1 (hGBM#7), while cells expressing lower levels of CLIC1 

(hGBM#10) reached the maximal biological effect already at lower doses of CLIC1 antibody (5 

mg/ml) (p-value<0.05 at 5 and 10 mg/ml of CLIC1 antibody). BrdU uptake was reduced in 

both cell lines after CLIC1 antibody treatment (NT: 30.6±6.90%, sh: 17.7±4.30%; p-

value<0.05) while there were not differences in the percentage of apoptotic cells between 

treated and untreated cells (CLIC1 antibody: 23.1±4.2% and IgG: 21.0±3.6%; p-value=0.42) 

(Figure 36). These results recapitulate those obtained after CLIC1 silencing, demonstrating that 

CLIC1 ion channel activity is essential for the growth of GBM stem/progenitor cells. 
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Figure 36. Effects of CLIC1 antibody treatment on neurosphere proliferation and apoptosis. 
Effect of CLIC1 antibody treatment on BrdU incorporation (left panel) and caspase-3 activation (right 
panel) in hGBM#7 neurospheres. BrdU- or cleaved caspase-3 positive cells were counted at 20X 
magnification, five fields for each sample (average cell number per field was 150). Three independent 
experiments were performed. An unpaired two-sided Student’s test was used: * p < 0.05, n. s.: not 
significant. 
 
 
3.7. CLIC1 involvement in GBM development in vivo 
 
To determine the in vivo relevance of CLIC1 silencing, we performed an orthotopic 

transplantation assay. We stereotaxically implanted dissociated neurospheres infected with a 

lentivirus expressing either NT or shRNA specific for CLIC1 (sh) into the nucleus caudatus of 

immunodeficient mice. We monitored tumor formation and growth until the appearance of 

neurological signs. Survival of mice injected with CLIC1 silenced cells was prolonged in 

comparison with NT controls (Chi square = 6.21, d. f. 1, p<0.05) (Figure 37).  

 

 

 

 

 

 

 

 
 
Figure 37. Evaluation of CLIC1 role in GBM development. Kaplan-Meier survival curve of mice 
intracranially transplanted with 105 control (NT) and CLIC1 silenced (sh) cells. Data are from one 
experiment with five mice per group. P-value was calculated with log rank test: * p < 0.05, Chi square = 
6.27, d. f. 1.	
  
 
Both control and CLIC1 silenced mice eventually developed GBMs according to WHO 

classification. When we sacrificed the transplanted mice at the same time, i.e. at the appearance 

of the neurologic signs in control mice, CLIC1 silenced mice (sh) were still presympthomatic 

(pre) and their tumors were significantly smaller than control ones (NT); however, when we 

analyzed CLIC1 silenced sympthomatic (sym) mice their tumors reached the size of control 

tumors (Figure 38 A and B; ANOVA with Tamhane’s multiple comparison tests: NT vs pre 
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p<0.05; pre vs sym p<0.05; NT vs sym p = n.s). CLIC1 silenced xenografts lacked CLIC1 

expression as detected by IHC at the early time point, while CLIC1 expression level became 

comparable between CLIC1 silenced (sh) tumors and controls (NT) at the late time point 

(Figure 38 A).  

 

 

 

 

 

 

 

 

Figure 38. Effect of CLIC1 silencing on tumor volume (A) Representative brain images from mice 
intracranially injected with NT and CLIC1 silenced (sh) cells stained with hematoxylin and eosin 
(H&E) (top row, scale bar = 3mm) or CLIC1 (bottom row, scale bar = 300µm); pre: presympthomatic 
mice; sym: sympthomatic mice. (B) Tumor volume quantification, as indicated. Experiment was carried 
out using 3 mice per group. Error bars represent 95% confidence intervals; * p<0.05. One-way ANOVA 
with Bonferroni’s correction was used.   
 

Interestingly, when lower numbers of cells (102 and 10 for GBM#10 and 103, 102 and 10 for 

GBM#18) were injected in mice, none of the mice that received CLIC1 silenced cells 

developed tumors (Table 3). The calculated stem cell frequency by the ELDA algorithm was 

significantly lower in CLIC1 silenced cells (hGBM#10: Chi-square = 17.5, d.f = 1, p < 0.0001; 

hGBM#18: Chi-square = 34.2, d.f = 1, p<<0.0001) and was underestimated due to the observed 

CLIC1 re-expression in all formed tumors. Thus CLIC1 appears to be relevant in GBM-

neurospheres to form tumors.  
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Table 3. Table representing the incidence of tumor formation of tumor bearing mice and the CSC 
frequency calculated in the hGBM neurospheres (estimate). hGBM#10: Chi-square = 17.5,  p < 0.0001; 
hGBM#18: Chi-square = 34.2, *** p < 0.0001. 
 

Given the ability of CLIC1 antibody to reduce the proliferation of patient-derived GBM 

neurospheres in vitro, we next explored a potentially translatable targeting of CLIC1 in vivo. To 

test this, we transplanted GBM derived neurospheres treated with CLIC1 antibody into the 

brains of immunodeficient mice. We sacrificed three mice every week, following tumor 

progression for a month. Cell treatment with CLIC1 antibody resulted in smaller tumours 

(Figure 39 A) and significantly improved overall mice survival (Figure 39 B) (n=6, Log-rank 

p<0.01). Thus, transient exposure to CLIC1 antibody produces a significant decrease in the in 

vivo tumorigenicity of GBM cells. 
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Figure 39. Effect of anti-CLIC1 antibody treatment on GBM development (A) Representative 
Hematoxylin and eosin stained histological images from mice intracranially injected with hGBM#7 cells 
treated with CLIC1 antibody or isotype control antibody (scale bar = 3 mm). Mice were killed at 2nd, 3rd 
and 4th week, as shown. (B) Kaplan-Meier survival analysis of mice intracranially implanted with 105 
hGBM#7 cells treated with CLIC1 antibody or isotype control antibody. Data are from one experiment 
with six mice per group. P-value was calculated with log rank test: * p = 0.012, Chi square = 6.36, d. f. 
1.  
 
 

CLIC1 is a protein whose presence has been already established in a variety of 

biological fluids like blood, urine and extracellular media. It has been shown that 

levels of circulating CLIC1 can be of prognostic value in pathological conditions 

like nasopharyngeal and ovarian carcinoma; given our data showing CLIC1 to be 

particularly expressed in malignant brain tumors and its proved role in regulating 

GBM cell proliferation and cancer stem cell self-renewal, we wish to propose 

CLIC1 as potential viable biomarker in human GBM, and therefore study its 

mechanism of action in vitro and in vivo. 

  

 

 

 

 

A B 



	
  
	
  

81	
  

3.8. CLIC1 protein is secreted by glioblastoma cells in vitro 

CLIC1 was recently identified by proteomic screens in the supernatants of various cell 

lines (ref.) and in human fluids (i. e. serum, plasma, CSF) (ref.). These intriguing 

observations promted us to examine the possibility that CLIC1 protein could be released 

by gliobastoma cells as well. Specifically, we collected conditioned media from different 

glioblastoma cell lines, and evaluated CLIC1 protein level in the culture media by western 

immunoblot analysis. CLIC1 protein was expressed in the cell lysates of all samples 

analyzed and the examination of conditioned medium revealed that glioblastoma cells 

release CLIC1 protein (Figure 27 A). The culture medium was devoid of GAPDH 

suggesting that CLIC1 release in the conditioned medium was not a consequence of 

contamination by intracellular protein (Figure 40 A). Moreover, cell viability measured by 

PI incorporation was greater than 95%, providing that CLIC1 release was not due to cell 

death (Figure 40 B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 40. CLIC1 retrieval in culture media. (A) Western blotting analysis showing the expression of 
CLIC1 in several GBM cell lines (upper left) and in their respective media (upper right). GAPDH was 
used as loading control and to rule out release of cytoplasmic protein due to cell death. (B) The 
percentages of apoptotic cells in the cultures were analysed in three different cell lines by PI staining for 
DNA content analysis by using flow cytometry (FACS). 
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To further confirm CLIC1 protein release by glioblastoma cells, we took advantage of U87 

MG glioblastoma cells overexpressing CLIC1 protein fused to Green Fluorescent Protein 

(GFP) at the N-terminal (CLIC1 GFP). 24 hours after cell plating, we collected culture 

medium and employed immunoprecipitation against GFP-tag to enrich CLIC1 GFP fusion 

protein from the culture medium. A single band of 50KDa corresponding to CLIC1 GFP 

fusion protein was detected in the medium from U87 MG overexpressing cells, confirming 

that exogenous CLIC1 GFP protein was released in the medium (Figure 41).  

 

 

 

 

 
 
Figure 41. Exogenous CLIC1 GFP is secreted in culture medium. (A) Western blotting analysis 
showing the expression of CLIC1 in U87MG expressing (+) or not (-) a GFP-fused form of CLIC1. 
Input shows the expression of CLIC1 GFP in whole cell extracts (lysates) and in collected medium 
(media), while IP:GFP displays CLIC1 GFP expression in the same samples upon GFP immune-
precipitation.  
 
 

As a complementary approach, we co-cultured U87 MG glioblastoma cells expressing a 

FLAG-tagged isoform of CLIC1 (U87MG CLIC1 FLAG) with U87 MG glioblastoma cells 

expressing Green Fluorescent Protein (U87 MG GFP). After 24 hours, we detected by 

immunofluorescence studies FLAG-tagged isoform of CLIC1 in U87 MG GFP cells 

(Figure 42), indicating that CLIC1 protein has been transferred from cell to cell. 

Colletively, the above observations demonstrate that CLIC1 protein is secreted by 

glioblastoma cells in vitro. 
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Figure 42. Exogenous CLIC1 is secreted and uptaken by recipient cells. Representative images of 
U87MG GFP cells (left panel) expressing CLIC1 FLAG variant (mid panel) onto several protrusions 
(right panel). U87MG cells were fixed and processed for immunofluorescence (GFP, green; CLIC1 
FLAG, red). Scale bar = 20 µm. 
 
 

3.9. CLIC1 protein is secreted via extracellular vesicles (EVs)  

In order to understand the mechanism of CLIC1 protein release from glioblastoma cells, we 

checked the one based on EVs. Interestingly, CLIC1 protein contains a PPxL motif for binding 

of Nedd4 type E3 ubiquitine ligases, and a dileucine cluster motif that facilitate endocytosis and 

intracellular trafficking. Moreover, analysis of ExoCarta database revealed that CLIC1 protein 

resides in EVs, comprising exosomes and microvesicles based on their composition and 

biophysical properties, released from different cell types. To investigate whether CLIC1 

secreted protein is contained in EVs derived from glioblastoma cells, we chose to study the 

well-characterized U87 MG glioblastoma cell line, which is known to produce significant 

amounts of EVs. EVs were isolated from U87 MG conditioned media according to an 

established protocol based on serial centrifugation (Théry C et al., 2006). Nanoparticle 

Tracking Analysis (NTA) revealed the presence of an heterogeneous population of vesicles, 

which possesses an average mean diameter of 146 + 3.4 nm and comprises smaller EVs, 

ranging in size from 10 to 150 nm (60% of the total), and larger EVs, with a diameter larger 

than 150nm (40% of the total) (Figure 43 A and B).  
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Figure 43. Nanoparticle tracking analysis. (A) Graph displaying size and yield of particles detected in 
our EV preparations by Nanosight. (B) Graph showing percentual size distribution. Mean values are 
depicted. Error bars represent standard error.      
 
 

Characterization by electron microscopy showed bilayered vesicles (Figure 44 A) positive for 

CD63, a tetraspanin strongly enriched in late endosomes and EVs (Figure. 44 B).  

 

 

 

 

 

 

 

 

Figure 44. Morphological analysis of EVs. (A) Electron micrograph of U87MG EVs. Picture shows 
membrane bound vesicles of 50-100 nm (arrowheads). (B) Immunogold labeling showing a vesicle 
positive for the vesicular marker CD63.  
 
 

Purified EVs were enriched in the exosome specific proteins CD63 and tsg101 (tumor 

susceptibility gene 101), with respect to whole cell lysates wich were immuno-negative for 

both proteins (Figure 45 A). Notably, GM130 cis-Golgi marker was absent, demonstrating the 

purity of the isolated fractions (Figure 45 A). Interestingly, CLIC1 protein was expressed in 

EVs derived from U87 MG cells, as demonstrated by western immunoblot analysis (Figure 45 

0-50 50-100 100-150 nm > 150

0

10

20

30

40

50

Particle Class Size (nm)

P
er

ce
nt

 o
f t

ot
al

 p
op

ul
at

io
n

 (%
) 

A B 

A B 



	
  
	
  

85	
  

A) and immuno-electron microscopy (Figure 45 B). In agreement with the experiments 

performed in U87 MG cells, we confirmed CLIC1 protein expression in EVs derived from two 

other glioblastoma cell lines (i. e. U118 MG and T98G) (Figure 45 A).   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 45. CLIC1 expression within EVs. (A) Western immunoblot of whole cell lysates (WCL) and 
respective EVs of different GBM cell lines. Endocytic markers (CD63, tsg101) are expressed in EVs 
while GM130 expression, a cis-Golgi protein, is not detectable in EVs samples. (B) EVs are 
immunogold labeled with CD63 (10 nm gold bead) and CLIC1 (15 nm gold bead). 
 

To further support CLIC1 sorting to EVs, we visualized the colocalization between CLIC1 and 

CD63 protein at the cellular level, by applying the in situ proximal ligation assay (PLA). The 

PLA exploits antibodies to which single stranded DNA oligonucleotides are attached; when 

target antigens resides 10-50 nm close, oligonucleotide strands can hybridize and, following 

ligation, a circular DNA is formed. Specific fluorescent probes and several round of PCR 

amplification are then exploited to amplify the signal. The in situ PLA revealed a large number 

of fluorescence spots in cell cytoplasm, indicating that a substantial fraction of CLIC1 protein 

was located in CD63 positive compartments of the cell (Figure 46, left panel). The possibility 
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that the PLA signals were derived from non-specific binding of PLA probes was excluded by 

the absence of fluorescence PLA spots analysing CLIC1 silenced cells (Figure 46, right panel).  

Taken together, our data provide evidence that CLIC1 protein is secreted from glioblastoma 

cells in EVs. 

 

 

 

 

 

 

 

 

 

Figure 46. CLIC1 co-expression with CD63. The co-expression of CLIC1 with CD63 has been 
assessed by proximity ligation assay in U87MG wt cells (left panel). The degree of interaction is 
proportional to the number of foci (red); to rule out the specificity of the assay, U87MG shCLIC1 cells 
have been analyzed (right panel). 
 
 

3.10. CLIC1-containing EVs regulate the proliferative response of glioblastoma cells 

We have previously described the role of CLIC1 protein in GBM progression through the 

modulation of GBM CSC self-renewal and proliferation. We then sought to determine if 

CLIC1-containing EVs might influence the proliferative response of GBM cells as well. In 

order to exert their effect, EVs must be internalized by recipient cells. We labeled U87 MG 

cell-derived EVs with the lipid-associating fluorescent dye PKH26. When PKH26 positive 

EVs were incubated with human embryonic kidney 293T cells, we observed a rapid uptake 

of labeled EVs into the recipient cells, as indicated by confocal microscopy (Figure 47 A). 

Labeled EVs displayed a time-dependent uptake kinetic, which reached the maximum 24 

hours after incubation, when PKH26 fluorescence was observed in more then 80% of 
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recipient cells (Figure 47 B). Moreover, incubation at 4 °C abolished EV uptake (Figure 47 

C). 

 

 

 

 

 

 

 

 

Figure 47. EV functional uptake. Collected EVs are actively uptaken by recipient cells. (A) 
Representative confocal image of 293T cells treated with EVs labeled by PKH-26. (B) Quantification of 
PKH-26 positivity of 293T cells treated with labeled EVs for 0-24 hours; the uptake of EVs is time-
dependent and reaches its peak at 12 hours. (C) Quantification of 293T cell PKH-26 positivity after 1 
and 4 hours of treatment with labeled EVs; EV uptake has been analyzed both in normal conditions 
(37°C) and at 4°C. Reduced EV internalization rules out passive diffusion through the cell.   
 
 

To assess the effects of CLIC1-containing EVs, we took advantage from U87 glioblastoma cell 

line, which normally express CLIC1 protein, and we used it either to silence CLIC1 expression 

(U87 shCLIC1) or to overexpress a FLAG-tagged version of CLIC1 protein (U87 CLIC1 

FLAG). We collected conditioned media from the same amount of control (U87 NT), U87 

siCLIC1 and U87 CLIC1 FLAG cells and isolated EVs through serial centrigutations. Western 

immunoblot analysis confirmed that CLIC1 protein was present in the EVs derived from the 

three cell lines. Notably, CLIC1 expression level in EVs mirrored CLIC1 cellular level. 

Moreover, the three EV groups expressed the known exosomal markers CD63 and tsg101 at the 

same level (Figure 48). 
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Figure 48. Characterization of EVs isolated upon CLIC1 modulation. Western immunoblot of 
whole cell lysates (WCL) obtained from NT, shCLIC1 and CLIC1 FALG U87MG cells; respective EVs 
have been analyzed as well. CD63 and tsg101 have been used as endocytic markers; vinculin is the 
loading control.  
 
 

Funcionally active EVs isolated from U87 NT, U87 shCLIC1 or U87 CLIC1 FLAG cells were 

added to U87 MG recipient cells and cell proliferation was evaluated. EVs have been shown to 

sustain glioblastoma cell growth in vitro. In line with these findings, proliferation was 

increased after treatment with EVs isolated from U87MG NT cells (NT EVs). Administration 

of an equal amount of EVs isolated from CLIC1 overexpressing U87 MG cells (CLIC1 FLAG 

EVs) showed a robust proliferative response of U87 MG recipient cells, resulting in more then 

three-fold stimulation of proliferation compared to untreated cells. Intriguingly, the mitogenic 

stimulus was strongly impaired upon treatment with EVs derived from CLIC1 silenced U87 

MG cells (shCLIC1 EVs) (Figure 49). Comprehensively, these data demonstrate that CLIC1-

containing EVs modulate glioblastoma proliferative response in a CLIC1-dependent fashion. 
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Figure 49. Vesicular CLIC1 levels and cell proliferation in vitro. The growth of U87MG wt cells was 
measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay after the 
treatment with NT, shCLIC1, CLIC1 FLAG EVs (50µg/ml) or PBS (vehicle); it is depicted cell viability 
following 120 hours of treatment. Three independent experiments were performed; error bars represent 
standard error; * p<0.05.  
 
 

3.11. CLIC1 regulates EV proliferative potential in vivo 

To disclose whether the effect of CLIC1-containging EVs were maintained also in vivo, we 

subcutaneously injected U87 MG cells treated with NT EVs, siCLIC1 EVs and CLIC1 

FLAG EVs, or PBS as control, into one flank of nude mice and monitored tumor growth 

over time. In agreement with the in vitro results, we measured a m arked boost of tumor 

growth upon treatment with NT EVs. Interestingly, co-injecting U87MG cells together 

with CLIC1 FLAG EVs resulted in a massive increase of the tumor growth. On the other 

hand, cell treatment with shCLIC1 EVs resulted in the total abolishment of such 

enhancement (Figure 50 A). At the onset of epidermic lesions, we surgically resected 

subcutaneous tumors and weighted them. As shown in Figure 37 A, the mean tumor 

weights were significantly higher in mice bearing tumors derived from U87 MG cells 

treated with CLIC1 FLAG EVs (Figure 50 B). 
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Figure 50. Vesicular CLIC1 levels and tumor development in vivo. (A) The volume of 
subcutaneously injected U87MG tumors has been measured after treatment with NT, shCLIC1, CLIC1 
FLAG EVs or PBS (vehicle). (B) Surgically resected tumors have been weighted. Three independent 
experiments were performed; error bars in A represent standard errors; solid lines in B are median 
values while error bars stand for minimum and maximum values.. GLM tests of between-subjects 
effects showed statistically significant difference for the relative tumor growth according to the time, the 
treatment, and the interaction between those two variables. * p<0.05 
  
 
We next established orthotopic xenografts by injecting into nude mice brains U87 MG cells 

together with NT EVs, shCLIC1 EVs, CLIC1 FLAG EVs, or PBS as control. We sacrificed 

nude mice after one and three weeks and evaluated tumor incidence. The results indicated that 

EVs with low-CLIC1 content (shCLIC1 EVs), formed tumors with lower incidence (Table 4). 

These results collectively suggest that CLIC1 modulation influences EV-mediated tumorigenic 

potential of glioblastoma cells. 
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Table 4. Table representing the incidence of tumor formation in nude mice intra-cranially injected with 
U87MG treated with NT, shCLIC1, CLIC1 FLAG EVs or PBS (vehicle).  
 
 

3.12. GBM Cancer Stem Cells-derived EVs contain CLIC1 protein 

Glioblastoma is mainteined by a sub-population of cancer stem cells (GBM CSCs) that 

survives traditional therapies, allowing tumor regrowth, and explains intratumoral cellular 

heterogeneity typical of this tumor (Reya, 2011). We verified whether CLIC1 protein could be 

secreted from GBM CSCs, and whether its release occurred via EVs. GBM CSCs have been 

isolated from human GBM specimen and cultured in serum-free medium. Examination of 

conditioned medium 48 hours after cell plating revealed that GBM CSCs secrete CLIC1 protein 

(Figure 51 A). Notably, CLIC1 protein detected in the medium was not released as a 

consequence of cell death, as demonstrated by the absence of GAPDH in the culture medium 

(Figure 51 A) and by the low percentage of cell death measured by PI incorporation method 

(Figure 51 B).  
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Figure 51. CLIC1 retrieval in culture media of GBM-derived neurospheres. (A) Western blotting 
analysis showing the expression of CLIC1 in three different GBM-derived neurospheres and in their 
respective media. GAPDH was used as loading control and to rule out release of cytoplasmic proteins 
due to cell death. (B) The percentages of apoptotic cells in the cultures were analysed by PI staining for 
DNA content analysis. 
 
 

Next, we isolated EVs from the conditioned medium of GBM CSCs. The size of the isolated 

EVs was confirmed using NTA with an average peak at 120 nm (Figure 52). 

 

 

 

 

 

 

Figure 52. Nanoparticle tracking analysis in GBM-derived neurospheres. Graph displaying size and 
yield of particles detected in hGBM#22 EV preparations by Nanosight.  
 
 

Western immunoblot analysis performed on EV extracts confirmed the enrichment of the 

exosomal markers CD63 and tsg101 and the lack of expression of GM130 cis-Golgi marker 

compared to the corresponding whole cell lysates (Figure 4053 In agreement with data obtained 

from glioblastoma cell lines, we confirmed that CLIC1 protein was expressed in GBM CSC-
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derived EVs (Figure 53). 

 

 

 

 

  

 

 

 

Figure 53. CLIC1 expression within EVs. (A) Western immunoblot of whole cell lysates (WCL) of 
hGBM#22 neurosphere and respective EVs. Endocytic markers (CD63, tsg101) are expressed in EVs 
while GM130 expression, a cis-Golgi protein, is not detectable in EVs sample.  
 
 

To investigate the role of CLIC1 in GBM CSC-derived EVs, we silenced CLIC1 expression in 

GBM CSCs and purified EVs from culture medium by differential centrifugation. We observed 

a significant decrease of CLIC1 protein content in either CLIC1 silenced GBM CSCs and in the 

corresponding EVs (shCLIC1 EVs) (Figure 54). In contrast, no major alterations in CD63 and 

tsg101 expression were detected between shCLIC1 EVs and NT EVs (Figure 54).  
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Figure 54. CLIC1 modulation in EVs derived from GBM neurospheres. Western immunoblot of 
whole cell lysates (WCL) obtained from NT and shCLIC1 hGBM#22 neurospheres; respective EVs 
have been analyzed as well. CD63 and tsg101 have been used as endocytic markers; vinculin is the 
loading control.  
 
 

To determine if CLIC1-containg EVs secreted by GBM CSCs were able to exert a pro-

proliferative effect, we incubated GBM CSCs with their own shCLIC1 EVs and NT EVs. In 

agreement with the results obtained with GBM cells lines, CLIC1 depletion in EVs resulted in a 

significant reduction of GBM CSCs growth compared to control (Figure 55).  

 

 

 

 

 

 

 

 

Figure 55. Vesicular CLIC1 levels and cell proliferation in vitro. The growth of hGBM#22 wt cells 
was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay after the 
treatment with NT and shCLIC1 EVs (50µg/ml); it is depicted cell viability following 120 hours of 
treatment. Three independent experiments were performed; error bars represent standard error; An 
unpaired two-sided Student’s test was used. * p<0.05.  
 
 

In the same way, intracranial injection of GBM CSCs treated with siCLIC1 EVs resulted in a 

significant reduction of tumor incidence at the early time point analysed (i. e. 2 week after cell 

injection). However, the absence of any difference in tumor incidence at the end point of the 

experiment (i. e. 4 week after cell injection) could reflect a delay in tumor formation (Table 5). 
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Table 5. Table representing the incidence of tumor formation in nude mice intra-cranially injected with 
hGBM#22 treated with NT and shCLIC1 EVs.  
 

3.13 CLIC1 modulation in the cell does not alter EV features 

We next sought to define whether the difference in EV stimulatory capacity might be due to 

alteration in EV features. EVs purified from the same amount of U87 NT, U87 shCLIC1 and 

U87 CLIC1 FLAG cells were analysed by NTA. Neither CLIC1 silencing nor CLIC1 

overexpression in glioblastoma cells had any effect on EV size distribution (Figure 56 A and 

B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 56. EVs dimensional classes are not affected by CLIC1 modulation. (A) Graph displaying 
size and yield of particles detected in hGBM#22 EV preparations by Nanosight. (B) Vesicles have been 
divided in four different dimensional classes. Error bars represents standard errors.  
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Also the yield of EVs secreted by U87 siCLIC1 and U87 CLIC1 FLAG was identical to that of 

EVs produced by control cells (Figure 57).  

 

 

 

 

 

 

 

Figure 57. EVs yield is not affected by CLIC1 modulation. (A) Graph displaying size and yield of 
particles detected in hGBM#22 EV preparations by Nanosight. (B) Vesicles have been divided in four 
different dimensional classes. Error bars represents standard errors.  
 
 

Moreover, CD63 and tsg101 exosome markers were equally expressed either in EVs or in the 

corresponding U87MG cells they had been derived from (Figure 58). These data show that 

CLIC1 modulation in glioblastoma cells does not affect EV phenotypic features or EV 

secretion.  

 

 

 

 

 

 

 

 

Figure 58. CLIC1 modulation does not alter the expression of endocytic markers. Western 
immunoblot of whole cell lysates obtained from NT, shCLIC1 and CLIC1 FLAG U87MG and T98G; 
CD63 and tsg101 have been used as endocytic markers; vinculin as loading control.  
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In addition, PKH26 labeled EVs from control, CLIC1 silenced and CLIC1 overexpressing cells 

were equally taken up into U87 MG recipient cells, thus excluding the possibility that the 

differences in the proliferative responses observed could be due to differences in EV uptake 

efficiency (Figure 59).  

 

 

 

 

 

 

 

 

 

Figure 59. CLIC1 modulation within the EV does not alter its uptake. Cell positivity to PKH-26 
after treatment with PKH-26 labeled NT, shCLIC1 and CLIC1 FLAG EVs. Two-way ANOVA.  
Contribution of “treatment” and the consequent interaction with “time”: P > 0.05. Three independent 
experiments have been carried out. 
 
   
 
Next, we determined the protein composition of purified EVs and whether this content could 

account for the differences in the proliferative response of glioblastoma cells. To do this, we 

took advantage of CLIC1 FLAG EVs, which induced the strongest pro-prolifetive response both 

in vitro and in vivo. Three independent preparations of either CLIC1 FLAG or NT EVs were 

analysed by label-free quantitative proteomic analysis. The peak intensity observed for the two 

samples (CLIC1 FLAG and NT EVs) was very similar, reflecting that the same amount of 

protein was loaded (data not shown). Interestingly, we identified in both NT and CLIC1 FLAG 

EVs 20 out of 25 of the top canonical EV proteins reported in Exocarta database. Proteins 

classification based on Gene Ontology (GO) annotations for cellular localization and biological 

processes (Figure 60) revealed that both CLIC1 FLAG and NT EVs shared characteristics of 

+ NT EVs 
+ shCLIC1 EVs 

+ CLIC1 FLAG EVs 
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bona fide EVs. We identified a total of 611 proteins in CLIC1 FLAG EVs, the majority of these 

are not altered (557) compared to NT EVs, with only 54 proteins differentially expressed 

(APPENDIX I). The nice overlapping in the protein content of EVs isolated from CLIC1 

overexpressing with NT EVs paves the way to the possibility that the pro-proliferative response 

induced by CLIC1 FLAG EVs might be CLIC1-dependant.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 60. Gene Ontology (GO) enrichment analysis of proteins detected in CLIC1 FLAG EVs 
(FCLIC1) and in control EVs (NT). Significant GO terms found in exosomes derived from CLIC1 
FLAG EVs and in NT EVs. 
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4. DISCUSSION 

4.1. CLIC1 is a functionally relevant prognostic marker in human GBMs 

In this thesis we analyzed the functional role of CLIC1 in gliomagenesis. By investigating 

different on line available expression microarray data sets, we identified CLIC1 to be over-

expressed in brain tumors compared to normal brains, with its expression increasing along with 

WHO tumor grades, reaching the highest expression level in GBMs. Moreover, among GBMs, 

we identified CLIC1 to cluster within GBM mesenchymal subtype, which is considered of 

poorer prognostic status, due to high infiltration rate and marked vascularization, higher 

necrosis and associated inflammatory infiltrates (Veraak R.G. et al., 2010) and increased 

treatment resistance. Importantly, our study also pointed out that CLIC1 expression inversely 

associates with patient survival and therefore it could be of potential prognostic value in 

monitoring glioma progression. CLIC1 overexpression has been demonstrated in wide variety 

of tumor types (Wang J.W. et al., 2009; Petrova D.T. et al., 2008), including gliomas (Wang L. 

et al., 2012; Setti M. et al., 2013). Taken together, these studies demonstrate that CLIC1 

expression confers proliferative advantage, it is required for cancer cell migration and invasion, 

and sustains cancer cell tumorigenicity. Recently, chloride channels have been involved in the 

chemotherapeutic resistance of glioma stem-like cells (Kand M.K. and Kang S.K., 2008). Here, 

we demonstrate that CLIC1 silencing in stem/progenitor cells derived from GBM patients 

negatively influences both proliferative capacity and self-renewal properties in vitro, and 

impairs their in vivo tumorigenic potential. GBMs are the most frequent brain tumors and 

despite different treatment modalities, overall results have remained unchanged over the last 25 

years. GBM patients have less than 30% of probability to survive more than two years also 

with optimal therapy. Thus, the finding of a good target for patient-specific therapy would be of 

paramount importance from a clinical standpoint. GBMs contain a subpopulation of cancer 

stem cells with intrinsic resistance to therapy that can repopulate the tumor after treatment. 

Therefore, a new approach to cancer therapy might focus on specific targeting of the resistant 

CSC populations. In our study we show that CLIC1 is enriched in cancer stem/progenitor cells 
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compared to the cells that make up the bulk of the tumor. In physiological conditions, CLIC1 

exists usually in a soluble form in the cytoplasm, but following oxidative stimuli it translocates 

to the plasma membrane, where it acts as a chloride-selective ion channel (Littler D.R. et al., 

2004). CLIC1 localization on the plasma membrane has been associated to cells in G2/M stage 

of the cell cycle (Valenzuela S.M. et al., 2000) and alteration of CLIC1 levels by RNA 

interference has been demonstrated to impair cell cycle progression in vitro (Tung J.J. et al., 

2010). We found that CLIC1 is constitutively localized on the plasma membrane of GBM 

stem/progenitor cells compared to the normal counterpart. This different localization of CLIC1 

in tumoral versus normal stem/progenitor cells could allow the specific targeting of cancer 

cells. Moreover, we demonstrate that CLIC1 silencing affects proliferation, clonogenicity and 

tumorigenic potential of GBM stem/progenitor cells. Given that CLIC1 is constitutively 

expressed on the plasma membrane of GBM stem/progenitor cells conferring them a growth 

advantage, our results aim to pursuit CLIC1 as a molecular target for therapeutic purpose 

during the insurgence and progression of the tumorigenic process. Notably the treatment of 

human GBM stem/progenitor cells with the specific CLIC1 antibody mimics the biological 

effects of CLIC1 silencing, being able to reduce tumor cell growth both in vitro and in vivo and 

demonstrating that CLIC1 biological effect is dependent on its function as ion channel on the 

plasma-membrane. Small molecules that specifically inhibit CLIC1 expression or functions are 

yet to be identified. The investigation of the molecular players mediating the functional effects 

of CLIC1 in GBM stem cells would permit to set up new therapeutic strategies to block GBM. 

The investigation of these molecules on inhibiting GBM progression in human patients is 

therefore highly warranted.  

4.2. Vesicular CLIC1 contributes to EV-mediated proliferative response  

A great limitation to GBM successful treatment resides in tardiness of diagnosis; this is due to 

the time frame between the appearance of the first oncogenic hit, with the consequent cellular 

transformation, and the unveiling starting neurological signs, often related to an advanced, 

hence incurable, stage of the pathology. For this and other reasons, many efforts have been 
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made to identify viable biomarkers that could recapitulate or disclose glioma progression, as 

easily as a blood sample.  In this study we showed that CLIC1 is actually secreted by GBM 

cells together with EVs where it plays a role in the EV-mediated proliferative response. 

Unlikely the majority of ion channels, CLIC1 behaves as both soluble and membrane-spanning 

protein; soluble-to-transmembrane transition is usually regulated by changes in the redox 

cellular status that, through the formation of an intra-monomeric disulfide bond, allows the 

morphological rearrangement required to membrane insertion. The vast majority of CLIC1 

protein is kept in the cytoplasm in its soluble form, as shown from protein extractions carried 

out with digitonin; digitonin-resistant CLIC1 is either PM-bound or bound to cytosolic vesicles 

(Ulmasov et al., 2007). CLIC1 vesicular localization is endorsed by CLIC1 expression pattern 

itself, scattered and dotted as many studies reported in several human cell lines (PancI, HeLa, 

macrophages) (Tulk et al., 1998; Ulmasov et al., 2007; Jiang et al., 2012).  These observations 

are consistent with CLIC1 lack of typical transmembrane-signal peptide, thus suggesting that 

CLIC1 might exploit mechanisms of export alternative to canonical endoplasmic reticulum 

(ER) /Golgi apparatus secretion pathways (Valenzuela M.S. et al., 1997); moreover, this 

evidence is even strengthened by CLIC1 mislocalization with most of ER/Golgi/lysosome 

markers (Ulmasov et al., 2007). Different recent studies identified CLIC1 secreted protein as a 

potential biomarker in nasopharyngeal (Ying-Hwa C. et al., 2009) and ovarian carcinoma 

(Hsin-Yao Tang et al., 2012). Accordingly with these results, in the first part of our study we 

inquired about CLIC1 secretion carried out by GBM cells. Three different and independent 

lines of evidence showed CLIC1 to be secreted by GBM cells: culture medium analysis by 

western immunoblot, immunoprecipitation of a GFP-tagged form of CLIC1 from collected 

supernatants, uptake/secretion assay using traceable CLIC1 variants. Afterwards, we focused 

on the mechanism of secretion adopted by GBM cells to export CLIC1 to the extracellular 

environment. A significant part of secreted proteins exploits ER/trans-Golgi pathway; to do that 

target protein has to show a specific signal peptide that fate it to the exocytic pathway (Nickel 

et al., 2005). CLIC1 in not endowed with such region; moreover it is synthetized by cytosolic 
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ribosomes (Jiang et al., 2012). Literature data mining documented CLIC1 expression within 

exosomes released by a plethora of cell types and biological fluids (Pisitkun T et al., 2004; 

Valadi et al., 2007; Buschow et al., 2010; Welton et al., 2010; Staubach et al., 2009); 

furthermore, CLIC1 is listed as a top-scored protein in ExoCarta database. It is commonly 

acknowledged that ubiquitin dynamics represent a major signal triggering the recruitment of 

ESCRT machinery and cargo incorporation within exosomes (Baietti et al., 2012; Henne W.M. 

et al., 2014). CLIC1 primary structure harbors a PPxY motif, recognized by the WW domain of 

the Nedd4 E3 ubiquitin-ligase (Jolliffe et al., 2000; Shirk et al., 2005); in addition, CLIC1 

displays two dileucine motifs that are thought to support its enrollment into endocytic pathway 

(Bernard TK et al., 2008; Behnke J et al., 2011). These structural hints, together with our 

biochemical data showing ubiquitinated CLIC1 in GBM cells and its affinity for Nedd4 protein, 

prompted us to pursue CLIC1 expression within exosomes isolated by human GBMs.  It has 

been already reported that both GBM cell lines and primary samples release exosomes in vitro 

(Skog J. et al., 2008); we then retrieved exosomes by high speed serial centrifugation (Théry C. 

et al., 2006) from the growing medium of different GBM cell lines and GBM derived cancer 

stem/progenitor cells. Sample purity was assessed by: (1) western blot, showing a significant 

enrichment of the common endocytic markers like CD63, CD9, tsg101, (2) Nanoparticle 

Tracking Analysis (NTA, Nanosight) testing our vesicle sizes so that they fall in the 50-150 nm 

range, (3) EM analysis proving the existence of morphologically heterogeneous, bilayer-

enclosed vesicles, (4) label-free mass spectrometry actually identifying the most common 

players involved in endocytosis rather that PM-associated proteins.  Although data collected are 

in agreement with previous characterizations reported in literature (Raposo and Stoorvogel, 

2013; Skog et al., 2008), the lack of a broadly acknowledged and reproducible methodology to 

achieve homogeneous preparations, persuaded us to drop the term “exosome” in favor of the 

most accepted “extracellular vesicle” (EV) (Colombo M et al., 2014). 

 Our work demonstrated that CLIC1 is actually expressed within EVs released by GBM cells. 

Indeed, EM analysis unveiled CLIC1 distribution in EVs expressing high levels of the 
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endocytic protein CD63; to better pinpoint CLIC1 pattern of expression in GBM cells we took 

advantage of PLA technique, confirming CLIC1 localization together with CD63. The second 

part of our study aimed to characterize CLIC1 involvement in defining EV-driven GBM 

physiopathology. Given our previous study showing CLIC1 involvement in regulating GBM 

cell biology in vitro and in vivo (Setti M. et al., 2013), we wanted to test whether these traits 

could be passed in vitro and in vivo by EVs. It is reported that EVs released by GBM cells are 

able to enhance proliferation both autochrinously and parachrinously (Skog et al., 2008).  

We proved that by tuning CLIC1 levels within EVs, it was actually possible to abolish 

(shCLIC1) or to boost (CLIC1 FLAG) GBM cell proliferation in vitro; in agreement with in 

vitro experiments, mice subcutaneously injected with U87MG treated with CLIC1 FLAG EVs 

developed markedly bigger tumors while cells treated with shCLIC1 EVs behaved as untreated 

U87MG.  Notably, while U87MG wt cells were positively stimulated in vitro with as much as 

EVs 50 mg/ml (0.5 ng EVs/cell in 100 ml), we observed a remarkable response in vivo (almost 

10’000-fold stronger) with as few as 1 mg/ml (0.06 pg EVs/cell in 100 ml), thus making 

plausible to hypothesize that other biological forces beyond cell proliferation were driving 

tumor expansion (e.g. angiogenesis, tumor associated macrophages). Comprehensively, data 

collected so far suggest that CLIC1 is actually secreted within EVs where CLIC1 is involved in 

regulating EV-mediated pro-tumorigenic response. It is then conceivable that the 

aforementioned CLIC1 pro-tumorigenic phenotype (Setti et al., 2013) might rely on EV 

fraction other than CLIC1 cytoplasmic levels: secreted CLIC1 may induce tumor proliferation 

either directly by mediating the expansion of the neoplasia or by manipulating cells of tumoral 

niche. Label-free proteomic approaches suggested no-major differences other than CLIC1 in 

the composition of the EVs, thus making us wonder about the involvement of other non-proteic 

components of the vesicle, like microRNAs. More effort must be done in order to shed light on 

the molecular mechanism adopted by EVs to achieve their pro-tumorigenic effect, as well as 

the role of CLIC1 in this poorly understood and characterized mechanism of action. 
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5. Future Perspectives 
 
 

§ Stable isotope labeling with amino acids in cell culture (SILAC) proteomic 

analysis. 

Our experiments have shown that CLIC1 levels within the EV affect the proliferative 

status of recipient cells. Label-free MS experiments resulted in a “no-difference” output, 

thus leading us to the conclusion that EVs underwent no major proteomic changes upon 

CLIC1 modulation. Label-free mass spectrometry technology has several limitations 

that may affect the final outcome, like not discriminating below 2.5-fold differences and 

being less sensitive. To gain a deeper and more reliable insight about the proteomic 

status of the three subpopulations, we are going to perform SILAC assay on the EVs 

purified by U87MG NT, shCLIC1 and FLAG cells; it could be possible that mild 

changes in several candidates belonging to the same pathways might drive or contribute 

to the proliferative phenotype. 

 

§ RNA-sequencing analysis 

In parallel with the proteomic approach, we are going to analyze the RNA content 

(both long and small RNAs) of U87MG NT, shCLIC1 and CLIC1 FLAG cells and 

respective EVs. By analyzing RNA content within the cell, we could identify the 

alterations responsible of the phenotype described in Results (pg. 71-74); the same kind 

of information will be retrieved for NT, shCLIC1 and CLIC1 FLAG EVs thus possibly 

allowing the identification of targets and players different from the ones involved 

inside the cell.  Finally, combining the data collected from both cell and EV 

transcriptome, we will be able to assess the correlation index between cell and 

respective EV and eventually identify new hits that might be differentially enriched in 

EVs derived from NT, shCLIC1 and CLIC1 FLAG cells. 
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§ Electrophysiological role of U87MG derived EVs. 

We have already shown how CLIC1-mediated currents are responsible of regulating 

proliferative and tumorigenic response in GBM-derived cancer stem/progenitor cells 

(Results pg. 75-76 and 79-80). It is also known from literature that several cell types 

exploit EVs to transfer surface markers to recipient cells, thus making us wondering 

whether U87MG cells might take advantage of EVs to transfer transmembrane-CLIC1 

on the plasma membrane of recipient cells. We are going to patch U87MG cells before 

and after the treatment with NT, shCLIC1 and CLIC1 FLAG EVs and CLIC1-mediated 

currents will be evaluated; it would be of extreme interest to treat U87MG cells with 

anti-CLIC1 antibody, to collect EVs from anti-CLIC1 treated cells (EVs*), and to test 

whether EVs* and shCLIC1 EVs trigger the same phenotypic response. The 

transcriptome of EVs* and shCLIC1 EVs will be eventually sequenced to distinguish 

candidates that rely on CLIC1 physical presence from the ones influenced by CLIC1-

mediated chloride current. 

 

§ CLIC1 as a viable biomarker in GBM 

To effectively assess CLIC1 viability as biomarker in patients affected by GBM, we 

are going to exploit a syngenic mouse model where murine-derived GBM cells will be 

othotopically injected into the brain of mice of the same strain (C57B6). First, we are 

going to assess CLIC1 basal levels in plasma samples of C57B6 tumor-free mice; 

variability in CLIC1 levels will influence sample size but a cohort as large as ten mice 

will likely pander to both feasibility and statistical significance. To establish a proper 

basal line, we will take blood samples every 5 days for 15 days from tumor-free mice. 

Mice will be injected with 100’000 cells of a syngenic GBM cell line (GL261) and we 

will periodically take blood samples every 5 days. To monitor CLIC1 fluctuations in 

response to GBM volume, we are going to induce tumor shrinkage by treating GBM-

bearing mice with a standard alkylating chemotherapeutic agent (temozolomide 
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270mg/kg) and we will keep on taking blood samples every 5 days until tumor 

recurrance. GBM progression, shrinkage and relapse will be followed up by magnetic 

resonance imaging (MRI) and CLIC1 levels will be eventually evaluated by ELISA 

assay. 
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APPENDIX I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Appendix I. KEGG Pathway Analysis of CLIC1 FLAG EVs (FCLIC1) compared to 
NT EVs (NT). List of proteins differentially expressed in FCLIC1 versus NT; 54 
candidates out of 611 proteins (8%) were found differentially expressed, among these 20% 
(9 proteins) were identified as endocytic proteins.  
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