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Abstract

Mutations in the CETP gene resulting in defective CETP activity have been shown to cause remarkable elevations of plasma
HDL-C levels, with the accumulation in plasma of large, buoyant HDL particles enriched in apolipoprotein E. Genetic CETP
deficiency thus represents a unique tool to evaluate how structural alterations of HDL impact on HDL atheroprotective
functions. Aim of the present study was to assess the ability of HDL obtained from CETP-deficient subjects to protect
endothelial cells from the development of endothelial dysfunction. HDL isolated from one homozygous and seven
heterozygous carriers of CETP null mutations were evaluated for their ability to down-regulate cytokine-induced cell
adhesion molecule expression and to promote NO production in cultured endothelial cells. When compared at the same
protein concentration, HDL and HDL3 from carriers proved to be as effective as control HDL and HDL3 in down-regulating
cytokine-induced VCAM-1, while carrier HDL2 were more effective than control HDL2 in inhibiting VCAM-1 expression. On
the other hand, HDL and HDL fractions from carriers of CETP deficiency were significantly less effective than control HDL
and HDL fractions in stimulating NO production, due to a reduced eNOS activating capacity, likely because of a reduced S1P
content. In conclusion, the present findings support the notion that genetic CETP deficiency, by affecting HDL particle
structure, impacts on HDL vasculoprotective functions. Understanding of these effects might be important for predicting
the outcomes of pharmacological CETP inhibition.
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Introduction

Epidemiologic studies have clearly shown that high density

lipoprotein cholesterol (HDL-C) levels are a strong, independent

risk factor for the development of atherosclerotic coronary heart

disease (CHD). Raising HDL-C has thus been proposed as a novel

therapeutic strategy to reduce the significant burden of residual

CHD in patients treated with lipid-lowering therapies [1].

Inhibitors of the cholesteryl ester transfer protein (CETP) have

offered great promise as therapeutic means to raise plasma HDL-

C levels [2–4]. However, large randomized trials with two CETP

inhibitors failed to show a beneficial effect of the drugs in reducing

cardiovascular events [5,6]. These unexpected results have been

ascribed to either off-target effects of the drug [5,7,8], to weak

CETP inhibition and HDL-C raising activity [6], or to mecha-

nism-related effects [9].

Besides their major role in promoting cell cholesterol efflux and

reverse cholesterol transport [10,11], HDL may exert atheropro-

tective activity by preventing endothelial dysfunction [12], a key

step in the development of atherosclerosis. HDL downregulate

cytokine-induced expression of cell adhesion molecules (CAMs)

[12], and increase endothelial nitric oxide synthase (eNOS)

expression and activation [13], NO release and bioavailability

[14]. Impaired endothelial function has been reported in patients

with genetic HDL deficiency [15], and the elevation of plasma

HDL-C concentration in patients with low HDL-C levels by either

niacin treatment or infusion of synthetic HDL leads to a significant

improvement of endothelial function [15,16].

Mutations in the CETP gene resulting in defective CETP

activity have been shown to cause remarkable elevations of plasma

HDL-C levels [17], with the accumulation in plasma of large,

buoyant HDL particles enriched in apolipoprotein E (apoE) [18],

similar to those produced by pharmacological CETP inhibition

[19]. Genetic CETP deficiency thus represents a unique tool to

understand the role of CETP on HDL function, and to evaluate

the putative effects of CETP inhibition on HDL function without

potential off-target effects of CETP inhibitors. Indeed, both

genetic and pharmacological CETP inhibition enhances HDL

capacity to promote cholesterol efflux from macrophages, likely

through the formation of apoE-rich particles [18–20]. Little is

known on the effect of pharmacological or genetic CETP

inhibition on HDL capacity to prevent endothelial dysfunction

[21]. The present study was undertaken to evaluate the ability of
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HDL obtained from CETP-deficient subjects to protect endothe-

lial cells from the development of endothelial dysfunction.

Materials and Methods

Subjects
One homozygous and 7 heterozygous carriers of null CETP

mutations belonging to three caucasian kindreds [22–24] volun-

teered for the study. The homozygote carries the R37X CETP

mutation [22]; the 7 heterozygotes carry 3 different CETP

mutations: R37X [22], Q165X [23], and IVS7+1 [24]. Age and

sex matched healthy individuals were selected as controls among

blood donors attending the Servizio Immunoematologico Trasfu-

sionale of the Niguarda Hospital. The study was conducted

according to the guidelines set out in the Declaration of Helsinki

and was approved by the Ethic Committee of the Niguarda

Hospital (approved on 12/09/2008), and all subjects signed an

informed consent. Blood samples were collected after an overnight

fast and plasma was prepared by low speed centrifugation at 4uC.

Aliquots were immediately frozen and stored at 280uC until

assayed.

Plasma total and HDL cholesterol, and triglycerides were

measured by certified enzymatic techniques. LDL-C was calcu-

lated using the Friedewald’s formula. ApoA-I, apoA-II, and apoB

levels were determined by immunoturbidimetry; the plasma

concentration of HDL particles containing only apoA-I (LpA-I)

and of particles containing both apoA-I and apoA-II (LpA-I:A-II)

was determined by electroimmunodiffusion in agarose gel (Sebia

Italia). Plasma CETP concentrations were measured by compet-

itive ELISA [22]. CETP activity was measured with a fluorometric

assay kit (ROAR Biomedical Inc, New York, NY, USA). Plasma

levels of the soluble forms of vascular cell adhesion molecule 1

(VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1) and

E-selectin were determined by commercial ELISA kits (R&D

Systems, Minneapolis, MN, USA).

Lipoprotein Preparation and Characterization
Total HDL (d = 1.063–1.21 g/ml), HDL2 (d = 1.063–1.125 g/

ml) and HDL3 (d = 1.125–1.21 g/ml) were isolated by sequential

ultracentrifugation. Total HDL, HDL2, and HDL3 were sepa-

rated according to size by non-denaturing polyacrylamide gradient

gel electrophoresis (GGE) [22], and according to size and charge

by 2D electrophoresis and subsequent immunodetection with anti

apoA-I or anti apoE antibodies [22]. ApoE-containing particles

were precipitated from the HDL2 ultracentrifugal fraction by the

heparin-MnCl2 method [25]. Lipoproteins were dialyzed against

sterilized saline immediately before use and their concentrations

are expressed as mg of protein/ml. The concentration of

sphingosine-1-phoshate (S1P) in isolated HDL fractions was

measured with a commercial competitive ELISA kit (Echelon

Biosciences Inc., Salt Lake City, UT, USA) and normalized by

protein concentration.

HDL Activity in Cultured Endothelial Cells
Primary cultures of human umbilical vein endothelial cells

(HUVEC) were purchased from Clonetics (Lonza, Milano, Italy)

and subcultured for 1–3 passages according to manufacturer

instructions. Experiments were performed in M199 with 0.75%

BSA and 1% FCS. HDL, HDL2 and HDL3 fractions were used at

the protein concentration of 1.0 mg/ml in all experiments.

To investigate the ability of HDL to downregulate cytokine-

induced VCAM-1 expression, cells were incubated overnight with

HDL, HDL2, or HDL3, washed with PBS to remove lipoproteins,

and stimulated with tumor necrosis factor alpha (TNFa) (10 ng/

ml) for 8 hours. VCAM-1 concentration in conditioned media,

which reflects VCAM-1 cell expression [26], was evaluated using

the CytoSetsTM ELISA kit (BioSource International, Camarillo,

Table 1. Plasma lipids and inflammatory markers.

Carrier of
2 mutant
CETP alleles

Carriers of
1 mutant
CETP allele All carriers Controls P (trend)

P (carriers
vs.
controls)

n. 1 7 8 8

Age (y) 65 43.1614.9 45.9668.9 46.0614.7

Gender (M/F) M 4M/3F 5M/3F 5M/3F

Total cholesterol (mg/dl) 355 189.4639.3 210.1668.9 149.2622.3 ,0.001 0.03

LDL- cholesterol (mg/dl) 131 110.3626.8 112.9625.9 91.7622.9 0.07 0.10

HDL-cholesterol mg/dl) 208 68.4615.9 85.9651.5 50.768.2 0.001 0.08

Triglycerides (mg/dl 79 82.4649.0 82.0645.4 61.0623.3 0.32 0.26

Apolipoprotein A-I (mg/dl) 272 138.3625.4 155.0652.8 112.3611.9 ,0.001 0.043

Apolipoprotein A-II (mg/dl) 50 37.1613.2 38.8613.1 30.161.5 0.15 0.30

Apolipoprotein B (mg/dl) 77 88.7618.3 87.3617.5 86.7614.6 0.80 0.94

LpA-I (mg/dl) 91 59.9612.1 63.8615.7 52.068.5 0.011 0.008

LpA-I:A-II (mg/dl) 181 78.4618.7 91.3640.6 60.3616.2 ,0.001 0.006

CETP activity (pmol/ml/h) 0 47.4620.7 31.2619.1 133.169.6 ,0.001 ,0.001

CETP mass (mg/ml) 0 1.160.2 1.060.4 1.460.2 ,0.001 0.01

sVCAM-1 (ng/ml) 422 388.66136.4 390.36121.2 578.5691.8 0.02 0.005

sICAM-1 (ng/ml) 209 195.2630.7 196.9628.8 264.8649.3 0.02 0.005

sE-Selectin (ng/ml) 41 33.4619.6 34.6618.2 59.269.9 0.02 0.006

Data are expressed as mean6SD.
doi:10.1371/journal.pone.0095925.t001
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CA, USA), and normalized by the protein concentration of total

cell lysate.

To investigate the effects of HDL on NO production, cells were

incubated with HDL, HDL2, or HDL3 for 30 minutes and NO

levels were measured by fluorescence using a diacetate derivative

of 4,5-diaminofluorescein (DAF-2 DA, Sigma-Aldrich Chemie,

Steinheim, Germany). For each sample, fluorescence was normal-

ized by the protein concentration of total cell lysate. To investigate

HDL effects on eNOS activation by phosphorylation, cells were

incubated with HDL, HDL2 or HDL3 for 10 minutes. Proteins

were separated by SDS-PAGE and then transferred on a

nitrocellulose membrane. Membranes were developed against

phosphorylated eNOS (Ser1177, Cell Signalling Technology,

Beverly, MA, USA), stripped and reprobed with an antibody

against total eNOS. To investigate HDL effects on eNOS

expression, cells were incubated overnight with HDL, HDL2 or

HDL3. Proteins were separated by SDS-PAGE and transferred on

a nitrocellulose membrane. Membranes were developed against

total eNOS (BD Biosciences, San Jose, CA, USA), stripped and

reprobed with an antibody against b-actin (Sigma-Aldrich

Chemie). Bands on membranes were visualized by enhanced

chemiluminescence (GE Healthcare Biosciences, Uppsala, Swe-

den). Band densities were evaluated with a GS-690 Imaging

Densitometer and a Multi-Analyst software (Bio-Rad Laborato-

ries, Hercules, CA, USA).

Statistical Analyses
Results are reported as means6SD, if not otherwise stated. The

association of plasma lipids, and CETP activity and mass, with

CETP genotype was assessed by two different General Linear

Models (GLM): (i) as the linear trend versus the number of mutant

CETP alleles (0, 1, or 2) (model 1), or (ii) as the comparison

between carriers and controls (model 2). The association of HDL

functions with CETP genotype was assessed only by comparison

between carriers and controls. Since we have only one homozy-

gote, with an extreme phenotype in terms of HDL structure, and

thus to be considered an outliner, the subject has been excluded

from the analyses. Nevertheless, we have repeated the analyses

including the homozygote to assess the stability of the results. All

tests were two-sided and p-values ,0.05 were considered as

Figure 1. GGE analysis of purified HDL2 and HDL3. HDL fractions
isolated from the homozygote, and a representative heterozygote and
control were analyzed by GGE.
doi:10.1371/journal.pone.0095925.g001

Figure 2. 2D electrophoresis analysis of purified HDL. HDL
isolated from the homozygote, and a representative heterozygote and
control were separated by 2D electrophoresis and immunodetected
with anti apoA-I and anti apoE antibodies.
doi:10.1371/journal.pone.0095925.g002

Figure 3. Effects of HDL isolated from carriers of CETP
mutations and controls on VCAM-1 expression in TNFa-
stimulated HUVEC. Cells were incubated overnight with HDL,
HDL2, or HDL3 isolated from 7 heterozygous carriers of CETP mutations
and age-sex matched controls (n = 8), at the concentration of 1.0 mg of
protein/ml, before stimulation with TNFa for 8 hours. Results are
expressed as percentage of VCAM-1 concentration in conditioned
media of untreated TNFa-stimulated cells. Data points for each study
participant are shown.
doi:10.1371/journal.pone.0095925.g003
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significant. All analyses were performed by using the SAS

Statistical package v. 9.2 (SAS Institute Inc., Cary NC, USA).

Results

Plasma Lipids and Lipoproteins
Plasma lipid levels in the examined subjects are reported in

Table 1. Plasma total and HDL cholesterol, apoA-I, LpA-I, and

LpA-I:A-II levels were significantly higher, in a gene-dose

dependent manner, in carriers of CETP mutations than controls.

Plasma apoA-II levels also tended to increase with the number of

mutant CETP alleles, but the differences did not reach statistical

significance. Plasma LDL-C, triglyceride, and apoB levels were

similar in carriers and controls. CETP activity and mass were null

in the homozygous carrier and significantly reduced in heterozy-

gotes.

The plasma levels of the soluble forms of VCAM-1, ICAM-1,

and E-Selectin were significantly lower in carriers of CETP

mutations than in controls (Table 1). A negative correlation was

observed in the entire cohort of examined subjects between plasma

levels of HDL-C and soluble CAMs (R = 20.446, P = 0.096 for

sVCAM-1; R = 20.478, P = 0.084 for sICAM-1; R = 20.752,

P = 0.002 for sE-selectin).

The HDL2 fraction isolated from the homozygote consisted of

two populations of particles with a diameter of 12.4 and 13.6 nm,

i.e. distinct from control HDL2, which consisted of a single

population of particles of 11.5 nm (Figure 1). The size of HDL2

isolated from heterozygotes (11.6 nm) was comparable to that of

control HDL2. HDL3 particle size was very similar in all

examined subjects (Figure 1). When examined by 2D electropho-

resis, the larger HDL2 found in homozygous plasma appeared to

be remarkably enriched in apoE (Figure 2).

Effects of HDL on Cytokine-induced Endothelial VCAM-1
Expression

HDL from controls remarkably down-regulated TNFa-induced

VCAM-1 expression in HUVEC, with a significantly greater

activity of HDL3 than HDL2 (Figure 3), as previously reported

[27]. HDL and HDL3 from heterozygous carriers of CETP

mutations were as effective as control HDL and HDL3 in

inhibiting VCAM-1 expression, but HDL2 from carriers displayed

a greater inhibitory activity than control HDL2 (Figure 3). No

differences in the results were observed when the homozygote was

included in the analysis. The greater anti-inflammatory activity of

carrier than control HDL2 is unlikely due to the presence of large

apoE-containing particles, as removal of these particles by

precipitation with heparin-MnCl2 (Figure 4A) did not affect their

capacity to downregulate cytokine-induced VCAM-1 expression

(261.7612.2% and 263.961.4% with native and heparin-

treated HDL2, respectively).

Effects of HDL on NO Production and eNOS Activation
HDL obtained from control subjects stimulate NO production

in HUVEC, and no significant difference between HDL2 and

HDL3 fractions was observed (Figure 5). All HDL fractions

isolated from heterozygous carriers of CETP mutations were less

Figure 4. Effect of apoE depletion on eNOS expression in
HUVEC. Panel A. HDL2 isolated from the homozygous carrier of the
R37X CETP mutation were separated by 2D electrophoresis, followed by
anti apoA-I or anti apoE immunodetection, before (2) and after (+)
incubation with heparin-MnCl2. Panel B. Cells were incubated overnight
with HDL2 (1 mg/ml) from the homozygous carrier of the R37X CETP
mutation and from controls (n = 3) before (full bars) and after (open
bars) treatment with heparin-MnCl2. Western blot analysis of eNOS
protein was performed, and eNOS protein band intensities were
normalized for b-actin values and expressed as fold of increase in
treated vs. untreated.
doi:10.1371/journal.pone.0095925.g004

Figure 5. Effects of HDL isolated from carriers of CETP
mutations and controls on NO production in HUVEC. Cells were
incubated overnight with HDL, HDL2, or HDL3 isolated from 7
heterozygous carriers of CETP mutations and age-sex matched controls
(n = 8), at the concentration of 1.0 mg of protein/ml. Results are
expressed as fold of increased fluorescence in treated vs. untreated
cells. Data points for each study participant are shown.
doi:10.1371/journal.pone.0095925.g005
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efficient than control HDL in inducing NO production (Figure 5).

No differences in the results were observed when the homozygote

was included in the analysis.

HDL from controls induced a marked activation of eNOS in

HUVEC (Figure 6), with no difference between HDL2 and HDL3

fractions. All HDL fractions isolated from heterozygous carriers of

CETP mutations showed a significantly reduced ability to activate

eNOS than control HDL (Figure 6). No differences in the results

were observed when the homozygote was included in the analysis.

Since S1P within HDL was shown to increase their ability to

activate eNOS [28], S1P levels were measured in HDL fractions

from carriers of CETP mutations and controls. The concentra-

tions of S1P in HDL and HDL3 from carriers were significantly

lower compared to S1P concentration in control HDL and HDL3

(Table 2); S1P content of HDL2 was also lower in carriers than in

controls, but this difference did not achieve statistical significance

(Table 2).

To prove whether the reduced ability of HDL from carriers to

induce NO production was due to the reduced S1P content, HDL

from the homozygous carrier of the R37X mutation were also

tested after the addition of 100 pmoles of S1P, an amount

necessary to reach the S1P content of HDL from controls (295

pmol/mg protein). Indeed, the addition of S1P improved the

ability of homozygote HDL to induce NO production from

1.2560.07 to 1.6160.08 fold increase (P = 0.028), a value

comparable to that of HDL from controls (1.6060.12 fold).

HDL from controls remarkably increased eNOS expression in

HUVEC, as demonstrated by the 1.6260.13 fold increase in

eNOS protein. No difference was observed between HDL2 and

HDL3 fractions (1.5460.18 fold and 1.5660.14 fold, respectively).

HDL and HDL3 from heterozygous carriers of CETP mutations

were as effective as control HDL and HDL3 in enhancing eNOS

production (1.8260.27 fold, P = 0.09 vs. control HDL, and

1.6060.20 fold, P = 0.65 vs. control HDL3); by contrast, HDL2

from carriers caused a significantly greater increase in eNOS

production than control HDL2 (1.9960.08 fold, P,0.001 vs.

control HDL2). No differences in the results were observed when

the homozygote was included in the analysis. The enhanced

capacity of carrier HDL2 to stimulate eNOS production appears

to be related to the enrichment in apoE-containing particles, as

their removal by precipitation with heparin-MnCl2 (Figure 4A)

reduced eNOS induction from 1.9760.09 to 1.4260.15 fold

(P = 0.035), i.e. very close to that of control HDL2, which was not

affected by heparin-MnCl2 treatment (Figure 4B).

Discussion

This study was undertaken to assess the ability of HDL isolated

from subjects with genetic CETP deficiency to maintain endothe-

lial cell homeostasis. The results demonstrate that HDL from

carriers of CETP mutations are equally effective as control HDL

in inhibiting cytokine-induced expression of VCAM-1 in cultured

endothelial cells. Consistent with this in vitro finding, a propor-

tionate reduction in the plasma concentration of soluble CAMs

was found in association with the enhanced plasma HDL levels in

CETP-deficient subjects. The effects of genetic CETP deficiency

on the ability of HDL to induce NO bioavailability in cultured

endothelial cells are complex since the enhanced capacity of HDL

from CETP-deficient subjects to stimulate eNOS expression is

offset by a reduced capacity to activate eNOS, resulting in a

decreased NO production.

HDL ability to downregulate cytokine-induced CAM expres-

sion in endothelial cells has been widely recognized as part of their

anti-inflammatory activity [12]. Here we show that HDL isolated

from CETP-deficient subjects are as efficient as control HDL in

inhibiting VCAM-1 expression. In control subjects, HDL3 are

more effective than HDL2 in inhibiting endothelial VCAM-1

expression [27]. In CETP-deficient subjects, the slightly reduced

capacity of HDL3 to inhibit VCAM-1 expression compared with

control HDL3 is offset by a remarkably greater anti-inflammatory

activity of HDL2. This latter effect is likely due to the peculiar

protein and lipid composition of HDL from CETP-deficient

subjects, which are enriched in apoA-I, and thus have a superior

Figure 6. Effects of HDL isolated from carriers of CETP
mutations and controls on eNOS activation in HUVEC. Cells
were incubated for 10 minutes with HDL, HDL2, or HDL3 isolated from
7 heterozygous carriers of CETP mutations and age-sex matches
controls (n = 8), at the concentration of 1.0 mg of protein/ml. Western
blot analysis of the phosphorylated and total forms of eNOS was
performed, and the phosphorylated/total eNOS ratios were calculated
by densitometric analysis and expressed as fold of increase in treated
vs. untreated cells. Data points for each study participant are shown.
cells. Results are mean6SEM of 3 separate experiments performed with
1 preparation of homozygote HDL2, 3 preparations of control HDL2,
and 3 batches of cells. *P,0.05 vs. untreated homozygote HDL2.
doi:10.1371/journal.pone.0095925.g006

Table 2. Sphingosine-1-phosphate levels in HDL, HDL2, and HDL3.

Heterozygous Carriers Controls P

S1P (pmol/mg of protein)

HDL 188.2667.3 290.6692.3 0.05

HDL2 169.1613.3 226.2681.0 0.16

HDL3 158.3697.8 312.0654.7 0.012

Data are expressed as mean6SD.
doi:10.1371/journal.pone.0095925.t002
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inhibitor capacity than particles enriched in apoA-II [29], and are

depleted in triglycerides [30], which reduce HDL ability to down-

regulate VCAM-1 expression [31].

HDL ability to stimulate NO production represents another

vasculoprotective property of HDL [13]. Here we show that HDL

from CETP-deficient subjects are less effective than control HDL

in inducing NO production due to a reduced capacity to activate

eNOS, despite an increased ability to stimulate eNOS expression.

eNOS activation by HDL requires the interaction with both the

scavenger receptor class B type I and the lysosphingolipid receptor

S1P3 [13]. The protein component of HDL, mainly apoA-I, is

necessary for the interaction with SR-BI, while minor bioactive

components of HDL, such as lysophospholipids, and particularly

S1P, are necessary to activate the S1P3 receptor [28]. All HDL

fractions isolated from plasma of CETP-deficient subjects contain

less S1P than HDL obtained from control subjects, which likely

explains the reduced capacity to activate eNOS, as suggested by

the finding that the addition of S1P to carrier HDL restores the

impaired functionality. Moreover, HDL from CETP-deficient

subjects are enriched in LpA-I:A-II particles, which have been

shown to be less efficient than LpA-I in interacting with SR-BI

[32,33], and have a reduced content of PON1 [34], an enzyme

recently suggested to play a role in eNOS activation [14], which

may further contribute to the reduced functionality of carrier

HDL. HDL from CETP-deficient subjects are instead more

efficient than control HDL in enhancing the expression of eNOS.

The enhanced eNOS expression has little effect on NO production

in vitro, but may improve NO bioavailability in vivo, where eNOS

could eventually be activated by a variety of stimuli [35]. HDL

structural requirements for HDL-induced eNOS expression are

largely unknown. Here we show that HDL2 from CETP-deficient

subjects are very effective in enhancing eNOS production through

an apoE-dependent pathway. The same HDL2 particles have also

been shown to be more effective than control HDL2 in promoting

cell cholesterol efflux via ABCG1, in a process also dependent on

apoE [18,20]. ABCG1 has been recently described as an

important player in preserving endothelial homeostasis, as ABCG1

deficiency causes endothelial activation, which in turn promotes

monocyte-endothelium interaction [36]. Moreover, ABCG1 is

necessary for HDL-mediated vasculoprotection in mice fed a high-

cholesterol diet [37]. One can speculate that the accumulation of

apoE-rich HDL in genetic CETP deficiency is responsible for the

increased capacity of these particles to enhance eNOS protein

levels, a process likely mediated by apoE-facilitated cholesterol and

oxysterols removal through ABCG1 [37].

The present findings may be relevant in the context of the

current debate on the potential negative effects of pharmacological

CETP inhibition on HDL function [9]. Previous studies have

shown that both genetic and pharmacological CETP inhibition

enhances HDL capacity to promote cholesterol efflux from

macrophages [18–20,38]. Here we show that genetic CETP

deficiency does not affect the capacity of HDL to downregulate

cytokine-induced CAMs expression, i.e. similar to what observed

with HDL isolated from subjects treated with a potent CETP

inhibitor [21]. Direct in vivo measurements of NO-dependent

endothelial function in CETP-deficient subjects are warranted to

understand the significance of the present ex-vivo findings on HDL

capacity to promote NO production. Notably, pharmacological

CETP inhibition has little effect on in vivo measures of endothelial

function in humans [39,40], which is consistent with the present

in vitro findings.
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