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1. Introduction

In recent years there has been a growing increase in the number of users that use smartphones,
tablets, wearable technologies and other devices that users have with them constantly [O1][O4].
The numbers and some statistics talk themselves: in 2013 Apple’s App store reached the number
of 1 million apps and, according to the AppBrain Stats the current1 number for Google Play’s
applications is about 1,3 million. Each of this application tries to fulfil a particular need for users
throughout the world. Exploiting built-in sensors, mobile devices offer to their users almost every
service for every need.

In particular, the capability of these latest generation mobile devices to detect the position
of the users has led to the emergence of ad-hoc services as well as geo-aware social networks
(GeoSN). Hundreds of location-based applications are now available: let’s think about range
queries, like where is the nearest ATM or gas station? If we are in a unknown city this kind of
services can be really precious and time-savings. User’s location can also be exploited to give
targeted advertisements of shops, restaurants, etc. It is useful for the business activity to contact
close users, since they have more chance to go, for instance, to their restaurant; likewise, a user
will be probably more interested in knowing the special offer of a restaurant within 200m than
one at 20km from his position. Even the "social life" of a user can be enhanced by the use of
location information: for instance the friend finder applications allow to know which of the user’s
friends are in his proximity. The close friends can eventually communicate and even decide to
meet, since they are near. Furthermore, in the recent years, most of the major social networks,
like Facebook, Twitter, Google+, Foursquare, offer to their users the possibility of geo-tagging
the published contents, giving to the users new ways to exploit and share their positions. For
example a user can post a new status together with the user’s geographic coordinates, or publish a
photo with the position of where it has been taken.

Reading about all the benefits in sharing location, it might suggest that sharing it more and

1data retrieved at the beginning of September 2014
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Figure 1.1: Common Location Based Services

more is always recommendable and advantageous. Unfortunately, there are several practical cases
that unveil the danger of sharing location indiscriminately. For instance, let’s suppose that a user
has just told everyone that he is on vacation (and not at his house): if he adds how long his trip
is, then thieves know exactly how much time they have to rob him. Many contributions in the
scientific literature have shown how through the location information it is possible to infer several
information about the user. It has been shown that it is possible to identify user’s identity, if he
is anonymous in the LBS, and, if the user is not anonymous, it is feasible to infer user’s home
location, habits and also politic preferences and sexual orientation [23] [13]. User’s work and
home location information may be used to stalk him and even rob him, as shown by Borsboom et
al. through the provocative website "pleaserobme.com". The problem is evident when sensible
information about the user are involved. For example, if a user is frequently geo-tagged in the
headquarters of a political party it is trivial understanding which party he is going to vote for. If
this information is public it can be used against the user: a company may decide not to hire him
due to his political preferences. A similar reasoning does apply for sexual orientation (that again
can be inferred through user’s locations): whatever the context, no one wants to be discriminated
based on this information, that is strictly private and it’s up to the individual to decide, if and
when, sharing it.

Indeed private, according to the Oxford English Dictionary2, means "restricted to one person
or a few persons as opposed to the wider community; largely in opposition to public". Keeping
some information and data about ourselves private is a right and indeed privacy is one of the
fundamental rights in the Universal Declaration of Human Rights [O7]. There is debate about
whether privacy is or not a widespread concern for, in general, the individuals and, specifically,
for the users. Settling the debate is out of the scope of this dissertation, but it is undeniable
how privacy issues are nowadays more frequent, thanks to the introduction of new habits and

2http://www.oed.com/
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technologies, as discussed before. Some users are now so concerned about their privacy to decide
quitting social networks that do not protect their personal data [31]. Indeed the simplest solution
for privacy-concerned users is to stop sharing data, i.e. quit the social network or stop using the
LBS, but in most of the cases this is not what the user, and the social network or LBS, want.

The scientific literature reflects this concerns, proposing many contributions that deal with
privacy, in general, and location privacy, specifically. The location privacy issues in using
LBS or Geo-Social networks are not a new topic, since these problems have been extensively
studied in the previous years, and many works both formalise location privacy issues and propose
privacy protection techniques for many applications, as we will see thoroughly in Chapter 2. The
first approach in the literature to protect location privacy, i.e. anonymity, protects the “identity
privacy”, in which the anonymity of the user must be preserved, such that the location information
is not used as a quasi-identifier [25][18][29]. In the anonymity approach, the main technique
makes use of the principle of k-anonymity: a user is considered “k-anonymous” if his position
is indistinguishable from the locations of at least k− 1 other subjects [25]. In this approach
anonymity is achieved by sending to the SP, instead of the user’s punctual location, a region
which is sufficiently large to include, in addition to the issuer, other k-1 potential users, as first
proposed in 2003 by Gruteser [25]. The second family of techniques (i.e. obfuscation techniques)
protects the “location privacy”: in this approach the user’s location is considered sensitive and
thus the data to be protected [61][43]. These techniques assume that the adversary, i.e. the one
whom the users do not trust, may know the identity of the user but not his location, or at least not
precisely.

Given this wide interest in location privacy, what is the motivation and the originality of a
new contribution on location privacy as the present dissertation? First of all, we are far for a
comprehensive solution that takes into account all the location privacy issues in every LBS or
Geo-Social networks. Many privacy preserving techniques protect user’s privacy only under
specific assumptions (e.g. uniform distribution of the users in the space) that are not always
realistic. Also, new privacy breach are emerging: for instance, the birth of the Geo-social
networks have created new privacy threats (that we will discuss later in Chapter 2) that did not
exist in LBS: only some of these threats are already formalised and the corresponding privacy
protection techniques are not always been provided. Moreover, the location privacy scenario
is complicated by the fact that today a user is likely to use more than one social network: this
dispersion of user’s information over multiple SNs makes the control over his shared data more
difficult. The decentralisation of data makes the user unaware of the volume and the precision
of his shared data. Questions like: “Which information am I sharing?”, “With whom?”, “What
can other users learn by the aggregation of data in different SNs?” are not trivial in the current
context. Furthermore, the attention in location privacy can not be considered purely academic
or scientific: privacy topics had always been discussed in primis in the legal field. The privacy
protection has a long forensics history, rooted in the ancient Greek philosophy, when a distinction
was made between the ’outer’ and the ’inner’, between public and private, between society and
solitude [27]. Most countries protect privacy by laws and rules: see for example The Privacy
Act of 1974 of the USA [O6], or European Data Protection Directive [O2] and the more recent
General Data Protection Regulation proposal [O3]. In the past connections between the legal and
the scientific areas were limited, and these two worlds, even if speaking about common themes,
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as privacy, were not communicating. The dialogue between these worlds is now lively [45][48],
since the legal framework needs aid from the "technician" to help protecting privacy and the
scientific community can not protect users’ privacy if there is an indiscriminate use of individual’s
private data. The discussion on the proposal of General Data Protection Regulation [O3] has
involved many anonymity techniques (also specific for location privacy), that were considered
and analysed. This is an excellent example that 1) shows how privacy preserving techniques are
not a mere academic exercise but are taken into account in the making of laws and, therefore, 2)
it adds motivations in nowadays working in privacy, as computer scientists.

1.1 Summary of results
This dissertation deals with location privacy in Location Based Services and Geo-Social Networks.
Results from this dissertation appear in the following publications: [5, 37, 38, 39]. These are the
main contributions:

1. Motivate the importance of the location privacy topic by identifying the privacy threats of
sharing locations

T-I. Distance preserving transformations can be used as privacy preserving techniques
in proximity services [40], under the assumption that the users are uniformly
distributed in the space. In the context of privacy preserving data mining, it has
been shown that distance preserving transformations can be subject to privacy
attacks in presence of prior knowledge of the adversary in terms of input-output
pairs and samples from original or similar dataset [34]. In Section 3.1 we show
through a location privacy attack which are the practical conditions that make
distance preserving transformations unsafe, in a realistic environment.

T-II. As discussed before, new location privacy threats emerged with the spread of Geo-
Social networks. Through these social networks it is possible to observe multiple
users’ presence in the same place. Since a user can consider a privacy threat to be
located with someone with whom he does not want to, in Section 3.2 we present,
classify and formalise the co-location privacy threat.

2. Propose privacy preserving techniques and tools:

P-I. In contribution T-I we show the weakness of distance preserving transformations
used as privacy preserving techniques, even in a practical scenario (i.e. users
non-uniformly distributed). In Chapter 4 we propose a novel privacy preserving
technique, that, thanks to a space transformation, can make distance preserving
transformation safe, even in a space in which the users’ distribution is not uniform.

P-II. Obfuscation techniques, among others in the literature (see Chapter 2), can be
used to protect user’s privacy in many location based services. In the family of
the obfuscation techniques, many privacy preserving approaches perform a spatial
generalisation of the precise user’s position in order to decrease the sensitivity of
the location information. A common problem is that spatial generalisations are
used, often implicitly, as a tool, without extensively describing their properties
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and basic operations. In Section 5.2 we propose two spatial generalisation, Gonio
and Aequus, specifically designed for location privacy techniques. Gonio is a
naive subdivision in which each cell shares the same angular dimension, with the
result that cells at different latitudes covers areas of different size. The proposed
Aequus cells have the same area (hence granting the same level of obfuscation),
independently from their latitude. For both Gonio and Aequus we study the main
properties and we show how to efficiently compute the basic operations.

P-III. In Section 5.3 we propose another generalisation, called SafeBox. A SafeBox is
a spatio-temporal generalisation of the user’s location in a given time, with the
property that in the generalised area there are at least k objects. These "objects"
can be users, obtaining in this way a k-anonimity technique, or number of shops,
categories of building, etc.. We provide a general notion of object counting function
supporting different semantics. We design a bottom-up algorithm, that to the best
of our knowledge is the first safe generalisation algorithm adopting a bottom-up
strategy. We’ll show through the experiments how a bottom-up strategy can be
advantageous with respect to a top-down one, especially if the objects to count are
retrieved through online queries.

1.2 Outline
Related work in location privacy in LBS and Geo-Social networks is discussed in Chapter 2.
The contributions of this dissertation in highlighting location privacy threats are presented in
Chapter 3, contribution T-I in Section 3.1 and contribution T-II in Section 3.2. The privacy
protection topics are reported in two chapters: the privacy protection technique obtained through
a space transformation (contribution P-I) is detailed in Chapter 4, while the techniques that
generalise users’ locations (contributions P-II and P-III) are presented in Chapter 5. In Chapter 6
we conclude the dissertation discussing the open problems and summarising the contributions of
this work.





2. Related work

The goal of this chapter is to present the state of the art in location privacy protection. As
mentioned before, there are dozens of contributions in the literature that deserve to be presented
in a comprehensive survey, as [58] and [6]. However, in this chapter we give an overview of the
privacy protection proposals, presenting only some contributions, without the presumption of
being exhaustive.

In Section 2.1 it is presented the state of the art on privacy in Location Based Services (LBS),
while in Section 2.2 are discussed some specific contributions for privacy in Geo-social networks.

2.1 Location privacy in LBS

To better present the location privacy literature in LBS, we first should identify which is the
subject of the protection and the entity that is threatening it. The protection subject is the data to
protect. As in [44], we distinguish between protection of the user’s identity and protection of
the location shared by the user. As we will see in this chapter, protecting identity rather than the
location leads to very different techniques.

Once it is identified the protection subject, it is important to bear in mind that each privacy
protection proposal assumes, implicitly or explicitly, an adversary from which protecting the
users. The adversary is any entity that can potentially have access to user’s data and whose
intention is to infer his location, private data or identity, threatening his privacy. It can be, for
example, a provider of a Location Based Service (LBS), an eavesdropper that intercepts the
communications towards the LBS service provider, a hacker that violates the service provider
system hence acquiring its stored data or even a govern entity that forces the service provider to
disclose its stored information. Wider it is the knowledge that the adversary can use to violate
user’s privacy, more threatening can be his inferences on user’s data and, consequently, the
proposal of the corresponding privacy protection can be more challenging.
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2.1.1 Protecting identity information
The first approach, i.e. anonymity, protects the “identity privacy”, in which it is the anonymity of
the user that must be preserved. Indeed, the location information can be used as a quasi-identifier,
i.e. together with other external data, compromising user’s identity (that is assumed as anonymous
in the LBS) [25][18][29]. The user’s identity can then be associated with sensitive information
related with the LBS, damaging his privacy.

In the anonymity approach, the main technique makes use of the principle of k-anonymity: a
user is considered “k-anonymous” if his position is indistinguishable from the locations of at least
k−1 other subjects, as first proposed in 2003 by Gruteser [25]. In this approach anonymity is
achieved by sending to the SP, instead of the user’s punctual location, a region that is sufficiently
large to include, in addition to the issuer, other k-1 potential users [29][18]. In this way the
probability of identifying the user’s identity is 1

k . Chow et al. [8] propose a technique in which
the user can specify a number k of users (to be anonymous with), and the minimum Amin and
maximum Amax area of the cloaking region. In this way, even if the user is located in a area
with high users density the cloaked region will not be too small, since it will be at least large as
Amin. In [41], Mascetti et al. propose a spatial cloaking technique: through a top-down approach,
each region returned by this technique contains at least k object. In [43] it is introduced the
concept of historical k-anonymity: in this technique also the temporal component is considered
for computing the k-anonymous area, since the technique is designed for moving objects.

Some variants of k-anonymity technique have been proposed later. The l-diversity idea [36]
stems from the limits of k-anonymity principle. Let’s suppose that the location of the user u is
enlarged to an area including other k−1 users, but, all of them are located within a hospital. Then,
an adversary, knowing that u is in the set of that k users, can infer that u is located in the hospital
and that he is ill. To overcome this problem, Bamba et al [3] propose a cloaking algorithm in
which the location of the user is k-anonymous and further, it is unidentifiable from a set of l
static locations or symbolic addresses. Similarly, the t-closeness [33] and the p-sensitivity [55]
concepts are further extensions of the l-diversity idea.

2.1.2 Protecting location information
The second family of techniques (i.e. obfuscation techniques) protects the “location privacy”:
in this approach it is the user’s location that is considered sensitive and thus the data to be
protected [61][43]. These techniques assume that the adversary may know or infer the identity
of the user but not his location, or at least not precisely. The user’s location is not shared with
precision but it is “modified”: by using the LBS, the user’s location is often enlarged (or fake
locations are used) in order to decrease its sensitivity. The knowledge of this region should not
provide any additional information on the user’s actual position within.

In [30] users generate several fake positions data and send them to the SP with the true
position data of users. Since the SP could not distinguish between fake or real locations, the
location privacy is preserved. This approach has the drawback of having a high communication
and computational costs since a number of service requests are fake.

In [52] and [40] the computation of the proximity between users is performed using distance-
preserving transformations. With distance preserving transformations, the locations of users A
and B are modified, but the real distance d(A,B) is preserved: sharing the modified locations,
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even with an untrusted entity (e.g. the service provider), does not threaten the users’ privacy,
since their real locations are undisclosed. Unfortunately, this holds only when it is assumed that
the adversary does not know the distribution of the users in the space. Indeed in Section 3.1 we
will show how an adversary can learn the approximate position of most of the users, that were
protecting their privacy using such distance preserving techniques.

Another approach in space obfuscation techniques is to generalise user’s location, by enlarging
it into a region, in order to avoid sharing his precise position, that is the information to protect.
In [2] the position of the user it is enlarged to a circular area and then shifted before sending it to
the service provider, to avoid reverse engineering attacks. FriendLocator [56] technique assumes
the existence of a subdivision of the space into regions or “cells”. Two users are considered in
proximity if they are located in the same cell or, at most, two adjacent cells in the grid, where
the “size” of the cells are computed considering the proximity threshold shared by the users.
This techniques computes the proximity incrementally, and this may lead to a violation of user’s
privacy. Among other works whose contribution is aimed at the protection of privacy in the
calculation of proximity, Zhong et al. [62] propose three different techniques called Louis, Lester
and Pierre. These are centralised protocols in which security is guaranteed by the use of public
key cryptography. While in Louis and Lester protocols the proximity is computed through a
trusted third party (Louis) or by one of the users (Lester), the Pierre protocol is based on a spatial
subdivision of the space into a grid, with each cell having edge equal to the requested distance
threshold. The users are then considered in proximity only if they are located in the same cell
or in two adjacent cells. The protocol Louis reveals to the server the proximity information,
assuming that this information may not lead to a location privacy breach. This assumption should
be probably reconsidered in light of the results that will be presented in Section 3.1.

Many works rely on a spatial subdivision as a basis upon which computing the spatial
generalisation of the user’s position, as we will discuss it thoroughly in Chapter 5. In spatial
generalisation techniques there is an evident trade-off between privacy and utility. Let’s assume
that the users is performing a query to the untrusted service provider (SP) in order to get the
nearest ATM: if he shares with the SP a generalised area big as the whole city, then his privacy is
for sure safe, but the query results are not so useful; conversely if the user gives to the SP an area
of 10m2, the nearest ATM is precisely found but the user’s privacy can be threatened.

In [57] a multi-level partitions of the spatial domain is performed in order to obtain a secure
proximity detection through a client-server solution. Precisely, it is performed a subdivision of
the spatial domain into a number of non-overlapping regions, called granules. In this proposal
there are several list of granularities that are organised into levels, similarly as we will propose in
Section 5.2 with the Gonio granularity family. In addition, in that Section we will describe also
the basic operation between granules.

In [25] both the temporal and the spatial dimensions are taken into account when generalising
the user’s location. In this work the user’s location generalisation is performed in order to obtain a
k-anonymous area: the spatial resolution is improved by some seconds reduction in the temporal
resolution. Also Bamba et al. [3] propose a spatio-temporal cloaking for supporting anonymous
location-based queries. In this proposal each user can explicitly define his preferred location
privacy requirements in terms of both location hiding measures (e.g., location k-anonymity and
location l-diversity) and location service quality measures (e.g., maximum spatial resolution
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and maximum temporal resolution). As we will discuss in Chapter 5, the technique proposed
in this paper protects the user’s privacy only under the assumption the adversary does not know
the protection technique and the users’ distribution in the spatial domain: through the SafeBox
proposal (see Section 5.3) we will overcome this privacy threat.

The temporal component becomes crucial, when we deal with user’s trajectory instead of
punctual positions. Ghinita et al. [20] present a spatio-temporal cloaking in which the user is
protected against linkage attacks. In these attacks the exact locations of the users can be inferred
based on prior knowledge about maximum user velocity and roads/traffic constraints. Instead, to
avoid privacy breach in case of low density areas, the user’s trajectory in [26] is modified through
an uncertainty-aware path cloaking, capable of hiding some location samples of the trajectory.
In another scenario, if users’ trajectories are published in a database then the location information
is sufficient to identify the users identity [54]. To avoid this threat, the authors in [54] present
a greedy anonymization algorithm that generalise the trajectories (suppressing certain points):
the anonymization is performed such that the utility of the dataset as accurate as possible, while
guaranteeing users’ privacy.

Approaches that differs completely from the ones presented so far, are the cryptography
based ones. In [44] the authors propose two new protocols to compute users’ proximity. The first
protocol, called C-Hide&Seek, provides complete protection with respect to the SP and satisfies
the privacy requirements of each user with respect to her buddies. The second protocol, called
C-Hide&Hash, offers the same guarantees, but provides an even higher level of privacy with
respect to the buddies at the cost of higher communication and computation costs. In [21] the
users’ privacy performing location based queries is based on Private Information Retrieval (PIR).
The safeness of the used computational PIR, which employs cryptographic techniques, relies on
the fact that it is computationally intractable for an attacker to decrypt the query sent to the SP
by the user. A more recent solution [32] exploits encryption and multi-level spatial cloaking to
grant privacy-preserving proximity detection. In this approach it is possible to dynamically trade
accuracy for communication cost in a quantitative manner.

2.2 Location privacy in Geo-Social Networks

The study of concerns raised by the use of Geo-Social Networks is relatively newer, since the
spread of this kind of social networks is more recent, compared with “traditional” LBS.

The privacy implications of geo-tagging have been presented in [15]: they showed how easy
it is to correlate geo-tagged data with corresponding publicly available information, uncovering
the ease in violating users’ privacy. Analogously, Pontes et al. [50] perform a study showing
the feasibility of inferring users’ home locations trough the data of three of the most popular
geo-social networks: Foursquare, Google+ and Twitter.

In [35], the authors present a privacy management system named MobiShare that allows
location sharing between both trusted social relations and untrusted strangers, where the privacy
protection is given by a location encryption. In [51] the authors identify four location privacy
aspects peculiar for Geo-Social Networks - location, absence, co-location, and identity privacy -
and discuss about possible ways to protecting privacy when such threats occur. Freni et al. [14]
highlight the privacy concerns raised by the use of geo-tagging in social networks, in particular
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they focus on location privacy and absence privacy threats. The paper formalizes the setting,
provides a foundation for easily defining privacy preferences, and provides techniques that
generalize the tags of resources so that these remain useful while ensuring that the privacy
preferences are enforced. These techniques exploit spatial and temporal generalization, and they
utilize publication delays.

The privacy threat that, to the best of our knowledge, is not formalised properly in the
literature is the co-location privacy threat: in Section 3.2 we will formalised it and analyse the
circumstances under which it can stem in a social network scenario.





3. Privacy threats

In this chapter we will consider two different types of privacy threats. Having a better knowledge
of privacy threats can help us to better understand the motivation for studying privacy issues,
constructing solid bases on which building protection techniques.

In Section 3.1 we first analyse the practical conditions that can threaten users’ privacy in
using proximity services, whose privacy protection is provided through distance preserving
transformations. This section is based on the following publications: [38][37]. Instead, in
Section 3.2 we study a social network-related threat, the co-location privacy threat, stemmed
from the user’s habits of sharing their locations with the social network’s friends.

3.1 A practical location privacy attack in proximity services
The aim of proximity services is to raise alerts based on the distance between moving objects.
While distance can be easily computed from the objects’ geographical locations, privacy concerns
in revealing these locations exist, especially when proximity among users is being computed.
Distance preserving transformations have been proposed to solve this problem by enabling the
service provider to acquire pairwise distances while not acquiring the actual objects positions. It
is known that distance preserving transformations do not provide formal privacy guarantees in
presence of certain background knowledge but it is still unclear which are the practical conditions
that make distance preserving transformations “vulnerable”.

We study these conditions by designing and testing an attack based on public density infor-
mation and on partial knowledge of distances between users. A clustering-based technique first
discovers the approximate position of users located in the largest cities. Then a technique based
on trilateration reduces this approximation and discovers the approximate position of the other
users. Our experimental results show that partial distance information, like the one exchanged in
a friend-finder service, can be sufficient to locate up to 60% of the users in an area smaller than a
city.
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3.1.1 Introduction & motivation

Proximity services aim at notifying a user when another user or, more generally, an object of
interest to the user happens to be spatially closer than a certain threshold distance. Examples
of these services are so called friend-finder services. They can be efficiently implemented by a
server receiving position information from each moving object and sending an alert when the
distance threshold condition is verified.

When users are the considered moving objects and the server is untrusted, the acquisition of
exact location information by the server is a privacy threat. The problem of privacy preservation
in location based services has been extensively studied in the literature [6, 19], but mostly
focusing on services identifying the location of points of interest. Since a proximity service can
be provisioned simply based on the distance between the two moving objects, an intuitive way to
preserve location privacy is to use fake locations for the objects, with coordinates appropriately
chosen in order to retain the correct value or a good approximation for the relative distance. We
consider the server provisioning the service as a semi-honest entity, in the sense that it follows
the given protocol but it may attempt to infer the locations of the users. A natural question
arises: is distance information sufficient for an adversary to find the actual location of a user?
Technically, this is equivalent to ask if distance preserving transformations are unsafe. If users are
uniformly distributed in the geographical space and no other background knowledge is available,
the transformations are actually safe, since the same set of distances can be observed for many
different assignments of specific positions to the users. This uniform distribution assumption is
implicitly or explicitly made in several papers, as described in the following.

In [62] three secure computation protocols are proposed to notify a user about the proximity
of another user. Communications among the user devices occurs through a server; One of
the protocols, named Louis reveals to the server the proximity information, assuming that this
information may not lead to a location privacy breach. This assumption should be probably
reconsidered in light of our results. In [56], [57], [32] location privacy is achieved through spatial
cloaking and encryption techniques, though these solutions reveal to the server approximate
distance information. The Longitude protocol [40] allows users a finer control of location privacy
with respect to other friends by specifying privacy preferences in terms of spatial granularities.
Longitude also guarantees complete privacy with respect to the server under the assumption
that it has no a priori knowledge on the distribution of users, i.e., when a uniform distribution
is assumed. This assumption is indeed related to the fact that the server acquires approximate
distance information. We find the assumption that distance information does not reveal the user
actual position also in some work on general LBSs [28, 44]. In particular, in [28], spatial cloaking
is used to guarantee k-anonymity that is computed using proximity information rather than the
precise user locations. The paper proposes both a centralised algorithm and a distributed one. The
centralised algorithm assumes a server acquiring proximity information for all users. Revealing
proximity instead of exact positions is based on the intuition that information on distance is not
sufficient to identify the position. Our findings would suggest that the centralised algorithm may
be subject to privacy breaches in case of a semi-honest server.

In the context of privacy preserving data mining, it has been shown that distance preserving
transformations can be subject to privacy attacks in presence of prior knowledge of the adversary
in terms of input-output pairs and samples from original or similar dataset [34]. In our attack
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the only background knowledge is the publicly available density distribution. The unsafety of
distance preserving transformations in presence of certain kinds of background knowledge is also
discussed in the context of secure kNN queries [59]. The authors consider as safe the case in
which the adversary observes only the encrypted DB and the distances (called “level 1” attack).
Our study shows that even this attack model can lead to privacy breaches when the distribution of
the original data is known, as it is the case for population distribution.

Finally, in the context of private spatial join computation, a distance based attack in presence
of background knowledge about spatial distribution shows that the position of isolated points
(outliers) may be discovered [22]. A defence is proposed based on a spatial transformation
that eliminates distances longer than a certain threshold in the transformed space. In principle,
friend-finder services may be effective even if limited to short distances (2-3 km); however, our
study shows (see Section 3.1.5) that even ignoring any distance larger than that threshold the
attack we propose can still pose privacy threats. In addition, our study does not want to rule
out services in which long distances are considered, and identifies under which conditions the
adversary actually derives users location.

This section formalises a location privacy attack that, based on partial information on the
distances between users and public knowledge on the average density of population, aims at
approximately localising the users, independently on their fake position assigned by a privacy
preserving algorithm. We achieve this goal by applying a distance-based clustering algorithm,
and then matching obtained clusters with geographical regions with similar densities. Population
density information drives the mapping process. We have reported preliminary results based on
this idea in [37]. In this section, in addition to formalising the attack, we significantly enhance its
effectiveness by introducing a trilateration technique, which refines the position of other users
once the position of a few is determined. We show through an extensive experimental evaluation,
considering geographical regions with substantially different density distributions, that the attack
is effective in practice and that this technique, not only allows to position many more users, but it
also position them with much higher precision.

We are presenting this attack assuming a worst case scenario for the users’ privacy: indeed
the adversary we simulate in this attack has a deep knowledge of the privacy protection technique,
that he exploits together with the population distribution and partial information on the distances
between users. The worst case scenario it is not always likely, but it helps us to better understand
the limits of privacy protection techniques, that, in general, can not protect the users from any
possible threat or adversary.

To summarise, our contributions are as follows:

1. Our study systematically explores the problem of identifying the position of moving objects
based only on partial information on their distance and on background knowledge on the
density distribution.

2. We provide a formalisation of the problem in terms of a privacy attack in presence of
background knowledge

3. Our experiments on real geographic data and publicly available population density data
show that the attack is effective even with partial distance information as typically acquired
by running proximity services.
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The rest of the Section is organised as follows. In 3.1.2 we formally describe the location re-
identification attack. In 3.1.3 we describe the specific strategy used to make the attack practically
feasible and we report the basic algorithms and several optimisations. In 3.1.5 we report our
experimental results, and we conclude in 3.1.6.

3.1.2 Problem Modeling

We consider a service provisioned to a set of users by exchanging data through a service provider
that only acquires information about the distance between some of the users.

Basic definitions

Let U be the set of users. Given a user u ∈U , his position is denoted by pos(u) that is a point in
a discrete bi-dimensional space S. We denote with dp(p1, p2) the distance1 between two points
p1, p2 ∈ S.

Given the average density of population in each area at the precision available from public
sources, we consider as background knowledge BK the information about how many users in U
are in each area. More formally, the adversary can compute the function nu : G→ R returning
the number of expected users contained in g for each cell g of a grid2 G partitioning the spatial
domain S. Given nu(), the probability that a generic user is located in a cell g is given by the
number of users in g divided by the total number of users |U |.

Definition 3.1.1 The probability P[u,g] that a user u is located in a cell g of G, based on BK
only, is given by: nu(g)

|U |

Note that, since the adversary has no other background knowledge, P[u,g] for a given g is the
same for all users.

During the provisioning of the service, the adversary collects data about the distances between
users. We call this information the observation knowledge OK, and we model it by the function
du : U×U → R returning for a pair of users ui and u j the distance between their positions, i.e.,
du(ui,u j) = dp(pos(ui), pos(u j)). Note that du is a partial function and it is undefined for those
pairs of users whose distance in unknown to the adversary.

� Example 3.1 Consider a friend-finder service provided in a space S composed by a regular grid
of 8 possible user positions (see Figure 3.1(a)). Four cells are defined in S and the probability that
a generic user u is located in each cell is: P[u,g0] = P[u,g1] = P[u,g2] = 1/6 and P[u,g3] = 1/2.
We consider 3 users: Alice (A), Bob (B) and Carl (C). Since Alice is friend of Bob and Carl,
while Bob and Carl are not friends, two distances are known to the adversary: du(A,B) =

√
10

and du(A,C) =
√

5.
�

We now show how the adversary can exploit BK and OK to infer the position of the users.

1The distance dp() can be either the euclidean distance or the geographical distance computed on the geoid.
2Here we use a grid, but the more general concept of spatial granularity can be used as well.
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Figure 3.1: Examples

Modelling an attack to discover user positions

We first define the concept of user-to-point mapping m to capture the intuition of the assignment
of a specific geographical position to each of the users. The goal of the adversary is to identify
the mappings representing the real position of as much users as possible. Formally m : U → S is
a total function that associates each user with a geographical position.

By using OK, it is possible to restrict the set of consistent user-to-point mappings to those
that do not violate any distance constraint defined in OK. We denote the set of all consistent
user-to-point mappings with M.

Definition 3.1.2 A user-to-point mapping m is a consistent user-to-point mapping if, for each
ui,u j ∈U such that du(ui,u j) is defined, du(ui,u j) = dp(m(ui),m(u j)).

� Example 3.2 Let’s continue with Example 3.1 and let’s consider a user-to-point mapping m
such that: m(A) = 〈1,1〉, m(B) = 〈2,1〉, m(C) = 〈3,1〉. Clearly m is not a consistent user-to-point
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mapping since √
10 = du(A,B) 6= dp(m(A),m(B)) = 1

Let’s consider the different mapping m0 shown in Figure 3.1(b). This mapping is consistent,
since du(A,B) = dp(m(A),m(B)) and du(A,C) = dp(m(A),m(C)). Overall, there are 4 consistent
mappings that are shown in Figure 3.1. �

Given a consistent user-to-point mapping, it is possible to compute the probability of that
mapping being correct by using the knowledge BK. Intuitively, the probability is computed as
the conjunction of the probabilities of each user u being in the cell where u is mapped by m. To
formalise this intuition we first need to define the up(p) function that returns, for each point p∈ S,
the cell g of G that contains p. Then, the absolute probability P[m] that a consistent user-to-point
mapping m is correct is:

P[pos(u1) ∈ up(m(u1))∧ . . .∧ pos(u|U |) ∈ up(m(u|U |))] (3.1)

Since, by Definition 3.1.1, the probability that a user is located in a given cell is independent
from the other users’ positions, we can rewrite Equation 3.1 as shown in Property 3.1.1.

Property 3.1.1 The absolute probability P[m] that a consistent user-to-point mapping m is correct
is: ∏u∈U P[u,up(m(u))].

We can now define the probability that a user-to-point mapping m is correct relatively to the
set M of all consistent user-to-point mappings. We call this distribution of probability the relative
probability that a mapping is correct.

Property 3.1.2 The relative probability Pr[m] that a consistent user mapping m is correct is:

P[m]

∑m′∈M P[m′]

� Example 3.3 We continue from Examples 3.1 and 3.2. The absolute probability of m0 is
P[m0] = P[A,g2] ·P[B,g1] ·P[C,g1] = 1/63. With analogous computations, the absolute probabil-
ities of the other three consistent mappings are: P[m1] = 1/63, P[m2] = 3/63 and P[m3] = 9/63.
Consequently m3 is the most likely mapping and Pr[m3] ' 0.65. As a result the adversary can
conclude, with high likelihood, that A is located in 〈1,1〉, B is located in 〈4,2〉 and C is located in
〈3,2〉. �

From Property 3.1.2, we can also derive the probability that a user is located in a given area
A, as shown in Property 3.1.3.

Property 3.1.3 The probability P[pos(u) ∈ A] that a given user u is located in an area A is given
by:

∑
m∈M|m(u)∈A

Pr[m]

Given the above formalisation, we can define an attack as the process of identifying consistent
user-to-point mappings and of evaluating their relative probabilities using BK. An attack may
be aimed at identifying the exact or approximated (in terms of an area) position of one or more
specific users, or aimed at discovering the position of all users.
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Modelling the attack exploiting users’ clustering
The attack process presented in Section 3.1.2 has a clear computational limit due to the combina-
torial explosion of the number of the mapping functions that are exponential in the number of
users. For this reason, the problem of computing the consistent mappings is intractable, and not
likely to have a practical solution even for small sets of users.

In order to show that there are practical and still threatening attacks, we now formalise an
attack aimed at discovering the area where the user is with a looser approximation. The general
idea is to cluster the users according to their distances, hence identifying sets of users close to
each other, and then using BK to map clusters to geographical regions. As an example, clusters
of appropriate dimensions may correspond to cities, and the adversary may be able to associate a
cluster of users to the correct city as their actual approximate position.

In this attack we model an arbitrary geographical region z in S as the set of cells from G that
overlap with z. We denote with Z a set of these regions. For example, the regions in Z are the
cities where the adversary tries to locate users. The minimum distance between regions is defined
as:

dmin
z (z1,z2) = min

g1∈z1,g2∈z2
dmin

g (g1,g2)

where dmin
g (g1,g2) is the minimum distance between two cells g1 and g2. The maximum distance

dmax
z (z1,z2) between two regions is defined analogously.

In Section 3.1.5, while considering cities as the regions, we show that, given OK, it is possible
to identify a set C of clusters of U that are actually composed by persons located in cities. Note
that C is not a partition of U , since we are interested in a set of regions not covering the entire
space (e.g., only the largest cities). After the clustering, we need to associate each cluster with the
correct region, so that we can derive the geographical position of the cluster. For this purpose, we
model the cluster-to-region mapping m : C→ Z that represents an association of each cluster to a
region. Conceptually, a cluster-to-region mapping is similar to a user-to-point mapping, with the
only theoretical difference that in a cluster-to-region mapping all clusters are mapped to different
regions, while in the user-to-point mapping two or more users can be mapped to the same point.

Intuitively, this attack becomes practically feasible when the number of clusters and regions
is small, as in the case of the main cities of a country.

Analogously to the case of user-to-point mappings, we are interested in identifying the
consistent cluster-to-region mappings, hence excluding the ones inconsistent with available
distance information. Intuitively, a cluster-to-region mapping m is consistent if for each pair of
clusters and each pair of users in the two clusters the distance between the two users is smaller
(greater, respectively) than the maximum (minimum, respectively) distance between the two
regions corresponding to the two clusters. Clearly the consistency condition can only be checked
for those users such that du() is defined.

Definition 3.1.3 A cluster-to-region mapping m is called consistent cluster-to-region mapping
if, for each pair of clusters c1,c2 ∈C, and for each pair of users u1 ∈ c1, u2 ∈ c2 such that
du(u1,u2) is defined, the following holds:

dmin
z (m(c1),m(c2))≤ du(u1,u2)≤ dmax

z (m(c1),m(c2))

Similarly to the case of user-to-point mappings, we want to assign a probability to the
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consistent cluster-to-region mappings. This probability can be derived from nu(). Indeed,
extending Definition 3.1.1, the probability P[u,z] that a generic user u is located in region z is:
∑g∈z P[u,g].

Since by Definition 3.1.1 the probability that a user is in a region z is independent from the
probability of other users being in z and each user has the same probability, the probability P[c,z]
that all users in a cluster c are in z is given by: (P[u,z])|c|.

We can now define the absolute probability of a consistent cluster-to-region mapping.

Property 3.1.4 The absolute probability P[m] that, given a clustering C and a generic user u, a
consistent cluster-to-region mapping m is correct is:

P[m] = ∏
c∈C

(P[u,m(c)])|c|

Property 3.1.5 defines the relative probability of a mapping.

Property 3.1.5 Let C be a clustering and M the set of consistent cluster-to-region mappings. The
relative probability Pr[m] that a consistent cluster-to-region mapping m is correct is:

Pr[m] =
P[m]

∑m′∈M P[m′]

3.1.3 Techniques
In this section we first show how the attack based on user clustering can be computed in practice.
Then, we describe an additional step, based on trilateration, that, as shown in Section 3.1.5,
significantly improves the attack performances.

Computing clusters of users
We now present a clustering technique designed to identify k groups of users that are located in
user-dense areas of S. The computation of the clusters of users needs to be based only on the
observation knowledge OK, i.e., on the relative distances between some pairs of users. We adopt
the Single Linkage clustering technique that indeed relies only on relative distances [53]. The
idea of this technique is to start with a set containing a single user for each cluster, and then
to iteratively merge the two closest clusters. The notion of “closest clusters” is based on the
minimum distance between two clusters c1 and c2 defined as follows:

dmin
c (c1,c2) = min

u1∈c1,u2∈c2 s.t. du(u1,u2) is defined
du(u1,u2)

Note that dmin
c (c1,c2) is undefined if du(u1,u2) is undefined for all pairs of users u1 ∈ c1, u2 ∈ c2.

The clustering procedure is presented in Algorithm 1. In the initialisation phase (Lines 1
and 2), the |U | clusters are created, each one containing a single user, and the set Z of regions
is ordered accordingly to the number of expected users. This number is actually derived from
background knowledge that includes population density for each cell. Expected number of users
can be easily derived from this. The number n of expected users in the k-th most user-populated
region in Z is used in the clustering steps of the algorithm.

At each iteration, the two closest clusters are merged (Lines 4 to 6). The termination of the
iteration (and consequently of the algorithm) depends on three conditions. The first condition says
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Algorithm 1 SingleLinkageClustering
Input: the set U of users, a set Z of sets of cells, the function du(), an integer k.
Output: a set C of sets of users.
Procedure:

1: C = {{u1},{u2}, . . . ,{u|U |}}
2: Order Z in decreasing order with respect to the expected number of users. Let n be the

number of users in the k-th element of Z.
3: while (|C|> 1) AND (exist c1,c2 ∈C such that dc(c1,c2) is defined) AND (the number of

users in the k-th largest cluster of C is less than n) do
4: Find clusters c1 and c2 in C such as their distance is minimal (closest clusters)
5: C =C \{c1}\{c2}
6: C =C∪{c1∪ c2}
7: end while
8: Remove from C the sets with cardinality smaller than n;
9: return C;

to stop when |C|= 1, since in this case the users are all into a single cluster, and the algorithm
just fails to identify the clusters that are associated with the regions of Z. The second termination
condition is satisfied when no distance among any pair of current clusters is known. This also
indicates a “failed clustering” unless the third condition is also verified. The third condition
denotes a “successful clustering”. When it is verified, the algorithm has identified a clustering
set C containing k clusters each having a number of users at least as large as n. Intuitively, this
condition is aimed at identifying the clusters that correspond to the k most populated regions.
Since we are only interested in these clusters, we remove the others before returning C (Line 8).

� Example 3.4 Figure 3.2 graphically shows the clusters identified by Algorithm 1 after 1500
and 2500 iterations in a run with 16,000 users in France. Each dots corresponds to a user, with
black dots representing users belonging to a “large” cluster (i.e., having cardinality larger than n).
After 1500 iterations only 4 “large” clusters are found, while after 2500 iterations the algorithm
identifies a total of 8 clusters that actually correspond to some of the 11 most populated cities of
France. �

The number of iterations of Algorithm 1 is linear in the number of users. The operation that
dominates the temporal complexity of each iteration is the computation of the two closest clusters.
Without any optimisation, this computation would require to calculate the distance between any
pair of clusters. This operation is quadratic in the number of users, making the worst case time
complexity of the algorithm O(|U |3) and the space complexity linear in |U |, the space needed to
store C.

To improve the time complexity we designed a data structure that stores, for each cluster c:
a) the set c.users of users in the cluster, b) the list c.dist of pairs 〈c′,dc(c,c′)〉 for each c′ ∈C
such that dc(c,c′) is defined, and c) the element c.min of c.dist having the smallest value of
dc(c,c′). Note that, since users’ and clusters’ distances are symmetric, it is not necessary to
store all pairwise distances between clusters, but only half of them. In the initialisation phase it
is necessary to compute du() for each pair of users and the worst case time complexity of this
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Figure 3.2: Example of execution of Algorithm 1

operation is O(|U |2). The operation that dominates the complexity of each iteration is to merge
c1.dist and c2.dist for two clusters c1 and c2. This is analogous to compute the union between
two sets. Since we define a total order among clusters and we use it to maintain c1.dist and
c2.dist ordered, the union of c1.dist and c2.dist can be computed in a time linear in the sum of
the number of users in c1 and c2, that is bounded by |U |. To summarise, the initialisation phase
has a worst case time complexity of O(|U |2). Each iteration has a worst case time complexity
of O(|U |) and at most |U | iterations are required, hence the worst case time complexity of the
algorithm is O(|U |2).

3.1.4 Computation of consistent mappings
Once clusters of users have been identified, cluster-to-region mappings should be generated and
the consistent ones selected. Two problems arise in this process. The first problem is due to what
we call “cluster stretching”: when the clustering algorithm is run, the large majority of the users
in a cluster are located in a region of Z, but few of them are also located slightly outside the
region (e.g., in the suburbs of a city). For example see Figure 3.3 where the rectangle represents
the minimum bounding rectangle (MBR) of Paris and the dots (both black and grey) are the users
in a cluster. It can be observed that, while the great majority (90%) of dots are within the MBR,
few of them are slightly outside.

The “cluster stretching” problem could lead to erroneously classify a mapping as inconsistent.
To face this problem, we introduce a tolerance error factor α ∈ (0,1) in the condition to check
the consistency (see Definition 3.1.3) as follows:

α ·dmin
z (m(c1),m(c2))≤ du(u1,u2)≤

1
α
·dmax

z (m(c1),m(c2))

The intuition is that, when α is close to one, the tolerance is low. For values of α closer
to 0, the value of the left part of the inequality gets smaller, while the right part gets larger,
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Figure 3.3: The “cluster stretching” problem.

hence making the condition easier to satisfy even if a user may be slightly outside the region. In
Section 3.1.5 we show the impact of the tolerance error factor and we motivate the choice of the
value used in our experiments.

The second problem is related to the fact that the number of possible cluster-to-region
mappings is the same as the number of all ordered sequences of |C| distinct elements of Z, i.e.,
|Z|!/(|Z|− |C|)!. Clearly, this leads to a large number of possible mappings, also for small sets
Z and C. Since for each possible mapping we need to check if that mapping is consistent, it
is necessary to optimise this operation. For this purpose the minimum and maximum distance
between each pair of regions in Z (i.e., dmin

z (z1,z2) and dmax
z (z1,z2)) are pre-computed off-line. We

also pre-compute, for each pair of clusters c1,c2 ∈C, the minimum (dmin
c (c1,c2)) and maximum

(dmax
c (c1,c2)) distance between each pair of users u1 ∈ c1 and u2 ∈ c2. It follows that checking if

a mapping is consistent requires evaluating the following two inequalities for each pair of clusters
c1, c2 of C.

α ·dmin
z (m(c1),m(c2))≤ dmin

c (c1,c2)

dmax
c (c1,c2)≤

1
α
·dmax

z (m(c1),m(c2))

By using this optimisation, the process of checking if a mapping is consistent has a worst
case time complexity of O(|C|2). Considering that we need to run this computation for each
possible mapping, the computational complexity is O

(
|C|2 · |Z|!

(|Z|−|C|)!

)
. Clearly this may be

still problematic in general, however, as we show in Section 3.1.5, the attack can be effectively
computed for values of |C| and |Z| that are sufficient to identify the approximate position of the
users located in the most populated cities.

Evaluation of probabilities
The last step of the attack process consists in computing the absolute and relative probabilities of
each consistent cluster-to-region mapping. This is done accordingly the formulas presented in
Section 5.2.1. We compute the function nu(g) from the distribution of inhabitants of g, which is
public information [O5], and by assuming that the users of the service are uniformly distributed
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in the population. Formally, given inhab(g) the number of inhabitants of g and totPop the total
population in the spatial domain S: nu(g) = inhab(g)/totPop · |U |.

While, in theory, the number of consistent cluster-to-region mappings can be in the same order
of all the possible cluster-to-region mappings, in practice these mappings are a small fraction (in
our experiments, in which major cities are considered as regions, they are in the order of a few
units at most).

A technical difficulty arises in the computation of the absolute probability of a mapping due
to the fact that some of the values used in the computations may be non-negative numbers very
close to 0 (for example, these values can be in the order of 10−10000). The precision of standard
floating point representations (e.g., primitive double type in Java) is not sufficient to manage these
values. We solved the problem with non approximated decimal representations and, in particular,
with the “BigDecimal” standard Java class, that, however, has a significant negative effect on the
computation time.

Trilateration
When the cluster-to-region mapping with highest probability is found, the adversary learns the
approximate position of the users belonging to each cluster. We now present a technique that
can lead the adversary to obtain more precise location information for these users and to also
compute the approximate location of the other users. The technique is based on trilateration [24].
It takes as input the approximate locations given by the candidate cluster-to-city mapping with
highest relative probability.

Our solution addresses two differences with respect to “standard” trilateration: (1) only
approximated location information is available so we have to trilaterate with rectangular areas
instead of points; (2) approximate location of users belonging to a cluster can be incorrect, due to
the “cluster stretching” problem. We tackle this inaccuracy through the “refinement” technique.

(1) To address the difficulty of having only approximated location information, we represent
known users’ positions as rectangular regions and we operate geometrical intersections to locate
users. Intuitively, suppose that a user u1 is at distance δ from another user u2 located in a city
z2. This bounds the location of u1 to the set of points whose minimum distance from z2 is at
most δ . We denote this “extended” region as ext(z2,δ ), see an example in Figure 3.4(a). If the
(approximate) position user u1 is unknown, then the adversary learns that u1 is located inside
ext(z2,δ ). Otherwise, if the adversary already knows that u1 is located in z1, it can be deduced that
u1 is located in the intersection between z1 and ext(z2,δ ) (e.g., the dark region in Figure 3.4(b)).

When the above geometrical computation reduces the uncertainty about the position of a user
u, this restriction can “propagate” to all the users u′ whose distance from u is known. This idea
leads to our iterative Algorithm 2 that computes the function r associating a spatial region to each
user. In the initialisation phase (Lines 1-4), each clustered user is assigned to the corresponding
city, while the other users are assigned to the entire space. At each iteration (Lines 6-8) for
each pair of users 〈u1,u2〉 whose distance is known, we compute the intersection between the
approximate position of u1 and ext(r(u2),du(u1,u2)) where r(u2) is the approximate position of
u2. The computation terminates when there are no more approximate positions to restrict.

Note that the intersection between the approximate position of u and ext(r(u2),du(u1,u2))
is not always a rectangle (see again Figure 3.4(b)). When iterating, this can lead to figures with
complex shapes that require a non-constant-time computation of the geometrical intersection
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Figure 3.4: Computation of intersection

function. In order to ease the computation, we first compute the exact intersection and then
we bound it with its MBR (dotted lines in Figure 3.4(b)). In our experiments this optimisation
leads to a negligible decrease in the effectiveness of the algorithms (in terms of the size of the
approximated positions) but it decreases significantly the computation time.

Algorithm 2 Trilateration
Input: the set U of users, a set C of clusters, a cluster-to-region mapping m : C→ Z, the function
du.
Output: the function r(u) for each user u ∈U .
Procedure:

1: for all u ∈U do
2: if u ∈ cluster c ∈C then r(u) = m(c)
3: else r(u) = entire space
4: end for
5: while (at least 1 region is reduced) do
6: for all pairs of users 〈u1,u2〉 such that du(u1,u2) is defined do
7: r(u1) = MBR(r(u1)∩ ext(r(u2),du(u1,u2)))
8: end for
9: end while

10: return function r()

(2) The “cluster stretching” problem (see Section 3.1.4) can lead to erroneous associations
between users and regions. In our experiments we observe that the “cluster stretching” problem
can drastically affect the precision of Algorithm 2. Intuitively, this is caused by the iterations of
Algorithm 2 that propagate errors. To prevent this, we adopt a solution that improves the precision
of the cluster-to-region mapping and hence, as shown in Section 3.1.5, drastically increases the
precision of our attack. The idea is that, after computing the mapping with highest probability,
we “refine” the clustering so that each cluster contains a fraction of the expected number of users
in the corresponding city. The refinement of a cluster c takes as input a number n′ and the set
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of users belonging to c: these users are clustered together until a cluster with exactly n′ users is
found. This cluster represents the refinement of c.

The refinement increases the precision in terms of the correct association of users to a region
since, in general, the last users added to a cluster have a higher probability to be outside the region,
as shown in Example 3.5. We use the refinement to restrict the set of users in a cluster to a fraction
of the expected users in the corresponding region. We call “refinement factor” the percentage of
expected users that are discarded when refining the cluster. For example, with a refinement factor
of 20%, a cluster is refined including 80% the expected users in the corresponding region.

� Example 3.5 Consider Figure 3.3 again. The expected number of users in Paris is 1200, while
1310 users have been clustered into c. The figure shows with black dots the 1200 users in the
refinement of c (with refinement factor of 0%), while the grey dots represent the other 110 users
that are in c but not in its refinement. The percentage of users of c that are located in the MBR is
about 90% while considering the refinement of c the percentage is about 94% and among the 110
users in c but not in the refinement the percentage is about 45%. This clearly indicates that the
first users that are clustered together actually have a much higher probability of being within the
MBR. �

3.1.5 Experiments
Our experiments simulate the observation knowledge (OK) that an adversary may obtain by
running a friend-finder service in which privacy protection is implemented through a distance
preserving transformation. We use as background knowledge (BK) publicly available geographic
data and population density. The aim of the attack is to infer the actual position of users (supposed
to be hidden to the service) in terms of a region in which they are located. In Section 3.1.5 we
present the experimental setting. We evaluate the effectiveness of the attack by first focusing on
the clustering technique (Section 3.1.5) and then showing how trilateration improves the attack
(Section 3.1.5). Finally, in Section 3.1.5 we discuss other experimental results we obtained.

Experimental setting
The overall structure of our experimental evaluation is the following: we first simulate the position
of some users in a geographical area. Then, we compute the distance between some pairs of users
(hence simulating OK) and we use this data to perform the attack. Finally, using the original
information about users’ position, we evaluate the correctness of the attack.

The simulation of users’ position consists in randomly choosing a point in the geographical
area according to a probabilistic distribution. We consider three scenarios corresponding to the
geographic areas covering Australia, France and the entire world. The intuition behind the choice
of the first two scenarios is that the adversary could know, from a number of different sources,
the country where users are located. In the world scenario we assume the adversary does not
have this knowledge. The choice of using France and Australia scenarios is due to the fact that
the two countries have very different average population density, (about 2.8 inhabitants/km2 in
Australia, about 116 inhabitants/km2 in France) and also large difference in population density
variance (Australia is characterised by large unpopulated regions, while in France the variance of
population density is much lower). Differently from what expected, we obtained very similar
results for these two scenarios.
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The probabilistic distribution we adopted is taken from GPWv3 [O5], a dataset that provides
density information by dividing the world into cells and providing the number of inhabitants
for each cell. In our experiments we observed that smaller cells result in more effective attacks
while not significantly impacting on the computation time. Hence, we use the cells at the highest
available resolution, i.e., 2.5 arc-minutes, that corresponds to a cell edge of about 5km at the
equator. Since no public information is available at a higher resolution, in the current setup we
assume that, within each cell, the population density is uniform. In the following we denote with
“#users” the value |U |.

Another parameter that has an impact on the attack is the number of distances between users
that are known to the adversary. In the friend-finder service, this corresponds to the mean number
of friendships per user (# f riends). In order to capture the intuition that users tend to have more
friends in a close-by region, 50% of each users’ friends are located in an area whose size is 2% of
the simulated region. In the case of France this corresponds to a distance of 100km from the user.

The parameters k and |Z| are fixed to 8 and 11, respectively (note that, when the clustering
is successful, |C| = k). In our experiments (not reported in the following) we observed that
while these values already enable powerful attacks, higher values of these two parameters would
improve it even more. However, higher values negatively impact on the performances, due to the
reasons explained in Section 3.1.3. Using these two values for k and |Z| and the default values
for #users and # f riends, we can compute an attack in about 2 minutes on a 2.26GHz CPU with
4GB of main memory.

We evaluate the attack in three scenarios by varying parameters, showed in Table 3.1, with
default values in bold. The value of the tolerance error factor α is set to 0.75, empirically chosen,
as will be shown in Section 3.1.5. The results are computed as the average, as well as minimum
and maximum, out of 10 runs.

Table 3.1: Parameter values

Parameter Values
#users 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000

#friends 10, 20, 40, 80, 120, 160, 200
refinement 0, 20, 40, 60, 80, 90,

92, 94, 95, 96, 97, 98, 99
α 1, 0.95, 0.90, 0.85, 0.80,0.75, 0.7,

0.65, 0.6, 0.55, 0.5
Scenario Australia, France, World

Evaluation of the Attack Based on Clustering Only
The aim of the experimental evaluation of the clustering technique is to assess the attack effec-
tiveness in terms of the “cluster-to-city association” and “users-to-city association”.

The “cluster-to-city association” measures the percentage of clusters that are correctly associ-
ated to the corresponding city. A cluster is considered correctly assigned to a city if at least 50%
of its users are located within the assigned city’s MBR. We can observe from Figure 3.5(a) and
from Figure 3.6(a) that, for values of # f riends equal to or larger than 40 in France and equal or
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Figure 3.5: Results obtained without trilateration in France

larger to 80 in Australia the clustering algorithm fails less than 3% of the times while, when it
does not fail clustering, the cluster-to-city association is correct 100% of the times. This is an
important property of our attack: when the number of users is sufficiently large (in this case we
are using the default value of 16000) if the clustering does not fail, then the adversary knows
with high likelihood that the cluster-to-city association is correct. This can also be observed in
Figure 3.5(b) and in Figure 3.6(b) showing that the cluster-to-city association is always correct
for large values of #users. Vice versa, for #users smaller than 4000, we observe that a wrong
cluster-to-city association is more likely. Australia and France scenarios show a similar trend,
both varying the number of users and the number of friends: however we can observe that,
compared to France, in Australia an higher number of friend, but a lower number of users is
needed to avoid failed clustering. This can be motivated observing that the population of Australia
is mostly located in the major cities, while in France the users are more distributed in all the
country: therefore more connections are needed to link users from city to city, but since most of
them are located within them the number of users can be lower with respect to France.

We observe a similar trend in the world scenario (see Figure 3.7(a)). In this case the algorithm
always returns correct cluster-to-city associations when there are at least 8000 users. Compared
to the France scenario, the percentage of failed clustering decrease more slowly for larger values
of #users. Indeed, the clustering fails about 20% of the times with 64000 users. This is due to
the fact that in the world scenario we are simulating a much smaller percentage of the population.
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Figure 3.6: Results obtained without trilateration in Australia
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Figure 3.7: Results obtained without trilateration in the world

Indeed, with 32000 #users in France we simulate about the 0.04% of the population, while with
64000 #users we simulate only the 0.00001% of the world’s population.

The “user-to-city association” measures the precision and recall of the association between a
user and a city. In this case, the association of a user with a city is correct if the cluster containing
that user is associated to the city where the user is actually located. Since, as we observed
above, the cluster-to-city association is always correct for sufficiently large values of #users, the
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user-to-city association helps us understanding the impact of the “clustering stretching” problem.
Consider Figure 3.5(c) and Figure 3.6(c): in both France and Australia for values of #users equal
to or larger than 2000 the average precision is almost not affected by the value of #users and it is
always above 90%. Similar trend and values can be observed for the recall. This means that most
of the users that are located in a city are actually reported as being in that city and that, in most
of the cases, a user reported being in a city is actually located there. A very similar result can
be observed for the world scenario (see Figure 3.7(b)). The main difference is that we need a
minimum of 8000 users, since for smaller values of #users the clustering always fails.

One experiment is devoted to find a proper value for the tolerance factor α described in
Section 3.1.4. As shown in Figure 3.5(d), the cluster-to-city association often fails for large values
of α (above 0.85) since no consistent mapping is found. For values smaller than 0.65, more
consistent mappings need to be evaluated, resulting in much higher computation time and higher
probabilities of errors in choosing the correct mapping. A good trade-off is found for values of α

between 0.7 and 0.8, for which there are no failed clusterings and the cluster-to-city associations
are always correct. For these reasons, in our experiments we used a value of α = 0.75.

Evaluation of the attack with trilateration
The next set of experiments evaluates the effectiveness of the trilateration step, in terms of its
correctness and of the percentage of users that it can associate to a “small” area.

Figure 3.8(a) and 3.8(b) highlight the improvement of the attack due to trilateration. Fig-
ure 3.8(a) shows that the trilateration technique improves the precision of the attack when the
users’ number is greater than 4000. This is mainly due to the refinement step (see Section 3.1.4).
At the same time, Figure 3.8(b) shows that, when trilateration is used, it is possible to correctly
associate more than 60% of the users to an area smaller than 50km2. The attack with trilateration
is about three times better along this metric than the attack without trilateration that can only
locate the users in the cities. The results in the world scenario (not shown here) are very similar,
given that the number of users is sufficiently large.

Figure 3.8(c) helps us understanding the size of the regions where the attack locates the users.
Approximately 40% of the users are correctly associated with a region smaller than 25km2. The
attack can also discover a more precise location (less than 5km2) for about 416 users on average
(i.e., 2.6% of the users). A few users (5, on average) can be localised in an area smaller than
1km2.

Figure 3.8(d) and Figure 3.8(e) show the percentage and the precision, respectively, of users
located in an area smaller than 50km2 for different values of the refinement factor. From the
comparison of the two figures, we can observe that there is a trade-off between precision and
the percentage of users whose location is discovered: increasing the refinement with values
higher than 80% makes the precision converge to 1, but the percentage of users whose location is
discovered decreases. Experiments show that the threshold value depends on the value # f riends:
when this value is equal to 20, better results are obtained with a refinement factor of 0, while if
# f riends are more than 80 a refinement factor of the 80% is needed.

Other experimental results
We run a set of experiments to evaluate the effectiveness of our attack when only short distances
(less than 3km) are known to the adversary. This is the situation that would result when using a
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Figure 3.8: Results of the attack with trilateration

defence like the one proposed in [22]. We adapted our attack to this situation by changing the
clustering algorithm so that it terminates when the distance between the two closest clusters is
larger than 3km. A major difference is due to the fact that in absence of long distances it is not
possible to compute if a cluster-to-region mapping is consistent or not. For this reason we skip the
consistency check and compute the relative probability for each mapping. This solution incurs in
two distinct problems. The first is a computation cost problem: computing the relative probability
among all the possible mappings is much more time consuming than first selecting consistent
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mappings and then computing their probability. For this reason we had to reduce the values of k
and |Z| to a maximum of 3 and 4, respectively. The second problem is related to the fact that, by
assuming that all mappings are consistent, it is much more frequent that an incorrect mapping
has a high relative probability, hence resulting in an incorrect cluster-to-city association. Despite
these problems, our results show that the attack is still effective in most of the cases. Using default
values for #users and # f riends, k = 2 and |Z|= 4 in France, our clustering algorithm has always
been able to correctly compute the clusters, and the cluster-to-city association always resulted
to be correct. The computation time is in the order of 2 minutes. However, we observed that,
differently from the case in which even long distances are known to the adversary, increasing the
values of k and |Z| can result in worse performance, since wrong cluster-to-city associations are
more frequent. For example, by using k = 3 and |Z|= 4 we obtained 73% of correct cluster-to-city
associations. Overall, we can conclude that the application of a defence technique like the one
proposed in [22] to our reference scenario (e.g., a friend-finder service) does not protect from
our attack, that it still able to identify the correct position of many users. On the other hand this
defence poses some challenges to our attack both from the computational point of view, and from
its effectiveness, since it reduces the number of possible users whose position can be directly
identified.

3.1.6 Summary

In this section we investigated how distance information between moving individuals can be used
to violate location privacy in presence of background knowledge about population density. In
contrast with other kinds of background knowledge that have been considered in the literature we
base our attack entirely on public knowledge and on realistic partial distance information as it
could be released by a Geo-Social Network friend-finder service. Our experiments show that the
knowledge of a relatively low number of distances is sufficient to correctly position the majority
of users in an area smaller than 50 km2 and to correctly identify the position of some users in an
area smaller than 1 km2.

We believe that this study shades a new light on the safety of distance preserving transforma-
tions as privacy techniques; at the very least, it provides new important elements to design safer
defence techniques considering public knowledge on population density.

3.2 Co-location privacy

Through Geo-Social Networks it is possible to publish posts, photos, check-ins together with the
locations in which they were generated. Location privacy and absence privacy in these kind of
social networks have already been discussed thoroughly in [14]. We now want to consider the
co-location privacy issue: a co-location occurs when a user can be located with another user in a
given place at a given time.

In some cases being co-located with another cannot be a problem, while in other does: for
instance if Alice is Dave’s ex- girlfriend and her actual boyfriend sees two posts linking them to
the same place, he can be jealous and start a quarrel with Alice. Or, in another scenario, if Alice
is known as a corrupted person and Dave is a politician, a malicious journalist, seeing two posts
linking them to the same place, can make a scoop saying that there was a meeting between the



3.2 Co-location privacy 39

two, compromising Dave’s career. A user can have many other reasons for not wanting that a
specific co-location occurs, but what is undeniable is that there is an underlying privacy issue. In
this section we’ll analyse and formalise this threat.

3.2.1 Classification and preliminar definitions

The co-location privacy concerns can stem in many location based services. For instance in
publication of traces or continuous positions tracking. Among all the possible scenarios in which
the co-location privacy issue can arose, we consider as the reference one a Geo-Social Network.

This choice implies that we assume that users do not publish continuously their positions,
but only in a sporadic way and, more commonly, in places that are unusual for the users. This
means that the adversary do not know, for each user, the home/work pairs locations or habits
connected to the everyday routine: we’ll discuss later in the chapter how this assumption will
affect the co-location threat formal definition.

In a Geo-Social Network each user has the possibilities to publish a post enhanced with
the geographical location and indicating a (possibly empty) set of other users with him. Each
published post, or resource, therefore has an author (the one that is publishing the post), a content
(a text, a photo, video, etc.), a geographical position, a temporal component (typically the time of
the post’s publication) and a set of users included in the post. More formally:

Definition 3.2.1 Given a user u, a resource ru is a tuple: <Udata,ST data,Content > where

• r.Udata: set of identifiers of users, included the author u

• r.STdata: r.Sdata spatial component, r.Tdata temporal component

• r.Content: resource itself

and u is the author of the resource.

Explicit

Implicit

Pairwise Group

Figure 3.9: Classification of co-location threats
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A co-location privacy breach can be classified depending on the number of the users involved
in the co-location and on the number of resources needed to infer the co-location.

Considering the number of users involved we classify the co-location threat in pairwise or
group co-location. We have a pairwise co-location threat if a user u is co-located with a user u′

with whom he doesn’t want to. It can happen that u have no problem of being co-located with the
users u′ and u′′ but he does not want to be co-located at the same time with both u′ and u′′. If this
happen we have a group co-location threat.

Instead, if we use as the classification criteria the number of resources involved, we can divide
the threats in explicit and implicit. An explicit co-location threat occurs when there is a single
resource that locate u together with an undesired user u′. Otherwise, if two or more resources
are needed to infer the co-location threat, the co-location is qualified as implicit. As shown in
Figure 3.9, we can observe that the classification based on the number of resources is orthogonal
to the one based on the number of users.

In Section 3.2.2 we’ll examine first the pairwise co-location threat, considering first the
explicit case and then the implicit, while in Section 3.2.3 we’ll discuss about group co-location.
Further examples to better clarify the implicit/explicit, as well as the pairwise/group, concepts
are provided in the following.

3.2.2 Pairwise co-location
In this section we consider the case in which a user does not want to be co-located together with
another single user. To define the privacy threat, firstly we need to specify, for each user u, a set
of rules that formally specifies which users are “undesired” for him. For this purpose, we define a
privacy preference:

Definition 3.2.2 A pairwise privacy preference φu for the user u is the set of users φu =
{u1,u2, · · ·un} with whom the user u does not want to be co-located.

� Example 3.6 If Alice does not want to be co-located with Bob and Dave, then her pairwise
privacy preference will be: φAlice ={Bob, Dave}. �

Please note that a pairwise privacy preference can be more specific if we include for each user ui

in φu the set of locations S and the temporal intervals T in which u does not want to be co-located
with ui. Moreover, u can consider a privacy breach being co-located with ui in an area A (not
only in the same place): for this purpose for each user ui belonging to φu it is possible to include
a minimum distance d within which u does not want to be co-located. The resulting privacy
preference is a set of tuples, one for each user with which u does not want to be co-located:

φu = {{u1,S1,T1,d1},{u2,S2,T2,d2}, · · ·{un,Sn,Tn,dn}}

Let’s see an example to better clarify S,T and d.

� Example 3.7 Let’s recall the privacy preference φAlice in Example 3.2.2. From φAlice we know
that Alice does not want to be co-located with Bob and Dave. Let’s suppose that Alice is a
colleague of Bob: in this case it’s normal that she is co-located with him during working hours,
but to avoid her boyfriend’s jealously she does not want to be co-located with him during the
night in the pub or in the discotheque. Furthermore, Alice does not want to be co-located with
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Dave within at least 200m, since he has a very bad reputation that can affect Alice’s career. Then
her privacy preference will be:

φAlice = {{Bob,{Discotheque,Pub},19 : 00−05 : 00,0m},{Dave,Everywhere,Anytime,200m}}.

�

Even if S,T,d can better describe the co-location preference for user u,without any loss of
generality, from now and in the rest of the chapter we will use the simplified version provided in
Definition 3.2.2. All the definition and theorems in the following can be easily extended to meet
the privacy preference with S,T and d.

For each user ui we have now a pairwise privacy preference. Now we want to answer the
question: how can a co-location privacy breach occur? In other words we are interested in
identifying the circumstances under which user’s privacy is at risks, starting from the naive case
(explicit co-location) and studying then the more sophisticated implicit pairwise co-location
threat.

Explicit

Intuitively, an explicit pairwise co-location threat occurs when there is a published resource r
that locate together a user u and another user u′ with which u does not want to be co-located, i. e.
u′ ∈ φu. Please note that in this case it is not important who is the publisher of the resource r, it
can be either u′ or another user u′′. In both cases, there is a privacy breach for u. Formally:

Definition 3.2.3 An explicit pairwise co-location threat for the user u, with pairwise privacy
preference φu, is the publication of a resource r such that:

(u ∈ r.Udata)∧ (r.Udata∩φu 6= /0)

� Example 3.8 Let’s assume that Alice is using a Geo-Social Network and she is very concerned
about her privacy. As in Example 3.6, her privacy preference φAlice shows that she does not want
to be co-located with Bob and Dave. Her friend Carl publish a post in the Geo-Social Network,
writing “Having a drink @Pub - with Alice and Bob": we can easily see that the publication of
this post is threatening Alice’s privacy, since it violates her privacy preference φAlice. �

The detection of an explicit pairwise co-location threat is straightforward, since the observa-
tion of a single resource is enough to state, without any doubt, if there is a threat for the user’s
privacy or not. In the next paragraph we’ll see how different, and more complicated, is the
approach in identifying the implicit pairwise co-location threat.

Implicit

In the previous section we have seen how to detect an explicit co-location threat. What if the
co-location threat should be inferred by two or more resources? Let’s consider an example:

� Example 3.9 Let’s assume that Alice is in a pub with her friend Barbara. Barbara updates
her Geo-Social Network status publishing the post “Having a nice evening with Alice” at 9 pm
@Pub. Also Carl arrives in the same pub, meets Dave and updates his status, writing “Nice to
unexpectedly see my buddy Dave” at 9.05 pm @Pub.



42 Chapter 3. Privacy threats

In this example a possible co-location occurs between all the persons mentioned. Even if
neither Alice nor Dave published anything, a person that have access to both the posts of Barbara
and Carl can infer that Alice and Dave were in the same place, nearly at the same time, and it is
very likely that they met and they possibly have talked to each other. If Alice’s privacy preference
includes Dave or Carl then an implicit privacy breach can occur. �

Please note that inferring the implicit co-location with certainty is possible only if the two
resources are published in the same place at the same time. In the example above, for instance, we
cannot be 100% sure that Alice was in the pub when Carl and Dave arrived, since in the 5 minutes
interval that separate the two posts Alice might be out of the pub and have gone elsewhere. On
the other hand, it is highly likely that Alice was in the Pub at 9.05 since only 5 minutes before
she was hanging around there with Barbara.

Hence, to deal with implicit co-location privacy we formalise the co-location threat as a
probability.

Let’s assume that the publication of a resource r links the user u in a location l at time t.
Given u, l and t, the user’s probability to be in another location l′ after a time t ′ is defined by
a function f . The value of this probability, computed through the function f , depends on the
activity the user u was performing in r: for instance if in the resource r the user u is drinking in a
pub with a friend, then it is very likely that after 5 minutes he will be still there. Conversely, if in
r the user u is passing near the pub, driving to another location, then the probability that he will
be in the surroundings after 5 minutes is much lower or null.

What if the known locations of the user u are frequent in time? Clearly the probability of
u of being in a specific place l′ at time t ′ can depend on more than one known location. A set
of locations close in time can define a trajectory for a user: with this kind of data it is possible
to infer the means of transport, habits and to estimate future locations as well. Hence, in this
scenario, given a location l′, the probability that user u is located there depends on a set of known
locations in given times. Formally:

Definition 3.2.4 Given the set KLu = {(l1, t1),(l2, t2), · · · ,(ln, tn)} where each pair (li, ti) rep-
resents a known location li at the time ti for the user u, the probability that u is located in l′ at
time t ′,:

p[locu(t ′) = l′|KLu] = g(l′, t ′,KLu)

As we discussed in Section 3.2.1, we are not taking into account such a scenario since we
are assuming only sporadic publications: this implies that the known locations in KLu are too
scattered to infer habits or common locations. This is the reason underneath the fact that to
compute the probability that a user u is located in l′ at time t ′ we consider only the known location
at the time closer to t ′.

We now want to model the probability that two users are close in a given time t. To be close is
clearly semantically different than being in the same exact place: however if the distance between
two users is small enough we can approximate the concept of being co-located with the one of
being close. For instance, in the recurring example in which Alice’s boyfriend Carl is jealous, if
Alice and Bob are not precisely located in the same place, but their positions are at a distance of
50m probably he is going to be jealous anyway. For this purpose we define a minimum distance
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D: if two users are located within they are close, otherwise they are not. Please note that D can
be either a system parameter or a user preference. In the latter case, a user u can specify a value
for D that apply to all the users in his privacy preference φu or he can decide different values of
D, one for each user ui ∈ φu.

Independently on how it is chosen, let’s assume a distance value D and let’s compute the
probability that two users are close in a given time t. Since we consider each users’s probability
as independent, fixed two locations l and l′, the probability that u and u′ are close is the product
of the probability of user u to be located in l at time t multiplied by probability of user u′ to
be in located in l′ at the same time t, only if the distance between l and l′ is not greater than D
(otherwise the probability of being close is clearly zero). Since we are interested in the probability
of the two users to be close everywhere, and not only in fixed locations, the overall probability
should be computed on all possible locations l and l′ of the spatial domain S.

To compute this probability, we first need to define a piecewise function that takes two
locations as input: if the distance3 between the two locations is smaller than the given threshold D
then the function value is equal to 1, while, in all other cases, its value is equal to 0.

Definition 3.2.5 Given a distance threshold D and two locations l and l′, the closeness function
cD(l, l′) is equal to:

cD(l, l′) =

{
1 if d(l, l′)≤ D
0 otherwise

where function d(a,b) computes the distance between locations a and b.

We can now formally define the closeness probability for u and u′ at time t:

Definition 3.2.6 Given the users u and u′, the probability PcloseD(t,u,u′) that u and u′’s
locations are close at a given time t is:

PcloseD(t,u,u′) = p [cD(locu(t), locu′(t)) = 1] = p [d(locu(t), locu′(t))≤ D] =

=
∫∫

S
p [locu(t) = l] · p

[
locu′(t) = l′

]
· cD(l, l′)dldl′

Now that we have the probability that two users are close at a given time t, we can model the
implicit co-location threat. Intuitively we can say that there is a co-location when the probability
that two users are close is very high (since we are almost sure that the users are in nearly the
same place). In other words, given a resource r in which the user u is included, if it exist another
published resources r′ including a user u′ and the probability that both u and u′ are located within
a distance D at time t is greater than a given threshold K , then a co-location threat can occur if
u′ is included in u’s privacy preference. Formally,

Definition 3.2.7 Given a real number K ∈ [0,1] and a distance value D, an implicit pairwise
co-location threat for the user u, considering φu, is the publication of a pair of resource r and
r′ such that:

3The distance can be either the euclidean distance or Manhattan distance or other
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1. r 6= r′

2. (u ∈ r.Udata)∧ (∃u′ ∈ r′.Udata∩φu)

3. ∃t ∈ T, s.t. PcloseD(t,u,u′)≥K

where T is the temporal domain.

The above definition can be not easy to compute and analyse since the probability that u is
close depends on the function f . Indeed, this function can be deliberately complex, non contin-
uous, non monotonic, etc. We now want to study three simple scenarios (uniform distribution,
bivariate normal distribution and discrete spatial domain) that for sure are non realistic but they
can help us to better understand the implicit co-location threat identification problem.

Uniform probability
We assume now a naive scenario in which there are no spatial constraint( roads, lake, etc.) and all
the users’ move independently in the space with a maximum speed vmax. Therefore, given a user
u and his known location l at time t, u’s approximate location in a given time t ′ is the circular area
with centre l that is reachable in the interval t ′− t assuming a maximum speed vmax. Formally:

Definition 3.2.8 Given a user u the uniform probability that u is located in l′ at time t ′, given
that u is located in l at time t, is equal to:

p
[
locu(t ′) = l′|locu(t) = l

]
=

{
0 if d(l, l′)> vmax · |t− t ′|

1
π[(t−t ′)·vmax]2

otherwise

� Example 3.10 Let’s refer to Figure 3.10. The user u’s approximate location at time t is the
circular are cu: outside of cu, u’s probability of being there is null. The area cu is computed
from u’s known position (xu,yu) in in a time t ′ earlier than time t, according to Definition 3.2.8.
The borders of cu are the furthest locations that u, starting from (xu,yu), can reach in the time
interval t− t ′ moving with speed vmax. Analogously, cu′ is the approximate location for the user
u′ knowing that he was in (xu′ ,yu′) at time t ′′. Please note that the area of cu′ is bigger than cu:
since the speed vmax is the same for both the users, this means that the known location for the
user u′ was taken in a time t ′′ < t ′ < t. �

We now want to compute the probability that two users, u and u′, are co-located at time t at
a maximum distance of D, or in other words we want to compute the probability that they are
close in a given time t. Let’s refer to Figure 3.10 that represents the areas in which u and u′ can
be located at a given time t (as in Example 3.10). The equation

PcloseD(t,u,u′) =
∫∫

S
p[locu(t) = l] · p[locu′(t) = l′] · cD(l, l′)dldl′

is equal to ∫
cu

∫
cu′

p[locu(t) = l] · p[locu′(t) = l′] · cD(l, l′)dldl′

since the probability outside of cu for u is zero and analogously for u′ in cu′ .
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Figure 3.10: Approximate locations for users u and u′ at time t

� Example 3.11 Let’s suppose that the approximate location for u and u′ are cu and cu′ , respec-
tively. If it not exists an intersection between cu and cu′ , and furthermore the minimum distance
between them is greater than the distance D, then the probability is null, since, in any possible
locations they can be, they wouldn’t be close. Let’s now see how to compute the closeness proba-
bility when the intersection between cu and cu′ is not null, as in Figure 3.10. In the intersection i
of cu and cu′ both the users have probability to be located, but, for each point p ∈ i in which u can
be located, we need to consider u′’s probability for all the points within distance D from p. Let’s
assume that the computation of the double integral of Equation 3.2.6 is possible and have value
11/12: if K is less than 11/12 then a co-location threat is concrete. �

Upper and lower bound for closeness probability
We want to find an upper and a lower bound for the closeness probability value, since it can be
costly to compute even in the uniform probability scenario that we are considering.

• Upper bound

Let’s consider Figure 3.11: user u can be located in each point p of iPlusD, i.e. the
intersection between cu and the circular region cPlusu′ that is the circle with center in
(xu′ ,yu′) and radius equal to r′D. Considering p, the probability that u′ is co-located can be
upper bounded if we consider as possible all the points within distance D from p ∈ iPlusD.
Clearly this is not true, since as in Figure 3.11 we consider as not null the probability that
u′ is located in points as pk. Hence:

PcloseD(t,u,u′)≤
A(cu∩ cPlusu′)

A(cu)
· A(ciD)

A(cu′)
=

A(iPlusD)

A(cu)
· π ·D2

A(cu′)

With this approximation if
A(iPlusD)

A(cu)
· π ·D2

A(cu′)
< K
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Figure 3.11: Computing the upper bound of PcloseD(t,u,u′)

then we can exclude a co-location threat, since, also

PcloseD(t,u,u′)≤
A(iPlusD)

A(cu)
· π ·D2

A(cu′)
< K

Formally:

Theorem 3.2.1 Let (xu,yu) be a known location at time t ′ for user u and let cu, the circle
centred in (xu,yu) with radius r = (t− t ′)vmax, be the approximated one at time t; let
(xu′ ,yu′) be a known location at time t ′′ for user u′ and let cu′ , the circle centred in (xu′ ,yu′)
with radius r′ = (t− t ′′)vmax, be the approximated one at time t. Furthermore, given a
distance D, let iPlusD = cu∩{circle with center in (xu′ ,yu′) and radius r′D = (r′+D)}.
Hence, the closeness probability PcloseD(t,u,u′) at time t for users u and u′, in case of
uniform probabilities, is upper bounded by:

PcloseD(t,u,u′)≤
A(iPlusD)

A(cu)
· π ·D2

A(cu′)

where function A(x) computes the area of the spatial region x.

Proof is reported in Appendix A.

Please note that the area of the region iPlusD can be computed analytically, and hence
easily computed. The resulting formula, with vmax = v, is:
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A(iPlusD)

= [(t− t ′)v]2 arccos
(

2vt(vt ′′− vt ′−D)−2t ′′Dv+ v2t ′2− v2t ′′2−D2 +d2

2dv(t− t ′)

)
+[(t− t ′′)v+D]2 arccos

(
2vt(vt ′− vt ′′+D)−2vt ′′D+ v2t ′′2− v2t ′2 +D2 +d2

2d[v(t− t ′′)+D]

)
+
√

(2vt− vt ′′− vt ′+D−d)(2vt− vt ′′− vt ′+D+d)[(d +D)2− (vt ′′− vt ′)2]

(3.2)

• Lower bound
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Figure 3.12: Computing the lower bound of PcloseD(t,u,u′)

Let’s consider Figure 3.12: the user u can be located in each point p of the intersection
iMinusD between cu and the circular region cMinusu′ , that is the circle centred in (xu′ ,yu′)
with radius equal to r′′D = (t− t ′)vmax−D. Considering all p ∈ iMinusD, the probability
that u and u′ are co-located can be lower bounded if we consider all the points within
distance D from p. Clearly in this way we “lose” some points in which u′’s probability is
not not null. For instance, referring to Figure 3.12, we can observe that both the probability
that u is located in the point pk and the probability that u′ is located in pk′ are not null:
since the distance between pk and pk′ is equal to D, also the closeness probability in these
two points is not null. However, this probability is not considered in the above formula.
Hence:

PcloseD(t,u,u′)≥
A(cu∩ cMinusu′)

A(cu)
· A(ciD)

A(cu′)
=

A(iMinusD)

A(cu)
· π ·D2

A(cu′)
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With this approximation if

A(iMinusD)

A(cu)
· π ·D2

A(cu′)
> K

then we can be certain when a co-location threat occurs, since

PcloseD(t,u,u′)≥
A(iMinusD)

A(cu)
· π ·D2

A(cu′)
> K

Formally:

Theorem 3.2.2 Let (xu,yu) be a known location at time t ′ for user u and let cu, the
circle centred in (xu,yu) with radius r, be the approximated one at time t; let (xu′ ,yu′)
be a known location at time t ′′ for user u′ and let cu′ , the circle centred in (xu′ ,yu′)
with radius r′, be the approximated one at time t. Furthermore, given a distance D, let
iMinusD = cu∩{circle with centre in (xu,yu) and radius=(r′−D)}. Hence, the closeness
probability PcloseD(t,u,u′) at time t for users u and u′, in case of uniform probabilities,
is lower bounded by:

PcloseD(t,u,u′)≥
A(iMinusD)

A(cu)
· π ·D2

A(cu′)

where function A(x) computes the area of the spatial region x.

Proof is reported in Appendix A.

Also the area of iMinusD can be computed analytically, analogously to the upper bound
case.

Bivariate Normal distribution
Another possibility is modelling the users’ probability f function through a normal distribution.
We are now assuming that, given a know location l = (x,y) for the user u at time t, his probability
distribution is described by a bivariate normal distribution.

Definition 3.2.9 Let σ be a real value and v a constant speed. Given a user u, the probability
that u is located in l′ = (x,y) at time t ′, given that u is located in l = (µx,µy) at time t, is given
by:

p[locu(t ′) = (x,y)|locu(t) = (µx,µy)] =
1

2πσv∆t

∫ +∞

−∞

e−(
(x−µ1x)

2+(y−µ1y)
2

2σv∆t )

with ∆t = t ′− t.

The bivariate normal distribution, though not realistic, is able to express the concept that the
quantity of information enclosed in a known location decreases as time goes by.

As in the general case, the the closeness probability in case of the bivariate normal distribution
is the product of the probability of user u to be located in l at time t multiplied by probability of
user u′ to be in located in l′ at the same time t, only if the distance between l and l′ is not greater
than D, as in Definition 3.2.6.
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Discrete spatial domain

The value of the probability that a given user u is located in a given location l at time t can not
be available for each point belonging to the spatial domain S, but only at higher granularity. For
instance, it is reasonable that we do not precisely know the probability for the user to be on the
second table of the pub, but only the overall probability that the user is located within the pub.
Furthermore, since in many context the computation of the closeness probability (see Definition
3.2.6) can be very costly, a discretization of the spatial domain S can ease the computation.

Therefore, let’s assume that the spatial domain S is subdivided in n equal regions c1,c2, · · ·cn.
We call such spatial regions cells.

We now want to compute the closeness probability PcloseD(t,u,u′) in this discrete case. To
compute this probability, we first need to define a piecewise function that takes two cells as
input: if the distance4 between the two cells is smaller or equal to the given threshold D, then the
function value is equal to 1, while, in all other cases, its value is equal to 0.

Definition 3.2.10 Given a distance threshold D and two cells c and c′, the cell closeness
function cRegD(c,c′) is equal to:

cRegD(c,c′) =

{
1 if d(c,c′)≤ D
0 otherwise

where function d(a,b) computes the distance between cells c and c′.

We can now compute the closeness probability in the discrete domain. In this case the double
integral in Definition 3.2.6 is replaced by a double summation since the number of cells to
compute is finite.

Definition 3.2.11 Given the spatial domain S subdivided in n equal cells c1,c2, · · ·cn, given
the users u and u′, the probability PcloseD(t,u,u′) that u and u′ are close at a given time t is:

PcloseD(t,u,u′) =
n

∑
i=1

p[locu(t) ∈ ci] · ∑
j∈[1,n]|cRegD(ci,c j)=1

p[locu′(t) ∈ c j]

3.2.3 Group co-location

In the previous section we have discussed the pairwise co-location; now we want to present the
group co-location. There are lots of similarities between the pairwise and the groups co-location
definitions, and this is the reason why we will not get through all the details given in the previous
pairwise section. There can be several motivation for a user for not wanting that a set of users is
co-located with him, even if these users, separately, are not a problem for the user’s privacy.

Beyond the practical reasons, we want to express what is a group co-location threat. To do
that we first need to define a group co-location privacy preference. Differently to Definition 3.2.2,
a group privacy preference for the user u do not contains a list of users, but a set of it. Each list
represent the users with which the u does not want to be co-located at the same time. Formally:

4it can be the maximum, the minimum or the mean distance between the two cells, depending on the context.
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Definition 3.2.12 A group privacy preference φ G
u for the user u is a a set of tuples, where

each tuple fi is a set of two ore more identifiers of users with whom u does not want to be
co-located at the same time.

� Example 3.12 Alice does not want to be co-located at the same time with Bob and Dave;
also she is not willing to be co-located together with Elise, Francis and Georgia. Therefore her
pairwise privacy preference will be:

φ
G
Alice = {{Bob,Dave},{Elise,Francis,Georgia}}

�

Please note that users contained in each list are not necessarily included in user’s u pairwise
privacy preference, since we consider the two privacy preferences as independent.

As in the pairwise co-location, we can have an explicit or implicit group co-location threat.
Let’s analyse both in the followings.

Explicit

Analogously to the pairwise co-location threat, we talk about an explicit one when only a resource
is needed to infer the co-location. To detect a group co-location threat, considering the user’s u
privacy preference φ G

u and (at least ) one of its tuples fi, it should exist a resource r in which all
the users belonging to fi are co-located with u. Formally:

Definition 3.2.13 An explicit group co-location threat for the user u, with group privacy
preference φ G

u , is the publication of a resource r such that:

∃ fi ∈ φ
G
u s. t. ∀ui ∈ fi,(ui∩ r.Udata) 6= /0

� Example 3.13 Let’s assume that Alice is using a Geo-Social Network and her group privacy
preference are φ G

Alice = {{Bob,Dave},{Elise,Francis,Georgia}} (as in Example 3.12). If her
friend Carl publish a post in the same social network, writing “Having a drink @Pub - with
Alice and Bob” then the publication of this post is not a group co-location threat: Bob belongs to
φ G

Alice but there is a threat only if also Dave is included in the post. Otherwise, if Francis write
in the social network “Shopping in Milan - with Alice, Barbara, Elise and Georgia", there is a
co-location threat for Alice since all Elise, Francis, Georgia are included in the resource. Please
note that the presence of another user, in this case Barbara, is not important. �

Implicit

Let’s consider now the implicit group co-location threat. Also this threat is very similar to the
pairwise case. Here the threat for the user u happens when it exists a set of users (corresponding
to a tuple in φ G

u ) that can be co-located with u, through two or more resources. Even in this case
in the implicit co-location we loosen the concept of being co-located in the one of “being close",
considering the distance D, as we have already discussed in the pairwise section.

We first need to define a piecewise function that takes as input a location l and a set L of
other locations: if the distance between l and each of the location li ∈L is smaller or equal than
the given threshold D then the function value is equal to 1, otherwise, its value is equal to 0.
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Definition 3.2.14 Given a distance threshold D, a location l and a set of locations L =
{l1, · · · ln} , the group closeness function cG

D(l,L ) is equal to:

cD(l,L ) =

{
1 if ∀li ∈L d(l, li)≤ D
0 otherwise

where function d(a,b) computes the (Euclidean) distance between locations a and b.

We now want to express the probability that given the user u and a set of users U , all the
users ui ∈U are close to u, always considering a fixed distance D.

Definition 3.2.15 Given a user u and a set of users U = {u1, · · ·un} , the PcloseD(t,u,U )
probability that u’s location is close to all the locations of users U at a given time t is:

PcloseD(t,u,U ) = p[cG
D(locu(t),L ) = 1]

with L = {locu1(t), locu2(t), · · · , locun(t)} .

We are now ready to define an implicit group co-location threat for the user u: if the probability
PcloseD(t,u,U ) between all the users U of a tuple in φ G

u and u is greater that a given threshold
at a time t then we are in presence of a co-location threat. Formally:

Definition 3.2.16 Given a real number K ∈ [0,1] and a distance value D, an implicit group
co-location threat for the user u, considering φu, is the publication of a set of resource r1, · · ·rn

such that:

1. ∀i, j = 1, · · ·n,ri 6= r j

2. ∃ fi ∈ φ G
u s. t. ∀ui ∈ fi,∃ j ∈ [1,n](ui∩ r j.Udata) 6= /0

3. ∃t ∈ T, s.t. PcloseD(t,u,U )≥K

3.2.4 Summary
In this section we have analysed the co-location privacy issue. We have classified it with two
orthogonal definitions, pairwise/group and explicit/implicit co-location threats. For each category
we have formalised the conditions under which a co-location threat can occur. To capture the
implicit co-location threat we have proposed a probabilistic definition whose computation can be
costly. For this reason, we have presented three simple scenarios ( uniform distribution, bivariate
normal distribution and discrete spatial domain) in which the computation is more straightforward.
These scenarios can help us to better understand the implicit co-location threat identification
problem.

There are two major future works:

• Proposal of privacy preserving technique capable of counteract the co-location threat. Some
of the existing privacy preserving techniques can be adapted to protect co-location privacy
preferences, as well as novel privacy protection techniques can be specifically proposed for
social networks, in which the amount of the data shared can make privacy protection a real
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challenge.

• Perform a comprehensive experimental evaluation, to empirically evaluate if the co-location
threat definitions proposed in this section are effective and capture the real user privacy
threat. The experimental evaluation goals are to both verify the correctness of the formal
framework and test the privacy protection effectiveness of the possible privacy preserving
techniques.



4. Privacy protection by space transformations

Distance preserving transformations are among the techniques that may be used to preserve pri-
vacy while providing distance-based services involving moving objects (e.g., proximity services)
and we have analysed them in Section 3.1.

As we have already discussed, it has been shown in the context of privacy preserving data
mining, that distance preserving transformations can be subject to privacy attacks in presence of
prior knowledge of the adversary [34]. Furthermore in Chapter 3 we have seen that this kind of
attacks are feasible and harmful for the users’ privacy even in a practical scenario.

In this chapter we will present a technique capable of computing the proximity between users,
in which the users’ privacy is obtained through locations’ obfuscation, hence protecting their
location privacy. Our contribution does not provide a technique to contrast the attacks mentioned
before while preserving exact distance, but it effectively contrast attacks, as the one showed in
Section 3.1, based on the most common prior knowledge that an attacker can have (knowledge of
the transformation and probability distribution of the users positions) at the price of a distance
distortion that can still enable very useful services.

4.1 The overall idea

There are plenty of privacy preserving techniques that can be used in proximity service. Among
others criteria, the choice can depend on the efficiency and scalability needed by the service. Using
distance preserving transformations as privacy protection has costs comparable with the solutions
that do not provide privacy protection but it guarantees privacy only under the assumption that
the adversary has no a-priori knowledge. Conversely, some cryptographic techniques guarantee
protection also when the adversary knows the a-priori distribution but at the cost of higher
communication and computation costs.

Among the techniques in the literature, we choose to work on:
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1. the Longitude [40] privacy protection protocol as model of privacy techniques based on
distance preserving transformations

2. the C-Hide&Hash [44] protocol as model of cryptography based privacy preserving
technique

The aim of the following chapter is to propose a new protocol based on the following idea: when
a user wants to compute the proximity with respect to all of his buddies, we first filter some of
the buddies that are not in proximity by using an extended version of the Longitude protocol.
Then, we apply the C-Hide&Hash protocol among the remaining users to discover those that are
actually in proximity.

The technical contribution is the extended version of the Longitude protocol, which, thanks to
a space transformation (through which the users’ distribution in the space is forced to be uniform),
is guaranteed to be safe also in presence of an a-priory probabilistic users distribution. We will
start by formally defining the needed properties of that space transformation (see Section 4.2) and
by presenting three algorithms capable of computing it (see Section 4.3). The overall technique
structure will be detailed in Section 4.4.

4.2 Deforming space to obtain uniformly distributed data

The idea behind the extension to the Longitude protocol is to apply a space transformation
function before using a Longitude-like proximity computation.

We are interested in a 2-dimensional space transformation function that given a finite number
of points non-uniformly distributed in the space, changes the position of these points in order to
obtain a uniform distribution. In our case, the points represent users’ position on a geographical
map. This transformation should have the property that if two points are close to each other in
the original space, then they are not too far in the transformed space. Let’s suppose that given
two users u and u′, they are in proximity only if the distance between their location is smaller or
equal than a fixed distance δ . Therefore, given such distance threshold value δ in the original
space S, the space transformation enlarges it at most δ ′ for any pair of points in S. Assuming
that such a space transformation exists, we can easily define an efficient filtering technique to
exclude that two users are in proximity. Actually, we can use a Longitude-like computation on
the uniform distributed space to compute the distance between two users; if, in the transformed
space the users are further from each other more than δ ′, then it can be excluded that the user
are closer than δ in the original space. For those points in the transformed space for which the
distance is less than δ ′ we can not be sure that are in proximity. In this case we should apply the
C-Hide&Hash protocol to know with certainty if the two points are at a distance greater, less or
equal than δ .

We now want to formalise the properties that this transformation function should have.

4.2.1 The space transformation function
Let S be the 2-dimensional domain S : [0,xmax]× [0,ymax] and let p = (x,y) be a generic point
belonging to S. A probability distribution function (PDF) g(p) is defined over S. In our proximity
service scenario the PDF g represents the probability distribution of the density of users in S.
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The distribution of the users in a real environment is clearly not uniform since, for instance the
population density (and as assumed in 3.1 this applies also for the users) in cities is higher than in
the country regions.

Definition 4.2.1 A function f from S to S is called a Space Transformation Function (STF)
for g and S if

1. it maps any continuos subspace of S to a finite number of continuous subspaces,

2. for all continuous subspace A in S, the following holds:∫
p∈A

g(p)d p = |A′|/|S|, (4.1)

where A′ = { f (p)|p ∈ A} and |A′| and |S| denote the areas of A′ and S, respectively.

Although the codomain of f is the same as the original space, in the following, when we need
to distinguish between the original space and the transformed one, we denote them S and S′,
respectively.

Intuitively, the above definition says that an STF will map a subspace A in S to a subspace A′

in S′ such that proportion of the area of A′ to that of S′ is exactly the total volume of g on A (i.e.,
the cumulative probability). In this way, through the function f , we “smooth out” the density
distribution g on S to a uniform distribution on S′. We denote this uniform distribution on S′ as h,
i.e., h(p′) = 1/|S′| for all p′ ∈ S′.

Figure 4.1: From S with non uniform distribution g(p) to S’ with uniform distribution h(p′)

� Example 4.1 Let’s consider an example in the one-dimensional case. Let g(x)=x be the PDF
defined over S (see Figure 4.2 on the left). Note that S = [0,

√
2) and

∫
x∈Sg(x)dx = 1 as imposed

by the definition of PDF. This PDF is obviously not uniform since in x = 0 the value of the PDF
is 0, while in x =

√
2 the PDF value is

√
2.

The uniform distribution on S′ is h(x) = 1√
2
.

Let’s see how we can find an STF. Let each point b ∈ S be mapped by f (b) to a point b′ ∈ S′

such that the area covered by h(x) from zero to b′ is equal to the area covered by g(x) from zero
to b. By definition of g(x) and h(x) we have that:
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x√2
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value

(a) g(x)

x√2
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Figure 4.2: The pdf g(x) = x in S, and the corresponding pdf h(x) =
√

2
2 in S’

∫ b

0
xdx =

∫ b′

0

1√
2

dx

It follows that b′ = b2
√

2
. Hence, we can find the dependence of b′ from b, that allow us to

compute f (x) = x2
√

2
. We claim that this function f is indeed an STF. Indeed, given a continuous

subspace A in S, A must be a subinterval of [0,
√

2). Let this subinterval be [a,b) (note that
open or close on either side of A doesn’t have any impact on the following discussion), and the
interval f (A) in S′ is exactly [ f (a), f (b)). The left-hand-side of Equation 4.1 gives

∫ b
a g(x)dx =∫ b

a xdx = (b2− a2)/2. The right-hand-side of the same equation gives ( f (b)− f (a))/|S′| =
(b2/
√

2−a2/
√

2)/
√
(2) = (b2−a2)/2. Hence, the equation holds and f is indeed an STF.

Let’s make some numeric examples: if we consider two points of S′, xa = 0.1 and xb = 0.2
we expect that they become closer in S′ because they they belong to a region with low density. As
expected, we have: f (xa) = 0.007 and f (xb) = 0.02. That is, a distance of 0.1 in S is mapped to
a distance of 0.013 in S′. Conversely, if we consider other two points of S, xc =

√
2−0.2 and

xd =
√

2−0.1, where the density (g(x)) is higher, we expect the distance in S′ between them to
be larger than in S. Indeed: f (xc) = 1.04 and f (xd) = 1.22. In other words, a distance of 0.1 is S
is mapped to a distance of 0.18 in S′. �

Let d = (p,q) be the euclidean distance of two points p and q in S. The STF transforms point
p in p′ = f (p) and point q in q′ = f (q), and consequently their distance in the transformed space
S′ is d′ = d(p′,q′). For each possible pairs of points whose distance is smaller than or equal to
d in S, the distance in the transformed space S′ of the transformed points can assume several
values. This clearly depends on the PDF in S: if the two points are located in an area in which
the users’ density is low then the distance will be enlarged in S, or shrunken if the points are in a
high density region. Hence, for each pair of points of S whose distance is smaller than or equal to
d, we denote with minDistortion(d) and maxDistortion(d) the minimum and maximum values,
respectively, that d′ can assume in S′ from points with distance ≤ d in S.
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Definition 4.2.2 Given a space transformation function f : S→ S′, two points p,q ∈ S such
that p 6= q, and a distance value d, the maximum distortion value maxDistortion f (d) is:

max∀p,q∈S s. t. d(p,q)≤dd( f (p), f (q))

Definition 4.2.3 Given a space transformation function f : S→ S′, two points p,q ∈ S such
that p 6= q, and a distance value d, the minimum distortion value minDistortion f (d) is:

min∀p,q∈S s. t. d(p,q)≤dd( f (p), f (q))

We are particularly interested in space transformation functions f such that the range
[minDistortion f (d),maxDistortion f (d)] is as small as possible. Intuitively, a small range pro-
vides a good approximation of d in S given a distance d′ in S′. Hence we can consider this range
as an indicator of the distance distortion associated with the function f .

In particular, given a distance d in S, if we can compute the maxDistortion f (d) value then,
given two points p′ = f (p) and q′ = f (q) in S′ whose distance is ≤ d′, it is possible to make
some inferences on the distance between the corresponding points p and q in S. Precisely, if the
distance d′ between the corresponding points in S′ is more than maxDistortion f (d), then the two
points in S are not closer than d. Formally:

Theorem 4.2.1 Let d be a distance, f a space transformation function and maxDistortion f (d)
the maximum distortion value. Then, given two points p′ = f (p),q′ = f (q) ∈ S′ with p,q ∈ S
such that d(p′,q′)> maxDistortion f (d), then d(p,q)> d.

Clearly, if two points are close to each other in S′, then, by knowing the maximum distortion
value maxDistortion f (d), we cannot derive any information about their distance in S. Also,
observe that the effectiveness of this filtering depends on the maximum distortion value of the
STF f . For example, if d is small while maxDistortion f (d) is large compared to d, then the
filtering is limited to the points that are further than d′ in S′.

Based on this reasoning, we want to define a function f such that:

• h(x,y) is a uniform distribution function, and

• maxDistortion f (d) is minimised.

4.3 Algorithm for space transformation

In this section we provide a set of algorithms capable of computing a STF f : however our
algorithms do not guarantee that the maxDistortion f (d) is minimised, but only that the resulting
users’ distribution in S′ is uniform. We are therefore considering a simplified problem with
respect to the one in the previous section. In Section 4.5 we will experimentally evaluate the STF
computed through the proposed algorithms to test their overall distortion and utility in a practical
scenario.
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The system model

We assume that the space S is subdivided, through a partition C, in a number of subregions,
through a regular grid. Formally, given a space S over which a non-uniform probability
density function of users is known and a partition C of S such that for each subregion c
(element of C) the probability density function is known (assumed uniform), the space
transformation function f , that we now want to define, maps each region c ∈C to a region
c′ obtaining a partition C′ of S such that all the regions in C′ have the same uniform density
of users.

In Section 4.3.1 it is discussed the cartogram technique [16] and it is analysed its applicability
for our problem. Then in Section 4.3.2 and in Section 4.3.3, the Recursive and the Greedy
algorithms, respectively, are presented.

4.3.1 Cartograms
One of the existing techniques to obtain a plane S′ with uniform distribution from a plane S where
the distribution is non uniform is the use of cartograms.

A cartogram is a map produced using a cartographic technique where the mapped polygons
(e.g., county or state boundaries) are stretched or shrunk based on the magnitude of the variable
being mapped. Since our goal is to obtain a space in which the users are uniformly distributed, in
our case this variable consists in the number of users in each subspace of S.

In literature there are several types of cartograms but the main are non contiguous cartograms,
contiguous cartograms and Dorling cartograms, shown in Figure 4.3.

(a) Non-Contiguous (b) Contiguous (c) Dorling

Figure 4.3: Different Types of cartogram that represents the same data of population in California’s
counties. Source: http://www.ncgia.ucsb.edu/projects/Cartogram_Central

a) Non-contiguous cartogram. The geographical objects in this type of cartogram do not have to
maintain connectivity with their adjacent objects. The connectivity is referred to as topography.
Since the objects are free from their adjacent objects, they can maintain their shape. In a
non-contiguous cartogram topology was sacrificed in order to preserve shape.
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b) Contiguous cartogram. In this kind of cartograms topology is maintained (the objects remain
connected with each other) but this causes a certain distortion in the objects shape. The objects
must have the appropriate size to represent the attribute value, but they also have to maintain
the shape of objects as best as possible. In order to have both characteristics, i.e. shape and
contiguity, a contiguous cartogram introduces an approximation error.

c) Dorling cartogram. A Dorling cartogram maintains neither shape, topology nor object
centroids. In this case the object are not enlarged or shrinked but are replaced with an
object with a uniform shape of the appropriate size, usually a circle.

Clearly, cartograms a) and c) can not be used in our case, since we need to keep the distances
in S′ as much as possible close to the ones in S. Instead, we adopt the contiguous cartograms
technique proposed by Gastner and Newman [16] as one of the techniques to uniform the user’s
distribution and we experimentally evaluate them in Section 4.5.

4.3.2 Recursive Algorithm
The idea of the algorithm is to recursively split the space in two regions each associated with a
subset of the cells of the original partition. C of S and alter the dimensions of these two regions,
such that the ratio between each region’s area and the number of users within, is the same for
both the regions. Indeed, the size of each region is chosen proportionally to the contained number
of users (as given by the corresponding cells of C). The partitioning stops when a subarea has a
single cell as the corresponding subset. Intuitively the subarea is the transformed space of that
cell.

A matrix M corresponding to the cells partitioning S, with each element providing the number
of users in that cell, is supposed to be globally defined (the main algorithm and all procedures
have access to it). The algorithm (see Algorithm 3) is initially run with input S and an index
range, given by two pairs of indexes of M denoting the lower left cell in M and the upper right
cell in M. In the recursion steps the index range will denote the sub-matrix of M involved in that
step.

The first step of the algorithm is the termination condition: if the index range denotes a single
cell of M, then the variable S is the corresponding transformed space. Otherwise, the function
divideAndResize() (see Algorithm 4) is invoked and returns two regions partitioning S each one
with an associated index range. Analogously, the two index ranges are such that the denoted
sub-matrices partition M. The algorithm is recursively called on each subregion, and index range.

The function divideAndResize is the core of the overall recursive algorithm. It takes as input a
space S to be partitioned in two parts and an index range denoting the subset of cells of the matrix
M containing user densities associated with the space S. The indexes are ordered by row and
column with respect to the origin of S. The first step of the function determines if we partition
horizontally or vertically, and the number of rows/columns of cells that should go in the first
subarea.

In order to avoid recomputing cell by cell the sum of the users in M, we precompute partial
sums. Given the matrix M where an element ui, j in M[i, j] denotes the element in row i and
column j, with (0,0) indicating the index of the bottom left one, then the partial sum of users in
C is defined as P(i, j) = ∑m≤i,l≤ j um,l . For example, in a 3∗3 grid P(1,1) stores the sum of users
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Algorithm 3 uniformRecursively
1: Input: Space S = (x,y, l,h), an index range R = (xb,yb,xt ,yt). The matrix M containing the

number of users ui j for each cell ci, j of the grid C partitioning S is supposed to be globally
accessible.

2: Output: a set of pairs (Si, j,(i, j)) for each cell ci, j in R.
3: Procedure:
4: if xb = xt and yb = yt then
5: Result := {(S,(xb,yb)}
6: return Result
7: else
8: subArea[ ] := divideAndResize(S,R)
9: Result := uniformRecursively(subArea[0].S, subArea[0].R) ∪

uniformRecursively(subArea[1].S, subArea[1].R)
10: return Result
11: end if

in cells c1,1,c1,0,c0,1,c0,0. These partial sums will be precomputed, so that the computation
of the number of users in a group of cells cam be done in constant time. Indeed, the number
of users in a group of cells identified by the index range R = (xmin,ymin,xmax,ymax) is given by
CountUsers(R) = P(xmax,ymax)−P(xmax,ymin−1)−P(xmin−1,ymax)+P(xmin−1,ymin−1).

The decision of a vertical or horizontal division of the space as well as where the line dividing
the space is positioned is taken by running Procedure 5. Intuitively, the procedure f indCut
considers each possibility of vertical and horizontal division of the submatrix of M denoted by R:
the procedure chose the parameters corresponding to the partition that minimises the difference
in the number of users in the two corresponding subregions. A slightly different criteria is used
in the alternative procedure 6 that, instead of minimizing the difference in terms of users, it
minimizes the difference in terms of density (i.e., considering the number of cells in each group).
The two procedures lead to different partitioning.

� Example 4.2 Let’s consider a numeric example to better illustrate this technique. Let S be the
original space that is a 27x27 unit square, divided into 9 cells (see Figure 4.4). The sum of all
users is 27.

Initially, DivideAndResize is invoked with the whole S and with the whole range for the 9x9
matrix.

Let’s suppose that the f indCut algorithm’s output is executed on range R, comprehending the
whole space S and its output has "rows" as type, as in Figure 4.5(a). The result is the subdivision
of the row in two subareas: the one in the upper part of Figure containing 5+3+1+3+3+3= 18
users, while the lower subarea containing 6+1+2 = 9 users. The size of the subareas are resized
according to the number of users (see Algorithm 4).

Then the algorithm considers the lower subarea ( highlighted in red in Figure 4.5(b)). In this
case, it is possible to divide only along the columns. Using a heuristic, we decide to divide along
the left row. This forms two subareas: the left one containing 6 users, the right one containing
1+ 2 = 3 users. The subareas are resized as in Figure 4.5(c). The subarea on the left is no
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Algorithm 4 divideAndResize
1: Input: Space S = (x,y, l,h), index range R = (xmin,ymin,xmax,ymax) denoting the portion of

M associated with the space to be divided. These indexes allow to access elements ui, j of M.
2: Output: The pairs (S1,R1), (S2,R2) denoting the two divided geographical regions each one

associated with the corresponding submatrix of M. Ri contains the indexes of lower and
upper cells (xil,yil,xiu,yiu) of the submatrix.

3: Procedure:
4: type,where← f indCut(M,xmin,ymin,xmax,ymax) /* choose to partition by row or by column

and how many rows/columns*/
5: numUsers =CountUsers(R)
6: if type = row then
7: lc1 = l; lc2 = l; xc1 = x; xc2 = x
8: uc1 =CountUsers(xmin,ymin,where,ymax)
9: uc2 = numUsers−uc1

10: hc1 =
uc1

numUsers ·h; hc2 = h−hc1
11: yc1 = y; yc2 = y+hc1
12: x1l = xmin; y1l = ymin; x1u = where; y1u = ymax

13: x2l = where+1; y2l = ymin; x2u = xmax; y2u = ymax

14: else
15: hc1 = h; hc2 = h; yc1 = y; yc2 = y
16: uc1 =CountUsers(xmin,ymin,xmax,where)
17: uc2 = numUsers−uc1
18: lc1 =

uc1
numUsers · l; lc2 = l− lc1

19: xc1 = x; xc2 = x+ lc1
20: x1l = xmin; y1l = ymin; x1u = xmax; y1u = where
21: x2l = xmin; y2l = where+1; x2u = xmax; y2u = ymax

22: end if
23: return ((xc1,yc1, lc1,hc1),(x1l,y1l,x1u,y1u)) and ((xc2,yc2, lc2,hc2),(x2l,y2l,x2u,y2u)).

Figure 4.4: Recursive technique applied to the original space
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Algorithm 5 findCut
1: Input: the index range R = (xmin,ymin,xmax,ymax).
2: Output: The pair of values type and where with type = ’row’ or ’column’ and ’where’ an

integer.
3: Procedure:
4: numUser←CountUsers(xmin,ymin,xmax,ymax)
5: mindi f ← NumUser /* initialized to total number of users in M */
6: type← row; where← ymax /* initialized to c1 covering all */
7: for cut = xmin→ (xmax−1) do
8: numUser1←CountUsers(xmin,ymin,cut,ymax)
9: numUser2← numUser−numUser1

10: if |numUser2−numUser1|< mindi f then
11: mindi f ← |numUser2−NumUser1|
12: type← row; where← cut
13: end if
14: end for
15: for cut = ymin→ (ymax−1) do
16: numUser1←CountUsers(xmin,ymin,xmax,cut)
17: numUser2← numUser−numUser1
18: if |numUser2−numUser1|< mindi f then
19: mindi f ← |numUser2−NumUser1|
20: type← col; where← cut
21: end if
22: end for
23: return type and where.
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Algorithm 6 findCut-S
1: Input: the index range R = (xmin,ymin,xmax,ymax).
2: Output: The pair of values type and where with type = ’row’ or ’column’ and ’where’ an

integer.
3: Procedure:
4: numUser←CountUsers(xmin,ymin,xmax,ymax)
5: numCells← (xmax− xmin +1)∗ (ymax− ymin +1)
6: mindi f ← NumUser/numCells /* initialized to total density in the area */
7: type← row; where← ymax /* initialized to c1 covering all */
8: for cut = xmin→ (xmax−1) do
9: numUser1←CountUsers(xmin,ymin,cut,ymax)

10: numUser2← numUser−numUser1
11: numCells1 = (ymax− ymin +1)∗ (cut− xmin +1)
12: numCells2 = numCells−numCells1
13: if |numUser2/numCells2−NumUser1/numCells1|< mindi f then
14: mindi f ← |numUser2/numCells2−NumUser1/numCells1|
15: type← row; where← cut
16: end if
17: end for
18: for cut = ymin→ (ymax−1) do
19: numUser1←CountUsers(xmin,ymin,xmax,cut)
20: numUser2← numUser−numUser1
21: numCells1 = (cut− ymin +1)∗ (xmax− xmin +1)
22: numCells2 = numCells−numCells1
23: if |numUser2/numCells2−NumUser1/numCells1|< mindi f then
24: mindi f ← |numUser2/numCells2−NumUser1/numCells1|
25: type← col; where← cut
26: end if
27: end for
28: return type and where.
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(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Final subdivision

Figure 4.5: An example of execution of the Algorithm uni f ormRecursively

longer divisible, since is composed only by one cell. Conversely in the sub area on the right the
algorithm divide again along the columns, as in Figure 4.5(d). The two subareas are then resized:
the one on the left containing 1 user has size that is half the one on the right, that contains 2 users
(see Figure 4.5(e)).

Since the two subareas in the last step are composed by only one cell, we ended the run of the
algorithm regarding the sub-bottom we had formed in the first step, and we can now consider the
upper subarea 4.5(f)). The algorithm continues to divide the space, with the same criteria, until
each subregion created by a split is composed by a single cell as in Figure 4.5(g).

�

Theorem 4.3.1 The space transformation obtained by Algorithm 3 has the property defined in
Section 4.2.1 and the resulting space S′ has a uniform density probability distribution.
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Theorem 4.3.2 Algorithm 3 has a worst case computational complexity linear in terms of the
number of uniform density cells partitioning S.

Proofs of the theorems are reported in Appendix A.

4.3.3 Greedy Algorithm
The algorithm presented in the previous section modifies the cells’ sizes according to their users’
density. In this section we want to change the perspective and adopt the dual strategy: the aim is
to uniform the users’ distribution by “moving” the users from cell to cell and keeping the cells’
shapes and areas unaltered.

Similarly to the Recursive Algorithm, the Greedy Algorithm that we are going to present
in this section assumes that S is discretised into cells each one having, internally, a uniform
distribution. However, in this case, the idea of the algorithm is not to change the size of the
resulting rectangles. Instead, we “move” the users among cells until a uniform distribution is
achieved.

The algorithm is composed by two functions: a preprocessing function, that we call Den-
sityLeveling and the on-line transformation function PointsMapping that, given the results of the
DensityLeveling function, computes, for each point in S, the corresponding point in S′.

The DensityLeveling algorithm
The DensityLeveling is a function whose aim is to “move” the users among cells in such a way
that in the final subdivision all cells have the same number of users. These “movements” of users
are represented by pointers between cells. The DensityLeveling function guarantees that the total
number of pointers that point to each cell i is constant and is equal to the average number of users
in the cells (i.e., the total number of users divided by the total number of cells, we assume this
value to be an integer).

The DensityLeveling algorithm computes the pointers among cells, such that to each cell it is
associated the same number of users.

The pseudocode of the DensityLeveling algorithm is presented in Algorithm 7. The input of
the algorithm is the set of cells C , and for each c ∈ C the number of users uc within.

The algorithm is iterative and greedy. At each iteration of this algorithm, some users are
“moved” from the cell with the highest density (the source cell) to the closer cell having a number
of users below average (the target cell). The general idea is that cells with higher number of users
should give some of their users to cells with lower (under mean) number of users.

More precisely, at each iteration the source cell is the one with the highest number of users
(see Line refwhileCond of Algorithm 7). In case more than one cells have the highest number of
users, one of these cells is chosen randomly or by using a heuristic. The target cell is the one
having a number of users below average that is closer (according to the Manhattan distance) the
the source cell. Again, if this cell is not unique, the target cell is chosen randomly or using an
heuristic. The source cell gives to the target cell the users that are required by the target cell to
reach the average number of users (i.e., the total number of users divided by the total number of
cells). However, the source cell gives at most the number of users that it has above the average.
Formally, given i the source cell, j the target cell and AV G the average number of users in each
cell, the number of users that i gives to j is given by: min(|i|−AV G,AV G−| j|), computed in
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Algorithm 7 DensityLeveling
1: Input: Space S, a set C of cells c, the number of users uc for each cell c ∈ C
2: Output: the set of cells C
3: Method:
4: U = ∑c∈C uc

5: v̄ = U
|C | //v̄ is the mean number of users

6: for all cells c ∈ C do
7: divide c in uc areas Ac

8: compute the set of pointers Pc = {a1 : c,a2 : c, · · ·auc : c} where ai ∈ Ac

9: end for
10: while ∃c̄ such that ∀c ∈ C uc̄ ≥ uc and uc̄ > v̄ do
11: source = c̄
12: target= cell ĉ closest to c̄ whose uĉ < v̄
13: toMove = min(usource− v̄, v̄−utarget)
14: (L ,K ) = globalMove(toMove,source, target,Psource,Ptarget)
15: updatePointers(C ,K )
16: usource = usource− toMove
17: utarget = utarget + toMove
18: end while
19: return the set of cells C

Procedure 8 globalMove(n,source, target,Psource,Ptarget)

1: Input: an integer n, a cell source, a cell target and a set of pointers Psource of the cell source,
a set of pointers Ptarget of the cell target

2: Output: the pair (L , K ) where L is a set of cells and K = Pc1 , · · ·Pc|L | is a set where
each Pci is the set of pointers of the cell ci ∈L

3: Method:
4: L = getPath(source,target)
5: K = /0
6: for all cells c in L do
7: n pointers in Psource are updated: the corresponding areas ai ∈ Psource points to c
8: K = K ∪Psource

9: source=c;
10: end for
11: return (L ,K )
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Line 13 of Algorithm 7, where |i| is the number of users in i and | j| is the number of users in j.
The "users movement" is performed by the globalMove procedure, whose pseudocode is shown
in Procedure 8. Then the pointers changed during the globalMove procedure are updated, as well
as the number of users of the source and the target cells (see Lines 15-17 of Algorithm 7).

The algorithm terminates when all the cells have the same number of users, and the set of
cells C together with the pointers for each cell c ∈ C is returned. Please note that at each iteration
either the source or target cell (or both) reaches the average number of users. Also, no cell having
the average number of users is used as source or target cell. Hence, at each iteration, the number
of cells having a number of users different from the average decreases.
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Figure 4.6: Users are moved from cell to cell by the DensityLeveling algorithm

� Example 4.3 The original space S is divided into 4 cells, as in Figure 4.6(a). The bigger
numbers represents the number of users, while the c1,c2,c3,c4 are the cell’s indexes. Since the
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sum of all the users in the space S is 12,the average number v̄ is equal to 3.
In iteration 1, the source cell, i.e. cell c3 with 5 users, is considered as the one containing

the highest number of users; the corresponding target cell, i.e. the closest cell having a number
of users below average is cell c1, that contains 2 users. The source cell can give a maximum of
5− v̄ = 5−3 = 2 users, while the target cell require only v̄−2 = 3−2 = 1 user. Consequently,
as in Figure 4.6(b), since toMove = min(2,1) = 1 (see Line 5 of Algorithm 7), one user is given
from cell c3 to cell c1: therefore the number of users of the source cell is decreased by one and
the target is increased by one. The pointers are modified, according to the globalMove procedure:
through the globalMove procedure, one area ai ∈ Ac3 , i.e. one of the 5 areas in which c3 is
subdivided, is now pointing to the cell c1. The new number of users of cells c3 and c1 is computed
in Lines 16-17.

In the second iteration of the DensityLeveling algorithm, there are 2 cell that are candidate
source cells (cells c3 and c4), since both have 4 users: let’s assume that the cell c4 is chosen
as source cell ( randomly or through an heuristic). In this case the target cell is the one with
only 1 user, i.e. cell c2. The number of users that should move from cell c4 to cell c2 is
toMove = min(4− 3,3− 1) = min(1,2) = 1. In Figure 4.6(c) we can see that one user moves
from the source cell to the target cell, lowering the users of cell c4, and increasing by one the
users of cell c2.

In the third and last iteration the source cell is again cell c3 with 4 users and the last cell with
a number of users below average is cell c2 with 2 users. The source cell gives one user to the
target cell (see Figure 4.6(d)).

Since now the number of users is the same in each cell, the DensityLeveling algorithm
terminates its execution. �

We now discuss how to “move” users from the source cell to the target one. If the two cell are
adjacent (horizontally or vertically), then, the target cell could "receive" the user/users directly
from the source cell. If the two cells are not adjacent, naively adding a pointer from the source to
the target would result in a distortion directly linear to the distance between the source and the
target cells. Since our aim is to keep the distortion of the space S′ as small as possible, we need
to find another solution. For this reason, the globalMove procedure moves users from the source
to the target by choosing a path between the two cells and by "exchanging" users only between
two adjacent cells.

The pseudocode of the globalMove procedure is shown in Procedure 8. The input of the
procedure are an integer toMove, the source and the target cells, and the sets of pointers Psource

and Ptarget for the source and the target cells, respectively. The procedure first computes the set of
cells L , i.e. the path of pairwise adjacent cells, that will be involved in the "users movement"
(see Line 4 of Procedure 8). In each iteration, the procedure considers a pair of adjacent cells
belonging to our path L : the source cell and the target c. If the procedure has to move n users,
then n subareas ai belonging to the cell source are selected (Line 7 of Procedure 8): the cells
associated to this subareas are changed such that they now point to the cell c. Then c becomes the
new source cell and the one that follows it in the path L is considered as the new target cell c.
The procedure ends when all the cells belonging to L are processed, and with them all the set of
pointers Pc for all c ∈L , that the procedure stores in the variable K (Line 8 of Procedure 8).
The set L and the set K are returned as output.
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� Example 4.4 Consider Figure 4.7, and let’s suppose that the average number of users per cell
v̄ is 3.

In Figure 4.7(a) is represented a source cell, the one with 5 users and a target cell, with one
user only, that are contiguous: in this case, as described above, the movement of the users is
performed directly by adding a pointer from the source to the target.

(a) Adjacent cells (b) Non-ajacent cells

Figure 4.7: User are moved from source cell and target cell

In Figure 4.7(b) the source cell, the one with 6 users, and the target one, with one user, are not
close. Then a path is selected, so that only contiguous cells can “exchange” users through pointers.
In this case the source cell gives part of its users to the upper cell, the upper cell yields the same
number of users received from the target cell to the cell over it. Finally the cell containing 3 users
can give to the target cell the users that (indirectly) came from the source cell.

�

We’ll not go into the details on how to choose a path from the source to the target cells: this
will be computed through some heuristics aimed at minimizing the overall distortion of the space
S′. Let’s see now a more complete example.

� Example 4.5 The original space S is divided into 9 cells, as in Figure 4.8(a). The average
number of users for cell v̄, since all the users in the space are 45, is equal to 5: the purpose of the
algorithm is to have 5 users in each cell.

Figure 4.8(a) represent the space S: the total number of users in each cell is reported in the
centre. In the top left part of each cell there is a pair ci :i where ci is the cell id and ai is the users’
number in that cell. To be precise, the pair ci : ai in cell c j means that a number ai of subareas
belonging to ci are now pointing to c j: indeed, before running the DensityLeveling algorithm all
the cells point to themselves with a number of subareas equal to the original number of users in
the cell, as in Figure 4.8(a).

At the first iteration, the algorithm considers the cell having the highest number of users.
In this case, this is the cell c3 that has 8 users within. The closest cell (distances are measured
in terms of manhattan distance) with a number of users below the average is cell c9. So, the
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Figure 4.8: Example of execution of the greedy algorithm

algorithm “moves” 2 users from cell c3 to cell c9. This is performed in two steps: first 2 users
are moved from cell c3 to cell c6, then 2 users are moved from cell c6 to cell c9. Consider
Figure 4.8(b): the pointers of cell c9 denote that 3 users “comes from” cell c9, while 2 users
“comes from” cell c6. Similarly for cell c6.

In the next iteration (consider Figure 4.8(c)), there are two cells with a users number equal to
7. We chose (randomly or using an heuristic) to consider cell c6. The closer cell with a number of
users below the average is cell c4, so a user is moved from cell c6 to cell c4. The pointers in each
cells report this movement as shown in Figure.

The algorithm continue to iterate, moving the users from cell to cell, until it is reached an
uniform distribution, as the one in Figure 4.8(c). Consider, for example, cell c3: the original
number of users was 8. Now, the total number of users associated to this cell are 5; the “missing”
3 users have been moved to cells number c1 and c6 (1 unit in the former, 2 in the latter), as
described by the pointers.

�

The PointsMapping function

Given the result of the DensityLeveling algorithm, the mapping of a point p in S to a point p′ in
S′ is computed as follows: first, the cell ci containing p is computed. Given ci, it is computed



4.3 Algorithm for space transformation 71

the subarea a containing p, as well as it is retrieved Pci , i.e. the pointers associated to the area a.
Then, the centre of the cell pointed by the pointer is returned as the transformed location p′.

(a) Regular subdivision in S

c1 c2

(b) Uniformed subdivision in S′

Figure 4.9: Before and after execution of the Greedy Algorithm

� Example 4.6 The original space S is divided into 4 cells as in Figure 4.9(a), in which the
numbers within each represents the number of users within. The total number of users in S is
12, and consequently the average number of user for each cells v̄ (i.e., the total number of users
divided by the total number of cells,) is equal to 3. Each cell is divided in a number of subareas
that is equal to the total number of user of the cell. For exmple in Figure 4.9(a) the cell with 5
users is divided in Figure 4.9(b) into 5 areas, the cell on its right containing 4 users is divided in
4 subareas, and so on. The output of DensityLeveling function is a set of pointers for each cell:
every cell has associated a number of subareas that is equal to 3, that is the average number of
users. In Figure 4.9(b) the pointers from a cell to another are represented through arrows. For
simplicity, arrows that go from one cell to the same cell are omitted.

So, given the output of DensityLeveling function, we can map a point from S to S′. For
instance a point p located in the red region of Figure 4.9(b) (the bottom left corner of the cell
containing 5 users),following the corresponding pointer, will be transported in S′ in the centre
c1 of the cell under it. Similarly, a point q locate in the blue region of Figure 4.9(b) (the bottom
right of the cell with 4 users) will be mapped in S′ in the centre c2 of the bottom right cell. �

Theorem 4.3.3 The space transformation performed by the densityLeveling algorithm has the
property defined in Section 4.2.1 and the resulting space S′ has a uniform density probability
distribution.

With respect to the Recursive algorithm, with this algorithm we do not need to keep in
memory all the cells’ sizes and shapes, since they are the same for all the cells and the borders of
each cell can be computed in constant time, given its position within the cells’ matrix M. The
weak point of this algorithm, due to the presence of numerous pointers, is that it could not be
easily scalable. Depending on the area of the space S, and on the cells size, we can deal with
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a number of cells of more than 109 elements: managing pointers between these cells is clearly
computationally challenging.

4.4 Application to privacy preserving proximity notification
In this section we show how the use of a space transformation can be used to efficiently implement
a privacy-preserving techniques resistant to attacks based on prior knowledge on the density of
population in different areas. Indeed, if the users’ distribution is known by the adversary and he
knows the distances between some pair of users, he is able to infer users’ locations quite precisely,
as we have previously shown in Section 3.1.

The LBS service we are considering computes proximity among two moving users while
preserving location privacy for both. Let’s suppose we have a user A that wants to check if his
buddy B is in proximity or not.

By using the IP address of a device A and public IP geocoding services, it is easy for a client
on the device itself as well as for any server receiving requests from the device to obtain the space
region SA where the device is approximately located. Since the SP receives messages from the
users whose proximity needs to be determined a trivial way to filter out users that are certainly
not in proximity is to use the IP geocoding information. However, when IPs are released by 3G
operators these regions are very imprecise and can easily cover hundreds of miles or an entire
nation. We therefore need more accurate methods to understand if users that are reported by IP
geocoding in the same or in an adjacent space region are actually in proximity.

The general idea is to apply the uniform density transformation separately to each of the
space regions for which the SP cannot have more precise location information. As a simplifying
example, suppose that from the IP address the SP cannot derive location information more precise
than at the granularity of "state". Then, we apply the uniform density transformation within each
state and compute for each one the value of the maximum distance distortion rate. With respect
to applying the space transformation function to the whole world, by considering small regions it
is more likely that a transformation with a lower maximum distance distortion can be found.

4.4.1 Proximity Computation algorithm
The algorithm can be summarised as follows:

1. Precompute for each space Si the space transformation function as illustrated in Subsection
4.3.

2. A proximity request is sent by a user’s device to the SP including a point p′′ derived as
follows:

(a) the actual location p is transformed in p′ by using the precomputed space transforma-
tion function for the space Sp identified by IP geocoding

(b) According to the Longitude technique [40], p′′ is derived by applying a solid transfor-
mation to p′ by adding a secret value to each of its coordinates. In the underlying box
the Longitude technique is briefly and intuitively described, please refer to [40] for
all the technical details. The secret is shared only with participating friends.
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Longitude

We recall that the idea of Longitude is to apply a modular translation on the
coordinates of a user’s location. The shift on the two axis is the secret that
each user share with his buddies.
The main steps of the Longitude protocol are the following: each time A
wants to check whether B is in proximity, A encrypts the cell cA where A is
located and sends it to the SP. The encryption is equivalent to project cA in
a toroidal space, and then apply a solid transformation. Upon receiving the
request, the SP sends a message to B requiring a location update. B encrypts
the cell cB where B is located and sends the result to the SP. Note that B
uses the same key as A, generated from their common secret. The encryption
function is designed in such a way that the SP, upon receiving a request from
A and an answer from B with cells encrypted with the same key, can compute
the distance in the toroidal space, which we call modular distance. The SP
compares the modular distance with the proximity threshold δ and sends the
result as a boolean value to the requester A that computes whether B is in
proximity or not. The encryption function is such that, if A sends his location
cell to the SP using the same encryption key in different instants and while
being in different cells, and the SP is aware of this, he can possibly learn some
information about the movement of A, and hence about his location. For this
reason, A changes the encryption key each time he communicates his location
cell to the SP.

3. Location updates can be solicited by the SP based on a proximity request or spontaneously
sent by the users, but in all cases they include a point q′′ computed as illustrated above for
p′′; note that q may belong to a space Sq different from Sp.

4. When the SP has the point q′′ received from a friend of the user, it compares the eu-
clidean distance d(p′′,q′′) with the value Ωpq ∗ δ where Ωpq is the maximum among
maxDistortion f (δ ) in the space Sp and maxDistortion f (δ ) in the space Sq and δ is the
proximity threshold. If the distance is greater than that value, then the friends are certainly
not in proximity.

5. If the users are not filtered out, then they can be in proximity: for compute the proximity
with precision we run the more computationally expensive C-Hide&Hash protocol [44].

The C-Hide&Hash protocol

In order to ensure user’s privacy, the C-Hide&Hash protocol adopts symmetric
encryption techniques. We assume that each user A has a key KA that is shared with
all of his buddies and is kept secret to everybody else. Hence, each user A knows
his own key KA and one key KB for each buddy B.
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Periodically, once in each update interval ui, each user A provides his location
information to the SP, sending to the SP the hased index of the granule gA where he
is located. Since the service provider does not know the key KA of A, his location
can not be computed by the SP.
In the C-Hide&Hash protocol, when the user A issues a proximity request, he
starts a two-party set inclusion protocol with the SP. The protocol is a secure
computation, and consequently, the SP does not learn whether A is in proximity with
his buddies,and A only learns, for each of his buddies B, whether B is in proximity
or not, without learning in which granule B is located. The secure computation
exploits a commutative encryption function C. In addition to the symmetric keys
mentioned before, at each proximity request, the requesting user and the SP each
generates a random key that is not shared with anyone else. We denote these keys
K1 for user A and K2 for the SP. The proximity request sub-protocol is divided into
three steps.

(a) A computes the set ES of indexes i such that the minimum distance between
the location of A and the granule with index i is less than or equal to the
proximity threshold δ . Each element of S is first hashed using the key Kui

, which is obtained as the ui-th value generated by the keystream initialized
with KB . In this case, ui is the index of the update interval preceding the
current one. Then, the result is encrypted, using the with the C function using
key K1 that is randomly generated and it is sent to the SP.

(b) Upon receiving the set ES the SP encrypts each element of ES using the C
function using key K2 , which is randomly generated. The result is the set
ES′. Then, it retrieves hB that is the value of the index of the granule where B
is located, hashed with the key Kui, at the update interval ui . Since ui is the
update interval preceding the current one, the location update policy assures
that a location update with update interval ui has already been issued by every
buddy B. Finally, the SP encrypts hB with the C function using the key K2 .
The resulting value h′, together with B and ES′, is sent to A.

(c) A obtains h′′ as the encryption of h′ with the key K1 and checks if the result is
in ES′ (let’s recall that C function has the commutative property). If this is the
case, then B is in proximity, otherwise he is not.

The correctness of the above algorithm is supported by the following reasoning.
The distance d(p′′,q′′) is given by the sum of a distance component within Sp (from p′′ to a
point on the border of the Sp region) a (possibly empty) component outside both Sp and Sq

(connecting the two points on the borders) and a component in Sq. Then, we have: d(p′′,q′′) =
d(p′,q′)≤Ωpq ∗ (d(p,q)−mindist(Sp,Sq))+mindist(Sp,Sq), where mindist() is the minimum
distance between any pair of points on the border of Sp and Sq. Note that when the two spaces
are adjacent, mindist(Sp,Sq) = 0 and the above inequation becomes d(p′′,q′′) = d(p′,q′) ≤
Ωpq ∗ d(p,q). Moreover, Ωpq ∗ (d(p,q)−mindist(Sp,Sq)) +mindist(Sp,Sq) ≤ Ωpq ∗ d(p,q).
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Hence, independently from the fact of the spaces being adjacent or not, if Ωpq ∗δ ≤ d(p′′,q′′)
then δ ≤ d(p,q) and the friend in position q can be filtered out as not in proximity.

4.5 Experimental evaluation

In this section we will discuss the experimental results of the three techniques (cartograms,
recursive and greedy algorithms) capable to compute the uniformation of the users’ distribution in
the space. The aim is to evaluate the overall distortion that the three techniques produce from the
non uniformed space S to the space S′, in which users’ distribution is uniform. Clearly, smaller
is the distortion, higher is the filtering that can be performed and, consequently, higher are the
performances of the overall technique described in Section 4.4.

4.5.1 Experimental settings

Figure 4.10: The GPWv3 italy data map [O5]

The data on the population distribution in the world is entirely taken from GPWv3 [O5], the
same used in the location privacy attack described in Section 3.1. This dataset that provides
density information by dividing the world into cells and providing the number of inhabitants for
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each cell. Hence, we use the cells at the highest available resolution, i.e., 2.5 arc-minutes, that
corresponds to a cell edge of about 5km at the equator. Since no public information is available at
a higher resolution, in the current setup we assume that, within each cell, the population density
is uniform.

(a) Milano-A (b) Milano-B

Figure 4.11: The Milano regions in which the experiments are conducted. Images retrieved on
Sep, 2014 from http://maps.google.com

The data and the region we used in the experiments include two spaces S. The first is an area
of the north-west region of Italy, including Milano, as shown in Figure 4.11(a): we refer to this
region with the name "Milano-A"1. The area of the Milano-A region is approximately 13590km2.
Another region we consider is a subregion of Milano-A that we call "Milano-B"2: the region is
shown in Figure 4.11(b). Precisely, the region Milano-B is obtained by cutting the southern part
of Milano-A so that the related inhabitants’ distribution is less "heterogeneous": in this region we
have the expectation that the uniformed regions, outputted by the algorithms, are less distorted.
The overall area of the Milano-B region is 9050km2.

Subdivision Number of cells
Milano-A Milano-B

Coarse 900 600
Mid 3600 2400
Fine 14400 9600

Table 4.1: Subdivisions in S

In the experiments we variate the number of cells, according to Table 4.1. The fine subdivision
counts 14400 and 9600 cells in the Milano-A and Milano-B regions, respectively, resulting in cells

1Google Maps link: http://g.co/maps/utbr8
2Google Maps link: http://g.co/maps/8z6zq
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with area nearly equal to 0.9km2. In the coarse subdivision there are 900 cells in the Milano-A
area and 600 in the Milano-B, resulting in cells with area of about 15km2.

The Recursive and the Greedy algorithm have been implemented in Java, while for the
cartograms we used the C library "Cart" by Mark Newman3. The experiments have been
conducted on a 2.26GHz CPU with 4GB of main memory.

4.5.2 Results
The experiments that we will discuss in this section do not represent a full experimental evaluation.
The aim was to identify the distortion that each algorithm causes to the space, so that we could
have an idea of the data utility in the transformed space (as said before, smaller is the distortion,
higher is the data utility in the transformed space). However, the preliminary results, as we will
see, show that the distortion of the transformed space is too high to implement a good filtering.
Furthermore, we will discuss only the results in the Milano-B region: the reason is that, as we
will see, the results are not promising in this subarea, and, therefore, a discussion of the results
we obtained in the Milano-A area, that are obviously worse than the ones we will present for the
Milano-B region, is not significant.
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Figure 4.12: Results for Milano-B area, subdivisions varying

Given a distance d between two points in the original space and a distance d′ of the corre-
sponding points in the uniformed space, we define distortion as

δ =
(d′−d)

d

For each algorithm, we first compute the uniformed space S′. Then we randomly chose 100000
pair of points in S and we compute their distances in S′ and tested the distortion δ . We performed
the tests for both the regions Milano-A and Milano-B, but, as discussed before, we will present
only the results in the Milano-B region.

In Figure 4.12(a) are shown the mean distortion for each subdivision in the Milano-B region.
As we can see the Greedy algorithm is the one that shows the worst mean distortion. Indeed,

3http://www-personal.umich.edu/ mejn/cart/
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for each subdivision considered, the mean distortion, i.e. the mean relative error, is over 0.5:
this means that the percent error is over the 50%. Conversely, the Recursive4 algorithm and the
cartogram approach show similar results with a mean distortion under the value of 0.4.

Please note that the cartogram mean distortions are smaller than the ones of the Recursive
algorithm for each subdivision considered. The reason underneath the better results of the
cartograms approach is that with cartograms the space is uniformed in a continuous way, such
that points that are "near" in the original space S, can not be too far in the uniformed space S′. In
Figure 4.13 we have a graphic representation of how the cells are distorted by the cartograms
approach and by the Recursive algorithm (the Greedy cells in S′ are not shown since this technique
does not alter the size of the cells): as we can see, the cartogram approach changes the sizes and
the shape of the cells, while the Recursive algorithm changes the sizes of the cells, also shuffling
them.

(a) Cartogram (b) Recursive algorithm

Figure 4.13: Cells’ distortion in S′ with the cartogram and Recursive algorithm

The fact that space is uniformed in a continuous way by the cartogram approach it is reflected
also in the results shown in Figure 4.12(b), in which the maximum distortions values are repre-
sented. As we can see, compared with the other two, the maximum distortions are much higher
for the Greedy algorithm whose values suggest that the algorithm applicability as a filtering
technique is almost null. In general, also the maximum distortions for the Recursive algorithm can
be high due to the fact that this algorithm can move far areas that are close in the original space.
One example is the maximum distortion recorded for the Recursive algorithm for mid subdivision
in the space Milano-B that is almost 8. In Figure 4.14 are highlighted the cells whose points
showed such a large value of distortion. While the Recursive algorithm maximum distortions are
much lower (the value is under 8 for all the subdivisions) compared to the Greedy ones, with the
cartogram approach the distortion values are always under 2, as shown in Figure 4.12(b).

These results for the Milano-B area show that the overall distortion to obtain a uniformed
space S′ is remarkably high for the Greedy technique. The results for the Recursive algorithm
and, in particular, for the cartograms approach are more encouraging.

4The results of this section for the Recursive algorithm make use of the f indCut algorithm (see Algorithm 5).
Since the results obtained with the f indCut−S (see Algorithm 6) are very similar, we omit their discussion here.
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(a) Space S

(b) Space S′

Figure 4.14: Two adjacent cells in S are far in the space S′ computed by the Recursive algorithm
in Milano-B region, mid subdivision
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4.6 Summary
In this chapter we have proposed and analysed a new technique for distance-based services, while
protecting users’ location privacy when the adversary’s knowledge includes both the observation
of the distances between some pairs of users and the user’s distribution in the considered space.
This technique is composed of two phases: in the first phase a filtering technique is executed,
such that some of the users can be discarded, since they are with certainty not in proximity with
u. For the remaining users, a cryptographic technique as [44], is executed to infer which users are
really in proximity with the user u.

In this chapter we focus mainly on the first step, in which we used a distance preserving
transformation, whose safety is forced through a uniformation of the users’ distribution in the
space. We propose and present two algorithms capable of uniforming the users’ distribution and
we experimentally evaluate them, together with a well known technique: the cartograms. The
results show that for both the algorithms and for the cartograms approach the distortion needed
to uniform the users’ distribution in the space is high, hence granting only a limited filtering
potential.



5. Privacy protection by generalisation

Emerging applications in the area of mobile and pervasive computing have significantly increased
the risk of privacy threats by the uncontrolled release of information about the whereabouts of
individuals. This information is not only released by the individuals themselves while using their
mobile phones or wearable sensing technology, but in some cases it is published by other users
in social applications or transferred by providers to third parties. As discussed in Chapter 2, an
extensive literature exists about location privacy and protection techniques [6, 58]. Spatial and
temporal generalisation is a common approach that has also been implemented in prototypes and
applications.

The term “generalise” is quite generic: in the Oxford English Dictionary1 this term has
8 different meanings. The one we are referring to in this chapter is “To make (a thing) more
general or indefinite; to remove or diminish the distinctive features or details”: the aim of the
generalisation techniques is to enlarge the user’s position such that its “distinctive features or
details” are less sensitive. Indeed, spatial generalisation decreases the precision of location
information, hence introducing uncertainty about the actual position of the considered moving
object within the reported geographical area. Temporal generalisation introduces uncertainty
about the precise time of presence of the moving object in the reported area, and is usually
implemented by delaying the release of the spatio-temporal information and providing a temporal
interval or using a coarser granularity instead of a precise timestamp.

In this chapter we focus on the generalisation of a source point representing the user’s exact
location and time of presence in a spatial or spatio-temporal region. A crucial issue for this
approach is deciding how large the generalised region should be (in both space and time) in order
to avoid a privacy breach. This decision is not only important for privacy protection, but it also
has an impact on the performance and precision of the service being used. The minimum size of
the generalised region is actually dependent on the context, including the individual’s privacy

1http://www.oed.com/
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preference, the application being considered, the time and place of service requests, the adversary
model and other parameters. For example, solutions aimed at protecting identity privacy in LBS
and adopting techniques inspired by k-anonymity (e.g., [18, 29, 41] ), have the goal to identify
the smallest region that contain at least k other users in addition to the issuer of a LBS request
that may potentially use the same service; by releasing the generalised region instead of the exact
position, a form of anonymity is enforced, since the released information by itself cannot be used
to re-identify the individual, even in the case in which the adversary knows the identity of all the
users in the reported area. Other generalisation solutions, not focused on identity privacy but
more on hiding the presence of an individual in a potentially sensitive place (e.g., [10]) have a
different optimisation criteria for the dimension of their generalised regions. In some cases they
want the smallest regions that include at least k other venues, as pubs, shops, offices, in order to
enforce uncertainty about the actual venue where the user is/was located. Increasing the temporal
size helps keeping the spatial size small but it should satisfy the real-time constraints that the
considered application may have.

Many privacy preserving techniques make use of spatial/spatio-temporal generalisation, but
the generalisation it is often sketched out, not described comprehensively (as we’ll discuss in
Section 5.1 in more details). In this chapter, we formalise two spatial granularities and one
spatio-temporal generalisation technique that can be used by any privacy preserving techniques
that needs to perform a location’s generalisation. Please note that our proposed generalisation
methods are specifically designed for location privacy techniques but are flexible enough to be
exploited for any general purpose technique in which a position needs to be generalised. Since
we are proposing generalisation tools that are designed to be implemented in location privacy
techniques, but cannot be considered comprehensive privacy preserving techniques, an evaluation
of data utility of these generalisations it is not suitable. Instead, we study the costs of their
computation, both formally and experimentally.

In Section 5.1 we will discuss other spatial and spatio-temporal generalisations proposed
in the literature. In Section 5.2 we will present two spatial generalisation techniques, G onio
and A equus, whose results have been published in [5]. Finally, the Safebox spatio-temporal
generalisation is formalised in Section 5.3, and it is based on the following publication: [39].

5.1 Related generalisation techniques

Some contributions in the literature adopted spatial and spatio-temporal generalisation to en-
force users’ anonymity, while others used this technique to decrease the sensitivity of location
information. One of the first techniques aimed at guaranteeing anonymity through spatial and
temporal cloaking was proposed by Gruteser and Grunwald [25]. The idea is to guarantee a
form of k-anonymity in such a way that the issuer of a location-based service request cannot be
identified.

One problem of the solution proposed by Gruteser and Grunwald is that the technique is
unsafe if the generalisation function is known to the adversary. This problem, called “inversion”
or “reciprocity”, has been addressed in [29, 41]. These two papers propose two analogous formal
properties of the generalization function. Intuitively, a generalisation function G meets these
properties if each point contained in any generalised region r computed by G is generalised to r
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itself. The two papers prove that, if a generalisation algorithm meets this property, then it is safe
with respect to the inversion problem. In the Safebox proposal we propose a different property
(see Section 5.3.2) that intuitively states that a generalised region r computed by a generalisation
function G should contain at least k objects that, if used as source points, are generalised to r
itself. The difference is that, in this new property, we only require that some points of r (i.e., not
necessarily all of them) generalise to r itself. Hence this is clearly a looser property to meet but,
as we prove in this contribution, it still guarantees the safety of the generalisation algorithms with
respect to the inversion problem. This new definition is required by our BottomUp algorithm that
does not meet the properties defined in [29, 41] but instead meets the new property defined in
this chapter and hence it is safe with respect to the inversion problem. The main problem with
the generalisation algorithms proposed in [29, 41] is that both require the knowledge of all the
objects to be counted and hence are impractical when retrieving this information is costly, like,
for example, in one of our experimental settings (see Section 5.3.4).

Other solutions proposed in the literature present the problem above. Among the others we
can mention the technique proposed by Gedik et al. that has the advantage of allowing each user
to choose a personalised value of k [18], the solution by Abul et al. that makes it possible to
anonymise a dataset of trajectories [1] and the solution by Mascetti et al. that addresses the issue
of anonymity in location based services when different requests can be associated to the same
user [43].

In the contribution by Ghinita et al. the objective of the spatial generalisation is not to provide
anonymity rather to decrease the sensitivity of the location information [20]. The technical
problem is that, given two generalised spatio-temporal regions representing the location of a user,
an adversary can be able to exclude part of them as possible user position if the maximum velocity
for that user is known. The solution by Ghinita et al. does not investigate how the generalised
spatio-temporal regions should be created, which instead is the focus of the SafeBox contribution.
We believe that extending the Safebox solution with a technique like the one presented in [20]
could be an interesting future work.

Other contributions share the same objective of decreasing the sensitivity of the location
information [1, 20, 42]. Some of them are specifically designed for the so-called friend-finder
services [44, 57, 62] while others focus on how to let the user specify the desired level of privacy
protection [2]. None of these contribution focus on how to create generalised spatio-temporal
regions that contains a minimum number of objects.

Some of the solutions proposed in the literature are aimed, at the same time, at guaranteeing
anonymity and at decreasing the sensitivity of the location information [3, 5, 46]. In particular
Bamba et al. suggest two generalization techniques (called “Top-Down grid cloaking” and
“Bottom-Up grid cloaking”) that enforce k-anonymity, l-diversity and a minimum size of the
generalised area [3]. Unfortunately both techniques suffer from the inversion problem and hence
are safe only if the generalisation technique is not known to the adversary. Our previous work
has the same problem [5]. Indeed in [5] we define three spatial granularities to support privacy
preservation. In particular the I ncognitus granularity is constructed with a bottom-up approach
in such a way that each granule contains at least k objects. The solution can be applied to users
(hence providing k-anonymity) and to points of interests (hence guaranteeing a decrease in the
sensitivity of the location information). Unfortunately, as we detail in Section 5.3.3, also this
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technique is subject to the inversion problem.
Finally, the solution by Damiani et al., takes into account the “semantic location” i.e., specific

locations where the user does not want to be reported [10]. This is an innovative approach and
it has two main differences with respect to ours. First, the generalisation applies to the entire
map and is computed off-line. Vice versa, in the SafeBox solution we generalise the location
of the user on-the-fly, so the generalisation function can use dynamic information. The second
difference is that in the solution by Damiani et al. a user’s location is generalised only if it
falls into an “obfuscated location” i.e., a sensitive location or its surroundings. This can lead
to disclose which are the sensitive locations of a user, which we believe should be considered
private information. To avoid this problem, in our solutions we propose generalisation functions
that can be used to generalise requests from every location.

5.2 Gonio and Aequus granularity families

Spatial granularity has often been used in the literature as formal tool to partition a spatial domain
into a set of sub-regions called “granules” [7, 11, 49]. In recent years spatial granularities have
been extensively used, implicitly or explicitly, in several papers in the field of privacy preservation
in presence of location information. A comprehensive survey on privacy preserving techniques
for private queries is presented in [19].

A common problem in the contributions mentioned above is that spatial granularities are used,
often implicitly, as a tool, without extensively describing their properties and basic operations.

In this section we provide a general definition of spatial granularities and we identify two
basic operations and two properties, “non-overlapping” and “space-covering”, that are particular
relevant when using spatial granularities as a tool to protect privacy.

We also introduce the concept of “family of granularities”, representing set of granularities
with similar characteristics but different size of the granules. The main contribution of this section
consists in the definition of two family of granularities, specifically designed to be used in privacy
preserving applications. The two families “Gonio” (labeled G ) and “Aequus” (labeled A ) are
designed for the “MUR approach”. For each family of granularities we show how to efficiently
compute the two basic operations and we prove that they respect the “non-overlapping” and
“space-covering” properties.

5.2.1 Problem Formalization

In this section we consider the entire world as the reference spatial domain S. We use standard
latitude-longitude coordinates, hence: S = (−90,90)× [−180,180). We define a spatial granu-
larity (or simply “granularity”) G as a mapping from a subset of N to S. For each G(i) we call
i an index and, if G(i) is defined, we call G(i) a granule, denoted as g. If g is a granule of a
granularity G, we denote it with g ∈ G.

We design granularities for privacy-aware applications and we identify two relevant properties
for this type of applications. First, privacy protection should be provided everywhere, hence we
need granularities that are “space-covering” meaning that any point of the spatial domain should
be covered by the granules, as formalised in Definition 5.2.1.
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Definition 5.2.1 A granularity G is space-covering if, for every point p ∈ S, there exists one
granule g ∈ G such that p ∈ g.

The “non-overlapping” property, formalised in Definition 5.2.2, is related to the fact that it
should be possible to uniquely identify a granule covering a point in the space. In other words,
there should be no intersection between the granules of a given granularity. The lack of the
“non-overlapping” property has been noted to negatively impact the privacy guarantees of the
“MUR approach” [10].

Definition 5.2.2 A granularity G is non-overlapping if, for every pair of g1,g2 ∈ G, with
g1 6= g2, g1∩g2 = /0

In this section we are interested in defining families of granularities. The intuition is that all
the granularities belonging to a family share the same characteristics, but have different “size”
of the granules. Formally, a family of granularities is a mapping associating a granularity to an
element of N that we call “level”. Given a family of granularities F , we denote with F l the
granularity G having level l in the family F .

In the following we characterise each granularity G by defining G(i) for each index i ∈ N
and we show how to efficiently compute this function. The “inverse” function G[p] returns, for
each p ∈ S, the index i such that p ∈ G(i). Note that, since we consider “non-overlapping” and
“space-covering” granularities, G[p] is always defined, in the sense that for each point p ∈ S there
exists exactly one granule g of G such that p ∈ g. Once it is known how to compute G(i) for
every index i, it is possible, in theory, to compute G[p] by computing G(i) for each index i and
choosing the one such that p ∈ G(i). However, this is impractical and in the following of this
section we describe how to efficiently compute G[p].

5.2.2 The Gonio granularities

The G granularity family partitions the spatial domain S into rectangular granules all sharing the
same angular dimension. The result on a map of such a partition is the same as the one performed
by the well-known Mercator projection, that is the standard projection for nautical purposes. The
Mercator projection distorts the size and shape of large objects, as the scale increases from the
Equator to the poles, where it becomes infinite, as shown in Figure 5.1.

The level of the granularity represent the number of granules, where G 0 has only one granule
which comprises the entire spatial domain while a granularity of level l has 4l granules, organized
in a grid of 2l granules along each dimension. This is intuitively analogous to a balanced quadtree
as shown in Figure 5.2. In the following we will refer to this hierarchical structure as the
“granularity tree”.

As shown in Figure 5.3, the granule with index zero has the bottom-left corner in 90◦S,
180◦W , while the others granules are enumerated from left to right and from bottom to top. Since
a granularity G l has 2l granules along each dimension, the angular size of each granule is 180◦/2l

on the vertical dimension and 360◦/2l on the horizontal dimension.
The regular structure of G granularities allows to define the position of each granule in terms

of its column Xi and row Yi. This is an alternative format to index granules that will be useful in
the following of this presentation. Clearly, it is possible to convert from the “single-index” format
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Figure 5.1: Mercator projection map. Image by Strebe - Own work. Licensed under CC BY-SA
3.0

Level 2
Level 1
Level 0

(a) Projection plane

Level 2

Level 1

Level 0

(b) granularity tree

Figure 5.2: Different granularity levels with G granularity family on the plane and their represen-
tation in terms of granularity tree

to the “double-index” format in constant time using these formulas:

Xi = i mod 2l Yi = b
i

2l c

i = Xi +2l ·Yi (5.1)

We now formally characterise a granularity G l through the specification of G l(i) for a generic
index i.

Definition 5.2.3 Let l and i be two non-negative integers. G l(i) is undefined for i ≥ 4l .
Otherwise

G l(i) = [minLon,maxLon)× [minLat,maxLat)
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Figure 5.3: G 2 shown on the world

where:

minLon = Xi ·
(

360
2l

)
−180 (5.2)

maxLon = (Xi +1) ·
(

360
2l

)
−180 (5.3)

minLat = Yi ·
(

180
2l

)
−90 (5.4)

maxLat = (Yi +1) ·
(

180
2l

)
−90 (5.5)

Note that, in order to guarantee the “space-covering” and “non-overlapping’ properties,
Definition 5.2.3 specifies that any point on the minimum coordinates (left-bottom of the granule)
is part of the granule, while any point on the maximum coordinates (right-top of the granule) is
not part of the granule.

We now show how to compute G l[p] in constant time. That is, how to find the index i of the
granule containing the point p (expressed in the 〈lat, lon〉 format). The column and row positions
are computed as the proportion of longitude and latitude (respectively) with respect to the size of
the horizontal and vertical domain (respectively). Formally:

Xi =

⌊
2l · (lon+180)

360

⌋
(5.6)

Yi =

⌊
2l · (lat +90)

180

⌋
(5.7)

Consequently the G l[p] can be defined as follows:

G l[p] =
⌊

2l · (lon+180)
360

⌋
+2l ·

⌊
2l · (lat +90)

180

⌋
(5.8)
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Given the above definitions, the functions G l(i) and G l[p] can be clearly computed in constant
time.

It is also easily seen that G granularities are “space-filling” and “non-overlapping”, as shown
in Properties 5.2.1 and 5.2.2.

Property 5.2.1 For every level l, G l is space-covering.

Property 5.2.2 For any level l, G l is non-overlapping.

Proofs of these two properties are reported in Appendix A.

5.2.3 The Aequus granularities
As specified in Section 5.2.2, the granules of a G granularity have the same angular dimension.
Thus, granules at different latitudes covers areas of different size. Consider Example 5.1.

� Example 5.1 We consider two granules of G 16, one located in Nairobi, Kenya (−1.2877,
36.8372) and the other in Reykjavik, Iceland (64.1324,−21.8934). The granule positioned in
Nairobi has an area more than two times the area of the granule calculated in Reykjavik, as shown
in Figure 5.4.

(a) Nairobi-186314.2m2 (b) Reykjavik-81281.7m2

Figure 5.4: Example of granules of G 16 with different areas. Images retrieved on Feb 15, 2013
from http://maps.google.com

�

Different dimensions of the granules are undesirable in some applications. For example, in
the “MUR approach” to privacy preservation, a G granularity yields different level of privacy in
different regions of the world. In this section we present the A granularities, an extension of G
granularities, with the following property: all granules of A l have the same area, independently
from their latitude.

Technically, A granularities are specified like G granularities; the only difference is in the
computation of the horizontal boundaries of the granules. To understand the intuition behind our
solution, we suggest to think about a G granularity as a set of horizontal stripes that are vertically
“cut” to create the granules. In this view, each stripe is divided into the same number of granules
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all having the same width. Since we are considering Earth as our reference space, these “stripes”
are actually spherical segments2.

In a G granularity the spherical segments have the same angular height, so they appear as
having the same area in the Equirectangular projection, but they actually have different areas (see
Figure 5.5(a)). This clearly leads the granules to have different areas. Vice versa, we define A
granularities with spherical segments having different angular height but with the same area (see
Figure 5.5(b)). Consequently, the granules result to have the same size, as we will prove.

(a) Spherical segments in G 3 (b) Spherical segments in A 3

Figure 5.5: Intuitive view of G e A granularities

We now define the family of A granularities by specifying A l(i) for a generic index i.

Definition 5.2.4 Let l and i be two non-negative integers. A (i) is undefined for i ≥ 4l .
Otherwise

A l(i) = [minLon,maxLon)× [minLat,maxLat)

where minLon and maxLon are defined as in Equations 5.2 and 5.3 and:

minLat = arcsin
(

1− 2Yi−2
2l

)
(5.9)

maxLat = arcsin
(

1−2
Yi

2l

)
(5.10)

To understand the idea behind the above definition, we first recall that the area of a spherical
segment with height h is equal to 2πRh where R is the radius of the sphere. Using the above
definitions of minLat and maxLat, the height of a spherical segment containing a generic granule
A l(i) is equal to

h = R · [sin(maxLat)− sin(minLat)] (5.11)

= R ·
[

1−2 · Yi

2l −
(

1−2 · Yi

2l −
2
2l

)]
=

2R

2l (5.12)

2Here and in the following we approximate Earth with a sphere.
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This spherical segment has consequently an area Aseg that is independent from i and that is
actually equal to Aseg =

4πR2

2l .
Property 5.2.3 follows from the above results and it shows that all granules in a given

granularity A l have the same area.

Property 5.2.3 Let G be the granularity A l . Then each granule g of G has an area equal to:

Aseg

2l =
4πR2

4l

� Example 5.2 Any granule of A 12 has an area of about 30km2, while granules of A 16 have an
area of about 0.12km2. Indeed, compare Figure 5.4 with Figure 5.6 that shows two granules of
A 16 in Nairobi, Kenya and Reykjavik, Iceland, respectively. Differently from what observed in
Example 5.1, in this case the two granules have the same area.

(a) Nairobi, Kenya (b) Reykjavik, Iceland

Figure 5.6: Example of granules of A 16 with same areas. Images retrieved on Feb 15, 2013 from
http://maps.google.com

The A l[p] operation (for a given point p = 〈lat, lon〉) is analogous to the same operation for
G granularities, with the only difference in the computation of Yi that is defined as:

Yi =

⌊
2l · (1− sin(lat))

2

⌋
Consequently:

A l[p] =
⌊

2l · (lon+180)
360

⌋
+2l ·

⌊
2l · (1− sin(lat))

2

⌋
Similarly to G granularities, also A granularities are “space-filling” and “non-overlapping”.

Proofs are analogous to the case of G and are omitted.
�



5.3 SafeBoxes 91

5.3 SafeBoxes
Spatial and temporal generalisation emerged in the literature as a common approach to preserve
location privacy. However, existing solutions have two main shortcomings. First, spatio-temporal
generalisation can be used with different objectives: for example, to guarantee anonymity or to
decrease the sensitivity of the location information. Hence, the strategy used to compute the
generalisation can follow different semantics often depending on the privacy threat, while most of
the existing solutions are specifically designed for a single semantics. Second, existing techniques
prevent the so-called inversion attack by adopting a top-down strategy that needs to acquire a
large amount of information. This may not be feasible when this information is dynamic (e.g.,
moving positions or changing properties of the objects) and needs to be acquired from external
services (e.g., Google Maps), that typically allow a limited number of localised queries.

In this section we present a formal model of the problem that is compatible with most of
the semantics proposed so far in the literature, and that supports new semantics as well. Our
BottomUp algorithm for spatio-temporal generalisation is compatible with the use of online
services, it supports generalisations based on arbitrary semantics, and it is safe with respect to the
inversion attack. By considering two datasets and two examples of semantics, we experimentally
compare BottomUp with a more classical top-down algorithm, showing that BottomUp is efficient
and guarantees better performance in terms of the average size (space and time) of the generalised
regions.

5.3.1 Problem and contribution

As discussed in Chapter 5.1, spatial and temporal generalisation is a common approach that
has also been implemented in prototypes and applications. In this chapter we call SafeBox the
spatio-temporal region used to generalise a source point representing the user’s exact location
and time of presence.

The Problem
Each of the proposed techniques discussed before is somehow specialised to optimise the general-
isation with respect to 1) a precise use case and to 2) the specific semantics of privacy preservation
(counting users, venues, categories of venues, . . . ). Hence, one problem we would like to address
in this chapter is to have a generalisation scheme solution that is parametric with respect to a
counting function, and hence independent from the actual semantics of privacy preservation. A
second problem with current solutions is related to the method to actually compute the SafeBox.
In order to avoid the so called “inversion” or “reciprocity” attack [29, 41], most of the proposed
techniques for spatial generalisation, compute the SafeBox by partitioning the whole space and
explore it with a top-down strategy. The whole spatial domain is recursively partitioned evaluating
at each step if the area containing the user’s location satisfies the counting function, and returning
that area if further partitioning violates the constraints. It is somehow assumed that there is no cost
in the access to the location information about the objects to be counted. It is also assumed that
counting for large regions is feasible and does not incur in significant overhead. This assumption
may be reasonable if the generalisation is done, for example, by a service provider that has access
to continuously updated user location information and the objects to be counted are indeed users,
but in general, computing the counting function may result in a costly operation to an external
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server that has to be frequently repeated when the objects to be counted are not static, or change
their properties in time. Indeed, a natural solution is to use online services that, given an area and
a category, return objects of that category with their location and properties. For example, the
Google Places API provides two methods for searching for places on a map given a source point.
However, each call can return at most 200 results and separate calls are needed to get details (e.g.,
the opening hours). Each call can require up to 2 seconds to have a response, depending on the
connection, and, moreover, only 1000 calls can be performed daily without special permissions.
In this scenario, evaluating privacy conditions based on counting may become impractical with
generalisation strategies that operate top-down, because counting for large areas may be very
time-consuming, if possible at all.

Hence, the second problem we are addressing in this chapter is devising a new method to
compute the SafeBox, compatible with the typical constraints involved in querying external
services to obtain updated information on geo-referenced objects.

Contribution
Our solution to the second problem described above is a generalisation algorithm that operates
bottom-up: It builds the SafeBox starting from the actual position and timestamp of the user, and,
by adopting a specific data structure, recursively enlarges the spatio-temporal region until the
counting constraints are satisfied, while maintaining protection against the “inversion” attack.

The main contributions of this section are the following:

• By providing a general notion of object counting function supporting different semantics
we capture in a single problem formalisation several location privacy problems previously
considered in the literature and enable capturing privacy preferences not considered in
previous generalisation approaches.

• We design a generalisation algorithm supporting arbitrary counting functions that operates
bottom-up, enabling the verification of privacy conditions through public online services.
To our knowledge this is the first safe generalisation algorithm adopting a bottom-up
strategy.

• We implemented the BottomUp algorithm and applied it to two different datasets, presenting
a detailed comparison in terms of precision and performance, both with its top-down
counterpart and with algorithms proposed in related work. The results confirm that our
algorithm is effective, superior, and possibly the only alternative when access to updated
external data is limited.

The rest of the section is structured as follows. In Section 5.3.2 we formalise the privacy
problem and we define the two semantics of the counting function that we use in our experimental
evaluation. Section 5.3.3 presents the new BottomUp algorithm and compares it with one
following the more traditional top-down approach. The experimental evaluation is reported in
Section 5.3.4, and Section 5.4 concludes the chapter.

5.3.2 Problem Formalization
We address the problem of generalising the information about a specific location and timestamp
into a geographical area and a time interval so that the resulting spatio-temporal information is
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still useful to obtain geo-referenced and timely services but not sensible anymore in terms of
privacy. Since privacy is a subjective matter, the way generalisation occurs not only has to be safe
but should also be adapted to the user preferences. Our framework captures all preferences that
can be expressed as a guarantee of presence in the released area of enough elements to sufficiently
decrease the sensitivity of the spatio-temporal information being released.

In the following of this section we first formally describe the general problem and then
discuss the properties of the SafeBoxes that our techniques can return, depending on the different
semantics associated to the function used to count the elements they contain.

Adversary model
The generalisation techniques proposed in this contribution can be used to protect users’ privacy
in different system architectures. Indeed, the generalisation function can be computed either by
the user’s mobile client or by a trusted generalisation server. In both cases, the source point (i.e.,
the exact user’s position at a certain time) is not disclosed to any non trusted entity. Instead, the
generalised location is disclosed.

The “adversary” is any entity that can potentially have access to the generalised spatio-
temporal location. A central aspect to correctly model the problem is to define which knowledge
the adversary can use to violate user’s privacy (this is sometime referred to as “background
knowledge” in the literature). In this chapter we assume that the adversary has the knowledge
to do the inversion attack that, as we formalise in the following of this section, requires the
knowledge of the generalisation algorithm, its input parameters (with the exception of the
source point) and the counting function. In a real-world generalisation service the generalisation
algorithm would probably be known because the “security-by-obscurity” paradigm has proved
to be not effective. For what concerns the input parameters (e.g., the value of k representing
the minimum number of objects in each SafeBox), they can either be system parameters (hence
easily discovered by an adversary) or, more likely, user-defined parameters. In the latter case it
is still possible for an adversary to infer their value, possibly with some form of approximation
(consider Example 5.3). Finally, for what concerns the knowledge of the counting function,
in some case this can be public information (as in Example 5.3) and, if not, it can be inferred,
possibly introducing some approximation in the computation, like in Example 5.3.

� Example 5.3 Alice uses a privacy-aware LBS. Before issuing any service request, the client
generalises Alice’s spatio-temporal location so that it contains at least k open shops where k is a
user-defined parameter having values in [2,20].

Suppose that an adversary can observe a request issued by Alice from a generalised spatio-
temporal region A. Since in A there are 6 open shops, the adversary can exclude that the parameter
k chosen by Alice is larger than 6. The adversary can also compute that, for any value of k in
[2,4], any request issued from a source point p ∈ A would be generalised to region smaller than
A. Hence the value of k is either 5 or 6.

Now, suppose that the generalisation algorithm used to generate A is not safe. It could happen
that, for a given point p ∈ A, a request issued from p with value of k equals to 5 returns an area
different from A and that the same holds for a request issued from p with k = 6. In this case the
adversary can exclude p from I(A) even without knowing the exact value of k. �

It is important to note that in this chapter we consider the spatio-temporal generalisation of
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single requests and we do not address the problems arising when correlation among different
requests is possible. Consequently, the direct application of our techniques is subject to two
attacks known in the literature.

The first is the “velocity attack” that can lead the adversary to exclude the presence of the
user in a given area at a given time, hence possibly restricting the generalised spatio-temporal
region [20]. Since at the moment our generalisation algorithms do not provide protection with
respect to the velocity attacks, they should not be used in case of continuous disclosure of location
information. Indeed velocity attack is ineffective if the location information is sporadically
disclosed.

The second attack is aimed at violating “historical k-anonymity” and takes place when the
counting function is used to count the users and is aimed at guaranteeing the issuer’s anonymity
[43]. In this case, if it is possible to “link” different generalised regions to the same (anonymous)
user, the adversary can intersect the “anonymity sets” hence possibly restricting the possible
identity of the user to a set with cardinality smaller than k. Since our generalisation algorithms
do not take this attack into consideration, if the counting function is used to count users with
the aim of providing anonymity, it should be guaranteed that no set of generalised regions can
be associated to the same user for example by artificially changing the IP address used in the
corresponding service requests.

Basic definitions
We assume that users and (possibly moving) objects are located in a finite bi-dimensional spatial
domain S and we consider their positions in a finite interval of time T . We denote with S1 and
S2 the two dimensions of S and with p a spatio-temporal point (or “point”, when no confusion
arises). Formally, p ∈ S×T = S1×S2×T .

Our goal is generalising any point p (called “source point”) into a three-dimensional area
with certain properties. Formally, a generalisation function G is a partial function that, given a
source point p returns a three dimensional area A such that p ∈ A.

One of the required properties for the generalisation is to guarantee that the resulting area
“contains” at least k objects. We use the function Ω to count the number of objects contained in a
given area. Formally, given a set of (possibly moving) objects and a spatio-temporal area A, Ω(A)
is a non-negative integer value representing the number of spatio-temporal points corresponding
to positions and associated timestamps of the objects in A. The counting function Ω(A) can also
be applied when A is a set of possibly non-contiguous spatio-temporal points. The specification of
Ω includes the set of objects to be considered (e.g., users, shops, taxis, etc.) as well as the actual
semantics of the counting operator. In Section 5.3.2 we report two examples of its semantics.
Note that the source point being generalised can be the position of one of the objects (as in the
case of the source point is the position of a user and the objects are all users) but can also be an
unrelated point (as in the case of objects being pubs and the user not being positioned in any of
them). Note also that the results we present in this chapter assume only that the counting function
is monotonic with respect to the areas.

Definition 5.3.1 A counting function Ω is monotonic if, for each pair of spatio-temporal areas
A and A′ such that A⊆ A′ it holds that Ω(A)≤Ω(A′).

Monotonicity captures an intuitive property. For example, if in the main square of a city there
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are 100 people at given moment, by considering at the same moment a larger area that includes
the square, we will count 100 or more people.

When a spatio-temporal area contains at least k objects, we say it is a “SafeBox”. Intuitively,
the user considers herself to be “safe” by releasing this spatio-temporal information because
the source point p can be confused with the positions and timestamps associated to at least k
objects.

Definition 5.3.2 Given a non-negative integer k and a counting function Ω, a spatio-temporal
area A is a SafeBox if Ω(A)≥ k.

As observed in the literature [29, 41], even if a generalisation function returns a SafeBox
according to Definition 5.3.2, an adversary may still be able to rule out some of the objects
considered in the counting if he knows the generalisation function itself, since he may re-apply
the generalisation function to each candidate source point and compare the result with the area
that has been released. In principle, by knowing the generalisation function the adversary may
also be able to identify the source point p though the so called inversion attack [41]. Consider
Example 5.4.

� Example 5.4 Let’s consider Figure 5.7: the spatial and temporal domain is partitioned into four
areas. The number in the top right of each area represents the value of Ω(). The objective of the
generalisation is to have a SafeBox with at least 8 objects. Let’s consider a naive generalisation
function that, given any source point in A2, generalizes it to A2. Similar for A3. Since Ω(A1) is
less than 8, A1 is not a SafeBox and hence the algorithm generalizes any source point in A1 to the
SafeBox A1∪A2. Similarly, any source point in A4 is generalised to A3∪A4.

Now, consider an adversary that knows the generalisation function and the values of Ω for
each area. If this adversary observes the SafeBox A1∪A2 than he can exclude that the source point
is in A2, because in this case the generalisation would be A2 itself. Consequently the adversary
infers that the source point is in A1 that, however, is not a SafeBox.

A1 A2

A3 A4

20 5

205

Figure 5.7: Spatio temporal domain partitioned into four areas.

�

In order to contrast this inversion attack we first define the inversion function that, intuitively,
given a generalised area G (p), identifies all potential source points.

Definition 5.3.3 Given an area A and a generalisation function G , the inversion function I is
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defined as:

IG (A) = {p ∈ A|G (p) = A}

When no confusion arises, we simply denote I(A) omitting the generalisation function.
We can now define the notion of safety for generalisation functions.

Definition 5.3.4 Given a non-negative integer k and a counting function Ω, a generalisation
function G is safe if, for each spatio-temporal point p such that G (p) is defined, it holds that:

Ω(I(G (p)))≥ k

� Example 5.5 Let’s continue with Example 5.4. We show that the generalisation function is
not safe according to our model. Indeed, for any point p in A1, the generalisation of that point is
A1∪A2. The inversion of A1∪A2 is A1 (indeed the generalisation of any point in A2 is A2 itself).
Consequently, Ω(I(G (p))) = Ω(A1) = 5 < 8. Consequently, by applying Definition 5.3.4, the
generalisation function is not safe, in accordance with the intuition presented in Example 5.4.

Let’s now consider a different generalisation function that generalizes any source point of
A2 in A2 and similar for A3. Also, the generalisation of any source point in A1 or A4 is the entire
spatio-temporal domain (i.e., A). This is actually a safe generalisation function. Indeed, for any
source point p in A2 it holds that its generalisation is A2 and also that I(A2) = A2. Consequently
Ω(I(A2))≥ 8. Similar for A3. Vice versa, for any point p in A1 and A4, the generalisation yields
A. In this case I(A) = A1∪A4. Hence we have that Ω(I(G (p))) = Ω(A1∪A4) = 10≥ 8. Note
that in this last case (i.e., any source point in A1 or A4), it is actually possible to use the inversion
attack to restrict the area (from A to A1∪A4), but this does not affect the safety of the technique,
since A1∪A4 still contains a sufficiently large number of objects.

�

Property 5.3.1 Any safe generalisation function G returns a SafeBox for any source point p
such that G (p) is defined.

Proofs of formal results are reported in Appendix A.

Supporting different semantics for the counting function Ω

As specified in Section 5.3.2, our formal framework only requires the counting function to be
monotonic. This weak requirement makes it possible to express most of the semantics proposed
in the literature within this model. For example, by counting the users it is possible to enforce a
form of k-anonymity while, by counting the shops, it is possible to decrease the sensitivity of
the location information. Also, by counting different types of shops, it is possible to enforce a
property similar to l-diversity.

In the following we first specify the appearance semantics (that can be used for example to
guarantee k-anonymity) and then we specify the persistence that is original, to the best of our
knowledge.

Appearance semantics
This semantic captures the counting of distinct objects that happen to be within a spatial area AS

in any time instant during a temporal interval AT . Each object is “counted” if it happens to be
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located within AS at least during one time instant of AT . Each object is counted at most once,
independently from how much time it spends within AS and even if the object enters and exits
several times from AS during AT .

In order to define this semantic, we first introduce the function loc() that we use to model the
position of an object at a given time instant.

Definition 5.3.5 Given the set O of objects we define a partial function loc : O×T → S such
that, loc(o, t) is the spatial position of object o at time t.

We are now ready to define the appearance counting semantics.

Definition 5.3.6 Given the set of objects O, an area A and its projections AS, AT on the spatial
and temporal domain, respectively, the counting function Ω with appearance semantics is
defined as follows:

Ω(A) = |{o ∈ O s.t. ∃t ∈ AT with loc(o, t) ∈ AS}|

� Example 5.6 Suppose that AS is a city’s park and AT is from 2 pm until 2.30 pm. Given that
O is the set of users of a location based service, the Ω() counting function with appearance
semantics counts how many of these users report their location in the park at least once between
2 pm until 2.30 pm. �

Any specification of the Ω() counting function should be shown to be monotonic for our
algorithms to be sound.

Property 5.3.2 The counting function Ω() with appearance semantics is monotonic.

Persistence semantics
According to the appearance semantics each object is counted once independently on how long it
has been located within the spatial area AS during the time interval AT . In some applications it
can be desirable to count more than once those objects that are located in AS for a “sufficiently
long time” during AT . This semantics captures the intuition that a spatio-temporal area containing
some shops for a period of 2 hours provides more privacy protection than a spatio-temporal region
that contains the same shops but that has a duration of 10 minutes.

To formalise this semantics we adopt the concept of a persistence interval defined as a span
of time obtained by partitioning the time domain into intervals with a fixed time duration. For
example, if we take 1 hour as the persistence interval duration and we start the persistence
intervals at the beginning of a day, the span of time [2014-01-01:08:00, 2014-01-01:09:00) is one
of these persistence intervals.

Given a persistence interval duration D, the intuition of the persistence semantics is to count,
for each object, for how many persistence intervals during AT that object is located in AS.

Definition 5.3.7 Given the set of objects O, an area A with its projections AS, AT on the spatial
and temporal domain, respectively, and I the set of persistence intervals with duration D, the
counting function Ω with persistence semantics is defined as follows:

Ω(A) = ∑
o∈O
|{i ∈ I s. t. ∃t ∈ (i∩AT ) and loc(o, t) ∈ AS}|



98 Chapter 5. Privacy protection by generalisation

� Example 5.7 Suppose we are computing Ω() for the centre of Milan, for the interval from
7pm to 11pm of a given day, counting the number of open pubs. A pub that is always open in this
time interval is counted 4 times if the persistence interval duration D is 1 hour. If D is 15min it
will be counted 16 times, but it will be counted 14 times if D is 15 minutes and it closes at 10:30.
Intuitively, the pub may be a possible location for the user in each of the persistence intervals
contained in the considered temporal interval if it is actually open at that time. The condition on
the opening time is captured in Definition 5.3.7 by the predicate loc(o, t) ∈ AS. The number of
persistence intervals intuitively gives a value for a “temporal obfuscation” metrics. �

Property 5.3.3 The counting function Ω() with persistence semantic is monotonic.

5.3.3 SafeBox computation
In this section we present two safe generalisation algorithms that share the main data structure,
that we call generalisation tree, but have a different conceptual approach to the generalisation
process.

The TopDown algorithm starts by considering the entire space and time (the “top”) and then
“moves down” from the root of the generalisation tree searching for a node corresponding to
the “smallest” spatio-temporal region that guarantees the safety property of the algorithm. In
contrast, the BottomUp algorithm starts from the leafs of the generalisation tree, which intuitively
correspond to small spatio-temporal regions, and then “moves up” in the tree with the same goal.

The TopDown algorithm is conceptually more intuitive and, as we will see later, it also has
a lower worst-case complexity. The spatio-temporal generalisation algorithms proposed so far
for location privacy follow this approach. As we detail in this section, guaranteeing the safety
property by following the BottomUp approach is more challenging. However, considering that
the counting function must be computed for any candidate region, the BottomUp algorithm has
the advantage of being a “local” algorithm, in the sense that in many cases it terminates after
processing data located in a small spatio-temporal area. Vice versa, TopDown always starts from
the entire spatio-temporal domain and hence it requires information on all the objects.

In the following of this section we first formalise the generalisation tree in Section 5.3.3, and
then we present the TopDown and BottomUp algorithms in Sections 5.3.3 and 5.3.3, respectively.

Data structure: the generalisation tree
A generalisation tree is a binary tree whose nodes represent cuboidal spatio-temporal areas
that we call “spatio-temporal cells” (or “ST-cell”, for short). The height of the tree is a system
parameter and the ST-cell associated with the root is the entire spatial and temporal domain (i.e.,
S×T ). The ST-cell of each non-leaf node is partitioned by the ST-cells of its two children as
detailed in the following. Given this construction, it is easily seen that the nodes at a given level
partition S×T .

We now specify how to construct the two children {c1,c2} of any internal node c in the
generalisation tree. Intuitively, we split c along one of the three dimensions, dividing it in two
even parts. Since the two resulting cells c1 and c2 partition c, their projection on the other two
dimensions is the same as in c, as shown in Figure 5.8.

In order to decide along which dimension a cell should be divided, we follow the intuitive goal
of preferring squared ST-cells over stretched ones. We explain this intuition with Example 5.8.
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S2T
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(a) The ST-cell c

S1

S2T
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50s C1 C2

200m

(b) The two children of c

Figure 5.8: A ST-cell c and its two children c1 and c2

� Example 5.8 Alice is using a fiend-finder service to be notified when one of her friends is
closer than 1km. The service is “privacy-aware” and it is designed to receive generalised locations
from the users.

To protect Alice’s privacy, her client always generalises Alice’s location to a region R
containing 10 shops. The server replies with the set of friends closer than 1km to any point of R.
Finally the client filters out those friends whose position is not actually closer than 1km from the
exact Alice’s location.

Suppose that, for a give source position p, there are two different generalisation algorithms:
one returns a squared region R1, the other the stretched region R2 (see Figures 5.9(a) and 5.9(b)).
Note that the two regions have the same area of 1km2. Upon receiving R1 and R2, the service
provider would return the friends in the regions R′1 and R′2, respectively, with R′2 being more than
3 times larger than R′1. Consequently we can expect, on average, that the generalisation to R2
incurs into larger communication costs and larger computational costs both on the client and on
the server. �

p

1 km

1 km

R1

R'1

(a) Squared.

p

10 km

100m

1 km R2

R'2

(b) Stretched.

Figure 5.9: Comparison between a squared generalised region and a stretched one.

According to the above intuition (i.e., to prefer squared ST-cells), considering the two spatial
dimensions we prefer to divide the cell along the dimension for which the cell has a larger size,
as done in Figure 5.8. More application-oriented criteria are needed to decide when to generalise
along the temporal dimension as opposed to the spatial ones. For this purpose, we introduce
a system parameter α , called time influence parameter, whose value will impact the splitting
decision between temporal and spatial dimensions. Intuitively, a lower value of α will privilege
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splitting along the spatial dimensions, while a larger value will privilege splitting along the
temporal dimension. The proper value is tuned experimentally based on specific application
requirements.

In the following definition, we use the notation |c|D to denote the projection of a ST-cell c
along dimension D.

Definition 5.3.8 The split dimension of an ST-cell c with time influence parameter α ∈
[0;+∞), denoted with splitα(c) is defined as:

splitα(c) =


S1 if |c|S1 ≥ |c|S2 and |c|S1 ≥ α · |c|T
S2 if |c|S2 > |c|S1 and |c|S2 ≥ α · |c|T
T otherwise

Finally, we formalise how children are constructed.

Definition 5.3.9 Let c be an ST-cell, D1 = splitα(c) be the split dimension of c, D2 and D3 the
other two dimensions, |c|D1 = [min,max) and med = max+min

2 . Then, the function childrenα(c)
returns the two children c1 and c2 of c defined as follows:

|c1|D1 = [min,med)

|c2|D1 = [med,max)

|c1|D2 = |c2|D2 = |c|D2

|c1|D3 = |c2|D3 = |c|D3

In the following, to shorten the notations, given a ST-cell c we denote with sibα(c) its sibling,
and with parα(c) its parent. In these notations we omit α when no confusion arises.

The TopDown algorithm

The intuitive idea behind the TopDown algorithm is to traverse the generalisation tree from the
root towards the leaf node that contains the source point. The algorithm terminates when it
reaches that leaf node or an internal node c such that the counting function of one the children
of c yields a value smaller than k. As shown in the proof of Theorem 5.3.4, this termination
condition makes this generalisation function safe. The basic version of the algorithm is shown in
Algorithm 9.

� Example 5.9 Consider a generalisation tree like the one in Figure 5.10. The number reported
in each leaf ST-cell indicates the value of Ω for that ST-cell. Also, consider a source point p in
ST-cell C7 (shaded in grey) and the parameter k = 5.

TopDownBasic first considers the root C. Since the value of Ω(c) for the whole domain is
equal to 12 (the sum of the counting function among all leaf ST-cells), the algorithm does not
terminates here with failure (see Line 2) but instead computes the two children of C (Line 3). The
condition for entering in the loop (see Line 4) is then considered: since ST-cell C2 is such that
Ω(C2)< 4, then the algorithm does not enter the loop and C is returned in Line 9 as the SafeBox.

�
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Algorithm 9 TopDownBasic(p,α,Ω(),k)
Input: a source point p ∈ S×T , the time influence parameter α , the Ω() function, the integer
value k.
Output: a SafeBox containing p or fail
Procedure:

1: c = S×T
2: if (Ω(c)< k) then return fail
3: {c1,c2}= childrenα(c)
4: while (Ω(c1)≥ k and Ω(c2)≥ k) do
5: if (p ∈ c1) then c = c1 else c = c2
6: if (c ∈ ⊥) return c
7: {c1,c2}= childrenα(c)
8: end while
9: return c

Note that TopDownBasic returns fail only when k is larger than the total number of objects
to count in the entire spatio-temporal domain. Indeed, in this case it is impossible to find a
SafeBox, independently from the generalisation function. Vice versa, in all other cases (i.e., when
Ω(S×T )≥ k), TopDownBasic can always find a SafeBox.

Algorithm 9 has a computational issue: each time the algorithm moves one level down in the
generalisation tree from a ST-cell c, it needs to recompute Ω over the two children of c. While
the burden of this operation can be limited by using some caching technique, we propose the
optimised version TopDown that returns the same result of TopDownBasic (see Theorem 5.3.5)
but that avoids computing Ω for two overlapping regions.

Algorithm 10 shows the pseudocode for TopDown. Variable c represent the current ST-cell
being processed that is set to the entire spatio-temporal domain in Line 1. Then the algorithms
enters in a while loop that traverses the generalisation tree towards the leaf ST-cell containing the
source point p. At each iteration, unless the algorithm terminates at that iteration, it only evaluates
Ω for the child c2 of c that does not contain p (Line 9). Indeed, if Ω(c2)≥ k, the algorithm does
not directly check if Ω(c1)≥ k, where c1 is the child of c containing p. Instead, the algorithm
processes c1 in the following iteration. If the Ω function applied to a child of c1 yields a value
not smaller than k, then, due to the monotonic property of Ω (see Definition 5.3.1) Ω(c1) ≥ k.
In practice, with this approach in most of the cases (i.e., all the cases in which the algorithm
continues in the iteration) we have an indirect evaluation of the condition Ω(c1)≥ k.

When Ω(c2)< k we cannot indirectly infer if Ω(c)≥ k and the algorithm explicitly needs to
compute this condition (see Lines 11 to 15). If Ω(c)≥ k then the result is c itself. Otherwise, due
to the termination condition of TopDownBasic, the result is the parent of c. In case c is the entire
spatio-temporal domain (i.e., the root of the generalisation tree), the algorithm returns fail. This
happens only when the Ω function applied to the entire spatio-temporal domain yields a values
smaller than k.

Finally, there is another termination condition: when the algorithm reaches a leaf ST-cell c
(see Lines 3 to 6). Also in this case it is not possible to indirectly evaluate if Ω(c)≥ k, hence the
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Figure 5.10: Example of generalisation tree

algorithm explicitly compute this condition and it returns c if the condition is met, the parent of c
otherwise.

The BottomUp algorithm
The BottomUp algorithm processes the generalisation tree from the leaf node containing the
source point towards the root.

An intuitive procedure would first identify the leaf node containing the source point p and
recursively move to the parent ST-cell in case the value of Ω for that ST-cell is less than k, and
returning the current node as the SafeBox when Ω is at least k. We proposed a similar algorithm,
called I ncognitus, in a preliminary investigation on this problem [5]. Unfortunately, the result
obtained with this approach is indeed a SafeBox, but the generalisation function is not safe
according to our definition, as shown in Example 5.10.

� Example 5.10 Consider the generalisation tree reported in Figure 5.11, a value of k equal to 4
and a bottom up generalisation algorithm that, starting from the leaf ST-cell containing the source
point, continues to generalise if the value of Ω for the current ST-cell is less than k.

The generalisation of p1 is C21, since Ω(C21) = 5≥ k. If the source point is p2, the algorithm
first processes C11 but discards this as a SafeBox, because Ω(C11) = 1 < k. Then the algorithm
moves up in the tree, processing ST-cell C1. This is not a suitable SafeBox neither, since
Ω(C1) = 2 < k. Then the algorithm moves up to c that is a SafeBox since Ω(C) = 8≥ k.

This algorithm has the same problem illustrated in Example 5.4. Intuitively, by observing
a generalisation to C, an adversary may exclude as a candidate source point any point in C21
(since it would be generalised only to C21). Hence the privacy preference of having at least k
objects around the source point would be violated. Technically this is captured by the fact that
I(C0) =C11∪C12∪C22. Since Ω(C11∪C12∪C22)< k, this algorithm is not safe.

�
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Algorithm 10 TopDown
Input: a source point p ∈ S×T , the time influence parameter α , the Ω() function, the integer
value k.
Output: a SafeBox containing p or fail
Procedure TopDown(p,α,Ω,k)

1: c = S×T ;
2: while true do
3: if (c ∈ ⊥) then
4: if (Ω(c)≥ k) then return c
5: else then return parentα(c)
6: end if
7: c1 is the ST-cell in childrenα(c) such that p ∈ c1
8: c2 is the ST-cell in childrenα(c) such that p 6∈ c2
9: if (Ω(c2)≥ k) then

10: c = c1
11: else
12: if(Ω(c)≥ k) then return c
13: else if (c = S×T ) then return fail
14: else return parentα(c)
15: end if
16: end while

The BottomUp algorithm we propose in this chapter fixes the above problem by adopting a
more involved strategy and a different termination condition. The general idea is that, instead
of counting the number of objects in the current node c, we count the number of objects in the
inversion of c, i.e., in the ST-area defined as the set of all potential source points. The algorithm
returns c only if the counting function Ω applied to this area returns a value not less than k. While
the idea is quite simple, the computation of the inversion is not, as we will illustrate below.

We first formally describe the BottomUp algorithm, and then we provide an example of its
application. Algorithm 11 starts from the leaf ST-cell containing the source point p (Line 1) that
is also assigned to variable c used in the main loop. If Ω for that ST-cell is greater than or equal
to k, the algorithm returns that ST-cell, since for leaf nodes I(c) = c if Ω(c) ≥ k (Line 8). If
this is not the case, the algorithm enters in the while loop that traverses the generalisation tree
towards the root. If the algorithm actually reaches the root without finding a node that satisfies the
termination condition, then it fails since it is not possible to obtain a SafeBox for the given source
point with the considered procedure (Line 4). Note that this implies that in some cases BottomUp
could not be able to find a SafeBox while a different algorithm (e.g., TopDown) actually could.
However, this a very rare situation (see Section 5.3.4).

Vice versa, if the considered ST-cell (currentST cell) is an internal node, its value is updated
with the one of its parent node in the generalisation tree (Line 5), and the counting function is
evaluated on the inversion of this new ST-cell, computed through the BottomUpInversion function
(presented in the following).
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Figure 5.11: Unsafety of an intuitive bottom-up strategy

Algorithm 11 BottomUp
Input: a source point p, a time influence parameter α , the Ω() function, the integer value k.
Output: a SafeBox containing p or fail
Procedure:

1: currentST cell is the leaf ST-cell such that p ∈ currentST cell
2: c = currentST cell
3: while (Ω(c)< k) do
4: if (currentST cell = S×T ) then return fail
5: currentST cell = parα(currentST cell)
6: c = BottomUpInversion(currentST cell,α,Ω,k)
7: end while
8: return currentST cell

� Example 5.11 Let’s consider again the generalisation tree in Figure 5.10. As in Example 5.9
the goal is to find the SafeBox containing at least 4 objects. The BottomUp algorithm starts
computing the leaf ST-cell containing p in Line 1 (identifying the ST-cell C7 shaded in grey in
Figure 5.10). Then it computes the value Ω(C7) = 3; since the requirement of having at least
4 objects is not fulfilled, the algorithm enters the while loop (Line 3). Since C7 6= S×T , the
algorithm computes the parent of C7 in Line 5, considering as candidate SafeBox the ST-cell C3
in Figure 5.10. The inversion of C3, computed by the BottomUpInversion procedure (Line 6), is
the empty set: indeed, C3 is the union of C7 and C8, and any point in C8 would have as SafeBox
C8 itself because its Ω() is equal to 4. Furthermore any point in C7 will have as SafeBox an
area greater than the one represented by C3, because otherwise the only candidate source points
for the generalisation to C3 will be the one in C7 and the counting in that area is insufficient to
guarantee the user privacy preferences. Since the counting for an empty set is zero, the algorithm
enters again in the loop. Since C3 6= S×T the parent of C3 is computed as C1. The inversion
of C1 is the union of C7, C9, and C10 since both the Ω value of C9 and C10 and the Ω of their
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union C4 are smaller than 4, and hence, any point in those ST-cells would have as SafeBox the
region corresponding to the node C1 or to an ancestor of C1. It is indeed C1 because the counting
function gives a value higher than 4 for the region corresponding to the union of C7, C9, and C10.
In the evaluation of the loop condition we have Ω({C7,C9,C10}) = 6 and hence the comparison
with k = 4 leads the algorithm to exit the loop, returning C1 as the SafeBox. �

Note that in Example 5.11 we just gave an intuitive motivation for the result of the inversion
computation. Two problems arise when trying to directly apply Definition 5.3.3 to compute I(c)
for a ST-cell c when the generalisation function is BottomUp. First, according to the definition, it
would be necessary to compute BottomUp for each point in c, which is impossible if we consider
a continuous spatio-temporal domain and impractical even assuming a discrete domain. Second,
this would generate a non-terminating procedure. Indeed, according to Definition 5.3.3, for
any p ∈ c we need to compute BottomUp with p as a source point. However, the computation
of BottomUp requires computing the inversion for an area that contains p, which is clearly an
endless recursion.

The first problem can be easily fixed. Indeed, in BottomUp all points belonging to the same
leaf node are generalised to the same SafeBox. So, instead of checking the inversion property for
each point in the current candidate SafeBox, we can choose a representative point for each leaf
ST-cell in the candidate SafeBox and check the condition for these points only.

To solve the second problem (non termination), we adopt Procedure 12. The idea is that,
instead of directly computing Definition 5.3.3, which applies to any generalisation function, we
adopt Procedure 12 that is specific for BottomUp and that, in the computation, does not require to
recursively call BottomUp itself.

Procedure 12 BottomUpInversion
Input: a ST-cell c, a time influence parameter α , the Ω() function, the integer value k.
Output: IBottomUp(c)
Procedure BottomUpInversion(c,α,Ω,k)

1: res = Residuals(c,α,Ω,k);
2: if(Ω(res)≥ k) then return res
3: else return /0

Procedure Residuals(c,α,Ω,k)
1: if (c is leaf) then return c
2: result = /0
3: for each c′ in childrenα(c) do
4: A = Residuals(c′,α,Ω,k)
5: if (Ω(A)< k) then result = result ∪A
6: end for
7: return result

Our solution to compute I(c) consists in the BottomUpInversion procedure (see Procedure 12)
that uses Residuals, a recursive procedure that computes the set of all points whose generalisation
is not smaller than c. If the counting function applied to this set is larger than or equal to k, then
this set is returned (Line 2). Indeed, all of these points (res) generalise to c. Otherwise, (i.e.,
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Ω(res)< k), the counting condition in BottomUp for the points in res is not satisfied and hence
the generalisation of each of these points is larger than c. In this case, /0 is returned as required by
the definition of I(c).

Procedure Residuals processes every node of the subtree with root in c. Recursion terminates
when Residuals is called on a leaf node c. In this case, the leaf node itself is returned. Indeed, for
each point in c, the result of the generalisation is at least as large as c itself. For an internal node c,
Residuals recursively calls itself on the two children of c. For each child c′ of c, Residuals checks
if the counting function applied to Residuals(c′,α,Ω,k) is less than k. If this is the case, then
every point in the result of Residuals(c′,α,Ω,k) is added to the result that is being computed
for c (Line 5). Otherwise, (i.e., Ω(Residuals(c′,α,Ω,k))≥ k) every point in c′ generalises to a
ST-cell smaller than c, hence no point of c′ contributes to the result.

� Example 5.12 Let’s consider Example 5.11 that illustrates the application of the BottomUp
algorithm to the generalisation tree in Figure 5.10, and in particular to a source point p in the
ST-cell C7. The algorithm requires the computation of BottomUpInversion(C3) and of Bot-
tomUpInversion(C1) that we intuitively motivated as equal to /0 and to C7∪C9∪C10, respectively.
Consider first BottomUpInversion(C3)

3. The BottomUpInversion procedure, first computes the
set res through the Residuals procedure. Since C3 is not a leaf, the inner iteration of Residuals
considers first c′ =C7 and then c′ =C8. For c′ =C7, A = {C7}, and since Ω(A) is less than 4, C7
is added to result. For c′ =C8, A = {C8}, and since Ω(A) is greater than 4, result is not modified.
The Residuals procedure returns the set containing only C7, so we have that res = {C7}. Since
Ω(res)< 4, the BottomUpInversion procedure terminates returning the empty set.

Consider now the computation of BottomUpInversion(C1). Since C1 is not a leaf, the inner
iteration of Residuals considers first c′ =C3 and then c′ =C4. When Residuals considers C3, as
we have seen before, it returns result = {C7}. Then it considers C4 and computes A =C9∪C10
because both of these cells are leaves and the counting function applied to each of them is
less than 4. Since Ω(A) = 3 is less than 4, the procedure returns C9 ∪C10. Consequently,
Residuals applied to C1 returns result =C7∪C9∪C10. Hence in BottomUpInversion(C1) we have
res =C7∪C9∪C10 and since Ω(res) = 6, the procedure returns C7∪C9∪C10, as expected from
our intuitive reasoning in Example 5.11.

�

Properties of the TopDown and BottomUp algorithms

In this subsection we consider the formal properties of the two algorithms that we have presented
and we compare their worst-case time complexity.

Safety
In order to show the correctness of the algorithms we have to prove that both TopDown and
BottomUp compute a safe generalisation function. For TopDown, we first show that TopDownBa-
sic is a safe generalisation function and then we show that TopDown computes the same result
as TopDownBasic (hence TopDownis a safe generalisation function). This is formally stated in
Theorems 5.3.4, 5.3.5.

3For simplicity, we omit the other parameters of the procedure.
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Theorem 5.3.4 The TopDownBasic algorithm computes a safe generalisation function.

Theorem 5.3.5 For any source point p, any time influence parameter α , any Ω() function,
and any the integer value k it holds that TopDownBasic(p,α,Ω,k) = TopDown(p,α,Ω,k).

Before presenting the formal result for BottomUp in Theorem 5.3.7, we first present Prop-
erty 5.3.6 that formally states that BottomUpInversion actually computes the inversion for Bot-
tomUp.

Property 5.3.6 Let G be the generalisation function computed by BottomUp with time influence
parameter α , counting function Ω(), and integer value k. For each ST-cell c, BottomUpInversion(c,
α , Ω(), k) computes IG (c).

Theorem 5.3.7 The BottomUp algorithm computes a safe generalisation function.

The formal proofs of the above theorems are reported in Appendix A. Intuitively, the idea of
both proofs is the following: we first show that if the algorithm does not return fail, it returns a
ST-cell c that contains the source point p (this guarantees that the algorithm actually computes
a generalisation function) and then, according to Definition 5.3.4, we prove that Ω(I(c)) is not
smaller than k.

Analysis of computational complexity
We first consider the worst-case time complexity. For each iteration of the main loop, the only
operation in TopDown that does not require a constant time is the computation of Ω(). In the
worst-case (i.e., when the algorithm returns a leaf node) TopDown computes Ω() once for each
level of the tree. Hence the worst-case time complexity of TopDown is linear in the height of the
generalisation tree times the complexity of computing Ω.

Before analysing the complexity of BottomUp, we first introduce a simple but effective
optimisation. In principle the computation of BottomUpInversion(c), as described in Proce-
dure 12, would require to compute Ω for each node in the subtree with root c. However, by
definition of BottomUp, if c is an internal node, we compute BottomUpInversion(c) only if
we have already computed BottomUpInversion(c′) for one child c′ of c. By storing the result
of BottomUpInversion(c′), we avoid to re-process the subtree with root in c′ when computing
BottomUpInversion(c). With this optimisation, we never compute Ω(c) twice for the same ST-
cell c. Consequently, in the worst-case (i.e., when BottomUp traverses the generalisation tree up
to the root), we need to compute Ω for each node in the tree.

Comparing the two algorithms, given a generalisation tree of height h, TopDown requires
computing Ω a number of times linear in h, since TopDown “moves down” in the generalisation
tree at each iteration. Vice versa, in the worst case BottomUp needs to process all nodes of
the generalisation tree, hence it is linear in the number of nodes (i.e., 2h) and, consequently,
exponential in h. We recall that, by definition of the generalisation tree (see Section 5.3.3), the
height of the tree (and hence the number of its node) is a system parameter. The choice of a value
for h is subject to a trade-off. On one side, for higher generalisation trees we get smaller bottom
ST-cell and this positively impacts on the average size of the generalisation regions (this strongly
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affects BottomUp and, minimally TopDown). On the other side, for larger values of h we have
a higher computation time (again, this affects BottomUp significantly and and TopDown only
minimally). In Section 5.3.4 we show the impact of this parameter in our experimental setting.

Let’s now consider the worst-case time complexity of the two algorithms by also taking
into account the complexity of computing Ω. Clearly, the complexity of Ω depends on the data
structure used to store the objects. In our experiments we use two different data structures. As
we illustrate in Section 5.3.4, by using one of them we have a worst-case time complexity of Ω

linear in the number of leaf ST-cells contained in the considered area. With this data structure,
we can evaluate the complexity of the two algorithms in terms of total number of leaf ST-cells
that each algorithm needs to process in all the computations of Ω. According to this metric, given
h the height of the generalisation tree, the worst-case time complexity of TopDown is O(2h+1).
Indeed, in the first iteration TopDown computes Ω on the entire spatio-temporal domain (i.e., 2h

leaf ST-cells), in the second iteration it computes omega on half of the spatio-temporal domain
(i.e., 2h−1 leaf ST-cells) and so on. Consequently, in the worst-case, the number of processed
ST-cells is ∑

h
i=0 2h = 2h+1−1. The worst-case time complexity of BottomUp is O(h ·2h). Indeed,

in the worst-case BottomUp computes omega for each node of the generalisation tree. Since, the
union of all the nodes at the same height yields the entire spatio-temporal domain (i.e., 2h leaf
ST-cells), the total number of ST-cells to process is equal to h ·2h. As a result, comparing the
worst-case time complexity of the two algorithms, BottomUp is expected to be only h/2 times
slower than TopDown.

5.3.4 Experimental evaluation

In this section we evaluate the SafeBox computation algorithms described in Section 5.3.3. Using
two different datasets, we first evaluate the effectiveness of TopDown and BottomUp algorithms
by showing how parameter k impacts on the data and service quality, i.e., the spatial size and
temporal duration of SafeBoxes. Intuitively, as long as a spatio-temporal region is a SafeBox, it
should be as small as possible so as the approximation involved in its use is reduced. Secondly,
we empirically evaluate the performance of the two algorithms in terms of computation time.
Finally we compare TopDown and BottomUp with our previous solution Grid [41].

Experimental setting

The spatial area in which the experiments have been conducted is the city of Milano and the
total size of the map is 325 km2. In our experiments we use two datasets: the first represents the
movement of a set of users, as described in Section 5.3.4, while the second dataset includes all
the shops in Milano with opening hours (see Section 5.3.4). Hence the “objects” counted by Ω()
will be users and shops, respectively. The choice of using different datasets is aimed at testing
our algorithms with both dynamic and relatively static data. The results are computed as the
average, as well as minimum and maximum, out of 1000 runs. In each run, a random source
point is chosen. The parameter k represents the minimum number of objects that each SafeBox
returned by the algorithms should contain.

The α value, as described in Section 5.3.3, determines different ratios between the spatial
and temporal sizes of the SafeBox. The choice of α is strictly related to the application we are
using: if we are in a real time environment we need to keep the temporal size, and hence temporal
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obfuscation, as small as possible, while in other contexts it could be useful to have smaller spatial
areas or balance the space and time components. In all the experiments presented in this section
we use a value of α = 1.6×10−5 such that α ·60s = 0.787km: this value, chosen empirically,
produces SafeBoxes with a duration that is, on average, under 15 minutes. This is a reasonable
length if, for instance, we think about a service that uses the position for sharing purposes.

Other parameters that should be taken into account are the subdivisions along the two spatial
dimensions and the temporal dimension. The finer is the subdivision, the smaller are the resulting
leaf ST-cells: this implies that the height of the corresponding generalisation tree is higher,
which negatively impacts on the computation time. The number of leaf ST-cells affects both the
computational complexity, as pointed out in Section 5.3.3, and the precision of the algorithms.
We vary the number of leaf ST-cells from 2,048 to 8,388,608. This yields to a spatial subdivision
that varies from about 1.1km to 70m and a temporal one from 75 minutes to 2 minutes. Details of
the subdivisions are shown in Table 5.1 with default values, as used in some experiments, written
in bold. The spatial projection of each leaf ST-cell is square-shaped.

The two algorithms have been implemented in Java. Geographical positions are represented
as latitude and longitude values in decimal degrees. The experiments have been conducted is on
computer with 2.5GHz Intel i5 CPU with 4GB of main memory.

Subdivision Area (Km2) Duration (min)
MilanoByNight Google Shops

Coarsest 1.28 45 75
Coarse 0.32 22 37
Mid 0.08 11 18
Fine 0.02 5 9
Finest 0.005 2 4

Table 5.1: Spatial and temporal leaf ST-cell size

MilanoByNight
MilanoByNight is an artificial dataset of user movements obtained using a simulation that reflects
a typical scenario of a weekend night in the city of Milano. It includes 100,000 potential users,
moving to one or more entertainment places in a period of 6 hours4.

The average density of the users within this area is 465 users/km2. In this scenario, given a
ST-cell c, Ω counts the number of users within c, according to the appearance semantics described
in Section 5.3.2. In Table 5.2 the values of k are summarised.

Parameter Values
k 20, 40, 60, 80, 100, 120, 140, 160

Table 5.2: MilanoByNight k values

4http://everywarelab.di.unimi.it/lbs-datasim

http://everywarelab.di.unimi.it/lbs-datasim
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Google Shops
This dataset considers the same spatial area of MilanoByNight, but instead of considering users
as the set of objects, it considers shops. The dataset includes 12,958 shops whose position and
properties were retrieved through Google Places API, that we consider a trusted third party in our
architecture. An opening timetable is assigned to each shop, using real values when available
(about 2,000 shops) and assigning default opening times in the other cases. The considered
temporal domain is 10 hours long, from 9.00AM until 19.00PM of a given day.

The Ω() function counts the open shops in candidate SafeBoxes. We test our algorithms with
both the semantics described in Section 5.3.2: appearance and persistence. Important parameters
for the experiments on this dataset are the number k of shops and the persistence interval duration
D. Their considered values are reported in Table 5.3.

Parameter Values
k 2, 4, 6, 8, 10, 12, 14, 16

D (minutes) 5, 15, 30

Table 5.3: GoogleShops parameters values

Computation of the counting function

The efficiency of both algorithms depends on how Ω is computed. Several techniques can be used
to implement Ω and optimisations are possible depending on the application context. If the objects
that the application needs to count are relatively static in both time and space, as for example in
the case of train stations, then the value of Ω for each ST-cell in the whole generalisation tree
can be pre-computed. This implies that given a ST-cell c, Ω(c) can be obtained in constant time,
independently from c being the whole spatial and temporal domain S×T or a leaf ST-cell.

In contrast, in this experimental evaluation, we assume that the data to be counted is not
static and cannot be precomputed. This assumption is reasonable for both datasets we use in
our experiments. In the MilanoByNight dataset, Ω() counts users considering their location at
given time instants and, hence, it cannot be precomputed because movements are unpredictable.
The other dataset includes more than 10,000 shops with their opening hours, and in a big city
like Milano shops can frequently change their presence, location, and opening times, specially
in the city centre. Hence, for both datasets we assume that counting is performed by accessing
an external service as opposed to querying a static internal database and we do not perform
any pre-computation of Ω() for larger areas like the ones corresponding to internal nodes of the
generalisation tree. Indeed, for the Google shops dataset, we also test the algorithm with online
retrieval of data from Google servers.

In the MilanoByNight dataset, we store, for each leaf ST-cell, the set of users reported to be
in that ST-cell (both in space and time). Consequently in order to compute Ω on an area A, it is
necessary to process all the leaf ST-cell contained in A.

In the Google shops dataset we use two different approaches. In the first approach (see
Sections 5.3.4 and 5.3.4), we store objects in a data structure build as the spatial projection of the
leaf ST-cells (we recall that objects in this dataset are not moving). In each cell of this spatial
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grid we store the shops whose position is within the cell, each one paired with its corresponding
opening hours (stored as a list of intervals). In the second approach (see Section 5.3.4) we
compute Ω by actually retrieving shops information with online queries to Google servers.

Evaluation

In this section we analyze and discuss the experimental results. In Section 5.3.4 we present the
MilanoByNight results, and in Section 5.3.4 we show the results with the Google shop dataset,
both adopting appearance semantics. Experimental results with persistence semantics using the
Google shop dataset are shown in Section 5.3.4. In Section 5.3.4 we show the results with the
online retrieval of the Google Shops dataset, while in the last set of experiments in Section 5.3.4
we compare the TopDown and BottomUp with the Grid algorithm [41].

In all the test we conducted, the percentage of fail result returned by BottomUp is less than
0.05% (i.e., 54/112,000) while TopDown never returned fail, as expected (see Section 5.3.3).

Evaluation with MilanoByNight dataset

The first set of experiments tests the two algorithms’ precision and performance with the Mi-
lanoByNight dataset adopting the appearance semantics.
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Figure 5.12: Results with MilanoByNight dataset
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In Figure 5.12(a) we compare the average size of the spatial areas of the SafeBoxes returned
by TopDown and BottomUp for different values of k. As expected, by increasing the value of k,
slightly larger areas are returned by both algorithms. The comparison between the two algorithms
shows that on average the BottomUp algorithm produces much smaller areas (up to an order of
magnitude) with respect to the TopDown algorithm, hence granting a better service quality. A
similar result is shown in Figure 5.12(b), in which the duration of the SafeBoxes is compared.

In Figure 5.12(a), the bars represent the maximum and the minimum size of the areas returned
by BottomUp. The area’s variance for the TopDown algorithm is not reported since it is small
compared to BottomUp one. The reason of a high variance for BottomUp can find an explanation
in the generalisation strategy used by the algorithm. Indeed, the algorithm takes decisions based
on local conditions starting from the leaf nodes. A non-uniform distribution of objects in the
considered space leads to significantly different decisions depending on the position of the source
point leading to significantly different generalisations.

The overall precision, in both time and space, is summarised in Figure 5.12(c) that compares
TopDown and BottomUp in terms of the “size” of the returned SafeBoxes: technically the size of
a SafeBox is the level of the SafeBox in the generalisation tree described in Section 5.3.3. This
implies that lower is the value, the smaller is the SafeBox in both time and space, and hence the
higher is the precision and the service quality. Figure 5.12(c) confirms the experimental results
of area and duration comparisons: the BottomUp algorithm produces smaller SafeBoxes up to 3
levels in the generalisation tree, meaning that a TopDown SafeBox can be 23 = 8 times bigger
than a BottomUp SafeBox.

Figure 5.12(d) shows how the subdivision impacts on the performance of both algorithms.
We can observe that the execution time of BottomUp algorithm is only slightly affected by the
increase of the number of leaf ST-cells, while the TopDown performance is quite related with
it. The execution time is under 100 milliseconds in the coarsest subdivision and more than 700
milliseconds in the finest subdivision: this last value can be incompatible with a service that
needs to return SafeBoxes in real time.

Evaluation with Google shop dataset with appearance semantics
The second set of experiments tests the two algorithms precision and performance with the
Google shops dataset with appearance semantics.

Figure 5.13(a) shows the size of the SafeBoxes returned by TopDown and BottomUp. By
increasing the value of k, larger areas are returned by both algorithms. The SafeBox returned
by BottomUp is on average smaller in size than the one returned by TopDown, as shown in
Figure 5.13(a). Therefore, we can conclude that the BottomUp algorithm is preferable since it
produces on average smaller SafeBox, granting a better data and service quality.

Comparing this result with the one of the MilanoByNight dataset we can observe that the
average size of SafeBoxes returned by TopDown with the Google shops dataset is smaller in
comparison with the one returned with MilanoByNight; conversely the average size of SafeBoxes
returned by BottomUp is quite the same. The reason is that the distribution of users is less uniform
than the distribution of the shops and this negatively affects the performance of TopDown. Vice
versa BottomUp is not significantly affected by the distribution of the objects in the space.

The execution times are shown in Figure 5.13(b): we can observe an opposite trend with
respect to the MilanoByNight dataset. The computation time of TopDown is always less than
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Figure 5.13: Results with Google Shops dataset - Appearance semantics

one millisecond while the execution time of the BottomUp algorithm is slightly affected by the
increase of the number of leaf ST-cells. Indeed we can observe that with the finest subdivision
BottomUp takes up to 30 milliseconds. The difference with respect to the MilanoByNight dataset
is due to the different implementation of the Ω function. In the Google shops setting, TopDown
performs better since the computation of Ω() is very efficient, while in BottomUp the computation
time is affected by the computation of the Residuals function. In any case, the computation time,
even with the BottomUp algorithm, is less than 30 milliseconds, hence granting a quick response
time.

Evaluation with Google shop dataset with persistence semantics
This set of experiments evaluates the two algorithms precision and performance with the Google
shops dataset adopting the persistence semantics. Figure 5.14(a) shows the average SafeBox size
of TopDown and BottomUp algorithms when varying the persistence interval duration D from 5
minutes to 30 minutes. As expected, for shorter intervals the SafeBoxes are smaller, on average.
This is due to the fact that, for a given ST-cell c, if D is short, the objects spatially contained in c
are more likely to be counted more times in the computation of Ω(c). Clearly larger values of Ω

result, for both algorithms, in smaller Safe10000Boxes.
Figure 5.14(b) shows the computation time of the algorithms varying the persistence interval

duration. As also shown in Figure 5.13(b), the computation time of TopDown is not affected by
the increase of the persistence interval duration. Conversely, BottomUp algorithm shows a small
increase of the computation with the 30 minutes persistence interval duration. This is due to the
fact that longer persistence interval duration leads to larger SafeBoxes whose computation with
BottomUp requires more iterations of the algorithm and hence an increase in the computation
time, affected in particular by the Residuals execution time. Indeed, the Residuals function is on
average called 120 times with persistence interval duration D = 5 minutes and nearly 800 times
considering a persistence interval duration of 30 minutes.

Figure 5.14(c) shows the SafeBox size by varying k with different value of persistence interval
duration D for the TopDown algorithm. The average size of the SafeBoxes grows with larger value
of k and longer persistence interval durations, confirming both the results shown in Figure 5.13(a)
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Figure 5.14: Results with Google Shops dataset - Persistence semantics

and in Figure 5.14(a). Figure 5.14(d) shows a similar result for BottomUp.

Evaluation with Google shop dataset, appearance semantics and online retrieval of
data

Similarly to Section 5.3.4, in this set of experiments we evaluate the performance of TopDown
and BottomUp algorithms with the Google Shops dataset adopting the appearance semantics
and varying k. In this set of experiments when data is needed to compute Ω we retrieve it
from Google servers through the Google Places API. Clearly, in this set of experiments the
generalisation algorithms need to issue a (possibly large) number of requests and this leads, in
some cases, to much longer computations. In this set of experiments we give a limit of one minute
for each generalisation. If the generalisation algorithm does not terminate within this time, the
generalisation procedure is interrupted and it is considered “timed-out”.

Figure 5.15(a) shows the percentage of runs that were timed-out for our proposed algorithms.
We can observe that for k = 2 this percentage is of about 2% and 6%, for BottomUp and TopDown,
respectively. When increasing the value of k up to 16 the percentage grows, since both algorithms
need to retrieve more points (see Figure 5.15(c)). However, while with TopDown more than 60%
of the generalisation runs are timed out with k = 16, with BottomUp the percentage is much
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Figure 5.15: Results with online retrieval of Google Shops dataset

smaller (i.e., less than 10%).
Figure 5.15(b) shows the average computation time computed among the runs that were not

timed-out. We can observe that TopDown has a much larger computation time than BottomUp for
different values of k. The main reason for this result is that BottomUp requires to retrieve less
points. Indeed in Figure 5.15(c) we can observe that, for all considered values of k, BottomUp
requires about one fifth of the points that are needed by TopDown.

Comparison with Grid algorithm
In this last set of experiments we compare the TopDown and BottomUp algorithms with the Grid
spatial generalisation algorithm, presented in [41].

Grid

We briefly recall that Grid algorithm adopts a top-down strategy, in which a total order on
the data (e.g., users’ locations) needs to be established for computing the generalised area.
This algorithm partitions the set of objects in two steps. During the first step, the objects
are totally ordered considering their location along the x axis, then along the y axis and
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Figure 5.16: Comparison with existing solutions

eventually according to their user identifier. This ordered set of objects is then partitioned
into blocks of consecutive objects, each block having the same number of objects except
the last block that may contain more objects than the previous ones. Only the objects that
are in the same block as the issuer, are considered in the second step in which objects are
ordered considering first their location along the y axis, then their location along the x
axis and eventually according to their user identifier. Using this ordering, all the objects
are partitioned similarly to what is done in the first step. Eventually, the set of objects that
are in the same block as the issuer is returned.

These experiments have been run with the MilanoByNight dataset adopting the appearance
semantics. As in the previous experiments, the spatial domain S is Milano’s area, but the temporal
domain consists in only a screenshot of MilanoByNight’s temporal duration, since the Grid
algorithm provides only a spatial generalisation.

In Figure 5.16(a) we can observe, for different values of k, that Grid returns, on average,
smaller areas and hence can provide a higher data utility. However Figure 5.16(b) shows that
Grid has a much higher computation time.

In our previous work [41] we compared Grid with the Hilbert Cloak algorithm presented in
[29]. From the evaluation it emerges that Hilbert Cloak is faster than Grid but returns, on average,
larger areas. Consequently, we can derive that Hilbert Cloak has about the same performance as
TopDown and BottomUp for the computation time and the quality of the result. However, both
Grid and Hilbert Cloak suffer from a major problem: they require to know all the points in the
spatial domain. This means that, if the test were conducted with the online retrieving of data (like
in Section 5.3.4), both Grid and Hilbert Cloak would always be timed-out.

5.4 Summary

In this section we addressed the problem of privacy preservation through spatial and spatio-
temporal generalisation and we described the formal characteristics of three generalisation
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technique specifically designed for privacy-aware systems.
We first formalise G onio and A equus spatial generalisations and we study their computational

characteristics. In particular our A equus granules have the property that, independently from
the latitude considered, each region at the same level has the same area, characteristic that is
not granted in G onio generalisation and in others similar proposal in the literature. We formally
prove that the basic operations of both G onio and A equus granularities can be computed in
constant time.

With the SafeBox proposal we presented a new problem formalisation that makes the general-
isation technique independent from the semantics of the generalised region. This approach makes
it possible to define generalisation algorithms that can be easily adapted to different applications
and privacy preferences by simply changing the counting function Ω that defines the semantics
of the generalised regions. We showed examples of application of our algorithm with two Ω

functions counting different types of objects, and with two different semantics, but its applica-
tion can be easily extended to capture other types of objects and different semantics. Another
innovative aspect of the proposed model is that it re-defines a formal property that generalisation
functions should satisfy in order to be safe with respect to the inversion attack. The BottomUp
algorithm satisfies this property and also has the advantage of being applicable also when the
generalisation algorithm needs to process dynamic data possibly collected from third parties (e.g.,
Google Maps). We experimentally showed that this algorithm is efficient and effective.





6. Conclusions

In this dissertation we have focused on the risks for the user’s privacy when the location informa-
tion is shared with other users and with the service provider.

6.1 Summary of the contributions

The first goal was to highlights the danger in indiscriminately sharing locations by the users. We
have studied the practical threats in using distance preserving transformations as privacy preserv-
ing technique in the context of friend finder services. Even if distance preserving transformations
have already been proven as theoretically unsafe, we studied them practically and we have discov-
ered that is feasible to infer users’ locations quite precisely. After studying comprehensively an
already known threat, we have faced the formalisation of a "new threat": the co-location privacy
issue in Geo-Social Networks. We believe that the formalisation of this threat is the foundation
upon which a targeted privacy preserving technique can be developed.

Once the risks for the users’ privacy have been spotlighted in the first part, the second
objective of this dissertation was to protect users’ location privacy. We have focused on two main
categories:

1. For privacy techniques that make use of space transformations we have proposed a novel
technique for distance-based services capable of protecting users’ privacy even if the
adversary knows 1) the users’ distribution in the space 2) the distances between some pairs
of users. The safety of distance preserving transformations is forced through a uniformation
of the users’ distribution in the space. We have proposed two novel algorithms capable of
computing such uniformation and we have experimentally evaluated them.

2. For privacy techniques in which the privacy was granted by the use of a location’s gener-
alisation, we have proposed three (spatial and/or temporal) cloaking techniques. These
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generalisation techniques are tools, specifically designed for location privacy, that can be
used by any techniques in which a location generalisation is required. The generalisations
are designed to be fast to compute and flexible enough to adapt to several cases of use, in
order to fit in many privacy preserving techniques.

In this dissertation, through the identification of the threats and the proposal of new privacy
preserving techniques and tools, we have contributed to build the basis upon which the protection
of the users’ location privacy will be, one day, preserved in every context and application.

6.2 Future works and general location privacy issues

Undoubtedly, we are far from a comprehensive solution that can solve the overall location privacy
issues.

First of all, new threats are stemming from the exploitations of the users’ locations in new
applications and services. As the birth and the spread of Geo-Social Networks have caused new
risks for the users’ privacy (as absence and co-location), it is possible that in the future new
location-based applications will create the conditions under which novel privacy threats will
spawn. Consequently, a future work will be the formalisation of these new privacy threats, since
we believe that such formalisation is needed to better understand the problem, before proposing
new privacy preserving techniques.

Even without looking to new privacy threats and despite the irrefutable efforts of the re-
searchers that have proposed techniques for protecting the location privacy so far, nowadays
the users’ location privacy is not always protected and new privacy preserving techniques are
needed. We believe that each proposed privacy protection technique should 1) protect the users’
privacy efficiently 2) be compliant with the business model. Since most of the location based
services and geo-social networks are business-oriented it is necessary that the privacy techniques
could be usable in this context, that it is often conflicting with the academic one. An interesting
future work will be the proposal of an effective solution that could protect the users’ against the
co-location threat in Geo-Social Networks, that we have formalised in Chapter 3. Moreover, since
we have seen in Chapter 5 how to compute a spatio-temporal generalisation given a location and a
time, an extension can be the computation of such spatio-temporal taking into account trajectories
instead of precise positions.

A question that often arises when taking into consideration a privacy preserving technique
is: how much this technique protects the users? The quantification of location privacy is not
straightforward and can be challenging to compare different techniques, that are targeted to
protect users’ privacy from adversaries with specific knowledge. As a future work, we want to
investigate in this direction, such that it could be easier to understand the level of protection
granted by a given technique, evaluating its effectiveness also in real settings.

Another problem is to understand how the users perceive the threats in sharing and using
their locations, or in other words, how can we, as scientists, capture users’ privacy preferences? It
is not feasible that the users themselves decide all the settings that are often needed for a privacy
preserving technique to work properly. We believe that much work has done in this direction but
further it will be needed in the future to extract and infer correctly users’ privacy preferences in a
intuitive way.
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Concluding, we have seen that location privacy is a complex topic, whose complexity derives
from the intrinsic quantity of information that resides in the location itself, as discussed in
Chapter 1. This complexity reflects in the difficulties of finding definitive solutions to protect
the users’ privacy. For this reason we believe that a mere technical solution, no matter how
sophisticated, cannot be sufficient without the assistance of laws. If there is no limits upon
the quantity and the precision of the information that a company or other persons can legally
acquire on the users, then there will be not so much to do from a technical point of view. For
these reasons, in the future, we wish for a strict and useful collaboration between institutions’
legislators and computer scientists, such that users’ privacy will be eventually preserved under
any circumstances.





A. Appendix Proofs

A.1 Proof of Theorem 3.2.1

Proof. Let’s consider the area iPlusD: if the user u is located everywhere else then the closeness
probability is 0, since the two users locations are farther than D. Indeed, if we consider

di f fCu = cu− iPlusD

then ∀p ∈ di f fCu and ∀p′ ∈ cu′ d(p, p′)> D. Given that p = locu(t) with p ∈ iPlusD, we now
want to compute the probability pu′ that the user u′ is within distance D from p. This probability
is equal to check the probability that u′ is located in the circle cp

iD centred in p with radius D,
precisely

pu′ =
A(cp

iD∩ cu′)

A(cu′)

The intersection between cp
iD and cu′ is needed to compute with precision the probability of u′ to

be within distance D from p, because the probability that u′ is located in p is null for each p 6∈ cu′ .
From set theory we know that A ⊃ (A∩B). If A and B are spatial regions, we can conclude
that the area of the region A is greater or equal than the area of the intersection between A and
the region B. Since A(cp

iD)≥ A(cp
iD∩ cu′), A(cp

iD) is an upper bound for A(cp
iD∩ cu′). Hence, we

approximate the probability pu′ with the area of a circle of area D, cp
iD. Furthermore since the

area of cp
iD does not depend on its center, we can compute cp

iD = π ·D2

pu′ =
A(cp

iD∩ cu′)

A(cu′)
≈ pApproxu′ =

A(cp
iD)

A(cu′)
=

π ·D2

A(cu′)

we can conclude that
pu′ ≤ pApproxu′
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In conclusion,

PcloseD(t,u,u′)≤
A(iPlusD)

A(cu)
· pApproxu′ =

A(iPlusD)

A(cu)
· π ·D2

A(cu′)

�

A.2 Proof of Theorem 3.2.2
Proof. Let’s consider the circle cMinusD centred in (xu′ ,yu′) with radius (r′−D): iMinusD =
cMinusD∩cu. iMinusD is an approximation of the area in which u can be located to have closeness
probability 6= 0

For construction, for all the points p ∈ cMinusD, and (since iMinus⊂ cMinusD this holds for
all the points p ∈ iMinusD) the circle centred in p with radius D stand inside cu′ . If the user u
is located in a point p ∈ iMinusD ⊂ cMinusD then the probability that u′ is located in the circle
centred in p with radius D is always equal to A(cp

iD)
A(cu′ )

. Given that p = locu(t) with p ∈ iMinusD, we
now want to compute the probability pu′ that the user u′ is within distance D from p. The exact
closeness probability is equal to

PcloseD(t,u,u′) =
A(iPlusD)

A(cu)
· A(ciD)

A(cu′)

Since iPlusD ⊃ (cu∩ cu′)⊃ iMinusD and consequently A(iPlus)> A(iMinus), it holds that:

PcloseD(t,u,u′) =
A(iPlusD)

A(cu)
· A(ciD∩ cu′)

A(cu′)
≥ A(iMinusD)

A(cu)
· A(ciD∩ cu′)

A(cu′)

where for all points p ∈ iMinusD A(cp
iD∩ cu′) = A(cp

iD) = π ·D2. Hence,

PcloseD(t,u,u′)≥
A(iMinusD)

A(cu
· A(ciD)

A(cu′)
=

A(iMinusD)

A(cu
· π ·D2

A(cu′)

�

A.3 Proof of Theorem 4.3.1
Proof. a) Property of the transformation. We have to show that∫ x

0

∫ y

0
g(w,z)dwdz =

x′ · y′

|S|

where (x′,y′) = f (x,y) and f () is the function computed by the algorithm. The proof has 2 steps:
a1) the property holds considering separately each cell c in S and its transformation in c′ by the
algorithm. This can be verified by considering as point (0,0) the lower left corner of the cell and
as point (x,y) any other point in the cell. It is easily seen that

Area(c)
|S′|

=
NumU(c)
NumU(S)
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i.e., the area of the deformed space corresponding to c with respect to the total area of the space
has the same proportion than the number of users in the original c with respect to the total number
of users.
a2) The second step shows that if the property holds for each cell in S, then it holds for the whole
space S. Intuitively, any rectangular area R in S′ identified with its lower left corner in (0,0)
and upper right corner in (x′,y′) with x′ ≤ xmax and y′ ≤ ymax can be partitioned in rectangles
that are properly contained in a cell c′i (i.e., in one of the deformed areas). In some cases the
rectangle will have as lower left corner the lower left corner of the cell, in others will be the
complementary space with respect to one that has the lower left corner of the cell. It is easily seen
that the property holds for each of the sub-rectangles. Then, if R1,R2 are two of these rectangles,
observing that they do not overlap, we have that

Area(R1)

|S′|
=

NumU(R1)

NumU(S)
and

Area(R2)

|S′|
=

NumU(R2)

NumU(S)

implies

Area(R1)∪Area(R2)

|S′|
=

NumU(R1)+NumU(R2)

NumU(S)

Since this can be applied to the whole set of sub-rectangles partitioning R, the property holds for
R.

�

A.4 Proof of Theorem 4.3.2
Proof. Let Z(mxm) be the number of steps the uniformRecursively algorithm takes on an (mxm)
grid. Assume (mxm) = n so m = sqrt(n). Now we have the following recurrence relationship
based on the algorithm:
Z(mxm) = Z(k1xk2)+Z(k3xk4)+2m, where k1+ k2 = m
Z(1x1) = 1.

So the algorithm takes 2m time to decide where (and type) to cut, and only takes constant
time to do the real "cutting". And then calls itself on the two partitions of sizes (k1xk2) and
(k3xk4). Note either k1 or k2 is a multiple of m, and either k3 or k4 is a multiple of m due to
how we cut.) So the execution is like a tree. The worst scenario (most steps for Z) is totally
unbalanced tree, i.e., k1 = 1 and k2 = m, in which case k3xk4 = (m−1)xm.

Clearly, Z(1xm) = m. Hence worst case: Z(mxm) = Z(m− 1xm)+ 3m. Now it should be
clear the highest tree that Z(mxm) generates is of height at most 2m.
Z(mxm) = Z(m−1xm)+3m
Z(m−1xm) = Z(m−2xm)+3(m−1)
. . .
Z(1xm) = m+3
(i.e., each step uses the worst case scenario and the above is about 2m lines.). So Z(mxm) =
3m+3(m−1)+ . . .+3∗0+3+m (this has at most 2m items)
Hence Z(mxm) = O(mxm) = O(n). �
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A.5 Proof of Property 5.2.1
Proof. By Definition 5.2.1, we need to prove that index i =G l[p] is defined, for any l ∈ N and
for any p = 〈lat, lon〉 ∈ S. Since lon ∈ [−180,180), by Equation 5.6, Xi ∈ [0,2l) = [0,2l − 1].
Since lat ∈ (−90,90), by Equation 5.7, Yi ∈ [0,2l) = [0,2l−1]. Consequently, by Equation 5.1,
i ∈ [0,4l). By Definition 5.2.3, G l(i) is defined. �

A.6 Proof of Property 5.2.2
Proof. By Definition 5.2.2, we need to prove that, for any level l, given i, j ∈ [0,4l), with i 6= j,
G l(i)∩G l( j) = /0. Since i 6= j, then Xi 6= X j or Yi 6= Yj or both. We now show that if Xi 6= X j

then G l(i)∩G l( j) = /0. The proof is analogous for the case Yi 6= Yj. Without loss of generality,
let Xi < X j. By Definition 5.2.3, maxLon of G l(i) is less than or equal to minLon of G l( j) and
hence, by Definition 5.2.3, G l(i)∩G l( j) = /0.

�

A.7 Proof of Property 5.3.1
Proof. By Definition 5.3.3, for any spatio-temporal area A, I(A)≤ A. Hence, I(G (p))≤ G (p).
Consequently, due to Definition 5.3.1, Ω(G (p))≥Ω(I(G (p))). Since, by Definition 5.3.4, for
any source point p such that G (p) is defined, Ω(I(G (p)))≥ k, then Ω(G (p))≥Ω(I(G (p)))≥ k.
Hence, by Definition 5.3.2, G (p) is a SafeBox. �

A.8 Proof of Property 5.3.2
In this proof we use |A|T and |A|S to denote the temporal and spatial projections, respectively, of
a spatio-temporal area A.

Proof. By Definition 5.3.1 we show that, for each pair of spatio-temporal areas A, A′, if A⊆ A′,
then Ω(A) ≤ Ω(A′). Since A ⊆ A′, then |A|T ⊆ |A′|T and |A|S ⊆ |A′|S. Consequently, for each
object o such that ∃t ∈ |A|T and loc(o, t) = p ∈ |A|S, it also holds that t ∈ |A′|T and p ∈ |A′|S.
Consequently,

{o ∈ O s.t. ∃t ∈ |A|T with loc(o, t) ∈ |A|S} ⊆ {o ∈ O s.t. ∃t ∈ |A′|T with loc(o, t) ∈ |A′|S}

Hence, by Definition 5.3.6, Ω(A)≤Ω(A′). �

A.9 Proof of Property 5.3.3
In this proof we use |A|T and |A|S to denote the temporal and spatial projections, respectively, of
a spatio-temporal area A.

Proof. By Definition 5.3.1 we show that, for each pair of spatio-temporal areas A, A′, if A⊆ A′,
then Ω(A) ≤ Ω(A′). Since A ⊆ A′, then |A|T ⊆ |A′|T and |A|S ⊆ |A′|S. Consequently, for each
object o, if

∃i ∈ I s. t. ∃t ∈ (i∩|A|T ) and loc(o, t) = p ∈ |A|S
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then it also holds that t ∈ (i∩|A′|T ) and p ∈ |A′|S.
Consequently, for each object o ∈ O, it holds that:

{i ∈ I s. t. ∃t ∈ (i∩|A|T ) and loc(o, t) = p ∈ |A|S} ⊆
{i ∈ I s. t. ∃t ∈ (i∩|A′|T ) and loc(o, t) = p ∈ |A′|S}

Hence, by Definition 5.3.7, Ω(A)≤Ω(A′). �

A.10 Proof of Theorem 5.3.4
Proof. We first prove that TopDownBasic computes a generalization function and then we show
that it computes a safe generalization function.

We prove that TopDownBasic computes a generalization function by showing that, for any
source point p, time influence parameter α , Ω() function and integer value k, if TopDownBa-
sic(p,α,Ω(),k) does not return fail, then p∈ TopDownBasic(p,α,Ω(),k). We prove by showing
that variable c (that is eventually returned by the algorithm) contains p at each iteration of the
algorithm. In the first iteration variable c is set to S×T , so p ∈ c. In any iteration such that p ∈ c,
either c is returned or c is updated to a new value c′ such that p ∈ c′. Indeed, if c is not returned, it
is partitioned in c1 and c2. Since p ∈ c, then either p ∈ c1 or p ∈ c2 and the value of c is updated
to c1, if p ∈ c1 or to c2, if p ∈ c2.

We now show that TopDownBasic is a safe generalization function according to Defini-
tion 5.3.4. Indeed we show that for any source point p, time influence parameter α , Ω() function
and integer value k, if TopDownBasic(p,α,Ω(),k) does not return fail, then, given A = Top-
DownBasic(p,α,Ω(),k), it holds that Ω(I(A))≥ k.

To show this result, we first show that, if TopDownBasic(p,α,Ω(),k) does not return fail,
then, given A = TopDownBasic(p,α,Ω(),k), it holds that I(A) = A. By Definition 5.3.3, we
show that, for each point p′ ∈ A, TopDownBasic(p′,α,Ω(),k) = A. We prove this by showing
that, at each iteration of the algorithm, variable c contains both p and p′. The result follows since
the termination condition (Ω(c1)≥ k∧Ω(c2)≥ k) does not depend on the source point. In the
first iteration, c = S×T , so p, p′ ∈ c. In any iteration such that p, p′ ∈ c, then either c is returned
or c is updated to a new value c′ such that p, p′ ∈ c′. Indeed, if c is not returned, it is partitioned
in c1 and c2 and, if p ∈ c1, then also p′ ∈ c1 and analogous for c2. So the new value of c′ contains
both p and p′.

Since I(A) = A, it is now easy to show that Ω(I(A))≥ k by showing that Ω(A)≥ k. Indeed,
if the algorithm does not return fail, then it returns a ST-cell c such that Ω(c) ≥ k. At the
first iteration, c = S×T and Ω(c) ≥ k (otherwise the algorithm would return fail). When any
children c′ of c is such that Ω(c′) < k the algorithm terminates returning c so the algorithm,
when not returning fail, always returns a ST-cell c such that Ω(c) ≥ k. Hence, as proved,
Ω(I(c)) = Ω(c)≥ k and consequently TopDownBasic is a safe generalization function. �

A.11 Proof of Theorem 5.3.5
Proof. By definition of TopDownBasic and TopDown(Algorithms 9 and 10) it is easily seen that
both algorithms return fail only if Ω(S×T )< k. Hence, given a source point p, a time influence
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parameter α , function Ω() and an integer value k, TopDownBasic(p,α,Ω(),k)=fail if and only if
TopDown(p,α,Ω(),k) = fail.

If TopDown(p,α,Ω(),k) does not return fail, then it returns a ST-cell c′. We now show that
(1) p ∈ c′, (2) for each ST-cell ĉ⊃ c′, for each child ĉ1 of ĉ it holds that Ω(ĉ1)≥ k and (3) if c′

is not a leaf, for at least one child c̄ of c′ it holds that Ω(c̄)< k. Consequently, by definition of
Algorithm 9 if follows that c′ is the result of TopDownBasic(p,α,Ω(),k).
(1) In the first iteration of the while loop of TopDown, p ∈ c since c = S×T . In the following
iterations p ∈ c, because, when iteration continues, variable c is set to c1 that is the child of c
containing p. When iteration terminates the algorithm returns either c or its parent, hence the
result contains p.
(2) We first prove that Ω(c′)≥ k. If the algorithm terminates at Line 4 or Line 12, then it returns
variable c and it holds that Ω(c)≥ k. Otherwise, if the algorithm returns at Line 5 of Line 14, it
returns the parent pc of current cell c. Since the child c2 of pc is such that Ω(c2)≥ k (otherwise
the Algorithm would have returned at the previous iteration), then, due to monotonic property,
Ω(pc)≥ k. Hence, in all cases, Ω(c′)≥ k.

Now, consider a generic ST-cell ĉ ⊃ c′. ĉ has two children: ĉ1 that contains p and ĉ2 that
does not contain p. Since ĉ1 ⊇ c′, due to monotonic property, it holds that Ω(c1)≥ k (we just
proved that Ω(c′)≥ k). For what concerns ĉ2, let’s assume, by contradiction, that Ω(ĉ2)< k. By
definition of TopDown, the algorithm would return ĉ or its parent, which is in contrast with the
fact that the algorithm actually returns c′ ⊂ ĉ.

(3) A non leaf cell can be returned at Lines 5, 12 and 14. If the algorithm returns at Line 5,
then the result c′ has a leaf child c̄ such that Ω(c̄)< k. The same holds for termination at Line 14.
When the algorithm terminates at Line 12, then it returns the current ST-cell c, and its child c2 is
such that Ω(c2)< k. �

A.12 Proof of Theorem 5.3.7

Proof of Theorem 5.3.7 easily follows from the proof of Property 5.3.6 and is detailed in
Section A.12.2.

A.12.1 Proof of Property 5.3.6

Proof. We show that, for each ST-cell c, if BottomUpInversion(c) = /0, then I(c) = /0 otherwise
BottomUpInversion(c) = I(c) = Residuals(c).

Let’s consider the set res(c) of points of c such that, for each point p ∈ res(c), BottomUp(p)
⊇ (p). Clearly, for each point p ∈ (c\ res(c)) it holds, by Definition 5.3.3, that p 6∈ I(c).

If BottomUpInversion(c) = /0, then, by definition of BottomUp, for each p ∈ res(c), at the
iteration of BottomUp in which variable currentST cell is set to the value c at Line 5, it holds that
variable count is set to zero in the following line. Hence, none of these points is generalized to c.
It follows that I(c) = /0.

Now, consider the case BottomUpInversion(c) 6= /0. By definition of BottomUpInversion,
BottomUpInversion 6= /0 only if Ω(Residuals(c)) ≥ k. In this case BottomUpInversion(c) =
Residuals(c). By definition of BottomUp, for each point p in res(c) then BottomUp(p) = c, since
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Ω(BottomUpInversion(c))≥ k. Consequently, by Definition 5.3.3, I(c) = res(c). We now show
that, for each ST-cell c, Residuals(c) = res(c). We prove by induction on the height h of c.

Base case.
If h = 0, then c is a leaf, hence, by definition of res, res(c) = c. By definition of Residuals,
Residuals(c) = c.

Induction case.
If h> 0 then we assume that for each ST-cell c′ at height h−1 it holds that res(c′) =Residuals(c′).
In particular, let c1, c2 be the two children of c.

By definition of BottomUpInversion, if Ω(Residuals(c1))≥ k, then Ω(BottomUpInversion(c1))
≥ k and hence, for every point p in res(c1) it holds that BottomUp(p) = c1 (by definition of
BottomUp), consequently p 6∈ res(c). Analogous for c2.

Vice versa, if Ω(Residuals(c1)) < k, then BottomUpInversion(c) = /0 and hence for each
point p ∈ res(c1) it holds that p ∈ res(c). Analogous for c2.

Overall:

res(c) =


res(c1)∪ res(c2) if Ω(res(c1))< k and Ω(res(c2))< k
res(c1) if Ω(res(c1))< k and Ω(res(c2))≥ k
res(c2) if Ω(res(c1))≥ k and Ω(res(c2))< k
/0 otherwise

By definition of Residuals, Residuals(c1)⊆ Residuals(c) if Ω(Residuals(c1))≥ k, otherwise
Residuals(c1)∩Residuals(c) = /0. Analogous for c2. Consequently Residuals(c) equals to:


Residuals(c1)∪Residuals(c2) if Ω(Residuals(c1))< k and Ω(Residuals(c2))< k
Residuals(c1) if Ω(Residuals(c1))< k and Ω(Residuals(c2))≥ k
Residuals(c2) if Ω(Residuals(c1))≥ k and Ω(Residuals(c2))< k
/0 otherwise

The thesis follows since, by induction assumption, Residuals(c1) = res(c1)) and, analogously,
Residuals(c2) = res(c2)).

�

A.12.2 Proof of Theorem 5.3.7
Proof. We first prove that BottomUpcomputes a generalization function and then we show that it
computes a safe generalization function.

We prove that BottomUpcomputes a generalization function by showing that, for any source
point p, time influence parameter α , Ω() function and integer value k then p belongs to
BottomUp(p,α,Ω(),k), if BottomUp(p,α,Ω(),k) does not return fail. In Line 1 of the algorithm,
variable currentST cell is set to the leaf ST cell that contains p, hence, clearly p ∈ currentST cell.
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In the while loop, variable currentST cell is updated with the parent of the previous value, hence
at any iteration, p ∈ currentST cell.

We now show that BottomUpis a safe generalization function according to Definition 5.3.4.
Indeed we show that for any source point p, time influence parameter α , Ω() function and integer
value k, then, given A=BottomUp(p,α,Ω(),k), it holds that Ω(I(A))≥ k, if BottomUp(p,α,Ω(),k)
does not return fail.

The thesis easily follows by the fact that, if BottomUp does not returns fail, then it returns
a ST-cell c such that Ω(BottomUpInversion(c)) ≥ k. Since BottomUpInversion(c) = I(c) (by
Property 5.3.6), it holds that Ω(I(c))≥ k. �
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