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1. Introduzione 

Monte San Giorgio (MSG) 

the industrial exploitation of bituminous shales and to the numerous paleontological 

excavations that took place mainly in the last century. In time, it has yielded several 

remarkable fossils of marine fishes and reptiles as well as invertebrates

crustaceans and insects

the South of the Ceresio Lake (Fig. 1), this area is now in the World Heritage List of 

UNESCO for the global paleontological meaning of its marine vertebrate faunas. 

 

 

Fig 1: Val Mara site D - 

 

During the fieldwork carried out between 1997 and 2003 in the Lower Kalkschieferzone 

(KSZ) at the Val Mara site D near Meride

insects (both adult and larval forms) 

Tintori and Dr. C.  Lombardo and with the support by Dr. Markus Felber

the Museo Cantonale di S.N. in Lugano

(MSG) is a fossil Lagerstätte known since the 19

ndustrial exploitation of bituminous shales and to the numerous paleontological 

excavations that took place mainly in the last century. In time, it has yielded several 

remarkable fossils of marine fishes and reptiles as well as invertebrates

ceans and insects and plant remains. Lying across the Italian

the South of the Ceresio Lake (Fig. 1), this area is now in the World Heritage List of 

UNESCO for the global paleontological meaning of its marine vertebrate faunas. 

 geographic position 

During the fieldwork carried out between 1997 and 2003 in the Lower Kalkschieferzone 

at the Val Mara site D near Meride (Canton Ticino, Svizzera)

insects (both adult and larval forms) were collected by the UNIMI team lead by Prof. A. 

Tintori and Dr. C.  Lombardo and with the support by Dr. Markus Felber

the Museo Cantonale di S.N. in Lugano (MCSN). At the time this PhD project started, 
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is a fossil Lagerstätte known since the 19th Century thanks to 

ndustrial exploitation of bituminous shales and to the numerous paleontological 

excavations that took place mainly in the last century. In time, it has yielded several 

remarkable fossils of marine fishes and reptiles as well as invertebrates, namely 

and plant remains. Lying across the Italian-Swiss boundary to 

the South of the Ceresio Lake (Fig. 1), this area is now in the World Heritage List of 

UNESCO for the global paleontological meaning of its marine vertebrate faunas.  

 

During the fieldwork carried out between 1997 and 2003 in the Lower Kalkschieferzone 

(Canton Ticino, Svizzera), 16 specimens of 

lected by the UNIMI team lead by Prof. A. 

Tintori and Dr. C.  Lombardo and with the support by Dr. Markus Felber,then curator at 

. At the time this PhD project started, 
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only four of them had been described: three as a new genus and species of 

Ephemeroptera, Tintorina meridensis Krzeminski & Lombardo, 2001 and the other as 

an elytron of Notocupes (Coleoptera: Ommatidae) (Krzeminski & Lombardo, 2001).  

After this first approach, the fossil insects collection of Monte San Giorgio kept at the 

Dipartimento di Scienze della Terra‘A. Desio’ of the Università degli Studi of Milano 

on behalf of the MCSN, were set aside as only the vertebrate fauna from the same 

fossiliferous level, the Kalkschieferzone, was further investigated. 

In 2011, Bechley and Stockar (2011) described three specimens of Dasyleptus triassicus 

(Archaeognatha: †Monura: †Dasileptidae) collected during a small size excavation 

carried out by the MCSN in 2010 in site VM 227 of the Kalkschieferzone. Furthermore, 

two more insects from the same level, a beetle and a dragonfly, are currently under 

studyin Lugano. 

Thus, the increasing number of fossil insects records from the KSZ brought new 

attention to the topic with a dedicated PhD project. 

The PhD projects started with a double aim: 

- to study and describe the remaining insect specimens from the KSZ; 

- to increase the information on the Monte San Giorgio paleoenvironment on the 

basis of the fossils possible living habits, inferred from those of extant closer 

relatives, and from their way of preservation. 

In process, the Middle Triassic entomofauna from Monte San Giorgio has proved to be 

even more interesting than previously supposed. 

From the systematic and evolutionary point of view, it’s a very diverse assemblage and 

it includes the oldest fossil record so far known for four taxonomic groups.  

Even more exceptional is the conservational aspect: part of the specimens underwent 

soft-tissue phosphatization, that preserved unique anatomical features normally lost in 

fossil insects/arthropods. The preservation of such soft tissue structures points to unique 

fossilization conditions that is unknown for the vertebrates yielded by the same MSG 

beds. Analogous preservations are known only from the Cambrian fauna of Chengjang 

in China. 

Thus, the paleoenvironmental indications that could potentially be derived from the 

composition and taphonomic history of this entomofauna are getting into light.  
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2. Insects in the Triassic 

The Triassic entomofaunas are of particular interest, since they are the product of the 

recovery following the end-Permian mass extinction event and can therefore provide 

information about the real impact of the end-Permian life crisis on the insects as on the 

possible radiation following the extinction of old taxa. 

An overview of insects through time is provided by Grimaldi and Engel (2005) and by 

Rasnitsyn and Quicke (2002). The evolution of Permian and Mesozoic Coleoptera is 

described in Ponomarenko (1995).The best picture of the earliest known Triassic insect 

fauna can be drawn by the assemblage from Grès a Voltzia, Early Anisian, 247-245Ma 

(Gall and Grauvogel-Stamm, 2005; Bethoux et al., 2005).  

Despite the paucity of the Triassic insects sites, the assemblages recovered appear to be 

quite diverse, particularly if compared to vertebrate ones. Terrestrial and aquatic, 

predatory and phytophagous forms are preserved, an indication that virtually all the 

niches were available and exploited.  

Many of the most primitive taxa disappeared (from the fossil record so far available) at 

the end of the Permian. The most remarkable among them is the superorder 

Paleodyctiopterida, with its huge fossils with beautifully patterned wings. Also a few 

stem groups to modern orders didn’t survive the P/T boundary event. 

The Triassic fossil record unfortunately suffers from a gap in the Lower Triassic rocks. 

The fossil record currently available could indicate that the end-Permian event wiped 

out a few Paleozoic groups but many insect orders seems to have survived the P/T 

boundary, then further radiating in the Triassic: Odonata, Plecoptera, Ephemeroptera, 

Coleoptera and Diptera, developed successful lineages, many of them still extant. 

Moreover, new discoveries can often complicate the reference frame: recently Bechly 

and Stockar (2011) identified three specimens of a new species Dasylepus triassicus 

(Archaeognatha: † Monura) from the Upper Kalkschieferzone of Monte San Giorgio, 

site VM 227, thereby extending the range of this genus for 10 My from the end of 

Permian into the Mesozoic, when accepting the revision of Triassomachilis uralensis 

Sharov, 1948 and its reassignment to Ephemeroptera (Sinitshenkova, 2000). In fact, the 

most recent Monuran before D. triassicus is Dasyleptus brongniarti Sharov 1957 from 

the Upper Permian of Russia (circa 270-252 Ma). This finding stresses the role played 

by the incompleteness of the fossil record in biasing hypothesis on taxa evolution. 
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Typical Paleozoic forms are occasionally recovered until the Middle Jurassic. For 

instance, Glosselytrodea have been found in virtually all the Triassic sites: the Röt-

Formation (Bashkuev et al., 2012), the Los Rastros formation (Mancuso et al, 2007), the 

Madygen Formation (Shcherbakov, 2008) and the Molteno Formation (Anderson et al., 

1998); Miomoptera are in the Madygen Formation and in the Los Rastros Formation 

and Titanoptera in the Madygen Formation. 

Concerning extant orders, at first sight most of them can be found in the Triassic fossil 

record, with the notable exception of Lepidoptera. Anyway, a closer examination shows 

that many representatives of the major lineages were stem groups or sister groups of the 

extant forms that lately became extinct.  

A few examples are clearly outlined by Gall and Grauvogel-Stamm (2005) from Grès a 

Voltzia, the oldest Triassic insect site and therefore the closest to the P/T boundary, 

dated early Anisian. They refer to Blattoptera, Odonatoptera and Ephemeroptera, that 

are among the more abundant taxa there recovered.  

Blattoptera are represented by genera exhibiting Paleozoic characteristics and by genera 

similar to modern ones, as Voltziablatta and Scleroblatta. Odonatoptera arepresent with 

Voltzialestes (Protozygoptera), announcing modern Odonata, and with a representative 

of the Paleozoic family Triadotypidae. Finally, a mayfly isolated wing shows affinities 

with a Permian family, while a larva is similar to those of the extant family 

Siphlonouridae.  

Modern Blattodea and Ephemeroptera probably originated in the Jurassic and were first 

recovered as fossils from the Early Cretaceous. Modern Odonata were evolving in the 

Triassic. 

Coleoptera made their first appearance in the Permian with ancient forms, but true 

Coleoptera appeared in the Triassic. Ponomarenko (1995) identifies two main stages in 

the evolution of Coleoptera: the first stage involves the Triassic and the first half of the 

Jurassic; the second one the Upper Jurassic and the Early Cretaceous. Permian beetles 

were mainly xylomycetophagous and detritophagous Cupedoid and Schizophoroid, with 

the exception of few predaceous specimens. In Triassic sites, Archostemata are still 

abundant, but Adephaga and Polyphaga become more numerous. In the Early Jurassic, 

Archostemata are no longer the more abundant group and adephagan beetles become 

dominant, in particular with Trachypachidae, now a relict group, and Carabidae. 

Adephagan aquatic forms are also recovered († Coptoclavidae, † Parahygrobiidae, 
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Liadytidae, Gyrinidae, Hydrophilidae) both as adults and as larvae. Finally, in the Late 

Jurassic, beetle assemblages more closely resemble modern ones: polyphagan become 

dominant with several families, and carnivorous, predaceous taxa increase among 

Adephaga (Carabidae).  

Extant orders already established in the Triassic include Hemiptera, Orthoptera 

(Ensifera), Odonata, Plecoptera, Dermaptera, Phasmatodea, Coleoptera, Diptera. A 

Triassic origin is also hypothesized for: Embiodea and Zoraptera, two strictly related 

taxa. 

 

3. Triassic insect sites 

Triassic insect sites are not abundant. On the other side, the few renowned sites yield 

hundreds or even thousands of specimens, whole or partially preserved. 

The more significant Triassic insect sites are: 

- Grès a Voltzia (Anisian), in the Vosges Mountains (France). 

- Many areas in Central Asia, as Kazakhstan, Uzbekistan, Kyrgyzstan. Among 

Central Asia sites by far the most important one is the Madygen Formation, dated 

Late Ladinian – Early Carnian (236-230 Ma), located in the Fergana valley (split 

among Uzbekistan, Kyrgyzstan, Tajikistan).  

- Molteno  Formation, part of the Karoo Group, South Africa, dated Carnian. 

- Potrerillos and Los Rastros Formation in Argentina, dated Carnian or Ladinian-

Carnian. 

Interesting sites can also be found in the area surrounding Sydney in Australia, dated 

Anisian or Upper Triassic/Lower Jurassic. 

In the following sections a description of Grès a Voltzia, Madygen, the Los Rastros and 

the Molteno Formations is provided. They altogether span from the Anisian and the 

Carnian stages. 

  



 

 

3.1. Grès a Voltzia 

The Grès à Voltzia Formation (Upper Buntsandstein) is located in eastern France 

(Fig.2). It is Early Anisian in age and it spans the transition from the continental 

formations of the Buntsandstein to the marine sedimentation of the Muschelkalk. It was 

deposited on the western margin of the Germanic Basin, a broad depression extending 

over a large part of Central Europe and including a great part of Germany (Shear et al, 

2009).  

Since it’s been deposited approximately eight M

according to the biostratigraphic correlations between the Germanic Buntsand

the Alpine Triassic units, it is of particular interest for the information it provides 

very early stage of recovery from the Permo

Fig. 2 Grès à Voltzia Formation location and stratigraphic structures. From Shear et al.,

 

It was deposited in a deltaic area, an environment transitional from nearshore to 

terrestrial, in a fluvial environment that included a network of channels and overbank 

flats. 

The most important layer is called ‘Grès à meules’ that forms the lower l

Grès à Voltzia Formation.

Three facies have been recognized in the Grès à meules Formation (Gall 1983, 1985): 

The Grès à Voltzia Formation (Upper Buntsandstein) is located in eastern France 

ig.2). It is Early Anisian in age and it spans the transition from the continental 

formations of the Buntsandstein to the marine sedimentation of the Muschelkalk. It was 

deposited on the western margin of the Germanic Basin, a broad depression extending 

er a large part of Central Europe and including a great part of Germany (Shear et al, 

Since it’s been deposited approximately eight My after the Permian

according to the biostratigraphic correlations between the Germanic Buntsand

the Alpine Triassic units, it is of particular interest for the information it provides 

very early stage of recovery from the Permo-Triassic event. 

Fig. 2 Grès à Voltzia Formation location and stratigraphic structures. From Shear et al.,

It was deposited in a deltaic area, an environment transitional from nearshore to 

terrestrial, in a fluvial environment that included a network of channels and overbank 

The most important layer is called ‘Grès à meules’ that forms the lower l

Grès à Voltzia Formation. 

Three facies have been recognized in the Grès à meules Formation (Gall 1983, 1985): 
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The Grès à Voltzia Formation (Upper Buntsandstein) is located in eastern France 

ig.2). It is Early Anisian in age and it spans the transition from the continental 

formations of the Buntsandstein to the marine sedimentation of the Muschelkalk. It was 

deposited on the western margin of the Germanic Basin, a broad depression extending 

er a large part of Central Europe and including a great part of Germany (Shear et al, 

after the Permian–Triassic boundary, 

according to the biostratigraphic correlations between the Germanic Buntsandstein and 

the Alpine Triassic units, it is of particular interest for the information it provides on the 

 

Fig. 2 Grès à Voltzia Formation location and stratigraphic structures. From Shear et al., 2009 

It was deposited in a deltaic area, an environment transitional from nearshore to 

terrestrial, in a fluvial environment that included a network of channels and overbank 

The most important layer is called ‘Grès à meules’ that forms the lower level of the 

Three facies have been recognized in the Grès à meules Formation (Gall 1983, 1985):  
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a) thick lenses of fine-grained sandstone, grey or pink but most often multicoloured, 

containing land plant debris and stegocephalian bone fragments; 

b) green or red silt/clay lenses, generally composed of a succession of laminae each a 

few millimeters thick, with well preserved fossils of aquatic and terrestrial 

organisms; 

c) beds of calcareous sandstone with a sparse marine fauna. 

The three units are interpreted as follows: the sandstone facies corresponds to point bars 

deposited in meandering channels; the clay lenses represent the settling of fine material 

in brackish ponds; the calcareous sandstone results from brief incursions of sea water 

during storms. 

Insects have been collected from the clay lenses, together with other terrestrial 

invertebrates (spiders, terrestrial scorpions) and aquatic fauna including medusoids, 

annelids, Lingula, bivalves, limulids, crustaceans. Some animals (e.g. Lingula, bivalves) 

are preserved in life position. Many arthropods (limulids, crustaceans) show, in the 

same horizon, different larval stages, adults, and moults/exuviae. Clutches of insect 

eggs, coprolites, and trace fossils are also present. All these elements point to an 

autochthonous origin of this fauna. Characteristically, the biota is rich in individuals but 

poor in species (Gall 1983, 1985), with the exception of arthropods: 18 species of 

crustaceans and about 200 species of insects have been collected.  

The site was located in the subtropics near the eastern edge of Pangaea and this, 

together with the red-beds and the xeromorphic land flora (Gall 1983), suggest it was 

subject to a semi-arid climate. On the other hand, the deltaic situation suggests that 

aridity was not severe locally, possibly thanks to a seasonal climate. In fact, clay lenses 

deposited when pools formed during the wet season evaporated as the dry season 

approached. The presence of Lingula in situ, together with the impoverished species 

diversity, strongly suggests a brackish water community (Gall 1983): probably, from 

time to time, the delta area was briefly invaded by the sea during storms. Land plants 

are abundant and mark the proximity of stable emerged land. The floral assembly 

includes horsetails, ferns, and gymnosperms (‘Voltzia’) 

On the basis of this evidence Gall (1983) concluded that the aquatic fauna was 

autochthonous and that the preserved terrestrial fossils accidentally reached the site of 

burial from the adjacent terrestrial environment. For instance, during flooding, the 

plants and the amphibians living on land were dragged and dropped downstream. 
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The preservation of the fossils is remarkable, as it includes both mineralized tissues and 

soft-bodied organisms. 

Among the insects,  the dominant groups are Blattodea (41%), Ephemeroptera (15%) 

and Coleoptera (12%). Representatives of 12 orders were identified by 2005 (Gall and 

Grauvogel-Stamm), with the highest number of species among Ephemeroptera, Diptera, 

Orthoptera and Blattodea. 
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3.2. Madygen 

 

 

 

Fig 3 – A: map of Central Asia showing the location of the Madygen Formation in SW Kyrgyzstan. From 
Moisan et al, 2011; B: Madygen outcrops, from Shcherbakov (2008). 

 

The Madygen site is named after the village of Madygen, in the foothills of the 

Turkestan Range, Kyrgyzstan. It is a formation cropping out in five adjacent areas, over 

an extension of approximately10 km2. 

It is a continental, tectonically active basin flanked by ranges of Palaeozoic rocks. In its 

stratotype area the Madygen Formation consists of an approximately 560 m thick 

succession of complexly interbedded conglomerates, sandstones and siltstones, 

generally representing deposits of alluvial fans, alluvial plains, and lakes. 

The predominantly reddish-brown to yellowish-green coloured coarse-clastic fan 

deposits are almost bare of fossils. Alluvial plain deposits are more heterogeneous, 

consisting of poorly sorted conglomeratic to sandy channel fills, mudflow, and silty 

overbank deposits. These rocks are locally rich in fossils. The richest and most diverse 

fossil associations, however, occur in laminated to massive brownish-grey lacustrine 

siltstones. 

From the relative abundance of root traces in silty overbank deposits, the high content 

of organic carbon, the presence of coal beds and the lack of desiccation cracks, it was 

concluded that alluvial plains, delta plains, and shallow lacustrine environments of the 

Madygen Formation were densely vegetated wetland areas (Voigt et al., 2007; Berner et 

al., 2009; Buchwitz et al., 2009). 

The richest area in insects in the Madygen Formationin it’s Dzhailoucho, in the northern 

outcrop area. Shcherbakov, who has intensively investigated the insect fossil 
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assemblage from the site, considers Dzhailoucho the richest fossil insect site in the 

world in terms of diversity and especially of abundance. 

Fossils are preserved in a clayey matrix, poorly lithified, that dissolves after heavy rains. 

Terrestrial plants are common and include pteridosperms, conifers, ferns, horsetails, 

lycopsids, thallophytes.  

Sixtel (1960) believes Dzhailoucho beds were left by a shrinking, mineralized oxbow 

lake formed by the Madygen River in its flow towards northwest. The paleoclimate was 

reconstructed as seasonal and arid, and the landscape as an intermontane river valley. 

The Dzhailoucho lake water was highly mineralized and low in oxygen (dipnoan fishes 

were common there). A reconstruction of the paleoenvironment depicts tall horsetails 

growing along the banks  as emergent semiaquatic plants. Hepatics formed thick 

floating mats on or under the water surface, creating a microhabitat that was somewhat 

richer in oxygen and densely populated by diverse insects and other invertebrates 

Tetrapods in the Madygen Formation are represented by Triassurus, interpreted as a 

stem-caudate or temnospondyl larva (Milner 2000), the primitive cynodont Madysaurus 

(Tatarinov 2005), and two gliding reptiles (Sharovipteryx and Longisquama). 

Among aquatic species four genera of freshwater bivalves, several small floating 

statoblasts of freshwater bryozoans, two species of phyllopod crustaceans, some 

undescribed Ostracoda and Decapoda were found. Fossil fishes (Sytchevskaya, 1999) 

include Dipnoa, Actinopterygii (Evenkiidae, Palaeoniscidae, Perleididae, and 

Saurichthyidae) and elasmobranch egg capsules probably layed by hybodont sharks 

(Fischer et al. 2007). 

The Madygen insect assemblage is numerically dominated by insects with sclerotized 

forewings: Coleoptera, Blattodea, and Homoptera Auchenorrhyncha. In most outcrops, 

few other insects are present. In Dzhailoucho, subdominants are Mecoptera, 

Protorthoptera s.l., and Orthoptera, with other common groups including Miomoptera, 

Phasmatodea and Neuroptera. Nearly all insects are flying adults; immatures are very 

rare and fragmentarily preserved.  

Twenty insect orders (almost everyone known in the Triassic, except for Thysanoptera 

and Megaloptera) and nearly one hundred families have been recorded, and more than 

half thousand species have been described from the Madygen Formation. 

Aquatic/ amphibiotic insects are less numerous than terrestrial, but it is difficult  to 

estimate absolute abundance, because of possible bias in sampling and/or preservation: 
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water beetles are quite common (abundant Schizophoroidea and rare Triaplidae), and 

should be some groups of Neuroptera, Mecoptera, Diptera and Protorthoptera with 

aquatic immature. Entirely amphibiotic orders (Ephemeroptera, Odonata, Plecoptera, 

Trichoptera) are uncommon, and their immatures are exceptionally rare and surely 

allochthonous. 

  



 

 

3.3. Lost Rastros Formation

 

 

Fig 4 - Paleobiological reconstruction of the Los Rastros biota from Mancuso A.C., 2007

 

Los Rastros Formation belongs to the Bermejo Basin , which is an extensional basin 

formed along the western margin of Gondwana during the Late 

Triassic in the pre-breakup stage of Pangea (Uliana and Biddle, 1988). 

the Ladinian (ca 240 M

the border between San Juan and La Rioja provinces, and shows a 

The sedimentary infilling of the Bermejo Basin is dominated by 2.000 to 6.000 m of 

Triassic alluvial, fluvial and lacustrine deposits

In the Bermejo Basin succession, including Los Rastros Formation, several lacustrine

deltaic cycles were defined, each cycle being characterized by a coarsening

succession, and consisting of two facies

- Facies association A 

claystones with iron mudstones interbedded. 

- Facies association B

upward cycle ranges, approximately, from 20 to 40 m.

t Rastros Formation 

Paleobiological reconstruction of the Los Rastros biota from Mancuso A.C., 2007

Los Rastros Formation belongs to the Bermejo Basin , which is an extensional basin 

formed along the western margin of Gondwana during the Late 

breakup stage of Pangea (Uliana and Biddle, 1988). 

240 Ma). Basin deposits crop out in the northwest of Argentina along 

the border between San Juan and La Rioja provinces, and shows a 

The sedimentary infilling of the Bermejo Basin is dominated by 2.000 to 6.000 m of 

fluvial and lacustrine deposits. 

In the Bermejo Basin succession, including Los Rastros Formation, several lacustrine

re defined, each cycle being characterized by a coarsening

succession, and consisting of two facies: 

Facies association A represent offshore lacustrine deposits and is dominated by 

claystones with iron mudstones interbedded.  

Facies association B represents deltaic deposits. The individual coarsening

upward cycle ranges, approximately, from 20 to 40 m. 
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Paleobiological reconstruction of the Los Rastros biota from Mancuso A.C., 2007 

Los Rastros Formation belongs to the Bermejo Basin , which is an extensional basin 

formed along the western margin of Gondwana during the Late Permian and Early 

breakup stage of Pangea (Uliana and Biddle, 1988). It is dated from 

Basin deposits crop out in the northwest of Argentina along 

the border between San Juan and La Rioja provinces, and shows a NW-SE orientation. 

The sedimentary infilling of the Bermejo Basin is dominated by 2.000 to 6.000 m of 

In the Bermejo Basin succession, including Los Rastros Formation, several lacustrine-

re defined, each cycle being characterized by a coarsening-upward 

represent offshore lacustrine deposits and is dominated by 

deltaic deposits. The individual coarsening-
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Facies assemblage A, the offshore lacustrine deposit,  preserves plant debris and 

sometimes well preserved plant fragments related to the “Dicroidium type Flora”; 

conchostracans, insects and, rarely, fish (Mancuso, 2003). The features observed in the 

facies assemblage A suggest that it was deposited in a deep off-shore lacustrine 

depositional environment. 

Facies assemblage B, the delta deposits, bears fossil fish bodies and woody tissues were 

preserved in parallel laminated sandstones, while only fossil woods can be found in the 

planar and trough cross-bedded sandstones. 

Besides insects, invertebrate remains include different groups of conchostracans 

(Mancuso et al, 2007; Mancuso and Gallego 2000), and bivalves. The vertebrate fauna 

is represented by skeletal remains and ichnites. The skeletal remains are dominated by 

actinopterygian fishes (Forster et al., 1995; Mancuso, 2003), and a single temnospondyl 

amphibian. The remaining tetrapod fauna is represented by non-mammalian therapsid, 

archosaur and possible dinosaur footprints (Arcucci et al., 1995; Marsicano et al., 2004). 

The Los Rastros insect assemblage includes representatives of different orders: 

Blattoptera, Coleoptera, Hemiptera, Ensifera, Glosselytrodea, Odonatoptera, 

Miomoptera, and Plecoptera (Martins-Neto et al., 2003, 2005, 2006). Blattoptera is the 

most conspicuous group among the described species. The coleopteran assemblage is 

mainly composed by members of the suborder Archostemata (Protocoleoptera sensu 

Crowson, 1975). The Hemiptera order is represented by Cercopoidea (froghoppers, 

planthoppers), Dysmorphoptilidae and Scytinopteridae families (Martins-Neto et al., 

2003). 

The Ensifera, are one of the less common insect orders represented in the Los Rastros 

fossil biota, together with Miomoptera, Plecoptera and Odonatoptera (Martins-Neto et 

al., 2003). 

The aquatic component of the Los Rastros fossil biota is very scarce, but Wilson (1988) 

suggests that under-representation of aquatic groups is common in the lacustrine fossil 

record. In the Los Rastros succession the only indirect evidence of this fact, up to date, 

is the record of adult forms of the orders Miomoptera, Plecoptera and Odonatoptera. 

Most of the insect remains are constituted by disarticulated wings and elytra, and, only 

in some cases, the articulated elytra and nearly complete coleopteran bodies were found. 

All insect remains have been found in the laminated black shales of the offshore-

lacustrine facies, and show a spatial arrangement pattern parallel to the bedding plane. 
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The material has been reported to be, in some cases, preserved in several successive 

levels, and without preferential orientation. In the insect-bearing facies, plant debris, 

conchostracans and isolated fish scales are also preserved. Only in seldom cases, these 

remains have been reported to be directly associated with insect material. All collected 

insect specimens are winged organisms with terrestrial habit (Gallego and Martins-

Neto, 1999; Martins-Neto and Gallego, 1999, 2001; Martins-Neto et al., 2003, 2005, 

2006). Thus, their origin is the shoreline of the lake or more distant areas into the 

affluent system. 
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4. Molteno Formation 

The Molteno Formation, South Africa, together with the adjacent Lower Elliot 

Formation, forms part of the Karoo Basin and has been dated as Carnian, 228 - 235 mo 

(Anderson et al., 1998). It yielded a rich floral and faunal assemblages and a very 

diverse collection of insects. It was deposited in a northerly prograding floodplain in an 

extensive land-locked foreland basin, located at the southern margin of Pangea and 

bordered to the South by a range of possibly 4.000 m high mountains (fig. 5A). 

This characteristic together with the climate and the tectonics in the period, caused 

cyclic rapid erosion and brought heavy sediment load to the stream beds. The climate 

during the deposition of the Formation was governed by the Pangea landmass, blocking 

both warm and cold currents and determining the onset of a belt of temperate rainfall 

between paleolatitudes 33°S and 66°S. In the Molteno basin a seasonal climate probably 

established itself, with quite arid and warm summers and wetter and colder winters. 

This could probably provide enough precipitation in the winter on the mountains to 

ensure permanent water supply to the river system. 

Three primary facies are met: 

1. Upward fining, coarse grained channel fill deposits; 

2. Upward coarsening crevasse-splay and sheet-flood sequences; 

3. Rhythmically laminated lacustrine and marsh shales deposited in the floodplain. 

The Molteno Formation flora is one of the richest known Triassic floras, with 56 genera 

and 206 species identified. It is dominated in almost equal proportion by gymnosperms 

(in decreasing abundance represented by the seed fern Dicroidium, various 

ginkgophytes, conifers and cycads) and pteridophytes (in decreasing abundance taxa 

represented by horsetails and ferns). Mosses and liverworts are rare. Despite this high 

diversity, on the basis of a few dominant generas seven plant habitats have been 

defined, further characterized by insect assemblages  

 

 



 

Fig 5 – A: regional environmental reconstruction o the molteno Biome, showing the seven habitat types or ecozones identified; B: recon
floodplain (habitat 6), from Anderson et al. 1988 

: regional environmental reconstruction o the molteno Biome, showing the seven habitat types or ecozones identified; B: recon
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: regional environmental reconstruction o the molteno Biome, showing the seven habitat types or ecozones identified; B: reconstruction of Equisetum marsh in the 
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Tetrapods are preserved in the finer grained red beds and include 32 impressions of 

fishes, ascribed to the genus Semionotus and to three new genera. No tetrapod fossils 

have been found but trackways are reported from a single locality. 

Insects have been recovered from all the levels in the Molteno Formation, albeit in some 

they are very rare. A clear pattern of plant/insect co-association can be recognized. In 

most cases, insects are preserved as isolates wings (elytra) or, more rarely, abdomens. 

Nymphs or larvae are more easily preserved whole, while adult insects are very rare. 18 

orders, 117 genera and 335 species have been identified. Therefore, virtually all extant 

insect orders are present. The analyses of the depositional environment highlights the 

fact that most of the insects were buried in still water deposits.  

Among insects, the most abundant group are Blattodea, followed by Coleoptera and 

Hemiptera. The most diverse one is Coleoptera, followed by Hemiptera and Odonata. 

The high abundance of Blattodea indicates the presence of a close-canopy terrestrial 

habitats where abundant leaf litter, their habitat, could form. Coleoptera are found in all 

the Molteno habitats. Hemiptera, are more abundant in woodland and then thicket 

habitats, and are rare in the riparian-forest habitats. Odonata are almost exclusively 

found in two habitats, namely in decreasing order of abundance: the floodplain lake 

deposits and the abandoned channels of the meandering river.  

Among the seven habitats reconstructed based on the dominant plant species, in only 

one case Blattodea are not present, namely the Equisetum marsh in the floodplain 

(Habitat 6 in the work of Anderson et. al, 1998 and in fig 5 B). Here Coleoptera and 

Hemiptera dominate and Conchostracan are relatively common, indicating marsh 

conditions where leaf litter was absent. 

The second most significant invertebrate (and faunal) taxa are conchostraca, with three 

genera and eight species. 
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5. Sites comparison 

It is interesting to compare the four Triassic sites described above from the point of 

view of their entomofauna and of the depositional environment and paleoenvironment 

reconstruction. 

Fist of all, of the four sites two are from Laurasia (Grès a Voltzia and Madygen) and 

two from Gondwana (Los Rastros Formationa and Molteno Formation).  

The depositional environments in all sites was aquatic, such an environment being 

usually a prerequisite for fossil preservation, especially for such delicate organism as 

most insects are. Terrestrial habitats fail to provide the right conditions for fossilization 

owing to lack of continuous sedimentation.  

Three of the sites, the Madygen Formation, the Molteno Formation and the Los Rastros 

Formation were river systems forming oxbow lakes, meanders and slow channels. Grèz 

a Voltzia was a riverine system subject to periodical seawater intrusions. The climate 

has been reconstructed as seasonal, with alternating dry and rainy seasons. The rainy 

season probably had monsoonal characteristics (with the exception of the Los Rastros 

Formation), causing periodical flooding or the formation of temporary freshwater lakes 

or ponds.  

In the Los Rastros Formation, insects are preserved in deep off-shore lacustrine 

depositional environment. In the Molteno Formation, even if they are present in almost 

all levels with very variable abundance, the richest levels are those deposited in 

stillwater. In the Madygen Formation, insects are spread in all sediments. In Grès a 

Voltzia, the environment was a mosaic of isolated, small habitats, spread on an 

approximately 30 x 30 km. The presence of animals in life position (as the Brachiopod 

Lingula) and of clutches of fish and insect eggs, suggest that the main depositional 

environments was represented by isolated ponds harboring distinct biocenosis. These 

ponds underwent desiccation, causing the death of the biota and allowing its 

preservation. 

In Grès a Voltzia insects, with at least 200 species found, are the most diverse group. 

Among the entomofauna, the dominant groups are Blattodea (41%), Ephemeroptera 

(15%) and Coleoptera (12%). Other groups include Odonatoptera, Plecoptera, 

Orthoptera, Phasmatodea, Hemiptera, Neuroptera, Mecoptera, Trichoptera and Diptera. 

The other fossils include approximately 20 species of plants and 50 species of animals, 

18 of them among crustaceans. 
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In the Los Rastros Formation, Blattoptera is the most abundant group, while aquatic 

groups are very scarce and represented only by adults. The same can be said for the 

Madygen Formation, suggesting that these groups are underrepresented in the 

freshwater depositional environments that were probably their dwellings. 

The abundance of Blattodea/Blattoptera is found also in the Molteno Formation (with 

the exception of one out of the seven plant associations identified) and in the Madygen 

Formation, where the group is the second most abundant following Coleoptera. They 

indicate the availability of abundant plant litter, that is their main food source. 

From all sites, and from the Madygen Formation in particular, insect fragments are very 

common. Fragmentary preservation might be indicative of medium to long distance 

transportation, that could act as a filter in selecting more resistant parts (wings and 

elytra). On the other hand, the great abundance of isolated wings could be the effect of 

predation on insects in their living habitat. 

A few features common to all Triassic sites are worth of attention: 

- In all sites, insect assemblages are dominated by terrestrial forms, therefore 

allochthonous to the water body; aquatic groups are clearly underrepresented; 

- Many specimens are preserved only as fragments, sometimes with dominance of 

beetles elytra, more heavily sclerotized. 

- Blattodea/Blattoptera are dominant or sub-dominant. 

- In all sites, with the peculiar exception of Grès a Voltzia, representatives of at 

least one of the Carboniferous groups has been recorded; it must be remarked that 

all these survivor groups disappeared before the end of the Jurassic. 

The Paleozoic groups still present in the Triassic sites include (†) Paraplecoptera 

(Protoperlaria), (†) Meganisoptera, (†)Glosselytrodea, (†) Miomoptera and (†) 

Titanoptera.  

 (†)Glosselytrodea is an enigmatic insect order whose fossil record starts in the Permian 

and ends in the Upper Jurassic (Huang and Nel, 2007), included in Polyneoptera. 

(†)Miomoptera share the same temporal distribution and have been considered as 

common ancestor to all holometabolous insects. (†)Titanoptera is a Polyneopteran order 

recovered only from the Triassic of Australia. Paraplecoptera Martynov 1925 or 

Protoperlaria Tillyard 1928 is currently considered a polyphyletic group that includes a 

few taxa related to Plecoptera (according to Grimaldi and Engel, 2005) or to 

Grylloblattida (according to Rasnitsyn and Quicke, 2002) (†)Meganisoptera is a 

Paleozoic stem group to modern Odonata. They were giant insects, reaching a wingspan 

of 70 cm,  
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The following table provides a synthesis of the entomofauna diversity in the four sites. 

 

Grès a Voltzia 
Madygen 
Formation 

Los Rastros 
Formation  

Molteno 
Formation 

Archaeognatha x 

Ephemeroptera x x 

Odonata 
x 

(Odonatoptera) 
x 

x 
(Odonatoptera) x 

Plecoptera x x x x 

Blattodea x x 
x 

(Blattoptera) 
x 

Mantodea x 

Orthoptera x x x x 

Megaloptera x 

Neuroptera x x x 

Mecoptera x x x 

Trichoptera x x x 

Lepidoptera x 

Hymenoptera x x 

Coleoptera x x x x 

Phasmatodea x x 

Prothortoptera x 

Dermaptera x 

Psocoptera x 

Diptera x x 

Hemiptera x x x x 

Isoptera     
(†) Meganisoptera 
(Protodonata) x 

(†) Glosselytrodea x x x 

(†)Titanoptera x 

(†) Miomoptera x x 

(†) Paraplecoptera    x 

 

Tab.1: the diversity of the fossil entomofauna in four different Triassic insect sites (Grès a Voltzia, 

Anisian; Madygen, Ladinian-Carnian; Los Rastros Formation, Ladinian; Molteno Formation, Carnian). 

Odonatoptera and Blattoptera are mentioned to point out that representatives of stem groups, now extinct, 

of Odonata and Blattodea were found. 

 

  



 

 

6. Paleoenvironment

The Kalkschieferzone is the 

the fossiliferous levels of Monte San Giorgio, together with the Besano Formation 

(Anisian/Ladinian boundary) and the lower Meride Limestone. 

Fig 6: Stratigraphy of the Triassic sediments in the area of Monte Sang Giorg

Lombardo, 2001)  

 

The depositional environment 

adjacent to a carbonatic platform (S. Salvatore Dolomite)

faces a deeper basin (Perledo

carbonatic platforms 

somewhat limited connection to the open and deeper sea

Lombardo 1999; Lombardo et al. 2012). Sedimentation took plac

with an often anoxic bottom, as indicated by common laminated limestone or marly

limestone layers and the almost general absence of bioturbation (Tintori 1990; Tintori & 

Renesto 1990; Tintori & Lombardo 1999, Lombardo et al. 2012). Qu

also clay-chips beds, often

storms affecting the shallower part of the basin or the threshold toward the open waters. 

The Kalkschieferzone basin was clearly also sometimes affected 

supply following stormy heavy rains, as there is record of several levels rich in 

conchostracans crustaceans 

Kalkschieferzone no sure marine stenohaline organism has bee

nothosaurid Lariosaurus

Paleoenvironment 

The Kalkschieferzone is the uppermost member of the Meride Limestone, and is one of 

the fossiliferous levels of Monte San Giorgio, together with the Besano Formation 

(Anisian/Ladinian boundary) and the lower Meride Limestone.  

 

: Stratigraphy of the Triassic sediments in the area of Monte Sang Giorg

The depositional environment of the Kalkschieferzone is that of a shallow lagoon, 

adjacent to a carbonatic platform (S. Salvatore Dolomite). Toward 

a deeper basin (Perledo-Varenna Formation) and the complex system of

 of the Esino Formation further to the East (Grigna Mountain),

somewhat limited connection to the open and deeper sea (Tintori 1990; Tintori & 

Lombardo 1999; Lombardo et al. 2012). Sedimentation took place below wave base and 

with an often anoxic bottom, as indicated by common laminated limestone or marly

limestone layers and the almost general absence of bioturbation (Tintori 1990; Tintori & 

Renesto 1990; Tintori & Lombardo 1999, Lombardo et al. 2012). Qu

chips beds, often rich also in dark algal-film fragments, probably related to 

storms affecting the shallower part of the basin or the threshold toward the open waters. 

The Kalkschieferzone basin was clearly also sometimes affected 

supply following stormy heavy rains, as there is record of several levels rich in 

crustaceans (Tintori 1990; Tintori & Brambilla 1991). 

no sure marine stenohaline organism has been found, apart f

Lariosaurus and the fishes, most of them strictly related to the marine 
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e Meride Limestone, and is one of 

the fossiliferous levels of Monte San Giorgio, together with the Besano Formation 

: Stratigraphy of the Triassic sediments in the area of Monte Sang Giorgio (from Krzeminki and 

the Kalkschieferzone is that of a shallow lagoon, 

oward East-North/East it 

the complex system of 

(Grigna Mountain), with 

Tintori 1990; Tintori & 

e below wave base and 

with an often anoxic bottom, as indicated by common laminated limestone or marly-

limestone layers and the almost general absence of bioturbation (Tintori 1990; Tintori & 

Renesto 1990; Tintori & Lombardo 1999, Lombardo et al. 2012). Quite common are 

film fragments, probably related to 

storms affecting the shallower part of the basin or the threshold toward the open waters. 

The Kalkschieferzone basin was clearly also sometimes affected by sudden fresh water 

supply following stormy heavy rains, as there is record of several levels rich in 

Tintori 1990; Tintori & Brambilla 1991). In the 

n found, apart from the 

and the fishes, most of them strictly related to the marine 



Pagina 22 

 

environment: in fact, many of the Kalkschieferzone fish genera have been found also in 

other localities that can be considered surely marine, such as Luoping, in southern 

China (Lombardo et al., 2011; Lopez-Arbarello et al., 2011) or Perledo along the 

eastern coast of the Lario Lake (Tintori & Lombardo, 1999; Lombardo et al., 2008) or 

even the Besano Formation in the same Monte San Giorgio area (Bürgin, 1999).  

During the deposition of the uppermost Meride Limestone (the Kalkschieferzone 

Member), the fresh water influence became stronger and stronger: conchostracans and 

insects point to a quite close land with superficial fresh-water ponds, permanent or 

seasonal, as suggested by the number of conchostracan-rich surfaces. Tintori (1990) and 

Tintori & Brambilla (1991) proposed an alternation of dry and very rainy seasons, a 

monsoonal-like climate where heavy rains could suddenly hit the Kalkschieferzone 

basin causing mass mortality events in the marine fauna, mainly fishes, as happened at 

least for Prohalecites, Peltopleurus and Allolepidotus, but also for the crustacean 

Schimperella (Tintori, 1990).  

A further support to the fresh water hypothesis as causing mass mortality in a marine 

basin after flooding the nearby land, is provided by the assemblage yielding the 

apterygote insect Dasyleptus triassicus (Bechly and Stockar, 2011), from the upper 

Kalkschieferzone, and by several other surfaces that can be considered as result of a 

mass mortality event, with at least 20  up to 151 specimens for few square meters 

(Lombardo et al. 2012). 

Furthermore, specimens from a mass mortality surface in the Kalkschieferzone are 

usually of similar size (Tintori 1990), while less common species, represented by sparse 

specimens, show a consistent pattern of size grouping (Tintori & Lombardo, 1999; 

Lombardo, 2002). As already pointed out (Tintori 1990, Tintori & Lombardo, 1999), 

this also implies that the mortality of marine dwellers was concentrated possibly in a 

single season of the year even if not always the adverse weather conditions led to mass 

mortality.  

Interbedded to the fish-rich layers, there are levels showing massive quantity of 

Conchostracans: they are usually almost devoid of fishes (and vice-versa, Tintori, 

1990), possibly because when the marine basin was too strongly affected by the fresh 

waters input from the nearby land for quite a long time, the marine fishes almost totally 

disappeared from the basin itself.  

Apart from the mass mortality surfaces yielding usually Prohalecites, more rarely 

Peltopleurus and Coelatichthys, all the other fish genera are quite rare and their 

presence may be related to the attritional mortality in ‘normal’ marine condition.  
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The Biodiversity of the Kalkschieferzone is quite low: about 20 fish species subdivided 

in at least two different assemblages (Tintori, 1990; Lombardo, 1999, 2001, 2002; 

Tintori & Lombardo 1999, 2007; Lombardo & Tintori, 2004), the nothosaurid 

Lariosaurus (Tintori & Renesto, 1990; Renesto et al., 2003), three crustaceans (the 

mysidiacean Schimperella, the conchostracan Laxitextella and a very rare undescribed 

decapod), 19 specimens of insects belonging to eight orders (Krzeminski & Lombardo, 

2001; Bechly & Stockar, 2011, Strada et al, 2014) and a few terrestrial plant remains. If 

the two specimens mentioned by Bechly & Stockar, 2011 are consideres, insects amount 

to 21 specimens. 

The Kalkschieferzone fossil assemblages are not significantly different in the number of 

vertebrate and invertebrate taxa found in each single level from those from the lower 

Meride Limestone, such as Cava Inferiore, Cava Superiore and Cassina Beds (Bürgin, 

1998, 1999). Instead, the Besano Formation assemblages include many more taxa, both 

vertebrates and invertebrates (Lombardo, 1999; Röhl et al., 2001) also pointing to a 

strictly marine environment. 

The plant record from the Kalkschieferzone has not yet been described. Tintori 

(personal communication) remarks that plant fragments form this level are larger and 

better preserved than in the Cassina Beds, top of the Lower Meride Limestone, as 

described by Stockar & Kustatscher (2010). Mostly voltziales are present, suggesting a 

somehow less arid climate than during the deposition of the older levels. 
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6.1. Taphonomy 

The insect collected from site D, Val Mara, are preserved as compression fossils and 

approximately 30% of the specimens are partially or totally phosphatized. 

Phosphatization has preserved both hard (cuticle) and soft parts, showing details of 

muscles, tendons, internal organs and, in at least two cases, details of the nervous 

system. 

In a few cases, the fossil is preserved on slab and counterslab: anyway, the two slabs 

never show the ventral and dorsal view of the insects but rather cut through the same 

view, so that the organic impression is divided between the two slabs. 

 

 

 

 

Fig 8: A: Kalkschieferzone succession, Gaggiolo canyon -val Mara - Meride, opposite to the site where 

the fossil insects were found (Dec 2010): B: Clean slates from the excavation 

 

  

A B 



Pagina 25 

 

 

 

7. Materials and methods 

All the specimens have been collected in locality D in Val Mara, near Meride (Canton 

Ticino, Switzerland) and are or will be deposited at Museo Cantonale di Storia Naturale 

di Lugano. Specimen manipulation and measures were completed with the auxiliary use 

of the stereo microscope Leica MS5 and an ocular micrometer or with a Parker 

Hannfin-Deadal Digital Micrometer. Images were acquired by digital camera Canon 

Eos 450 mounted on a machinery in order to scan the sample at different focus layers 

that were mounted with Zerene Stacker 1.0 (Student Edition). Drawings were made by 

camera lucida attached to the microscope or from photographs (when a combination of 

the characters preserved on slab and counterslab is drawn). 

Observationon specimens MCSN8463, MCSN8462 and MCSN8456 were performed on 

picture series taken with a Zeiss Axioskop 2 was equipped with different objectives of 

1.25×, 2.5×, 5×, 10×and 20× magnification under cross-polarized light. 

 

  



Pagina 26 

 

 

8. Systematic paleontology 

In this section the specimens are described and assigned, sometimes tentatively,to a 

taxon. The degree of preservation of the different specimens is very variable and often 

the main diagnostic features, as antennae, wings, mouthparts or legs, are lost.  

Moreover the type of conservations also plays an important role. In fact, approximaltely 

30% of the specimens are completely or partially phosphatized. Phosphatization has 

allowed the preservation of internal structures normally not visible in fossils, making 

comparison with other representativesof the same groups very difficult. 

Therefore, identification of the specimens, has been possible to the extent allowed by 

the degree of preservation. 

In the following descriptions, phosphatization of single parts is indicated with (P).  

At the moment this dissertation was written, the only published specimen, identified as 

genus and species is MCSN8455, described as Praedodromeus sangiorgensis in Strada, 

Montagna and Tintori, 2014. Other new taxa descriptions will be soon submitted. 
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8.1. Specimen MCSN8451 

 

Systematic paleontology 

Order Coleoptera Linnaeus, 1758 

Suborder Adephaga Schellenberg, 1806 

Family Trachypachidae Thomson, 1857 

Subfamily Eodromeinae Ponomarenko, 1977 

Genus Praedodromeus gen. nov. 

Type species. Praedodromeus sangiorgiensis n.sp. by monotypy. 

 

Etymology. The name derived from the Latin verb “praedo”, which means to prey, 

considering its strong and sharp mandibles that we supposed to be used to catch prey, 

and the suffix “–dromeus”, which means “runner”, from its cursory legs. 

Locus typicus: Site D, Val Mara near Meride, Mendrisio, Canton Ticino, Switzerland. 

Diagnosis: The general habitus of the new taxon (genus or species), a simple sulcate 

antenna cleaner in the distal part of the tibiae, the metacoxa separating the thorax and 

abdomen , the metaepisternum reaching the mesocoxal cavities prompts its ascription to 

the family Trachypachidae, subfamily Eodromeinae. The new taxon is described as new 

genus and species due to the presence of a unique set of characters: well developed 

asymmetrical mandibles; rectangular pronotum, longitudinal groove absent; short 

metaventrite; and big head with large eyes on the upper surface. 

 

Praedodromeus sangiorgiensis sp. nov.  

Holotype: MCSN8451 

Etymology. The name derived from the collecting area of Monte San Giorgio 

(Switzerland/Italy). 

Diagnosis: as for the genus, being the only species. 

Description: Almost complete impression in dorsal view, lacking antennae (fig. 9). 

Head and abdomen in natural position, single disarticulated elytron preserved. Length 

from apex of mandibules to apex of elytra of 10,8 mm; width at base of elytra of 4,6 

mm (length-width ratio 2,34). 

All three legs on the right side preserved. Mid and hind femora rather large and robust; 

maximum width of right mid femora 0,79 mm. Tibiae thin and slender. The preserved 

tarsi (I+II) elongated and slim; only fore two tarsomers distinguishable, first one 
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enlarged. On the left side preserved only II+III femora and III tibia. Right fore tibiae 

(length 1,92 mm) harbouring a simple sulcate antenna cleaner organ with enlarged distal 

area and an apical spur (0,24 mm). Five tarsi (total length 1,62 mm) on I right leg 

clearly visible. Slender tibiae. 

Head big, longer than wider, length of 3,0 mm mandibles excluded and of 3,42 

mandibles included, width at the eyes 2,76 mm. Mandibles asymmetrical and triangular, 

robust and sharp with a small tooth in the anterior second-third of the inner margin. 

Total length of 1,38 mm, width 0,96 mm, length-width ratio of 1,44. Partial impression 

of labial palp visible between mandibles. 

Pronotum wide (3,1 mm), anterior margin slightly concave with pointed apices (left 

side), posterior margin straight.  

Abdomen partially visible with light impressions of segmentation preserved on the left 

side. Length of abdomen 1,5 times the length of meso- and metathoraces combined. 

Discussion: The specimen has been described based on the preserved morphological 

characters even if some key characters are lacking, probably due to subaereal 

degradation before burial. Better-preserved features include the general habitus, the 

mandibles and the very developed head with  dorsal eyes. The new genus differs from 

Petrodromeus (Ponomarenko et Volkov, 2013), Permunda (Ponomarenko et Volkov 

2013), Karatoma (Ponomarenko 1977), Sinodromeus (Wang et al. 2012), 

Psacodromeus (Ponomarenko 1977), Xinbinia (Hong 1983) and Fortiseode (Jia and 

Ren 2011) for the absence of punctuations ans/or striae on elytra. The genera 

Petrodromeus (Ponomarenko et Volkov 2013), Permunda (Ponomarenko et Volkov 

2013) and Karatoma (Ponomarenko 1977) show a lower head width/length ratio 

compared to Praedodromeus gen. n. The new genus markedly differs from Fortiseode 

and from Xinbinia also for the shape of body, pronotum and head. It also differs from 

Sogdodromeus (Ponomarenko, 1977) in the longer abdomen and in the shape of the 

pronotum. Compared to Platycoxa (Ponomarenko, 1977) it differs in the shape of 

pronotum and mandibles, in the shorter head capsule and smaller eyes. Praedodromeus 

gen. n. differs from Unda (Ponomarenko, 1977) and from Permunda (Ponomarenko et 

Volkov, 2013) in the width and shape of the pronotum, which lacks the pointed anterior 

margins and is less markedly narrower than the base of the elytra. Compared to 

Karadromeus (Ponomarenko, 1977) the new taxon has legs with longer femora, 

protruding beyond lateral margins of the body and tibiae longer than femora. The 

comparison with Beipiaocarabus (Hong, 1983) is difficult, since the holotype found by 

Hong is preserved in ventral view, which we are missing. Anyway, apparently in 
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Beipiaocarabus the abdomen is shorter, the metathorax is quite longer and femora are 

less strong and thick than in Praedodromeus. 

 

 

 

Fig 9 – A:Praedodromeus sangiorgensis gen n, sp n, total length 10.8 mm; B: drawing 
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8.2. Specimen MCSN8455 

 

Order Coleoptera LINNAEUS 1758 

Description: Medium sized beetle, preserved in dorsal view, slab (fig 10 A) and 

counterslab (fig 10 B). Total lenght 10,31 mm, maximum width at elytra base 4,62 mm. 

Hydrodynamic, compact body profile. Head short, probably hypognathous, 1,30 mm 

long and 2,09 mm wide, with a pair of small, dorsal eyes. The eyes show a reddish 

coloration. Antennae and palpi lost. Elytra 6,69 mm long, 2,31 mm wide. Internal 

margin almost straight, external margin slightly convex, with steepening angle at 

approximately 2/3 of the total elytron length. Elytra smooth, with thick epipleural line, 

clearly visble on the left elytron, preserved in its first third on the counterslab and in the 

other two thirds on the slab. The epipleura becomes larger towards the end of the 

elytron. A few traits of the left wing venation are visible on both slabs on the terminal 

part of the abdomen. 

Pronotum 3,03 mm wide, 2,33 mm long. Mesonotum and metanotum not visible, 

estimated combined length estimated from hind femur position 2,80 mm. 

Right legs II and III are poorly preserved and partially overlay, making it very difficult 

to identify the different leg segments. The hind femur is partially preserved (segment 

length 0,73 mm) and it’s quite enlarged (maximum width 0,50 mm). The preserved tibia 

(length 3,19 mm), probably of the third leg, has a tubular and curved shape. A foreleg, 

femur and tibiae, has detached and is preserved at approximately 1,5 mm from the right 

side of the head (slab).  

No distinctive feature is visible on the abdomen; we can estimate a length of 3,5 mm) 

and a widthof 3,57 from the hind femur position (as for metanotum). 

Discussion: The general habitus of the beetle, its compact and hydrodynamical profile 

and the thickness of the preserved femur support its assignement to an aquatic group. 

Unfortunately, no diagnostic features are preserved to allow a definite identification. 

However, it can be remarked that the beetle closely resembles Coptoclavella inexpecta 

gen. et sp. nov ( Soriano, Ponomarenko and Delclòs 2007) from the El Montsec outcrop, 

Spain, dated Lower Cretaceous (Barremian, 130 – 125 My). Coptoclavella belongs to 

the subfamily Coptoclaviscinae subfam. nov.,one of the five known subfamilies of the 

family Coptoclavidae (Ponomarenko 1961), an extinct family of aquatic beetles 

belonging to the suborder Adephaga. Coptoclavids are the most common group of 

aquatic beetles in the Jurassic and Cretaceous deposits (Wang et al., 2010) and are 

recovered both as larvae and as adults from the fossil record. They exhibits varying 



 

degree of adaptation to aquatic life, but are uniquely characterized by a double pair of 

eyes for aquatic and subaerial vision. The oldest fossil record of the group so far is a 

larva described by Ghosh e

Permo-Triassic boundary)

 

Fig 10: MCSN8455, total lenght 10,31 

combining information both from slab and counterslab. 

  

A 

degree of adaptation to aquatic life, but are uniquely characterized by a double pair of 

eyes for aquatic and subaerial vision. The oldest fossil record of the group so far is a 

Ghosh et al (2007) from the Parsora Formation (Lower Triassic if not 

Triassic boundary). 

lenght 10,31 mm. A: picture, counterslab; B picture, slab; C: drawing

from slab and counterslab.  

B 

C 

Pagina 31 

degree of adaptation to aquatic life, but are uniquely characterized by a double pair of 

eyes for aquatic and subaerial vision. The oldest fossil record of the group so far is a 

t al (2007) from the Parsora Formation (Lower Triassic if not 

 

 

mm. A: picture, counterslab; B picture, slab; C: drawing 



 

8.3. Specimen MCSN8461

Suborder Archostemata 

Description: Fragment of elytron

maximum width 0,54 mm

packed, wing venation not visible; external rim not 

are smaller along what might be identified as the external margin of the elytron and in 

the lowermost and uppermost part of the fragment. Six rows of cells visible in the 

largest part of the fragment, 18 cells in the longest row. Ornamentation is remarkably 

similar to that of the whole elytron described by Krzeminsky and Lombardo (2001), that 

is the oldest known Ommatidae (Notocupes sp) described. 

Discussion: In this fragment, no chara

fragment to the same taxon. Therefore, we can only assign the beetle to the order 

Archostemata, whose families often exhibit this type of arrangement in elytra 

ornamentation. 

Fig 11: A: elytron fragment

(MCNS8469), maximum width 2,07 mm.

 

8.4. Specimen MCSN8460

Order Coleoptera 

Description: Abdomen fragment

with extant Carabid abdomen). Thre

distinctive features and no 

visible. Maximum width 2,07 mm. Length of first segment 0,6 mm; length of second 

segment 0,52 mm; length of third segment 0,54

Discussion: since no distinctive features

this specimen beyond the order level.

A 

n MCSN8461 

Order Coleoptera LINNAEUS, 1758 

Suborder Archostemata KOLBE, 1806 

Fragment of elytron (slab and counterslab), maximum length 2,0 mm, 

maximum width 0,54 mm (fig 11 A). Circular and sometimes hexagonal cells, tightly 

tion not visible; external rim not visible, possibly not present. C

long what might be identified as the external margin of the elytron and in 

the lowermost and uppermost part of the fragment. Six rows of cells visible in the 

of the fragment, 18 cells in the longest row. Ornamentation is remarkably 

similar to that of the whole elytron described by Krzeminsky and Lombardo (2001), that 

is the oldest known Ommatidae (Notocupes sp) described.  

In this fragment, no character is preserved to allow us to assign the 

fragment to the same taxon. Therefore, we can only assign the beetle to the order 

Archostemata, whose families often exhibit this type of arrangement in elytra 

elytron fragment, slab (MCSN8461), total length 2,0 mm; B: abdomen fragment 

8469), maximum width 2,07 mm. 

MCSN8460 

Order Coleoptera LINNAEUS, 1758 

Abdomen fragment (fig 11 B), internal side exposed (from comparison 

with extant Carabid abdomen). Three segments are preserved, no morphological 

and no internal distinctive structures (as leg insertions) are 

visible. Maximum width 2,07 mm. Length of first segment 0,6 mm; length of second 

mm; length of third segment 0,54 mm. 

o distinctive features are preserved, it is not possible to classify 

this specimen beyond the order level. 

B 
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, maximum length 2,0 mm, 

Circular and sometimes hexagonal cells, tightly 

visible, possibly not present. Cells 

long what might be identified as the external margin of the elytron and in 

the lowermost and uppermost part of the fragment. Six rows of cells visible in the 

of the fragment, 18 cells in the longest row. Ornamentation is remarkably 

similar to that of the whole elytron described by Krzeminsky and Lombardo (2001), that 

allow us to assign the 

fragment to the same taxon. Therefore, we can only assign the beetle to the order 

Archostemata, whose families often exhibit this type of arrangement in elytra 

 

: abdomen fragment 

, internal side exposed (from comparison 

e segments are preserved, no morphological 

(as leg insertions) are 

visible. Maximum width 2,07 mm. Length of first segment 0,6 mm; length of second 

are preserved, it is not possible to classify 



 

 

8.5. Specimen MCSN8464

Description: Small beetle

view, partially preserved. Head appendages missing; legs partially preserved.

not distinguishable from head; length of head + pronotum 1 mm, width 0,54 mm. El

1,90 mm long and 0,72 mm wide, with faint longitudinal striae. 

from right legs I and II preserved. Femur I 0,41 mm long and 0,17 mm wide. Femur II 

0,40 mm long and 0,18 mm wide.

Discussion: The fossil does

the body, which is compact and rounded, and o

suggest the assignment to an aquatic group.

Fig 12: specimen MCSN

  

MCSN8464 

Order Coleoptera LINNAEUS, 1758 

Small beetle (fig. 12), total length 2,90 mm, preserved in

view, partially preserved. Head appendages missing; legs partially preserved.

not distinguishable from head; length of head + pronotum 1 mm, width 0,54 mm. El

long and 0,72 mm wide, with faint longitudinal striae. Two femurs,

from right legs I and II preserved. Femur I 0,41 mm long and 0,17 mm wide. Femur II 

0,40 mm long and 0,18 mm wide. 

The fossil does not preserve any diagnostic feature. The general shape of 

the body, which is compact and rounded, and of the legs, which show thick femurs, may 

suggest the assignment to an aquatic group.  

 

: specimen MCSN8464, total length 2,90 mm 
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, preserved in dorsal/lateral 

view, partially preserved. Head appendages missing; legs partially preserved. Pronotum 

not distinguishable from head; length of head + pronotum 1 mm, width 0,54 mm. Elytra 

Two femurs, probably 

from right legs I and II preserved. Femur I 0,41 mm long and 0,17 mm wide. Femur II 

preserve any diagnostic feature. The general shape of 

f the legs, which show thick femurs, may 
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8.6. Specimen MCSN8456 

Description: Medium sized insect, preserved in a dorsal view, laterally rotated (fig. 13). 

Total length from top of head to end of wings (terminal part missing): 19 mm. Head 

capsule preserved, length 3,0 mm, maximum width 1,35 mm, moprhological details not 

visible. Head hypognathous. Several internal soft tissue structures are preserved (P) 

under a thin layer of cuticle but are not recognizable; their shape could suggest they are 

tendons and muscles. No abdominal internal structure is preserved Two appendages 

preserved (P), probably the maxillary parlps or very thin antennae. Pronotum “T” 

shaped, embracing laterally the somite in its larger cephalic portion; pronotum 

maximum width 3,0 mm, length 2,1 mm. Mesonotum preserved, drop shaped, lodged 

into metanotum, “V” shaped. Mesonotum 2,3 mm long and 1,9 mm wide. Metanotum 

formed by two segment forming a “V” structure, arms 2,4 mm long and 0,8 mm large. 

Massive transverse mass (up to 5 mm  wide) of compact soft tissue preserved (P) 

approximately under mesonotum but extending laterally, possibly identified as flight 

muscles. Left leg I partially preserved (P) in trochanter (0,5 mm), femur ( 1,0 mm) and 

tibia (2,05 mm); tarsi missing. Left leg II poorly preserved (P). Left leg III partially 

preserved, trocanther distinguishable, femur and tibia poorly preserved, distal part 

missing. The total length of left leg III is 12,0 mm. Very robust right leg III femur 

preserved (P), 8 mm long and 2,3 mm wide at base. Wings partially preserved, lying at 

rest on the abdomen, fore wings not distinguishable from hind wings, if both pairs are 

present. Venation not distinguishable. The terminal part of the wings is missing.  

Discussion: At first sight this specimen attracts attention for its apparent good 

preservation. Unfortunately, a closer examination shows that certain attribution to a 

group is made very difficult by the loss of important diagnostic features, such as 

mouthparts, wing venation, eyes/ocelli and tarsi and claws. 

The hypognathous head, the shape of the pronotum and, most of all, the thickness, shape 

and length of femur of the right leg III could support the attribution to Orthoptera. In 

particular, the distal end of the better preserved femur of right leg III shows a robust 

articulation recalling those of Orthoptera. 

On the other hand, the absence of a fisrt pair of sclerotized wings is not consistent with 

the orthopteran hypothesys, unless they have been lost. The shape of meso- and 

metanotum recall those of extant Plecoptera. 

 Finally, the shape of the head, albeit poorly preserved, shows a resemblance with 

Isoptera caught in Miocene amber in the pointed terminal part and in the position of the 



 

head appendages preserved, that could be interpreted as the thin antennae typical of 

Isoptera.  

At the moment, we cannot carry out a definite assignment of the specimen, but all the 

orders matched by its characters are from 

include Plecoptera, Zoraptera and Embiodea; Orthoptera and Phasmatodea; Dermaptera; 

Grilloblattodea; Mantophasmatodea; Blattodea, Isoptera and Mantodea and most of 

these orders were already well developed in the Tr

 

 

Fig 13: specimen MCSN

  

head appendages preserved, that could be interpreted as the thin antennae typical of 

At the moment, we cannot carry out a definite assignment of the specimen, but all the 

orders matched by its characters are from the Polyneoptera superorder. Polyneoptera 

include Plecoptera, Zoraptera and Embiodea; Orthoptera and Phasmatodea; Dermaptera; 

Grilloblattodea; Mantophasmatodea; Blattodea, Isoptera and Mantodea and most of 

these orders were already well developed in the Triassic. 

: specimen MCSN8456, total length 19 mm 
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head appendages preserved, that could be interpreted as the thin antennae typical of 

At the moment, we cannot carry out a definite assignment of the specimen, but all the 

the Polyneoptera superorder. Polyneoptera 

include Plecoptera, Zoraptera and Embiodea; Orthoptera and Phasmatodea; Dermaptera; 

Grilloblattodea; Mantophasmatodea; Blattodea, Isoptera and Mantodea and most of 

 



 

8.7. Specimen MCSN 8457

Description: Poorly preserved insect

of a dark unresolved bulk

possible to determine whether the ventral or the dorsal sight is preserved. Femora

III), left and right, are preserved.

external margin of left femur III. 

Length of preserved leg segments: 

femur II, left: 2,89 mm; femur II, 

right 6,53 mm. 

A bundle of tubular structures is preserved in the abdomen

Due to their position

from the pylorus at the 

alternation of white and dark segment

empty traits. This is

proctodeum cannot be excluded.

An unidentifiable symmetric structure is also preserved in the terminal part of the 

abdomen. 

Discussion: The specimen has been tentatively assigned to Orthoptera f

its hind femora and their position, parallel to the body longitudinal axis, which is typical 

of orthopteran legs at rest.

Fig 11: MCSN 8457 A: pitcure of the whole specimen in normal light; 

objective 10 X, blue light.

 

A 

MCSN 8457 

Poorly preserved insect (fig. 11), entirely phosphatized with the exception 

of a dark unresolved bulk probably in the meso- and metathorax

ble to determine whether the ventral or the dorsal sight is preserved. Femora

III), left and right, are preserved. An irregular structure is visible on the first half of the 

external margin of left femur III.  

Length of preserved leg segments: femur I, right: 2,58 mm; femur I, 

: 2,89 mm; femur II, right: 1,98 mm; femur III, left

A bundle of tubular structures is preserved in the abdomen, forming

Due to their position, they are here interpreted as Malpighian tubes, that have origin 

from the pylorus at the midgut-hindgut border. It must be noted that they show an 

alternation of white and dark segments, that might suggest the alternation of full and 

empty traits. This is unsusual for the extretory system therefore a very convolute 

proctodeum cannot be excluded. 

An unidentifiable symmetric structure is also preserved in the terminal part of the 

The specimen has been tentatively assigned to Orthoptera f

its hind femora and their position, parallel to the body longitudinal axis, which is typical 

at rest. 

: pitcure of the whole specimen in normal light; B: detail of the Malpighian tubes, 

e 10 X, blue light. 

B 

Pagina 36 

phosphatized with the exception 

and metathorax position. It is not 

ble to determine whether the ventral or the dorsal sight is preserved. Femora (I, II, 

An irregular structure is visible on the first half of the 

: 2,58 mm; femur I, left: 2,49 mm; 

left: 5,93 mm; femur III, 

ing an important mass. 

, they are here interpreted as Malpighian tubes, that have origin 

hindgut border. It must be noted that they show an 

, that might suggest the alternation of full and 

unsusual for the extretory system therefore a very convolute 

An unidentifiable symmetric structure is also preserved in the terminal part of the 

The specimen has been tentatively assigned to Orthoptera for the length of 

its hind femora and their position, parallel to the body longitudinal axis, which is typical 

 

: detail of the Malpighian tubes, 
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8.8. Specimen MCSN8457 

Order Embiodea KUSNEZOV, 1903 

Diagnosis: both fore basitarsi swollen ( right fore basitarstus 0,61 mm long, 0,51 mm 

wide; left fore basitarsus 0, 53 mm long, 0,43 mm wide). Three segmented tarsus, two 

more segments being preserved after right basitarsus. Long fore legs, shorter and thinner 

middle legs, stronger hindlegs with enlarged femora (right and hind femora 0,73 mm 

wide). 

Desription: medium sized insect preserved in ventral view (Fig. 16), total length 18,28 

mm. Head and all legs partially preserved, phosphatized. Thorax and abdomen poorly 

preserved, not phosphatized, and maintaining some of their original dark brown 

coloration. Head rather big, longer than wider, as can be inferred from the insertion of 

antennae (partially preserved) and maxillary palp, 1,43 mm long, visible on the left side 

of the head. The last segment of the right maxillary palp is preserved and a segment of 

the right antenna is visible. Mandibles not visible. No structures are distinguishable 

from the posterior part of the head. All legs are preserved phosphatized (fig 12 A, B, C, 

D) and the internal soft tissue structures, muscles and tendons, are visible. Both 

forebasitarsi preserved, enlarged, slightly drop-shaped. In the right fore basitarsus the 

muscle structure of the following segments is preserved. Right tarsus composed of three 

segments, total length 1,49 mm. Leg I total length, estimated from left leg I femur and 

tibia plus right leg I tarsus: 5,02 mm. Left leg II preserved; femur 1,22 mm long, 0,57 

mm wide; tibia 0,95 mm long; tarsus 0,56 mm long. Right leg II preserved; femur 1,42 

mm, tibia 1,33 mm, tarsus 0,55 mm. Left leg III preserved femur 2,25 mm long, 0,73 

mm wide; tibia 2,25 mm long; tarsus 1,22 mm long. Right leg III preserved femur 1,95 

mm long, 0,73 mm wide; tibia 1,99 mm long; tarsus 0,69 mm long. Tibiae of legs II and 

III enlarged at the end. What could be pro-, meso- and metatergites partially preserved, 

retaining a dark brown coloration. Separation between the three thoracic somites poorly 

preserved; length of pro- + meso- + methathorax 7,29 mm, estimated from the distance 

between the point of insertion of left leg I and III. Abdomen not preserved, except for 

the distal part of the last segment (genitalia?) preserved phosphatized, poorly resolved. 

Abdomen length, estimated from the insertion point of femur of leg III and the apex of 

the last segment: 5,69 mm. Two structures are visible at both sizes of the thorax, each 

formed by two thick lines of grey matter, 3 mm long and 0,2 mm thick, disposed in an 

approximately triangular shape with the apex pointing to the tail of the insect.  

 



 

 

 

Fig 15: specimen MCSN8457 A

profile; C: extant Haploembia 

(http://villenatura.blogspot.it/2012/07/haploembia

 

C

A: picture, total length 18,28 mm; B: reconstruction of 

Haploembia solieri (fam Oligotomidae), from the web 

http://villenatura.blogspot.it/2012/07/haploembia-solieri.html ) 

A

Pagina 38 

 

 

: reconstruction of a possible the body 

(fam Oligotomidae), from the web 

B
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Fig 16: MCSN8457, magnification at 4X. A right leg II; B right forebasitarsus; C right leg III; 

D left leg II 

Discussion: at the moment, 11 species of fossil Embiodea are known (Cockerel, 1894; 

Davies 1939; Engels et al, 2011, Engels et al, 2011; Huang and Nel, 2009; Ross, 1956, 

1984; Szumik, 1994; Szumik, 1998). They are from the Cretaceous ( two species), from 

the Eocene (three species) and from the Miocene (four species). These species have all 

be assigned to the suborder Neoembiodea (Engel and Grimaldi 2006). Two more 

species, Sinembia rossi and Juraembia ningchengensis gen. et sp. nov., have been 

described by Huang and Nel (2009) from the Middle Jurassic of Inner Mongolia, China.  

MCSN8457 shows the most important character defining Embiodea. In fig 15 B a 

possible reconstruction of the insect is proposed. Most of the dimensions reported in the 

description were taken on phosphatized parts. Since they are internal organs, in most 

cases muscles, it is probable that size is underestimated.  

On the other hand, it is not possible to compare it with the other fossil species, due to 

the loss of other relevant features such as mandibles, genitalia, setae. For this reason we 

have decided not to erect a new taxon, despite the long time interval between this fossil 

and the nearest fossils Embiodea from the Jurassic. But we still feel this specimen is an 

A B 

C D 
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important finding since it extend the range of Embiodea fossil record of approximately 

25 My years. 

MCSN8457 shows the perfectly developed order synapomorphy represented by the 

enlarged fore basitarsi. The two symmetrical grayish structures on both sides of the 

thorax cannot be surely identified. However, their position and symmetry could suggest 

they are the remains of the enlarged wing veins through which Embiodea can pump 

hemolymph to collapse or extend their wings to facilitate motion through their silk 

galleries. On the other hand, MCSN8457 apparently shows two peculiar characteristics: 

a thick body and tarsi on legs II and III markedly enlarged at their distal extremity. The 

body outline can be inferred from the distance between the two femurs of the same pair 

of legs: it is not impossible that partial preservation of the somites of both thorax and 

abdomen and the loss of all trocanthers can overestimate body diameter. Concerning the 

tibiae, only the muscles are preserved and the outer form of the leg could be different 

and more similar to the other representatives of Embiodea.  

Engel and Grimaldi (2006) suggest a Triassic origin for Embiodea: MCSN8457 seems 

at least to confirm this hypothesis but, given the perfectly affirmed salient character of 

the order, the silk spinning organs, it could suggest an even more ancient origin.  
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8.9. Specimen MCSN8462 

 

? Order Plecoptera LATREILLE, 1802 

Description: completely phosphatized specimen, preserverd in dorsal view. Total 

length 9,38 mm. Head and thorax well preserved; abdomen partly preserved. Only a 

very partial impression of three legs. 

Head prognathous, mandibles preserved, smooth and symmetrical, no teeth present. 

Head length 1,13 mm. Maxillary palps preserved, possibly, three segmentes, 0,90 mm 

long. The muscles extending from the insertion of the palps into the head are visible. 

Head anterior to head appendages insertion point 0,79 mm long, 0,65 mm wid . Head 

width at the eyes (beyond insertion of the preserved head appendages) 1,61 mm.  

Pronotum 0,94 mm long, 1,34 mm wide. Two pairs of wing stubs are preserved. First 

pair maximum length 1,21 mm, second pair maximum length 1,14 mm. Mesonotum 

length 0,94 mm, metanotum length 0,98 mm.  

Abdomen length 4,36 mm, maximum width 2,02 mm, Apparently, the distal part is 

damaged and partly missing. The denser white mass visible in the second half of the 

abdomen shows the structure of the Malpighian tubes. The remaining internal structures 

are not distinguishable.  

Three legs are poorly preserved, probably the femurs of left leg II and III (length 1,30 

mm) and of right leg I (length 1,42 mm). Femurs thick (thickness right femur I 0,314 

mm, left femur III 0,416 mm). 

In the head, part of the nervous systems is preserved (fig. 15). The protocerebrum is 

well defined (the deutocerebrum is not visible, being beyond the protocerebrum) and the 

tritocerebrum is visible. The structure is 0,275 mm wide in its central part, 0,588 mm 

wide including the two lateral lobes and 0,368 mm long until the emergence or the 

circumesophagean connettives. The right lobe is almost completely preserved and it’s 0, 

249 mm long and 0,241 mm wide. The outer portion of the left lobe is missing. From 

the center of the protocerebrum, a nervous tracts depart, probably towards  the two 

lateral ocelli. The two lobes of the protocerebrum on each side project towards a 

roughly triangular structure that could be formed by the optic nerve and the optic lobe. 

From the center of the protocerebrum the double nerve cord projects backwards and 

after 0,518 mm forms the subesophageal ganglion, very poorly preserved only in its 

most proximal part (0,126 mm long).  
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Discussion: the fossil is of difficult interpretation, due to the conservation of almost 

exclusively internal structures. The presence of two pairs of wing stubs is the sure 

indication of a hemimetabolic taxon. A tentative receontruction of the appearance of the 

insect is provided in fig 17 B, but of course it leaves a lot to personal interpretation. My 

opinion, not supported by experts of the order, is that it is a Plecopteran larval stage.  

However, the preservation of the nervous structures and of the Malighian tubes is so 

exceptional that makes this fossil extremely significant despite the only tentative 

identification. 

  



 

 

Fig. 17:A:specimen MCSN 8462, total 

specimen  

 

8.10. Specimen MCSN84

Order: Hemiptera 

Suborder: Heteroptera 

Diagnosis: ornamented wings, 

the head; trimerous tarsi; mouthparts forming a piercing/sucking rostrum

elongated. 

Description: specimen preserved in ventral view, slab and counterslab. Total length 

11,81 mm. head, thorax, abdomen, five legs preserved.

lost. Fragments of hemelytra visible superimposed on thorax and abdomen.

Head poorly preserved, 

apart from two segments of the rostrum (circle on fig 16 A and B) resting on the 

mesonotum and reaching at least the end of mesothorax

A 

   

specimen MCSN 8462, total length 9,38 mm; B reconstruction of a possible body profile

MCSN8459 

Order: Hemiptera LINNAEUS, 1758 

Suborder: Heteroptera LATREILLE, 1810 

Family: Tingidae LAPORTE, 1832 

ornamented wings, with areole; pronotal disc, ornamented, extending over 

the head; trimerous tarsi; mouthparts forming a piercing/sucking rostrum

specimen preserved in ventral view, slab and counterslab. Total length 

11,81 mm. head, thorax, abdomen, five legs preserved. Head appendages

Fragments of hemelytra visible superimposed on thorax and abdomen.

Head poorly preserved, 1,52 mm long, 1,43 mm wide. No morphological details visible 

two segments of the rostrum (circle on fig 16 A and B) resting on the 

and reaching at least the end of mesothorax. Impression of the eyes visible 

B 
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reconstruction of a possible body profile. 

with areole; pronotal disc, ornamented, extending over 

the head; trimerous tarsi; mouthparts forming a piercing/sucking rostrum; head 

specimen preserved in ventral view, slab and counterslab. Total length 

Head appendages and wings II 

Fragments of hemelytra visible superimposed on thorax and abdomen. 

o morphological details visible 

two segments of the rostrum (circle on fig 16 A and B) resting on the 

. Impression of the eyes visible 
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on counterslab; eyes of medium size, globular, projecting laterally outside the head . 

Neck width 0.80mm. Antennae lost. 

Outile of the pronotal disc visible on the counterslab, 2,55 mm large at the base of the 

neck. Thorax 4,67 mm long, 4,53 mm wide. Form the ventral view, the pronotal disc 

seems to cover and embrace the entire length of the head. 

Abdomen length 6,13 mm, approximate width at base 4,498 mm. Genital capsule 

partially reserved. 

External margin of hemelytra with areole visible on the left side of the abdomen on slab, 

right side on counterslab, and on the right of the thorax on counterslab. Areole rather 

large, areola on tip of hemelytra at the left side of the abdomen 0,643 mm wide. 

Hemelytra protruding from abdomen for approximately 0,5 mm. 

Five legs preserved: right leg I, dislocated on the left side, over left leg I; right leg II; 

left leg I, II and III. right leg II femur 2,16 mm long; tibia 2,41 mm long. Left leg I 1,65 

mm long. Left leg II femur 2,15 mm long; tibia 2,25 mm long. Tarsi partially preserved 

from left leg II, 1,067 mm long. Tibiae of the forelimbs enlarged, 0,625 mm thick (left 

leg). 

Discussion: Present knowledge about the evolution of Tingidae is hampered by the 

scarcity of well-preserved Mesozoic fossils. The group known fossil record spans from 

the Lower Cretaceous to the Miocene (Wappler, 2003) but the origin of the family is 

placed in the Cretaceous. MCSN8459 brings back the origin of Tingidae even further, 

into the Triassic. The state of preservation prevents comparison with finer structures, as 

parts of the head and head appendages, but the main characters of the group are already 

represented. The largest differences with more recent fossil Tingidae and with modern 

ones lie in the enlarged and shortened tibiae of the first pair of legs, in the long, 

trimerous, hook shaped tarsi and in the specimen size, wich is over the range of extinct 

and extant species (two to eight mm, with most species falling within a maximum size 

of five mm). The shape and dimensions of the areole are interestingly similar to those of 

extant genera, compared to the those of other and more recent fossil lace bugs, which 

show thickest sclerotization and smaller cells. 

Today lace bugs comprise over 2100 species belonging to approximately 300 genera 

and are present in all major zoogeographic regions (Drake and Ruhoff, 1960; 

Froeschner, 1996). They are exclusively phytophagous, the most common species 

occurring on the foliage of trees and shrubs. 

  



 

 

 

Fig 18 – MCNS8459, A: counterslab; 

extant Tingidae: Acalypta parvula from 

(http://www.britishbugs.org.uk/heteroptera/Tingidae/acalypta_parvula.html)

 

C

: counterslab; B: slab. Total length 11,81 mm; C: MCNS8459

extant Tingidae: Acalypta parvula from 

http://www.britishbugs.org.uk/heteroptera/Tingidae/acalypta_parvula.html) 

A B

C 
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MCNS8459 drawing; D: an 

extant Tingidae: Acalypta parvula from the web 

B 

D 
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8.11. Specimen MCSN8463 and MCSN8466 

Order Archaeognatha BÖRNER, 1904 

Family Machilidae GRASSI 1888 

Diagnosis. Paired segmented cerci at the abdominal apex and of the basal part of the 

terminal filament, large segmented maxillary palps and abdominal styli prompts the 

ascription of this insect fossil in the apterygote order of Archaeognatha 

(=Microcoryphia). The presence of the styli-like appendage on the metacoxae, 

appendages covered with scales (clearly visible on the third leg pair, partially on the 

second) and the presence of eversible vesicles on abdominal coxites I-V are diagnostic 

featres of Machilidae. 

Description. Huge machilids, total body length of 39.5 mm (holotype), which is double 

than the largest Machilidae so far known, both extinct and extant. Both specimens in 

ventral-dorsal view with exoskeleton and soft tissues preserved. The description is 

based on MCSN8463 (fig. 19) since MCSN8466 (fig 20) is only partially preserved 

(abdomen and metathorax;  the size and the preserved anatomical features of 

MCSN8466 confirm the ascription to the same taxon as MCSN8463.  

Specimen with head and thorax slightly rotated in the sagittal plane. Body length of 39.5 

mm (from the apex of the cephalic region to the last abdominal tergite) and width of 

8,94 mm (second thoracic somite) (Fig. 19). On the cephalic region three pairs of 

appendages are preserved: i) the proximal part of antennae (scapus and pedicellus) and a 

portion of the multi-segmented flagella (length 2.28 mm); ii) the first three segments of 

the large leg-like maxillary palps (length 2,284 mm); and iii) prementum (3,538 mm in 

length, 1,180 mm in width). The terminal segment of the right labial palp is preserved. 

In the thoracic region coxae, trochanters and femurs of fore, mid and hind legs (the 

latter on the left side only partially visible) are preserved. On the surface of the hind 

trochanter, setae ( 348 μm long) and scales are visible. A styli-like appendage (1,888 

mm in length) is present on the metacoxae (Figs. 21 c, d). On the right side of thorax 

pro- meso- and metanotum are visible from below. Mesonotum is partially visible also 

on the left side. The abdomen is composed by 11 visible urosternites (urosternite I only 

partially visible on the left side), the last urosternites harbor the proximal part of the two 

cerci. Coxopodites and sternites from I to VIII are clearly visible, coxopodal vescicles 

present on coxopodites from I to VII, the second coxopodal vescicle is visible on ventral 

abdominal plates II (both sides) and IV-V (right side) (Fig. 22 a - d). Abdominal styli 

are clearly visible on abdominal plates II left and IV right.  



Pagina 47 

 

Noticeably, in MCSN8463 soft tissues are preserved, namely parts of the central 

nervous system and muscular bundles within legs and abdominal plates. The following 

structures of the central nervous system, are preserved: i) the two optical ganglia and a 

portion of the proto- deutocerebrum in the cephalic region, and ii) a partial ventral nerve 

cord composed of three pairs of abdominal ganglia with their connectives (Fig 19). 

Abdominal (a) ganglion 6a length 550 μm, width 368 μm; ganglion 7a length 570 μm, 

width 340 μm, ganglion 9a length 337 μm, width 225 μm. On the external boundary of 

the optical ganglia the typical compound eyes structures are present. From the outside to 

the inside the corneal surface (cs), the lens layer (ll) and crystalline cone (cc) can be 

identified. Right eye: major axis 2.25 mm, total thickness of cs + ll 222 μm. These 

structures are clearly visible on the right optical ganglion while they are partially visible 

on the left. In both optical ganglia, below the three layers structure, the lamina, the outer 

and inner chiasma, the neuropils medulla (me) and the lobula (lo) are preserved. 

Muscular bundles, hypothesized as femur-trochanter and adductors muscles are 

preserved respectively in the left mesotrochanter and within the right hind leg in coxa 

and trochanter (Figs. 21 a, b). In addition, within abdominal plates from I to IV retractor 

and stylet muscles are visible 
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Fig 19 specimen MCSN 8463 total length 39,5 mm  
 

 

 

Fig. 20. MCSN8466.  
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Fig 21: Details of MCSN8463. A. Close-up on thoracopod. B. Colour-marked version of A  

 

 

  

A 

B 
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Fig. 23: Dasyleptus brongnarty Sharov form the late permian of Kaltan, South-Western Siberia. Form 

Rasnitsyn and Quicke, 2002. 

 

Discussion. The exceptional preservation of soft tissues MCSN8463 has been possible 

through the process of phosphatization, an extremely rare event that has been reported 

in very few cases, namely Chengjang (Cong et al, 2014; Ma et al. 2012; Tanaka et al, 

2013) and one case among the fossils of the Burgess Shale (Strausfeld, 2011). The 

central nervous system preserved in this specimen exhibits a homonymous metameric 

pattern, confirming the hypotheses on the evolution of this structure. The idealized 

concept that the insect’s ancestor possesses a segmental pervasivity with a perfectly 

segmented ventral nerve chord, hypothesized on the basis of extant taxa, has been here 

firstly demonstrated in a ~240 Mo fossil by the presence of the segmented four pairs of 

abdominal ganglia with their connectives matching the abdominal segmentation. 

Noteworthy, the structures of  the optical ganglia highly resemble those possessed by 

extant insects.  

The specimen is a member of the family Machilidae, and therefore contributes to shed 

light in the Archaeognatha evolution. The fossil record of Archaeognatha (bristletails 

plus †Monura) is sparse and is often represented by fragmentary material. It spreads 

from Late Devonian (Labandeira et al., 1988) to Miocene (Sturm and Poinar, 1997). So 

far, the majority of findings belong to the genera Dasyleptus (†Monura; †Dasileptidae) 

and Machilis (Machilidae). The oldest fossils, represented by fragments, date back to 
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Devonian period: a head capsule plus a thoracic fragment from Gaspé Bay (390-392 

My; Labandeira et al. 1988), and a partial terga plus an eye fragment “tentatively 

identified as belonging to machilid insect” from Gilboa (376-379 My; Shear et al., 

1984). Complete or almost complete specimens have been described only for the extinct 

Monura, represented only by the genus Dasyleptus (fig.23). Interestingly, a member of 

†Monura, Dasyleptus triassicus (Bechly & Stockar, 2011), has been described from the 

same stratigraphic unit of MCSN8462, extending the presence of Dasyleptus well after 

the end-Permian mass extinction. Fossil of sure attribution to Machilidae are from the 

Eocene (Koch and Berendt, 1854; Menge, 1854; Olfers, 1907; Silvestri, 1912; see for a 

review Getty et al. 2013; Mendes & Wunderlich 2013). The only other fossil from 

Upper Triassic, Triassomachilis uralensis (Sharov 1948) has been recently confirmed as 

a mayfly larva (Sinitshenkova, 2000). Therefore MCSN8462 traces back the origin of 

Machilidae in the Middle Triassic, extending the range of the extant family of about 200 

Ma. This finding is in agreement with those obtained in a recent study on insect 

phylogeny based on genomic data, in which the last common ancestor of extant 

Machilidae and Meinertellidae has been dated to 145.6 My (CI ~325-33.3 Ma; Misof et 

al., 2014). 
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9. General discussion 

The specimens have already been discussed individually. Therefore, here the focus will 

be on the insect assemblage as a whole, on its paleoenvironmental significance and on 

some exceptional features of this entomofauna. Also the taxa described by Krzeminski 

and Lombardo (2001) and by Bechly andStockar (2011) will be included in the 

discussion on the assemblage. 

As a general remark I must stress that systematic paleontology was strongly influenced 

by the state of preservation of the specimens, which was very variable, and by the type 

on conservation. 

 

9.1. The Kalkschiefezoner insect assemblage and its paleoenvironmental 

implications 

9.2. The insect assemblage 

The fossil assemblage from the Kalkschieferzone of Monte San Giorgio is very diverse. 

Even if the identification of two of the 16 specimens studied is only tentative, it includes 

representatives of seven orders. Table 2 shows the list of the identified taxa from val 

Mara site D, the number of specimens for each taxon and their living environment, 

based on the assumption that the living environment of fossil groups can be inferred 

from that of extant relatives. Tintorina meridensis and Notocupes sp from the work of 

Krzeminski and Lombardo (2001) are included. 

Among the insects of Monte San Giorgio, four specimens are to be considered 

exceptional findings regarding the Paleontological Record. 

The specimen of Notocupes from MSG is the oldest record of the genus, as 

Praedodromeus sangiorgensis (Strada et al, 2014) is the oldest fossil Trachipachydae. 

Specimen MCSN8463 is by far the oldest complete Archaeognatha so far 

recovered,supported also by MCSN8466. the next more ancient specimen being 

Cretaceomachilis libanensis (Sturm and Poinar, 1998) from the Lower Cretaceous (thus 

more than 130 My later) of Lebanon and assigned to the family Meinertellidae. Besides, 

they have exceptional size, suggesting an unsuspetcted early radiation for the group.  
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Order Family Species N° of specimens Living environment  Posphatization 

EphemeropteraTintorinidae Tintorina meridensis 3(adults) Strictly freshwater for reproduction and life through all the immature stages; in clean still or running waters. 
Larvae feed on plant or, more rarely, animal debris 

Absent 

Archaeognatha  Machilidae 
(s.str) 

nd* 2 Damp environments, under bark of trees, in soil or leaf litter or in rock crevices. Some inhabit rocks at the 
base of coastal cliffs, others favour rainforest environments 

Complete 

?Orthoptera nd* nd* 2 Preferentially terrestrial habitats although some species live on the shores of ponds, streams, lakes, and rivers 
phytophagous, otherwise carnivorous/predatory 

Partial/Complete 

?Plecoptera nd* nd* 1( nymph) Freshwater, clean, cold and running waters.  Phytophagous  or predatorial habits Complete 

Embioptera  nd* nd* 1 Strictly terrestrial and phytophagous. Silk producing organs in modified tarsi  Almost 
Complete 

Hemiptera Tingidae Gen. and sp. nov. 1 Terrestrial, phytophagous  Absent 

Coleoptera Trachypachidae Praedodromeus 
sangiorgiensis 

1 Strictly terrestrial habitat, both in the larval and adult stage, with predatory habits, extant species 
(Tracypahinae) dwell in loose soils 

Absent 

Coleoptera Ommatidae Notocupessp. 1 Strictly terrestrial. Larvae: wood borers, feeding on dead, fungi infested wood. Adults live in dead 
subterranean wood such 

Absent 

Coleoptera Cupedidae ? nd* 1 (elytron, 
fragment) 

Strictly terrestrial. Larvae: wood borers, feeding on dead, fungi infested wood. Adults live in dead 
subterranean wood such 

Absent 

Coleoptera Coptoclavidae? nd* 1 (adult) Freshwater. Predatory habits Absent 

Coleoptera nd* nd* 1 (abdomen 
fragment) 

nd* Absent 

Coleoptera nd* nd* 1 (adult) Possibly aquatic Absent 

 
Tab 2: identified taxa, number of specimens and living environment for each taxon, based on the assumption that the living environment of fossil groups can be inferred from that of 
extant relatives; type of preservation. 
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It is noteworthy that in the same stratigraphic unit at Monte San Giorgio coexist 

specimens of Archaeognatha with different bauplan: i) the ancestral represented by the 

monuran D. triassicus; and ii) the new represented by MCSN8462. The former, 

according to the fossil record, was near to its extinction while the latter was possibly at 

the beginning of its radiation. It has been observed that Dasyleptus markedly resembles 

the larval stages of extant species (Rasnitsyn 1980, 2000). Therefore, two hypothesis 

could be formulated in order to provide possible explanations concerning the co-

occurrence of these two forms: i) all members of the extinct †Monura, including D. 

triassicus, recovered from Upper Carboniferous to Middle Triassic are larval stages of 

unknown adult forms, possibly resambling extant Archaeognatha; or, ii) fossils 

described as Dasyleptus spp. (†Monura) are both adults and instars of separate taxa. 

Even if the first hypothesis is still debated (Grimaldi, 2001, 2010; Rasnitsyn 1980, 

2000), Rinehart et al. (2005), demonstrating the presence of six instars in the record of 

D. brongniarti from Kuznetsk Formation (Middle Permian), estimates an adult size 

between 15 and 20 mm (see fig. 24 for comparison of MCSN8462 with Dasyleptus 

morphology and size). We thus consider the first explanation highly improbable and we 

hypothesize that the new plan arises from the ancestral, represented by Dasyleptus, 

making a step forward in the evolution of the taxon as shown in figure 25A. In figure 

25B is reported the commonly accepted pattern of Archeognatha evolution before the 

finding of this specimen. In fig 26 a modern Machilidae s.str. 

Specimen MCSN8459, assigned to Tingidae (Hemiptera: Heteroptera) is the most 

ancient fossil record of the family by 130 My, the oldest fossil record so far being from 

the Lower Cretaceous. It has unsusual characters, namely the enlarged tibiae, trimerous 

hooked tarsi and exceptional dimensions, being twice the average size of the group, and 

four mm longer than the maximum length range of the family (8 mm), taking into 

account both extinct and extant species.  
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Fig. 24. Schematic reconstruction of MCSN8462 and Dasyleptus triassicus in ventral view. Colour 

scheme following Walossek (1993): coxa or coxopodite (= basipod of Euarthropoda) in yellow; 

endopod and derivatives in green; exopod derivatives in blue. A. MCSN8462B. Dasyleptus triassicus, 

based on Bechly and Stockar (2011); note that two pairs of ventral structures have been reconstructed: 

a further median one originally interpreted as the styli is here re-interpreted as eversible vesicles (due 

to position correlation; in green), and further lateral smaller ones as styli (in blue). C. Same as B. but 

in the same scale as A to show size ratio of the Dasyleptus triassicus and MCSN8462. Drawing 

provided by Dr. Joachim Haug, from the University of Munich (LMU), Department of Biology II 
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Fig 25 A: Alternative scenarios proposed for Archaeognatha (Machilidae s.l. and †Monura) evolution. A. 

Evolution of extant Archaeognatha in the Permian-Triassic period from a monuran-like ancestor. B. 

Evolution of extant Archaeognatha in the Silurian period 
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Fig 26: an extant Machilidae s. str., Trigoniophthalmus alternatus 
(http://www.naturamediterraneo.com/forum/topic.asp?TOPIC_ID=233502). 
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Specimen MCSN8458 (Embiodea) is the most ancient record of this group, for which so 

far the oldest known fossils have been described by Huang and Nel (2009) from the 

Middle Jurassic of Inner Mongolia, China. In general, few fossils of the group are 

known and mostly from Miocene amber. It shows the swollen basitarsi, which are the 

more characteristic feature of this group, strictly related to their mode of life. In fact, 

Embiodea live a gregarious life, dwelling in silk galleries they weave under leaves or 

bark. 

It is perhaps not by chance that two of this records concern two groups, the ordere 

Embiodea and the family Tingidae, whose internal relationships are still controversial, 

once more pointing out the importance of the fossil record for phylogenetic 

reconstructions.  

 

9.3. The paleoenvironmental implications of the entomofauna of Monte San 

Giorgio 

The composition of MSG fossil insect assemblage provides important information on 

the paleoenvironment. 

The entomofauna from Monte San Giorgio includes terrestrial groups, with both 

phitophagous (Hemiptera, Ommatidae, Embiodea?, Cupedidae?, Orthoptera?) and 

predatory habits (Trachypachidae), and aquatic groups, collected both as larvae 

(?Plecoptera) and as adults (Ephemeroptera, ?Coptoclavidae). 

Coleoptera are the most represented order with six specimens, both whole individuals 

(three) and fragments (three). The relative high abundance of beetles remains, and in 

particular the occurrence of fragments and isolated elytra, could suggest a contribution 

of long term transportation with selective preservation of more sclerotized taxa and 

parts. 

Among terrestrial groups, Trachypachidae are predators and modern representatives of 

the group (Trachypachinae) dwell in loose soils in definitely terrestrial habitats (Schull 

et al. 2001). The collected ?Orthoptera and Hemiptera are terrestrial and the extant 

representatives of the groups are typically phytophagous. 

Aquatic forms are also well represented. Seven specimens (adults and larvae) have been 

assigned to aquatic groups, namely Ephemeroptera (Tintorina meridensis), ?Plecoptera 

and aquatic Coleoptera (?Coptoclavidae). 
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All these taxa need permanent fresh water pools or small streams to spend at least one of 

their developmental stage which, in extant Mayflies (Ephemeroptera) and Stoneflies 

(Plecoptera), can last for up to three years (Grimaldi and Engel 2005). 

Archaeognatha are represented by the two giant MCSN8463 and MCSN8466. Modern 

Archaeognatha prefer damp environments and may be found under the bark of trees, in 

soil or leaf litter or in rock crevices. Some species even inhabit rocks at the base of 

coastal cliffs while others favour rainforest environments. Bechly and Stockar (2011) 

propose that Dasyleptus triassicus was not aquatic, but a terrestrial coast dweller at 

marine estuaries and the banks of freshwater bodies and swamps. 

Interestingly Blattodea,which are the most abundant and diverse group in the main 

Triassic insect assemblages(Anderson et al 1998; Mancuso et al 2007; Shcherbakov 

2008), are absent from our assemblage. Such a pattern was recorded only from “ecozone 

6” of the Molteno Formation (Carnian), where horsetails were the dominant vegetation 

(Anderson et al. 1998). 

Taking into account all the taphonomic and environmental elements, a possible scenario 

is that of a land at a close distance from the depositional basin with ponds or small 

lakes,some of them permanent, connected to and through a riverine system.At least in the 

rainy season floodings could bring fresh water dwellers such as estherids and insect 

larvae to the basin.The emerged lands supporting those fresh waters were probably not 

too far, allowing for some of the terrestrial insectsto fall into the lagoon to be preserved 

almost intact. The land probably also supported woods forming at least a loose organic 

matter rich soil, constituting the living environment for terrestrial insects with predatory 

and phytophagous habits. The complex paleoenvironment of the Monte San Giorgio area 

that is coming into light at least for the Late Ladinian time, may probably explain the 

relatively high biodiversity for the fish assemblage of the Kalkschieferzone. Actually, 

fish species (more than 20 across the Kalkschieferzone) outnumbered other aquatic 

macroorganisms such as marine reptiles (1 species) and crustaceans (2-3 genera), so far 

no molluscs or echinoderms having been recorded from the Kalkschieferzone itself.  
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9.4. Exceptional preservation 

Six of the 16 specimens under study and so far collected from val Mara site D are 

preserved through phosphatization. Five of them are completely phosphatized and one is 

partly phosphatized. 

In the Kalkschieferzone, phosphatization allowed the preservation of structures, such 

asparts of the central nervous system and the nervous cord, as well as the Malpighian 

tubes, that adds to these fossils a significance that goes even beyond their taxonomic 

importance. 

Preservation of the nervous system in compression fossils is so far known only from the 

early Cambrian Chengjiang biota (Cong et al., 2014; Ma et al. 2012; Tanaka et al, 2013) 

and in one case in the Burgess Shale fauna (Strasfeld et al, 2011).  

The occurrence of phosphatization in only some of the specimens makes the question 

arise on which factors were playing a role in determining the type of conservation. It 

must be noted that phosphatization in the Kalkshieferzone occurrs only in arthropods, 

both insects and crustaceans and has never been observed in vertebrates. 

Three main factors can be evaluated, namely: 

- the specific conditions of the depositional environment 

- the characteristics of the chitin (specific composition and degree of sclerotization) 

- the degree of decay of the animal at the moment of burial and fossilization. 

The conditions of the depositional environment were probably similar during time: an 

anoxic, possibly hypersaline environment, though a seasonal variation can be supposed. 

The only macroscopic difference could be represented by a different input in organic 

matter, as recorded by the color of the substrate. In fact, the Kalkschieferzone is often 

characterized by finely laminated beds recording ‘seasonal’ alternation at the permanent 

anoxic bottom of the marine basin, possibly influenced by cyclical climatic changes. 

Light layers are believed to have been deposited during the dry “summer” and dark 

layers during the “winter” rainy season (Tintori 1990). All the five phosphatized 

specimens have been found on the darkest surfaces, as three other enigmatic abdomens 

which are not unequivocally identified as insects and therefore have not been included 

in this study. Unfortunately, there are exceptions to this rule. The non phosphatized 

specimen Praedodromeus sangiorgensis comes from a dark layer; MCSN 8456, the 

only specimen which is partially phosphatized, and Tintorina meridensis paratype are 

found on a surface of intermediate color 
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Notocupes was not available for comparison.  

Concerning the group-specific composition of chitin, it can be observed that 

phosphatization has occurred in hemimetabolous insects, ?Orthoptera, ?Plecoptera and 

Embiodea and in the “apterygote” Archaeognatha. It is possible that chitin composition 

is different in these taxa or that the degree of sclerotization is lower. This last case is 

ascertained for Archaeognatha and plecopteran larval stages. Unfortunately, information 

on chitin composition and on its alteration/degradation/dissolution after the animals 

death is scarse. 

The degree of decay of the carcass reaching the depositional environment might play a 

major role. In fact, being phosphatization dependent on authigenic phosphate 

availability (Allison, 1988a and 1988b; Briggs et al, 1993; Gabbott et al, 1995;Gall, 

1990; Orr et al, 2008; Wilby and Martill, 1992), well preserved soft tissues must be a 

prerequisite for it to take place. It should be hypothesized that the insect reached the 

bottom of the depositional basin very quickly, soon after death, before significant decay 

could take place. The fact that Praedodromeus sangiorgensis, preserved on a dark layer, 

hasn’t undergone phosphatization, could then be due to the degradation of the soft 

tissues prior to the settling on the bottom of the depositional basin following a more 

prolonged (subaerial?) decay. On the other hand, all the phosphatized specimens have 

lost part or all appendages and legs, that normally disarticulate from the carcass only 

after the soft tissues have decayed.The loss of limbs is apparently in disagreement with 

the idea that the insect reaches the bottom virtually intact. It is evident that the 

mechanisms allowing phosphatization in the Kalkshieferzone are quite complex. 

It is particularly interesting the state of specimen MCSN8456, where phosphatization 

occurred while the exoskeleton was made  transparent probably by a process of 

dissolution.  

 

9.2.1  The nervous system.  

Specimens MCSN8463 and MCSN8462 preserve structures of the nervous system, 

providing the objective proof that the hypotheses on the evolution of these structures are 

correct but also showing the ‘modernity’ of Triassic insects. 

The idealized concept that the insect’s ancestor possesses a segmental pervasivity with a 

perfectly segmented ventral nerve chord, hypothesized on the basis of extant taxa, has 

been here firstly demonstrated in a ~240 Mo fossil, MCSN8463, by the presence of the 
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segmented four pairs of abdominal ganglia with their connectives matching the 

abdominal segmentation. Noteworthy, the structures of the optical ganglia highly 

resemble those possessed by extant insects. These findings, particularly when 

comparing them with the information from the Chengjiang arthropods (Cong et al., 

2014; Ma et al. 2012; Tanaka et al, 2013), suggest that the evolution of new selectively 

advantageous structures/functions could occur in relatively short amount of time 

followed by long period of stasis. 

 

9.2.2 The Malpighian tubes. 

Specimens MCSN8462 and MCSN8457 preserve the Malpighian tubes.The 

preservation of Malpighian tubes has yet never been previously reported in any of the 

fossil insects. They are part of insects excretory and osmoregulatory system and consist 

of branching tubes extending from the alimentary canal. Beutel et al (2014) report how 

they particularly numerous in some polyneopteran groups: we found a significant mass 

of Malpighian tubes in specimen MCSN8456, an unidentified polyneopteran. 

 

9.5. Gigantic Size 

The size of three of the specimens under study, the Archaeognatha and the Tingidae, are 

out of the dimensional range of the known extinct and extant species. The longest 

known Archaeognatha (including †Monura) is approximately 20 mm long while 

MCSN8463 is approximately 40 mm long. So far, the biggest known Tingidae is 

approximately 8 mm long, while most extinct and extant species fall within a length of 5 

mm: MCSN8459 is 11 mm long. 

In the Paleozoic, insects reached considerable dimensions. An explanation has been 

sought in the higher concentrations of atmospheric oxygen, but the hypothesis requires 

confirmation.  

Chown and Gaston (2010) reviewed the state of the art on the subject, identifying 

several groups of factors that play a role in influencing the size of adult insects. They 

include physiologic constraints, ontogenetic and phylogenetic variation, intraspecific 

variation and evolutionary and ecological trends influencing size variation through time. 

It has not yet been investigated which factors are the object of selection.  

An important outcome from the several experiments and observation carried out is that 

oxygen concentration alone cannot account for gigantism (Okajima, 2008; Clapham and 
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Karr, 2012). In fact, Po2 increased also during the Cretaceous but gigantism did not 

arise, at least in insects, with the exceptions of the mayfly family Hexagenitidae 

(Dudley, 2000). Physiologic and anatomic constraints, deriving from the structure of the 

tracheole, limit insects in the adaptation to a greater availability of oxygen  (Kaiser et 

al., 2007).  

Climatic conditions can be related to species size variation, also indirectly influencing 

trophic resources availability. It has been observed in recent forests that dramatic 

changes in vegetation structure cause firstly the loss of the largest species, probably 

more sensitive to changes in resource availability (Steencamp and Chown, 1996; 

Coetzee, van Rensburg and Robertson, 2007). Higher temperatures could lead to the 

rapid growth of smaller individuals (Davidowitz et al, 2004; Davidowitz and Nijhout, 

2005). However, if the climate is very favorable, species can switch from univoltine to 

multivoltine, thus reaching reproductive stage at a smaller size (Koslowski et al, 2004).  

All authors point out that flying insects should be particularly susceptible to variations 

in atmospheric PO2 because of the high energy demands of their flight musculature. As 

most of the studies are related to flying insects, the variability of global parameters 

and/or regional climate influx on apterygota such as the Archaeognatha, by far our 

largest insect, is unknown. It seems probable that the Late Ladinian climate, which is 

considered to have been monsoonal, wouldn’t provide the optimal condition that could 

trigger the shift to multivoltine reproduction. Thus, even if the temperature was 

favourable, being the region subtropical, less mobile species, as Archaeognatha and 

Tingidae, could be ‘negatively’ affected by the environmental conditions during the 

rainy season, allowing specimens to continue growth. 

An important influence can also be played by predation pressure: when strong, it would 

favor smaller, less conspicuous specimens. Chown and Gaston (2010) report that the 

largest recent insects (extant or recently extinct) either typically spend the bulk of their 

lives as concealed feeders (e.g. beetle species in the Cerambycidae, Scarabaeidae, 

Dynastinae) or are restricted to oceanic islands where predation pressure may be lower 

(e.g. St Helena giant earwig Labidura herculeana, New Zealand giant weta Deinacrida 

spp.). The fact that both our ‘giants’ are no-flying or mainly ground/tree dwellers, could 

be at least partly explained by the absence of ground predators on the small islands or 

larger emerged lands surrounding the Kalkschieferzone basin. Unfortunately, not 

enough information is available on the terrestrial environment of Monte San Giorgio to 
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estimate the impact of predation, andso far no other terrestrial animals such as 

anphibians and small reptiles have been found in the Upper Ladinian rocks from 

Lombardy, although we must suppose there were some (Tintori, personal 

communication).But noticeably Liebherr (1988) points out that phyletic size increase 

among the 34 groups of Coleoptera examined in his work it’s associated with 

brachyptery. 

Taken all these elements into account it is not possible to draw a definitive conclusions 

on the causes for the anomalous size of these two taxa,nor to evaluate whether this 

entomofauna was generally subject to the development of gigantism.  
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9.6. Biostratinomy 

The degree of preservation critically depends on the state of the insect reaching the 

bottom, where it undergoes burial and fossilization. Martinez-Delclòs et al. (2004) 

remark that floating time is longer for insects that diein subaerial medium, while it’s 

shorter for insects falling alive in the water: as the insect struggles to escape and rise 

again from the water surface, more water penetrates into its body. During the floating 

time, insects can undergo a series of processes mainly related to predations (by fishes, 

amphibians and other insects), transport and decomposition.  

Predation can be selective in many regards and may produce fragments with different 

floating potential (Martinez-Delclòs et al, 2004), or it can cause disarticulation and 

selective preservation. Predation can occur through all the water column, apart from 

layer where conditions are too adverse (for instance hypoxia/anoxia, extreme salinity), 

while chemo-bacterial decomposition takes place in the oxygenated layers and, though 

slower, also in anoxic environments. 

Terrestrial insects preserved in aquatic environments are surely allochthonous. 

Therefore, in case they are disarticulated or preserved as isolated fragments (more often 

wings or coleopteran elytra), there are three possible explanation for this conservation 

(Mancuso et al, 2007): 

1) They reached the water body already disarticulated for both decay or predation 

2) Insects were selectively preyed when in the water and only wings were left to be 

preserved 

3) They suffered decay to a variable extent staying at the water surface or during a 

very slowsinking to the bottom. 

Mancuso et. al (2007), analyzing the fossil assemblage of Los Rastros Formation, 

remark how the preservation of whole insect bodies indicates that the specimens 

reached water alive or at least intact and sank rapidly, reaching theanoxic and therefore 

undisturbed bottom where they were rapidly buried. 

The same pattern can be recognized in some of the specimen under study, where the 

insect has been preserved whole but a closer examination reveals that legs (and elytra, 

for coleoptera) are slightly displaced or were disarticulated at the insertion into the body 

and were moved from their original position at the time of deposition. In one instance 

(MCSN8455), the fragment of a leg is preserved at approximately 1 cm from the rest of 

the body. The paratype of Tintorina meridensis (Krzeminski and Lombardo 2001) is 
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preserved as isolated wings and a thorax segment, while the holotype of Tintorina 

meridensis (MCSN4666) is missing the head and the anterior part of the abdomen. 

Specimen MCSN8466is preserved, phosphatized, only from the metathorax to the end 

of the abdomen but has lost all appendages, cerci included. 

Duncan et al. (2003) realized a series of experiments on decay, transport and breakage, 

and observations on the main types of predators, to explain the phenomenon of wing 

dominance in fossil blattoids, from which a vast record from the Carboniferous deposits 

is available. The experiments were performed on entire cockroaches either asphyxiated 

and then transferred in artificial fresh water or thrown alive into the water. The artificial 

fresh water used was inoculated with water from an environment capable to best 

simulate the conditions of  the carboniferous depositional environment. The decay 

experiments were monitored at two week intervals for up to 58 weeks and changes in 

the degree of decay/disarticulation were noted, recording the internal and external state 

of the carcasses as well as the presence of fungal growth and bacterial films on the 

emergent carcasses and vessel bottoms. Their results are summarized in fig. 27. After 

death, the carcass is floating on the surface, ventral side down. Decay starts from 

internal organs that liquefy. Then muscles and fat tissue degrade to a white, semi liquid 

state. The carcass then becomes flaccid while still retaining its integrity and minor 

ruptures between tergites may appear. First cerci and then antennae disarticulate, and 

eyes collapse. Finally the abdomen begins to disintegrate and the carcass reaches the 

bottom. In this process, disarticulated parts can detach, thorax and head being the more 

resistant. Forewings and finally hindwings are the last to become loose. The time 

required for the whole sequence to take place can reach 30 weeks in still waters but only 

70 hours in running waters. When comparing the state of preservation of the fossils 

under study with this sequence, different cases are met: 

- Tintorina meridensis holotype is lacking the head and the last abdomen segments: 

it could have floated or been transported for an intermediate time before setting to 

the bottom. 

- Beetle fragments are obviously the remains of a long process of decay, that could 

have taken place at some distance from the depositional point, even on emerged 

land, allowing the preservation of only the most sclerotized fragments. 

- The phosphatized specimens preserve internal organs and soft tissue structures, 

and therefore reached the sediment shortly after death and must have dwelled in 
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proximity of the basin. However, flying insect could be transported above the 

water by the wind when still alive. 

All these elements point to a double origin of the fossilized insects: the 

phophatized specimens probably lived in the proximity of the depositional basin, 

that was reached short after death or while still living. The fragmented specimens 

probably lived farther away from the depositional basin and underwent some 

subaerial decay before reaching it, in a few cases for a relatively long time(elytra 

and abdomen fragments). The specimens which appear whole but are not 

phosphatized, and that lost head appendages and some or all their legs, can be 

hold to represent an intermediate situation, either relative to the distance of the 

living habitat or of the decay time in subaerial or aquatic environment. 

It must be noted that Tintorina meridensis, a mayfly, and MCSN8455, an aquatic 

fresh-waters beetle, according to the previous considerations, would have lived at 

some distance from the depositional basin. 

A comparison of the findings of whole insects between MSG and the more 

important Triassic sites however highlights that this percentage is significantly 

higher in MSG, amounting to 75%. 



 

Fig 27: stages of decay in insects after deployment in still or moving waters. From Duncan et al. 
(2003) 
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10. Conclusions 

The study of the entomofauna of the Kalkschieferzone of Monte San Giorgio has 

proved to be a real challenge. 

The first aim of this research, the identification of all the specimens, has been fulfilled 

to the extent to which the degree of preservation allowed. 

The state of preservation and the type of conservation were at the same time a problem 

and a great surprise. Many specimens are only apparently well preserved but at a closer 

examination, required to carry out a consistent diagnosis, the main diagnostic features 

were found to be missing. A typical example is specimen MCSN 8456, that could be 

defined ‘beautiful to see’ but that hasn’t been assigned to any order. It must be said that 

it is also possible that it represents a form of transition inside the Polyneopteran 

superorder, among which orders in the Triassic evolution was at work.  

This assemblage has provided some of the oldest fossil records for four orders: 

Trachypachidae and Ommatidae (Notocupes sp) among Coleoptera; Archaeognatha; 

Tingidae among Hemiptera; Embiodea. This is definitely an important contribution in 

filling some of the gaps in the paleontologicalinsects evolution. 

It cannot be excluded that further study with more refined observation techniques on the 

more undetermined specimens could provide new information and allow their definitive 

identification.  

These findings remark how our hypotheses on taxa evolution are hindered by the gaps 

in the fossil record. These gaps are particularly important for terrestrial taxa, as most 

insects are, for which the conditions for preservation are rarer than aquatic ones. 

Concerning the second aim of this research, to increase the information on the Monte 

San Giorgio paleoenvironment, progress has been made through the identification of 

groups colonizing very diverse environments: fresh water permanent basins 

(Ephemeroptera), leaf litter and loose soils (Trachypachidae, Embioptera, Cupedidae, 

Ommatidae), vegetation (Orthoptera, Tingidae), confirming a much more complex 

environmental setting than a carbonatic platform. Both fresh water and emerged land 

must have been permanently available.  

Another exceptional feature of this assemblage is represented by preservation through 

phosphatization. Phosphatization allowed access to anatomical structures that have been 

preserved only twice before in compression, in Chengjiang and in one instance among 

the Burgess Shale fossils, and never in the Mesozoic. 
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The phosphatization of structures of the nervous system is so exceptional that appoints 

to these fossils a significance that goes beyond the mere systematics. 

Therefore, the results of this PhD research patently highlight the exceptionality of this 

fossil assemblage.  

There is no indication that the excavation of the locality D in Val Mara, near Meride 

(Canton Ticino, Switzerland), but also site VM 227, brought to light all the fossils they 

could yield, given also the fact that excavations were aimed mainly to the research of 

vertebrate fossils, for which Monte San Giorgio Triassic lagerstätte is famous.It is 

highly probable that more fossil insects are to be recovered and, possibly, more 

phosphatized specimens from locality D, specimens so important to give us new 

information on the internal morphology of insects in the Triassic. 

The exceptionality of their fossil record, more so since it comes from the Mesozoic 

period and specifically from the Triassic, a crucial period to understand recovery from 

the Permian/Triassic crisis event, demands that field activities should start again. 

To neglect this opportunity, avoiding to take action,would determine the loss of crucial 

information in the evolutionary history of insects, which is in turn strictly related to the 

evolution of the environmental conditions. Moreover, the information provided by these 

fossils is also important in the calibration of phylogentic reconstructions based on 

nuclear data, allowing the reduction of uncertainty in chronograms, with consequences 

that reach further than the knowledge on the specific group. 

Finally, in 2003 Monte Sang Giorgio having been ascribed in the UNESCO World 

Heritage List for its fossil fauna, it must be sadly remarked that so far no action to bring 

this mission in evidence and to give value to this heritage. 
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Strada, L., M. Montagna, and A. Tintori (2014). A new genus and species of the family 

Trachypachidae (Coleoptera, Adephaga) from the upper Ladinian (Middle Triassic) of 

Monte San Giorgio. Rivista. Italiana di Paleontologia e Stratigrafia. 120, 183–190. 
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