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Abstract

A bounded and linear operator is said to be hypercyclic if there

exists a vector such that its orbit under the action of the oper-

ator is dense. The first example of a hypercyclic operator on a

Banach space was given in 1969 by Rolewicz (32) who showed

that if B is the unweighted unilateral backward shift on l2, then

λB is hypercyclic if and only if |λ| > 1. Among its features, we

can mention for example that finite-dimensional spaces cannot

support hypercyclic operators, proved by Kitai (29). On the

other hand, several people have shown in different contexts, in

the Hilbert space frame, that the set of hypercyclic vectors for

a hypercyclic operator is a Gδ dense set (20), (22), (29).

This thesis is divided into four chapters. In the first one, we give

some preliminaries by mentioning some definitions and known

results that will be of great help later.

In chapter 2, we introduce a refinement of the notion of hyper-

cyclicity, relative to the set N(U, V ) = {n ∈ N : T−nU ∩ V 6=
∅} when belonging to a certain collection F of subsets of N,
namely a bounded and linear operator T is called F -operator

if N(U, V ) ∈ F , for any pair of non-empty open sets U, V in



X. First, we do an analysis of the hierarchy established between

F -operators, whenever F covers those families mostly studied

in Ramsey theory. Second, we investigate which kind of prop-

erties of density can the sets N(x, U) = {n ∈ N : Tnx ∈ U} and
N(U, V ) have for a given hypercyclic operator, and classify the

hypercyclic operators accordingly to these properties.

In chapter three, we introduce the following notion: an operator

T on X satisfies property PF if for any U non-empty open set in

X, there exists x ∈ X such that N(x, U) ∈ F . Let BD the col-

lection of sets in N with positive upper Banach density. We gen-

eralize the main result of (19) using a strong result of Bergelson

and Mccutcheon (10) in the vein of Szemerédi’s theorem, leading

us to a characterization of those operators satisfying property

PBD. It turns out that operators having property PBD satisfy a

kind of recurrence described in terms of essential idempotents of

βN (the Stone-Čech compactification of N). We will discuss the

case of weighted backward shifts satisfying property PBD. On

the other hand, as a consequence we obtain a characterization

of reiteratively hypercyclic operators, i.e. operators for which

there exists x ∈ X such that for any U non-empty open set in

X, the set N(x, U) ∈ BD.

The fourth chapter focuses on a refinement of the notion of dis-

joint hypercyclicity. We extend a result of Bès, Martin, Peris

and Shkarin by stating: Bw is F -weighted backward shift if

and only if (Bw, . . . , B
r
w) is d-F , for any r ∈ N, where F runs



along some filters strictly containing the family of cofinite sets,

which are frequently used in Ramsey theory. On the other hand,

we point out that this phenomenon does not occur beyond the

weighted shift frame by showing a mixing linear operator T on

a Hilbert space such that the tuple (T, T 2) is not d-syndetic.

We also, investigate the relationship between reiteratively hy-

percyclic operators and d-F tuples, for filters F contained in

the family of syndetic sets. Finally, we examine conditions to

impose in order to get reiterative hypercyclicity from syndeticity

in the weighted shift frame.



Resumen

Un operador lineal y acotado se dice hipercíclico si existe un

vector cuya órbita es densa. El primer ejemplo de operador

hipercíclico sobre un espacio de Banach fue dado por Rolewicz en

1969, quien prueba que B es hipercíclico si y sólo si |λ| > 1, para

B operador desplazamiento unilateral en l2. Entre los primeros

resultados vinculados a la hiperciclicidad podríamos mencionar

el hecho que ningún espacio finito dimensional puede soportar

un operador hipercíclico y que en el contexto de los espacios de

Hilbert, todo operador hipercíclico tiene un conjunto Gδ-denso

de vectores hipercíclicos.

La tesis está dividida en cuatro capítulos. En el primero, se dan

algunos preliminares, repasando aquellas definiciones y resulta-

dos ya existentes en la literatura que nos serán necesarios más

adelante.

En el capítulo dos, introducimos un refinamiento del concepto

de hiperciclicidad, relativo al conjunto N(U, V ) = {n ∈ N :

T−nU ∩ V 6= ∅}, cuando éste pertenece a una cierta colección

de subconjuntos de N. En otras pala-

bras, un operador lineal y continuo T se dice F -operador si



N(U, V ) ∈ F para cada par de conjuntos abiertos no vacíos

U, V de X. En primer lugar, hacemos un análisis de la jerarquía

establecida entre F -operadores cuando F recorre aquellas fa-

milias más estudiadas en Teoría de Ramsey. En segundo lugar,

analizamos qué tipo de propiedades de densidad pueden tener los

conjuntos de la forma N(x, U) = {n ∈ N : Tnx ∈ U} y N(U, V )

para un operador hipercíclico dado. De igual modo, clasificamos

los operadores hipercíclicos de acuerdo a estas propiedades.

En el capítulo tres, se introduce la siguiente noción: un oper-

ador T en X satisface la propiedad PF si para todo conjunto

abierto no vacío U de X, existe x ∈ X tal que N(x, U) ∈ F .

Sea BD la familia de los conjuntos de N con densidad de Banach

superior positiva. En primer lugar, generalizamos un resultado

de Costakis y Parissis haciendo uso de una versión generalizada

del Teorema de Szemerédi, debido a Bergelson y McCutcheon.

Como consecuencia obtenemos una caracterización de aquellos

operadores que satisfacen la propiedad PBD. Resulta que los

operadores teniendo la propiedad PBD satisfacen un tipo de re-

currencia que puede ser descrito en términos de los idempotentes

esenciales de N. Se discute también, el caso de los operadores de-

splazamiento ponderados que satisfacen la propiedad PBD. Por

otra parte, se obtiene como consecuencia una caracterización

de los operadores reiterativamente hipercíclicos, i.e. operadores

para los cuales existe x ∈ X tal que para todo conjunto abierto

no vacío U de X, el conjunto N(x, U) ∈ BD.



En el cuarto capítulo nos enfocamos en el estudio de un re-

finamiento de la noción de hiperciclicidad disjunta. Por una

parte, extendemos un resultado de Bes, Martin, Peris y Shkarin

donde afirmamos lo siguiente: Bw es F -operador si y sólo si

(Bw, . . . , B
r
w) es d-F , para todo r ∈ N, donde Bw denota un

operador desplazamiento ponderado en c0 o lp, (1 ≤ p < 1) y

donde F es cualquiera de los filtros más usados en Teoría de

Ramsey que contienen estrictamente la familia de los conjun-

tos cofinitos. Por otra parte, se destaca que este fenómeno no

tiene lugar fuera del contexto de los operadores desplazamiento

ponderados. Para ello se muestra un operador lineal mezclante

T en un espacio de Hilbert tal que (T, T 2) no es d-sindético.

También se indaga sobre la relación entre operadores reiterati-

vamente hipercíclicos y d-F tuplas, para filtros F contenidos en

la familia de los conjuntos sindéticos. Finalmente, examinamos

qué condiciones son necesarias para que un opera-

dor desplazamiento ponderado sindético sea reiterativamente

hipercíclico.



Resum

Un operador lineal i tancat es diu hipercíclic si hi ha un vector

l’òrbita del qual és densa. El primer exemple d’operador hiper-

cíclic sobre un espai de Banach va ser donat per Rolewicz en

1969, qui prova que B és hipercíclic si i només si |λ| > 1, per a

B operador desplaçament unilateral en l2. Entre els primers re-

sultats vinculats a l’hiperciclicidad podríem mencionar el fet que

cap espai finit dimensional no pot suportar un operador hiper-

cíclic i que en el context dels espais de Hilbert, tot operador

hipercíclic té un conjunt Gδ-denso de vectors hipercíclics.

La tesi està dividida en quatre capítols. En el primer, es donen

alguns preliminars, repassant aquelles definicions i resultats ja

existents en la literatura que ens seran necessaris més avant.

En el capítol dos, introduim un refinament del concepte de hiper-

ciclicidad, relatiu al conjunt N(U, V ) = {n ∈ N : T−nU ∩ V 6=
∅}, quan este pertany a una certa collecció F de subconjunts

de N. En altres paraules, un operador lineal i continu T es

diu F -operador si N(U, V ) ∈ F , per a cada parell de conjunts

oberts no buits U, V de X. En primer lloc, fem una anàlisi de la

jerarquia establida entre F -operadores quan F recorre aquelles



famílies més estudiades en Teoria de Ramsey. En segon lloc,

analitzem quin tipus de propietats de densitat poden tindre els

conjunts de la forma N(x, U) = {n ∈ N : Tnx ∈ U} i N(U, V )

per a un operador hipercíclic dau. De la mateixa manera, clas-

sifiquem els operadors hipercíclics d’acord amb estes propietats.

En el capítol tres, s’introduix la noció seguent: un operador T

en X satisfà la propietat PF si per a tot conjunt obert no buit

U de X, hi ha x ∈ X tal que N(x, U) ∈ F . Siga BD la família

dels conjunts de N amb densitat de Banach superior positiva.

En primer lloc, generalitzem un resultat de Costakis i Parissis

fent ús d’una versió generalitzada del Teorema de Szemerédi, a

causa de Bergelson i McCutcheon. Com a consequència obtenim

una caracterització d’aquells operadors que satisfan la propietat

PBD. Resulta que els operadors tenint la propietat PBD satis-

fan un tipus de recurrència que pot ser descrit en termes dels

idempotentes essencials de βN (the Stone-Čech compactification

of N). Es discutix també, el cas dels operadors desplaçament

ponderats que satisfan la propietat PBD. D’altra banda, s’obté

com a consequència una caracterització dels operadors reitera-

tivament hipercíclics, i.e. operadors per als quals hi ha x ∈ X
tal que per a tot conjunt obert no buit U de X, el conjunt

N(x, U) ∈ BD.

En el quart capítol ens enfoquem en l’estudi d’un refinament de

la noció de hiperciclicidad disjunta. D’una banda, estenem un

resultat de Bes, Martin, Peris i Shkarin on afirmem el seguent:



Bw és F -operador si i només si (Bw, . . . , B
r
w) és d-F , per a tot

r ∈ N, on Bw denota un operador desplaçament ponderat en

c0 o lp, (1 ≤ p < ∞) i on F és qualsevol dels filtres més usats

en Teoria de Ramsey que contenen estrictament la família dels

conjunts cofinitos. D’altra banda, es destaca que este fenomen

no té lloc fora del context dels operadors desplaçament ponder-

ats. Per a això es mostra un operador lineal mesclen-te T en

un espai de Hilbert tal que (T, T 2) no és d-sindético. També

s’indaga sobre la relació entre operadors reiterativament hiper-

cíclics i d-F tuplas, per a filtres F continguts en la família dels

conjunts sindéticos. Finalment, examinem quines condicions són

necessàries perquè un operador desplaçament ponderat sindético

siga reiterativament hipercíclic.
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1

Introduction

This thesis is concerned with Linear dynamics and is devoted to the

study of recurrence properties of linear and bounded operators defined on a

real or complex topological vector space X, whose topology has a countable

basis and is complete.

In the next section we will recall the main objects to deal with later and

will mention existing results in the literature, useful for our future work.

1.1 Preliminaries

Let L(X) be the algebra of linear and continuous maps on a topological

vector space X (in short, operators).

Definition 1. Given an infinite set A ⊆ N, a sequence (Tn)n∈A of contin-
uous maps on X is said universal if there exists x ∈ X such that the set
{Tnx : n ∈ A} is dense in X.

In the particular case in which the sequence is composed by the iterates
of a single linear operator T ∈ L(X), the sequence of operators (Tn)n∈A is

1



1. INTRODUCTION

said to be hypercyclic, i.e. if there exists x ∈ X such that {Tnx : n ∈ A}
is dense in X. Such a vector x is said to be hypercyclic for T with respect
to A ⊆ N and the set of all hypercyclic vectors for T with respect to A is
denoted HC(T,A). Whenever A = N, T is called hypercyclic.

The so-called Hypercyclicity Criterion is of crucial importance in the

theory of hypercyclic operators. It was obtained independently by Kitai (29)

and by Gethner and Shapiro (22), formulated in two slightly different ways.

It provides a sufficient condition for a general operator to be hypercyclic.

We give here the formulation given in (17).

Definition 2. We say that T ∈ L(X) satisfies the Hypercyclicity Crite-
rion if there exists an increasing sequence of integers (nk)k, two dense sets
D1, D2 ⊂ X and a sequence of maps Snk

: D2 −→ X such that:
(1) Tnk(x)→ 0, for any x ∈ D1

(2) Snk
(y)→ 0, for any y ∈ D2

(3) TnkSnk
(y)→ y, for any y ∈ D2.

The concept of hypercyclicity is closely related to the notion of transi-

tivity coming from topological dynamics.

Definition 3. The operator T ∈ L(X) is topologically transitive if for every
pair of non-empty open sets (opene for short) U, V in X, the return time
set N(U, V ) = {n ∈ N : TnU ∩ V 6= ∅} is non-empty.

In fact, both notions are equivalent when we are dealing with an F -

space, i.e. a complete and metrizable topological vector space, Birkhoff’s

transitivity theorem (4). Other dynamical properties have been studied in

linear dynamics.

2



1.1 Preliminaries

Definition 4. An operator T ∈ L(X) is mixing if N(U, V ) is cofinite for
every opene sets U, V in X.

An operator T ∈ L(X) is weakly mixing if T⊕T is hypercyclic onX×X.

It turns out that an operator is weakly mixing if and only if it satisfies

the Hypercyclicity Criterion (17).

Obviously, mixing operators are weakly mixing, and these in turn are

hypercyclic. Examples of weakly mixing operators being not mixing are

not difficult to find. Nevertheless, for a long time all known hypercyclic

operators were known to satisfy some version of the Hypercyclicity criterion

and the problem of finding a hypercyclic but non-weakly mixing operator

turned out to be highly non-trivial, the first example of this kind is due

to de la Rosa and Read (33). Later, successive examples of this nature on

classical spaces were given by Bayart and Matheron (5).

Definition 5. Let F be a set of subsets of Z+(F ⊆ P(Z+) for short), we
say that F is a family provided

(I.) |A| =∞ for any A ∈ F

(II.) A ⊂ B implies B ∈ F , for any A ∈ F .
A family F is a filter if it is invariant by finite intersections, i.e. F is

a family such that for any A ∈ F , B ∈ F implies A ∩B ∈ F .

The notion of filter is closely related to that of partition regular, which

in turn will be useful for us in order to identify filters.

Definition 6. ((27), Definition 3.10)
Let F ⊆ P(Z+),F is said to be partition regular on N if for every A ∈ F

and any finite partition {A1, . . . , An} of A, there exists some i = 1, . . . , n

such that Ai ∈ F .

3



1. INTRODUCTION

The dual family F ∗ of F is defined as

F ∗ = {A ⊆ N : A ∩B 6= ∅, ∀B ∈ F}.

Lemma 7. (27)
If F is partition regular then F ∗ is a filter.

An ultrafilter on N is a maximal filter, i.e. it is not properly contained

in any other filter. Let βN be the Stone-Čech Compactification of N, it
is a compact right topological semigroup (βN,+). The points of βN are

the ultrafilters on N, where each point of N is identified with a principal

ultrafilter in order to obtain an embedding of N into βN. For any A ⊆ N
and p ∈ βN, the closure of A (clA) in βN is defined as, p ∈ clA if and only

if A ∈ p. Given p, q ∈ βN and A ⊆ N, the operation (N,+) can be extended

to βN by defining: A ∈ p+ q if and only if {n ∈ N : −n+A ∈ q} ∈ p, where
−n+A denote the set {t ∈ N : n+ t ∈ A}.

Denote by E(N) = {p ∈ βN : p = p + p} the collection of idempotents

in βN. For details see (27).

Please note that if F is an ultrafilter, F = F ∗. In fact, F ⊆ F ∗

obviously follows from the fact that F is also a filter. Conversely, let

A ∈ F ∗ and suppose A /∈ F , then Ac ∈ F by theorem 3.6 (27), hence

A ∩Ac 6= ∅ which is a contradiction.

We will need the following fact. If F = ∪αFα, where Fα are ultrafilters,

then

A ∈ F ∗ ⇔ Ac /∈ F . (1.1.1)

In fact, suppose Ac ∈ F , by hypothesis A ∈ F ∗, which implies A∩Ac 6=
∅, which is a contradiction. Conversely, suppose Ac /∈ F , then Ac /∈ Fα, ∀α,

4



1.1 Preliminaries

which implies A ∈ Fα,∀α by theorem 3.6 (27), hence

A ∈ ∩αFα = ∩αF ∗α = F ∗.

However, the collection of syndetic sets can not be written as a union

of ultrafilters.

Let us summarize some families commonly used in Ramsey theory. For

a rich source on this subject, see (27).

Definition 8.

• I = {A ⊆ N : |A| =∞}, where |A| stands for the cardinality of A

• ∆ = {A ⊆ N : B −B ⊆ A, for some B ∈ I}

• IP = {A ⊆ N : ∃(xn)n ⊆ N,
∑

n∈F xn ∈ A, for any F ∈ Pf (N)}, where
Pf (N) = {A ⊂ N : |A| <∞}

• A is syndetic set (A ∈ S for short) if A has bounded gaps, i.e. if A can
be enumerated increasingly as A = {xn : n ∈ N}, then maxn xn+1 −
xn <∞

• A is thick set (A ∈ T for short) if A contains arbitrarily long intervals,
i.e. T =

{
A ⊆ N : ∀L > 0, ∃n : {n, n+ 1, . . . , n+ L} ⊂ A

}
• A is piecewise syndetic set (A ∈ PS for short) if A can be written as

the intersection of a thick and a syndetic set.

All of these families can be described using ultrafilter language.

Now, ∆, IP and PS are partition regular families, hence I∗(family of

cofinite sets), ∆∗, IP∗ and PS∗ are filters and

I∗ $ ∆∗ $ IP∗ $ S as well as I∗ $ PS∗ $ S.

5



1. INTRODUCTION

See (27), (28), for more details.

Let us recall the notions of asymptotic and Banach density on N.

Definition 9. The asymptotic density:
The upper and lower asymptotic density are defined respectively by

d(A) = lim sup
n→∞

|A ∩ {1, 2, ..., n}|
n

d(A) = lim inf
n→∞

|A ∩ {1, 2, ..., n}|
n

.

Set D = {A ⊆ N : d(A) > 0} and D = {A ⊆ N : d(A) > 0}.
The Banach density:
For every real number s ≥ 1, we define

αs = lim sup
k→∞

|A ∩ [k + 1, k + s]|

and
αs = lim inf

k→∞
|A ∩ [k + 1, k + s]| .

Each one divided by s, tends to a limit, when s tends to infinity. Now,
the upper and lower Banach density are defined respectively by

Bd(A) = lim
s→∞

αs

s
and Bd(A) = lim

s→∞

αs
s
.

Set BD = {A ⊆ N : Bd(A) > 0} and BD = {A ⊆ N : Bd(A) > 0}.

It is a known fact that

Bd(A) ≤ d(A) ≤ d(A) ≤ Bd(A). (1.1.2)

d(A) + d(Ac) = 1. (1.1.3)

The following diagram shows a hierarchy of all of theses classes of sets

in N.

6



1.1 Preliminaries

∆∗

IP∗ PS∗

BD S T

D PS IP

D BD ∆

Figure 1

Missing implications in the last figure, are not valid, see (28), (9). Examples

of this fact are the following sets.

• {2n − 2m : n,m ∈ N,m < n} ∈ ∆ \ IP

• {2n + 2m− 1 : n,m ∈ N,m < n} ∈ PS \ (S ∪ T)

• {2n+ 1 : n ∈ N ∪ {0}} ∈ S \ (IP∗ ∪ PS∗)

• {2n +m : n,m ∈ N,m < n} ∈ T \ PS∗

• {2n : n ∈ N} \ {2n − 2m : n,m ∈ N,m < n} ∈ IP∗ \∆∗

• {2n : n ∈ N} ∈ ∆∗.

For any choice of real numbers 0 ≤ r1 ≤ r2 ≤ r3 ≤ r4 ≤ 1, one can find

sets A such that

Bd(A) = r1, d(A) = r2, d(A) = r3, Bd(A) = r4.

7



1. INTRODUCTION

This result has been recently announced, and will appear in a joint paper

by G. Grekos, R. Jin and L. Mišík.

We would like to study the hierarchy established between operators

whose return time set covers some of the families described in Definition

8 as well as their dual. Recall that for a continuous self map T of X

and opene sets U, V of X, the return time set from U to V is the set

N(U, V ) = {n ∈ N : TnU ∩ V 6= ∅}. We introduce the following:

Definition 10. Let T be a continuous self map of a topological space
X. Let F ⊆ P(Z+) be a family. We say that T is an F -map provided
N(U, V ) ∈ F for all U, V opene sets of X. If in addtion T ∈ L(X), we say
T is an F -operator.

The continuous map T is called hereditarily F -map if
(
N(U, V )∩A

)
∈

F for every U, V opene sets ofX and each A ∈ F . In in addition T ∈ L(X),
we say T is hereditarily F -operator.

The operator T ∈ L(X) is said to be F -hypercyclic if (Tn)n∈A is hy-
percyclic for every A ∈ F .

The following proposition can be shown in a similar way as Birkhoff’s

transitivity theorem (see, e.g, (24)). Let F be a family of subsets of Z+.

Proposition 11. Let X be a separable F -space and let T be a continuous
map on X. The following are equivalent:

i) for every A ∈ F , there exists x ∈ X such that {Tnx : n ∈ A} is dense
in X

ii) T is a F ∗-map.
In particular, if T ∈ L(X) then T is F -hypercyclic if and only if T is an

F ∗-operator. Furthermore, HC(T,A) is a dense Gδ-subset of X for every
A ∈ F .

8



1.1 Preliminaries

Regarding the weakly mixing operators, we quote the following:

Theorem 12. ((4), Theorem 4.6)
Let X a topological space, and let T : X −→ X be a continuous map.

The following are equivalent:
(1) T is weakly mixing
(2) The sets N(U, V ) form a filter basis
(3) For any L > 1, the L-fold product map T × · · · × T is topologically

transitive
(4) N(U, V ) is thick, for any U, V opene sets in X
(5) N(U, V )−N(U, V ) = N, for any U, V opene sets in X
(6) N(U, V ) ∩N(U, V ′) 6= ∅, for any U, V, V ′ opene sets in X.

The study of the dynamics of an operator T for return sets N(U, V ),

where U is a singleton, has already been considered. The following notion

was introduced by Quentin Menet (30):

Definition 13. Let A ⊂ P(Z+). We say that A is a frequently hypercyclicity
set if it is a family containing a sequence (Ak) of disjoint sets such that for
any j ∈ Ak, any j′ ∈ Ak′ , j 6= j′, we have

|j′ − j| ≥ max{k, k′}.

Definition 14. Let X be a topological vector space, T ∈ L(X) and A be
a frequently hypercyclicity set. We say that T is A-frequently hypercyclic if
there exists x ∈ X such that for any opene set V ⊂ X,

N(x, V ) = {n ∈ N : Tnx ∈ V } ∈ A.

Such a vector x is called an A-frequently hypercyclic vector for T .

9



1. INTRODUCTION

When A = D, the operator T is called frequently hypercyclic, this case

was introduced by Bayart and Grivaux, (2), (3).

When A = D, the operator T is called U-frequently hypercyclic, this case

was introduced by Shkarin, (38).

The hierarchy between frequently hypercyclic and U-frequently hyper-

cyclic operators as well as a full characterization for weighted shift operators

have been established by Bayart and Ruzsa (7). It is natural now to consider

the case A = BD. This class was introduced by A. Peris as reiteratively

hypercyclic operators in a lecture entitled Topologically ergodic operators,

during the Conference Function Theory on Infinite Dimensional Spaces IX,

held in Madrid in December 2005 (unpublished work).

Finally, let us recall the following notion of chaos for operators. An

operator T ∈ L(X) is chaotic if it is hypercyclic and has a dense set of

periodic points. A point x ∈ X is periodic if there exists n ∈ N such that

Tnx = x. For more details see (4), (24).

Another concept, which we will be interested in is disjoint transitivity.

The notion of disjointness was introduced by H. Furstenberg in 1967 (21)

for dynamical systems. In 2007, the notion of disjoint hypercyclicity, a

strengthening of hypercyclicity concerning a tuple of linear operators, was

introduced independently by Bernal (11) and by Bès and Peris (16).

We say thatN sequences (T1,j)
∞
j=1, . . . , (TN,j)

∞
j=1 ∈ L(X), are d-universal

if {(T1,jz, . . . , TN,jz) : j ∈ N} is dense in XN for some vector z ∈ X.

Definition 15. (16)
The N -tuple of operators (T1, . . . , TN ) acting on X is said disjoint tran-

sitive (d-transitive for short) if for any N + 1-tuple (Ui)
N
i=0 of opene sets we

10



1.1 Preliminaries

have

NT1,...,TN (U1, . . . , UN ;U0) :=
{
n ∈ N : T−n1 U1∩ · · · ∩T−nN UN ∩U0 6= ∅

}
6= ∅.

Analogous to the case N = 1, the N -tuple of operators (T1, . . . , TN ) acting
on X is said disjoint mixing (d-mixing for short) if for any N + 1-tuple
(Ui)

N
i=0 of opene sets the set NT1,...,TN (U1, . . . , UN ;U0) is cofinite.
If Ti = T i, for i = {1, . . . , N}, then we write NT instead of NT,...,TN .

For recent results on disjoint hypercyclicity, see (12), (13), (14), (15),

(34) and (37).

The following definition is the Hypercyclicity Criterion for the setting

of disjointness (16).

Definition 16. (definition 2.5 (16))
Let (nk)k be a strictly increasing sequence of positive integers and F a

family on N. We say that (T1, . . . , TN ) a tuple of operators in L(X) satisfies
d-Hypercyclicity Criterion with respect to (nk)k provided there exists dense
subsets X0, . . . , XN of X and mappings Sl,k : Xl −→ X, (1 ≤ l ≤ N, k ∈ N)

satisfying

(i) lim
k→∞

Tnk
l (x) = 0, for any x ∈ X0

(ii) lim
k→∞

Sl,k(x) = 0, for any x ∈ Xl (1 ≤ l ≤ N)

(iii) lim
k→∞

(
Tnk
l Si,k − δi,lIdXl

)
x = 0, for any x ∈ Xl (1 ≤ i, l ≤ N).

We say that (T1, . . . , TN ) satisfies the d-Hypercyclicity Criterion if there
exists some sequence (nk)k for which (i)-(iii) are satisfied.

The next Proposition, taken from (16) shows the intimate relationship

between d-Hypercyclicity Criterion and the notion of d-mixing.

11



1. INTRODUCTION

Proposition 17. ((16), Proposition 2.6)
Let (T1, . . . , TN ) satisfies the d-Hypercyclicity Criterion with respect to

a sequence (nk). Then the tuple of sequences
(

(Tnk
1 )∞k=1, . . . , (T

nk
N )∞k=1

)
is

d-mixing. In particular, (T1, . . . , TN ) is d-hypercyclic.

In Linear dynamics recurrence properties have been frequently studied

first in the context of weighted shifts.

Each bilateral bounded weight w = (wk)k∈Z, induces a bilateral weighted

backward shift Bw on X = c0(Z) or lp(Z)(1 ≤ p < ∞), given by Bwek :=

wkek−1, where (ek)k∈Z denotes the canonical basis of X and (e∗k)k∈Z the

associated sequence of coordinate functionals.

Similarly, each unilateral bounded weight w = (wn)n∈Z+ induces a uni-

lateral weighted backward shift Bw on X = c0(Z+) or lp(Z+)(1 ≤ p < ∞),

given by Bwen := wnen−1, n ≥ 1 with Bwe0 := 0, where (en)n∈Z+ denotes

the canonical basis of X and (e∗n)n∈Z+ the associated sequence of coordinate

functionals.

Finally, we quote two results of (14) that we will use later.

Theorem 18. (14)
Let Bw a weighted backward shit on c0 or lp, (1 ≤ p < ∞), then Bw is

mixing if and only if (Bw, . . . , B
r
w) is d-mixing, for any r ∈ N.

Theorem 19. ((14), Theorem 3.8)
There exists T ∈ L(l2) such that T is mixing and (T, T 2) is not d-mixing.

12



2

F -operators

Despite of the different size of the classes of sets exhibited in Figure 1,

one can see that restricted to NT (U, V ), where U and V are opene sets in

X, equivalence between certain classes of operators can be obtained.

Proposition 20. Let T be a continuous map on a separable F -space X and
let F ⊆ P(Z+) be a partition regular family. The following are equivalent:

i) T is an F ∗-map
ii) T is hereditarily F ∗-map
iii) for any A ∈ F , there exists x ∈ X such that {Tnx : n ∈ A} is dense

in X
iv) T is a hereditarily F -map.

Proof. i) ⇒ ii) Obvious because F ∗ is a filter, since F is partition regular,
see (27).

ii) ⇒ i) Obvious.
i) ⇔ iii) By Proposition 11
i) ⇒ iv) Denote I = {p ∈ βN : ∀A ∈ p,A ∈ F}.

13



2. F -OPERATORS

Let A ∈ F , by Theorem 3.11 (27) and using the fact that F is partition
regular, we have there exists p̃ ∈ I such that A ∈ p̃. Hence I 6= ∅

On the other hand, N(U, V ) ∈ p for every p ∈ I and U, V opene sets.
Suppose the contrary, N(U, V ) /∈ q for some q ∈ I. By Theorem 3.6 e) (27),
we have N(U, V )c ∈ q, which implies N(U, V )c ∈ F , but by i) N(U, V ) ∈
F ∗, hence N(U, V ) ∩N(U, V )c 6= ∅, which is a contradiction.

Concluding, for any A ∈ F , pick p̃ ∈ I such that A ∈ p̃, butN(U, V ) ∈ p̃
for every opene sets U, V , which implies N(U, V ) ∩ A ∈ p̃ for every opene
sets U, V . Hence, N(U, V ) ∩A ∈ F for every opene sets U, V .

iv) ⇒ i) Obvious.

Notice that the case when F = {A ⊆ N : |A| = ∞} in Proposition 20

and T ∈ L(X), extends the well known fact that T is mixing if and only if

it is hereditarily hypercyclic with respect to the full sequence (n).

Now, in the linear case, we have the following

Proposition 21. Let X a topological vector space, T ∈ L(X) and F par-
tition regular. The following are equivalent:

i) T ∈ F ∗-operator
ii) N(U,W ) ∈ F ∗ and N(W,V ) ∈ F ∗, for every U, V opene sets and

W any open neighborhood of 0.

Proof. i) ⇒ ii) Obvious
ii) ⇒ i) Let U, V opene sets, there exist U ′, V ′ opene sets and W ′ open

neighborhood of 0 such that,

U ′ +W ⊆ U V ′ +W ⊆ V.

Now, by linearity of the operator, we have N(U ′,W ) ∩ N(W,V ′) ⊆
N(U, V ) and i) follows from ii) because F ∗ is a filter.

14



The following is a known result.

Proposition 22. Let T be a topological vector space and T ∈ L(X). The
following are equivalent:

i) T is an S-operator
ii) T is a hereditarily syndetic operator
iii) N(U,W ) ∈ S and N(W,V ) ∈ S for any U, V opene sets and W an

open neighborhood of 0.

Proof. i) ⇒ ii) see the proof of [(1), Proposition 4.6]. Here the authors use
strongly the linearity of the operator.

ii) ⇒ i) Obvious
i) ⇒ iii) Obvious
iii) ⇒ i) This is a well known fact, see exercise 2.5.4 ii) in (24). Indeed,

it suffices to show N(U,W )∩N(W,V ) is syndetic for every U, V opene sets
andW open neighborhood of 0. Then, we can conclude because N(U ′,W )∩
N(W,V ′) ⊆ N(U, V ) whenever U ′ +W ⊆ U and V ′ +W ⊆ V .

Syndetic operators are also known as topologically ergodic operators.

Corollary 23. Let T ∈ L(X), where X is a separable F -space. The fol-
lowing are equivalent:

i) T ∈ S-operator
ii) T is hereditarily syndetic operator
iii) T ∈ PS∗-operator
iv) N(U,W ) ∈ S and N(W,V ) ∈ S for any U, V opene sets and W any

open neighborhood of 0
v) (Tn)n∈B is hypercyclic for any B ∈ PS.

15



2. F -OPERATORS

Proof. By Proposition 22 we have that (i), (ii) and (iv) are equivalents. On
the other hand, by Proposition 20 we have that (iii) and (v) are equivalents,
since PS is partition regular. Finally, (ii) implies (iii) because each PS-
set can be written as the intersection of a thick set and a syndetic one.
Obviously (iii) implies (i).

Concluding, hence it is immediate that a PS∗-map is a S-map. Now we

may wonder whether in this context these two notions of F -maps coincide:

is each S-map a PS∗-map? If this were the case, then each S-map is a T-map

(i.e. weakly mixing), and it is a well known fact that irrational rotations

of the unit circle are syndetic and not weakly mixing maps. Hence, not

every S-map is PS∗-map. However adding linearity to the map, the desired

equivalence between these two classes of operators can be obtained. In

broad terms, we can affirm that linearity of the operator comes to fill the

gap caused by the algebraic poverty of the collection of syndetic sets.

2.1 F -Criterion and applications

The aim of this section is to study what happen with the hierarchy es-

tablished for the classes F = S, IP∗,∆∗, this time at the level of operators.

For example, is T a ∆∗-operator if and only if it is a syndetic operator? In

order to be able to answer this question, it would be nice to have at hand a

characterization of F -weighted backward shifts on lp or c0, via a condition

relying completely on the weight. If we take a look, for example, at the

characterization of chaotic weighted backward shifts on lp(Z+), Theorem

6.12 (4), one realizes that the application of the Chaoticity criterion, Theo-

rem 6.10 (4) plays a crucial role. Inspired on this fact, we present what we

16



2.1 F -Criterion and applications

call the F -Criterion, which gives suffcient conditions for an operator to be

an F -operator. With the aid of this criterion we will be able to obtain the

desired characterization of F -weighted backward shifts on lp or c0.

Let us recall the definition of limits along a collection of sets.

Definition 24 (F -limit).

F − lim
n
Tn(x) := y

if and only if for every opene neighborhood V of y,

{n ∈ N : Tn(x) ∈ V } ∈ F .

Proposition 25 (F -Criterion).
Suppose X is a topological vector space, and that there exist D1, D2 dense

sets in X, a sequence of maps Sn : D2 → X and a filter F on N such that
1. F -limn T

n(x) = 0 for every x ∈ D1

2. F -limn Sn(y) = 0 for every y ∈ D2

3. F -limn T
nSn(y) = y for every y ∈ D2

Then T is a F -operator, that is, N(U, V ) ∈ F for every U, V opene
sets.

Proof. Let U, V opene sets. Pick x ∈ D1 ∩ U and y ∈ D2 ∩ V .

F − lim
n

(x+ Sny) = x ∈ U

F -limn(Tn(x+ Sny)) = F -limn T
nx+ F -limn T

nSny = y ∈ V .
Hence,

A1 = {n ∈ N : Tn(x+ Sny) ∈ V } ∈ F

A2 = {n ∈ N : x+ Sny ∈ U} ∈ F .

17



2. F -OPERATORS

Please note that A1 ∩A2 ⊆ N(U, V ). Now, F is a filter, hence intersec-
tion of F -sets is again F -set, then A1 ∩ A2 ∈ F and finally by Definition
5 II, we conclude that N(U, V ) ∈ F .

Corollary 26. F -criterion holds in particular when
F = PS∗,∆∗, IP∗,D

∗ and BD
∗.

Recall that Pf (Z) = {A ⊂ Z : |A| <∞}. Denote, for M > 0 and j ∈ Z

AM,j :=
{
n ∈ N :

j+n∏
i=j+1

|wi| > M
}

ĀM,j =
{
n ∈ N :

1∏j
i=j−n+1 |wi|

> M
}
.

In the case j = 0, we just write AM , ĀM instead of AM,0, ĀM,0 respectively.

Now, as an application of the F -criterion we have the following charac-

terization of F -weighted backward shifts.

Proposition 27. Consider the family F and Bw a bilateral weighted back-
ward shift on X = c0(Z) or lp(Z)(1 ≤ p ≤ ∞), then the following are
equivalent:

i) N(U, V ) ∈ F for every U, V opene sets in X
ii) For every M > 0 and F ∈ Pf

(
Z
)
,

∩j∈FAM,j ∈ F , ∩j∈F ĀM,j ∈ F .

In addition, if F is a filter then ii) is equivalent to

AM,j ∈ F , ĀM,j ∈ F

for every M > 0, j ∈ Z.
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2.1 F -Criterion and applications

Proof. i) ⇒ ii) Let M > 0, F ∈ Pf (Z) and R > |F | such that MR > 1.
Consider the opene sets

AR = {x ∈ X :
∣∣e∗j (x)

∣∣ > 1/R,∀j ∈ F} ∩ {x ∈ X : ‖x‖ < 1}

V = {x ∈ X : ‖x−
∑
j∈F

(M + 1)ej‖ <
1

MR
}.

Consider the set G = {m ∈ N(AR, V ) : j − m /∈ F,∀j ∈ F}, then G is
cofinite in N(AR, V ), i.e. N(AR, V ) \G is a finite set.

Let m ∈ G. Pick x ∈ AR such that Bm
w x ∈ V . Then,∣∣∣∣∣∣

j+m∏
i=j+1

wixj+m − (M + 1)

∣∣∣∣∣∣ < 1

MR
< 1, ∀j ∈ F. (2.1.1)

∣∣∣∣∣
t+m∏
i=t+1

wixt+m

∣∣∣∣∣ < 1

MR
, ∀t /∈ F. (2.1.2)

We get by (2.1.1),

j+m∏
i=j+1

|wi| >
j+m∏
i=j+1

|wixj+m| > M, ∀j ∈ F.

Thus, m ∈ ∩j∈FAM,j . Hence, G ⊆ ∩j∈FAM,j .
On the other hand, we get by (2.1.2),

j∏
i=j−m+1

|wixj | <
1

MR
,

for any j ∈ F . Hence,

j∏
i=j−m+1

|wi|
1

R
<

j∏
i=j−m+1

|wixj | <
1

MR
,
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2. F -OPERATORS

for any j ∈ F . Thus,
∏j
i=j−m+1 |wi| <

1
M for any j ∈ F , i.e. m ∈ ∩j∈F ĀM,j .

Hence, G ⊆ ∩j∈F ĀM,j .
We can conclude, since G ∈ F . This follows from the fact that G is

cofinite in N(AR, V ) and by hypothesis N(AR, V ) ∈ F .
ii)⇒ i) Consider the filter generated by {AM,j : M > 0, j ∈ N}. Denote

it by F . Obviously F ⊆ F . It suffices apply F -criterion to the filter F .
Let D = D1 = D2 the set of all finitely supported vectors, and Sw be the
forward shift defined on D by

Sw(ei) :=
1

wi+1
ei+1.

Set Sn := Snw. Obviously 3. in the F -criterion holds. It remains to verify
1. and 2.

Let 1 ≤ p <∞, ε > 0, Vε := {x ∈ lp(N) : ||x|| < ε}.
First, we must show that {n ∈ N : Tny ∈ Vε} ∈ F , for every y ∈ D. So,

let y ∈ D, without loss of generality, we can suppose y = (. . . , 0, y−m, . . . , ym, 0, . . . )

with
∏m
k=−m yk 6= 0. Then,

Tny = (. . . , 0, y−m

−m∏
i=−m−n+1

wi︸ ︷︷ ︸
(−m−n)−position

, . . . , ym

m∏
i=m−n+1

wi︸ ︷︷ ︸
(m−n)−position

, 0, . . . ).

Let Mj = yj(2m)1/p/ε with j = −m, . . . ,m and M = maxj=−m,...,mMj .
By hypothesis ∩mj=−mĀM,j ∈ F . Pick n ∈ ∩mj=−mĀM,j , then we have

‖Tny‖p =
m∑

j=−m

∣∣∣∣∣∣yj
j∏

i=j−n+1

wi

∣∣∣∣∣∣
p

<
m∑

j=−m
|yj |p

( ε

yj(2m)1/p

)p
< εp,

which implies
∩mj=−mĀM,j ⊆ {n ∈ N : Tny ∈ Vε}.
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2.1 F -Criterion and applications

Consequently,
{n ∈ N : Tny ∈ Vε} ∈ F ⊆ F .

Second, we must show that {n ∈ N : Sny ∈ Vε} ∈ F , for every y ∈ D.
Let y ∈ D, so suppose as before that y = (. . . , 0, y−m, . . . , ym, 0, . . . ) with∏m
k=−m yk 6= 0.. Then,

Sn(y) = Snw(y) = (. . . , 0,
y−m∏−m+n

i=−m+1wi︸ ︷︷ ︸
(n−m)−position

, . . . ,
ym∏m+n

i=m+1wi︸ ︷︷ ︸
(n+m)−position

, 0, . . . ).

Let Mj and M as before. By hypothesis ∩mj=−mAM,j ∈ F . Pick n ∈
∩mj=−mAM,j , then we have

‖Sny‖p =

m∑
j=−m

∣∣∣∣ yj∏n
i=1wi

∣∣∣∣p < 2mεp/2m < εp,

which implies
∩mj=−mAM,j ⊆ {n ∈ N : Sny ∈ Vε}.

Consequently,
{n ∈ N : Sny ∈ Vε} ∈ F ⊆ F .

This completes the proof of ii)⇒ i). The same proof works for l∞(Z) and
c0(Z) taking (Mj)

m
j=0 appropriately.

The family F ⊆ P(Z+) is said to be shift invariant if (A+ i) ∩N ∈ F ,

for every i ∈ Z, whenever A ∈ F .

The unilateral version of Proposition 27 follows the same sketch of proof.

Proposition 28. Consider the family F and Bw an unilateral weighted
backward shift on X = c0(Z+) or lp(Z+)(1 ≤ p ≤ ∞), then the following
are equivalent:
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2. F -OPERATORS

i) N(U, V ) ∈ F for every U, V opene sets in X
ii) N(BX(0, 1), V ) ∈ F for every V opene set in X
iii) ∩j∈FAM,j ∈ F , for every M > 0 and F ∈ Pf

(
Z+

)
.

In addition,

• if F is shift invariant then iii) is equivalent to AM ∈ F , for every
M > 0.

In particular, this holds for the family of syndetic sets.

• if F is a filter then iii) is equivalent to AM,j ∈ F , for every M >

0, j ∈ Z+.

Proof. It suffices to show, whenever F is a shift invariant family that iii) is
equivalent to AM ∈ F , for everyM > 0. It suffices to prove one implication,
since the other one is obvious.

Let M > 0, F ∈ Pf (Z+). Denote N = max{j : j ∈ F}. By hypothesis
the weight is bounded, then there exists k ∈ N such that |wi| < k, for every
i ∈ Z+. Enumerate AMkN as (ni)i∈N, then we have

∏ni
s=0 |ws| > MkN ,

which implies

ni−(N−j)∏
s=j

∣∣ws∣∣ > MkN

kN
= M, ∀i ∈ Z+, j ∈ F

hence, ni −N ∈ AM,j for every i ∈ Z+ and j ∈ F , in other words,

AMkN −N ⊆ ∩j∈FAM,j .

But F is a shift invariant family, which implies iii).

Corollary 29. Let F be a filter, m ∈ N and let Bw be a bilateral weighted
backward shift on X = lp(Z) or c0(Z). Then the following are equivalent:

i) AM,j ∈ lF and ĀM,j ∈ lF , for each 1 ≤ l ≤ m,M > 0 and j ∈ Z
ii) Bw ⊕B2

w ⊕ ...⊕Bm
w is an F -operator on Xm.
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Proof. By Proposition 27, we have that AM,j ∈ lF and ĀM,j ∈ lF , for
any M > 0, j ∈ Z and any 1 ≤ l ≤ m is equivalent to NBl

w
(U, V ) ∈ F for

any U, V opene sets in X and 1 ≤ l ≤ m. On the other hand, condition ii)
is equivalent to ∩ml=1NBl

w
(Ul, Vl) ∈ F , for any pairs of finite collection of

opene sets (Ul, Vl)
m
l=1. The conclusion follows since F is a filter.

Please observe that if one is interested in keeping the same hierarchy

between families F ⊆ P(Z+) that appear in Figure 1, but for the cor-

responding classes of F -operators, clearly the possibility of being able to

apply a result in the vein of Proposition 28 is crucial.

Remark 30. When F is not a shift invariant family of sets, there are two
natural ways of building a shift invariant family from it,

F+ := ∪k∈ZF + k

F• := ∩k∈ZF + k.

Please note that for any A ⊆ N the following holds

A ∈ (F ∗)• ⇔ A ∈ (F+)∗ . (2.1.3)

Let us see some applications of the F -criterion.

Proposition 31. There exists a syndetic but not IP∗-weighted backward
shift in X = c0(Z+) or lp(Z+), (1 ≤ p ≤ ∞).

Proof. Consider the set

B =
{∑
n∈F

22n : F ∈ Pf (N)
}
.

23



2. F -OPERATORS

Obviously B ∈ IP, hence Bc /∈ IP∗ by (1.1.1). Enumerate B = (bn)n. Then
define the weight w = (wm)∞m=0 as follows

w = (2, . . . , 2,
1

2b1︸︷︷︸
wb1

, 2, . . . , 2,
1

2b2−b1−1︸ ︷︷ ︸
wb2

, 2, . . . , 2,
1

2b3−b2−1︸ ︷︷ ︸
wb3

, 2, . . . ). (2.1.4)

Now, A1 := {n ≥ 0 :
∏n
i=0wi > 1} = Bc, hence Bw is not IP∗-operator

by Propositon 28. On the other hand, Bc ∈ PS∗, see list of sets with
no extra properties in (9), and observe that A2j := {n ≥ 0 :

∏n
i=0wi >

2j} =
(⋃j

i=0B + i
)c

=
⋂j
i=0(B + i)c ∈ PS∗ since PS∗ is a filter and

(B + i)c ∈ PS∗ for any i ∈ {0, . . . , j}. In fact, let i ∈ {0, . . . , j}, then
Bc ∈ PS∗ implies B /∈ PS by (1.1.1), which in turn implies (B + i) /∈ PS

otherwise B + i − i = B ∈ PS because of the shift invariance of PS, hence
again by (1.1.1) we have (B + i)c ∈ PS∗. Hence by Propositon 28, Bw is
PS∗-operator, or equivalently a syndetic operator.

Proposition 32. There exists a weighted backward shift operator on X =

c0(Z+) or lp(Z+), (1 ≤ p ≤ ∞), that is IP∗ but not a ∆∗-operator.

Proof. Consider a set B in N enumerated increasingly as (bn)n such that it
contains a subsequence

(
bnk

)
k
satisfying condition

bnk+1 − bnk
→∞. (2.1.5)

Define the weight w = (wm)∞m=0 as in (2.1.4). Observe that condition
(2.1.5) assure at least hypercyclicity of Bw. Let us study which additional
conditions must satisfy B in such a way that Bw be IP∗, but non ∆∗-
operator. As before {n ≥ 0 :

∏n
i=0wi > 1} = Bc, so it would be desirable

that B ∈ ∆, i.e., Bc /∈ ∆∗ by (1.1.1), and this will imply Bw /∈ ∆∗-op.
On the other hand, condition

n⋃
i=0

B + i /∈ IP (2.1.6)
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2.1 F -Criterion and applications

for any n ∈ N, implies Bw ∈ IP∗-op, since
(⋃n

i=0B + i
)c ∈ IP∗ for any

n ∈ N. Now, since IP is partition regular, condition (2.1.6) is obtained if
B /∈ IP+ and this in turn is equivalent to Bc ∈

(
IP∗
)
• by (1.1.1) and (2.1.3).

Now, an obvious modification in the proof of Theorem 2.11, 1) (8) assures
us the existence of a set E ∈

(
IP∗
)
• which is not

⋃
n∈N∪{0}

(
∆∗ + n

)
-set

in N, hence not ∆∗-set. Thus, Ec satisfies condition (2.1.5), and setting
B = Ec we are done.

Evidently, every mixing operator is a ∆∗-operator but the converse is

not true. In Proposition 33 below we construct a non mixing weighted

backward shift very close to being mixing.

Proposition 33. There exists a
(
∆∗
)
•-weighted backward shift in X =

c0(Z+) or lp(Z+), (1 ≤ p ≤ ∞) which is not mixing.

Proof. Firstly, let us define what we call ∆k-set. A ⊆ N is ∆k-set if there
exists a finite sequence of k elements, {x1, x2, ..., xk} ⊂ N such that xj ∈
xi +A for every 1 ≤ i < j ≤ k.

For each k ∈ N, every ∆k-set contains a ∆k−1-set, hence we have the
following chain of implications

∆∗2 −→ ∆∗3 −→ ... −→ ∆∗k −→ ... −→ ∆∗∞ = ∆∗.

On the other hand, one can easily see that for each k ∈ N one can
find a cofinite set which is not ∆∗k-set. So, these classes (∆∗k) are not good
candidates in order to obtain a characterization of mixing operators, and
we have no choice but moving till ∆∗.

Now, ∆∗-sets are not shift invariant (2N ∈ ∆∗, but 2N + 1 /∈ ∆∗), then
it makes sense consider the translates of ∆∗-sets, clearly the largest class
of sets we can build with these translates in order to be at the same time
closest to cofinite sets are those sets contained in every translate, i.e. the
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2. F -OPERATORS

∩k∈Z+(∆∗ + k)-sets. On the other hand, ∆-sets are infinite, consequently
cofinite sets are ∆∗-sets and the same with any translate of ∆∗-sets. Con-
cluding, mixing operators are

(
∆∗
)
•-operators, and one could wonder if the

reverse holds.
In what follows let us show a (∆∗)•, but not mixing weighted backward

shift on X, hence not chaotic.
Let us consider the weight w = (wn)∞n=0,

w =
(
2, 1/2, 2, 2, 1/22, 2, 2, 2, 1/23, . . .

)
.

Obviously Bw is not mixing since is not satisfied limn
∏n
i=1wi =∞.

Set A = {n ∈ N : wn < 1}. In order to see that Bw is (∆∗)•-op, by
proposition 28 it suffices to prove that

( n⋃
i=0

A+ i
)c ∈ (∆∗)•

for any n ∈ N, since (∆∗)• is a filter.
Let n ∈ N and suppose

⋃n
i=0A + i is a ∆-set. Hence, there exists

an increasing sequence (bm)m such that
⋃n
i=0A + i = ∆

(
(bm)m

)
, where

∆
(
(bm)m

)
denote the set of differences of (bm)m defined by ∆

(
(bm)m

)
=

{bj − bi : 1 ≤ i < j}. Pick bj1 , bj2(j1 < j2) such that |bj2 − bj1 | > n, then it
holds

|bj2 − bj1 | = |(bjm − bj1)− (bjm − bj2)| , ∀m ∈ N

which means that the distance |bj2 − bj1 | between elements of ∪ni=oA + i

appears infinitely, which is not the case taking into account the way in
which was defined A. Now, the same is true for any shifted ∆-set (∆ + k)

since obviously

|bj2 − bj1 | = |(bjm − bj1 + k)− (bjm − bj2 + k)| , ∀m ∈ N, ∀k ∈ Z.
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2.2 Return sets and density

Then we conclude
⋃n
i=oA + i /∈ ∆+. Recall that ∆ can be written as a

union of ultrafilters and the same is true for any shifted ∆-set. Hence by
(1.1.1),

(⋃n
i=0A+ i

)c ∈ (∆+)∗ which is equivalent to say

( n⋃
i=0

A+ i
)c ∈ (∆∗)•.

2.2 Return sets and density

In the definition of the return sets NT (U, V ), when U is a singleton {x},
we write NT (x, V ), which is nothing else than NT (x, V ) = {n ∈ N : Tn(x) ∈
V }. The purpose of this section is to analyze which kind of properties of

density can the sets N(x, U) and N(U, V ) have for a given hypercyclic oper-

ator, and classify the hypercyclic operators accordingly to these properties.

Throughout this section X is assumed to be an F -space.

Proposition 34. There does not exist x ∈ X such that N(x, U) is syndetic,
for every opene set U ⊂ X.

Proof. Assume, towards a contradiction, that there exists x ∈ X such that
N(x, U) is syndetic, which is equivalent to say Bd

(
N(x, U)

)
> 0, all this

for every opene set U ⊂ X.
Take U, V opene sets such that x ∈ U, 0 ∈ V and U ∩ V = ∅. If we

denote the maximum gap of N(x, U) as m, then by continuity there exists
W a neighbourhood of zero such that T j(W ) ⊂ V, j = 0, 1, . . . ,m. Let
n such that Tn(x) ∈ W and Tn+jx ∈ V, j = 0, 1, . . . ,m + 1, therefore
{n, n + 1, . . . , n + m + 1} /∈ N(x, U) which is a contradiction since this
implies that there are gaps in N(x, U) with length greater than m.
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2. F -OPERATORS

It is also true,

Proposition 35. There does not exist x ∈ X such that N(x, U) is thick,
for every opene set U ⊂ X.

Proof. Assume, towards a contradiction, that there exists x ∈ X such that
N(x, U) is thick, which is equivalent to say Bd

(
N(x, U)

)
= 1, all this for

every opene set U ⊂ X. This implies that for every opene set U , there
exists n such that n, n+ 1 ∈ N(x, U), then

T (U) ∩ U 6= ∅, (2.2.1)

for every opene set U . Let Tz = y. Since X is Hausdorff, then there exists
Vy, Vz open neighborhoods of y and z respectively, such that Vy ∩ Vz = ∅.
On the other hand, by continuity of T there exists an open neighborhood
of z denoted V̄z, such that T (V̄z) ⊂ Vy. Set V̂z = Vz ∩ V̄z. V̂z is non-empty
because z ∈ V̂z, then T (V̂z) ⊂ Vy and hence T (V̂z) ∩ V̂z = ∅, which is a
contradiction with condition (2.2.1).

Now, we want enumerate all the properties appearing when N(x, U) has

density (any of the 4 possibilities illustrated in Definition 9) greater than 0

or equal to 1. By Proposition 34, Proposition 35 and condition (1.1.2) we

have in fact only 3 possibilities, previously defined, then let us agree that

• T is frequently hypercyclic if and only if T has (P1)

• T is U-frequently hypercyclic if and only if T has (P2)

• T is reiteratively hypercyclic if and only if T has (P3).

Concerning N(U, V ) we have 8 further properties.
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2.2 Return sets and density

Definition 36. Let T ∈ L(X) such that for every U, V opene sets in X,
we have

• Bd
(
N(U, V )

)
= 1. Then we say that T has (P4)

• d
(
N(U, V )

)
= 1. Then we say that T has (P5)

• d
(
N(U, V )

)
= 1. Then we say that T has (P6)

• Bd
(
N(U, V )

)
= 1. Then we say that T has (P7)

• Bd
(
N(U, V )

)
> 0. Then we say that T has (P8)

• d
(
N(U, V )

)
> 0. Then we say that T has (P9)

• d
(
N(U, V )

)
> 0. Then we say that T has (P10)

• Bd
(
N(U, V )

)
> 0. Then we say that T has (P11).

Please observe that syndetic operators are those satisfying property (P8)

and weakly mixing those satisfying property (P7). By Proposition 22, op-

erators having (P8) also have (P7).

Obviously we have the following chain of implications (P1) −→ (P2) −→
(P3).

In general, (P3) implies (P8) for any T ∈ L(X) as the following propo-

sition indicates.

Proposition 37. Let T ∈ L(X) a hypercyclic operator satisfying that for
any U opene set in X, there exists x ∈ X such that N(x, U) has positive
upper Banach density. Then

N(U, V ) ∈
⋂

t∈N(U,V )

(
∆∗ + t

)
,
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2. F -OPERATORS

for every U, V opene sets in X. In particular, any reiteratively hypercyclic
operator is syndetic, since the family of syndetic sets is shift invariant.

Please note that the family ∆∗ is not shift invariant (2N ∈ ∆∗ but

2N+ 1 /∈ ∆∗), hence Proposition 37 does not allow us to conclude that T is

necessarily a ∆∗-operator.

Proof. Let U, V opene sets in X. Pick, n ∈ N(U, V ), then Tn(U) ∩ V 6=
∅. Define the opene set Un := U ∩ T−n(V ). Let x ∈ X such that
Bd (N(x, Un)) > 0.

On the other hand, it is a well known fact that

N(x, Un)−N(x, Un) + n ⊆ N(U, V ). (2.2.2)

Let s1, s2 ∈ N(x, Un). Then, we have

T s1−s2+n(T s2x) = Tn(T s1x) ∈ V.

and identity (2.2.2) holds. Hence, we conclude by proposition 1.1 (31).

In particular, in the frame of weighted backward shifts we have more

information.

Proposition 38. If Bw is reiteratively hypercyclic on X = lp(Z), (1 ≤ p <
∞) or c0(Z), then it is ∆∗-backward weighted shift on X.

First, we will need the following lemmas.

Lemma 39. Let U, V opene sets in X such that U ∩ V 6= ∅, if T is reiter-
atively hypercyclic on X then N(U, V ) ∈ ∆∗.

Proof. It follows from proposition 37.
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2.2 Return sets and density

Let (wk)k∈Z be a bounded weight. Recall that B(x; r) = {y ∈ X :

‖x− y‖ < r} and

AM,j :=
{
n ∈ N :

j+n∏
i=j+1

|wi| > M
}

ĀM,j =
{
n ∈ N :

1∏j
i=j−n+1 |wi|

> M
}
.

Let R > 1, j ∈ Z. Let U the set of opene sets in X. Consider the following

subcollection of U:

UR,j = {U ∈ U :
∣∣e∗j (x)

∣∣ > 1

R
, ∀x ∈ U}.

Note that UR,j 6= ∅. In fact, let M > 0 such that MR > 1, then B((M +

1)ej ;
1

MR) ∈ UR,j .

Lemma 40. Let M > 0, j ∈ Z. Suppose there exists U ∈ UR,j such that for
any opene subset Ũ of U it holds N(Ũ , B((M + 1)ej ;

1
MR)) ∈ ∆∗ for some

R > 1 such that MR > 1, then AM ;j ∈ ∆∗ and ĀM ;j ∈ ∆∗.

Proof. Let (z(m))m a dense set inX such that z(m) = (z(m)1, . . . , z(m)m, 0 . . . )

and Um = B(z(m); 1/m). Let U ∈ UR,j such that for any opene sub-
set Ũ of U we have N(Ũ , B((M + 1)ej ;

1
MR)) ∈ ∆∗ for some R > 1

such that MR > 1, then there exists m such that Um ⊂ U and hence
N(Um, B((M + 1)ej ;

1
MR)) ∈ ∆∗. Pick r ∈ N(Um, B((M + 1)ej ;

1
MR)) with

r > m and x ∈ Um such that Br
wx = y ∈ B((M + 1)ej ;

1
MR).

Then, ∣∣∣∣∣∣
j+r∏
i=j+1

wixj+r − (M + 1)

∣∣∣∣∣∣ < 1

MR
. (2.2.3)
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2. F -OPERATORS

∣∣∣∣∣
t+r∏
i=t+1

wixt+r

∣∣∣∣∣ < 1

MR
, ∀t 6= j. (2.2.4)

By (2.2.3) we get, ∣∣∣∣∣
r∏
i=1

wi+j

∣∣∣∣∣ >
∣∣∣∣∣
r∏
i=1

wi+jxr+j

∣∣∣∣∣ > M,

where the first inequality follows since r > m. We conclude thatN(Um, B((M+

1)ej ;
1

MR)) \ {1 . . .m} ⊆ AM ;j , then AM ;j ∈ ∆∗.
On the other hand, by (2.2.4) we get

∏j
i=j−r+1 |wixj | <

1
MR , hence

j∏
i=j−r+1

|wi|
1

R
<

j∏
i=j−r+1

|wixj | <
1

MR
.

Then,
∏j
i=j−r+1 |wi| <

1
M and N(Um, B((M + 1)ej ;

1
MR)) ⊆ ĀM ;j , hence

ĀM ;j ∈ ∆∗.

Proof of proposition 38

Proof. Suppose Bw is not a ∆∗-backward weighted shift on X, then by
proposition 27, there exists M > 0 and j ∈ Z such that AM ;j /∈ ∆∗ or
ĀM ;j /∈ ∆∗. Let R > 1 such that MR > 1. Hence by lemma 40

∀U ∈ UR,j ∃Ũ ⊆ U : N(Ũ , B((M + 1)ej ;
1

MR
)) /∈ ∆∗.

Note that B((M + 1)ej ;
1

MR) ∈ UR,j , then take U = B((M + 1)ej ;
1

MR), we
have there exists Ũ ⊆ U such that N(Ũ , U) /∈ ∆∗, which by lemma 39, Bw
can not be reiteratively hypercyclic.
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2.2 Return sets and density

Analogously, we have the unilateral version following the same sketch of

proof.

Proposition 41. If Bw is reiteratively hypercyclic on X = lp(Z+), (1 ≤
p <∞) or c0(Z+), then it is ∆∗-backward weighted shift on X.

Conversely, we obtain that P8 does not imply P3. In fact,

Proposition 42. There exists an IP∗-weighted backward shift which is not
reiteratively hypercyclic on c0(Z+) and lp(Z+)(1 ≤ p < ∞). In particular,
P8 does not imply P3.

Proof. It follows by proposition 32 and proposition 41.

Now, let us study the relationship between the rest of properties intro-

duced in definition 36.

Proposition 43. Let X = c0(Z+), then
i) (P7) does not imply (P10). Consequently, (P7) does not imply (P6)

and (P11) does not imply (P10)

ii) (P6) does not imply (P9). Consequently, (P6) does not imply (P5)

and (P10) does not imply (P9)

iii) (P5) does not imply (P8). Consequently, (P5) does not imply (P4)

and (P9) does not imply (P8).

Proof. i) Consider the weight

w = (1, . . . , 1︸ ︷︷ ︸
m1

, 2, 2−1, 1, . . . , 1︸ ︷︷ ︸
m2

, 2, 2, 2−2, 1, . . . , 1︸ ︷︷ ︸
m3

, 2, 2, 2, 2−3, 1, . . . , 1︸ ︷︷ ︸
m4

, . . . )

with (mk)k∈N suitably chosen such that d
(
N
(
B(0; 1), B(2e0; 1/2)

))
= 0,

where (en)∞n=0 is the canonical basis in c0(Z+) and B(x; r) denote the ball
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of radius r and centered at x. Let x ∈ B(0; 1), then |xt| < 1 for every t ∈ N.
On the other hand,

Bn
wx =

( n∏
i=0

wixn,
n∏
i=0

wi+1xn+1, · · ·
)

and
∣∣∏n

i=0wixn − 2
∣∣ > 1 whenever

∏n
i=0wi = 1. Hence,

{
n ∈ N :

n∏
i=0

wi = 1
}
⊆ N

(
B(0; 1), B(2e0; 1/2)

)c
.

Then (mk)k∈N must be chosen such that d
(
{n :

∏n
i=0wi = 1}

)
= 1, which

implies d
(
N
(
B(0; 1), B(2e0; 1/2)

)c)
= 1 and consequently

d
(
N
(
B(0; 1), B(2e0; 1/2)

))
= 0

by condition (1.1.3), i.e., Bw has not (P10).
Observe that supn

∏n
i=0wi = ∞, hence Bw is weakly mixing, i.e., has

(P7).
ii) Consider the weight,

w =
(

1, · · · , 1︸ ︷︷ ︸
m1

, 2, · · · , 2︸ ︷︷ ︸
n1

, 2−n1 , 1, · · · , 1︸ ︷︷ ︸
m2

, 2, · · · , 2︸ ︷︷ ︸
n2

, 2−n2 , 1, · · · , 1︸ ︷︷ ︸
m3

, 2, · · · , 2︸ ︷︷ ︸
n3

, 2−n3 , · · ·
)
.

Recall that D is a shift invariant family, then arguing as in i) and applying
proposition 28, the sequences (mk)k, (nk)k must be chosen in such a way
that the following hold

• d
(
{n :

∏n
i=0wi = 1}

)
= 1

• d(AM ) = d
(
{n :

∏n
i=0wi > M}

)
= 1, for every M > 0.
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2.2 Return sets and density

Define sequences of intervals in the following way,

Ak = [1022k , 1022k+1
], Bk = [1022k+1

, 1022(k+1)
], k ∈ N.

It can be verified that A = ∪k∈NAk and B = ∪k∈NBk are disjoint with
d(A) = d(B) = 1. Hence, setting mk = |Ak|, nk = |Bk| for every k, we are
done.

iii) Let mk = 102k , k ∈ N and consider the weight

w =
(
1, 2, 2−1, 1, 1, 2, · · · , 2︸ ︷︷ ︸

m1

, 2−m1 , 1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
m2

, 2−m2 , 1, 1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
m3

, 2−m3 , · · ·
)
.

The set A1 = {n :
∏n
i=0wi > 1} is not syndetic, hence Bw has not (P8) by

proposition 28. On the other hand,

d(AM ) = d
(
{n :

n∏
i=0

wi > M}
)

= 1,

for every M > 0, hence Bw has (P5), again by proposition 28 since D is a
shift invariant family.

Mixing operators obviously have (P4), but the converse is false, this is

the argument of the next proposition.

Proposition 44. There exists a non-mixing operator on c0(Z+) satisfying
property (P4).

Proof. Let mk = 102k , k ∈ N and consider the weight w = (wn)∞n=0 defined
as

w = (1, 2, . . . , 2︸ ︷︷ ︸
m1

, 2−m1 , 2, . . . , 2︸ ︷︷ ︸
m2

, 2−m2 , 2, . . . , 2︸ ︷︷ ︸
m3

, 2−m3 , . . . ).

Bw is not mixing since is not satisfied limn
∏n
i=0wi =∞. On the other

hand, Bd(AM ) = 1 for every M > 0. In fact, let M > 0, then there exists
n ∈ N such that 2n−1 ≤M < 2n.
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Let s > n+ 1, set

αs := lim inf
k→∞

|AM ∩ [k, k + s]| = s− n.

Hence,

Bd(AM ) = lim
s→∞

αs
s

= lim
s→∞

s− n
s

= 1,

and we conclude by proposition 28, since BD is a shift invariant family.

Proposition 45. Property (P8) does not imply (P6) in l1(Z+). Conse-
quently,

• (P8) does imply neither (P4) nor (P5)

• (P9) does not imply (P5)

• neither (P9) nor (P10) imply (P6).

Proof. Consider An = [2, . . . , 2︸ ︷︷ ︸
n−times

, 2−n], B1 = A1, Bn = [Bn−1, An, Bn−1].

Consider the weight

w = (A1, A2, A1︸ ︷︷ ︸, A3, A1, A2, A1︸ ︷︷ ︸︸ ︷︷ ︸, A4, A1, A2, A1︸ ︷︷ ︸, A3, A1, A2, A1︸ ︷︷ ︸︸ ︷︷ ︸, . . . ).
By proposition 28, Bw is syndetic, i.e. has property (P8). Let us prove that

d
(
N
(
B(0; 1), B(2e0; 1/2)

))
= 2/3 < 1.

Firstly, let us see that

{
n ∈ N :

n∏
i=0

wi = 1
}
⊆
[
N
(
B(0; 1), B(2e0; 1/2)

)]c
. (2.2.5)
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Let n ∈ N such that
∏n
i=0wi = 1 and x ∈ B(0; 1), then |xt| < 1 for every

t ∈ N. On the other hand,

‖Bn
wx− 2e0‖ =

∣∣∣ n∏
i=0

wixn − 2
∣∣∣+

∞∑
k=1

∣∣∣ n∏
i=0

wi+kxn+k

∣∣∣ ≥ ∣∣∣ n∏
i=0

wixn − 2
∣∣∣ > 1.

Hence, Bn
wx /∈ B(2e0; 1/2) and (2.2.5) holds.

Now, |Bn| = 3·2n−n−3 and αn =
∣∣∣{k ≤ |Bn| : ∏k

i=0wi = 1
}∣∣∣ = 2n−1.

By (2.2.5) we have,

d
(
N
(
B(0; 1), B(2e0; 1/2)

))
≤ d
({
k ∈ N :

k∏
i=0

wi > 1
})

= lim sup
n

∣∣∣{k ∈ [1, n] :
∏k
i=0wi > 1

}∣∣∣
n

= lim sup
n

∣∣∣{k ≤ |Bn|+ |An+1| :
∏k
i=0wi > 1

}∣∣∣
|Bn|+ |An+1|

= lim
n

|Bn| − αn + n+ 1

|Bn|+ n+ 2
= lim

n

2 · 2n − 1

3 · 2n − 1
= 2/3.

The following diagram shows the main results discussed above. Dashed

arrows fail to hold.
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I∗-op.=mixing op. ∆∗-op

IP∗-op

(P4) (P8) = S-op (P3) (P2) (P1)

(P5) (P9) PS∗-op

(P6) (P10)

(P7)=weakly mixing op. (P11)

Bw on c0, lp

∀Bw on lp (7)

Bw on c0 (7)

Figure 2

2.3 Questions

In proposition 38, we have seen that a reiteratively hypercyclic weighted

backward shift on c0 or lp (1 ≤ p < ∞) is ∆∗-operator. One could wonder

whether this holds beyond the weighted backward shift setting,

Question 46. Must a reiteratively hypercyclic operator T ∈ L(X) be a
∆∗-operator?

Please note that a ∆∗-operator T , satisfies ∆∗− limn‖Tn‖ =∞. In fact,
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let M > 0 and set V = {x ∈ X : ‖x‖ > M}, then

{n ∈ N : Tn
(
B(0, 1)

)
∩ V 6= ∅} ⊆ {n ∈ N : ‖Tn‖ > M}.

Hence in order to exhibit a reiteratively hypercyclic but not ∆∗-operator,

arguing as in (1) and applying (1.1.1), it suffices to show the existence of a

real positive M such that

(nk)k = {n ∈ N : ‖Tn‖ ≤M} ∈ ∆ (2.3.1)

and
∞∑
k=1

( nk
nk+1

)2
<∞. (2.3.2)

But condition (2.3.1) and (2.3.2) can not be satisfied at the same time.

In fact, assume (2.3.1), hence there exists a distance a ∈ N that appears

infinitely many times between elements of (nk)k, which implies there exists

ā ≤ a and a subsequence (nkj )j such that nkj+1 − nkj = ā for every j ∈
N, then limj nkj/nkj+1 = 1. Consequently, (2.3.2) can not hold and this

attempt of answering question 46 fails.

Finally, we were not able to answer the following:

Question 47. Does there exist T ∈ L(X) satisfying (P9) but not (P7)?
In other words, does there exist T ∈ L(X) being D-operator but not weakly
mixing?

Note that if it were the case, then such operator T must not be weighted

shift. Furthermore, we underline that in the search for such operator, [ (6),

Theorem 1.2] could be of great help.
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3

Recurrence properties defined
via essential idempotents of βN

Let us introduce the following notion:

Definition 48. The sequence of operators (Tn)n satisfies property PF if
for any U opene set in X there exists x ∈ X such that

N(x, U) = {n ∈ N : Tnx ∈ U} ∈ F .

An operator T satisfies property PF if the sequence (Tn)n satisfies property
PF as well.

The aim of this chapter is to generalize the main result of a recent pa-

per of Costakis and Parissis (19), using a strong result of Bergelson and

Mccutcheon (10) in the vein of Szemerédi’s theorem, leading us to a char-

acterization of those operators satisfying property PBD.

In terms of recurrence, in (19) Costakis and Parissis are mainly con-

cerned with topologically multiply recurrence.
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Definition 49. An operator T ∈ L(X) is topologically multiply recurrent if
for every opene set U in X and every r ∈ N, there is some k ∈ N such that

U ∩ T−kU ∩ ... ∩ T−rkU 6= ∅. (3.0.1)

Now, the main result of (19):

Theorem 50. (19)
Let (λn)n∈N be a sequence of non-zero complex numbers which satisfies

lim
n→∞

|λn|
|λn+τ |

= 1

for some positive integer τ . Let T ∈ L(X) such that the family (λnT
n)n

satisfies property PD. Then T is topologically multiply recurrent.

More on recurrence and hypercyclicity can be found in (18).

We would like to generalize the result of Costakis and Parissis by show-

ing a stronger kind of recurrence. In (3.0.1) we will be asking that the

intersection is not only non-empty but satisfies some condition involving

Banach density. On the other hand, the mere existence of some k ∈ N will

not be enough for us, instead we want that the set of such k be infinite and

with very specific algebraic properties.

We will be mainly concerned with the so-called essential idempotents on

βN, defined as

E = {p ∈ E(N) : Bd(A) > 0,∀A ∈ p}.

A set A ⊆ N is called an E-set if there exists p ∈ E such that A ∈ p. Now, we
will introduce what we call E-recurrence for a linear operator. Let m ∈ N.
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Definition 51. T ∈ L(X) is topologically (E,m)-recurrent with respect to
λ = (λn)n if there exists some p ∈ E such that for any U1, . . . , Um opene
sets in X, there exists x1, . . . , xm ∈ X, such that for any (r1, . . . , rm) ∈ Nm,
we have

m⋂
i=1

{
k ∈ N : Bd

(
a ∈ N : λaT

axi ∈ ∩rij=0T
−jk(Ui)

)
> 0
}
∈ p.

Let us say T is topologically E-recurrent with respect to (λn)nwhen T is

topologically (E, 1)-recurrent with respect to (λn)n. In the case, (λn)n = 1,

we simply say T topologically E-recurrent.

We state the main result of this chapter:

Theorem 52. Let (λn)n be a sequence of non-zero complex numbers and
let p ∈ E such that there exists A ∈ p for which

BD
∗ − lim

n

∣∣∣ λn
λn+k

∣∣∣ = 1, ∀k ∈ A. (3.0.2)

Then the family (λnT
n)n acting on X satisfies property PBD if and only if

T is topologically (E,m)-recurrent with respect to (λn)n, for any m ∈ N.

Proof. (⇐) Evident, this holds without the condition on λ = (λn)n.
(⇒) Let (λn)n a sequence of non-zero complex numbers as in the state-

ment of the theorem, then the family (λnT
n)n has the property PBD if and

only if (|λn|Tn)n has the property PBD, and the proof follows the same
lines as Lemma 3.7 (19), replacing Bd instead of d. So, we may assume
that (λn)n is a sequence of positive numbers such that for some p ∈ E and
some A ∈ p, we have limn λn/λn+k = 1 for every k ∈ A.

First, let us prove the case m = 1. So, let U opene set in X and r ∈ N.
Then there exists y ∈ U and a positive number ε such that B(y, ε) ⊆ U .
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Hence by the property PBD of the family (λnT
n)n, there exists x ∈ X such

that
F = {n ∈ N : λnT

nx ∈ B(y, ε/2)}

has positive upper Banach density. Consider the family of polynomials
g1(k) = −k, ..., gr(k) = −rk, hence g1, ...gr ∈ Ga the group of admissi-
ble generalized polynomials, see page 10 (10) for the definition. Now by
Theorem 1.25 (10) we have that

W :=
{
k ∈ N : Bd

(
F ∩ (F − k) ∩ ... ∩ (F − rk)

)
> 0
}
∈ E∗. (3.0.3)

Hence, W ∈ q,∀q ∈ E.
On the other hand, recall that (3.0.2) holds for some p ∈ E and some

A ∈ p, hence,

W ∩A ∈ p. (3.0.4)

Fix k ∈W ∩A. Denote

Mk,r := F ∩ (F − k) ∩ ... ∩ (F − rk) = {a : a, a+ k, ..., a+ rk ∈ F}.

As in the proof of Theorem 50, for each a ∈Mk,r and j = 1 . . . r we let

u := λaT
ax ∈ B(y, ε/2) (3.0.5)

uj := λa+jkT
a+jkx =

λa+jk

λa
T jku ∈ B(y, ε/2).

Let M > 0 such that ‖uj‖ ≤M for any j = 1 . . . r.
On the other hand,

||T jku− uj || =
∥∥∥ λa
λa+jk

uj − uj
∥∥∥ =

∣∣∣ λa
λa+jk

− 1
∣∣∣‖uj‖

Now, set

Ij,k =
{
a ∈ N :

∣∣∣ λa
λa+jk

− 1
∣∣∣ < ε/2M

}
.
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Hence,
Ij,k ∈ BD

∗
, (3.0.6)

for every j = 1 . . . r, because by hypothesis k ∈W ∩A implies

BD
∗ − lim

n

λn
λn+k

= 1

and this in turn implies

BD
∗ − lim

n

λn
λn+jk

= 1,

for any j = 1 . . . r. We will prove this last implication later.
The family BD

∗ is a filter. In fact, it can be written as an intersection
of ultrafilters, as follows:

BD
∗

=
⋂
p∈D

p∗ =
⋂
p∈D

p = {A ⊆ N : A ∈ p,∀p ∈ D},

where D = {p ∈ βN : Bd(A) > 0,∀A ∈ p}. First, recall that F = F ∗

when F is an ultrafilter. Indeed, F ⊆ F ∗ follows from the fact that F

is also a filter. Conversely, if A ∈ F ∗, then Ac ∈ F by Theorem 3.6 (27),
hence A ∩Ac 6= ∅ which is a contradiction. Second, obviously⋃

p∈D

p = {A ⊆ N : A ∈ p, p ∈ D} ⊆ BD.

Conversely, Let A ∈ BD, then by Lemma 2.3 (28) there exists p ∈ D such
that A ∈ p, then BD =

⋃
p∈D p and consequently BD

∗
=
⋂
p∈D p

∗.
Hence by (3.0.6), we have that Ik := ∩rj=1Ij,k ∈ BD

∗
= D∗, i.e.

Ik ∈ q,∀q ∈ D . (3.0.7)

Now, Bd(Mk,r) > 0 by (3.0.3). Hence by Lemma 2.3 (28) there exists
p̃ ∈ D such that

Mk,r ∈ p̃. (3.0.8)
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By (3.0.7) and (3.0.8) we have Ak,r := Ik ∩Mk,r ∈ p̃. Hence,

Bd(Ak,r) > 0 (3.0.9)

and

Ak,r ⊆
{
a ∈ N : ‖T jku− uj‖ < ε/2, ‖uj − y‖ < ε/2, j = 1 . . . r

}
,

then
Ak,r ⊆

{
a ∈ N : ‖T jku− y‖ < ε, j = 1 . . . r

}
. (3.0.10)

Hence by (3.0.5) and (3.0.10) we obtain

u, T k(u), ..., T rk(u) ∈ U,

for every a ∈ Ak,r.
Now, by (3.0.4) and (3.0.9) we have,{

k ∈ N : Bd
(
a ∈ N : λaT

ax ∈ ∩rj=0T
−jk(U)

)
> 0
}
∈ p

and T is topologically (E, 1)-recurrent with respect to λ = (λn)n. To
finish, with the casem = 1, it remains to prove BD

∗−limn
λn
λn+k

= 1 implies

BD
∗ − limn

λn
λn+jk

= 1, for any j = 1 . . . r. In fact,

λa/λa+jk = λa/λa+k · λa+k/λa+2k · ... · λa+(j−1)k/λa+jk.

Now, let V an open neighbourhood of 1, then one can find V1, V2, . . . , Vj

neighbourhoods of 1 such that{
n ∈ N :

λn
λn+k

∈ V1

}
∩
{
n ∈ N :

λn+k

λn+2k
∈ V2

}
∩...∩

{
n ∈ N :

λn+(j−1)k

λn+jk
∈ Vj

}
⊆

⊆
{
n ∈ N :

λn
λn+k

· λn+k

λn+2k
· ... ·

λn+(j−1)k

λn+jk
∈ V

}
=
{
n ∈ N :

λn
λn+jk

∈ V
}
.
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3.1 Adjoints of multiplication operators

By hypothesis,{
n ∈ N : λn+(t−1)k/λn+tk ∈ Vt

}
∈ BD

∗
,

for t = 1 . . . j. Hence because BD
∗ is a filter, we have

j⋂
t=1

{
n ∈ N :

λn+(t−1)k

λn+tk
∈ Vt

}
∈ BD

∗
.

Consequently,
{
n ∈ N : λn/λn+jk ∈ V

}
∈ BD

∗. Finally, since V was
arbitrary, we conclude that{

n ∈ N : λn/λn+jk ∈ V
}
∈ BD

∗
,

for every open neighbourhood V of 1 and any j = 1 . . . r.
Let us finish the proof considering the case m > 1. Let (Ui)

m
i=1 a finite

collection of opene sets in X. For each Ui we proceed as in the case m = 1,
then there exists xi ∈ X such that for any ri ∈ N we have Wi ∈ E∗ by
(3.0.3). On the other hand, recall that E∗ is a filter since, E∗ = ∩p∈Ep and
intersection of ultrafilters is a filter, hence

∩1≤i≤mWi ∈ E∗

and we can conclude T is topologically (E,m)-recurrent with respect to
(λn)n, for any m ∈ N.

3.1 Adjoints of multiplication operators

An easy application of Theorem 52 can be seen in the setting of adjoints

of multiplication operators (see (24), (4)) for an introduction.
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Fix a non-empty open connected set Ω ⊂ Cn, n ∈ N, and H a Hilbert

space of holomorphic functions such that H 6= {0} and for every z ∈ Ω, the

point evaluation functionals f 7→ f(z), f ∈ H, are bounded.

Recall that every complex valued function φ : Ω → C such that the

pointwise product φf ∈ H, for every f ∈ H is called a multiplier of H, and

defines a multiplication operator Mφ : H → H defined as

Mφ(f) = φf, f ∈ H.

Recall that an operator T is called recurrent if N(U,U) 6= ∅ for every

opene set U in X. The following is an improvement of proposition 6.1 (19).

Corollary 53. Suppose that every non-constant bounded holomorphic func-
tion φ on Ω is a multiplier of H such that ‖Mφ‖ = ‖φ‖∞. Then for each
such φ the following are equivalent.

i) M∗φ is topologically E-recurrent
ii) M∗φ is recurrent
iii) M∗φ is frequently hypercyclic
iv) M∗φ is hypercyclic
v) φ(Ω) ∩ T 6= ∅.

Proof. It follows from theorem 52, proposition 6.1 (19) and the fact that
every E-recurrent operator is evidently recurrent.

3.2 Weighted shifts satisfying property PBD

In this section we will see some consequences of Theorem 52 in the frame

of weighted backward shifts on X = lp(Z+), (1 ≤ p <∞) or c0(Z+).
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3.2.1 A multiple recurrent operator which is not E-recurrent

Note that in particular, topologically E-recurrence implies topologically

multiply recurrence, however the converse is not true.

Proposition 54. Let X = c0(Z+) or X = lp(Z+), 1 ≤ p < ∞, then
there exists a weighted backward shift on X, which is topologically multiply
recurrent but not topologically E-recurrent.

Then, we have the following diagram, where dashed arrow fails to hold.

T has PD T multiply recurrent

T has PBD T is E-recurrent

(19)

Th. 52

First, observe in the last picture that the converse of the main result of

Costakis and Parissis (Theorem 50) cannot be obtained (i.e. there exists a

multiple recurrent operator which does not have PD). On the other hand,

Theorem 52 is in fact a generalization, as can be deduced from the diagram.

Now we proceed to prove Proposition 54 but first we need to point out

the following observation. Obviously, condition

∀m ∈ N, sup
n∈N

{
min

1≤l≤m
{|w1w2...wln|}

}
=∞

is equivalent to

∀M > 0, ∃m0 : ∀m > m0,∃n : min
1≤l≤m

{|w1w2...wln|} > M. (3.2.1)

Then, by Proposition 5.3 (19) and Proposition 4.3 (16), we have the follow-

ing:

49
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Proposition 55. Let Bw a weighted backward shift on X = c0(Z+) or
X = lp(Z+), 1 ≤ p <∞. The following are equivalent:

i) Bw topologically multiply recurrent
ii) ∀M > 0,∃m0 : ∀m > m0, ∃n : min1≤l≤m{|w1w2...wln|} > M .

Proof of Proposition 54

Proof. Note that for weighted backward shifts, being hypercyclic is equiv-
alent to being recurrent (19). Then by Theorem 52, weighted backward
shifts satisfying property PBD are necessarily hypercyclic. Hence, thanks to
Proposition 37 and Proposition 55 it suffices to find some Bw that is non
syndetic and satisfies (3.2.1).

Let us construct (bn)n∈N = B ⊆ N with the property

∀m ∈ N, ∃n ∈ N : ln ∈ B, ∀1 ≤ l ≤ m

and define a weight w = (wn)n in such a way thatA1 = {n ∈ N :
∏n
i=1 |wi| >

1} be non-syndetic and w satisfies (3.2.1) on B. Denote wn = (w1, ..., wn).
For better understanding we set w∗n for indicate that n ∈ A2.

Let m = 1, n = 1 and define b1 = 1 · 1 = 1. Then, w3 = (2∗, 1/22, 2).
Let m = 2, take n = 4 and define b2 = 1 · 4 = 4, b3 = 2 · 4 = 8. Then,
introducing an increasing gap on A2 we set

wb3+3 = ( 2∗︸︷︷︸
wb1

,
1

22
, 2, 2∗︸︷︷︸

wb2

, 2∗, 2∗, 2∗, 2∗︸︷︷︸
wb3

, 1/27, 2, 2).

Now, in order to satisfy (3.2.1) we must define b4 at least equal to b3 +

4 + (b3 − b2 + 1) = 17. Hence, for m = 3, take n = 17 and define b4 =

1 · 17 = 17, b5 = 2 · 17 = 34, b6 = 3 · 17 = 51, introducing the corresponding
increasing gap on A2 we have

wb6+4 = ( 2∗︸︷︷︸
wb1

,
1

22
, 2, 2∗︸︷︷︸

wb2

, ..., 2∗︸︷︷︸
wb3

, 1/27, 2, 2, 2∗, ..., 2∗︸︷︷︸
wb4

, ..., 2∗︸︷︷︸
wb5

, ..., 2∗︸︷︷︸
wb6

,
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1/243, 2, 2, 2).

Again in order to satisfy (3.2.1) we must define b7 at least equal to b6 +

5 + (b6 − (b3 + 4) + 1) = 97. Hence for m = 4, take n = 97 and define
b7 = 1 · 97 = 97, b8 = 2 · 97, b9 = 3 · 97, b10 = 4 · 97 = 388, introducing the
corresponding increasing gap on A2 we have

wb10+5 = ( 2∗︸︷︷︸
wb1

,
1

22
, 2, 2∗︸︷︷︸

wb2

, ..., 2∗︸︷︷︸
wb3

, 1/27, 2, 2, 2∗, ..., 2∗︸︷︷︸
wb4

, ..., 2∗︸︷︷︸
wb5

, ..., 2∗︸︷︷︸
wb6

, 1/243,

2, 2, 2, 2∗, ..., 2∗︸︷︷︸
wb7

, ..., 2∗︸︷︷︸
wb8

, ... 2∗︸︷︷︸
wb9

, 2∗︸︷︷︸
wb10

, 1/2337, 2, 2, 2, 2).

an so on. Clearly Bw satisfies condition (3.2.1) and by Proposition 28 is not
a syndetic operator.

3.2.2 Further consequences

In general, an operator satisfying property PBD is not necessarily hy-

percyclic, consider for example the identity operator. But in the context

of weighted backward shifts on X = lp or c0, operators satisfying property

PBD are necessarily hypercyclic, even more, we show that they satisfy a

stronger condition, i.e. Bw ⊕ B2
w ⊕ ... ⊕ Br

w is E∗-operator on Xr, for any

r ∈ N.

Proposition 56. Let w = (wk)k∈Z be a bounded weight sequence and Bw a
bilateral weighted backward shift on X = lp(Z), 1 ≤ p ≤ ∞ or c0(Z). If Bw
satisfies property PBD then Bw ⊕ B2

w ⊕ ... ⊕ Br
w is E∗-operator on Xr, for

any r ∈ N.

Proof. Recall that

AM ;j =
{
n ∈ N :

j+n∏
i=j+1

|wi| > M
}
, ĀM ;j =

{
n ∈ N :

1∏j
i=j−n+1 |wi|

> M
}
.
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Consider the filter

G =
{
D ⊆ N : ∀r ∈ N,∃W ∈ E∗ : lW ⊆ D,∀l = 1 . . . r

}
.

Fact 1: If Bw is topologically E-recurrent then AM ;j ∈ G and ĀM ;j ∈ G ,
for any j ∈ Z and M > 0.

Let M > 0, j ∈ Z. We must show

∀r ∈ N, ∃W ∈ E∗ : lk ∈ AM,j , lk ∈ ĀM,j ∀k ∈W, 1 ≤ l ≤ r.

Let r ∈ N. Pick δ > 0 such that (1− δ)/δ > M . Consider the open ball
B(ej , δ) = {x ∈ X : ‖x − ej‖ < δ}. Bw topologically E-recurrent implies
there exists W ∈ E∗ such that for each k ∈W there exists

y ∈ B(ej , δ) (3.2.2)

such that
T lky ∈ B(ej , δ) (3.2.3)

for any 1 ≤ l ≤ r. The existence of W ∈ E∗ is due to the fact that we
are considering (λn)n = 1 and hence in (3.0.4), A can be taken as N.

By (3.2.2),
|yj − 1| < δ, |yt| < δ for t 6= j. (3.2.4)

By (3.2.3),

lk∏
i=1

|wi+jyj+lk − 1| < δ,

lk∏
i=1

|wi+tyt+lk| < δ for t 6= j. (3.2.5)

for any 1 ≤ l ≤ r.
Now by (3.2.5), we have

∣∣∣ lk∏
i=1

wi+jyj+lk

∣∣∣ > 1− δ. (3.2.6)
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Thus by (3.2.4) and (3.2.6),

lk∏
i=1

|wi+j | >
1− δ
δ

> M,

and lk ∈ AM,j , for any 1 ≤ l ≤ r.
On the other hand, by (3.2.5),

j∏
i=j−lk+1

|wiyj | < δ <
1− δ
M

.

Furthermore, by (3.2.4) we get

j∏
i=j−lk+1

|wi| (1− δ) <
j∏

i=j−lk+1

|wiyj | <
1− δ
M

.

Hence,
∏j
i=j−lk+1 |wi| < 1/M and lk ∈ ĀM,j , for any 1 ≤ l ≤ r.

The following is a consequence of corollary 29:
Fact 2: If Bw is such that AM ;j ∈ G and ĀM ;j ∈ G , for any j ∈ Z and

M > 0 then Bw ⊕B2
w ⊕ ...⊕Br

w is E∗-operator on Xr, for any r ∈ N.
Now, we conclude our proof by theorem 52, fact 1 and fact 2.

With a similar proof we can obtain the following unilateral version of

Proposition 56.

Proposition 57. Let w = (wn)n∈Z+ be a bounded weight sequence and Bw
an unilateral weighted backward shift on X = lp(Z+), 1 ≤ p ≤ ∞ or c0(Z+).
If Bw satisfies property PBD then Bw⊕B2

w⊕ ...⊕Br
w is E∗-operator on Xr,

for any r ∈ N.

Remark 58. The converse of Proposition 57 does not hold. Denote by
B(x; r) the open ball centered at x with radius r. The following was pointed
out to me (personal communication) by Quentin Menet the following:
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Proposition 59. There exists a mixing weighted backward shift Bw on
lp(Z+) such that N(x,B(e0; 1/2)) has upper Banach density equals to zero
for any x ∈ lp(Z+).

Now, let Bw given by proposition 59, then Bw is mixing on lp(Z+) and
does not satisfy property PBD. Finally take into account the following fact
proved in (14): Bw is mixing if and only if Bw ⊕ B2

w ⊕ ... ⊕ Br
w is mixing,

for any r ∈ N, thus the converse of proposition 57 does not hold.

The proof of Proposition 59 is due to Quentin Menet and we include it

here for the sake of completeness.

Proof. Let Bw a weighted backward shift such that |wn| ≥ 1 for any n ≥ 1

and suppose there exists x ∈ lp(N) and m ≥ 1 such that

Bd
(
N
(
x,B

(
e0;

1

2

)))
>

1

m
.

We denote by A the set B(e0; 1/2). We have thus

lim
s→∞

lim sup
k→∞

|A ∩ [k + 1, k + s]|
s

>
1

m
.

In other words, there exists s0 ≥ 1 such that for any s ≥ s0, any k0 ≥ 1,
there exists k ≥ k0 such that

|A ∩ [k + 1, k + s]| > s

m
.

In particular, we obtain the existence of an integer l0 ≥ 1 such that for any
l ≥ l0, we can find an integer k ≥ 1 satisfying

|A ∩ [k + 1, k + lm]| > l.

This means that for any l ≥ l0, there exist n0, · · · , nl ∈ [1, lm] such that for
any 0 ≤ j ≤ l,

‖Bk+nj
w x− e0‖pp <

1

2p
.
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We deduce that
l∑

j=1

k+n0∏
ν=1

|wnj−n0+νxk+nj
|p < 1

2p
(3.2.7)

and that for any 0 ≤ j ≤ l
k+nj∏
ν=1

|wνxk+nj
| > 1

2
. (3.2.8)

We get by (3.2.8)

l∑
j=1

k+n0∏
ν=1

|wnj−n0+νxk+nj
|p =

l∑
j=1

∏k+nj

ν=1 |wν |p∏nj−n0

ν=1 |wν |p
|xk+nj

|p >
l∑

j=1

1

2p
∏nj−n0

ν=1 |wν |p

and thus by (3.2.7)

inf
1≤j≤lm

l∏j
ν=1 |wν |p

≤ inf
1≤j≤l

l∏nj−n0

ν=1 |wν |p
≤ 2p

l∑
j=1

1

2p
∏nj−n0

ν=1 |wν |p
< 1.

Hence, we conclude that there exists m ≥ 1 such that

lim sup
l→∞

l∏lm
ν=1 |wν |p

<∞

because |wn| ≥ 1 for any n ≥ 1.
Now, consider the weighted shift Bw where wν =

(
(ν + 1)/ν

) 1
2p . Since

n∏
ν=1

|wν | = (n+ 1)
1
2p →∞,

the weighted shift Bw is mixing on lp(Z+), see Chapter 4 (24). On the
other hand, N(x,B(e0; 1/2)) has upper Banach density equals to zero for
any x ∈ lp(Z+) since for any n ≥ 1, |wn| ≥ 1 and for any m ≥ 1,

l∏lm
ν=1 |wν |p

=
l√

lm+ 1
→∞.
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Proposition 41 shows that any reiteratively hypercyclic weighted back-

ward shift on c0(Z+) or lp(Z+) is ∆∗-operator. Now, with some additional

hypothesis we will show that any weighted backward shift satisfying PBD

persists to be ∆∗-operator.

Let T topologically E-recurrent, then by definition there exists some

p ∈ E such that for any opene set U in X, there exists x ∈ X such that for

any r ∈ N,

E(U) =
{
k ∈ N : Bd

(
Mk,r(U)

)
> 0
}
∈ p

where

Mk,r(U) =
{
a ∈ N : T ax ∈ ∩rj=0T

−jk(U)
}
.

Fix U and k, then for any n < r we have, Mk,r(U) ⊆Mk,n(U).

Proposition 60. Let Bw satisfying that for any opene set U in X, there
exists k ∈ E(U) for which

⋂
r∈NMk,r(U) 6= ∅. If Bw satisfies property PBD

then it is ∆∗-operator.

Proof. Let Bw satisfying property PBD such that for each U opene in X,
there exists k ∈ E(U) for which⋂

r∈N
Mk,r(U) 6= ∅. (3.2.9)

Observe that Bw is an E-recurrent weighted backward shift by theorem 52.
Fix j ∈ N and M > 0, as in the proof of proposition 57, pick δ > 0 such
that (1− δ)/δ > M and consider the open ball B(ej ; δ). Now by (3.2.9) we
can pick ā ∈ ∩r∈NMk0,r(B(ej ; δ)) for some k0 ∈ E(B(ej ; δ)). Then,

y := T āx ∈
⋂
r∈N

r⋂
l=0

T−lk0
(
B(ej , δ)

)
.
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3.3 A characterization of reiteratively hypercyclic operators

On the other hand, (3.2.4) and (3.2.5) are valid for k = k0, hence

∣∣∣ lk0∏
i=0

wi+j

∣∣∣ > 1− δ
|yj+lk0 |

>
1− δ
δ

> M

for any l ∈ N. Then we can conclude that for any M > 0 and any j ∈
N, there exists k ∈ N such that kN = {km : m ∈ N} ⊆ AM,j . Hence
AM,j ∈ ∆∗, since every set of the form kN is a ∆∗-set. In fact, fix k ∈ N
and A an infinite subset of N. Pick any finite collection of k + 1 elements
in A denoted by a1, a2, ..., ak+1, hence necessarily there will be 2 elements
ai, aj with 1 ≤ i, j ≤ k + 1 such that ai ∈ kN + t and aj ∈ kN + t for
some 0 ≤ t ≤ k − 1. Obviously, ai − aj ∈ kN and kN ∩ (A − A) 6= ∅, i.e.
kN ∈ ∆∗.

3.3 A characterization of reiteratively hypercyclic
operators

Using the same ideas of the proof of Theorem 52 we can obtain au-

tomatically more information about the return time set of a reiteratively

hypercyclic operator respect to a reiteratively hypercyclic vector.

Definition 61. We will say that T ∈ L(X) is E-reiteratively hypercyclic
with respect to λ = (λn)n if there exists some p ∈ E and x ∈ X such that
for any opene set U in X and r ∈ N, we have{

k ∈ N : Bd
(
a ∈ N : λaT

ax ∈ ∩rj=0T
−jk(U)

)
> 0
}
∈ p.

In the case (λn)n = 1, we simply say that T is E-reiteratively hypercyclic.

With the same sketch of the proof of Theorem 52 we can show the

following:
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Theorem 62. Let (λn)n a sequence of non-zero complex numbers and some
p ∈ E such that there exists A ∈ p for which

BD
∗ − lim

n

∣∣∣ λn
λn+k

∣∣∣ = 1, ∀k ∈ A (3.3.1)

then the family (λnT
n)n is reiteratively hypercyclic if and only if T is E-

reiteratively hypercyclic with respect to λ = (λn)n.

As a consequence we obtain a characterization of reiteratively hyper-

cyclic operators.

Theorem 63. An operator T ∈ L(X) is reiteratively hypercyclic if and
only if there exists some x ∈ X such that for any opene set U in X and any
r ∈ N, we have{

k ∈ N : Bd
(
a ∈ N : T ax ∈ T−kU ∩ · · · ∩ T−rkU ∩ U

)
> 0
}
∈ E∗.

Proof. When considering (λn)n = 1, condition (3.3.1) holds with A = N.
The proof of Theorem 52 shows that in fact {k ∈ N : Bd(a ∈ N : T ax ∈
∩rj=0T

−jk(U)) > 0} is E∗-set.

3.4 Questions

It is not hard to see that chaotic operators, reiteratively hypercyclic op-

erators, U-frequently hypercyclic operators and frequently hypercyclic op-

erators satisfy property PBD. Consider M ⊂ L(X),M 6= ∅. Now inspired

in [(25), Theorem 9], we pose the following questions:

Question 64. Does there exist some (λn)n such that T ∈M is hypercyclic
and topologically E-recurrent with respect to (λn)n if and only if T is chaotic?

58



3.4 Questions

Question 65. Does there exist some (λn)n such that T ∈M is hypercyclic
and topologically E-recurrent with respect to (λn)n if and only if T is reit-
eratively hypercyclic?

Question 66. Does there exist some (λn)n such that T ∈M is hypercyclic
and topologically E-recurrent with respect to (λn)n if and only if T is U-
frequently hypercyclic?

Question 67. Does there exist some (λn)n such that T ∈M is hypercyclic
and topologically E-recurrent with respect to (λn)n if and only if T is fre-
quently hypercyclic?
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4

Disjoint hypercyclicity along
filters

The aim of this chapter is to prove that Bw is F -backward weighted

shift if and only if the tuple (Bw, . . . , B
r
w) is d-F , for any r ∈ N whenever

F runs over some filters strictly containing the family of cofinite sets, as

well as to verify that this statement fails beyond the weighted shift frame,

by showing a mixing linear operator T on a Hilbert space such that the

tuple (T, T 2) is not d-syndetic. Furthermore, we look into the relationship

between reiteratively hypercyclic operators and d-F tuples, for filters F

contained in the family of syndetic sets. Finally, recall that reiteratively

hypercyclic operators are syndetic (Proposition 37) but the converse is not

true (Proposition 42), hence we discuss under which conditions we can ob-

tain reiterative hypercyclicity from syndeticity, for weighted backward shifts

on X = c0(Z+) or lp(Z+), (1 ≤ p <∞).

In a natural way we can introduce the notion of F -disjoint transitivity
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4. DISJOINT HYPERCYCLICITY ALONG FILTERS

(or d-F for short).

Definition 68. The tuple of sequence of operators (T1,nk
, . . . , TN,nk

)k is
said to be d-F if for any N + 1-tuple (Ui)

N
i=0 of opene sets we have{

k ∈ N : T−1
1,nk

(U1) ∩ · · · ∩ T−1
N,nk

(UN ) ∩ U0 6= ∅
}
∈ F .

In particular, when Ti,nk
= T ki , for any k ∈ N, 1 ≤ i ≤ N in the above

definition, then the N +1-tuple of operators (T1, . . . , TN ) is said to be d-F .

The case when F is the family of cofinite sets, i.e., d-mixing tuples of

operators, has been studied in (14) . Let X = c0 or lp, 1 ≤ p < ∞ and let

Bw be a weighted backward shift on X. Among other results, the authors

of (14) prove that Bw is mixing if and only if the tuple (Bw, . . . , B
r
w) is

d-mixing, for any r ∈ N.

4.1 Tuples of powers of weighted shifts

In this section we begin by studying conditions to impose on the weights

in the search of a characterization of any tuple of powers of weighted shifts

to be d-F , with F a filter. This, together with a result of Ramsey theory

about the preservation of certain notions of largeness in products, are the

main ingredients of our main result: Bw is F -weighted backward shift if

and only if (Bw, . . . , B
r
w) is d-F , for any r ∈ N, where F runs along some

filters containing strictly the family of cofinite sets.

Analogous to the d-Hypercyclicity Criterion for tuples of linear operators

introduced in (16), we define the d-F Hypercyclicity Criterion, for F a

family on N. Let X be a separable infinite dimensional Fréchet space.
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4.1 Tuples of powers of weighted shifts

Definition 69 (d-F Hypercyclicity Criterion).
Let (nk)k be a strictly increasing sequence of positive integers and F a

family on N. We say that a tuple of operators (T1, . . . , TN ) in L(X) satisfies
the d-F Hypercyclicity Criterion with respect to (nk)k provided there exist
dense subsets X0, . . . , XN of X and mappings Sl,k : Xl −→ X, (1 ≤ l ≤
N, k ∈ N) satisfying

(i) F - lim
k→∞

Tnk
l (x) = 0, for any x ∈ X0

(ii) F - lim
k→∞

Sl,k(x) = 0, for any x ∈ Xl (1 ≤ l ≤ N)

(iii) F - lim
k→∞

(
Tnk
l Si,k − δi,lIdXl

)
x = 0, for any x ∈ Xl (1 ≤ i, l ≤ N).

We say that (T1, . . . , TN ) satisfies the d-F Hypercyclicity Criterion if there
exists some sequence (nk)k for which (i)-(iii) is satisfied.

When Xs = Xl, for 0 ≤ s, l ≤ N and (nk) = (k) then we say that
(T1, . . . , TN ) satisfies the Original Kitai d-F Criterion.

Connection between d-F Hypercyclicity Criterion and d-F tuples is the

content of the following proposition that follows exactly the same sketch of

proof of [(16), Proposition 2.6].

Proposition 70. Let F be a filter on N. If (T1, . . . , TN ) satisfies the d-F
Hypercyclicity Criterion with respect to (nk)k, then the sequence (Tnk

1 , . . . , Tnk
N )k

is d-F .

Proof. Let (Vi)
N
i=0 be aN -tuple of opene subsets ofX. Pick yl ∈ Vl∩Xl, (0 ≤

l ≤ N) and ε > 0 such that B(yl; (N + 1)ε) ⊂ Vl, where B(x; r) denote the
ball centered at x with radius r. Set

A =
{
k ∈ N : Tnk

l y0 ∈ B(0; ε)
}
∈ F

Bl =
{
k ∈ N : Sl,kyl ∈ B(0; ε)

}
∈ F
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4. DISJOINT HYPERCYCLICITY ALONG FILTERS

Ci,l =
{
k ∈ N : Tnk

l Si,kyi − δi,lyi ∈ B(0; ε)
}
∈ F , (1 ≤ i, l,≤ N).

But F is a filter, hence

D := A ∩
N⋂
l=1

(
Bl ∩

N⋂
i=1

Ci,l
)
∈ F .

Then, for each k ∈ D we have zk := y0 +
∑N

i=1 Si,kyi ∈ V0 and

Tnk
l zk = Tnk

l y0 + Tnk
l

( N∑
i=1

Si,kyi
)

= Tnk
l y0 +

N∑
i=1

Tnk
l Si,kyi.

On the other hand,

N∑
i=1

Tnk
l Si,kyi =

(
Tnk
l Sl,kyl − yl

)
+ yl +

N∑
i=l
i 6=l

Tnk
l Si,kyi ∈ B(yl;N · ε).

Hence, Tnk
l zk ∈ B(yl; (N + 1)ε) ⊂ Vl (1 ≤ l ≤ N). That is,

D ⊂
{
k ∈ N : V0 ∩ T−nk

1 (V1) ∩ · · · ∩ T−nk
N (VN ) 6= ∅

}
.

Hence, (Tnk
1 , . . . , Tnk

N ) is d-F .

4.1.1 Bilateral weighted shifts

Let X = c0(Z) or lp(Z)(1 ≤ p < ∞). For l = 1, . . . , N consider

wl = (wl,j)j∈Z a bounded bilateral sequence of non-zero scalars and Bwl

be the associated bilateral weighted backward shift on X given by Bwl
ek =

wl,kek−1(k ∈ Z), where (ek)k∈Z denotes the canonical basis ofX and (e∗k)k∈Z

the associated sequence of coordinate functionals.

If (Br1
w1
, . . . , BrN

wN
) satisfies the d-Hypercyclicity Criterion then the in-

tegers r1, . . . , rN are necessarily distinct, see Corollary 3.4 (15). Then
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4.1 Tuples of powers of weighted shifts

since we are interested in tuples of weighted shifts satisfying a kind of d-

Hypercyclicity Criterion along filters, we must consider distinct powers.

Let 1 ≤ r1 < r2 < · · · < rN ,M > 0, j ∈ Z and 1 ≤ s < l ≤ N . Let

(nk)k be a strictly increasing sequence of positive integers. Set

AM,j,l,(nk) =
{
k ∈ N :

j+rlnk∏
i=j+1

|wl,i| > M
}

ĀM,j,l,(nk) =
{
k ∈ N :

1∏j
i=j−rlnk+1 |wl,i|

> M
}

AM,j;(s,l),(nk) =
{
k ∈ N :

∏j+rlnk
i=j+1 |wl,i|∏j+rlnk

i=j+(rl−rs)nk+1 |ws,i|
> M

}

ĀM,j;(s,l),(nk) =
{
k ∈ N :

∏j+rsnk
i=j+1 |ws,i|∏j+rsnk

i=j−(rl−rs)nk+1 |wl,i|
> M

}
.

If (nk) = (k), set AM,j,l, ĀM,j,l, AM,j;(s,l), ĀM,j;(s,l) respectively. We have

the following:

Proposition 71. Let F be a filter on N, then the following are equivalent:
(i) (Br1nk

w1
, . . . , BrNnk

wN
)k∈N is d-F

(ii) for each M > 0, j ∈ Z and 1 ≤ s < l ≤ N , we have

AM,j,l,(nk) ∈ F , ĀM,j,l,(nk) ∈ F

AM,j;(s,l),(nk) ∈ F , ĀM,j;(s,l),(nk) ∈ F

(iii) (Br1
w1
, . . . , BrN

wN
) satisfies the d-F Hypercyclicity Criterion with re-

spect to (nk)k.
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Proof. It is enough to consider (nk)k = (k). The sketch of the proof is the
same for any (nk)k. Denote

N(V1, . . . , VN ;V0) = {n ∈ N : T−n1 V1 ∩ · · · ∩ T−nN VN ∩ V0 6= ∅}.

for any N + 1-tuple (V0, . . . , VN ) of opene sets of X.
(iii) implies (i) Follows by Proposition 70.
(i) implies (ii) Let M > 0, j ∈ Z and R > 1 such that MR > 1.

Consider the opene set

AR = {x ∈ X : |e∗j (x)| > 1/R} ∩ {x ∈ X : ‖x‖ < 1}.

Let V = {x ∈ X : ‖x− (M + 1)ej‖ < 1
MR} and m ∈ N(V, . . . , V︸ ︷︷ ︸

N

;AR). Pick

x ∈ AR, such that Brlm
wl

x ∈ V , where 1 ≤ l ≤ N . Then∣∣∣∣∣∣
j+rlm∏
i=j+1

wl,ixrlm+j − (M + 1)

∣∣∣∣∣∣ < 1

MR
< 1, 1 ≤ l ≤ N (4.1.1)

t+rlm∏
i=t+1

|wl,ixrlm+t| <
1

MR
, t 6= j, 1 ≤ l ≤ N. (4.1.2)

We get by (4.1.1)

j+rlm∏
i=j+1

|wl,i| >
j+rlm∏
i=j+1

|wl,ixrlm+j | > M, 1 ≤ l ≤ N.

Now, by (4.1.2) we obtain
∏j
i=j−rlm+1 |wl,ixj | <

1
MR , hence

j∏
i=j−rlm+1

|wl,i| ·
1

R
<

j∏
i=j−rlm+1

|wl,ixj | <
1

MR
.
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Thus
j∏

i=j−rlm+1

|wl,i| <
1

M
.

Again by (4.1.1) and (4.1.2) we get∏j+rlm
i=j+1 |wl,i|∏j+rlm

i=j+(rl−rs)m+1 |ws,i|
>

j+rlm∏
i=j+1

|wl,ixj+rlm| > M, 1 ≤ s < l ≤ N.

Finally, for 1 ≤ s < l ≤ N∏j+rsm
i=j+1 |ws,i|∏j+rsm

i=j−(rl−rs)m+1 |wl,i|
=

∏j+rsm
i=j+1 |ws,i · xj+rsm|∏j+rsm

i=j−(rl−rs)m+1 |wl,i · xj+rsm|
>

M

1/MR
> M.

(ii) implies (iii) Let X0 = · · · = XN , the set of all finitely supported vectors
in X and Sl,k : X0 −→ X, (1 ≤ l ≤ N) be defined as

Sl,ket =
1∏t+rlk

i=t+1wl,i
et+rlk, k ∈ Z.

a) Let us verify that F -limk→∞B
rlk
wl

(x) = 0, for every x ∈ X0.
Let x ∈ X0, denote F = {j ∈ Z : xj 6= 0}. Recall that the (j − rlk)−th

coefficient of Brlk
wl
x is equal to

∏j
i=j−rlk+1wl,ixj . Let M > 0, then

⋂
j∈F

{
k ∈ N :

j∏
i=j−rlk+1

|wl,i| <
1

M‖x‖

}
⊂
{
k ∈ N : ‖Brlk

wl
x‖ < 1

M

}
,

hence ⋂
j∈F

ĀM‖x‖,j;l ⊆
{
k ∈ N : ‖Brlk

wl
x‖ < 1

M

}
and by hypothesis

⋂
j∈F ĀM‖x‖,j;l ∈ F for anyM > 0. ObviouslyBrlk

wl
Sl,k =

IdX0 , for any k.
b) Let us verify that F -limk→∞ Sl,k(x) = 0 for any x ∈ X0.
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Let x ∈ X0, F = {j ∈ Z : xj 6= 0}, ε > 0. Set Mj = 1
ε · |F |

1/p |xj |
whenever X = lp(Z) or Mj = |xj | /ε whenever X = c0(Z). Set M =

maxj∈F |Mj |, then for each k ∈ ∩j∈FAM,j,l it results ‖Sl,k(x)‖ < ε, i.e.{
k ∈ N : ‖Sl,k(x)‖ < ε

}
∈ F .

c) Let 1 ≤ s < l ≤ N , then

Brlk
wl
Ss,ket =

1∏t+rsk
i=t+1ws,i

Brlk
wl
et+rsk =

∏t+(rs−rl)k+1
i=t+rsk

wl,i∏t+rsk
i=t+1ws,i

et+(rs−rl)k.

Now, arguing as in b), the last equation implies that F -limk→∞B
rlk
wl
Ss,kx =

0, for every x ∈ X0, since F is a filter and ĀM,t;(s,l) ∈ F for any M >

0, t ∈ Z.
d) Let 1 ≤ s < l ≤ N , then

Brsk
ws
Sl,ket =

1∏t+rlk
i=t+1wl,i

Brsk
ws
et+rlk =

∏t+(rl−rs)k+1
i=t+rlk

ws,i∏t+rlk
i=t+1wl,i

et+(rl−rs)k.

Again, arguing as in b), the last equation implies that F -limk→∞B
rsk
ws
Sl,kx =

0, for every x ∈ X0, since F is a filter and AM,t;(s,l) ∈ F for any M >

0, t ∈ Z. We can conclude that (Br1
w1
, . . . , BrN

wN
) satisfy the d-F Hyper-

cyclicity Criterion with respect to (k).

Now, using Proposition 71 and adapting Theorem 2.5 (35) to bilateral

weighted backward shifts, we obtain the following:

Corollary 72. Let X = c0(Z) or lp(Z)(1 ≤ p <∞), w = (wj)j∈Z a bounded
bilateral weight sequence, F a filter on N and r0 = 0 < 1 ≤ r1 < · · · < rN ,
then the following are equivalent:

(i) (Br1
w , . . . , B

rN
w ) is d-F
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(ii) (Br1
w , . . . , B

rN
w ) satisfies the d-F Hypercyclicity Criterion with re-

spect to (k)

(iii) for any M > 0, j ∈ Z and 0 ≤ s < l ≤ N we have

{
m ∈ N :

j+(rl−rs)m∏
i=j+1

|wi| > M
}
∈ F

and {
m ∈ N :

1∏j
i=j−(rl−rs)m+1 |wi|

> M
}
∈ F

(iv) ⊕0≤s<l≤NB
(rl−rs)
w is an F -operator on X

N(N+1)
2 .

Remark 73. Observe that the conclusion of Corollary 72 does not hold in
general, for bounded linear operators. In fact, for ri = i, 1 ≤ i ≤ N . Bès,
Martin, Peris and Shkarin (14), have proved that

(
I + Bw, . . . , (I + Bw)r

)
is d-I∗ (i.e. d-mixing). On the other hand, by a result of Grivaux (23),
I + Bw does not satisfy the I∗-Hypercyclicity Criterion with respect to
(k), for Bw weighted backward shift on lp and (wn) a decreasing sequence
of positive weights such that limn→∞ n(

∏n
i=1wi)

1/n = 0. Hence, (i) and
(ii) in Corollary 72 are not equivalent beyond the weighted shift frame.
Moreover, the same situation take place between (i) and (iv), since Shkarin
has exhibited a bounded linear operator T such that T ⊕ T 2 is mixing but
(T, T 2) is not d-mixing.

We state the main result of this section:

Theorem 74. Let F be any of ∆∗, IP∗ or PS∗. Let X = c0(Z) or lp(Z), (1 ≤
p < ∞) and let (wk)k∈Z be a bounded bilateral weight sequence. Then for
any r ∈ N, the following are equivalent:

(i) Bw is an F -operator
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(ii) for any M > 0, j ∈ Z and t = 1, . . . , r{
m ∈ N :

j+tm∏
i=j+1

|wi| > M
}
∈ F ,

{
m ∈ N :

1∏j
i=j−tm+1 |wi|

> M
}
∈ F

(iii) (Bw, . . . , B
r
w) is d-F

(iv) Bw ⊕ · · · ⊕Br
w is an F -operator on Xr.

Recall that I∗-operators are commonly known as mixing operators. Ob-

viously, mixing operators are ∆∗-operators, but the converse is not true as

exhibited in Proposition 33 and the example is a weighted shift. Therefore,

the conclusion of Theorem 74 does not necessarily follows from the state-

ment: Bw is mixing if and only if (Bw, . . . , B
r
w) is d-mixing, for any r ∈ N,

shown in (14).

Proof of Theorem 74

Proof. (i) implies (ii) Denote AM ;j = {m ∈ N : |
∏j+m
i=j+1wi| > M} and

ĀM ;j = {m ∈ N : 1∏j
i=j−m+1|wi|

> M}. If Bw is F -operator then AM ;j ∈ F

and ĀM ;j ∈ F for any M > 0, j ∈ Z by Corollary 72 with N = 1 and
r1 = 1. Let r ∈ N, then by Corollary 2.3 (9) and corollary 2.7 (9) we have

A = {m, 2m, . . . , rm : m ∈ N} ∩ (AM ;j × · · · ×AM ;j︸ ︷︷ ︸
r−times

) ∈ F

Ā = {m, 2m, . . . , rm : m ∈ N} ∩ (ĀM ;j × · · · × ĀM ;j︸ ︷︷ ︸
r−times

) ∈ F (4.1.3)

in {m, 2m, . . . , rm : m ∈ N}.
Denote

∏
i the projection onto the i-th coordinate. It is not difficult to

see that
∏

1(A) ∈ F and
∏

1(Ā) ∈ F in N. Then, (4.1.3) is equivalent to
say

{m ∈ N : tm ∈ AM ;j} ∈ F
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4.1 Tuples of powers of weighted shifts

{m ∈ N : tm ∈ ĀM ;j} ∈ F

for any M > 0, j ∈ Z and t = 1, . . . , r.
(ii), (iii) and (iv) are equivalent by Corollary 72.
(iii) implies (i) Obvious.

Notice that the family of syndetic sets is not a filter, since 2N and 2N+1

are syndetic sets but disjoint. Nevertheless, at the level of operators, we

know that syndetic operators behave as filter-operators in virtue of their

equivalence with PS∗-operators (Proposition 22). As expected, Theorem 74

is also valid for F = S.

Corollary 75. Let X = c0(Z) or lp(Z)(1 ≤ p < ∞), a bilateral bounded
weight w = (wj)j∈Z. Then for any r ∈ N, the following are equivalent:

(i) Bw is syndetic weighted backward shift
(ii) (Bw, . . . , B

r
w) is d-S

(ii) (Bw, . . . , B
r
w) is d-PS∗

(iv) Bw ⊕ · · · ⊕Br
w is a syndetic operator on Xr.

Corollary 75 follows from Theorem 74 and the equivalence between syn-

detic and PS∗-operators (Proposition 22).

4.1.2 Unilateral weighted shifts

Let X = c0(Z+) or lp(Z+)(1 ≤ p < ∞). For l = 1, . . . , N let wl =

(wl,n)n∈N a bounded unilateral weight sequence of non-zero scalars and Bwl

be the associated unilateral weighted backward shift onX given byBwl
en :=

wl,nen−1, n ≥ 1 with Bwl
e0 := 0, where (en)n∈Z+ denotes the canonical

basis of X and (e∗n)n∈Z+ the associated sequence of coordinate functionals.
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Consider 1 ≤ r1 < r2 < · · · < rN . The following is the unilateral version of

Proposition 71.

Proposition 76. Let F be a filter on N, then the following are equivalent:
(i) (Br1nk

w1
, . . . , BrNnk

wN
)k∈N is d-F

(ii) for each M > 0, j ∈ Z+, 1 ≤ s < l ≤ N we have

AM,j,l,(nk) ∈ F

and

AM,j;(s,l),(nk) ∈ F

(iii) (Br1
w1
, . . . , BrN

wN
) satisfies the d-F Hypercyclicity Criterion with re-

spect to (nk).

Proposition 76 follows in a similar way as Theorem 71.

Recall that Pf (Z+) = {A ⊂ Z+ : |A| <∞}.

Corollary 77. Let 0 = r0 < 1 ≤ r1 < · · · < rn. Let F be a filter on N
and let w = (wn)n∈Z+ be a bounded unilateral weight sequence. Then the
following are equivalent:

(i) (Br1
w , . . . , B

rN
w ) is d-F

(ii) (Br1
w , . . . , B

rN
w ) satisfies the d-F Hypercyclicity Criterion with re-

spect to (k)

(iii) ⊕0≤s<l≤NB
(rl−rs)
w is an F -operator on X

N(N+1)
2

(iv) for any M > 0, j ∈ Z+ and 0 ≤ s < l ≤ N it holds

{
m ∈ N :

j+m(rl−rs)∏
i=j+1

|wi| > M
}
∈ F .

In addition,
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4.1 Tuples of powers of weighted shifts

• If F is a shift invariant, then each condition (i) − (iv) is equivalent
to

(iv′)
{
m ∈ N :

m(rl−rs)∏
i=1

|wi| > M
}
∈ F

for any M > 0 and 0 ≤ s < l ≤ N .

Proof. (i) − (iv) are equivalent, follows the same steps as Corollary 72
adapted to the unilateral case. Moreover, suppose F is a shift invariant
filter, let us see that (iv′) implies (iv). Let M > 0, j ∈ Z+, 0 ≤ s < l ≤ N

and k = maxt∈N |wt|. It is enough to verify

{
n ∈ N :

(rl−rs)n∏
i=1

|wi| > Mk(rl−rs)j
}
− j ⊆

{
n ∈ N :

j+(rl−rs)n∏
i=j+1

|wi| > M
}
.

In fact, let m ∈ N such that
∏(rl−rs)m
i=1 |wi| > Mk(rl−rs)j then

j+(rl−rs)(m−j)∏
i=j+1

|wi| =
∏(rl−rs)m
i=1 |wi|∏j

i=1 |wi| ·
∏(rl−rs)m
i=(rl−rs)(m−j)+j+1 |wi|

>
Mk(rl−rs)j

k(rl−rs)j
= M.

A similar result to Theorem 74 holds for unilateral weighted shifts.

Theorem 78. Let F = ∆∗, IP∗,PS∗. Let X = c0(Z+) or lp(Z+) (1 ≤ p <
∞) and (wn)n∈Z+ a bounded unilateral weight. Then for any r ∈ N, the
following are equivalent:

(i) Bw is F -operator
(ii) for any M > 0, j ∈ Z+, t = 1, . . . , r

{
m ∈ N :

j+tm∏
i=j+1

|wi| > M
}
∈ F

73



4. DISJOINT HYPERCYCLICITY ALONG FILTERS

(iii) (Bw, . . . , B
r
w) is d-F

(iv) Bw ⊕ · · · ⊕Br
w is F -operator on Xr.

Proof. Analogous to the proof of Theorem 74 with the aid of Corollary
77.

Corollary 79. Let X = c0(Z+) or lp(Z+)(1 ≤ p < ∞), an unilateral
bounded weight w = (wn)n∈Z+. Then for any r ∈ N, the following are
equivalent:

(i) Bw is syndetic weighted backward shift
(ii) (Bw, . . . , B

r
w) is d-S

(iii) (Bw, . . . , B
r
w) is d-PS∗

(iv) Bw ⊕ · · · ⊕Br
w is syndetic weighted backward shift on Xr.

Proof. Follows from Theorem 78 and the equivalence between syndetic and
PS∗-operators.

As a consequence we can say a little more about the examples given in

propositions 31, 32 and 33 concerning the existence of a IP∗ \∆∗-operator,

S \ IP∗-operator and ∆∗ but not mixing operator.

Proposition 80. Let X = c0(Z+) or lp(Z+)(1 ≤ p < ∞). For any r ∈ N
the following holds

(i) There exists a weighted backward shift Bw on X such that (Bw, . . . , B
r
w)

is d-IP∗ but Bw is not ∆∗-operator
(ii) There exists a weighted backward shift Bw on X such that (Bw, . . . , B

r
w)

is d-PS∗ but Bw is not IP∗-operator
(iii) There exists a weighted backward shift Bw on X such that (Bw, . . . , B

r
w)

is d-∆∗ but Bw is not mixing operator.
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Proof. The examples given in propositions 31, 32 and 33 are weighted back-
ward shifts on X. The conclusions follow by Theorem 78 and Corollary
79.

This is in sharp contrast to what happens with scalar multiples of powers

of the unilateral unweighted backward shift B. In fact, (λ1B
r1 , . . . , λNB

rN )

is d-hypercyclic on l2 if and only if (λ1B
r1 , . . . , λNB

rN ) is d-mixing on l2 if

and only if 1 ≤ r1 < r2 < · · · < rN and 1 < |λ1| < · · · < |λN | as shown in

Corollary 4.7 (15).

Remark 81. Let X = c0(Z) or lp(Z) (c0(Z+) or lp(Z+)), Theorem 74
(respectively, Theorem 78) can be obtained in another way. In fact, in its
proof we have used Proposition 71 (respectively, Proposition 76) which gives
us conditions on the weight w in such a way that the tuple (Bw, . . . , B

r
w) is d-

F , with r ∈ N and F a filter on N. But we can exploit another information
coming from the proof of Proposition 71 (respectively, Proposition 76) and
is the fact that any F -weighted backward shift on X satisfies the Original
Kitai F -criterion. Now, an adaptation to filters of Theorem 3.4 (14) and
a further application of Corollary 2.3 (9) and Corollary 2.7 (9) allows us
to conclude as in Theorem 74 (respectively, Theorem 78), that is, Bw is
F -weighted backward shift if and only if (Bw, . . . , B

r
w) is d-F .

Theorem 82. Let T ∈ L(X), where X is a topological vector space, F =

∆∗, IP∗,PS∗. If T satisfies the Original Kitai F -criterion then (T, . . . , T r)

is d-F , for any r ∈ N.

Proof. Make the adaptation to filters of [(14), Theorem 3.4] and apply [(9),
Corollary 2.3] and [(9), Corollary 2.7]. Details are left to the reader.
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4.1.2.1 The non-filter case

Everything changes when dealing with non-filter families, with the ex-

ception of the family of syndetic sets. A slight modification of Example 4.5

(16) give us an immediate answer.

Proposition 83. Let X = c0(Z+) or lp(Z+)(1 ≤ p <∞), then there exists
a thick backward weighted shift Bw (i.e. a weakly mixing backward weighted
shift) such that

• (Bw, B
2
w) is not d-topologically transitive. In particular, Bw is F -

operator but (Bw, B
2
w) is not d-F , for F = ∆, IP,PS,T

• (Bw, B
2
w) satisfies the d-thick Hypercyclicity Criterion with respect to

(k).

Recall that any tuple of powers of a fixed backward weighted shift on

c0 or lp is d-transitive if and only if it is d-hypercyclic if and only if it

satisfies the d-I∗ Hypercyclicity Criterion with respect to some (nk). This

follows by Proposition 2.3, Theorem 2.7 and Theorem 4.1, in (16). Hence,

in this case, (Bw, B
2
w) does not satisfy the d-I∗ Hypercyclicity Criterion

with respect to any (nk). In other words, (Bw, B
2
w) does not satisfy the

d-Hypercyclicity Criterion, though it satisfies the d-thick Hypercyclicity

Criterion with respect to (k).

Proof. Let w = (wk)k∈Z+ defined as

wk =


2 if k ∈

⋃
n∈N{22n + 1, . . . , 22n + 2n}

1

22n
if k = 22n + 2n+ 1 for some n ∈ N

1 otherwise.
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Denote AM := {m ∈ N :
∏m
i=1 |wi| > M}. Let M > 0 and j ∈ N

such that 2j−1 < M ≤ 2j , then ∪n≥j+1

{
22n + j + 1, . . . , 22n + 2n

}
⊆ AM .

Obviously Bw is weakly mixing since there exists an increasing sequence
(nk)k such that limk→∞

∏nk
i=1wi = ∞, see Chapter 4 (24). On the other

hand, by Corollary 4.4 (16), (Bw, B
2
w) is d-hypercyclic if and only if⋂

t=1,2

{
m ∈ N : tm ∈ AM

}
∈ I

for any M > 0. Now, take into consideration that d-hypercyclicity and
d-topologically transitivity coincides for tuples of powers of a fixed unilat-
eral weighted shift. Observe that A1 = ∪n∈N{22n + 1, . . . , 22n + 2n} and
{(m, 2m) : m ∈ N} ∩ (A1 ×A1) = ∅. Hence (Bw, B

2
w) is not d-topologically

transitive.
On the other hand, the proof of Corollary 77 tell us that for any shift

invariant family F (not necessarily a filter), satisfying both conditions
AM ∈ F and {m ∈ N : 2m ∈ AM} ∈ F , for any M > 0 implies that
the tuple (Bw, B

2
w) satisfies the d-F Hypercyclicity Criterion with respect

to (k). In our case, AM is thick and⋃
n≥j+1

{
22n−1 + dj + 1

2
e, 22n−1 + dj + 1

2
e+ 1, . . . , 22n−1 + n

}
⊆{

m ∈ N : 2m ∈ AM
}

and clearly the left-hand side of the last inclusion is a thick set.

4.2 An F -operator T for which (T, T 2) is not d-F

In Theorem 3.8 (14) the authors show an example of a mixing Hilbert

space operator T such that (T, T 2) is not d-mixing. A slight modification in

the proof allows us to exhibit an operator with more detailed features, i.e.
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4. DISJOINT HYPERCYCLICITY ALONG FILTERS

a mixing Hilbert space operator T such that (T, T 2) is not d-syndetic, so in

particular it is not d-mixing. As a consequence we have that Theorem 74

(respectively, Theorem 78) fails beyond the weighted shift setting, in other

words, there exists a Hilbert space F -operator T such that (T, T 2) is not

d-F , for F = ∆∗, IP∗,PS∗, S. We describe here all the details for the sake

of completeness.

Let 1 ≤ p <∞,−∞ < a < b < +∞ and k ∈ N. Recall that the Sobolev
space W k,p[a, b] is the space of functions f ∈ Ck−1[a, b] such that f (k−1)

is absolutely continuous and f (k) ∈ Lp[a, b]. The space W k,p[a, b] endowed

with the norm

‖f‖Wk,p[a,b] =
(∫ b

a

( k∑
j=0

∣∣∣f (j)(x)
∣∣∣p )dx)1/p

is a Banach space isomorphic to Lp[0, 1]. Now, W k,2[a, b] is a separable

infinite-dimensional Hilbert space for each k ∈ N. The family of operators

to be considered lives on separable complex Hilbert spaces and is built from

a single operator. Let M ∈ L(W 2,2[−π, π]) be defined by the formula

M : W 2,2[−π, π] −→W 2,2[−π, π], Mf(x) = expix f(x). (4.2.1)

Denote H = W 2,2[−π, π] and M∗ the dual operator. Then, M∗ ∈ L(H ∗).

For each t ∈ [−π, π], δt ∈ H ∗, where δt : H −→ C, δt(f) = f(t). Fur-

thermore, the map t → δt from [−π, π] to H ∗ is norm-continuous. For a

non-empty compact subset K of [−π, π], denote

XK = span{δt : t ∈ K}

where the closure of span{δt : t ∈ K} is taken with respect to the norm of

H ∗.
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Now, the functionals δt are linearly independent, XK is always a separa-

ble Hilbert space and XK is infinite dimensional if and only if K is infinite.

The following condition holds

M∗δt = expit δt, for each t ∈ [−π, π].

Hence, eachXK is an invariant subspace forM∗, which allows us to consider

the operator

QK ∈ L(XK), QK = M∗|XK
.

The following is taken from (14) which tells us when QK is mixing or tran-

sitive, we omit the proof.

Proposition 84 ((14), Proposition 3.9). Let K a non-empty compact subset
of [−π, π]. If K has no isolated points, then QK is mixing. If K has an
isolated point, the QK is non-transitive.

Hence, in order to obtain a mixing operator T such that (T, T 2) is not

d-syndetic, it will be enough to find a non-empty compact set K ⊂ [−π, π]

with no isolated points such that the sequence
(
2QnK − Q2n

K

)
n

is not a

syndetic operator. As in the proof of theorem 3.8 (14) we need lemma A.3

(14).

Lemma 85 ((14), Lemma A.3). There exists a sequence (fn)n∈N of 2π-
periodic functions on R such that fn|[−π,π] ∈ W 2,2[−π, π], the sequence(
‖fn‖W 2,2[−π,π]

)
n
is bounded and fn(x) = 2 expinx− exp2inx whenever

∣∣x− 2πm
n

∣∣ ≤
2/n5, for some m ∈ Z.

Now, consider the set

K =
{ ∞∑
n=1

n∑
r=0

2πεn,r ·
1

27n + r
: ε ∈ {0, 1}N×N

}
. (4.2.2)
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Note that K is a compact subset of [−π, π] with no isolated points and by

proposition 84, QK ∈ L(XK) is a mixing operator. We adapt the proof of [

(14), Proposition 3.10] to the compact set K defined in (4.2.2), this is the

content of the following:

Proposition 86. Let K be the compact subset of [−π, π] defined in (4.2.2),
then the sequence

(
2Q

kn,r

K −Q2kn,r

K

)
n∈N,0≤r≤n of continuous linear operators

on XK is non-transitive, where kn,r = 27n + r with 0 ≤ r ≤ n, n ∈ N.

Proof. For f ∈ W 2,2[−π, π], consider φf ∈ X∗K defined by φf (y) = y(f).
Remark that ‖φf‖ ≤ ‖f‖W 2,2[−π,π] and that φf = φg if f |K = g|K , then

‖φf‖ ≤ inf
{
‖g‖W 2,2[−π,π] : f |K = g|K

}
. (4.2.3)

Use the symbol 1 to denote the constant 1 function in W 2,2[−π, π]. The
functional φ1 ∈ X∗K is non-zero, since φ1(δt) = 1 for each t ∈ K. Denote
Tn,r = 2Q

kn,r

K − Q2kn,r

K ∈ L(XK) and estimate ‖T ∗n,r‖φ1. By definition of
QK , it holds Q∗Kφf = φMf , for each f ∈ W 2,2[−π, π], where M is the
multiplication operator defined in (4.2.1). It follows that T ∗n,rφ1 = φhkn,r

,
where hj(t) = 2 expijt− exp2ijt. By lemma 85, there is a bounded sequence
(fkn,r)n∈N,0≤r≤n in the Hilbert spaceW 2,2[−π, π] such that fkn,r(t) = hkn,r(t)

whenever
∣∣∣t− 2πm

kn,r

∣∣∣ ≤ 2
(kn,r)5

for some m ∈ Z.

Now, let t ∈ K, then t =
∑∞

j=1

∑j
r=0

2πεj,r
kj,r

for some ε ∈ {0, 1}N×N.
For each n ∈ N, it holds t = y + u, where y =

∑n+1
j=1

∑j
r=0

2πεj,r
kj,r

and u =∑∞
j=n+2

∑j
r=0

2πεj,r
kj,r

. Obviously there exists m ∈ N such that y ≤ 2πm/kn,r
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and

0 ≤ u ≤ 2π
∞∑

j=n+2

j∑
r=0

1

kj,r

= 2π
[( 1

27n+2 +
1

27n+2 + 1
+ · · ·+ 1

27n+2 + n+ 2

)
+
( 1

27n+3 +
1

27n+3 + 1
+ · · ·+ 1

27n+3 + n+ 3

)
+ . . .

]
< 2π

[( 1

27n+1 +
1

27n+1+1
+ · · ·+ 1

27n+1+n+2

)
+
( 1

27n+2 +
1

27n+2+1
+ · · ·+ 1

27n+2+n+3

)
+ . . .

]
< 2π

∞∑
j=7n+1

2−j <
4π

27n+1 =
4π

(27n)7
<

4π

(27n + r)6
<

2

(27n + r)5
= 2k−5

n,r.

Hence, t = u+ y ≤ u+ (2πm/kn,r), which implies |t− (2πm/kn,r)| ≤ 2k−5
n,r.

Thus fkn,r(t) = hkn,r(t) for each t ∈ K and n ∈ N. By (4.2.3), ‖φkn,r‖ ≤
‖fkn,r‖W 2,2[−π,π] for n ∈ N, 0 ≤ r ≤ n. Since the sequence (fkn,r)n,r is
bounded in W 2,2[−π, π], the sequence

(
‖φhkn,r

‖
)
n,r

is bounded, i.e. there
exists C > 0 such that ‖φhkn,r

‖ ≤ C for each n ∈ N, 0 ≤ r ≤ n. Since
T ∗n,rφ1 = φhkn,r

, it follows that
∣∣φ1(Tn,r(x)

)∣∣ =
∣∣T ∗n,rφ1(x)

∣∣ ≤ C‖x‖ for
each x ∈ XK . Since φ1 is a non-zero continuous linear functional on XK , by
Hahn-Banach theorem the set {Tn,rx : n ∈ N, 0 ≤ r ≤ n} can not be dense
in XK , for any given x ∈ XK . In other words, {Tn,r : n ∈ N, 0 ≤ r ≤ n} is
non-universal.

Now, we can prove the main result of this section:

Theorem 87. There exists T ∈ L(l2) such that T is mixing and the se-
quence of operators (2Tn−T 2n)n∈N is not S-transitive. In particular, (T, T 2)

is not d-syndetic. Consequently, T is F -operator but (T, T 2) is not d-F ,
where F = ∆∗, IP∗,PS∗, S.
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Proof. Let K the compact set defined in (4.2.2). By proposition 84, QK is
a mixing operator on the separable infinite dimensional Hilbert space XK .
On the other hand, by proposition 86,

(
2QanK −Q

2an
K

)
n∈N is non-transitive

for some thick set A written increasingly as A = (an)n. Hence, there exists
opene sets U, V in XK such that

(
2QanK −Q

2an
K

)
(U)∩V = ∅, for any n ∈ N.

In other words,{
n ∈ N : (2QnK −Q2n

K )(U) ∩ V 6= ∅
}
∩A = ∅,

i.e., (2QnK −Q2n
K )n∈N is not a S-transitive sequence of operators. In partic-

ular, (QK , Q
2
K) is not d-syndetic. In fact, let U, V opene sets in XK such

that
{
n ∈ N : (2QnK −Q2n

K )(U) ∩ V 6= ∅
}
is not a syndetic set, and pick V0

opene set such that 2V0 − V0 ⊆ V (denote B(x; r) the open ball centered at
x in XK with radius r. Pick x ∈ XK , r ∈ R+ such that B(x; r) ⊂ V , then
set V0 := B(x; r/3)). Hence,{
n ∈ N : U∩Q−nK (V0)∩Q−2n

K (V0) 6= ∅
}
⊆
{
n ∈ N : (2QnK−Q2n

K )(U)∩V 6= ∅
}
.

Consequently,
{
n ∈ N : U ∩ Q−nK (V0) ∩ Q−2n

K (V0) 6= ∅
}
can not be a syn-

detic set and then (QK , Q
2
K) is not d-syndetic. Since all separable infinite

dimensional Hilbert spaces are isomorphic to l2, there is a mixing T ∈ L(l2)

such that the sequence (2Tn−T 2n)n∈N is not S-transitive, and then (T, T 2)

is not d-syndetic.

4.3 Reiteratively hypercyclicity vs. d-F tuples

In this section we will examine the relationship between reiterative hy-

percyclicity and d-F tuples.

On one hand, by Proposition 42 there exists an IP∗-weighted backward

shift which is not reiteratively hypercyclic on both c0(Z+) and lp(Z+) (1 ≤
p <∞). As a consequence, by Theorem78 we have the following:
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Proposition 88. There exists a weighted backward shift Bw on both c0(Z+)

and lp(Z+), (1 ≤ p <∞), such that the tuple (Bw, . . . , B
r
w) is d-IP∗ for any

r ∈ N and Bw is not reiteratively hypercyclic.

Conversely, by Proposition 38 (respectively, Proposition 41), any reit-

eratively hypercyclic weighted backward shift on c0 or lp, (1 ≤ p < ∞) is

necessarily a ∆∗-operator. On the other hand, by Proposition 56 (respec-

tively, Proposition 57), any reiteratively hypercyclic weighted shift Bw on

X = c0 or lp, (1 ≤ p < ∞) satisfies Bw ⊕ · · · ⊕ Br
w is E∗-operator in Xr,

for any r ∈ N (recall that the filter E∗ satisfies: IP∗ $ E∗ $ S). Then,

by Corollary 72 (respectively, Corollary 77) we have that (Bw, . . . , B
r
w) is

d-E∗, for any r ∈ N. Now, by Theorem 74 (respectively, Theorem 78) we

can unify all of these conclusions by stating:

Theorem 89. Let X = c0(Z) or lp(Z), (1 ≤ p <∞). If Bw is a reiteratively
hypercyclic bilateral weighted backward shift on X then (Bw, . . . , B

r
w) is d-

∆∗, for any r ∈ N.

Analogously,

Theorem 90. Let X = c0(Z+) or lp(Z+), (1 ≤ p <∞). If Bw is a reitera-
tively hypercyclic unilateral weighted backward shift on X then (Bw, . . . , B

r
w)

is d-∆∗, for any r ∈ N.

Observe that the conclusion of Theorem 90 is optimal since in (3) ap-

pears an example of a frequently hypercyclic, hence reiteratively hypercyclic

weighted shift on c0(Z+) which is not mixing.

In general, for linear operators, we obtain the following theorem:
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Theorem 91. Let T bounded and linear operator on a topological vector
space X. If T is reiteratively hypercyclic then (T, . . . , T r) is d-syndetic or
not d-transitive, for any r ∈ N.

The main ingredient of the proof is a result of Bergelson and Mc-

Cutcheon concerning essential idempotents of βN, and Szemerédi’s theorem

for generalized polynomials (10).

Proof. Fix r ∈ N. Let T reiteratively hypercyclic, then there exists x ∈ X
such that

NT (U, . . . , U︸ ︷︷ ︸
r

;U) ∈ E∗, (4.3.1)

for any opene set U in X, by Theorem 63.
Next, let (Uj)

r
j=0 a finite sequence of opene sets in X. Now, suppose

that (T, . . . , T r) is d-transitive, we must show that NT (U1, . . . , Ur;U0) ∈ S.
In fact, there exists n ∈ N such that

Vn := T−nU1 ∩ · · · ∩ T−rnUr ∩ U0 6= ∅.

Thus, Vn is open, then pick O1, O2 opene sets such that O1 +O2 ⊂ Vn, then

T jn(O1 +O2) ⊂ Uj , for any j ∈ {0, . . . , r}. (4.3.2)

Now, by (4.3.1) since E∗ is a filter we have

A := NT (O1, . . . , O1︸ ︷︷ ︸
r

;O1) ∩NT (O2, . . . , O2︸ ︷︷ ︸
r

;O2) ∈ E∗ $ S.

Let us show that A + n ⊆ N(U1, . . . , Ur;U0), then we are done because
A+ n ∈ S since S is shift invariant.
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In fact, let t ∈ A+ n, then t− n ∈ A, which means

T−tTn(O1) ∩ · · · ∩ T−rtT rn(O1) ∩O1 6= ∅

T−tTn(O2) ∩ · · · ∩ T−rtT rn(O2) ∩O2 6= ∅.

By the linearity of T we obtain

T−t
(
Tn(O1 +O2)

)
∩ · · · ∩ T−rt

(
T rn(O1 +O2)

)
∩ (O1 +O2) 6= ∅.

Then we conclude by (4.3.2), i.e.

T−tU1 ∩ · · · ∩ T−rtUr ∩ U0 6= ∅.

Corollary 92. The operator QK given by Theorem 87, is a (non-weighted
shift) mixing operator which is not reiteratively hypercyclic.

Corollary 92 follows by Theorems 87 and 91.

4.4 Moving from syndetic to reiteratively hyper-
cyclic weighted shifts on c0(Z+)

Recall that reiteratively hypercyclic operators are syndetic (Proposition

37) but the converse is not true (Proposition 42). In this section, we will

discuss under which conditions we can obtain reiterative hypercyclicity from

syndeticity, for weighted backward shifts onX = c0(Z+) or lp(Z+), (1 ≤ p <
∞).

Consider a sequence (Hm)m of pairwise disjoint subsets of N such that

(Hm + [0,m]) ∩Hn = ∅ ∀m 6= n.

85



4. DISJOINT HYPERCYCLICITY ALONG FILTERS

Suppose that each Hm is partitioned into a sequence of pairwise disjoint

finite sets (Hk,m)k such that for any k1 < k2

s < t ∀(s, t) ∈ Hk1,m ×Hk2,m.

Denote H := {(Hk,m)k : m ∈ N}. Let l ∈ Hm, then there exists a unique k

such that l ∈ Hk,m. Set [l]Hm := Hk,m. Fix k0,m0 and denote

H̃
(m)
k0,m0

:=
[

min
(

(maxHk0,m0 ,∞) ∩Hm

)]
Hm

.

Let F be a family in N and w = (wn)n a bounded weight.

Definition 93. We say that a triple
(
w, (Hm)m,H

)
• is called F -triple if Hm ∈ F for any m ∈ N.

• satisfies property P if

w1+r · · ·w(s+r)−t > m · n

for any (s, t) ∈ [̃t]
(m)

Hn
×Hn,m 6= n, r ∈ {0 . . .m}, and

w1+r · · ·w(s+r)−t > m2

for any (s, t) ∈ Hk,m ×Hk,m, k,m ∈ N, s > t, r ∈ {0 . . .m}.

Let us recall a characterization of piecewise syndeticity for sets, see (27).

A set A ⊂ N is piecewise syndetic (A ∈ PS) if there exists a natural number

G(A) such that ∪G(A)
t=1 (−t+A) is a thick set.

Hence, A ∈ PS is equivalent to say:

∀L > 0,∃x : x, . . . , x+ L ∈ ∪G(A)
t=1 (−t+A)
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i.e.

∀L > 0,∃x : (x+ i) + ti ∈ A

for some 1 ≤ ti ≤ G(A) and any 0 ≤ i ≤ L. Recall that BD = {A ⊆ N :

Bd(A) > 0}.

Proposition 94. Let Bw a syndetic weighted backward shift, then there
exists a BD-triple associated to w.

Proof. Recall that each central set is piecewise syndetic. On the other hand,
as a consequence of [(26), Theorem 2.12] it holds that any central subset of
N can be partitioned into infinitely many pairwise disjoint central sets, see
[(26), Corollary 2.13]. Hence, we can apply this theorem as many times as
necessary, taking N as the starting set, in order to obtain a sequence (Dm)m

of pairwise disjoint PS-sets satisfying

(Dm + [0,m]) ∩Dn = ∅ (4.4.1)

for any m 6= n.
We will define a sequence of natural numbers (lj,k,m)m,k∈N

1≤j≤k
and set

Hm := {lj,k,m : k ∈ N, 1 ≤ j ≤ k}

and
Hk,m := {lj,k,m : 1 ≤ j ≤ k}.

We begin by defining H1 = {lj,k,1 : k ∈ N, 1 ≤ j ≤ k}, H2 and so on as m
increases, such that minHm ≥ m + G(Dm), for any m ∈ N. Now, at each
level m, we will proceed by blocks Hk,m = {lj,k,m : 1 ≤ j ≤ k} indexed by
k, as k increases such that

lj,k,m +m+ tj = lj+1,k,m
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for some 1 ≤ tj ≤ G(Dm) and any 1 ≤ j ≤ k and

lk−1,k−1,m < l1,k,m < lk,k,m < l1,k+1,m

for any k,m ∈ N.
Before beginning the construction of the sequence (Hm)m, let us recall

the following. For anyM > 0, j ∈ N, denote AM ;j = {n ∈ N :
∏n
i=1 |wi+j | >

M}. By hypothesis Bw is syndetic backward shift, which is equivalent to say
∩j∈FAM ;j ∈ PS∗ for anyM > 0 and any finite subset of natural numbers F ,
according to Proposition 22 and Proposition 28. Furthermore, recall that
any PS∗-set A is thickly syndetic, i.e. for any L > 0, there exists a syndetic
sequence (xn)n such that {xn, xn + 1, . . . , xn + L : n ∈ N} ⊆ A.

Now, how to proceed? Suppose we have defined Hm̂ for any m̂ < m.
Set l1,1,m = max(m+G(Dm),minl∈Dm l). Let k ∈ N and suppose we have
defined {lj,k̂,m : k̂ < k, 1 ≤ j ≤ k̂}. Let us define the block Hk,m = {lj,k,m :

1 ≤ j ≤ k}.
By hypothesis, the set A(k,m) := ∩mr=1Am·lk−1,k−1,m;r is thickly syndetic,

hence there exists some syndetic sequence (x
(k,m)
n )n such that

x(k,m)
n , . . . , x(k,m)

n + lk−1,k−1,m, . . . , x
(k,m)
n + 3lk−1,k−1,m ⊆ A(k,m) (4.4.2)

for any n ∈ N. By commodity, set Dm − lk−1,k−1,m instead of (Dm −
lk−1,k−1,m)∩N, then because PS is shift invariant, we haveDm−lk−1,k−1,m ∈
PS with G(Dm) = G(Dm−lk−1,k−1,m). Let S(k,m) the gap of (x

(k,m)
n )n, then

there exists x ∈ N such that

x+ t0 ∈ Dm − lk−1,k−1,m

(x+ 1) + t1 ∈ Dm − lk−1,k−1,m

. . .

x+ S(k,m) + k(m+G(Dm)) + tS(k,m)+k(m+G(Dm)) ∈ Dm − lk−1,k−1,m
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for some 1 ≤ ti ≤ G(Dm) and any 0 ≤ i ≤ S(k,m) + k(m+G(Dm)).
Hence, there exists 0 ≤ S ≤ S(k,m) and n ∈ N such that x(k,m)

n = x+S.
Then set

l1,k,m := x(k,m)
n + lk−1,k−1,m + s1 ∈ Dm

l2,k,m := l1,k,m +m+ s2 ∈ Dm

. . .

lk,k,m := lk−1,k,m +m+ sk ∈ Dm

for some 1 ≤ si ≤ G(Dm) and any 1 ≤ i ≤ k. Observe that automatically
it holds lk−1,k−1,m < l1,k,m < lk,k,m. On the other hand, by (4.4.2) and
since k(m + G(Dm)) < 2lk−1,k−1,m, for any k ≥ 2 (recall that l1,1,m ≥
m+G(Dm)), we have the following

[l1,k,m, l1,k,m +m] ⊆ A(k,m)

[l2,k,m, l2,k,m +m] ⊆ A(k,m)

. . .

[lk,k,m, lk,k,m +m] ⊆ A(k,m). (4.4.3)

Again by (4.4.2)

lj,k,m − l ∈ A(k,m), ∀l ≤ lk−1,k−1,m 1 ≤ j ≤ k. (4.4.4)

Note that the intervals (l + [0,m])l∈Hm
m∈N

are actually disjoint by condition

(4.4.1). Finally let us see that Hm has positive upper Banach density for
any m ∈ N. Let m ∈ N, note that

αn := lim sup
k
|Hm ∩ [l1,k,m, l1,k,m + n(m+G(Dm))]| ≥ n+ 1.
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Hence,

Bd(Hm) ≥ lim
n

αn

n(m+G(Dm))
≥ lim

n

n+ 1

n(m+G(Dm))
=

1

m+G(Dm)
> 0.

So, we can associate to the weight of a syndetic weighted shift a BD-
triple with further properties enumerated in the above construction.

Let Bw a syndetic weighted backward shift, any BD-triple with the

characteristics described in the proof of Proposition 94, will be called a

BD-triple associated to w. Clearly, by construction a BD-triple associated

to w is not unique.

Theorem 95. Bw is reiteratively hypercyclic on c0(Z+) if and only if Bw
is syndetic on c0(Z+) provided there exists a BD-triple associated to w sat-
isfying property P.

Proof. Set X = c0(Z+), we need to show that Bw is reiteratively hyper-
cyclic on X provided Bw is syndetic on X with a BD-triple associated to
w satisfying property P.

Without loss of generality, consider a dense sequence
(
z(m)

)
m∈N

on X,
where

z(m) =
(
z(m)0, ..., z(m)m, 0, 0...

)
and satisfying |z(m)j | ≤ m, for every j = 0, . . . ,m. Define

Um = {x ∈ X : ‖x− z(m)‖ < 1/m},m ∈ N.

It suffices to find y ∈ X such that Bd
(
N(y, Um)

)
> 0 for any m ∈ N. Take

the pairwise disjoint intervals in N

Ij,k,m = [lj,k,m; lj,k,m +m], (4.4.5)
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k,m ∈ N, 1 ≤ j ≤ k and set,

y :=
∑
k,m∈N
1≤j≤k

∑
i∈Ij,k,m

yiei. (4.4.6)

Then, for any m ∈ N, it suffices to show that Blj,k,m
w y ∈ Um, for any

k ∈ N, 1 ≤ j ≤ k, since Hm ∈ BD. Note that

B
lj,k,m
w y =

( lj,k,m∏
i=1

wiylj,k,m , ...,

lj,k,m∏
i=1

wi+mylj,k,m+m,

lj,k,m∏
i=1

wi+m+1ylj,k,m+m+1, . . .
)
.

In order to guarantee Blj,k,m
w y ∈ Um, we set

lj,k,m∏
i=1

wi+rylj,k,m+r = z(m)r, r = 0, . . . ,m;

which forces to define

ylj,k,m+r :=
z(m)r∏lj,k,m
i=1 wi+r

, r = 0, . . . ,m. (4.4.7)

At this point, we have all we need in order to verify condition

‖Blj,k,m
w y − z(m)‖ < 1/m (4.4.8)

for any k,m ∈ N, 1 ≤ j ≤ k.
Consider an arbitrary trio j0, k0,m0.

B
lj0,k0,m0
w y − z(m0) =

(
0, . . . , 0︸ ︷︷ ︸

(m0+1)−times

,

lj0,k0,m0∏
i=1

wi+m0+1ylj0,k0,m0
+m0+1, . . . ,

. . . ,

lj0,k0,m0∏
i=1

wi+tylj0,k0,m0
+t, . . .

)
.
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If ylj0,k0,m0
+t 6= 0,m0 + 1 ≤ t there exists k,m such that lj0,k0,m0 + t =

lj,k,m + r with 1 ≤ j ≤ k, 0 ≤ r ≤ m. Hence,

ylj0,k0,m0
+t = ylj,k,m+r =

z(m)r∏lj,k,m
i=1 wi+r

and
lj0,k0,m0∏
i=1

wi+tylj0,k0,m0
+t =

w1+lj,k,m+r−lj0,k0,m0
· · ·wlj,k,m+r

w1+r · · ·wlj,k,m+r
z(m)r =

=
z(m)r

w1+r · · ·wlj,k,m+r−lj0,k0,m0

.

Letm 6= m0, then there exists a unique number k̃(m) such that l
k̃(m)−1,k̃(m)−1,m

<

lj0,k0,m0 < l
1,k̃(m),m

. Note that ˜[lj0,k0,m0 ]
(m)

Hm0
= [l

1,k̃(m),m
]Hm , then

B
lj0,k0,m0
w y−z(m0) =

∑
k,m∈N

lj0,k0,m0
<lj,k,m

k∑
j=1

m∑
r=0

z(m)r
w1+r · · ·wlj,k,m+r−lj0,k0,m0

elj,k,m+r =

∑
m 6=m0

( ∑
l∈H

k̃(m),m

m∑
r=0

z(m)r
w1+r · · ·wl+r−lj0,k0,m0

el+r+
∑

k>k̃(m)

∑
l∈Hk,m

m∑
r=0

z(m)r
w1+r · · ·wl+r−lj0,k0,m0

el+r

)

+
∑

l∈Hk0,m0
lj0,k0,m0

<l

m0∑
r=0

z(m0)r
w1+r · · ·wl+r−lj0,k0,m0

el+r+
∑
k>k0

∑
l∈Hk,m0

m0∑
r=0

z(m0)r
w1+r · · ·wl+r−lj0,k0,m0

el+r.

Now, let us estimate each summand. The fact that the BD-triple associated
to w satisfies property P implies

sup
r∈{0...m}
l∈H

k̃(m),m

m6=m0

|z(m)r|
|w1+r · · ·wl+r−lj0,k0,m0

|
<

m

m ·m0
=

1

m0
.
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By (4.4.4) we have

sup
r∈{0...m}
l∈Hk,m

k>k̃(m)
m6=m0

|z(m)r|
|w1+r · · ·wl+r−lj0,k0,m0

|
= sup

r∈{0...m}
j={1...k}
k>k̃(m)
m6=m0

|z(m)r|
|w1+r · · ·wlj,k,m+r−lj0,k0,m0

|
<

<
m

m · lk−1,k−1,m
<

1

lj0,k0,m0

<
1

m0
.

Concerning the last two summands we have the following estimations

sup
r∈{0...m0}
l∈Hk0,m0
lj0,k0,m0

<l

|z(m0)r|
|w1+r · · ·wl+r−lj0,k0,m0

|
<

m0

(m0)2
=

1

m0

that follows because the BD-triple associated to w satisfies property P.
Finally, again by (4.4.4)

sup
r∈{0...m0}
l∈Hk,m0
k>k0

|z(m0)r|
|w1+r · · ·wl+r−lj0,k0,m0

|
= sup

r∈{0...m0}
j={1...k}
k>k0

|z(m0)r|
|w1+r · · ·wl+r−lj0,k0,m0

|
<

m0

m0 · lk0−1,k0−1,m0

<
1

m0
.

Hence, it holds (4.4.8).
Evidently Hm ⊆ N(y, Um) by (4.4.8), which implies Bd(N(y, Um)) > 0.

Note that y ∈ X by condition (4.4.3). We conclude that Bw is reiteratively
hypercyclic on c0(Z+).

It is not difficult to see that following the same steps of the proof of

the characterization for frequently hypercyclic and U-frequently hypercyclic

weighted shifts on c0(Z+) given by Bayart and Ruzsa in (7), it is possible

to obtain a characterization for reiteratively hypercyclic weigthed shifts on

c0(Z+).
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Theorem 96. Let w = (wn)n∈N be a bounded sequence of positive integers.
Then Bw is reiteratively hypercyclic on c0(Z+) if and only if there exists a
sequence (M(p))p∈N of positive real numbers tending to +∞ and a sequence
(E(p))p∈N of subsets of N such that

i) for any p ≥ 1, Bd(Ep) > 0

ii) for any p, q ≥ 1, p 6= q, (Ep + [0, p]) ∩ (Eq + [0, q]) = ∅
iii) for any p ≥ 1, limn→∞,n∈Ep+[0,p]w1 · · ·wn = +∞
iv) for any p, q ≥ 1, for any n ∈ Ep and any m ∈ Eq with m > n, for

any t ∈ {0 . . . q},
w1 · · ·wm−n+t ≥M(p)M(q).

Remark 97. Now, Theorem 95 tell us that in order to move from synde-
ticity to reiterative hypercyclicity (for shifts) on c0(Z+) it suffices to verify
condition iv) ”partially” in Theorem 96. A similar statement in the vein of
Theorem 95 can be formulated for shifts on lp(Z+).

4.5 Questions

Concerning the statement of Theorem 91, we were not able to determine

whether reiteratively hypercyclicity implies d-transitivity or not. On the

other hand, in (14) the authors wonder about the existence of a mixing

continuous linear operator T such that (T, T 2) is not d-transitive. Now,

taking into account Corollary 92, it makes sense to pose the following:

Question 98. Does there exist a reiteratively hypercyclic continuous linear
operator T on a separable Banach space such that (T, T 2) is not d-transitive?

On the other hand, in the case the answer to the precedent question is

positive, bearing in mind Proposition 83, it makes sense the following:
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4.5 Questions

Question 99. Does every reiteratively hypercyclic continuous linear opera-
tor T on a separable Banach space is such that (T, . . . , T r) satisfies the d-F
Hypercyclicity Criterion for some family F , and any r ∈ N?
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