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Intrauterine Growth Restriction (IUGR) is a pregnancy-related pathology characterized by a 

placental insufficiency phenotype and a multifactorial etiology that still needs to be completely 

clarified. IUGR is associated with increased risk of maternal and neonatal perinatal mortality 

and morbidity and a tendency to develop cardiovascular and metabolic pathologies in the 

adulthood. A deeper knowledge of the alterations occurring in IUGR has therefore become 

essential to find therapeutic tools to prevent fetal, neonatal and future adult complications. 

A specific placental phenotype has been associated with IUGR, characterized by placentation 

defects, altered transport of oxygen and nutrients to the fetus, impaired mitochondria content 

and increased oxidative stress (OxS). 

Mitochondria (mt) are eukaryotic ubiquitous organelles whose number range from hundreds 

to thousands of copies per cell. As they are the fuel stations of all cells, more than 95% of ATP 

is synthesized in these organelles Besides this well-known function, many essential pathways 

involve mitochondria, such as mt biogenesis. Mt biogenesis is a complex of mechanisms needed 

to mitochondria ex-novo creation: mt DNA duplication and translation of mt factors controlling 

the transcription machinery that produce all respiratory chain complexes (RCC). IUGR hypoxic 

features, and the consequent higher OxS, affect mitochondria as showed by in vivo models 

increased mt oxygen consumption trigger by hypoxia or in vitro downregulation of mt 

biogenesis. 
 

The aim of this study was to investigate, by ex vivo experiments and in vitro models, different 

types of placental cells to deeper characterize the placental insufficiency features of IUGR, with 

specific attention to the consequences of its hypoxic environment. 
 

IUGR and physiological placenta bioenergetics were first examined, by analyzing both 

mitochondrial (mt) content and function in whole placental tissue and in several placental cell 

types (cytotrophoblast and mesenchymal stromal cells). 

Mt DNA content resulted higher in IUGR placentas compared to controls, as well as NRF1 

(biogenesis activator) mRNA levels. Oppositely, both mtDNA and NRF1 expression levels were 

significantly lower in cytotrophoblast cells isolated from IUGR placentas compared to controls. 

The observed divergence between placental tissue and cytotrophoblast cells may suggest that 

other placental cell types (e.g. syncytiotrophoblast, endothelial cells and mesenchymal stromal 

cells), that are subjected to different oxygen - and consequently oxidative stress - levels may be 

responsible for the mt content increase in the whole placental tissue. Moreover, a different 

exposure to progesterone may also explain this mt content divergence, since progesterone, 

regulating mt biogenesis, is produced by syncytio but not in cytotrophoblast cells. 
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In IUGR cytotrophoblast cells, respiratory chain complexes (RCC) showed lower, though not 

significantly, gene expression levels and no differences in their protein expression compared to 

controls. In contrast, mt bioenergetics - represented by cellular O2 consumption - was higher 

in IUGR versus controls, especially in more severe IUGR cases. Thus, despite the protein content 

of RCC was not altered, their activity was significantly increased in IUGR cytotrophoblast cells, 

possibly due to a more efficient RCC assembly. Finally, as O2 consumption resulted inversely 

correlated to mtDNA in cytotrophoblast cells, a functional (respiration) compensatory effect to 

the decreased mitochondrial content might be hypothesized. 

Estrogen-Related Receptor (ERRγ) is a very interesting transcriptional factor involved both in 

mt biogenesis and function and in estradiol production (through CYP19 aromatase up-

regulation). ERRγ and CYP19 mRNA levels were therefore analyzed, for the first time in human 

IUGR placentas. 

In whole placental tissue CYP19 showed higher expression in IUGR compared to controls, 

progressively increasing with IUGR severity. Higher ERRγ expression in IUGR cases was also 

found, though not significantly. These data are consistent with mtDNA and NRF1 results, thus 

confirming altered mt biogenesis and content in IUGR and strengthening the hypothesis of a 

restore attempt made through the stimulation of mt biogenesis. An additional effect of ERRγ 

increase is CYP19 upregulation. The observed higher CYP19 expression may indicate a protective 

mechanism exerted through estradiol against oxidative stress. 

Opposite to their placental tissue expression, ERRγ levels in cytotrophoblast cells significantly 

decreased in the IUGR group compared to controls. This is consistent with literature evidences 

of O2-dependent ERRγ gene expression in trophoblast cells. As well as for mt DNA and NRF1 

levels, other cell types could be responsible for ERRγ increase in the whole placental tissue. 

CYP19 expression was not significantly different between IUGR and controls in cytotrophoblast 

cells, though it positively correlates with ERRγ levels, but low CYP19 levels are reported for 

cytotrophoblast cells, and this might complicate the detection of any difference. Interestingly, 

a significant positive correlation linked maternal BMI and expression of both ERRγ and CYP19 

genes (in whole placental tissue: positive trend/cytotrophoblast cells: negative trend). An 

estradiol-dependent regulation of leptin production through ER (Estrogen Receptor) – ERR is 

known. Leptin, an anti-obesity hormone produced also by placenta, increase during. The future 

measure of plasmatic levels of both leptin and 17β estradiol in maternal blood will verify this 

speculation. 
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Then in vitro experiments were performed to assess possible biomolecular mechanisms 

regulating mithocondrial content in Intrauterine Growth Restriction, by culturing primary 

placental cells under normal oxygen conditions and hypoxia, a typical feature of IUGR. 

Fluctuations in placental oxygen concentration may generate oxidative stress (OxS), that is 

enhanced in Intrauterine Growth Restriction condition. As mitochondria are the major 

producers of intracellular reactive oxygen (O2) species through free radicals generated by the 

mt oxidative phosphorylation, altered intrauterine O2 conditions might affect mt DNA content 

and function, leading to increased oxidative stress in IUGR placental cells. Using trophoblast 

primary cell lines could help to understand O2 conditions that placentas may be exposed to in 

IUGR pregnancy. Exposure of trophoblast cultures to hypoxia is an in vitro model commonly 

used in the last few years. Preliminary data from performed experiments show that the oxygen 

lack in cytotrophoblast cells leads to increased mt DNA levels. The evidence that O2 levels may 

regulate mt biogenesis in cytotrophoblast cells highlights their deep sensitivity to O2 

conditions. However, further data are needed to confirm these preliminary results, also 

considering the implied difficulties in adapting the primary cytotrophoblast cultures, very 

sensitive to O2 concentration, to an in vitro model. A future goal will be reproduce particularly 

hypoxia/re-oxygenation intervals characterizing placental insufficiency and generating OxS and 

measuring cell apoptosis levels and autophagy markers (e.g. TNF-α, p53, caspases). 

Finally, in vitro experiments were performed to isolate and characterized p-MSCs from 

physiological and affected by IUGR placentas. p-MSCs have never been investigated before in 

IUGR pregnancies, but their role have been recently studied in preeclamptic placentas. PE p-

MSCs show pro-inflammatory and anti-angiogenic features, that may result in abnormal 

placental development. In the performed p-MSCs cultures, mesenchymal markers enrichment 

and multipotent differentiation abilities confirm the successful isolation and selection of a 

mesenchymal stromal cell from placental membranes and basal disc of both physiological and 

IUGR placentas. As attested by flow cytometry data, the p-MSC population is earlier selected in 

IUGR placentas: this faster selection might represent a compensatory mechanism to metabolic 

alterations occurring in IUGR placental cells and/or to the adverse IUGR placental 

environment. During placenta development, the lower proliferation rate characterizing IUGR 

pMSCs could impair the primary villi formation and consequently trophoblast development, 

since MSCs both serve as structural of trophoblast cells. 

Moreover, IUGR p-MSCs population display lower endothelial and higher adipogenic 

differentiation potentials compared to controls. During pregnancy, pMSCs usually contribute 

to both vasculogenesis and angiogenesis Interestingly, several studies report some alterations 
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in maternal and fetal endothelial progenitor or in the angiogenic capacity of IUGR placental 

cells. Opposite to endothelial differentiation ability, the adipogenic potential in pMSCs from 

IUGR is increased compared to controls: as these changes are evident early in life, the 

predisposition to obesity may be programmed in utero. To further characterize IUGR pMSCs, 

their mitochondrial (mt) content was investigated by measuring NRF1 and Respiratory Chain 

UQCRC1 and COX4I1 gene expression levels. Mesenchymal stem cell metabolism is known to 

be mainly anaerobic, with a shift towards an aerobic mitochondrial metabolism reported during 

differentiation. Interestingly, p-MSCs cultured with no differentiating medium present a trend 

towards higher NRF1, UQCRC1 and COX4I1 expression levels in IUGR basal disc samples 

compared to controls and higher COX4I1 levels in IUGR placental membranes; these differences 

are not statistically significant likely because of the low sample number. Nevertheless, they 

might account for metabolic alterations in IUGR p-MSCs, showing a possible shift to aerobic 

metabolism, with the loss of the metabolic characteristics that are typical of multipotent and 

undifferentiated cells. 
 

The different gestational age between cases and controls, typical of all IUGR versus term-

placentas studies, is a possible limit that associate all the performed experiments. However, any 

significant correlation between gestational age (ge) and the O2 consumption of CIV (which 

presents the highest significance between IUGR and controls), ge and mt DNA levels, ge and 

ERRy/CYP19 expression, ge and p-MSCs. CYP19 gene expression have been analyzed assuming 

that it may represent an index of aromatase content in placental tissue. However, post-

translational modifications (glycosylation and phosphorylation) may occur, affecting its 

functional activity. Finally, a potential limitation of placental mesenchymal stromal cells is that 

the analysis was performed on IUGR placentas at delivery, whereas placental abnormal 

development of IUGR pathology is supposed to start already at the beginning of placentation. 
 

Taken together, reported data highlight mitochondrial alterations occurring in placentas of  

Intrauterine Growth Restricted pregnancies, through ex vivo and in vitro approaches. 

These results shed genuine new data into the complex physiology of placental oxygenation in 

IUGR fetuses. Mitochondrial content is higher in IUGR total placental tissue compared with 

normal pregnancies at term. This difference is reversed in cytotrophoblast cells of IUGR fetuses, 

which instead present higher mitochondrial functionality. These findings suggest different 

mitochondrial features depending on the placental cell lineage. 

Indeed, our results on placental Mesenchymal Stromal Cells, showed higher levels of genes 

accounting for mitohcondrial content and function. The increased placental O2 consumption 
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by placental tissue may represent a limiting step in fetal growth restriction, preventing adequate 

O2 delivery to the fetus. This limitation has potential consequences on fetal O2 consumption 

both in animal models and in human IUGR. 
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2.1 The PLACENTA 

2.1.1 Morphology and Function 

The placenta, the primary interface between the fetus and the mother, plays an important role 

in fetal development and growth. 

At the end of pregnancy, the placenta presents a discoid shape and average weight between 500 

and 600 g. 

The human placenta is hemocorial and presents two distinct surfaces: a fetal side, oriented to 

the fetus, and a maternal one connected to the uterine wall. 

Examinating the human placenta with a cross-sectional glance from the mother side to the 

fetus, we can observe: 

� the basal decidua with its maternal origin, made by uterine mucosa 

� the chorionic villi, originated by the chorionic layer  

� the chorion, from which the villi network originates. The outer layer is made by 

syncytiotrophoblast, while the inner part is made by cytotrophoblast cells. The inter-

villous space, covered by a trophoblast layer, includes the villi and the maternal blood 

circulation 

� the amnios, which covers the fetal side of the placenta, envelopes the cord until its 

ombelical insertion. The fetal cord includes one vein (blood enriched with oxygen and 

nutrients) and two arteries (blood enriched with waste substrates flowing from the fetus 

to the mother). 
 

The main functions of the placenta [Jansson and Powell, 2007] include: 

1) modulating maternal immune response to prevent immunological rejection of the 

conceptus 

2) facilitating the exchange of respiratory gases, water, ions, nutrients and wastes between 

the maternal and fetal circulations 

3) producing and secreting hormones, cytokines and signalling molecules required to 

pregnancy maintenance and to ensure placental/fetal development. 
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Maternal blood supply to the placenta is 

established at the end of the first 

trimester of human pregnancy, with 

maternal vessels entering the placental 

intervillous space from the transformed 

spiral arterioles [Jones et al., 2007; 

Marconi and Paolini, 2008]. In details, 

extravillous trophoblast cells colonize 

the maternal decidua (figure 2.1) and 

subsequent remodelling of the spiral 

arteries leads to the formation of heavily 

dilated conduits that lack maternal 

vasomotor control [Pijnenborg et al., 1980]. 

Figure 2.1:  Diagram showing the different steps in uterine spiral artery remodelling, starting from the non-pregnant condition. Stage1: the earliest 

stage in vascular remodelling. Stage2: invasion of stromal and perivascular tissues by trophoblast, associated with further disorganization of the 

vascular smooth muscle layer. Stage3: only then, endovascular trophoblast appears. Stage 4: trophoblast becomes embedded intramurally within 

a fibrinoid layer, which replaces the original vascular smooth muscle. Stage5: finally re-endothelialization occurs, accompanied by the appearance 

of subintimal cushions with a-actin immunopositive myointimal cells. 

This progressive reduction of vessel resistances allows the creation of a low-pressure circulation 

needed for a functional placenta. The maternal vessels transformation, which continues until 

the end of the second trimester of pregnancy, is indeed believed to prevent spontaneous arterial 

constriction and intermittent perfusion, facilitating the delivery of a constant supply of blood 

to the materno-fetal interface at an optimal pressure and velocity. An inadequate or incomplete 

remodeling of the spiral arteries, characterised by shallow trophoblast invasion and narrow-

bore arteries retaining muscular walls, causes fluctuations of the uterus-placenta blood flow. 

This may cause hypoxia-reperfusion injury and reduced nutrient exchange [Harris, 2009] and 

has been associated with preeclampsia [Hutchinson et al., 2009; Dekker et al., 1998], pre-term 

birth [Kim et al., 2003] and some cases of fetal growth restriction (FGR) [Khong et al., 1986] or 

intrauterine growth restriction (IUGR) [Mayhew et al., 2004]. 
 

The barrier between the maternal and the fetal circulations consists of three fetal cellular layers 

(figure 2.2) [Sibley et al., 2010]: 

(i) the syncytiotrophoblast, a multinucleated epithelial layer formed after the fusion of the 

mononucleated villous cytotrophoblasts. Syncytiotrophoblast cells represent the main 
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regulator of substrate exchange, bearing nutrient transporters on both plasma membranes 

[Lager and Powell, 2012] 

(i) villous stromal tissue, made by the 

mesenchymal cells, mesenchymal-derived 

macrophages (Hofbauer cells) and 

fibroblasts. Hofbauer cells synthesize VEGF 

and other proangiogenic factors that 

initiate placental vasculogenesis 

(ii) the fetal capillary endothelium with its fetal 

vascular cells that include vascular smooth 

muscle cells, perivascular cells (pericytes) 

and endothelial cells [Wang and Zhao, 

2010]. 
 

  Figure 2.2: Trophoblast population in the maternal-fetal interface during the 1st trimester (from Moffett-King, 2002) 

Trophoblast CellsTrophoblast CellsTrophoblast CellsTrophoblast Cells    

From very early in development, the mammalian embryo signals its presence to the mother in 

order to establish the pregnancy via a specialized cell type, the trophoblast [John and 

Hemberger, 2012]. Trophoblasts are placental cells that play an important role in embryo 

implantation and interaction with the decidualised maternal uterus. The villi, known as the 

placental nutrient-transporter unit, are made by trophoblast, mesenchymal cells and placental 

blood vessels. Two layers of trophoblasts surround the villi: a single layer of mononuclear 

cytotrophoblasts that fuse together to form the overlying multinucleated syncytiotrophoblast 

layer, which covers the entire surface of the placenta. The syncytiotrophoblast cells keep direct 

contact with the maternal blood that reaches the placental surface, thus facilitating the 

exchange of substrates. In addition, cytotrophoblasts in the tips of villi can differentiate into 

another type of trophoblast called the extravillous trophoblast (EVT). EVTs grow out from the 

placenta and penetrate into the decidualised uterus, during the colonization process described 

before. Although they never contribute directly to the body of the embryo itself, these 

trophoblast cells are critical for implantation, interacting locally with the maternal uterine 

environment to ensure sufficient blood supply towards the implantation site and to prevent 

immune rejection of the semi-allogeneic fetus [Rossant and Cross, 2001]. As pregnancy 
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proceeds, trophoblast cells develop specialized functions to enable the efficient transport of 

nutrients to the fetus and the disposal of waste products from it. 

Mesenchymal Stromal CellsMesenchymal Stromal CellsMesenchymal Stromal CellsMesenchymal Stromal Cells    

Mesenchymal stromal cells (MSCs) are the predominant cellular component in placenta and 

serve as structural support for trophoblast villi and vascular network [Nuzzo et al., 2014; Klein, 

et al., 2011; Demir et al., 1989]  

MSCs were first discovered in 1968 by Friedenstein and colleagues as adherent fibroblast-like 

cells in the bone marrow capable of differentiating into bone. Nowadays mesenchymal stromal 

cells have been isolated and characterized from several adult and fetal tissues including adipose 

tissue, dermis, umbilical cord blood, placenta and amniotic fluid. In an effort to better 

characterize MSCs, the International Society for Cellular Therapy defined the following criteria: 

MSCs must be adherent to plastic under standard tissue culture conditions, express certain cell 

surface markers such as CD73, CD90, and CD105, and lack expression of other markers including 

CD45, CD34, CD14, CD11b, CD79α, or CD19 and HLA-DR. 

Interesting properties of MSCs are the following: 

� Homing Efficiency: MSCs have a tendency to home to damaged tissue sites 

� Differentiation Potential: as typical multipotent cells, MSCs have shown the capability to 

differentiate into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, 

myoblasts, and neuron-like cells 

� Production of Trophic Factors: evidences show that MSCs could act as a trophic factor 

pool secreting growth factors and other chemokines which induce cell proliferation, 

angiogenesis and prevent cell apoptosis 

� Anti-inflammatory and immunomodulatory properties: MSCs can suppress the excessive 

responses from T cells, B cells, dendritic cells, macrophages and natural killer cells. 
 

Only few studies have focused on human placental MSCs (p-MSCs) in placental insufficiency 

pathologies, and all of them have addressed preeclampsia (PE) [Nuzzo et al., 2014; Rolfo et al., 

2013; Chen et al., 2013; Wang et al., 2012; Hwang et al., 2010; Portmann-Lanz et al., 2010]. Human 

MSCs isolated from PE placentas and deciduas display decreased proliferation and interestingly 

show pro-inflammatory and anti-angiogenic characteristics [Rolfo et al., 2013; Chen et al., 2013; 

Wang et al., 2012], that may lead to impared trophoblast development and invasive capacity, 

and defective placental vasculogenesis.  

Currently, no data have been reported on p-MSCs in IUGR. 
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2.1.2 Nutrient transfer to the fetus 

A physiological intrauterine fetus growth depends on maternal nutrition, and on efficient 

supply of nutrients from the mother to the fetus, in other words on the placenta ability to 

transport substrates from the maternal to the fetal circulation [Marconi and Paolini, 2008]. 

Indeed, in a physiological intrauterine development, the major macro and micro nutrients 

exchanges through the maternal-fetal circulation take place inside the placenta, with the two 

circulations being kept separate by the placenta barrier. The placental barrier is the tissue layer 

composed by syncytio and cytotrophoblast cells, stromal and endothelial cells. It is a 

semipermeable layer, in fact it allows the transfer of highly permeable molecules (such as gases, 

oxygen and carbon dioxide), which is influenced by blood flow and occurs via simple diffusion, 

whereas less permeable substrates are transferred through passive and active transport 

processes. The major substrates required for fetal growth include oxygen, glucose, amino acids 

and fatty acids [Lager and Powell, 2012; Sibley et al., 2010; Jones et al., 2007]. Maternal blood, 

inside the intervillous space, draws the demanding substrates, while the fetus reaches the 

maternal circulation through the villi. 

The human placenta capacity to provide substrates to the fetus, also referred to as placental 

efficiency (which can be assessed from the fetal-placental weights ratio = grams of fetus per 

gram of placenta), relies on multiple factors: placental size and morphology, uterine blood flow, 

operative substrates carriers and the nutrients production/consumption rates. During 

intrauterine development all these factors are tightly related to each others and can be 

modulated by epigenetical, environmental or maternal/fetal changes [Fowden et al., 2008]. 

Indeed, placental efficiency measurements provide the extent to which placental adaptations 

during intrauterine development have occurred in order to meet fetal growth demands [Fowden 

et al., 2008].  
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Oxygen levels during pregnancy trimestersOxygen levels during pregnancy trimestersOxygen levels during pregnancy trimestersOxygen levels during pregnancy trimesters    

Oxygen plays a critical role in fetus development, but also in the development and function of 

the placenta. Oxygen (O2) diffuses from the maternal to the fetal circulation across the 

epithelial layer of the placental barrier [Jauniaux et al., 1994], which itself consumes O2. This 

O2 consumption generates a transepithelial oxygen partial pressure (pO2) difference whose 

magnitude depends upon the rate of umbilical and uterine blood flow, fetal and maternal blood 

oxygen carrying capacity, haemoglobin oxygen binding affinity, placental surface area and 

placental permeability [Laszo et al., 1990]. 

The placenta acts uniquely as both a conduit of oxygen to the fetal circulation and a significant 

consumer of oxygen, taken up from maternal circulation, in order to support its own energy 

demands. The human placenta needs approximately 80% (in mid-gestation) and 40%–60% (in 

late gestation) of the total oxygen uptake by the pregnant uterus, of which one third is used for 

de novo synthesis of proteins and another third for cell respiration and metabolism (in particular 

for the maintenance of the cation gradient across the mitochondrial membrane [Murray, 2012; 

Carter, 2000]. Moreover, despite decreases in maternal oxygenation and uterine blood flow, the 

pO2 gradient across the placenta remains constant in order to sustain fetal oxygen delivery at a 

normal rate [44]. The level of placental oxygen differs depending on each gestational stage and 

on the ranges of normoxia, which is defined as the oxygen concentration needed for an adequate 

supply to the placental–fetal unit (figure 2.3). During the first trimester, the conceptus develops 

in a low oxygen environment (pO2 at 7-10 gestational weeks: <20 mmHg) until the utero-

placental vasculature can provide efficient gas exchange that favors organogenesis in the 

embryo and both cell proliferation and 

angiogenesis in the placenta. Later in 

pregnancy, higher oxygen concentrations 

are required to support the rapid growth of 

the fetus. This transition, which appears 

unique to the human placenta, must be 

negotiated safely for a successful 

pregnancy [Burton, 2009]. 

Figure 2.3: The means and 95% confidence intervals of oxygen 

partial pressure – dashed lines – throughout gestation in the intervillous space in the human. Values are derived from in vivo measurements 

adapted from Zamudio (2011). 
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2.1.3 Placental endocrine function: estrogens production 

One of the most intriguing roles played by placenta is the production of a wide array of 

hypothalamic or pituitary hormones, which are needed to conserve and later mobilize maternal 

nutrients. Most of them are protein hormones, while estrogen and progesterone are steroid 

ones. 

The human placenta, specifically its trophoblast cells, produces a huge quantity of steroid and 

protein hormones, which is greater in amount and diversity than that of any single endocrine 

tissue in all mammalian physiology [Williams-Obstetrics]. Placental hormones display 

endocrine and paracrine functions: estrogens stimulate uterine blood flow, influence 

progesterone production and steroid metabolism, as well as influence maternal weight gain and 

prepare breasts for lactation.  

During pregnancy, the placenta produces a huge amounts of estrogens using blood steroidal 

precursors from the maternal and fetal adrenal glands. A normal pregnancy presents a 

hyperestrogenic state at term: there is a 10-to-20-fold increased metabolic clearance rate of 

plasma estrogens in pregnant (estradiol pg/ml= <20-443) compared to non-pregnant women 

(estradiol pg/ml= 6137-3460) [Gant, 1971]. 

Although this estrogen production is mainly due to the placenta, in trophoblast cells neither 

cholesterol nor progesterone can serve as precursor for estrogen biosynthesis, so that it becomes 

dependent upon maternal and fetal adrenal production of precursors as 

dehydroepiandrosterone-sulfate (DHEA-S). The placenta has an exceptionally high capacity to 

convert C19 steroids, and in particular DHEA-S to estradiol. This conversion needs the 

expression of four key enzymes principally located in syncytiotrophoblast cells (figure 2.4): 

steroid sulfatase (STS), 3β-hydrosteroid dehydrogenase type 1 (3β-HSD1), and finally 

Cytochrome P450 (CYP19), which converts androstenedione to estrone, and 17β-hydrosteroid 

dehydrogenase type 1 (17β-HSD1) that transforms estrone in estradiol [Bonefant, 2000]. The 

expression of CYP19 is in turn regulated by 17β-estradiol with a reverse action. 
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Figure2.4: The syntetic pathway of estrogen production in human placenta (adapted from Li et al. 2014). 

 

2.2 FETAL GROWTH 

Fetal growth is the result of genetic potential modulated by endocrine and nutritional 

environment [Cetin and Alvino, 2009] and is dependent on substrates supply through their 

transport regulation. These supply processes hang also on morphological characteristics of the 

placenta, such as its size and morphology, blood flow and vascularity. Therefore placental 

nutrient transfer capacity is specifically regulated by signals of fetal, maternal and placental 

origin in an effort to control fetal growth. 
 

 

Figure 2.5: stages during pregnancy. Embryogenesis is marked in green. Weeks and months are numbered by gestatation. 

The fetal development could conventionally be classified in two main periods of growth: the 

prenatal or antenatal development, and the perinatal period (figure 2.5). Prenatal or antenatal 

CYP19 

CYP19 
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development is the process in which a human embryo or fetus gestates during pregnancy, from 

fertilization until birth. After fertilization, the process of embryogenesis (the early stages of 

prenatal development) begins. By the end of the 10th gestational week (gw) the embryo has 

acquired its basic form and the next period is required for fetal organs development. The 

perinatal period (or “antepartum”) is "around the time of birth". In developed countries and at 

facilities where expert neonatal care is available, it is considered from 22 completed weeks of 

gestation (154 days- when birth weight is normally 500 g) to 7 completed days after birth. In 

many developing countries, the starting point of this period is considered around the 28th gw 

(or weight more than 1000 g). Practically, however, antepartum usually refers to the period 

between the 24th - 26th gw and after birth. 

Pregnancy is also divided into trimesters, each lasting about 12-14 weeks. The first trimester 

occurs from week 1st to the end of week 13th. The second trimester usually ends around the 26th 

week and consists of the 4th, 5th and 6th completed months. The third trimester can end 

anywhere between the 38th-42nd week and includes the 7th, 8th and 9th completed months of 

pregnancy. 

Intrauterine growth can be divided in three main periods: 

� Pre-embrional period: from the conception to 2 weeks of gestation 

� Embrional period: until 8-10 weeks of gestation 

� Fetal period: from 8-10 gw until the end of pregnancy. 

 

2.2.1 Fetal Growth and Fetal Programming 

Fetal growth is a complex process due to the interaction of both genetic and environmental 

factors, as well as epigenetic variations in intrauterine compartment. An altered fetal growth is 

associated to a higher risk to develop perinatal complications, with related consequences also 

in the adult life. Indeed, defects during intrauterine development predispose the newborn to 

cardiovascular and metabolic pathologies during both childhood and adult life, driving the 

occurrence of long-term changes as asserted in the “fetal programming” theory [Barker et al., 

2001]. In a previous work by our group [Cetin et al., 2004], very small birth-weights of the babies 

(due to poor fetal growth and/or preterm delivery) were associated with substantially elevated 

risks of metabolic syndrome (dislipidemia, insulin resistance, hypertension), type 2 diabetes 

and cardiovascular disease in adulthood. However, also macrosomial fetuses could easily run 

into metabolic complications in their future adult life [Luo et al., 2006].  
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The mechanisms of such ‘‘fetal origins’’ or ‘‘programming’’ of disease phenomenon remain 

under investigation. Many known or suspected causes or conditions associated with adverse 

(poor or excessive) fetal growth or preterm birth have been related to oxidative stress. 
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2.3 Placental Insufficiency Phenotype: IUGR 

Placental insufficiency is a serious pathological condition, with a multifactorial etiology due to 

morphological and functional alterations in the human placenta. Placental insufficiency 

phenotype can be associated with maternal (e.g. preeclampsia) or fetal (e.g. Intrauterine Growth 

Restriction) complications.  

The American College of Obstetricians and Gynecologists (ACOG) defines IUGR as ‘‘a fetus that 

fails to reach his potential growth’’ [ACOG, 2001]. Intrauterine growth restriction (IUGR) is 

clinically identified in utero from the 20th week of gestation, when longitudinal sonographic 

measurements demonstrate a reduction in fetal growth [Pardi et al., 1993], with a shift from the 

reference ultrasound growth curve greater than 40 centiles [Todros et al., 1987]. IUGR is then 

confirmed at birth by a neonatal weight below the 10th percentile according to standards for 

birth-weight and gestational age [Parazzini et al., 1995]. The IUGR condition must be 

distinguished from that of a Small-for-Gestational Age (SGA) fetus, which presents a birth-

weight below the 10th percentile (adjusted for sex gender and gestational age) but not an in utero 

reduction of fetal growth, concerning only the newborn features. 

IUGR cases can be classified in two groups based on their severity, by considering two clinical 

parameters: fetal hearth rate (FHR) and umbilical artery Doppler Velocimetry (pulsatility index, 

PI - Pardi et al., 1993): 

IUGR with normal PI, also displaying normal FHR  

IUGR with abnormal PI, including both cases with normal FHR and cases with abnormal FHR  

This classification reflects the different stages of placental insufficiency and is associated with 

significant changes in the nutrients transport through the placenta [Pardi et al., 1993].  

Intrauterine Growth Restriction is associated with an increased risk of maternal and neonatal 

mortality and morbidity [WHO, 2005; Franchi et al., 2004], particularly IUGR neonates have a 

greater risk of hypoxic-ischemic encephalopathy, intraventricular hemorrhage and necrotizing 

enterocolitis with longer hospital stays and higher health care costs. IUGR has a 7-15% of 

incidence in general population, and is also responsible for about 10% of perinatal deaths 

[Baschat et al., 2004; Alexander et al., 2003]. 

In the developing world, IUGR is likely to be a consequence of poor maternal nutritional status 

prior to or during pregnancy, also influenced by preexisting risk factors (see below). 

In the developed world, instead, IUGR is commonly a consequence of placental insufficiency.  
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A specific placental phenotype has been associated with IUGR [Cetin and Alvino, 2009], 

characterized by placentation defects together with reduced and altered transport of oxygen 

and nutrients [Cetin et al., 2013; Mandò et al., 2013; Mandò et al., 2011; Pardi et al., 1993] and 

impaired mitochondrial content [Colleoni et al., 2010]. 

Known causes or risk factors for IUGR are (figure 2.6): 

� maternal (metabolic disorders, such as chronic hypertension or pre-gestational diabetes, 

cardiovascular/renal or autoimmune diseases, genetic defects, or negative habits such as 

alcohol and drug abuse or smoking) 

� fetal (infections, congenital malformations and chromosomal abnormalities) 

� placental (insufficiency pathologies, hypoxic lesions, genetic mosaicism). 
 

  

Figure 2.6: Maternal risk factors for IUGR and their mechanisms. 
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2.3.1 IUGR and Placental Defects 

Placental histological defects are usually associated with IUGR as a sign of an inefficient 

placentation and could be the possible cause of a reduction in substrates supply (nutrients and 

oxygen) needed for a physiological fetal growth. Many studies show the presence of these 

morphological abnormalities in both placental villi and blood vessels [Dekker et al., 1998; Salafia 

et al., 1997]. There are evidences of a strong relationship between fetal and placental weight, 

more marked in relation to growth restriction severity [Pardi et al., 2002]. Placentas of women 

with IUGR and/or preeclampsia present evident repeated small hypoxic lesions on their surface 

(see paragraph 2.4.3), with consequent lipoproteins deposition and thrombotic episodes. 

These lesions are often associated with a defective vascular transformation and terminal villous 

formation, with fewer and thinner villi and vessels - especially in the most severe cases - 

differently distributed along the placental surface. The pathological placental villi display a 30-

50% less invasive capacity than physiological ones [Barut et al., 2010; Dekker et al., 1998]. 

Moreover, an unbalance between pro- and anti-angiogenic factors is well documented in 

placentas and maternal blood of IUGR pregnancies, suggesting a role in their pathophysiology 

[Regnault et al., 2002]. 

IUGR placenta presents many other failure signs, such as reduced syncytiotrophoblast surface, 

enhanced placental barrier thickness (composed by trophoblast and endothelial cells), and 

increased cellular apoptosis [Ishihara et al., 2002]. Beyond abnormal terminal villi, growth 

restricted placentas show an enhanced number of syncytiotrophoblasts nuclei, whereas a 

reduction of cytotrophoblasts plus an increase of collagen and laminin deposition in the stromal 

tissue are found [Macara et al., 1996]. All these evidences are consistent with the ineffective 

fetal-placental vasculature, characterizing IUGR placentas (figure 2.7) [Sibley et al., 2005]. 

Both placental transport and metabolism are considerably modified in IUGR pregnancies [Cetin 

et al., 2013; Mandò et al., 2013; Mandò et al., 2011; Pardi et al., 1993]. Usually in growth-restricted 

placentas weight, surface and permeability 

changes occur, which together with uterus-fetus 

blood flow alterations may cause an inefficient 

perfusion and nutrient supply to the fetus [Pardi 

et al., 2006]. Generally, all these placental defects 

lead to a change in the fetal growth path, despite 

the fetus attempts to adaptation. 

Figure 2.7: Summary of the placental adaptations that occur in the placental insufficiency-

induced IUGR fetus and contribute to a decreased fetal growth. 
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2.4 MITOCHONDRIA 

Mitochondria (mt) are ubiquitous organelles present in most eukaryotic cells in variable 

numbers ranging from hundreds to thousands of copies per cell [Schon, 2000]. Mitochondria 

are made by a soluble matrix surrounded by a double membrane, an ion impermeable inner 

membrane and a permeable outer membrane. Early biochemists recognized the importance of 

mitochondria, as they are the fuel stations of all eukaryotic cells: more than 95% of ATP is 

synthesized in these organelles through oxidative reactions [Attardi and Schatz, 1988]. Besides 

this well-known function, there are many essential metabolic pathways involving 

mitochondria-localized steps, such as nitrogen metabolism, haem biosynthesis, purine and Fe-

S clusters synthesis. Moreover, mitochondria play an important role in apoptosis and are 

involved in signal transduction for cell proliferation [Wallace, 2008]. These important functions 

demonstrate that mitochondria are essential for maintaining the health of an organism. 

 

2.4.1 Mitochondrial DNA and Biogenesis 

Mitochondria and their chloroplast cousins are unique among eukaryotic extranuclear 

organelles because of their own genetic system. In vertebrates, this system is based on an mt 

genome consisting of a circular double-stranded DNA (mt DNA). An individual mitochondrion 

can contain more than one mitochondrial genome: the real number has been estimated to be 

between 0 and 11 copies with a mean of 2.0 [Scarpulla, 2008]. The amount of mt DNA in a cell 

could provide a major regulatory point in mitochondrial activity, as the transcription of 

mitochondrial genes is proportionate to their copy numbers [Malick et al., 2011]. 

Although mt DNA is quite diverse in the eukaryotic kingdom, the organization of the 

mammalian mitochondrial genome is significantly conserved [Clayton, 1992b]. 
 

Figure 2.8. Schematic representation of human mitochondrial genome. 

Genomic organization and structural features of mtDNA in a circular genomic 

map with heavy (blue) and light (black) strands. Protein-coding and rRNA 

genes are interspersed with 22 tRNA genes (red bars). The D-loop regulatory 

region contains the replication origin (OH); arrows showing the direction of 

transcription. Protein coding genes include cytochrome oxidase (COX), 3-

NADHdehydrogenase (ND), ATP synthase (ATPS), cytochrome b (Cyt b). 

 

In particular, the human mitochondrial genome is 

16.6-kb-long [Attardi and Schatz, 1988] and its two 

strands are identified by their varying densities as 

the heavy (H) or the light (L) strand. Mt DNA 
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comprises only a small fraction of protein-encoding genes necessary for the molecular 

architecture and biological functions of the organelle itself. Because of this limited coding 

capacity, mitochondria are genetically semiautonomous and rely heavily on the expression of 

nuclear genes. For example, the majority of protein subunits that constitute the five inner-

membrane complexes of the electron transport chain and oxidative phosphorylation system are 

nucleus-encoded (figure 2.8). 

In the mitochondrial genome, thirteen genes code for polypeptides that are part of the oxidative 

phosphorylation system, with twelve of these genes being located on the H strand. Two rRNAs 

and twenty-two tRNAs are also encoded by the mt genome. The displacement loop (D loop) is 

a 1.1 kb noncoding control region that is important in replication and transcription. Other 

mitochondrial proteins are nuclear encoded, then synthesized in the cytoplasm and finally 

transported to the mitochondria. It is also important to note that mtDNA is not naked, but 

packaged into a nucleoid structure which serves as a mitochondrial genetic unit [Gilkerson et 

al., 2008]. 

Mitochondria are also unique for their Mendelian genetic system. First, mtDNA shows a 

maternal inheritance pattern (paternal mtDNA is almost never passed on to progeny); second, 

mitochondria are polyploid, with up to several thousand copies of their genome per cell. Also, 

replication and transcription are coupled in mitochondria, with a unique machinery that carries 

out these processes. 

 

Mt biogenesis is defined as the complex of mechanisms needed to the ex-novo creation of all 

the components of new mitochondria: mt DNA duplication, translation of proteins 

(transcriptional factors) managing the access to the transcription machinery and of the 

respiratory complexes proteic subunits. Based on extrapolation from the fully sequenced yeast 

genome, mt biogenesis requires the expression of more than 1000 genes, tightly regulated, 

which are encoded on both nuclear chromosomes and the mitochondrial genome [Goffart and 

Wiesner, 2003]. Mt biogenesis control and coordination is managed by the mitochondrial 

transcriptional factors or activators: a group of single or complexed proteins performing a co-

acting action to bind their final target: TFAM (Mitochondrial Transcription Factor A). TFAM 

exerts its function regulating mt replication and transcription but also mt turnover, by 

supervising on mt DNA copy number [Campbell et al., 2012]. Among mt biogenesis activators 

binding TFAM promoter region there are: 
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� NRF1 (Nuclear Respiratory Factor 1): it influences mt biogenesis through its direct bound 

to TFAM and plays a role in the respiratory chain complexes translation (e.g. Cytochrome 

C) [Poidatz et al., 2012] 

� PGC1α (PPARγ-coactivator 1α): it is a transcriptional coactivator of PPARγ through its 

bound with NFR1 and is an enhancer of NRF-1, NRF-2, and TFAM gene expression [Wu et 

al., 1999]. A higher PGC1α transcriptional activity is associated with an increase of mt DNA 

content in animal models of cardiovascular pathologies [Bayeva et al., 2013]. 

� ERRγ (Estrogen-Related Receptor gamma): it is a nuclear receptor without a known ligand 

showing a higher homology to Estrogen Receptor (ER) [Giguère et al., 2008]. Interacting 

with PGC1α e NRF1 it exerts its role in energetic metabolism and cellular differentiation 

[Ranhotra, 2012]. 

 

Assessing Mitochondria Content: mt DNA and Biogenesis ActivatorsAssessing Mitochondria Content: mt DNA and Biogenesis ActivatorsAssessing Mitochondria Content: mt DNA and Biogenesis ActivatorsAssessing Mitochondria Content: mt DNA and Biogenesis Activators    

Well accepted biochemical markers to assess mitochondria content in human eukaryotic cells 

are the mt DNA copy number, the mRNA levels of mt biogenesis transcription factors (e.g. 

TFAM, NRF1, NRF2 and PGC1α), the expression of mt DNA-encoded proteins and the rates of 

mt translation [Medeiros, 2008]. Interestingly, the amount of mt DNA has been shown to be 

directly proportional to total TFAM levels [Ekstrand et al., 2004]. There is a widespread interest 

in accurately quantifying all these markers, particularly mt DNA, in order to discover an 

attractive and non-invasive biomarker for predictive and diagnostic purpose [Malick et al., 2011]. 

    

EstrogenEstrogenEstrogenEstrogen----Related Receptor gamma and Cytochrome CYP19 AromataseRelated Receptor gamma and Cytochrome CYP19 AromataseRelated Receptor gamma and Cytochrome CYP19 AromataseRelated Receptor gamma and Cytochrome CYP19 Aromatase    

Estrogen-Related Receptor gamma (ERRγ) is a transcriptional factor acting on mitochondrial 

biogenesis (see paragraph 2.4.1) and its expression is reported in metabolically active human 

tissues, including placenta [Takeda et al., 2009]. ERRγ showed to be upregulated during cyto- 

to syncytiotrophoblast cells differentiation in normal culture condition and studied in silencing 

experiments on trophoblast cells cultured under hypoxic condition, where hypoxia seems to 

trigger its gene expression [Kumar and Mendelson, 2011]. Moreover, in Luo et al., 2011, ERRy is 

hypothesized to regulate HIF1α- dependent or independent mechanisms (see paragraph 2.4.3) 

in response to an hypoxic environment, in a cytotrophoblasts culture model. 
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Mendelson and colleagues have 

hypothesized an O2-responsive 

action for ERRγ which in turn should 

induce hCYP19, the Cytochrome 

P450 aromatase gene (CYP19, on the 

side) [Kumar et al., 2011]. Both ERRγ 

e CYP19 gene expressions seem to be downregulated under hypoxia. CYP19 is an aromatase 

involved in estradiol production (see paragraph 2.3.3). 

Moreover, ERRγ can affect the estrogen pathway by directly binding the Estrogen Receptor (ER) 

with two different mechanisms: 

1) According to Horard hypothesis [Horard and Vanacker, 2003] ERR can act as a 

transcriptional regulator per se or co-binding ER to enhance the cell-specific estrogenic 

response 

2) According to Giguere hypothesis [Giguere, 2002] a functional kindship and/or 

transcriptional crosstalk between the ERs and ERRs receptors exists, by which ERR could 

cooperate or compete with ER affecting estrogen pathway, and consequently the estradiol 

production. 

Indeed the 17beta-estradiol, one of the most biologically potent and naturally occurring 

estrogen (17β-estradiol or E2), may exert its action binding the ER receptors (both their two 

isoforms ER-α and ER-β) (Katzenellenbogen, 2001). Once estradiol-ligand bounds its placental 

receptor, ER-α or ER-β, the originated E2-receptor complex acts as a transcriptional factor, 

which may influence the estrogen response element of specific genes, as CYP19 gene promoter. 
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2.4.2 Mitochondria Metabolism: Respiration and Chain 

Complexes 

Most notably, the mitochondrion is the site of the electron transport chain and oxidative 

phosphorylation system that provides the bulk of cellular energy in the form of ATP. Most of 

the chemical bond energy from the oxidation of fats and carbohydrates is converted to the 

reducing power of NADH and FADH2 within the mitochondrial matrix. The respiratory 

apparatus consists of a series of electrogenic proton pumps that convert this reducing potential 

to an electrochemical proton gradient 

across the inner membrane (figure 2.9). 

The electrochemical potential of this 

gradient is converted via ATP synthase to 

the high-energy phosphate ATP bonds. 

Briefly, glucose enters the cells through 

specific transporters, is phosphorylated 

by hexokinase, cleaved in two molecules 

of glyceraldehyde-3-phosphate and finally dephosphorylated by the pyruvate kinase in the 

presence of ADP to yield pyruvate. These reactions produce two molecules of ATP and are 

collectively known as glycolysis (which is anaerobic and cytosolic). Pyruvate, the end product 

of glycolysis, can be then transformed in lactate by the lactate dehydrogenase (in the presence 

of an excess of NADH+ H+ during poor respiration), or can enter the mitochondria to undergo 

an oxidative decarboxylation in the presence of coenzymes (NAD+, FAD) to fuel the respiratory 

chain to consume oxygen and generate ATP and H2O. This second process is known as 

respiration, and in contrast to glycolysis is aerobic and mitochondrial. 

Figure 2.9. Summary of protein subunits of the five respiratory chain complexes, encoded by nuclear and mitochondrial genes. The red arrow 

shows the flow of protons through complex V from the cytosolic side to the matrix, coupled to the synthesis of ATP. Above each complex the 

number of protein subunits encoded by nuclear DNA (nDNA) and mtDNA are indicated. 

Mt respiratory complexes (complexes I to IV) are responsible for the oxidation of the reducing 

equivalents, in the form of NADH or FADH2, originating in different metabolic pathways 

(glycolysis, fatty acid oxidation or the Krebs cycle). Oxidation of NADH and FADH2 is coupled 

to the pumping of protons into the intermembrane space, and the resulting proton gradient is 

used by the ATPase (complex V) to generate utilizable energy in the form of ATP. NADH 

reducing equivalents enter the mitochondrial electron transport chain (mtETC) through 

complex I, whereas FADH2 reducing equivalents enter the mtETC through complex II or other 
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dehydrogenases such as electron-transferring-flavoprotein (ETF) dehydrogenase. The electrons 

are then passed to coenzyme (CoQ), and subsequently to complex III, cytochrome c, and 

complex IV, which passes them to oxygen as the final acceptor. 

The five complexes of the respiratory chain (RC) are embedded within the inner boundary 

membrane and the cristae membrane. The entire RC complexes system is made by 83 proteic 

subunits, of which 70 are codified by nuclear DNA (n DNA) and 13 by mitochondrial DNA (mt 

DNA), as shown in table 1. The inner membrane is impermeable to protons so that a proton 

electrochemical gradient can be formed upon the proton extrusion from the matrix to the 

internal membrane space by the respiratory chain complexes I, III and IV (Table 2). 

 

 

 

 

 

 

Table 2: Genetic origin and proteic subunits composition of the mitochondrial respiratory chain complexes. RC: Respiratory Chain; n DNA: 

nuclear DNA; mt DNA: mitochondrial DNA. 

Complex I 

In NADH-ubiquinone oxidoreductase or NADH dehydrogenase, two electrons are removed 

from NADH and transferred to a lipid-soluble carrier ubiquinone (Q). Complex I translocates 

four protons (H+) across the membrane, thus producing a proton gradient. Complex I is one of 

the main sites of production of superoxide. 

Complex II 

In Complex II (succinate dehydrogenase) additional electrons are delivered into the quinone 

pool (Q) originating from succinate and transferred (via FAD) to Q. Complex II consists of four 

protein subunits: SDHA, SDHB, SDHC, and SDHD.  

Complex III 

In Complex III (cytochrome C reductase), the Q-cycle contributes to the proton gradient by an 

asymmetric absorption/release of protons. When electron transfer is reduced (by a high 

membrane potential or respiratory inhibitors such as antimycin A), Complex III may leak 

electrons to oxygen, resulting in superoxide formation. 

Complex IV 

RC Complexes 
N° of Complex 

Subunits 

N° of Subunits 

Codified by n DNA 

N° of Subunits Codified by mt 

DNA 

I 41 34 7: from ND1 to ND6 + ND4L 

II 4 4 none 

III 11 10 1: named Cytocrome B 

IV 13 10 3: named Cytocrome Oxidase I, II, 
and III 

V 14 12 2: named ATPasi 6 and 8 
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In Complex IV (cytochrome c oxidase), four electrons are removed from four molecules of 

cytochrome c and transferred to molecular oxygen, producing two molecules of water. At the 

same time, four protons are removed from the mitochondrial matrix contributing to the proton 

gradient. Thus ATP is produced. 

Complex V 

The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (the 

already mentioned proton gradient). 

This gradient is used by the ATP 

synthase, sometimes described as 

Complex V, to make ATP via 

oxidative phosphorylation. Coupling 

with oxidative phosphorylation is a 

key step for ATP. 

Figure 11: mt respiratory chain [from Bellance, 2009] 

 

The organization of respiratory complexes in the inner membrane has been an object of intense 

debate. The respiratory components were initially proposed to be closely packed to guarantee 

accessibility and thus high efficiency in electron transport. However, this original model was 

progressively abandoned and replaced by the fluid model in which the respiratory complexes 

are viewed as independent entities embedded in the inner membrane, with CoQ and 

cytochrome c acting as mobile carriers that freely diffuse in the lipid membrane. However, new 

evidences from yeast and mammalian allow the reformulation of the solid model proposing that 

respiratory complexes are organized in larger structures (respiratory supercomplexes, SCs), 

allowing a more efficient transport of electrons [Genova and Lenaz, 2014]. 
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2.4.3 Mitochondria, IUGR and Hypoxia 

Since the establishment of a metabolic link between placenta and mitochondria, a role of 

mitochondria in growth restriction pathogenesis is well-accepted. They may be responsible of 

an inadequate oxygen metabolism, whose progressive lack is associated to an increased severity 

of IUGR phenotype. 

Further data have shown an increase of mt DNA content in whole placenta affected by growth 

restriction compared to controls, with a negative relation between mt DNA levels and the O2 

partial pressure (pO2) in the umbilical vein [Lattuada et al., 2008]. In a previous study by our 

group, evaluations of mt DNA content in maternal blood during all the three trimesters of 

pregnancy, at different gestational ages, resulted in a progressive and significant reduction in 

pregnant women of I, II, III trimesters and compared to non-pregnant women [Colleoni et al., 

2010]. Moreover, in III trimester mt DNA content was found higher in patients with a IUGR 

fetus compared to women with physiological pregnancies. These data make mt DNA an 

interesting biomarker to investigate the mechanism behind a physiological or pathological 

pregnancy As the energy demands of a cell can change dramatically during development and 

differentiation or due to physiologically changing circumstances, the mitochondrial content is 

variable and can be adjusted to suit the current situation [Goffart and Wiesner, 2003]. 

The embryo is highly sensitive to molecular oxygen. The high rate of oxidative metabolism, 

especially in the second and third trimester, is associated with oxidative and nitrative stress, 

which in its mild form has been demonstrated in normal placental tissue and is intensified in 

several pathological conditions [Myatt, 2010; Webster et al., 2008]. Many physiological systems 

adapt, and are homeostatically regulated, to supply sufficient oxygen to meet energy demands 

whilst also protecting cells, and particularly mitochondria, from excessive concentrations that 

could lead to oxidative damage. The invasive form of implantation displayed by the human 

conceptus presents particular challenges in this respect. In addition, several studies related both 

acute and chronic hypoxia to mt DNA content changes. In 2008 Gutsaeva and collegues 

demonstrated that acute hypoxia, affecting the subcortical region of mice brain, activate 

mitochondrial and nuclear pathways regulating mt biogenesis. Cells respond to this negative 

stimulus through the upregulation of mt duplication and trascription [Gutsaeva et al., 2008]. In 

vivo models show an increase of mt oxygen consumption after chronic exposure to hypoxia 

[Zung et al., 2007]. Other studies instead demonstrated a downregulation of mt biogenesis, 

mediated by HIF-1 (hypoxia inducible factor 1), in cancer cell lines. Under hypoxic conditions, 

HIF-1, which consists of two subunits HIF-1α and HIF-1β, regulates the expression of those 
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nuclear genes which harbour hypoxia response elements (HRE) on their promoters. Following 

a three-day exposure to low oxygen, a decrease in HIF-1α mRNA expression was demonstrated 

in cultured murine ectoplacental cones [Pringle et al., 2007]. HIFs recruit mechanisms to 

increase oxygen supply (erythropoiesis, angiogenesis, and vasodilation), decrease oxygen 

demand (increased glycolysis coupled with decreased oxidative metabolism), and regulate cell 

cycle, apoptosis and autophagy [Semenza, 2000]. In vitro studies have demonstrated that 

hypoxia can affect the proliferation, differentiation, and invasion of cytotrophoblast cells 

[Caniggia et al., 2002], as well as cause the increase of VEGF transcription and translation in 

cultured placental fibroblasts [Wheeler et al., 1995]. Low oxygen levels also resulted in a shift of 

the angiopoietin-1: angiopoietin-2 ratio in favour of angiopoietin-2, leading to vessel instability, 

angiogenesis and vessel remodelling [Zhang et al., 2001]. 
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The aim of the study is to highlight the complex physiology of placental oxygenation in 

Intrauterine Growth Restriction (IUGR) fetuses. 

The first step was to investigate IUGR and controls placental bioenergetics, by analyzing both 

mitochondrial content and function in placental tissues and in different placental cell types 

(cytotrophoblast and mesenchymal stromal cells). Then in vitro experiments were performed 

to assess possible biomolecular mechanisms regulating mithocondrial content in Intrauterine 

Growth Restriction, by culturing primary placental cells under normal oxygen conditions and 

hypoxia, a typical feature of IUGR. 
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POPULATION 

Pregnant patients were enrolled in the Unit of Obstetrics and Gynecology of the L. Sacco 

Hospital in Milano, Italy. The study was approved by the Institutional Ethics Committee and all 

pregnant patients gave their informed consent. 

Placental samples were collected at cesarean section from physiological at term pregnancies 

(control group) and IUGR pregnancies. All samples were obtained from non-laboring pregnant 

women. 

IUGR fetuses were identified in utero with longitudinal sonographic measurements that showed 

a reduction below the 5th percentile in fetal growth [Todros et al., 1987]. Depending on 

gestational age, IUGR were classified according to umbilical arterial Doppler Velocimetry and 

Fetal Heart Rate (FHR) tracings [Bellotti et al., 2004; Pardi et al., 1993] and divided in 2 different 

severity groups with normal or abnormal umbilical artery pulsatility index (PI). 

Control group had a normal intrauterine growth assessed by longitudinal ultrasound biometry 

at 20 weeks, 30-32 weeks and term. The newborn weight at term was appropriate for gestational 

age (AGA) according to Italian standards [Bertino et al., 2010]. Cesarean sections before labor 

were performed for breech presentation, repeated caesarean section or maternal request. 

Exclusion criteria were any maternal, placental or fetal disease. 

 

Placental Samples Collection, Tissue Processing 
and Cytotrophoblasts Isolation 

Placentas were collected immediately after cesarean section, weighted and sampled from 

different sites of the placental disc [Mayhew, 2008] after discarding the cord, the excess of blood 

and the maternal decidua and collecting the underlying villi. Placental samples - 1cm3 sized - 

were washed in PBS (Dulbecco’s Phosphate Buffered Solution; Euroclone, Milano, Italy) and 

temporarily stored in RNAlater solution (Sigma-Aldrich, Saint Louis, MO- USA) at -20°C. 
 

For trophoblast cells processing, 60 g of placental villi were briefly maintained in HBSS 1x 

(Hank’s Balanced Salt Solution) at +4°C. Cytotrophoblast cells were isolated using the 

trypsin/deoxyribonuclease/dispase/Percoll method [Kliman et al., 1986] and characterized by 

flow cytometry as cytokeratin 7-positive and vimentin-negative cells. Reagents were supplied 

by Sigma-Aldrich (HBSS, HEPES, trypsin, Percoll), BD-Becton Dickinson (dispase- Bedford, 

MA- USA), Roche (DNase- Mannheim, Germany) and Euroclone (gentamicin, Fetal Bovine 

Serum and Dulbecco’s Modified Eagle’s Medium-HG, EuroClone, Italy). 
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4.1 DNA, RNA and protein extraction 

Total RNA, DNA, and proteins were isolated from placental tissues, cytotrophoblast cells and 

p-MSCs using TRIzol reagent (Roche Diagnostics, Indianapolis/IN, USA) following the 

manufacturer’s instructions. To isolate RNA from placental tissues stored in RNAlater, small 

fragments (90 mg) were added with a TRI reagent solution (Ambion, Austin, TX) and minced 

with a Potter homogenizer until the mushy solution resulted free of placental pieces; RNA was 

then extracted by the RiboPure kit (Ambion). RNA was treated with a DNA-free kit (Ambion, 

Austin, TX) to remove potentially contaminating DNA. 

RNA and DNA concentrations were measured by NanoDrop ND1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE). 

Protein concentration was determined using the Micro BCA Protein Assay Kit (Thermo 

Scientific-Pierce Biotechnology, Rockford, IL), according to the manufacturer’s protocol. 

 

4.2 Mithocondrial Content and Biogenesis 

4.2.1 mt DNA in Placental Tissue and Isolated Cytotrophoblasts 

The mtDNA content was measured by Real-Time PCR by normalizing the quantity of a not-

polymorphic mitochondrial gene (Cytochrome B) with a single-copy nuclear gene (RNase P). 

For each gene assay, 30 ng of total DNA were analyzed in triplicate by TaqMan Assay 

technology, 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). The 

Sequence Detector software (Applied Biosystems) was used to analyze the data and relative 

quantification values were calculated according to the 2-ΔCt method. 

 

4.2.2 NRF-1, ERRγ and CYP19 gene expression 

Gene expression of NRF-1 (NRF1 gene), ERRy (ESRRG gene) and CYP19 (CYP19A1 gene) was 

measured by Real-Time PCR in both placental tissue and cytotrophoblast cells. NRF1 gene 

expression was analyzed also in p-MSCs.  

For each sample, 1.6 μg of total RNA were reverse-transcribed by the High Capacity cDNA 

Reverse Transcription Kit and the obtained cDNA served as template for quantitative Real-Time 

PCR with TaqMan assays. Gene expression levels were calculated using the geNorm method 

[Vandesompele, 2002] relative to HPRT (hypoxanthine-guanine phosphoribosyltransferase) 

and YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein-zeta 

polypeptide) genes for placental tissues and cytotrophoblast cells, and to PPIA (peptidylprolyl 
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isomerase A) and RPL13A (ribosomal protein L13a) genes for p-MSCs. All samples were reverse-

transcribed in duplicate and cDNA was run in triplicate to allow assessment of sample 

homogeneity and technical variability. All reagents were supplied by Life Technologies (Foster 

City/CA- USA). 

 

4.3 Mitochondria Metabolism: Respiratory Chain 
Efficiency in IUGR versus Controls 

4.3.1 Respiratory Chain complexes gene and protein expression 

We measured by Real-Time PCR mRNA levels of four subunits belonging to four respiratory 

chain complexes (RCC) in the cytotrophoblast cells isolated from 8 control, 6 PE and 8 IUGR 

placentas. Analyzed genes were: NADH-dehydrogenase-1-alpha subcomplex 9 (NDUFA9, 

complex I- CI), succinate dehydrogenase complex-subunit A (SDHA, complex II- CII), 

ubiquinol-cytochrome c reductase core protein I (UQCRC1, complex III- CIII), cytochrome c 

oxidase subunit IV isoform 1 (COX4I1, complex IV- CIV). UQCRC1 and COX4I1 genes were also 

analyzed in p-MSCs. 

For each sample, 1.6 μg of total RNA were reverse-transcribed by the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) and obtained cDNA served as template for 

quantitative Real Time PCR with TaqMan assays (Applied Biosystems). Gene expression levels 

were calculated using the geNorm method relative to HPRT and YWHAZ genes for 

cytotrophoblast cells, and to PPIA and RPL13A genes for p-MSCs. All samples were reverse-

transcribed in duplicate and cDNA was run in triplicate to allow assessment of sample 

homogeneity and technical variability. 

Western blotting was performed on proteins extracted from the same cytotrophoblast cells used 

for gene expression analysis. Proteins from each sample (50 μg) were precipitated overnight 

(ON) at -20°C in 2.5 V of acetone and resolved under reducing conditions by SDS 

polyacrylamide gel electrophoresis. Separated proteins were transferred to a polyvinylidene 

fluoride (PVDF) membrane (iBlot® Dry Blotting System; Invitrogen). All non-specific bindings 

were blocked by membrane incubation in a blocking buffer (5% skimmed powdered milk in 

TBS-T [TBS, 0.3% Tween 20]) for 2.5 hours at room temperature. Membranes were incubated 

ON in blocking buffer with mouse monoclonal antibodies against the four RCC subunits 

analyzed by Real Time PCR (1:5000 dilution; Molecular Probes, Invitrogen). After incubation 

with an anti-mouse HRP-conjugated antibody, protein bands were detected by enhanced 

chemiluminescence method (ImmunStar Western C; Bio-Rad, Hercules, CA). All membranes 
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were subsequently stripped and reprobed with anti-β-actin antibody (1:15000 dilution; Sigma-

Aldrich). Bands intensity was measured by ImageJ software (freely available at 

http://rsbweb.nih.gov/ij/). For relative semi-quantitative analysis, the protein expression values 

were normalized on β-actin. Data from each blot were referred to a sample chosen as reference 

to allow comparison among different experiments. 

 

4.3.2 Oxygen consumption - High-Resolution Respirometry 

The Respiratory Chain Complexes (RCC- complexes CI-CII-CIII-CIV) efficiency was determined 

by high resolution respirometry (HRR) on cytotrophoblast cells isolated from ten placentas 

of the IUGR group and seven of control group. This technique allows to measure total 

mitochondrial (mt) O2 consumption and to assess the role of each mt complexes in the process. 

O2 suspension was measured by high resolution respirometry with an Oxygraph-2k (Oroboros 

Instruments, Innsbruck, Austria) in MiR06 medium at 37°C (0.5 mM EGTA, 3 mM MgCl2*6 

H2O, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 

1 g/l BSA, 280 µg/ml catalase) according to HRR MipNEt protocols (Oroboros Instruments). 

MiR06 was equilibrated and then replaced by the cell suspension, which was continuously 

stirring at 460-600 rpm. 

The experimental protocol started with Routine Respiration, defined as the O2 consumption of 

cell suspension without any substrates addition. Cells were then permeabilized with 40 µg/ml 

digitonin allowing loss of plasma membrane barrier, but maintaining intracellular membrane 

structure (mitochondria and endoplasmatic reticle). Complex I was measured by the injection 

of glutamate (10 mM) and malate (2 mM) substrates in presence of 2.5 mM ADP. Cytochrome 

C test was performed to assess the intactness of mt outer membrane, since in case of damage it 

would be released with a consequent inhibition of mt respiration. Addition of 10 mM Succinate, 

in presence of conventional substrates for CI, supported the simultaneous convergent electron 

flow through CI+II into the Q-junction. The convergent electron flow mimick the action of the 

tricarboxylic acid cycle in the intact cell, which generates both NADH and Succinate in the 

matrix as substrates for CI+II. Complex II was measured by injecting 0.5 µM Rotenone and 

inhibiting Complex I after convergent stimulation of CI+II. Finally, inhibition of complex III 

with 2.5 µM Antimycin-A and of complex II with 5 mM Malonate was followed by Complex IV 

stimulation with 0.5 mM TMPD (N,N,N',N'-Tetramethyl-p-Phenylenediamine) and 2 mM 

Ascorbate. 
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DatLab software (Oroboros Instruments) was used for data recording and analysis (1 or 2 s time 

intervals), calculating the time derivative of O2 concentration, adjusted for instrumental 

background. The O2 consumption levels per-mitochondrion were obtained by normalizing data 

to the cytotrophoblast mtDNA levels. 
 

4.4 Placental Primary Cells Culture 

4.4.1 Cytotrophoblast Cells Culture under Hypoxia 

Primary trophoblast cells were isolated from human placentas (n= 3) of term singleton 

uncomplicated pregnancies of non-smoking women with appropriately grown fetuses (AGA) 

and no maternal/fetal pathologies. 

The collected placental samples were processed with a mechanical disgregation (as described 

in paragraph 4.1) followed by an enzymatic tissue digestion (dispase/DNAse enzymes). Villous 

cytotrophoblasts were selected through a stratification by Percoll gradient, as previously 

described, and a cytofluorimetry characterization (cytokeratin 7+; vimentin-). 

Characterization of Cytotrophoblast Cells by FlowCharacterization of Cytotrophoblast Cells by FlowCharacterization of Cytotrophoblast Cells by FlowCharacterization of Cytotrophoblast Cells by Flow----CitoCitoCitoCitometrymetrymetrymetry    

Isolated cells from physiological placentas were characterized by flow-cytometry. The samples 

were labelled with a Mouse anti-human cytokeratin 7 (CK7) e and a Mouse anti-human 

Vimentin (VIM) (Dako), two mutually exclusive intra-cytoplasmatic primary antibodies with an 

higher specificity cytotrofoblast [Maldonado-Estrada et al., 2004]. For secondary labelling, an 

Anti-Mouse IgG FITC (eBioscience) was used. An endogenous and an isotype controls were 

analysed together with the studied samples. The isotype control is useful to assess the level of 

background staining in all cell-antibody binding assays (table 4.4.1). 
 

Antibody Clone Specificity 

Mouse anti-human CK7 (Dako) OV/TL 12/30 (IgG1) Cytokeratin 45 kDa 

Controllo Isotipico (Dako) IgG1 Non-specific isotype control 

Mouse anti-human Vimentin (Dako) Vim3B4 (IgG2α) Mesenchymal Cells 57 kDa 

Anti-Mouse IgG FITC (eBioscience) F(ab’)2 Fab fragment of Mouse IgG 

Tabella 4.4.1: Flow-Citometry Antibodies to select cytotrophoblast cells 

 

Cytotrophoblast Cells Cytotrophoblast Cells Cytotrophoblast Cells Cytotrophoblast Cells Culture under Normal or Hypoxic ConditionsCulture under Normal or Hypoxic ConditionsCulture under Normal or Hypoxic ConditionsCulture under Normal or Hypoxic Conditions    

Isolated cytotrophoblast cells were then plated (300 cells/cm2) in 2,4 ml of HG-DMEM medium 

with 200 mM L-glutammine, 10 mg/ml Gentamicin, 10% FBS in standard growth conditions 
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(20% O2; 5% CO2; 37C°) for 4 hours (h) to allow their adhesion and growth. After this time, 

cells were shifted in different O2 conditions: 

� 20% O2- standard growth (20% O2; 5% CO2; 37C°). At this condition, cells were cultured 

with normal medium with/without the addition of 0,2 mM Cobalt Chloride (CoCl2), an 

activator of HIF1α, for chemical induction of hypoxia; 

� 8% O2- oxygen conditions that mimics 2nd-3rd trimester placentas oxygenation (Galaxy 

48R Incubator); 

� 0.1% O2 hypoxic condition (Ruskinn Cabin). 
 

Cells were grown under hypoxic condition in a RUSKINN CABIN INVIVO2 200. Trophoblasts 

were cultured for 72 h and frozen at T24, T48, T72. Medium was refreshed every 24 hours.  

the culture media was re-freshed every 24 h. 

mtDNA content will be assessed as described in paragraph 4.2.1. 

 

hCG levels in Culture Media: trace of SyncytializationhCG levels in Culture Media: trace of SyncytializationhCG levels in Culture Media: trace of SyncytializationhCG levels in Culture Media: trace of Syncytialization    

Human Chorionic Gonadotropin (hCG) is a glycoprotein made by two subunits α and β. In the 

placental tissue is released by syncytiotrophoblast cells. hCG placental production reflects the 

histological and morphological changes during the maturation of the human placenta. Thus its 

concentration is a marker of the occurring differentiation affecting the cytotrophoblast cells 

changing into syncytiotrophoblast. [hCG] was measured in the culture media (ImmunoAssay 

Eclia) with specific monoclonal antibodies labelling both hCG and free circulating β form. 

 

4.4.2 p-MSCs Culture: Mesenchymal Stromal Cells from 

Physiological and IUGR Placentas 

pppp----MSCs Culture and ExpansionMSCs Culture and ExpansionMSCs Culture and ExpansionMSCs Culture and Expansion    

Placental tissue was collected immediately after cesarean section; 1.5-cm3 full-thickness pieces 

were sampled in different sites of the placental disc and washed in HBSS (Hank’s balanced salt 

solution; Sigma-Aldrich, St. Louis, MO, USA). After mechanical separation of fetal membranes 

from the placental basal disc, the tissues were enzymatically digested with Collagenase IA 

(Gibco, Life Technologies) and Trypsin 2,5% (Gibco) and incubated in a fully humidified 

atmosphere of 5% CO2, 95% air at 37°C for 45 minutes. Tissues were then filtered and 

centrifuged at 2000 rpm for 10 minutes and cells grown in an expansion medium, as previously 

described [Jaramillo-Ferrada 2012] with the following minor modifications. Human p-MSCs, 
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isolated from physiological and IUGR placentas, were plated in 6-well tissue culture plates 

(International PBI, Milano, Italy) and coated with 0.2% gelatin (Sigma-Aldrich) at a density of 

104 cells/well. Cells were grown in expansion medium composed of DMEM/F-12 (1:1) (Life 

Technologies, Grand Island, NY, USA), 10% FBS and 20 ng/ml EGF (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Expansion culture media were prepared fresh weekly. Cells were 

incubated in a fully humidified atmosphere of 5% CO2, 95% air at 37°C for several weeks. Every 

week, living cells were counted with a Burker chamber using Trypan Blue (Sigma-Aldrich). 

pppp----MSCs FACS analysisMSCs FACS analysisMSCs FACS analysisMSCs FACS analysis    

At 24 hours, 7 days and 30 days, 105 cells were incubated with the following antibodies: anti-

CD133-PE, anti-CD34-APC and anti-CD117-PE (hematopoietic stem cell markers), anti-CD31-

FITC (endothelial cell marker), anti-CD45-APC-CY7 (hematopoietic cell marker), anti-CD44-

FITC, anti-CD105-PE, anti-CD29-FITC, anti-CD73-APC and anti-CD90-PE-Cy5 (mesenchymal 

cell markers) (Miltenyi Biotec) and anti-7-amino-actinomycin D (anti-7AAD, used to analyze 

only alive cells; BD Biosciences-Pharmingen, San Diego, CA, USA). Isotype-matched mouse 

immunoglobulins were used as negative controls. After each incubation, performed at 4°C for 

20 minutes, cells were washed in PBS, 1% heat-inactivated FCS and 0.1% sodium azide. 

Cytometric analyses were performed with a Cytomics FC 500 flow cytometer and 2.1 cxp 

software (BC, Beckman Coulter, Miami, FL, USA). Each analysis included at least 10,000-20,000 

events for each gate. A light-scatter gate was set up to eliminate cell debris from the analysis. 

The percentage of positive cells was assessed after the correction for the percentage reactive to 

an equivalent isotype control.  

 

pppp----MSCsMSCsMSCsMSCs    In Vitro DifferIn Vitro DifferIn Vitro DifferIn Vitro Differentiationentiationentiationentiation    

Endothelial differentiation 

Post-expansion Human p-MSCs were incubated in an endothelial growth medium containing 

Medium 199 (M199; Gibco-BRL, Gaithersburg, MD, USA) supplemented with 20 ng/ml EGF, 10 

ng/ml VEGF and 5 units/ml heparin (Sigma-Aldrich). Cells were seeded on 48-well plates coated 

with Matrigel/199 (1:1) and incubated in a humidified atmosphere (5% CO2, 95% air at 37°C). 

Differentiated endothelial cells were detected by immunostaining with anti-Factor VIII 

antibody (1:100 dilution; DAKO, Glostrup, Denmark). Nuclei were counterstained with DAPI. 

Images were captured using a fluorescence microscope (Leica DMIRE2; Leica Microsystems). 

Endothelial differentiation was quantitatively evaluated by counting FactorVIII-positive cells 
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per microscope field. The endothelial differentiation capacity of p-MSCs in 3D culture assay was 

also assessed and 105 p-MSCs were seeded in 24-well plates containing matrigel matrix (Becton 

Dickinson BD, California, USA) and repeatedly observed after 24, 48 and 72 hours of culture. 
 

Adipogenic differentiation 

Adipogenic potential of p-MSCs was verified using a specific differentiation kit (hMSC 

Adipogenic BulletKit; Lonza, Basel, Switzerland). Histological (Oil Red O; Sigma-Aldrich) and 

immunofluorescence (FAB4, Perilipin A; Abcam) stainings were performed to confirm 

differentiation; nuclei were stained with hematoxylin. Histological pictures were acquired with 

an optical microscope, while, for the immunostainings, an inverted fluorescence microscope 

was used (Leica DMIRE2; Leica Microsystems). Oil Red O staining was then eluted with 

isopropanol from cell vacuoles; optical density of the samples was measured at 490nm (GloMax 

Discover - Promega, Madison, WI, USA) using pure isopropanol as control. 

 

 

4.5 Biochemical analyses 

Umbilical venous and arterial blood was sampled from a segment of the doubly clamped 

umbilical cord immediately after fetal extraction. All samples were collected in heparinized 

syringes and kept on ice until the end of analysis. Standard biochemical parameters, such as 

oxygen partial pressure and saturation, CO2 partial pressure, lactate concentration, hemoglobin 

and pH values were immediately measured by a GEM Premier 3000 analyzer (Instrumentation 

Laboratory, Brussels- Belgium). 

 

4.6 Statistical analyses 

Clinical characteristics of the population, FACS data, quantitative misures of differentiation 

abilities, mtDNA, mRNA and protein expression levels, oxygen consumption and biochemical 

data were compared among groups using independent-samples t-test. Levene’s test for equality 

of variances was performed to assume that samples were obtained from populations of equal 

variances. P-MSCs proliferation behavior was analyzed with 2-way ANOVA. Differences 

between cases and controls were considered statistically significant when p < 0.05 or p < 0.017, 

if the Bonferroni adjustment was applied to t-test. 

The correlation between values was analyzed using the Spearman correlation and considered 

significant when p < 0.05. All tests were performed using the statistical package SPSS (IBM SPSS 

Statistics, Armonk, NY, NY). 
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1 Mt Content and Biogenesis in IUGR versus 
control placentas and isolated trophoblast cells 

Clinical data of the study population 

Maternal and fetal baseline demographic data of cases and controls are compared in table 1.1A. 

Maternal age and BMI are not significantly different in the two groups. As expected, gestational 

age and fetal and placental weights are significantly lower in IUGR group (n=8) versus controls 

(n=8). table 1.1B shows clinical and diagnostic characteristics of each single case. 
 

 Controls (n = 8) IUGR (n = 8) 

Maternal Age (yr) 34.1 ± 2.6 34.9 ± 2.0 

Pre-Pregnancy BMI (kg/m2) 21.6 ± 1.1 23.1 ± 1.3 

Gestational Age (wk) 39.1 ± 0.1 32.7 ± 1.3** 

Placental Weight (g) 517.2 ± 28.2** 239.6 ± 34.5** 

Fetal Weight (g) 3398.7 ± 88.7** 1386.7 ± 186.1** 

Table 1.1A: Maternal and fetal demographic data in IUGR vs controls. Data presented as average±SE *p<0.017 vs controls: **p<0.001 vs controls. 

 
Fetal 

Sex 

Gestational Age 

(weeks) 

Placental 

Weight (g) 

Fetal  

Weight (g) 

Neonatal Weigth 

(percentile) 

UA Pulsatility 

Index (PIumb) 

IUGR M 26 100 707 <10° Abnormal 

IUGR F 27 135 640 <10° Abnormal 

IUGR F 32 161 1030 <5° Abnormal 

IUGR F 33 235 1252 <10° Abnormal 

IUGR F 34 340 1550 <10° Abnormal 

IUGR F 35 276 1745 <5° Normal 

IUGR M 35 350 2005 <10° Normal 

IUGR F 37 320 1965 <5° Normal 

Control F 39 161 3220 50°-75° Normal 

Control F 39 135 3105 25°-50° Normal 

Control F 39 235 3630 75°-90° Normal 

Control F 40 340 3845 75°-90° Normal 

Control M 39 100 3250 25°-50° Normal 

Control M 39 350 3550 50°-75° Normal 

Control F 39 276 3335 25°-50° Normal 

Control F 39 320 3255 25°-50° Normal 

Table 1.1B: Prenatal and neonatal baseline data in cases and controls. Umbilical Artery (UA) pulsatility index (PI) by Doppler Velocimetry. IUGR, 

intrauterine growth restricted fetuses; A, abnormal; N, normal. Data presented as average ± standard deviation (SE). 
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Mt DNA in Placental Tissue and Cytotrophoblast Cells 

mtDNA levels are significantly higher in IUGR placental tissues (291.5 ± 132.8) compared to 

controls (179.7 ± 62.0) (p=0.05, figure 1.1A). mtDNA levels are instead significantly lower in 

IUGR cytotrophoblasts (318.0 ± 118.1) compared to controls (495.7 ± 105.7) (p=0.007, figure 1.1B). 

 

Figure 1.1: Mt DNA content in A) placental tissue and B) cytotrophoblast cells: mt DNA levels in controls (n=8) and IUGR (n=8). Data shown as 

BoxPlots graphs. Mt DNA levels calculated according to 2^-ΔCt method. Statistical analysis by Student’s T-test: *p=0.05; **p<0.01 vs controls. 

NRF1 Expression in Placental Tissue and Cytotrophoblast Cells 

NRF1 mRNA levels in placental tissue are on average 24% higher in IUGR (0.57 ± 0.12, n=6) 

compared to controls (0.47 ± 0.12, n=5), however the difference is not statistically significant 

(figure 1.2A). On the contrary, NRF1 gene expression is significantly lower in IUGR 

cytotrophoblast cells (0.46 ± 0.08, n=6), with a 30% expression decrease compared to controls 

(0.66 ± 0.20, n=5) (p=0.05, figure 1.2B). 

Figure 1.2: Nuclear Respiratory Factor-1 (NRF-1) mRNA levels in placental tissue A) of controls (n=5) and IUGR (n=6) and in cytotrophoblast cells B) 

of controls (n=6) and IUGR (n=5) pregnancies. Relative mRNA levels calculated with geNorm method, by E^-ΔCt/NF, where E is the efficiency of each 

assay and NF is the normalization factor. Statistical analysis by Student’s T-test: *p=0.05 versus controls. 

* 

A) 

** 

B) 

A) B) 

* 
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2 Mt Respiratory Chain (RC) Complexes Expression 
and O2 Consumption 

RC Complexes Gene and Protein Expression in Cytotrophoblast 

Cells 

mRNA expression of CII, CIII and CIV in cytotrophoblast cells of IUGR (n=8) is lower than in 

controls (n=8), though this difference do not reach statistical significance when corrected by 

the Bonferroni adjustment (p=0.04) (figure 2.1A). 

The protein expression of the same subunits is not significantly different between 

cytotrophoblast cells of IUGR group compared to controls (figure 2.1B). 

 

Figure 2.1. mRNA A) and protein B) expression of the subunits belonging to four respiratory chain complexes in the control (n=8, white) and IUGR 

(n=8, dark gray) pregnancies. Graphs represent average*standard deviation (SE). Relative mRNA levels calculated as for NRF-1 gene expression. 

Western blotting protein levels were assessed by band intensities measured by ImageJ software, normalized on β-actin band intensities. 

 

Cytotrophoblast Cells O2 Consumption 

Figures 2.2A and 2.2B show the O2 consumption levels per-mitochondrion (2.2A) and per-

number of cells (2.2B) resulting from the activity of the respiratory chain complexes. 

Cytotrophoblast cells of the IUGR group show significantly higher coupled-O2 consumption 

compared to controls, both as total assessment (CI+CII) and at the level of the single respiratory 

complex CIV, normalized to mitochondrial content (p< 0.017; figure 2.2A).
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Figure 2.2: Oxygen consumption levels (pmol O2) per mitochondrion (A and C) and per million of cells (B and D) in cytotrophoblast cells isolated 

from placentas of controls (white bars) and A-B) all IUGR cases (dark gray bars); C-D) IUGR with normal umbilical PI (hatched bars) and IUGR 

with abnormal PI (crosshatched bars). Graphs represent average values * standard deviation (SE). *p< 0.017 adjusted to Bonferroni Test. 

 

 

* 
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Interestingly, data not normalized to mtDNA show higher CIV O2 consumption in cells from 

IUGR placentas, notwithstanding their lower content of mtDNA (figure 2.2B). 

In IUGR cases with abnormal umbilical PI (PIumb), O2 consumption per-mitochondrion is 

higher than controls for all reported complexes (figure 2.2C). This resulted in higher CIV and 

total O2 consumption also overall in the cell (figure 2.2D). IUGR cases with normal PIumb are 

instead similar to controls except for an increased per-mitochondrion respiration in complex 

IV, that however do not reflect on the cell overall total respiration. No gender difference for O2 

consumption levels was found (data not shown). 

 

Data Correlations 

In our population mt DNA content in placental tissue inversely correlates both with fetal 

(R2=0.2; p=0.03) and placental (R2=0.3; p=0.008) weight (figures 2.3A and B). The mt DNA 

levels of both placental tissue and isolated cytotrophoblast cells do not correlate with 

gestational age (data not shown). Trophoblast cells mt DNA inversely correlates with 

normalized total (CI+CII) O2 consumption (R2=0.3; p=0.02); this is sustained by the single 

respiratory complexes (CI: R2=0.3; p=0.02. CIV: R2=0.6; p<0.001) (figures 2.4A, B and C). 

Both fetal and placental weights inversely correlate with cytotrophoblast mitochondrial O2 

consumption (data not shown). 

Finally, total O2 consumption values, regardless of their normalization on mt DNA or cell 

number, inversely correlate with gestational age (data not shown). 

 

 

Figure. 2.3:. Significant correlations between placental mt DNA content and fetal A) and placental B) weight in the analyzed population of 

controls (n=8, ○) and IUGR (n=8, ●) pregnancies. Statistical Analyses by Pearson Correlation: A) p=0.03/R2=0.2; B) p=0.008/R2=0.3. 
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Figure 2.4: Significant correlations with oxygen consumption levels of cytotrophoblast cells in the analyzed population of controls (n=7, ○) and 

IUGR (8, ●) pregnancies. Correlations between cytotrophoblast cell mt DNA content and A) total, B) CI, and C) CIV oxygen consumption levels per 

mitochondrion. Statistical Analyses by Pearson Correlation: A) p=0.02/R2=0.3; B) p=0.02/R2=0.3;. C) p<0.001/R2=0.6.  
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3 ERRγ and CYP19 

Clinical Data of the Study Population    

Maternal and fetal clinical data are reported in table 3.1. Maternal age and BMI do not differ 

between IUGRs and control group, while gestational age, placental and fetal weight are 

significantly lower in IUGR (p<0.001), as expected. 
 

 
Controls 

(n = 17) 

IUGR with 

normal PI (n = 8) 

IUGR with 

abnormal PI (n = 9) 

Maternal Age (yr) 34.59 ± 5.54 35.87 ± 4.40 34.00 ± 5.92 

Pre-Pregnancy BMI (kg/m2) 21.31 ± 2.99 21.49 ± 2.15 24.26 ± 4.17 

Gestational Age (wk) 39.18 ± 0.37 34.95 ± 3.64*** 32.62 ± 3.59*** 

Placental Weight (g) 467.66 ± 84.11 315.87 ± 128.86*** 243.43 ± 128.21*** 

Fetal Weight (g) 3367.94 ± 323.79 1767.75 ± 648.35*** 1500.68± 784.71*** 

Table 3.1: Maternal and fetal data of physiological (controls) and IUGR pregnancies. Data showed as average ± standard deviation. *p<0.05, 

***p<0.001. 

 

ERRy and CYP19 Gene Expression in Placental Tissue 

ERRy levels tend to increase in IUGR (normal PI: 0.43 ± 0.21, n=5; abnormal PI: 0.47 ± 0.19, n=9) 

compared to control term placentas (0.34 ± 0.14, n=14), although not significantly (Figure 3.1A). 

CYP19 gene expression shows no differences between IUGR (0.17 ± 0.10, n=14) and controls (0.11 

± 0.08, n=14), although it positively correlates with ERRy expression (see Data Correlations 

paragraph). However, when analyzing IUGR sub-populations according to disease severity, 

CYP19 expression results significantly different with a 33% increase in most severe IUGR cases 

(abnormal PI: 0.22 ± 0.11, n=8) compared to controls (0.11 ± 0.08, n=14; p=0.036, figure 3.1B). 
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ERRy and CYP19 Gene Expression in Cytotrophoblast Cells 

ERRy expression levels results significantly lower in IUGR cytotrophoblast cells (0.22 ± 0.71, 

n=8) compared to controls (0.32 ± 0.07, n=10) (p=0.016, figure 3.1C). When analyzed in IUGR 

sub-populations according to disease severity, ERRy is significantly lower in the most severe 

group, with abnormal PI, with a 28% decrease compared to controls (p=0.007, data not shown). 

CYP19 expression in cytotrophoblast cells shows no differences between the two groups (figure 

3.1D), but presents a significant correlation with ERRy measured in the same placentas, as 

shown in figure 3.2B (see Data Correlations paragraph). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: ERRγ and CYP19 mRNA levels in placental tissue. A) ERRγ mRNA expression in controls (n=14) and IUGR with normal (n=5) or 

abnormal (n=9) PI; B): CYP19 expression in controls (n=14) and IUGR with normal (n=6) or abnormal (n=8) PI. ERRγ and CYP19 mRNA levels in 

placental cytotrophoblast cells. C) ERRγ expression in controls (n=10) and IUGR (n=8) cytotrophoblasts. D) CYP19 expression in controls (n=10) 

and IUGR (n=8) cytotrophoblasts. Data shown as BoxPlots graphs. Statistical analysis by Student’s T-test: *p<0.05; **p<0.01 versus controls. 

Relative mRNA levels using the geNorm method, by E-deltaCT/NF, where E is the efficiency of each assay (calculated by a calibration curve) and NF 

is the normalization factor (calculated by housekeeping gene values)  
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Data Correlations 

In our study population, ERRy positively correlates with CYP19 gene expression both in whole 

placental tissue and isolated trophoblast cells (placental tissue: p=0.012/R2=0.247, figure 3.2A; 

trophoblast cells: p=0.037/R2=0.244, figure 3.2B). 

Expression levels of both analyzed genes do not correlate with gestational age, except for CYP19 

mRNA in whole placenta (p=0.023/R2=0.184, data not shown). Moreover, ERRy and CYP19 

expressions are significantly related to maternal BMI, with a positive trend in placental tissue 

and a negative one in trophoblast cells isolated from the same placentas (placental tissue: 

p=0.041/R2=0.157 for both ERRy and CYP19, figures 3.3A-B; trophoblast cells: p=0.021/R2=0.289 

for ERRy and p=0.020/R2=0.269 for CYP19, figures 3.3C-D). 

Finally, in the analyzed population the Umbilical Vein (UV) lactate content is positively 

correlated with CYP19 levels in placental tissue, and negatively related with ERRy in 

cytotrophoblast cells (p=0.018/R2=0.318 and p=0.021/R2=0.463, respectively) (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Significant correlation between placental ERRγ and CY19 mRNA expression in A) whole placental tissue (Controls: n=14, ○; IUGR 

with normal PI: n=5, ● and with abnormal PI: n=8, �) [p=0.012/R2=0.247]; B) cytotrophoblast cells (Controls: n=10, ○; IUGR with normal PI: 

n=5, ● or with abnormal PI: n=3, �). Statistical Analyses by Pearson Correlation: p=0.037/R2=0.244 
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Figure 3.3: Correlations between ERRγ or 

CYP19 mRNA expression and Maternal 

Body Mass Index (BMI). Top: significant 

correlation in whole placental tissue 

between maternal Body Mass Index (BMI) 

and A) ERRγ in controls (n=14, ○), IUGR 

with normal (n=5, ●) or abnormal (n=9, 

�) PI, B) CYP19 in controls (n=14, ○), 

IUGR with normal (n=6, ●) or abnormal 

(n=8, �) PI. Bottom: significant 

correlation in cytotrophoblast cells 

between maternal BMI and C) ERRγ in 

controls (n=10, ○), IUGR with normal 

(n=5, ●) or abnormal (n=3, �) PI, D) 

CYP19 in controls (n=10, ○), IUGR with 

normal (n=5, ●) or abnormal (n=3, �) PI. 

Statistical Analyses by Pearson 

Correlation: A-B) p=0.041/R2=0.157, C) 

p=0.021/R2=0.289, D) p=0.020/R2=0.269. 
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4 Placental Primary Cell Culture: Cytotrophoblast 
and Mesenchymal Stromal Cells 

4.1 Cytotrophoblast Cells Hypoxic Culture Model 

Clinical Data of the SClinical Data of the SClinical Data of the SClinical Data of the Study tudy tudy tudy PPPPopulationopulationopulationopulation    

Data are presented in table 4.1A. No significant differences were found between groups for 

maternal age and pre-pregnancy BMI. As expected, gestational age, placental and fetal weights 

are significantly lower in IUGR compared to physiological pregnancies. 
 

 
Maternal 

Age (yr) 

Pre-Pregnancy 

BMI (kg/m2) 

Gestational Age 

(weeks) 

Placental 

Weight (g) 

Fetal Weight 

(g) 

Term Controls 

(n = 3) 
33.0 ± 3.0 21.0 ± 4.0 39.1 ± 0.0 427.0 ± 40.0 3332.0 ± 116.0 

Table 4.1A: Maternal and fetal data of physiological pregnancies and IUGR cases. Data are presented as average ± standard deviation. *p<0.05, 

**p<0.01. 

 

Evaluation of hCG ConcentrationEvaluation of hCG ConcentrationEvaluation of hCG ConcentrationEvaluation of hCG Concentration    

The measure of hCG concentration (table 4.1B) in trophoblast media at T24, T48 and T72 

reflects the occurred syncitialization process. 

 Culture Media 24 h 48 h 72 h 

[hCG] 1,09 8,27 173,25 721,05 

[free β-HCG] 0,28 0,31 0,76 1,78 

Table 4.1B: hCG and free β-hCG levels in trophoblast hypoxic cultures at different timing. [hCG] as mUI/mL. 

This evidence is confirmed in the graphs below (figure 4.1.1) where the free β-hCG secretion in 

the culture media is higher in timing, meaning the increse of trophoblast syncitialization. 

 

 

 

 

 

Figure.4.1.1: Increasing time-concentration of free β-hCG in the 

trophoblast culture media 
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Mt DNA Content under Hypoxia: Preliminary DataMt DNA Content under Hypoxia: Preliminary DataMt DNA Content under Hypoxia: Preliminary DataMt DNA Content under Hypoxia: Preliminary Data 

Preliminary results of the mt DNA content of in vitro 

trophoblast culture model show a trend towards higher 

mtDNA levels in low O2 conditions. The mtDNA levels appear increased, though not 

significantly, in both 8% and at 0.1% O2 versus 20% O2 at 24, 48 and 72 h (figure 4.1.2). mt 

DNA content in 20%O2+CoCl2 trophoblast cells appears similar to 0.1 O2 ones at all the 

different culture timing- data not shown (T24���� 20%: 356±160 - 8%: 513±238 - 0.1%: 509±110; 

T48���� 20%: 236±99 - 8%: 433±295 - 0.1%: 458±299; T72���� 20%: 259±230 - 8%: 330±257 - 0.1%: 

525±183). However, cells cultured at low O2 concentrations, and particularly 0.1% O2 at 72 h of 

incubation, are very low in number, leading to relatively high standard deviations among 

experiments. Thus, some improvements in the experimental procedure are needed. 
 

Figure.4.1.2: mtDNA levels in cytotrophoblast cells at A) 20% and 8% O2 or B) 0.1% O2 after 24, 48 and 72 h of culture. 

4.2 Placental Mesenchymal Stromal Cells (p-MSCs) of normal 

and IUGR placentas 

Clinical Data of the SClinical Data of the SClinical Data of the SClinical Data of the Study tudy tudy tudy PPPPopulationopulationopulationopulation    

Data are presented in table 4.2. No significant differences were found between groups for 

maternal age and pre-pregnancy BMI. As expected, gestational age, placental and fetal weights 

are significantly lower in IUGR compared to physiological pregnancies. 

 
Maternal 

Age (yr) 

Pre-Pregnancy 

BMI (kg/m2) 

Gestational 

Age (weeks) 

Placental 

Weight (g) 
Fetal Weight (g) 

Term Controls (n = 5) 39.4 ± 2.9 22.2 ± 2.2 39.1 ± 0.0 467.5 ± 120.4 3269.4 ± 345.1 

IUGR (n = 6) 37.5 ± 5.8 22.9 ± 5.4 35.0 ± 1.7 ** 283.7 ± 59.8 * 1766.5 ± 430.4 ** 

Table 4.2: Maternal and fetal data of physiological pregnancies and IUGR cases. Data showed as average ± standard deviation. *p<0.05, **p<0.01. 
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Figure 4.2.1: A and B: Viability of cells isolated from normal and IUGR placentas over a 6-week culture in proliferation medium. Values were 

obtained by visual counting after Trypan Blue staining. Data are shown as average (± standard deviation in %) of different samples, each 

performed in three replicates. C and D: Expansion of cells isolated from normal and IUGR placentas observed during 6 weeks of culture. Data are 

shown as average (± standard deviation in %) of different samples, each performed in three replicates. **p<0.01; ***p<0.001. E and F: 

Measurements of doubling rate during the culture period, based on visual count. 
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Viability, PViability, PViability, PViability, Proliferation and roliferation and roliferation and roliferation and CCCCharacterization of haracterization of haracterization of haracterization of pppp----MSCsMSCsMSCsMSCs    

Cells were isolated from fetal membranes and placental basal disc and cultured in expansion 

medium. An high cell viability is reported over 6 weeks for all the analyzed samples, confirming 

appropriate culture conditions (Figures 4.2.1 A and B). IUGR cells display a lower proliferation 

rate compared to controls after 35 (basal disc) and 42 (fetal membranes and basal disc) days of 

culture (Figures 4.2.1 C and D). Doubling analysis confirm the lower proliferation rate of IUGR 

basal disc cells after 35 days of culture (Figure 4.2.1 F). Flow cytometry analysis attest that, 24 

hours after isolation, all samples present an heterogeneous population composed by different 

cell types (Figures 4.2.2 A, B, H and I). After 7 and 30 days of culture we observe a progressive 

reduction of hematopoietic markers with an increase in mesenchymal markers (Figures 4.2.2 

C, D, F, G, L, M, O and P), indicating an enrichment in cells with a mesenchymal phenotype. 

This enrichment occurred earlier in IUGR than in AGA samples: at day 7 mesenchymal markers 

are 1.6-4 fold (fetal membranes) and 2.3-5.8 fold (placental basal disc) higher in IUGR compared 

to controls. Differences turn out to be statistically significant for CD105, CD44, CD73, CD90 

(p<0.05) and CD29 (p<0.001) in fetal membranes (Figure 4.2.2 E) and only for CD29 (p<0.05) 

in placental basal disc (Figure 4.2.2 N). After 30 days of culture the cells were characterized for 

the expression of typical MSC markers by flow cytometry and all resulted positive for CD44, 

CD105, CD29, CD90 and CD73, while they are negative for CD34, CD133, CD146, CD31 and CD45 

thus showing proper mesenchymal stromal cell (MSC) phenotype. 
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Figure 4.2.2: FACScan immunophenotyping of placental mesenchymal stromal cells (p-MSCs) isolated from normal and IUGR pregnancies 

cultured in proliferation medium. Hematopoietic, mesenchymal and endothelial markers expression has been analyzed 24 hours after isolation 

(2A, 2B, 2H, 2I) and after 7 (2C, 2D, 2L, 2M) and 30 days (2F, 2G, 2O, 2P) of culture. At day 7 mesenchymal markers were 1.6-4 fold (fetal 

membranes) and 2.3-5.8 fold (placental basal disc) higher in IUGR compared to controls. Differences turned out to be statistically significant for 

CD105, CD44, CD73, CD90 (p<0.05) and CD29 (p<0.001) in fetal membranes (2E) and only for CD29 (p<0.05) in placental basal disc (2N). 

*p<0.05; ***p<0.001. After 30 days all samples showed a typical homogeneous immunophenotype of mesenchymal stromal cells (p-MSCs). 
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Differentiation capacity of pDifferentiation capacity of pDifferentiation capacity of pDifferentiation capacity of p----MSCsMSCsMSCsMSCs    

We sought to characterize the differentiation capacity of p-MSCs isolated from normal and 

IUGR placentas. 

Endothelial differentiation 

Under endothelial growth medium, Factor VIII-positive cells are quantitatively lower, though 

not significantly, in cells differentiated from IUGR p-MSCs compared to controls (Figure 4.2.3). 

When 50 ng/ml VEGF is added to the Matrigel culture medium for 3D endothelial 

differentiation, we observe lower capacity to form endothelial tubular structures in IUGR than 

in control p-MSCs. Indeed, after 24 hours, no tubular structure formation are observed in IUGR 

p-MSCs. Few tubular structures are found after 48 and 72 hours in IUGR cultures, although 

their formation rate remained significantly lower than that in normal p-MSCs. In addition, only 

normal p-MSCs showed colony-forming capacity (Figure 4.2.4). 

Adipogenic differentiation 

Under adipogenic medium, IUGR p-MSCs differentiate 1.7-fold more than normal p-MSCs, as 

showed by Oil Red O staining (Figure 4.2.3). Concordantly, expression of FABP4 and Perilipin 

A, evaluated by immunofluorescence, is greater in IUGR than in normal-derived p-MSCs (data 

not shown). Collectively, these in vitro findings demonstrate that multipotency of IUGR-derived 

p-MSCs is altered since their capacity for adipocyte differentiation is increased, whereas their 

differentiation ability towards endothelial lineage is decreased. 

 

mRNA ExmRNA ExmRNA ExmRNA Expression of Mitochondriapression of Mitochondriapression of Mitochondriapression of Mitochondria----Related GRelated GRelated GRelated Genesenesenesenes    

In order to verify a metabolic shift occuring in p-MSCs, we evaluated the mitochondria content 

of p-MSCs isolated from physiological and IUGR placentas, thus investigating whether 

mitochondria might be involved in regulating p-MSC cell metabolism. We therefore measured 

the expression levels of respiratory chain genes UQCRC1 and COX4I1 and of the mitochondrial 

biogenesis activator NRF1 in 3 IUGR and 3 control p-MSCs. 

IUGR compared to normal p-MSCs display a trend towards higher levels of all analyzed genes 

in the basal disc, and of COX4I1 in placental membranes, although they do not reach statistical 

significance (Figure 4.2.5). 
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Figure 4.2.3, left: p-MSCs Endothelial and adipogenic differentiation isolated from fetal membranes (A) and placental basal disc (B) in normal and IUGR pregnancies. Differentiation into endothelial and adipogenic 

lineages: assessed by Factor VIII immunofluorescence and Oil Red O stainings respectively. Nuclei stained blue with DAPI and hematoxylin. Quantitative endothelial differentiation by counting Factor VIII-positive 

cells x microscope field; adipogenic differentiation by Oil Red O levels in spectrofluorimetry. *p<0.05. Figure 4.2.4, right: Phase-contrast endothelial differentiated p-MSCs morphology isolated from fetal membranes 

(A, B) and placental basal disc (C, D) in 3D. After 72 hours, p-MSCs appeared as endothelial colonies. Only p-MSCs isolated from normal tissues showed tube-like structures. Magnification 10X.  
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Figure 4.2.5: Gene expression of NRF1 (mitochondrial biogenesis activator), UQCRC1 and COX4I1 (mitochondrial respiratory chain subunits) in 

p-MSCs isolated from placental membranes and basal disc in normal and IUGR pregnancies. Relative expression values are shown as box plots, 

indicating the median and the 25th and 75th percentiles. 



 

67 

 

 

 

 

 

 

6 Discussion 



6 Discussion 
 

68 

 

Intrauterine Growth Restriction (IUGR), together with preeclampsia (PE), a pregnancy 

pathology characterized by placental insufficiency, with a multifactorial etiology that still needs 

to be completely clarified. IUGR is often associated with preterm birth (PTB) [Yu, Rosemberg 

and Stueve]. The World Health Organization has recently confirmed that PTB is the major cause 

of neonatal mortality and morbidity, accounting for more than 50% of the early neonatal deaths 

[WHO, 2005]. Importantly, defects during the intrauterine development may also increase the 

risk to develop cardiovascular and metabolic pathologies in the adulthood as hypothesized by 

the “Fetal Programming Theory” [Painter et al., 2008; Barker, 2007; De Rooij et al., 2007], thus 

becoming a relevant issue also for the general health of future adults. A deeper knowledge of 

the alterations occurring in IUGR pregnancies has therefore become essential to develop 

therapeutic tools to prevent fetal, neonatal and future adult complications. 

A specific placental phenotype has been associated with IUGR [Cetin and Alvino, 2009], 

characterized by placentation defects, altered transport of oxygen and nutrients to the fetus 

[Cetin et al., 2013; Mandò et al., 2013; Mandò et al., 2011; Pardi et al., 1993] and impaired 

mitochondrial content [Colleoni et al., 2010, Lattuada et al., 2008]. Moreover, the high rate of 

oxidative metabolism of the active placenta (especially during the 2^-3^ trimesters) is 

associated with oxidative and nitrative stress, which has been shown to be intensified in 

pathological conditions, including IUGR [Myatt et al., 2010; Webster et al., 2008]. 

My purpose is to study, by ex vivo experiments and in vitro models, different types of placental 

cells to deeper characterize the placental insufficiency features of IUGR, with specific attention 

to the consequences of its hypoxic environment. 
 

Characterization of mitochondrial content in IUGR placental tissue and 

cytotrophoblast cells 

In the study population mitochondrial DNA content in IUGR placentas are higher compared to 

controls. (figure 1.1) This evidence, in agreement with previously reported data (Colleoni et al., 

2010), complies with NRF1 gene expression levels, that are increased, though not significantly, 

in IUGR placentas compared to controls. Opposite to what observed in the whole placental 

tissue, both mt DNA and NRF1 gene expression levels are significantly lower in cytotrophoblast 

cells isolated from IUGR compared to control placentas, accounting for a decreased 

mitochondrial content in these cells (figures 1.1 and 1.2). 

The lower mt DNA content exhibited by cytotrophoblast cells could represent an evidence of 

the envolvment of further placental cell types (e.g. syncytiotrophoblast, endothelial vascular 

cells and mesenchymal stromal cells) that may be responsible for the mt content increase in the 
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whole placental tissue. Indeed, regulation of mitochondrial biogenesis and function by O2 

concentration has been previously observed in other animal tissues (19,60). Changes in 

mitochondrial content in different types of placental cells may thus possibly be due to the 

increasing transplacental pO2 gradient between uterine and umbilical venous blood, previously 

described in IUGR pregnancies (39) and also reported in IUGR animal models (49). The 

increased maternal-fetal O2 gradient (40,39) may in fact expose endothelial and trophoblast 

cells to two extremes of O2 environment with opposite changes in mitochondrial biogenesis. 

Endothelial cells covering the blood vessel walls might be the most affected by O2 variations. 

We could speculate that the higher mitochondrial activity observed in trophoblast cells of IUGR 

fetuses might cause additional fetal vascular damage via an excess of reactive oxygen species 

(ROS). Such damage could eventually trigger higher mitochondrial biogenesis in fetal and 

placental endothelial cells. 

The difference between mtDNA content of cytotrophoblast cells and total placental tissue in 

IUGR fetuses might also be due to differential exposure to progesterone. Progesterone and other 

steroids, such as estrogens later described, regulate mitochondrial biogenesis and might play a 

role in the pathogenesis of IUGR in humans. Partial progesterone withdrawal in rats induces 

placental and fetal growth restriction (34). Thus, progesterone production, which occurs in the 

syncytiotrophoblast, but not in the cytotrophoblast cell, may lead to different mitochondrial 

levels in these different cell lineages of the IUGR placenta. 

 

Mitochondrial function in IUGR placental cytotrophoblast cells 

In cytotrophoblast cells isolated from IUGR placentas, mRNA expression of the RCC subunits 

CII, CIII and CIV shows a trend towards lower levels compared to controls, though not 

significantly when the Bonferroni adjustment is applied to t-tests. Their protein expression do 

not present any difference between IUGR and control cells. (see figure 2.1). 

In contrast, mt bioenergetics efficiency represented by cytotrophoblast cells O2 consumption 

is higher in IUGR versus controls. Thus, despite the protein content of RCC subunits is not 

altered, their activity is significantly increased in IUGR cytotrophoblast cells. This may be due 

to a defective RCC assembly in supercomplexes. Supercomplex assembling, a post-translational 

modification required for RCC stability and functionality, allows more efficient electron flux 

and higher availability of substrates (27,56,23). A possible more efficient supercomplex assembly 

may explain the increase in respiratory capacity of IUGR cells. 

Although the mitochondrial content in cytotrophoblast cells of the IUGR group is significantly 

lower than in controls, these same mitochondria were able to sustain higher total cellular 
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respiration rate. In addition, when all samples are analyzed together, O2 consumption is 

inversely correlated both with mtDNA content of cytotrophoblast cells and with fetal and 

placental weights (figure 2.4). These findings altogether might suggest a functional 

compensatory effect to the decreased mitochondrial content, the more the growth restriction 

the higher the mitochondrial O2 consumption. 

Another remarkable observation derives from the analysis of data according to umbilical artery 

Doppler velocimetry (PIumb). IUGR cases have been previously associated with cerebral 

metabolic and maturation changes driven by hypoxia, as shown by in utero MR spectroscopy 

(8) and post-natal MR imaging (47). In our population O2 consumption presents a significantly 

higher increase compared to controls in IUGR with abnormal PIumb, rather than in IUGR 

fetuses with normal PIumb. This underlines the role of umbilical artery Doppler velocimetry as 

a marker of severity in IUGR. 

These data suggest that possible compensatory mitochondrial mechanisms occur in IUGR to 

sustain fetal growth under conditions of severe placental vascular insufficiency. Further studies 

are needed to elucidate the consequences of these findings, especially as regards possible 

enhanced ROS generation and in different phases of placental development. 

Regnault et al. (49) suggest that in IUGR the higher transplacental pO2 gradient and the lower 

umbilical vein pO2 are the result of a lower ratio between low and high hindrance sites in the 

placental epithelium. The higher rate of O2 consumption found in cytotrophoblast cells of IUGR 

human fetuses can contribute to generate high hindrance sites in the placenta, together with 

possible local decreases in the IUGR transplacental diffusion distance. This possibility has been 

demonstrated to date in a mouse model of IUGR (14). 

Thus, our data suggest that altered O2 delivery to IUGR fetuses might also be due to increased 

O2 consumption within trophoblast cells, possibly representing one of the key factors leading 

to growth restriction. However, we cannot exclude that placental changes may be the result of 

a reduced fetal O2 consumption due to the slower rate of growth and thus a decreased need for 

oxygen. We indeed have previously reported a significant reduction of fetal O2 consumtion 

even on a per kilogram basis in IUGR (46). 
 

The changes occurring in IUGR might be influenced by several causes, such as Caloric 

Restriction. Indeed, strong links have been previously described between calorie restriction and 

changes in the mitochondrial machinery of different tissues (12,30). Growth Restricted placentas 

usually present many characteristics leading to calorie restriction and mitochondrial defects, 

such as poor expression and activity of nutrient transporters (7,33,53,10,18), low activity of the 
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glutamine-glutamate metabolism and poor control of mitochondrial lipid peroxidation (33,50), 

with increased sensitivity to mitochondrial oxidative stress and ROS production. Moreover, 

micronutrients imbalance might also be involved in IUGR mitochondrial alterations (32, 9). 
 

Estrogen-Related Receptor (ERRγ) and CYP19 placental expression 

Several mechanisms may be implicated in altered mitochondrial function. Estrogen-Related 

Receptor (ERRγ), involved in mitochondrial biogenesis and functions (31,48), regulates estrogen 

production (21). In placenta, ERRγ is able to bind the promoter region of CYP19 aromatase, one 

of the main enzymes of the estrogen pathway production (in particular 17β-estradiol), 

enhancing its gene expression [Stocco, 2012]. Thus ERRγ possible increase, due to mt biogenesis 

alterations in IUGR, may also lead, via-CYP19, to higher estradiol levels in IUGR placentas, 

contributing to abnormal placental vascularization and fetal maturation in IUGR pregnancies 

(42,44). 

To assess this hypothesis, ERRγ and CYP19 gene expression have been investigated for the first 

time in human IUGR placentas, by measuring their mRNA levels both in whole placental tissue 

and its isolated cytotrophoblast cells. 

In whole placental tissue CYP19 presents increased expression levels in the IUGR group 

compared to controls; in particular CYP19 mRNA levels are progressively higher with IUGR 

severity. We also find higher ERRγ expression in IUGR cases, though not significantly. This 

represents a further new evidence suggesting altered mitochondrial biogenesis and content in 

IUGR, thus expanding our newest study on growth-restricted placentas [Mandò et al., 2014]. 

Indeed, ERRγ shows the same expression pattern of NRF-1, described above, giving a further 

evidence of its role as an active transcriptional factor in placental mt biogenesis. This suggests 

a potential role for ERRγ in the impaired IUGR metabolism. Evidences on animal models 

support the hypothesis that increased ERRγ expression in IUGR might be a restore attempt by 

increasing mt biogenesis via ERRγ overexpression [Roberts et al., 2001]. Mayeur and colleagues 

showed that rats growth-restricted placentas, induced by maternal undernutrition, present 

impaired mitochondrial function [Mayeur et al., 2013]. On the other hand, an active ERR 

regulatory pathway seems to be required in lung mitochondria adaptation to high-altitude 

environment in a mice model [Chitra and Boopathy, 2014]. Likewise, mice lacking one copy of 

ERRγ exhibit a decreased muscle mt functionality and exercise capacity. 

The role of ERRγ in growth restriction pathogenesis could also be exerted through its 

interaction with CYP19 aromatase as previously said. Its higher levels in IUGR placentas 

compared to controls may be actually due to the action of ERRγ on CYP19 gene promoter. 
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Several in vitro studies in other tissues [Liu et al., 2010; Pedram et al., 2006; Stirone et al., 2005] 

suggest an estrogen protective role against oxidative stress, particularly for estradiol. This is 

mediated by the Estrogen Receptor (ER alpha) and leads to a reduction of mitochondrial 

Reactive Oxygen Species (ROS) levels. Based on our results, we could thus speculate that the 

higher CYP19 expression, possibly mediated by ERRγ, may be a guided estrogen protective 

action for the growth-restricted placenta status, also considering that CYP19 expression 

progressively increases with IUGR severity. 

Opposite to their placental tissue expression, ERRγ gene expression levels in cytotrophoblast 

cells isolated from those placental tissues are significantly decreased in the IUGR group 

compared to controls. Interestingly, previous in vitro experiments show that trophoblast cells 

cultured under hypoxic conditions (2% O2; 5% CO2) present an O2-dependent ERRγ gene 

expression with lower levels due to insufficient oxygen supply [Kumar and Mendelson 2011]. 

Among different placental cell types, cytotrophoblast cells have been choosen since they are 

very important for placental metabolism and nutrient transport, together with multinucleated 

syncytiotrophoblasts. However, as well as for mt DNA content, other cell types (i.e. endothelial 

cells or placental stromal cells) could be responsible for the increase of ERRγ expression in the 

whole placental tissue. Moreover, as already mentioned, oxygen concentration (which presents 

an altered gradient within IUGR placentas) regulates mt biogenesis through its transcriptional 

activators, with various effects depending on the different histological region [Leduc et al., 2010; 

Zung et al., 2007]. 

CYP19 gene expression do not show any difference between IUGR and controls in 

cytotrophoblast cells, though it positively correlates with ERRγ levels. It is known that CYP19 

expression increases with cytotrophoblast cells differentiation, up to a maximum production in 

the syncytiotrophoblast [Kamat and Mendelson, 2001]. Indeed, low CYP19 levels resulted in 

cytotrophoblast cells, which might complicate the detection of differences between IUGR and 

control samples. 

Finally, the significant positive correlation linking maternal BMI and the expression of both 

ERRγ and CYP19 genes in whole placental tissue is worth of interest. On the contrary, in 

trophoblast cells this correlation shows a negative trend. A recent in vitro study on trophoblast 

cells reveals an estradiol-dependent regulation of leptin production through ER-alpha receptor, 

whose levels usually increase together with ERR expression [Gambino et al., 2012]. Moreover, 

evidences from ER alpha or CYP19 knock-out in mice suggest that ERR could cooperate in 

preventing an adipose phenotype [Heine et al., 2000, Jones et al., 2000]. Leptin is known to 

increase during pregnancy [Cetin et al., 2001, Widjaja et al., 2000] and to function as an anti-
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obesity hormone synthetized in placenta by both cyto and syncytiotrophoblast cells [Poidatz et 

al., 2014; Maymo et al., 2011]. The measure of plasmatic levels of both leptin and 17β estradiol in 

maternal blood is needed to assess this hypothesis. 
 

In vitro experiments to explore possible mechanisms of mitochondrial alterations in 

IUGR placental cells 

Fluctuations in placental oxygen concentration may generate oxidative stress (OxS). Indeed, 

Intrauterine Growth Restriction presents altered placental and fetal oxygenation [Pardi et al., 

1993, Cetin and Alvino, 2009], together with vascular defects and chronic low-grade 

inflammation leading to increased oxidative stress [Menon, 2014]. As mitochondria are the 

major producers of intracellular reactive oxygen (O2) species through free radicals generated 

by the mt oxidative phosphorylation, altered intrauterine O2 conditions might affect mt DNA 

content and function, leading to increased oxidative stress in IUGR placental cells [5]. My 

purpose is to reproduce in trophoblast primary cell lines, different O2 conditions that placentas 

may be exposed to during a pathological pregnancy. Exposure of trophoblast cultures to hypoxia 

is an in vitro model commonly used in the last few years to mimic pregnancy oxygenation 

normal and pathologic environments [Williams et al., 2012; Oh et al., 2011; Tuuli et al., 2011; 

Baumann et al., 2007; Nelson et al., 2003; King et al., 2000]. Here I reported preliminary data 

showing that the oxygen lack in cytotrophoblast cells leads to increased mt DNA levels. The 

evidence that O2 levels may regulate mt biogenesis in cytotrophoblast cells highlights their 

deep sensitivity to O2 conditions. However, further data are needed to confirm these 

preliminary results. Although all attempts in adapting the model to each study purpose, hypoxic 

coltures remain an open challenge. In fact, primary cytotrophoblast cultures are very sensitive 

to O2 concentration, so that even 20% O2 is deleterious for growth conditions. Moreover, 

hypoxia (0.1 - 1% O2) produces metabolic footprints in the conditioned culture medium that 

might affect trophoblast metabolomic responses [Zamudio/Tuuli]. Among problems affecting 

the hypoxic in vitro model, there is the high cell mortality, especially under o.1% O2 condition: 

in next experiments, less strong hypoxic condition (1.5% O2) will be tested to enhance 

trophoblast cells vitality. It will also be important to choose the best timing of culture evaluating 

the effects of hypoxia levels and durations on gene expression patterns of human trophoblasts. 

For instance, it is my intent to extend the initial adhesion time from 4 to 12 hours: this will allow 

a trophoblast better adhesion to the plate, hopefully stabilizing the number of plated cells 

enhancing the amount and quality of the derived mt DNA. Moreover, future experiments will 

reproduce hypoxia/re-oxygenation intervals characterizing placental insufficiency and 
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generating OxS. I will measure levels of apoptosis and autophagy markers (e.g. TNF-α, p53, 

caspases), that are consequences of stress on placental trophoblast cells. 

 

Placental - Mesenchymal Stromal Cells in IUGR and control placentas 

I then shift my investigation on a different placental cell type: placental - Mesenchymal Stromal 

Cells (p-MSCs) 

In vitro experiments have been performed to isolate and characterized p-MSCs from human 

placentas affected by Intrauterine Growth Restriction and from healthy human placentas. p-

MSCs have never been investigated before in IUGR pregnancies. However, their role might be 

crucial in placental insufficiency pathologies. Recent studies on preeclamptic pregnancies 

report that PE p-MSCs show pro-inflammatory and anti-angiogenic features, that may result in 

abnormal placental development [Rolfo 2013]. 

In the performed experiments, mesenchymal markers enrichment during p-MSCs cultures and 

multipotent differentiation abilities confirm the successful isolation and selection of a 

mesenchymal stromal cell population from placental membranes and basal disc of both 

physiological and IUGR placentas. As attested by flow cytometry data, the p-MSC population is 

earlier selected in IUGR placentas. Thus, the faster selection of the mesenchymal cell type in 

IUGR cultures might represent a compensatory mechanism to metabolic alterations occurring 

in IUGR placental cells and/or to the adverse IUGR placental environment. The lower 

proliferation rate characterizing IUGR pMSCs (especially after 35 days of culture) has been 

previously reported in PE with fetal and/or placental compromise compared to physiological 

pregnancies [Rolfo, 2013]. During placentation process, this reduction in p-MSCs proliferation 

rate could impair the primary villi formation and consequently trophoblast development, since 

MSCs both serve as structural support and exert a paracrine activity on trophoblast cells. 

Moreover, IUGR p-MSCs population display lower endothelial and higher adipogenic 

differentiation potentials compared to controls. During pregnancy, pMSCs usually contribute 

to both vasculogenesis and angiogenesis [Arroyo 2008; Gourvas 2012; James 2014] through the 

endothelial progenitor’s capacity of tissue regeneration also by induction of new vessels, 

therefore increasing tissue perfusion and oxygenation [Demir 2007; Charnock-Jones 2004]. 

Interestingly, several studies report some alterations in maternal and fetal endothelial 

progenitor or in the angiogenic capacity of IUGR placental cells [Calcaterra 2013; Sipos 2013; 

Riddell 2013]. The mechanisms behind these p-MSCs alterations in IUGR still need to be 

clarified and may be associated with their reduced capacity to differentiate in endothelial cells. 

Opposite to endothelial differentiation ability, the adipogenic potential in pMSCs from IUGR is 
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increased compared to controls. IUGR newborns present increased risk of adult obesity and 

metabolic syndrome [Simmons 2008, Gluckman 2005]. In IUGR animal models, several 

alterations in both adipose tissue structure and endocrine system have been demonstrated. As 

these changes are evident early in life, the predisposition to obesity may be programmed in 

utero [Ross 2013]. 

Mithocondrial (mt) DNA, together with mRNA levels of mt biogenesis transcription factors (e.g. 

NRF1 and 2 and ERRγ) and of mt Respiratory Chain Complexes (RCC), are well accepted 

biochemical markers to assess mitochondria content. Thus, to further characterize IUGR 

pMSCs, their mitochondrial (mt) content is investigated by measuring gene expression levels of 

the mt biogenesis activator NRF1 and of the Respiratory Chain genes UQCRC1 and COX4I1 (two 

subunits respectively belonging to the RC CIII and CIV). Mesenchymal stem cell metabolism is 

known to be mainly anaerobic, with a shift towards an aerobic mitochondrial metabolism 

reported during differentiation, when increase of mt biogenesis, oxygen consumption and ATP 

production occur [Chen 2008; Hofmann 2012]. Interestingly, p-MSCs cultured with no 

differentiating medium present a trend towards higher NRF1, UQCRC1 and COX4I1 expression 

levels in IUGR basal disc samples compared to controls and higher COX4I1 levels in IUGR 

placental membranes; these differences are not statistically significant likely because of the low 

sample number. Nevertheless, they might account for metabolic alterations in IUGR p-MSCs, 

showing a possible shift to aerobic metabolism, with the loss of the metabolic characteristics 

that are typical of multipotent and undifferentiated cells. These results are consistent with 

recent data showing a higher mitochondrial content in IUGR placental tissue [Lattuada, 2008]. 

 

Limitations 

Placental O2 consumtion is a complex feature resulting from the activity of different cell 

lineages. O2 consumtion data are obtained only from cytotrophoblast cells due to the protocol 

needed to isolate a proper amount of single cells from the entire placental tissue. Thus, we can 

only speculate about the possible contribution of cytotrophoblast cells to the total placental O2 

consumtion, and not exclude that different cell types may give different results. 

Another possible limit is the different gestational age between cases and controls. This is a limit 

of all studies investigating human IUGR compared with control-term placentas. However, to 

the best of our possible experimental design, we do not observe any significant negative 

correlation between gestational age and the O2 consumption of CIV, which presents the highest 

significant difference between IUGR and controls among respiratory chain complexes. 
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Gestational age correlates to fetal weights but may independently alter mitochondrial number 

and/or function because of differences in hormone secretion and potential changes in placental 

O2 consumption as gestational age advances. No studies have addressed the influence of 

gestational age on placental or trophoblast cells O2 consumption in humans. 
 

The different gestational age between IUGR and controls may rappresent again a possible limit 

of the analyses on ERRy and CYP19 gene expression. However, both gene expression are not 

related to gestational age in our population, except for CYP19 mRNA levels in the placental 

tissue. However, though all IUGR cases with both normal and abnormal PI have significantly 

lower gestational age compared to controls, only the most severe IUGR show significantly 

higher levels of CYP19 expression, thus suggesting that gestational age is not involved in the 

reported differences between cases and controls. Moreover, when comparing gestational ages 

of IUGR with normal PI and cases with abnormal PI, we do not find any significant difference 

(t-test: p=0.205, data not shown). 

CYP19 gene expression have been analyzed assuming that it may represent an index of 

aromatase content in placental tissue. However, post-translational modifications (glycosylation 

and phosphorylation) may occur, affecting its functional activity. Further experiments will be 

planned to asses this aspect. 
 

A potential limitation of the study on placental mesenchymal stromal cells (p-MSCs) is 

represented again by the different gestational age of the IUGR compared to the control group, 

previously discussed. Another important observation regard the analysis on IUGR placentas is 

that has been performed at delivery, whereas placental abnormal development of IUGR 

pathology is supposed to start already at the beginning of placentation. Therefore, the observed 

features might also be the consequence of an altered placental environment influencing pMSC. 

 

Conclusion 

Taken together, reported data highlight mitochondrial alterations occurring in placentas of  

Intrauterine Growth Restricted pregnancies, through ex vivo and in vitro approaches.  

These results shed genuine new data into the complex physiology of placental oxygenation in 

IUGR fetuses. Mitochondrial content is higher in IUGR total placental tissue compared with 

normal pregnancies at term. This difference is reversed in cytotrophoblast cells of IUGR fetuses, 

which instead present higher mitochondrial functionality. These findings suggest different 

mitochondrial features depending on the placental cell lineage. 
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Indeed, our results on placental Mesenchymal Stromal Cells, showed higher levels of genes 

accounting for mitohcondrial content and function. 

The increased placental O2 consumption by placental tissue may represent a limiting step in 

fetal growth restriction, preventing adequate O2 delivery to the fetus. This limitation has 

potential consequences on fetal O2 consumption both in animal models and in human IUGR. 
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