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ABSTRACT 

 

The epidermal growth factor receptor (EGFR) is involved in a broad range of cellular 

responses. Deregulated EGFR signalling is a significant feature in different stages of 

oncogenesis and it contributes to several cancer types. One important mechanism whereby 

cancer cells can obtain increased and uncontrolled EGFR signalling is to escape down-

modulation of the receptor. Ubiquitination of EGFR and of members of the endocytic 

machinery has a key role in this process, regulating receptor internalization, trafficking and 

degradation. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination process, 

antagonizing or even promoting receptor degradation.  

To identify DUBs altering EGFR degradation we undertook a genome-wide small 

interfering RNA screen targeting all known active DUBs. In addition to previously 

described AMSH, USP8, USP2 and OTUD7B enzymes, we identified twelve novel DUBs 

affecting EGFR degradation by using immunoblot-based approaches complemented by an 

ELISA-based assay. Among them USP25, a member of the ubiquitin-specific protease 

(USP) family, displayed one of the strongest effects. We found that the degradation rate of 

EGFR is enhanced upon USP25 knock-down. Quantitative internalization assays revealed 

that depletion of USP25 leads to a faster internalization rate of EGFR. Consistently, 

overexpression of wild-type USP25, but not its catalytic inactive mutant, partially blocked 

EGFR internalization. Pathway analyses suggest that upon knock-down of USP25 a 

dynamin-independent endocytic route is activated, accounting for the increased EGFR 

internalization.  

Furthermore, we scored an increase in the EGFR ubiquitination upon USP25 

knock-down, in particular at early time points post EGF stimulation, suggesting that EGFR 

is a direct target of USP25. Details regarding the kind of ubiquitin chains attached to the 

EGFR in the absence of USP25 are still lacking and are currently under investigation. We 
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also validated the E3 ligase component Cullin 3 (CUL3) as USP25 interactor and we found 

that USP25 preferentially binds the neddylated active form of CUL3. Initial analyses with 

CUL3 suggest that ablation of USP25 and CUL3 have opposite effects on EGFR 

internalization and that the observed phenotypes compensate each other in double knock-

down. Our data suggest that USP25 and CUL3 may form a stable complex with opposing 

activity on EGFR internalization, and led us to hypothesize that they are involved in a 

novel “quality control” mechanism working at the plasma membrane.  

Taken together our study identifies USP25 as a novel negative regulator of EGFR 

ubiquitination and endocytosis, involved in early internalization events. USP25 may 

represent a suitable “druggable” target for pathological conditions where EGFR is 

deregulated and opens up a promising direction for future investigations.  
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INTRODUCTION 

 Endocytosis 1

Endocytosis is the process by which eukaryotic cells internalize extracellular materials 

together with components of the plasma membrane (PM), proteins and lipids. Over the 

years it became evident that endocytosis is not only a simple procedure for nutrient uptake 

and to transport material through the PM, but is involved in numerous aspects of cell 

signalling (Sigismund et al., 2012). There is increasing evidence that endocytosis might be 

involved in almost all cellular regulation processes (Sigismund et al., 2012). It remains 

unchallenged that endocytosis is the major mechanism of signal attenuation endowing the 

cell with spatial and temporal resolved messages (Gonnord et al., 2012). Hence, 

endocytosis provides the basis for communication and supply routes within cells.  

 

 

1.1 Endocytic entry routes 

The vital impact of endocytosis on cellular homeostasis is reflected by the number and 

complexity of cell entry routes. In spite of a complex diversity, all of them share four 

fundamental steps: (i) a specific binding event at the cell surface; (ii) PM budding and 

pinching off; (iii) tethering of the resulting vesicle; (iv) finally trafficking of the vesicle to 

a specific subcellular compartment. Traditionally entry routes are classified depending on 

the size of the initial membrane invagination. Particles larger than 500 nm, like bacteria or 

debris of apoptotic cells, are taken up only by specialized cells via phagocytosis (Swanson, 

2008). The internalization of fluids is present in almost all eukaryotic cells and occurs by 

macropinocytosis (Lim & Gleeson, 2011). Phagocytosis and macropinocytosis require 

large rearrangements of the PM guided by actin cytoskeleton remodelling. 

Micropinocytosis instead is characterized by invaginations <200 nm and comprises 

clathrin-mediated endocytosis (CME) and non-clathrin endocytosis (NCE) (Doherty & 
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McMahon, 2009) (Figure 1). Both pathways are important for receptor-mediated 

endocytosis and are described in more detail in the following chapters.  

 

1.1.1 Clathrin-mediated endocytosis (CME) 

CME is the best-characterized pathway among the different entry routes and is ubiquitous 

to all eukaryotic cells (McMahon & Boucrot, 2011). The formation of clathrin coated pits 

(CCPs) is initiated by the association of PM-resident cargoes and clathrin, mediated by 

bridging molecules like adaptor protein 2 (AP-2). A clathrin coat is the three-dimensional 

grouping of triskelia. Each triskelion is composed by three clathrin heavy chains (CHCs) 

and three clathrin light chains (CLCs). The three CHCs provide the structural backbone of 

the clathrin lattice, while the three CLCs regulate the formation and disassembly of the 

clathrin coat (Edeling et al., 2006). Clathrin polymerization drives the invagination of the 

pit. More than 50 different proteins are associated with CCPs, providing a structural 

platform regulating interactions between adaptors and other endocytic proteins. The action 

of the GTPase dynamin leads to the scission of the pit and clathrin coated vesicles (CCVs) 

are released into the cytoplasm (McMahon & Boucrot, 2011). The immense number of 

proteins involved in CME has raised a debate about the existence of different CCPs for 

distinct cargoes and or intracellular fates (Johannessen et al., 2006; Puthenveedu & von 

Zastrow, 2006). A typical cargo which is exclusively internalized through CME is the 

Transferrin receptor (TfR) described in chapter 1.3.  

 

1.1.2 Non-clathrin endocytosis (NCE) 

 

In contrast to CME the NCE is much less understood. NCE describes a heterogeneous 

group of pathways with two characteristics: (i) they are insensitive to clathrin ablation (ii) 

but sensitive to cholesterol depletion; consequently they depend on cholesterol-rich PM 
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microdomains. Further classification occurs on the requirement of dynamin for vesicle 

scission in dynamin-dependent and dynamin-independent NCE pathways. A second level 

considers the existence of coat-like proteins required for membrane curvature and 

stabilization, as caveolins or flotillins, subdividing the pathways in caveolae-mediated or 

flotillin-mediated endocytosis, respectively (Maldonado-Baez et al., 2013). Finally the 

involvement of small GTPases which control the entry of specific cargoes, enables the 

grouping in Cdc42 (cell division control protein 42 homolog)-, RhoA- (Ras homolog gene 

family, member A) or Arf6 (ADP ribosylation factor)-regulated endocytic pathways 

(D'Souza-Schorey & Chavrier, 2006; Ellis & Mellor, 2000). 

 

1.1.2.1 Caveolae-mediated endocytosis 

Caveolae are small PM invaginations with a diameter of 60-80 nm. The typical protein 

coat of caveolae is formed by members of two families: caveolins and cavins (Bastiani et 

al., 2009; Rothberg et al., 1992). Caveolae are enriched for cholesterol, 

phosphatidylinositol-4, 5-bisphosphate (PIP2) and sphingolipids, representing a subset of 

membrane rafts. Although the exact endocytic function of caveolae remains object of 

debate, several studies have identified common features to all caveolar entry mechanisms: 

they are dynamin-dependent (Henley et al., 1998), they require the activity of Src kinase 

and protein kinase C (PKC) and the recruitment of actin (Sharma et al., 2004). The 

caveolar pathway is involved in endocytosis of several ligands such as Transforming 

growth factor beta receptor (TGF-R) (Di Guglielmo et al., 2003) and viruses, like Simian 

virus 40 (SV40) (Anderson et al., 1996). Beside the implication in NCE it was also 

postulated that they play a role in cell adhesion, signal transduction and redox signalling, 

lipid and cholesterol regulation as well as mechanosensing (Sigismund et al., 2012).  



18 

 

 

Figure 1: Micropinocytosis in mammalian cells 

In mammalian cells exist multiple pathways of micropinocytosis. Clathrin-dependent 

internalization is dynamin-dependent and characterized by clathrin coated structures.  

Clathrin-independent pathways include caveolin-dependent endocytosis as well as various 

pathways with uncoated structures, some of which are vesicular and others are tubular. 

Internalized cargoes are first trafficked to the early endosomes and then either recycled 

back to the PM or sorted into multivesicular bodies (MVBs) and lysosomes for degradation 

[taken from (McMahon & Boucrot, 2011)].  

 

 

1.1.2.2 CLIC/GEEC pathway 

CLICs (clathrin-independent carriers) are uncoated tubular-vesicular structures which 

originate from the PM (Kirkham et al., 2005). They deliver cargoes to specific endosomes 

termed GEECs (GPI-AP-enriched early endosomal compartments) and bypass the Rab5 

positive endosomal compartment. The CLIC/GEEC pathway is a dynamin-independent 

cdc42-dependent endocytic route and is the major pathway to internalize fluids, bulk 

membrane and glycosylphosphatidylinositol-anchored proteins (GPI-APs), for which 

CLICs/GEECs are selectively enriched (Sabharanjak et al., 2002).  
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1.2 Endocytic sorting 

Once cargoes have entered the cell they are further trafficked to the early endosomes. 

These organelles serve as a first sorting station, where cargoes are subjected to distinct 

itineraries. In principle cargoes can have two fates: either recycling back to the PM or 

degradation in lysosomes, respectively. Small GTPases, mainly of the Rab-familiy, play an 

important role in sorting steps along the endosomal stations. They act like molecular 

switches, shifting between a GTP- (guanosine triphosphate) bound active state and a GDP- 

(guanosine diphosphate) bound inactive form. Cargoes destined for recycling are either 

shuttled through a fast Rab4-dependent pathway or a slow Rab8/Rab11-dependent 

recycling route back to the PM (Stenmark, 2009). The small GTPase Arf6 is involved in an 

additional recycling pathway, which is mainly used by receptors internalized through NCE, 

such as major histocompatibility complex I (MHCI) (D'Souza-Schorey & Chavrier, 2006). 

The transition from early to late endosomes is embodied by a change of structure 

and composition of the compartments (Figure 2). Early endosomes are characterized by a 

predominantly tubulovesicular structure, the presence of Rab5 and high levels of 

phosphatidylinositol-3-phosphate (PtdIns3P). Rab5 mediates the transport from CCVs 

from the PM to the early endosomes and recruits the tethering protein early endosome 

antigen 1 (EEA1). The formation of small intraluminal vesicles (ILVs) produces 

morphologically distinct endosomes called multivesicular bodies (MVBs) and marks the 

transition state from the early to the late endocytic compartment (Figure 2). On a 

molecular basis the maturation from the early to the late endosomes is indicated by the 

replacement of Rab5 by Rab7 (`Rab-conversion´) and the presence of lysosome-associated 

membrane protein 1 (LAMP-1) (Stenmark, 2009).  

MVBs and late endosomes are capable to fuse with lysosomes where degradation 

takes place. Ubiquitination is the major signal of cargoes designated for the degradative 

pathway. Targeting into the lysosomal pathway is facilitated by a conserved machinery 

https://www.google.de/search?biw=1280&bih=596&q=major+histocompatibility+complex&revid=449279245&sa=X&ei=jBROVK60DsLtO-3XgIgE&ved=0CJIBENUCKAQ
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called endosomal sorting complex required for sorting (ESCRT). Four sequentially acting 

ESCRTs (ESCRT-0, -I, -II and –III) are recruited to early endosomes. These complexes 

facilitate three distinct but related functions: (i) recognition and clustering of ubiquitinated 

cargoes in the endosomal membrane; (ii) bending of the limiting membrane and sorting 

into endosomal invaginations; (iii) formation and scission of the ILVs that contain the 

sorted cargo (Hanson & Cashikar, 2012) (Further discussed in section 2.1.3.). 

 

 

Figure 2: Itinerary of internalized cargoes 

After internalization cargoes are subsequently routed in trafficking vesicles to the 

early/sorting endosomes, where they are further shuttled into MVBs and late endosomes. 

Finally the degradation of cargoes takes place in lysosomes. The time which it takes 

approximately to traffic the endocytosed material is plotted alongside the schematic 

representation of the different endocytic organelles. The internal pH decreases 

progressively, while the protease concentration increases on the way from early endosomes 

to lysosomes [taken from (Canton & Battaglia, 2012)].  

 

 

1.3 Transferrin as a model substrate for CME 

Transferrin (Tf) is an iron-binding protein that facilitates the iron uptake in cells. Tf loaded 

with iron binds to the TfR and is subsequently internalized through receptor-mediated 

endocytosis. This is one of the best understood biological processes and is undoubtedly 

clathrin-dependent (Mayle et al., 2012). The internalized complex is shuttled to the early 
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endocytic compartment where iron is released from Tf due to a decreased pH. Apo-

transferrin and the TfR are routed either by a fast recycling pathway directly back to the 

PM or they are sorted to Rab11-positive recycling endosomes and taken back to the PM by 

a slow recycling pathway (Grant & Donaldson, 2009). At neutral pH they dissociate and 

both are ready for another round of iron uptake.  Due to these characteristics, Tf is often 

used as a tool to illuminate the trafficking pathway of other cargoes or as a marker for the 

CME to investigate different endocytic entry routes or as a recycling marker, respectively.  

 

1.4 Endocytosis and signalling 

Endocytosis is the major mechanism to achieve signal attenuation by removing active 

signalling receptors from the cell surface. However recent studies have demonstrated that 

the influence of endocytosis on signal transduction is more wide-ranging. Moreover there 

are increasing evidences that there is a bi-directionality; endocytosis has a great impact on 

cell signalling, and conversely receptor signalling has an influence on the endocytic 

machinery (Hupalowska & Miaczynska, 2012).  

 

1.4.1 Endocytosis regulates signalling  

Binding of cognate ligands promotes the activation of the signalling cascade downstream 

of signalling receptors but also their internalization. The main purpose of this process is to 

diminish the number of receptors at the cell surface, thus downregulate the strength and 

duration of signalling (Figure 3a). Indeed, the long-term stimulation with ligand causes a 

reduced number of receptors at the cell surface. This negative feedback loop protects cells 

from excessive signalling (Figure 3a). In some cases removal of surface receptors does not 

correlate with a decrease in signalling but instead shifts the dose-response relationship, 

meaning that higher ligand concentrations are needed to trigger a signal response of the 

same magnitude. One example for this mechanism is the migration of cells in response to 
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soluble ligands. Distinct receptor tyrosine kinases (RTKs) and G protein-coupled receptors 

(GPCRs) are able to function as motogenic sensors and respond to chemotactic gradients 

(Dormann & Weijer, 2003). A shift in the dose-response to ligand concentration ensures 

that cells stop at their target sites, where the concentration of chemotactic factors is highest 

(Bailly et al., 2000). 

Spatial and temporal regulation of signalling can be also achieved through a 

differential distribution of signalling molecules or specific phospholipids between the PM 

and the endosomal compartment. For example, GPCR signalling via PM-potassium 

channels is extinguished by the internalization of the receptor, since it requires the 

presence of receptors and potassium channels in the same membrane to form an active 

signalling complex (Mathie, 2007). Analogous is the phospholipase C1 (PLC1) and 

phosphoinositide 3-kinase (PI3K) signalling by EGFR inhibited upon receptor 

internalization due to low PIP2-levels in endosomes (Haugh & Meyer, 2002). 

Another mechanism whereby endocytosis regulates cell signalling is the choice of the 

endocytic entry route through which receptors are internalized. The majority of signalling 

receptors can be internalized through CME as well as NCE. The selection of the 

internalization route determines the ratio of receptors recycled back to the PM or degraded 

in lysosomes, thereby controlling the final output in terms of signalling attenuation or 

prolonged signalling. For instance, TGF-receptors that are internalized through CME are 

recycled back to the PM and signalling is sustained. Inversely, receptors that enter the cell 

through NCE are ubiquitinated by the E3 ligase Smad ubiquitin regulatory factor 

(SMURF) resulting in receptor degradation and signal extinction (Di Guglielmo et al., 

2003). An analogous regulation was found for the internalization and signalling of the 

epidermal growth factor receptor (EGFR) (Sigismund et al., 2008) (see also section 3). 

Other cargoes, like the Wnt3a-activated low-density receptor-related protein 6 (LRP6), use 

the two different internalization pathways in the opposite way. LRP6 signalling is coupled 
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with internalization through NCE, whereas the attenuation of signalling by receptor 

degradation is dependent on CME (Yamamoto et al., 2008). 

 

1.4.2 Signalling regulates endocytosis 

Converse events, regulation of the endocytic machinery through signalling, are rather 

complementary than contradictory. Rearrangements of the endocytic machinery induced 

by signalling affect the entire endocytic pathway, from vesicle internalization at the PM to 

the endosomal and lysosomal compartment (Figure 3b). It has been shown that stimulation 

of cells with epidermal growth factor (EGF) and nerve growth factor (NGF) can increase 

the density of CCPs at the PM. Ligand-induced activation of EGFR recruits CHC to the 

PM mediated by tyrosine (Tyr) phosphorylation of the CHC through c-Src (Wilde et al., 

1999). More recent studies suggest that signalling events can even trigger the formation of 

`cargo-specialized´ coated pits as already previously mentioned (Johannessen et al., 2006; 

Puthenveedu & von Zastrow, 2006).   

The endocytic machinery is regulated by receptor-mediated signalling also in later 

steps of the endocytic process. Live cell imaging studies show a decrease in the 

replacement of Rab5 by Rab7 in maturating endosomes by EGFR signalling (Rink et al., 

2005). Thereby transport of receptors destined for degradation is slowed down, as 

demonstrated for low-density lipoprotein (LDL) (Poteryaev et al., 2010; Rink et al., 2005). 

Moreover distinct stress-induced signalling pathways can control endocytosis by 

modulating specific transcriptional programs. Cell stress activates the transcription factor 

tumor suppressor gene p53 (TP53), which regulates several genes involved in endocytosis, 

like charged multivesicular body protein 4C (CHMP4C a subunit of the ESCRT-III 

complex) or caveolin-1. It has been shown that activation of TP53 leads to internalization 

and trafficking of caveolin-1 and EGFR to the late endocytic compartment. In this way the 

suppression of cell growth and division by the TP53 program is achieved through the 
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regulation of endocytosis (Yu et al., 2009). Another example is given by the regulation of 

lysosomal activity in response to cellular needs. It was found that numerous lysosomal 

genes are concomitantly transcribed. Lysosomal stress activates the transcription factor EB 

(TFEB), which induces the transcription of genes involved in the biogenesis and activation 

of lysosomes and results in increased protein clearance (Sardiello, Science, 2009).  

 

 

Figure 3:  Reciprocal regulation between endocytosis and signalling 

a) General regulatory effects of endocytosis on receptor-mediated signalling are depicted, 

using RTKs and GPCRs as examples. Receptor endocytosis causes attenuation of PM-

associated signalling pathways or “desensitization” of cell signalling (violet arrows). The 

Recycling of receptors to the PM can reverse this process and leads to “resensitization” of 

cellular responsiveness (blue arrows). Degradation of internalized receptors in lysosomes 

results in receptor downregulation (orange arrows).  

b) Examples of regulatory loops by which signalling regulates the endocytic pathway. 

EGFR signalling can promote under certain circumstances the formation of CCPs (dotted 

blue line), the formation of ILVs (dotted brown line) and inhibits the maturation of early to 

late endosomes (dotted orange line) [taken from (Zastrow & Sorkin, 2007)].  
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1.4.3 Signalling endosomes 

A number of evidences show that signalling events are not only restricted to the PM. The 

concept of ´signalling endosomes´ derived from biochemical fractionation studies of RTK 

signalling components and the discovery that activated EGFR as well as several 

downstream effectors are present in endosomal membranes (Di Guglielmo et al., 1994). In 

general endosomes are characterized by a couple of features that give them the ability to 

act as signalling platform: (i) a small volume favours ligand-receptor binding and 

preserves receptor activity, (ii) slow sorting mechanisms and therefore long resident time, 

(iii) capacity to use microtubular transport for long distances, (iv) high levels of lipids and 

proteins which can act as scaffold for signalling platforms (Posor et al., 2014) and (v) a 

low pH, especially in late endosomes, promoting proteolysis of signalling molecules. 

Overall there are two known modes of endosomal signalling: either signalling originated 

from the PM is sustained, or specific signal complexes are assembled which are excluded 

at the PM or occur only with low efficiency (Sadowski et al., 2009; Scita & Di Fiore, 

2010). The ability of a receptor to signal after internalization might be essential to ensure 

sufficient duration and intensity of signalling. Indeed several RTKs remain bound to the 

their ligands until late stage of the endosomal trafficking, including the EGFR-EGF 

complex (Sorkin & Von Zastrow, 2002). Several studies using small interfering RNAs 

(siRNAs) or dominant-negative mutants of proteins involved in internalization suggest that 

at least for some RTKs internalization is necessary to fully activate MAPK (mitogen-

activated protein kinase) signalling (Lampugnani et al., 2006; Sigismund et al., 2008; 

Vieira et al., 1996). However this is still an open debate since some similar studies reach 

the opposite conclusion (DeGraff et al., 1999; Galperin & Sorkin, 2008; Johannessen et al., 

2000). These differences reflect the complexity of the mammalian system that often does 

not permit generalization of concepts. 
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Endosome-specific signal systems are often based on the enrichment of PtdIns3P in 

endosomal membranes. One example is provided by the propagation of signalling from the 

TGF-receptor. SMAD2 and SMAD4 are recruited to endosomes by the adaptor proteins 

SARA (SMAD anchor for receptor activation) and endofilin. Both proteins contain a 

FYVE domain (Fab1, YotB, Vac1p, EEA1), which binds with high specificity to PtdIns3P. 

This ensures the efficient phosphorylation of SMAD2 by the internalized TGF-receptor 

and the formation of an active SMAD2-SMAD4 complex (Chen et al., 2007; Tsukazaki et 

al., 1998). However it has been reported that under certain circumstances TGF-receptor 

internalization is not necessary and SMAD signalling can be initiated already from the PM 

(Lu et al., 2002).  

Taken together the hypothesis that signalling can also occur from endosomes is 

meanwhile well established in the field (Hupalowska & Miaczynska, 2012). Challenging 

future investigations will be to understand the physiological significance of signalling 

endosomes and if they are functionally distinct to signalling events on the PM or simply a 

spatial and temporal extension.  

 

 

 The ubiquitin system 2

The posttranslational modification of proteins with ubiquitin is in almost all cellular 

processes involved, including the regulation of endocytosis. Ubiquitin is a highly 

conserved protein of 76 amino acids, with only three conservative changes from yeast to 

human. There are four ubiquitin genes in humans whose translation products are fusion 

proteins. UBB and UBC encode polymeric head-to-tail concatemer of ubiquitin, whereas 

UBA52 and UB80 encode ribosomal-fused ubiquitin precursors (Lund et al., 1985). 

Ubiquitin can be covalently attached to proteins by the formation of an isopeptide bond 

between the carboxy group of its C-terminal glycine (Gly) and the -amino group of a  
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substrate lysine (Lys) residue (Hershko & Ciechanover, 1998). Ubiquitination occurs by 

the sequential action of three types of enzymes (Figure 4). First an ubiquitin-activating 

enzyme (E1) activates ubiquitin by the formation of a high-energy thiolester bond; this step 

is ATP-dependent. Then ubiquitin is passed to the active cysteine (Cys) of an ubiquitin-

conjugating enzyme (E2) by transthiolation. The final step is accomplished by an ubiquitin 

ligase (E3) and results in the transfer of ubiquitin to a Lys side chain of the substrate 

(Komander & Rape, 2012). 

Ubiquitin ligases are substrate specific and control the timing of transfer; hence 

they are the key regulatory determinants in the ubiquitination process (Ardley & Robinson, 

2005). The relative high number of more than 600 E3 ubiquitin ligases compared to only 

around 40 E2s in humans, underscores the role of E3 ligases in substrate selection. There 

are two main families, the HECT- (Homologous to the E6-AP Carboxyl Terminus) and the 

RING- (Really Interesting New Gene) E3 ligases, which catalyse the transfer of ubiquitin 

in a different manner. Members of the HECT family harbour a catalytically active Cys on 

which ubiquitin is transferred from the E2 and forms a thiolester bond before it is finally 

conjugated to the substrate. Unlike the HECT-ligases, the RING finger E3s do not possess 

a catalytic active Cys and do not form any catalytic intermediate with ubiquitin. This class 

of E3 ligases serve as a scaffold to bring E2 and substrate in close proximity. Different 

studies suggest that RING finger domains can activate E2s allosterically (Metzger et al., 

2014; Ozkan et al., 2005). Members of the RING-type family are functional as monomers, 

dimers or multi-subunit complexes, while HECT-E3s usually act as monomers. Recently a 

third group of E3 ubiquitin ligases was established. The RING-between-RING (RBR) 

family shares common features with both RING- and HECT-E3 ligase families. Similar to 

HECT-E3s, RBR ligases transfer ubiquitin directly from an intrinsic catalytic active Cys to 

substrates, but also recruit thiolester-bound E2 enzymes via a RING domain (Spratt et al., 

2014). All twelve described RBR ligases are complex multidomain enzymes. The best 
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studied members are parkin, HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-

oxidized IRP2 ubiquitin ligase 1), both of which are components of the multiprotein 

complex LUBAC (linear ubiquitin chain assembly complex). 

Proteins can be either monoubiquitinated or multiple monoubiquitinated by the 

attachment of several independent ubiquitin molecules. Since ubiquitin itself harbours 

seven Lys residues also chains of different linkages (Lys6, Lys11, Lys27, Lys29, Lys33, 

Lys48, Lys63 and linear chains on Methionine1 Met1) can be formed, allowing 

polyubiquitination of substrates (Figure 4). All these linkages have been detected in cells 

(Peng et al., 2003; Xu et al., 2009). Moreover, chains can be formed by either homotypic 

or heterotypic linkages. Different types of ubiquitin modifications serve as distinct signals 

and are associated with different cellular functions (Komander & Rape, 2012). It was 

demonstrated that substrates modified with four or more Lys48 linked ubiquitin moieties 

are targeted to the proteasome (Chau et al., 1989). Lys63 linked chains instead are mainly 

involved in DNA repair, transcriptional regulation, endocytosis and activation of protein 

kinases (Al-Hakim et al., 2010; Galan & Haguenauer-Tsapis, 1997; Huang & D'Andrea, 

2006).  

Ubiquitin modifications are recognized by proteins containing ubiquitin-binding 

domains (UBDs) which bind to ubiquitin in a non-covalent manner. UBDs are generally 

small stretches of 20 to 150 amino acids and are structurally diverse. More than 20 

different UBDs have been identified in numerous proteins from which many exhibit a 

preference for certain ubiquitin-chains (Husnjak & Dikic, 2012). UBDs show a moderate 

to weak binding capacity with dissociation constants (Kds) for ubiquitin ranging from 5 to 

500 M. These high-specific, low-affinity interactions create a dynamic network, which 

can undergo rapid assembly and disassembly. When a higher affinity interaction is 

required, several possibilities can be envisioned: (i) enhancement by the presence of 
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several UBD motifs in the same protein, (ii) multimerization of UBD-containing proteins, 

(iii) secondary binding sites between the ubiquitin receptor and the ubiquitinated target. 

Similar to phosphorylation also ubiquitination is a reversible process (Figure 4). Ubiquitin 

molecules can be removed from substrates by the action of deubiquitinating enzymes 

(DUBs) (see also chapter 2.2). 

 

 

Figure 4: The ubiquitin system 

Ubiquitin is conjugated by three sequentially acting enzymes: ubiquitin-activating enzyme 

E1, ubiquitin-conjugating enzymes E2s and ubiquitin ligases E3s. Substrates can be either 

monoubiquitinated or polyubiquitinated. Chains with different linkages serve as distinct 

signals and are involved in certain cellular processes. DUBs are able to remove ubiquitin 

from substrates and/or edit ubiquitin chains. Thereby DUB activity is necessary to generate 

free ubiquitin, rescue substrates destined for degradation and to change ubiquitin signals 

[taken from (Fraile et al., 2012)]. 

 

 

2.1 Ubiquitin in endocytosis 

About twenty years ago, studies using the yeast Saccharomyces cerevisiae demonstrated 

that ubiquitin drives the internalization of several PM cargoes, including the mating 

pheromone a-factor transporter Ste6 (Kolling & Hollenberg, 1994) and the mating 
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pheromone -factor Ste2 (Galan & Haguenauer-Tsapis, 1997; Hicke & Riezman, 1996). 

Experiments with ubiquitin mutants revealed that monoubiquitination is sufficient for Ste2 

endocytosis (Terrell et al., 1998). For other PM cargoes instead, like the nutrient 

transporter Fur4 and general amino-acid permease (Gap1), polyubiquitination with Lys63 

chains is essential for further trafficking (Lauwers et al., 2009) and to reach the maximal 

level of endocytosis (Galan & Haguenauer-Tsapis, 1997; Springael et al., 1999). Indeed, 

for many yeast membrane proteins, ubiquitination is both necessary and sufficient for 

endocytosis (Hicke & Riezman, 1996), although ubiquitin-independent endocytosis of 

cargoes has also been described (Chen & Davis, 2002).  

 

2.1.1 Ubiquitination of cargoes 

The role of ubiquitin in endocytosis in mammalian cells is far more complicated. It has 

been shown that ubiquitination is essential for the internalization of ion channels, like 

epithelial Na
+
 channel (ENaC) (Staub et al., 1997). For many other endocytic cargoes, 

including RTKs and GPCRs, ubiquitination appears to be sufficient but not essential for 

their internalization (Haglund et al., 2003; Sigismund et al., 2005). Many of these receptors 

display ligand-induced modification with ubiquitin, but own also the possibility of 

ubiquitin-independent internalization. Analogous to the findings in yeast also in 

mammalian cells plasma membrane proteins are often modified with Lys63 chains, leading 

to an increased rate of endocytosis and a faster lysosomal transport (Barriere et al., 2007; 

Barriere et al., 2006). This might be due to a higher binding affinity of many UBDs of 

endocytic adaptor proteins for polyubiquitin rather than for monoubiquitin (Husnjak & 

Dikic, 2012). 

One difficulty to establish the role of ubiquitin in the endocytosis of plasma 

membrane proteins is the fact that mammalian cells have several internalization pathways 

which often act in parallel (Acconcia et al., 2009) (see also chapter 1.1). Different 
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endocytic routes might have distinct sorting determinants and therefore depend or not on 

cargo ubiquitination. A critical example is represented by the EGFR and will be discussed 

in detail in chapter 3. 

 

2.1.2 Ubiquitin and endocytic adaptors 

Endocytic adaptor proteins are located at the PM and are thought to select cargoes and 

initiate the internalization process. Many of them contain UBDs, able to decipher the 

ubiquitin code from the cell surface. A common theme, the Ubiquitin-interacting motif 

(UIM) is present in several components of the downstream endocytic machinery, including 

epidermal growth factor receptor substrate 15 (Eps15), epidermal growth factor receptor 

substrate 15-like 1 (Eps15L1), Eps15-interacting protein 1 and 2 (Epsin1 and Epsin2) 

(Polo et al., 2002; van Delft et al., 1997). Eps15 and Epsins have multiple ubiquitin-

interacting motifs (UIMs) through which they can bind to ubiquitinated membrane cargoes 

like the EGFR (Sigismund et al., 2005). Moreover the presence of several protein-protein 

interaction domains makes endocytic adaptor proteins to scaffolding proteins for the 

endocytic machinery. Next to ubiquitin via their UIMs, Eps15 and Epsins can bind the 

CHC and the clathrin adaptor molecule complex AP-2 through the clathrin box and the 

aspartic acid-proline-tryptophan (DPW) motifs, respectively. This allows the bridging of 

ubiquitinated cargoes to CCPs (Figure 5).  

It has been shown that several endocytic adaptor proteins are also target for 

ubiquitin modifications. Followed by the stimulation of cells with growth factors  Eps15, 

Epsin1 and Epsin2 (Polo et al.., 2002; van Delft et al.., 1997) and Hrs  (Katz, Shtiegman et 

al.. 2002; Polo, Sigismund et al.. 2002) undergo a process that requires the integrity of 

UIM, and that is referred to as coupled monoubiquitination (Hicke et al., 2005). Several 

classes of UBDs, such as UIM, UBA (ubiquitin associated), MIU (motif interacting with 

ubiquitin) and CUE (coupling of ubiquitin conjugation to ERAD) can sustain this process 



32 

 

(Hicke et al., 2005). The phenomenon of coupled monoubiquitination was described for 

the first time for the UIM domain (Polo et al., 2002; van Delft et al., 1997) and the 

mechanistic basis for coupled monoubiquitination has been proposed (Fallon et al., 2006; 

Woelk et al., 2006). For the HECT E3 ligase neural precursor cell expressed 

developmentally down-regulated protein 4 (NEDD4), coupled monoubiquitination appears 

to involve self-ubiquitination followed by the interaction of the isopeptide-conjugated 

ubiquitin of the E3 with the UIM of the substrate (Polo et al., 2002; van Delft et al., 1997). 

The transfer of the thiolester-linked ubiquitin from the E3 to the substrate concludes the 

process. In the case of the RING-type ligase Parkin, coupled monoubiquitination requires 

the interaction of the Ubiquitin-like domain (Ubl) of Parkin with the UBD of the substrate, 

which is then followed by the transfer of ubiquitin directly from the E2 enzyme to the 

substrate (Fallon et al., 2006). A variant of the two proposed models that does not require 

E3 ligases has been suggested. In this model, a UBD-containing protein binds to an E2 

enzyme through the interaction of the UBD with ubiquitin linked to E2 via a thiolester 

bond; then ubiquitin is directly transferred to the Lys residue within the substrate (Hoeller, 

Crosetto et al.. 2006). This process has been considered constitutive and is not linked to 

EGF stimulation. 

The functional role of adaptor monoubiquitination is still under debate. One 

hypothesis, based on artificial chimeras, is that monoubiquitination of endocytic adaptors 

may cause a functional inhibition by facilitating a closed conformation through the intra-

molecular binding of the attached ubiquitin to one of the UIMs (Hoeller et al., 2006). Other 

studies suggest that it serves as signal amplification thus enhancing the progression of 

ubiquitinated cargoes along the endocytic route (Polo, 2012). Our recent data indicate that 

Eps15 monoubiquitination is indeed a positive requirement for the EGFR internalization 

process rather than a negative signal that disassemble the receptor-adaptor complex. 

Monoubiquitinated Eps15 peaks concomitantly with unmodified Eps15 in gel filtration 
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analysis (Savio et al., manuscript in preparation) and is able to interact with activated 

EGFR (Sigismund et al., 2005) or its interactor AP-2 at the same level of unmodified 

Eps15 (Savio et al., manuscript in preparation). To further investigate the function of 

Eps15 monoubiquitination, we identified and mutagenized the Lys acceptor sites in Eps15. 

Interestingly, when tested in a rescue experiment the Eps15 6KR mutant was unable to 

reconstitute the impaired internalization of the Eps15/Eps15R/Epsin triple knock-down 

(KD) cells (Savio et al., manuscript in preparation). 

 

2.1.3 Ubiquitin in endosomal sorting 

Ubiquitin holds also in later steps of the endocytic pathway a critical regulatory role. 

Ubiquitinated internalized cargoes are subsequently sorted to the lysosomal endocytic 

compartment. The ESCRT machinery (see chapter 1.2) plays a major role in the generation 

of MVBs and in the sorting of ubiquitinated substrates into the ILVs. Numerous proteins of 

the ESCRT complex contain different UBDs. This equips the ESCRT machinery with the 

ability to capture and sort ubiquitinated cargoes into the MVB pathway (Figure 5). The 

ESCRT-0 complex is composed by two subunits: Hrs (hepatocyte growth factor-regulated 

Tyr-kinase substrate) and STAM (signal transducing adaptor molecule). Hrs contains two 

double-sided UIMs and one VHS (Vps27, Hrs, STAM) domain while STAM has one UIM 

and one VHS domain. Different studies in yeast and mammalian cells, in which one or 

several of those UBDs were mutated, could show that they are critical in the recognition 

and clustering of ubiquitinated cargoes in the membrane of early endosomes (Bilodeau et 

al., 2002; Raiborg et al., 2002; Ren & Hurley, 2010; Urbe et al., 2003). ESCRT-0 recruits 

the ESCRT-I complex, which consist of tumour susceptibility gene 101 (TSG101), 

ubiquitin associated protein 1 (UBAP-1), Vps28 and Vps37 and is capable to recruit the 

ESCRT-II complex, comprised by one molecule of Vps22 (EAP30) and Vps36 (EAP45) 

plus two molecules of Vps25 (EAP20) (Figure 5). Originally it was thought that the single 
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complexes act in a sequential manner. Recent studies instead suggest a model in which the 

ESCRT-0 complex recruits an ESCRT-I-ESCRT-II supercomplex. Multiple subunits of 

this supercomplex contain UBDs (including TSG101, Vps36 and UBAP-1) and coordinate 

cooperatively cargo sorting and packaging into subsequently formed buds (Shields & 

Piper, 2011). Finally the ESCRT-III complex, a dynamic polymer whose stoichiometry is 

not clearly defined, catalyses the scission of the formed buds and ILVs are released into 

the lumen of endosomes (Wollert et al., 2009) (Figure 5).  

In addition there are a number of other ubiquitin-binding proteins present at the 

early endosomes.  Eps15b, an isoform of Eps15 that is associated with Hrs, contains two 

UIMs. Eps15b is required for efficient lysosomal degradation of endocytosed EGFRs 

(Roxrud et al., 2008). Moreover GGA (Golgi-localized, gamma ear-containing, Arf-

binding) proteins and TOM1 (target of myb1) have been discussed to be alternative 

members of the ESCRT-0 complex (Figure 5). Like the ESCRT-0 complex they contain 

UBDs as well as clathrin-binding domains allowing sorting of ubiquitinated cargoes in a 

similar mode (Katoh et al., 2004; Puertollano & Bonifacino, 2004). 

One explanation for the array of UBDs in endocytic proteins involved in sorting 

might be to increase avidity for ubiquitin through multiple interactions. This is supported 

by the fact that the described UBDs have all low affinity to bind ubiquitin (Haglund & 

Dikic, 2012), necessary for on-off signalling-mediated events. Low affinity might facilitate 

the transfer of ubiquitinated cargoes from one ubiquitin-binding protein to another, 

ensuring the straightforward sorting. Furthermore it has been shown that many UBDs in 

endocytic proteins preferentially bind to Lys63 polyubiquitin chains (Dikic et al., 2009).  
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Figure 5: Regulation of RTK endocytosis via ubiquitin  

Ubiquitinated receptors are recognized at the PM by UIM-containing proteins, like Eps15, 

Epsin1 and Epsin2. These adaptor proteins act as linkers and mediate the interaction of 

receptors with AP-2 and/or clathrin. At the early endocytic compartment ubiquitinated 

receptors are captured by the ESCRT machinery through multiple interactions with UBD-

containing proteins. This ensures the correct sorting of ubiquitinated receptors destined for 

degradation into ILVs, thereby creating MVBs [taken from (Clague & Urbé, 2012)].  

 

 

2.2 Deubiquitinating enzymes (DUBs) in endocytosis 

Covalently attached ubiquitin can be removed by the action of DUBs. Overall DUB 

activity is directed to: (i) maintain the free ubiquitin pool, (ii) rescue proteins from 

ubiquitin-mediated degradation, (iii) control ubiquitin-mediated signalling events (Figure 

4). The human genome encodes approximately 90 DUBs, predicted to be active. They can 

be subdivided into five families due to structural homology (Figure 6): (1) ubiquitin-

specific proteases (USPs), (2) ubiquitin C-terminal hydrolases (UCHs), (3) ovarian tumour 

proteases (OTUs), (4) Josephins and (5) JAB1/MPN/MOV34 metalloenzymes (JAMMs). 

It needs to be mentioned that Liang et al. recently found a new domain in the monocyte 

chemotactic protein-induced protein 1 (MCPIP1) which displays deubiquitinating activity, 
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suggesting a new group of DUBs (Liang et al., 2010) (Figure 6). However, their 

expression seems to be restricted to bone marrow. 

 

2.2.1 Mechanism of catalysis 

DUBs belong to the superfamily of proteases, which are, based on the mechanism of 

catalysis, divided in aspartic, metallo, serine, threonine, and cysteine proteases. DUBs 

cover only two of them, metallo and cysteine proteases. The catalytic activity of cysteine 

protease DUBs depends on two or three critical amino acids, known as catalytic diad or 

triad, respectively. The pKa of the catalytic active Cys is lowered by a neighbouring 

histidine side chain. This allows a nucleophilic attack on the isopeptide bond between the 

C-terminus of ubiquitin and the Lys-amino group of the substrate. In some cases a 

glutamine, glutamate or asparagine residue aligns and polarizes the histidine chain, even 

though this is not essential for all cysteine proteases (Komander & Barford, 2008). 

Although cysteine DUBs have a remarkable variability in secondary structure, the catalytic 

active residues superpose with only minimal aberrations when bound to the C-terminus of 

ubiquitin (Komander & Barford, 2008). USPs, UCHs, OTUs and Josephins are cysteine 

proteases while JAMMs are metalloproteases. Generally metalloproteases use a zinc ion 

(Zn
2+

) to polarize a water molecule which attacks the isopeptide bond and generates a non-

covalent intermediate with the substrate. The metal ion is usually stabilized by an aspartate 

and two histidine residues. The intermediate is broken down through proton transfer from a 

water molecule and the DUB is released (Ambroggio et al., 2004).   
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2.2.2 DUB families  

 

Figure 6: Classification of human DUBs 

DUB families are represented by different colours: USPs, UCHs, OTUs, Josephins, 

JAMMs and MCPIPs. The length of the enzymes and the depicted domains correspond to 

the size of the protein in amino acids [taken from (Fraile et al., 2012)]. 

 

2.2.2.1 The USP family  

The USP family is the largest and most diverse family in humans, with more than 50 

DUBs. They all have in common a highly conserved and approximately 350 amino acid 

long USP domain, which harbours the catalytic active core (Clague et al., 2013; Komander 

et al., 2009). The USP domain consists of three subdomains which resemble the right hand: 

palm, thumb and fingers. Usually the apo-USP domains are in a non-productive catalytic 

conformation. Hence, the catalytic activity is regulated by substrate or scaffold-induced 

conformational changes. In this way the inappropriate cleavage of substrates is prevented 

(Komander et al., 2009). Many USP domains contain ubl domains which might have 
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regulatory function, as it was shown for USP4. The ubl in the USP domain of USP4 can 

bind the catalytic domain and competes with ubiquitinated substrates, thus USP4 activity is 

partially inhibited (Luna-Vargas et al., 2011). Furthermore, many USPs have large 

terminal extensions comprising additional domains, which might be important for their 

activity and for substrate specificity. 

2.2.2.2  The UCH family 

The UCH family was the first family that was identified (Pickart & Rose, 1985; Rose & 

Warms, 1983). So far, there are only four DUBs reported belonging to this group (UCHL1, 

UCHL3, UCHL5/UCH37 and BRCA1 associated protein-1) in humans. Based on in vitro 

enzymatic analyses it was suggested that they are mainly involved in the recycling of 

ubiquitin and in the co-translational processing of ubiquitin precursors (Larsen et al., 1998). 

In line with this hypothesis are high expression levels of UCH DUBs in humans and the 

lack of protein-protein interaction domains.  

2.2.2.3 The OTU family 

This family was identified due to their homology to the ovarian tumour gene involved in 

the development of ovaries in fruit flies (Goodrich et al., 2004; Steinhauer et al., 1989). 

The human genome encodes for sixteen OTU domain DUBs. They are characterized by a 

diverse ubiquitin chain linkage-specificity, even though the catalytic domain is structurally 

conserved between the different members (Mevissen et al., 2013). 

2.2.2.4 The Josephin family 

This family comprises five members and was named after the Machado Joseph Disease 

(MJD), a spinocerebellar ataxia. MJD is characterized by polyglutamine expansion in the 

ataxin 3 gene and the formation of cellular aggregates (Matos et al., 2011). The Josephin 

domain in the N-terminus possesses deubiquitinating activity, while the C-terminus 

contains two UIMs followed by the polyglutamine sequence and a third UIM (Burnett et 
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al., 2003). It is currently not known if the pathology of MJD is based on the depletion of 

this enzymatic activity. 

2.2.2.5 The JAMM family 

This family consists of twelve members that belong to the class of metalloproteases as 

above described. DUBs of this group are often found in huge protein complexes, like the 

ESCRT-machinery associated DUB AMSH (associated molecule with the SH3 domain of 

STAM) (McCullough et al., 2006) or the 26S proteasome-associated POH1 (also known as 

Rpn11) (Yao & Cohen, 2002).  

 

2.2.3 DUB activity in early steps of endocytosis 

DUBs represent an important group of regulatory enzymes controlling ubiquitin 

homeostasis. Hence DUB activity might be required in all ubiquitin-dependent steps in 

endocytosis discussed in chapter 2.1. 

Systematic mutagenesis studies in yeast revealed that DUBs are functionally 

redundant (Amerik et al., 2000) and only a few with specific substrates have been 

identified so far. However, it has been shown that the DUB fat facets (faf) in Drosophila 

melanogaster regulates endocytosis by deubiquitinating the Epsin homologue liquid facets 

(lqf). The first indication came from genetic studies in which mutations in lqf were found 

to be dominant enhancers of the eye developmental defect observed in faf mutants 

(Cadavid et al., 2000). Subsequent biochemical studies examined that faf and lqf 

physically interact and ubiquitinated lqf is only detected when faf activity is impaired 

(Chen et al., 2002). Taken together these studies suggest that faf opposes the ubiquitin 

mediated proteasomal degradation of lqf in D. melanogaster. The relationship between the 

homologues of lqf (Epsin1) and faf (USP9X) is conserved also in mammalian cells. 

However, there might be some functional divergences since Epsin1 in humans is not a 

proteasomal substrate and is found to be monoubiquitinated instead of polyubiquitinated 
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(Polo et al., 2002; Oldham et al., 2002). Further studies could show that loss of Epsin1 

monoubiquitination was prevented by depletion of USP9X in neuronal cells (Chen et al., 

2003). Also recent data from our lab demonstrate that USP9X activity is critical for the 

monoubiquitination of endocytic adaptor proteins. Depletion of USP9X causes decreased 

ubiquitination levels of Eps15 and Epsins which in turn severely affects EGFR turnover, 

internalization and trafficking towards the lysosomes (Savio et al., manuscript in 

preparation). 

There might be other DUBs regulating the internalization and endocytic trafficking 

of specific cargoes at the PM. For example GPCRs associate with -arrestin adaptor 

proteins and both proteins are ubiquitinated before internalization. It has been shown that 

there is a correlation between the rate of recycled GPCR and the ubiquitination status of -

arrestin (Shenoy & Lefkowitz, 2003). USP33 can deubiquitinate GPCR as well as -

arrestin leading to fast recycling and stabilization of the GPCR--arrestin signalling 

complex (Shenoy et al., 2009). 

 

2.2.4 DUB activity in later steps of endocytosis 

The two so far best characterized DUBs involved in endocytosis and endosomal sorting are 

USP8 and AMSH. They are both localized at early endosomes, mediated by the interaction 

with STAM a member of the ESCRT-0 complex. Both enzymes share a binding site on 

STAM through a non-canonical Src homology 3 (SH3) binding motif (Kaneko et al., 2003; 

Kato et al., 2000; McCullough et al., 2006). Furthermore they possess a microtubule 

interacting and trafficking (MIT) domain that facilitates the interaction with members of 

the ESCRT-III complex (Hurley & Yang, 2008).  

USP8 presumably exhibits multiple effects in the endocytic pathway, explaining 

the discrepancies found in literature. Two studies based on siRNA-mediated USP8 

downregulation, showed that depletion of USP8 causes decreased degradation and 
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accumulation of  ubiquitinated receptors on aberrantly enlarged early endosomes (Bowers 

et al., 2006; Row et al., 2006). Additionally it was found that the cellular levels of ESCRT-

0 proteins are dramatically decreased under USP8 KD conditions, suggesting that USP8 

activity is required to prevent Hrs and STAM from proteasomal degradation (Row et al., 

2007). Both phenotypes could be rescued by the ectopic expression of GFP-tagged USP8, 

but not by catalytic inactive or MIT-domain mutant constructs (Row et al., 2007). A 

possible role of USP8 in sorting ubiquitinated receptors to lysosomal degradation is 

supported by the observation that USP8 not only deubiquitinates mono-ubiquitinated 

EGFR but can process also Lys48 and Lys63 chains (Row et al., 2006). In contrast with 

these studies is the observation of significantly reduced EGFR levels in conditional USP8 

KD mice. Similar to transient depletion also in USP8 KD mice ESCRT-0 protein levels are 

decreased (Niendorf et al., 2007), suggesting a role for USP8 in the regulation of the 

endocytic machinery rather than targeting receptors directly. One explanation for these 

conflicting results might be a different level of depletion. Mizuno and colleagues proposed 

in their first study that KD of USP8 enhances EGFR degradation (Mizuno et al., 2005). In 

a subsequent second study instead they found that a more complete depletion blocks 

degradation and induces endosomal clustering (Mizuno et al., 2006), validating previous 

observations from other groups (Bowers et al., 2006; Row et al., 2006). A more recent 

publication instead reflated the hypothesis that USP8 KD enhances EGFR degradation via 

an Hrs-dependent pathway (Berlin et al., 2010). Altogether the function of USP8 in 

regulating receptors fate is still under debate.  

The second in literature extensively discussed DUB involved in endosomal 

trafficking is AMSH, a member of the JAMM domain metalloprotease family. AMSH is 

deeply embedded in the endocytic machinery and interacts with several members of the 

ESCRT-complexes as well as with clathrin. The direct interaction with clathrin is crucial 

for the endosomal localization of AMSH (Nakamura et al., 2006). As many endocytic 
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proteins AMSH harbours a UIM domain to capture ubiquitinated substrates. AMSH was 

the first DUB for which a specificity for ubiquitin linkages was described. In vitro studies 

revealed that AMSH preferentially cleaves Lys63 chains (McCullough et al., 2006), the 

predominant form of receptor ubiquitination in the lysosomal pathway. Overexpression of 

a catalytic inactive mutant, supposed to work as `substrate trap`, leads to the accumulation 

of ubiquitin on endosomes, while KD of AMSH has no effect on total ubiquitin levels in 

cells (McCullough et al., 2004). Furthermore it has been shown that depletion of AMSH 

accelerates EGFR trafficking to lysosomes (Bowers et al., 2006; McCullough et al., 2004). 

Taken together this supports a basic model in which sorting of ubiquitinated receptors to 

lysosomes is dependent on the balance of E3 ligase and DUB activity. The principle of 

negative regulation of receptor degradation via DUB activity was also found for other 

membrane receptors. To give one example, siRNA mediated KD of USP10 in human 

airway epithelial cells accelerates the degradation of cystic fibrosis transmembrane 

conductance regulator (CFTR), while overexpression of wild-type USP10 promotes its 

endocytic recycling (Bomberger et al., 2010). Analogous to USP8 also USP10 is known to 

exert an indirect effect on receptor trafficking by regulating proteins of the sorting 

machinery. Overexpression of USP10 causes increased membrane levels of ENaC. This is 

due to USP10 activity which rescues a positive regulator of endosomal recycling, sorting 

nexin 3 (SNX3), from proteasomal degradation (Boulkroun et al., 2008).  

The family of DUBs important in the endocytic process is still increasing. 

Recently, USP6 was found to specifically regulate the internalization and trafficking of 

cargoes entering cells through NCE (Funakoshi et al., 2014). USP6 also known as TRE17 

was previously identified as an oncogene, even though the molecular mechanism and 

substrates involved in oncogenesis are not identified yet (Nakamura et al., 1992). It is 

known that USP6 localizes at endosomal membranes through its interaction with Arf6, a 

small GTPase involved in the recycling of NCE cargoes (Martinu et al., 2004). Funakoshi 
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et al. revealed that USP6 specifically counteracts membrane-associated RING-CH 

(MARCH) E3 ligases dependent ubiquitination of NCE cargoes, including CD44, CD98 

and MHCI. They suggest that USP6 activity facilitates recycling of NCE cargoes back to 

the PM thereby increasing surface levels of CD44, CD98 and MHCI (Funakoshi et al., 

2014).   

 

2.2.5 DUB activity in the secretory pathway  

Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), sorted 

into coat protein complex II (COPII) vesicles and shuttled to the Golgi complex. In 

contrast to the endocytic pathway ubiquitin is not directly involved in the sorting and 

trafficking of cargoes. However it is described that subunits of the secretory machinery are 

regulated via ubiquitin. Studies in S. cerevisiae could show that the yeast DUB Ubp3 

forms an active deubiquitinating complex with Bre5, able to rescue the COPII subunit 

Sec23b and ´-COP (a COPI subunit) from proteasomal degradation (Cohen et al., 2003a; 

Cohen et al., 2003b). This ensures cellular homeostasis by the maintenance of an efficient 

secretory pathway. In vitro studies revealed that also the human homologues USP10 and 

G3BP (Ras-GTPase-activating protein SH3 domain-binding protein) are together in a 

complex (Soncini et al., 2001), suggesting that the functional relationship of a specific 

USP-type DUB and the protein transport between the ER and Golgi seems to be 

evolutionary conserved.  

The most prominent role for ubiquitin in the secretory pathway is the quality 

control for protein folding in the ER. Misfolded luminal or integral membrane proteins are 

selected for ER-associated degradation (ERAD) (Ruggiano et al., 2014). Once detected, 

misfolded proteins are retrotranslocated from the ER to the cytoplasm and subjected to 

proteasomal degradation. In this process ERAD substrates are polyubiquitinated by E3 

ligases such as Hrd1. Ubiquitinated proteins are recognized by the UBDs of ubiquitin 
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regulatory X (UBX) proteins, which recruit the AAA ATPase p97 (also known as VCP), 

whose activity is essential for the retrotranslocation. Therefore ubiquitination in this 

pathway is a recognition signal to recruit the driving force p97 rather than a determinant 

for sorting and trafficking (Lemus & Goder, 2014).  In the last years several DUBs have 

been described to play a role in ERAD. USP19 is anchored in the ER membrane and 

involved in the unfolded protein response. It has been shown that USP19 can rescue two 

typical ERAD substrates, CFTRF508 as well as the T-cell receptor alpha (TCR) from 

proteasomal degradation (Hassink et al., 2009). An array of DUBs have been described to 

interact with p97 or other components of the ERAD machinery, including, YOD1, VCPIP1, 

ataxin 3 and USP13 (Liu & Ye, 2012). The degree of redundancy of this p97-associated 

DUBs remains an open question.  

 

 The EGFR system 3

The EGFR, a receptor tyrosine kinase, is known to be a key regulator of normal cell 

growth and differentiation (Ullrich & Schlessinger, 1990); its aberrant activity is often 

associated with pathological processes (Roskoski, 2014a). The EGFR is the best 

characterized member of the ErbB-family, composed by EGFR/ErbB1, ErbB2, ErbB3 and 

ErbB4 (Carpenter, 2003; Citri et al., 2003). They all possess a similar structure that is 

composed by: a glycosylated extracellular N-terminal part containing a ligand-binding 

domain and a dimerization arm, a short hydrophobic transmembrane region, and an 

intracellular part harbouring the protein tyrosine kinase domain and a C-terminal 

regulatory region (Roskoski, 2014b). This structure enables signal transduction across the 

PM and the induction of distinct cellular responses (Figure 7).   
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3.1 Ligand-induced EGFR signal transduction 

So far seven EGFR ligands have been identified to activate the receptor by binding to the 

extracellular domain, namely EGF, transforming growth factor alpha (TGF), heparin-

binding EGF-like growth factor (HB-EGF), amphiregulin, -cellulin, epiregulin and 

epigen (Higashiyama et al., 1992; Massague, 1990; Shoyab et al., 1988; Strachan et al., 

2001; Toyoda et al., 1995). One characteristic is a consensus sequence consisting of six 

spatially conserved Cys residues, known as the EGF motif. All ligands are type I 

transmembrane proteins which in order to be released are cleaved by cell surface proteases 

(Yarden, 2001). Binding of EGF to EGFR has been proposed to induce a conformational 

change exposing the dimerization arm and shifts the monomer-dimer equilibrium to the 

dimeric state (Ogiso et al., 2002). Subsequently the intrinsic tyrosine kinase domain is 

activated and key Tyr residues within the C-terminal region become phosphorylated and 

serve as specific docking sites. This promotes the recruitment of phosphotyrosine binding 

proteins thereby initiating several signalling pathways (Figure 7), including: 

(1) the Ras/Raf/MAPK pathway; mediated by the adaptors growth factor receptor-

bound protein (Grb2) and Shc (Cooper et al., 1984), 

(2) the PI3K pathway acting through the kinase Akt and the transcription factor nuclear 

factor κB (NF-κB); mediated by the adaptors Grb2 and Grb2-associated binder 1 

(Bjorge et al., 1990),  

(3) the PLC-γ pathway and the downstream calcium- and PKC-mediated cascades 

(Meisenhelder et al., 1989)  

(4) and the signal transducers and activators of transcription (STAT) pathway. 

Since all these pathways are involved in cellular key programmes like survival, 

proliferation, differentiation and migration, EGFR signalling has to be tightly regulated. 

The major negative feedback regulation is the downmodulation of the receptor via 

endocytosis.  
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Figure 7: Schematic representation of the major EGFR signalling pathways  

EGFR is activated upon binding of its cognate ligands, leading to dimerization, trans-

phosphorylation and activation of signalling pathways. Key signalling molecules of the 

major EGFR signalling pathways are depicted [taken from (Goffin & Zbuk, 2013)]. 

 

 

3.2 EGFR endocytosis and trafficking 

Activation of EGFR through binding of a cognate ligand activates signalling but also 

accelerates receptor endocytosis. EGFR can be internalized through both CME and NCE 

pathway (Sigismund et al., 2005) (Figure 8). The distribution of the receptor into these 

two entry routes has a major impact on the final fate of the EGFR and is mainly regulated 

by ligand concentration (Sigismund et al., 2008). CME is characterized by high 

internalization rates of EGFR and is already observed at low ligand concentrations (≤1-2 

ng/ml). The rate of EGFR uptake decreases with increasing EGF concentrations, as NCE 

becomes active (Sigismund et al., 2013). There was a long-standing debate regarding the 

“physiological” concentrations of EGF, since there was a historical erroneous perception 

that only low doses of EGF are physiological. However, it is known that, while plasma 

EGF concentrations are around 1 ng/ml (Hayashi & Sakamoto, 1988), EGF levels in serum 
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as well as in distinct body fluids and organs are significantly higher (Oka & Orth, 1983; 

Westergaard et al., 1990). Therefore cells are exposed to a wide range of EGF ligand 

concentrations, ranging from a few to a few hundred ng/ml. 

As already mentioned it has been shown that ligand concentrations can affect the 

choice of entry route (Sigismund et al., 2005). While at low doses of EGF (<3 ng/ml), 

receptors undergo exclusively CME, it was demonstrated by Sigismund et al. that at higher 

ligand concentrations (10-100 ng/ml) a substantial fraction of EGFR (~40%) is internalized 

via a clathrin-independent pathway (Sigismund et al., 2005). EGFRs internalized through 

CME are mostly recycled back to the plasma membrane and therefore signalling is 

sustained (Figure 8). By contrast, EGFRs entering cells through NCE are preferentially 

targeted to lysosomal degradation and signalling is attenuated (Sigismund et al., 2008). 

These results suggest that different internalization pathways evolved to deal with the huge 

variety of physiological EGF concentrations. This mechanism facilitates the maximization 

of the stimulation efficiency at low ligand concentrations by protecting receptors from 

degradation. On the other hand cells are protected from overstimulation by directing 

receptors to lysosomal degradation at high EGF concentrations (Sigismund et al., 2008). 

However, it has been shown that not all cell types act in this way, thus the presence and 

significance of the NCE pathway to internalize EGFR clearly depends on the cellular 

context (Kazazic et al., 2006; Sigismund et al., 2013). 

 

3.3 Role of ubiquitin in EGFR endocytosis 

Casitas B-lineage lymphoma c (c-Cbl) was found to be the major E3 ligase for many RTKs 

including the EGFR (Levkowitz et al., 1999; Levkowitz et al., 1998). Upon stimulation 

with growth factors c-Cbl is recruited to the PM and can bind either directly to the 

regulatory region of EGFR (Tyr1045-P) or indirectly through the interaction with the 

adaptor protein Grb2 (Figure 8). Mass spectrometry analysis examined that the kinase 
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domain of EGFR is mainly monoubiquitinated (~49% of the modified receptor) but also 

polyubiquitinated with Lys63 linked chains (~40%) (Huang et al., 2006). It is well 

established that ubiquitination is essential to target EGFR for lysosomal degradation 

(Haglund & Dikic, 2012; Huang et al., 2013) (see also chapter 2.1). The role of receptor 

ubiquitination in early endocytic steps instead is more complex and still not fully 

understood. This might be also due to the presence of multiple internalization pathways 

with different requirements. Indeed, it has been shown that EGFR ubiquitination is 

essential for NCE, while it is dispensable in clathrin-dependent endocytosis (Huang et al., 

2007; Sigismund et al., 2005).  

A recent study describes the molecular mechanism that regulates the transition 

from CME- to NCE-mediated EGFR endocytosis, by demonstrating that ubiquitination of 

EGFR at the PM is threshold controlled (Sigismund et al., 2013). Upon stimulation with 

growth factors EGFR becomes phosphorylated at distinct Tyr residues. This permits the 

cooperative binding of the E3 ligase c-Cbl, in complex with Grb2, at two specific EGFR 

phosphorylation sites (Tyr1068 and Tyr1086) or directly to pTyr1048. Increasing 

concentrations of EGF results in a higher probability of EGFR being simultaneously 

phosphorylated at Tyr1048 and one of the two other critical pTyr residues (Tyr1068 and 

Tyr1086), on the same EGFR moiety (Figure 8). Efficient recruitment of c-Cbl induces 

EGFR ubiquitination, thus being the major signal for lysosomal degradation and triggers 

the internalization via NCE (Sigismund et al., 2013).  

The requirement of receptor ubiquitination for the initial steps of CME is rather 

controversial (Haglund & Dikic, 2012). The first indication that ubiquitination is 

dispensable for this pathway came from an EGFR mutant that lacks Tyr1045 and is 

therefore only weakly ubiquitinated. It has been shown that this mutant undergoes normal 

internalization via CME (Jiang & Sorkin, 2003). This is supported by further studies in 

which mutation of the three sites for Cbl binding (Sigismund et al., 2013) or the major 
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ubiquitination sites (16KR EGFR mutant) do not affect EGFR CME (Huang et al., 2007; 

Huang et al., 2006). Interestingly, the 16KR EGFR mutant still depends on the presence of 

c-Cbl for its internalization via CME. This might be due to a possible function of c-Cbl as 

adaptor protein or to the ubiquitination of other endocytic components of the clathrin 

machinery.  

A recent study suggests that clathrin-dependent internalization of EGFR is 

regulated through multiple mechanisms (Goh et al., 2010). This is based on the observation 

of impaired internalization of EGFR mutated in 21 Lys residues known to be major sites of 

protein interactions or posttranslational modifications, respectively. Goh et al. propose that 

EGFR internalization is collectively regulated through ubiquitination of Lys residues in the 

kinase domain of EGFR, acetylation of Lys residues in the C-terminus and by the 

interaction with AP-2 or with the adaptor protein Grb2, respectively. All those mechanisms 

are thought to be redundant and their importance might vary depending on cell type and 

experimental conditions (Goh et al., 2010).   



50 

 

 

 

 

Figure 8: Ubiquitin regulates EGFR endocytosis 

Depending on EGF concentration EGFR undergoes clathrin-dependent or clathrin-

independent internalization. CME targets receptors predominantly to recycling and 

sustains the EGFR signalling capacity, while EGFR internalization via NCE is mostly 

associated with receptor degradation in the presence of high ligand concentrations. Middle: 

schematic representation of EGFR ubiquitination (Ub), phosphorylation (pY) and 

endocytic routes as a function of ligand concentration. Bottom: cooperativity mechanism 

responsible for the EGFR–Ub threshold. Three phosphotyrosines are critical for the 

cooperative recruitment of c-Cbl to active EGFR: pY1045 binds directly to c-Cbl, 

pY1068/pY1086 bind indirectly to c-Cbl:Grb2 complex [taken from (Polo et al., 2014)].  
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3.4 Role of DUBs in EGFR endocytosis  

The two best studied DUBs involved in EGFR endocytosis are AMSH and USP8 (already 

described in chapter 2.2.4.). However the knowledge about the impact of DUBs in EGFR 

endocytosis was emerging in recent years. Cezanne-1 (also known as OTUD7B), a Lys11 

chain specific DUB of the OTU family (Mevissen et al., 2013), was described to oppose 

EGFR degradation thus enhancing receptor signalling (Pareja et al., 2012). Cezanne-1 was 

found to be frequently amplified in breast cancer patients suggesting a role in tumour 

progression (Pareja et al., 2012). Analogous to these findings, it was reported that USP2a 

opposes EGFR degradation and co-localizes with EGFR at early endosomes (Liu et al., 

2013). Overexpression of USP2a but not the catalytic inactive mutant caused a decrease in 

EGFR ubiquitination and prolonged downstream signalling. Depletion of USP2a displayed 

the reverse phenotype. Furthermore USP2a and EGFR were found to be concomitantly 

overexpressed in non-small cell lung cancers (NSCLC) (Liu et al., 2013). Recently, USP17 

expanded the group of DUBs controlling EGFR endocytosis (Jaworski et al., 2014). It was 

reported that USP17 is essential for the internalization of EGFR and TfR via CME, and 

that the expression of USP17 is induced upon EGF stimulation. De la Vega et al. suggested 

that USP17 might play a general role in clathrin-dependent receptor endocytosis, 

presumably by regulating essential components of the endocytic machinery (Jaworski et 

al., 2014). USP18 instead was found in a siRNA screen to regulate EGFR expression on a 

translational level (Duex &Sorkin, 2009). Downregulation of USP18 leads to reduced 

translation of EGFR mRNA, while other RTKs are unaffected. Overexpression of USP18 

shows the reverse phenotype. In a second study Duex et al. revealed that USP18 is a 

negative regulator of the microRNA miR7. Depletion of USP18 upregulates miR7, which 

in turn inhibits EGFR expression (Duex et al.., 2011).  
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 USP25 4

USP25 belongs to the USP family of DUBs. It was first identified in 1999 in one of the 

lowest gene-density regions of the human genome (Valero et al., 1999). Since USP25 is 

located on the 21q chromosome it seems plausible to be involved in phenotypes of the 

Down’s syndrome. Indeed, in average a 1.7-fold overexpression of USP25 was observed in 

trisomic versus disomic samples (Valero et al., 2001). However, due to the lack of detailed 

studies, the putative contribution of USP25 to the Down’s syndrome phenotype remains so 

far unravelled.  

Northern blot analyses proved that USP25 is ubiquitously expressed in human 

tissues at a basal level (Valero et al., 1999). There are three alternatively spliced isoforms 

of USP25 (Valero et al., 2001). The shortest USP-isoform (USP25a; 122kDa) misses exon 

19 and was found to be expressed in all analysed tissues. The second isoform USP25b (126 

kDa) contains exon 19b and displays low expression levels in all tissues detected except 

muscle and heart. USP25m (130 kDa) is the longest isoform comprising the whole exon 19 

and is specifically expressed in heart and skeletal muscle (Valero et al., 2001). USP25 

shares the same exon intron structure with USP28 and their nucleotide and amino acid 

identities are 56% and 51%, respectively, suggesting that they evolved from a common 

ancestor (Valero et al., 2001).   

USP25 possesses three UBDs at the N-terminus, one UBA and two UIMs, which 

can bind ubiquitin in a non-covalent manner (Figure 9). Furthermore, a SUMO interaction 

domain (SIM) was found between the UBA domain and the first UIM (Meulmeester et al., 

2008). As all DUBs of the USP-type USP25 has a USP domain, containing the catalytic 

triad, followed by a coiled coil domain, which also seems to be necessary for the catalytic 

activity (Denuc et al., 2009). Typically for USP-type DUBs, USP25 has no chain linkage-

specificity and can cleave both Lys63 and Lys48 linked chains in vitro and in vivo (Zhong 

et al., 2013b).  
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USP25 has three UBDs at the N-terminus, one ubiquitin-associated (UBA) domain and 

two ubiquitin-interacting motifs (UIMs). A SUMO-interacting motif (SIM) is located 

between the first two UBDs. The catalytic core domain (USP) harbours the catalytic active 

Cys and is followed by a coiled coil region.  

 

In recent years several functions and targets of USP25 emerged. For instance, the heart and 

muscle specific isoform USP25m was found to be upregulated during myogenesis (Bosch-

Comas et al., 2006). USP25m interacts with three sarcomeric proteins involved in muscle 

differentiation and maintenance: actin alpha-1, filamin C and myosin binding protein C1 

(MyBPC1). Overexpression of USP25m, but not other USP25 isoforms, rescues MyBPC1 

from proteasomal degradation (Bosch-Comas et al., 2006).  

It was reported that USP25 interacts with the E3 ligase Hrd1 as well as with the 

AAA ATPase VCP/p97, both known to be involved in the ERAD pathway (Blount et al., 

2012). Overexpression of USP25 caused higher steady state levels of typical ERAD 

substrates, like CD3 a transmembrane subunit of the T cell receptor, and -Amyloid 

Precursor Protein (APP). This depends on the catalytic activity and the UBDs of USP25, 

suggesting that USP25 is able to rescue ERAD substrates from proteasomal degradation by 

counteracting the E3 ligase Hrd1 (Blount et al., 2012). 

USP25 is a target of several posttranslational modifications, regulating USP25 

activity and expression levels. Phosphorylation of USP25 by the non-receptor tyrosine 

kinase SYK leads to decreased cellular levels of USP25 in a proteasome independent way 

(Cholay et al., 2010). This might be an additional level of regulation, since USP25 was 

Figure 9: Domain structure of USP25 
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found by a high-throughput study for protein stability in HEK293T cells to be a target for 

proteasomal degradation (Yen et al., 2008).  

An elegant publication of the Melchior lab describes USP25 as an interaction 

partner and target for SUMO2/3 (Meulmeester et al., 2008). They identified a SIM at the 

N-terminus that is essential for the specific binding of USP25 to SUMO2/3. Interestingly, 

USP25 is also a substrate for SUMO2/3 modifications at two Lys residues located within 

the first UIM (Lys99) or close to the second UIM (Lys141). Sumoylation of USP25 does 

not alter its catalytic activity, since ubiquitin-AMC can be still processed. However, 

modification with SUMO2/3 impaired ubiquitin binding and therefore the hydrolysis of 

ubiquitin chains was affected (Meulmeester et al., 2008). This might be provoked by a 

direct inhibition of the UBDs through the modification of the two Lys residues with 

SUMO2/3. Alternatively the SIM-SUMO interaction might cause a conformational change 

and consequently UBDs are inaccessible for ubiquitin chain binding. Lys99 was described 

to be a target for monoubiquitination as well. In contrast to sumoylation it was suggested 

that ubiquitination activates USP25, since a USP25 Lys99 mutant possess a decreased 

ability to rescue the specific substrate MyBPC1 from proteasomal degradation (Denuc et 

al., 2009).  

Recently USP25 activity was connected to NF-B signalling by different groups 

(Zhong et al., 2012; Zhong et al., 2013a; Zhong et al., 2013b). It has been shown that 

USP25 is a negative regulator of interleukin17-mediated signalling and inflammation by 

targeting TRAF5 and TRAF6 modified with Lys63 linked chains (Zhong et al., 2012). In a 

subsequent study Zhong and colleagues revealed a role for USP25 in Toll-like receptor 

(TLR) signalling and innate immunity, to specifically reverse the Lys48 chains on TRAF3 

(Zhong et al., 2013a). Finally, it was reported that USP25 is a negative regulator of the 

virus-triggered type I interferon signalling pathway (Zhong et al., 2013b).  
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There is increasing evidence that USP25 might be also involved in oncogenesis. 

USP25 was found to be more than threefold overexpressed in breast cancer tissue in 

respect to normal adjacent tissue (Deng et al., 2007). Moreover, USP25 is implicated in the 

epithelial to mesenchymal transition (EMT) in NSCLC. Li and colleagues demonstrated 

that USP25 is a downstream target of miR-200c (Li et al., 2014). The expression of miR-

200c negatively correlates with the clinical stage of lymph node metastasis in NSCLC 

patients, while overexpression of miR-200c inhibits migration, invasion and EMT in vitro 

and lung metastasis formation in mice. Furthermore, USP25 was found to be upregulated 

in NSCLC patients, correlating with clinical stage and lymphatic node metastasis. Taken 

together this suggests that expression of miR-200c has a tumour suppressive effect in 

NSCLC by downregulating USP25 mRNA levels (Li et al., 2014).  

 

 

 Cullin 3 5

5.1 Structure and regulation of Cullins 

Cullins are multimeric protein complexes, which exert ubiquitin E3 ligase activity. They 

are composed by a Cullin scaffold protein that bridges a RING E3 ligase bound at the C-

terminal domain (CTD), and a substrate adaptor bound at the N-terminal domain (NTD) 

(Figure 10). Two RING ligases (RBX1 and RBX2) are known to interact with the seven 

Cullin scaffold proteins (CUL1, CUL2, CUL3, CUL4a, CUL4b, CUL5, CUL6 and CUL7). 

The substrate specificity is determined by a substrate adaptor and each Cullin is associated 

with a different family of substrate receptors. In the case of CUL3 these are Bric-a-brac, 

Tramtrack, Broad-complex (BTB) domain containing proteins (Pintard et al., 2003; Xu et 

al., 2003). The combinatorial assembly allows a huge diversity of Cullin complexes, 

accounting for the multitude of cellular functions and known substrates (Genschik et al., 

2013). Cullin activity is known to be regulated by neddylation (Figure 10). In its inactive 
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conformation the transfer of ubiquitin is sterically unlikely due to the distance between 

bound substrate and E2 enzyme. A dramatic conformational change upon neddylation of 

the Cullin C-terminus diminishes the gap between E2 and substrate, and allows the 

ubiquitin transfer (Duda et al., 2008).  

 

 

Figure 10: Structure and regulation of Cullins 

The N-terminal domain (NTD) of a Cullin scaffold binds adaptor protein and substrate 

receptor, while the C-terminal domain (CTD) is associated with the E3 ligase (RBX1) and 

the E2 enzyme. In the unneddylated open conformation, substrate and the E2 loaded with 

ubiquitin are distant from each other. Upon neddylation of the CTD the Cullin complex 

undergoes a dramatic conformational change that brings substrate and E2 enzyme in close 

proximity, allowing ubiquitin transfer [taken from (Lu & Pfeffer, 2014)].  

 

 

5.2 Cullin 3 in endocytosis 

In recent years evidences that CUL3 has an impact on receptor endocytosis were 

increasing. In Arabidopsis thaliana a PM localized CUL3 dependent pathway controls the 

endocytosis of the photoreceptor phot1. Polyubiquitination directs phot1 to lysosomal 

degradation, while monoubiquitination or multi-monoubiquitination serves as a signal for 

recycling back to the PM, both mediated by CUL3
NPH3 

(Roberts et al., 2011). Also in 

Caenorhabditis elegans a potential CUL3 pathway involved in receptor-mediated 
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endocytosis was reported. Based on a genetic screen in which kel8 mutants (substrate 

receptor protein) accumulated glutamate receptors (GluRs) at postsynaptic membranes, it 

was suggested that CUL3
KEL8

 ubiquitinates GluR-1, promoting its endocytosis and 

proteasomal degradation (Schaefer & Rongo, 2006). A recent publication proposes that 

CUL3-mediated ubiquitination regulates the trafficking along the endosomal pathway in 

mammalian cells (Huotari et al., 2012). The endosomal trafficking of two well-known 

cargoes, namely the influenza A virus (IAV) and the EGFR, is affected by the siRNA-

mediated depletion of CUL3. While the IAV internalization is normal, the virus 

accumulates in the late endocytic compartment and is unable to penetrate into the 

cytoplasm, thus the infection cycle is disrupted. Also the lysosomal degradation of EGFR 

is significantly delayed and the receptors accumulate on late endosomes. While early 

endosomes appear morphologically normal, late endosomes are increased in size and 

mostly devoid of ILVs in CUL3-depleted cells. Taken together this suggests that CUL3-

based E3 ligase complexes are required for the proper maturation of late endosomes 

(Huotari et al., 2012). However, the BTB domain-substrate receptors as well as the CUL3 

endocytic targets remain unidentified and further studies are needed to refine the role of 

CUL3 in the endocytic pathway.  
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MATERIAL AND METHODS 

 Solutions 1

1.1 Phosphate-buffered saline  

NaCl 137 mM 

KCl 2.7 mM 

Na2HPO4 10 mM 

KH2PO4 2 mM 

 

8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, and 0.24 g of KH2PO4 were dissolved in 

800 ml of distilled water. The pH was adjusted to 7.4 with HCl and the volume was 

brought to 1 litre with distilled H2O. 

 

1.2 Tris-HCl (1 M) 

121.1 g of Tris bae were dissolved in 800 ml distilled H2O. The pH was adjusted to 7.4, 7.6 

or 8.0 with HCl, and distilled H2O was added to bring the volume up to 1 litre. 

 

1.3 Tris-buffered saline (TBS) 

NaCl 137 mM 

KCl 2.7 mM 

Tris-HCl pH 7.4 25 mM 

 

8 g of NaCl, 0.2 g of KCl and 3 g of Tris base were dissolved in 800 ml of distilled H2O. 

The pH was adjusted to 7.4 with HCl and distilled H2O was added to bring the volume up 

to 1 litre. 
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1.4 10X SDS-PAGE running buffer 

Glycine 192 mM 

Tris-HCl, pH 8.3 250 mM 

SDS 1% 

 

1.5 10X transfer buffer 

Glycine 192 mM 

Tris-HCl, pH 8.3 250 mM 

 

For 1X transfer buffer, the 10X stock was diluted 1:10 with ddH2O and 20% v/v methanol. 

 

1.6 50X TAE (Tris-Acetate-EDTA)  

Tris base 2 M 

Acetic acid 1 M 

EDTA pH 8 10 mM 

 

The pH was adjusted to 8.5 with HCl and distilled H2O was added to bring the volume up 

to 1 litre. 

 

 Protein buffers 2

2.1 1X JS buffer 

HEPES, pH 7.4 50 mM 

NaCl 150 mM 

Glycerol 10% 

Triton X-100 1% 
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MgCl2 1.5 mM 

EGTA 5 mM 

 

2.2 1X RIPA buffer 

Tris HCl, pH 7.6 50 mM 

NaCl 150 mM 

NP-40 1% 

SDS 0.1% 

Deoxycholic acid 0.5% 

EGTA 5 mM 

 

500X Protease inhibitor cocktail from Calbiochem, sodium pyrophosphate pH 7.5 20 mM, 

sodium fluoride 250 mM, PMSF 2 mM, and sodium orthovanadate 10 mM were added to 

the buffer just before use. 

 

2.3 1X Laemmli buffer 

SDS 2% 

Tris-HCl pH 6.8 62.5 mM 

Glycerol 10% 

Bromophenol blue 0.1% 

.Mercaptoethanol 5% (v/v) 

 

SDS-PAGE sample buffer was prepared as a 4X or 2X stock solution and stored at -20°C, 

protected from light. 
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 Reagents  3

Human recombinant EGF was from Vinci-Biochem. Human Transferrin and doxycycline 

hydrochloride was from SIGMA. Human ALEXA-EGF was from Molecular Probes.
 125

I-

EGF and 
125

I-Tf was from Perkin Elmer.  

 

3.1 Antibodies 

The following antibodies were used (biochemistry): polyclonal anti-EGFR (home-made, 

directed against aa 1172-1186 of human EGFR), monoclonal anti-EGFR (m108 

hybridoma, directed against the extracellular domain of human EGFR), monoclonal anti-

Eps15 (home-made, directed against aa 2-330 of murine Eps15), polyclonal anti-USP25 

(home-made, directed against human full length GST-USP25) and monoclonal anti-

Epsin1/2 (home-made, directed against aa 249-401 of human Epsin1), polyclonal anti-

USP25 (kindly provided by Frauke Melchior), anti-Hrs (kindly provided by Harald 

Stenmark) and anti-pY334-Hrs (kindly provided by Sylvie Urbé), anti-CUL3 (kindly 

provided by Matthias Peter). Anti-pY(1068)EGFR, anti-pY(1045)EGFR, anti-Akt (9272), 

anti-pS(473)Akt (3787), anti-phospho-p44/42-MAPK (Thr202/Tyr204, 4695), anti-

phospho-p44/42 MAPK (Thr202/Tyr204) (Cell Signaling – 9106), were from Cell 

Signaling. Anti-vinculin (V9131) and anti-tubulin (T5168) were from SIGMA. Anti-

USP10 (ab72486) was from abcam. Anti-CHC, anti-c-Cbl (clone 17), and anti-Grb2 were 

from BD Pharmingen. Anti-HA (clone 16B12) was from Convance. Anti-Cbl-b was from 

Santa Cruz, anti-Nedd4 was home-made. Anti-Ubiquitin: ZTA10, generated in-house, 

P4D1 from Santa Cruz or FK2 –Enzo Life Science BML-PW8810.  

The following antibodies were used in immunofluorescence: anti-EGFR (13A9, kindly 

provided by GENENTECH), anti-USP25 (home-made), anti-EAA-1 (N-19, Santa Cruz), 

anti-Lamp-1 (CD107a, BD Pharmingen), secondary Ab conjugated to Cy3 or FITC from 

Amsherham or Alexa488, Alexa555 and Alexa647 from Molecular Probes. 
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3.2 RNAi oligos 

3.2.1 Negative control siRNA 

The following scrambled siRNA was used as a negative control in all assays: 

UGCCUAAGGAGAGAAAGAGUUUCUC 

3.2.2 Specific RNAi oligos 

The following siRNAs were used as reported in the figures: 

 USP25 S1 (Stealth Invitrogen): CAGGAGGAGACAACUUACUACCAAA 

 USP25 S2 (Stealth Invitrogen): CACCAGAGAUUUGCAGGAAAGCAUA 

 USP10 S1 (Stealth Invitrogen): CGGCCACCUGGAUAUUACAGCUAUU 

 USP10 S2 (Stealth Invitrogen): CCAGGUGGUGAAACCAACUGCUGAA 

 DynaminI (Riboxx): UUUCACAAUGGUCUCAAAGCCCCC 

 DynaminII (Riboxx): UGAACUGCAGGAUCAUGUCCCCC 

 Clathrin Heavy Chain (Riboxx): GAAGAACUCUUUGCCCGGAAAUUUA 

 Reticulon-3 (Stealth Invitrogen): CCCUGAAACUCAUUAUUCGUCUCUU 

 Cullin 3 (5): CAACACTTGGCAAGGAGACTT (Sumara et al., 2007) 

 Cullin 3 (D2): CAAACTATTGCGGGTGACTTT (Sumara et al., 2007) 

 

3.3 TaqMAN assays for qRT-PCR (Applied Biosystems) 

 USP25: Hs00203650_m1 

 EGFR: Hs01076078_m1 

 Transferrin: Hs00951083_m1 

 18S: Hs99999901_s1 

 GAPDH: Hs99999905_m1 
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 Cloning techniques 4

4.1 Agarose gel electrophoresis 

All cloning steps were performed according to standard protocols (Wood, et al., 1983). 

DNA samples were loaded on 0.8%-2% agarose gels along with DNA markers (1 kb DNA 

Ladder, NEB). Gels were made in TAE buffer containing Gel Red (Biotium), according to 

manufacturere´s instructions, and run at 100 V until desired separation was achieved. DNA 

bands were visualized under a UV lamp. 

 

4.2 Minipreps 

Individual colonies were used to inoculate 3 ml LB (containing the appropriate antibiotic) 

and grown overnight at 37°C. Bacteria were transferred to reaction tubes and centrifuged 

for 5 min at 16000 x g using a 5415 R centrifuge (Eppendorf). Minipreps were performed 

with the Wizard Plus SV Minipreps Kit (Promega) following manufacturer’s instructions. 

DNA was eluted in 30 μl nuclease free H2O. 

 

4.3 Diagnostic DNA restriction 

Between 0.5 and 5 μg DNA were digested for 2 h at 37°C with 10-20 units of restriction 

enzyme (New England Biolabs). For digestion, the volume was filled up to 20-50 μl with 

the appropriate buffer and distilled H2O. 

 

4.4 Large scale plasmid preparation 

Cells containing transfected DNA were expanded into 250 ml cultures overnight. Plasmid 

DNA was isolated from these cells using the Qiagen Maxi-prep kit according to 

manufacturer’s instructions. 
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4.5 Transformation of competent cells 

An aliquot of competent cells (TOP10 from Invitrogen) was thawed on ice prior to the 

addition of plasmid DNA. Cells were incubated with DNA on ice for 30 min and then 

subjected to heat shock for 30 s at 42°C. Cells were returned on ice for 5 min. 300 μl of 

SOC was added and cells were incubated at 37°C for 60 min before plating them onto agar 

plates containing the appropriate antibiotic. Plates were incubated overnight at 37°C. 

 

 Constructs and plasmids  5

GFP-tagged human USP25 wild-type was kindly provided by Sylvie Urbé. The catalytic 

inactive mutant USP25C178A was cloned by site directed mutagenesis using the following 

oligonucleotide: CTA AAG AAT GTT GGC AAT ACT GCT TGG TTT AGT GCT GTT 

ATT C. Human USP10 wild-type and catalytic inactive mutant USP10C488A was kindly 

provided by Giulio Draetta. HA-tagged human CUL3 wild-type was kindly provided by 

Matthias Peter. 

HA-tagged constructs for the stable cell lines were PCR subcloned into pSLIK vectors 

(Invitrogen), through restriction enzyme digestion (New England Biolabs) and ligation 

(New England Biolabs). The following oligonucleotides were used:  

 HAUSP25SacIIfwd: GGC CCG CGG ATG TAC CCA TAT GAT GTT CCA GAT 

TAC GCT ACC GTG GAG CAG AAC GTG CTG CAG C 

 USP25XhoIrev: GGC CTCGAG TTA TCT TCC ATC AGC AGG AGT TCG 

The following oligonucleotides were cloned into the pENT (Invitrogen) for inducible 

stable KD cell lines: 

 sh3746_USP25fwd: AGC GCG CAC TGT GTA CGA TAC ATA ATT AGT GAA 

GCC ACA GAT GTA ATT ATG TAT CGT ACA CAG TGC T 

 sh3746_USP25rev: GGC AAG CAC TGT GTA CGA TAC ATA ATT ACA TCT 

GTG GCT TCA CTA ATT ATG TAT CGT ACA CAG TGC G 
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 sh2962_USP25fwd: AGC GCA CAG AGG ACA TGA TGA AGA ATT AGT 

GAA GCC ACA GAT GTA ATT CTT CAT CAT GTC CTC TGT A 

 sh2962_USP25rev: GGC ATA CAG AGG ACA TGA TGA AGA ATT ACA TCT 

GTG GCT TCA CTA ATT CTT CAT CAT GTC CTC TGT G 

All constructs were sequence verified. 

 

 Cell culture 6

6.1 Cell culture media 

Human epithelial cervical cancer HeLa cells were grown in GlutaMAX™-Minimum 

Essential Medium (MEM, Gibco Invitrogen), supplemented with 10% Fetal Bovine Serum 

High Performance (South American from Invitrogen), sodium pyruvate 1 mM (Euroclone) 

and non-essential aminoacids (Euroclone). 

HEK293T helper cells and human epithelial cervical cancer HeLa-Oslo cells were grown 

in Dulbecco’s Modified Eagle’s Medium (DMEM, Lonza), supplemented with 10% Fetal 

Bovine Serum High Performance (South American from Invitrogen) and 2 mM glutamine.  

MDA-MB231 cells were grown in Gibco® RPMI 1640 medium (Gibco Invitrogen) 

supplemented with 10% Fetal Bovine Serum High Performance (North American from 

Invitrogen) and 2 mM glutamine.  

 

6.2 Transfections 

6.2.1 RNAi transfections 

RNAi transfections were performed using Lipofectamine RNAi MAX reagent from 

Invitrogen, according to manufacturer’s instructions. Oligos for mRNA silencing were 

designed with BLOCK-iT™ RNAi Designer from Invitrogen. Cells were subjected to a 

single transfection in suspension (in the case of dynamin and CUL3) or to double 

transfection (first KD in suspension and second KD in adhesion), with 10 nM RNAi oligo 
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(for clathrin and CUL3 KD 20 nM RNAi oligo was used) and analyzed 5 days after 

transfection (except for dynamin and CUL3, 2 days after transfection).  

6.2.2 DNA transfections 

DNA transfections were performed using Lipofectamine reagent from Invitrogen Life 

Technologies, according to manufacturer’s instructions. Cells were plated at 80% 

confluency on 10 cm cell culture dishes. The day after cells were transfected with 5 μg 

DNA and 30 μl Lipofectamine. 24 h after transfection cells were lysed and subjected to 

immunoprecipitation or pull-down assay. In case of internalization assays with ALEXA-

EGF cells were seeded on coverslips 24 h post-transfection and internalization assays were 

performed 48 h post-transfection.  

 

6.3 Retroviral and lentiviral infection 

Stable inducible USP25 KD or USP25 overexpression (USP25wt or USP25C178A) HeLa 

cells were produced by lentiviral infection. HA-USP25 wild-type, HA-USP25C178A or 

annealed oligonucleotides for USP25 KD were cloned into pENT and recombination into 

pSLIK_Neo was performed according to the standard protocol (Shin et al., 2006). All 

constructs were sequence verified. 10 ug of pSLIK constructs were transfected in 

HEK293T cells by CaCl2 together with plasmids encoding for GAG, POL, ENV (VSVG), 

and REV retroviral proteins. After 24 h viral supernatant was collected and passed through 

PVDF 0.45 µm Millipore filters. The supernatant was used to infect HeLa target cells after 

adding 8 µg/ml polybrene. Medium was replaced with standard HeLa medium after two 

cycles of infection. 48 h after infection, selection of infected cells was performed by 

adding 400 µg/ml neomycin.  
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 Protein procedures 7

7.1 Cell lysis  

After washing with PBS 1X, cells were lysed directly in cell culture plates by adding JS or 

RIPA buffer. Lysates were collected by using a cell-scraper and clarified by centrifugation 

at 16000 x g for 20 min at 4ºC using a 5415 R centrifuge. Protein concentration was 

measured by Bradford assay (Biorad) following manufacturer’s instructions. 

 

7.2 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

For the resolution of proteins gradient (4-20%) precast gels (Biorad) were used or were 

made from a 30%, 37,5:1 mix of acrylamide: bisacrylamide (Sigma). As polymerization 

catalysts, 10% ammonium persulphate (APS) and TEMED were used. 

 

Separating gel mix 

 Gel % 

 6 8 10 

Acrylamide mix (ml) 2 2.7 3.3 

1.5 M Tris HCl, pH 8.8 (ml) 2.5 2.5 2.5 

ddH2O (ml) 5.3 4.6 4 

10% SDS (ml) 0.1 0.1 0.1 

10% APS (ml) 0.1 0.1 0.1 

TEMED (ml) 0.01 0.01 0.01 

TOTAL (ml) 10 10 10 
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Stacking gel mix 

Acrylamide mix (ml) 1.68 

1 M Tris-HCl, pH 6.8 (ml) 1.26 

ddH2O (ml) 6.8 

10% SDS (ml) 0.1 

10% APS (ml) 0.1 

TEMED (ml) 0.01 

TOTAL (ml) 10 

 

7.3 Immunoblot (IB) 

Desired amounts of proteins were loaded onto 1-1.5 mm thick SDS-PAGE gels for 

electrophoresis (Biorad). Proteins were transferred in immune transfer tanks (Biorad) to 

nitrocellulose (Schleicher and Schnell) in 1X transfer buffer (supplemented with 20% 

methanol) at 30 V overnight or at 100 V for 1 h. Alternatively fast transfer (Trans-Blot® 

Turbo™ from Biorad) with polyvinylidene fluoride (PVDF) or nitrocellulose membranes 

from Biorad was used. Efficiency of protein transfer was determined by ponceau staining. 

Membranes were blocked for 1 h (or overnight) in 5% milk or BSA in TBS supplemented 

with 0.1% Tween (TBS-T). After blocking, membranes were incubated with the primary 

antibody for 1 h at RT, diluted in 5% milk or BSA in TBS-T, followed by three washes 

with TBS-T 10 min each. Membranes were then incubated for 30 min with the appropriate 

horseradish peroxidase-conjugated secondary antibody diluted in TBS-T. After 3 washes 

with TBS-T (10 min each), the bound secondary antibody was revealed using the ECL 

method (Amersham) and detected with ChemiDoc™ XRS+ System (Biorad). 
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7.4 Anti-ubiquitin immunoblot 

Proteins were transferred on a PVDF membrane (Immobilion P, Millipore), previously 

activated by incubation in 100% MeOH for 5 min at RT. After transfer, membranes were 

incubated for 20 min at 4°C in denaturing solution. This treatment denatures ubiquitin and 

facilitates the recognition of latent ubiquitin epitopes by anti-ubiquitin antibody. After 

extensive washes in TBS-T buffer, membranes were blocked overnight at 4ºC in 5% BSA 

(dissolved in TBS-T). Membranes were incubated for 1 h at RT with antibodies against 

ubiquitin diluted in 5% BSA dissolved in TBS-T, followed by 3 washes (10 min each) with 

TBS-T. Anti-mouse horseradish peroxidase-conjugated secondary antibody was diluted in 

TBS-T and incubated for 30 min at RT. After 3 washes with TBS-T (10 min each), the 

bound secondary antibody was revealed using the ECL method (Amersham) and detected 

with ChemiDoc™ XRS+ System (Biorad). 

 

Denaturing solution 

Guanidinium Chloride 6 M 

TRIS, pH 7.4 20 mM 

PMSF (freshly added) 1 mM 

-Mercaptoethanol (freshly added) 5 mM 

 

7.5 Immmunoprecipitation 

For co-immunoprecipitation (co-IP) experiments lysates were prepared in non-denaturing 

conditions in JS buffer. For immunoprecipitation (IP) experiments lysates were prepared in 

denaturing conditions in RIPA buffer, in order to avoid co-immunoprecipitating proteins. 

Lysates were incubated in the presence of specific antibodies for 2 h at 4ºC while rotating. 

Protein G Sepharose beads (Zymed) were added and samples were shaked for an additional 

h at 4ºC. For IP of GFP-USP25 20µl GFP-beads (MBL) per mg lysate were used and 
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incubated for 2 h at 4ºC while rotating. Immunoprecipitates were then washed 4 times in 

JS or RIPA buffer. To detect ubiquitination of EGFR, EGFR was immunoprecipitated 

from 300 µg RIPA lysate using an anti-EGFR antibody produced in-house (anti-EGFR 

317, 10 µg/mg). For co-IP experiments 1.5 mg of fresh lysates in JS buffer were used. 

 

 DUB library screening 8

A list of 92 genes corresponding to DUBs in human genome was compiled by manual 

curation of literature and protein databases. A DUB siRNA library consisting of a pool of 

two stealth oligos per DUB gene target was purchased from Invitrogen. Transfections were 

performed using RNAi Max (Invitrogen) and 10 nM RNAi pools. Cells were subjected to 

double transfection, ‘reverse’ (cells in suspension) on day 1 and ‘forward’ (adherent cells) 

on day 2. Cells were then processed 48–72 h after second transfection. After an overnight 

starvation, cells were stimulated with 100 ng/ml of EGF for 10, 60, 90 and 120 min at 

37°C. Cell lysis was performed in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 1% Sodium deoxycholate, 0.1% SDS) supplemented with a 

protease inhibitor cocktail (CALBIOCHEM) and NEM (N-ethylmaleimide) 5 mM.  

 

 Protein production and purification 9

9.1 GST-fusion protein production 

Rosetta cells transformed with the indicated GST-fusion construct were used to inoculate 

50 ml LB (containing appropriate antibiotics and chloramphenicol at 34 ug/ml). Cultures 

were grown overnight at 37°C. The 50 ml overnight culture was diluted in 1 litre of LB 

and grown until an OD of approximately 0.6 was reached. 1 mM IPTG was added and the 

culture was grown either at 37°C for 3 h or at 18°C overnight. Cells were pelleted at 4000 

x g for 10 min at 4°C and pellets were resuspended in GST-lysis buffer (20 ml/liter of 

bacteria). Samples were sonicated 5 times 20 s each on ice and centrifuged at 14000 x g for 
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30 min at 4°C. 600 - 1000 l of Glutathione Sepharose 4B (GE Healthcare) beads (1:1 

slurry), previously washed 3 times with PBS and once with GST-lysis buffer, were added 

to the supernatant and samples were incubated for either 4 h (GST-AMSH and GST) or 

overnight (GST-USP25) at 4°C while rocking. Beads were washed once in PBS containing 

1% triton, followed by 2 times in PBS alone and one time in GST-maintenance buffer. 

Beads were finally resuspended in 1:1 volume of GST-maintenance buffer and kept at -

80°C. 

 

GST-lysis buffer  

HEPES pH 7.5 50 mM 

NaCl 200 mM 

EDTA 1 mM 

Glycerol  5% 

NP-40 0.1% 

Protease Inhibitors (Calbiochem) 1:500 

 

GST-maintenance buffer 

Tris pH 7.4 50 mM 

NaCl 100 mM 

EDTA 1 mM 

Glycerol  10% 

DTT 1 mM 

Protease Inhibitors (Calbiochem) 1:500 
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List of the GST-proteins used: 

- USP25 full length (Homo sapiens) 

- AMSH full length (Homo sapiens) 

 

9.2 GST pull-down 

GST-proteins were incubated with 2 mg JS HeLa cell lysates for 2h at 4°C. Beads were 

washed 4 times with JS buffer plus proteases and/or phosphatases inhibitors.  

 

 Assays with 
125

I-EGF and 
125

I-Tf 10

10.1 Receptor internalization assays with 
125

I-EGF and 
125

I-Tf 

HeLa cells were plated in triplicate for each time point (plus one well for the unspecific 

binding) into 24 well plates in order to reach 90% confluence the following day. Cells 

were serum starved for at least 4 h and then incubated at 37°C in the presence of 
125

I-EGF 

in binding buffer (MEM, BSA 0.1%, Hepes pH 7.4 20 mM). The concentration of 

radiolabelled EGF used in the assays was the following: 

Low Dose EGF internalization 
125

I-EGF: 1 ng/ml 

High Dose EGF internalization 
125

I-EGF: 20 ng/ml 

Tf internalization 
125

I-Tf: 1µg/ml
 

 

After 3, 5 and 7 min or 3 and 6 min of EGF treatment respectively, cells were washed 3 

times in PBS, and then incubated for 5 min at 4°C in 300 l of acid wash solution, pH 2.5 

(acetic acid 0.2 M, NaCl 0.5 M). The solution was collected and the present radioactivity 

was measured. These samples represent the amount of 
125

I-EGF/Tf bound to the receptor 

on the cell surface. Cells were lysed with 300 l 1 M NaOH. These samples represent the 

amount of internalized 
125

I-EGF/Tf. The unspecific binding was measured at each time 

point in the presence of an excess of non-radioactive EGF/Tf (300X/500X). After 
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correction for non-specific binding, the ratio between internalized and surface-bound 

radioactivity was determined for each time point. These data were used to obtain the 

internalization curves (x-axis time in min, y-axis 
125

I-EGF internalized/bound). 

Internalization rate constants (Ke) were extrapolated from the internalization curves and 

correspond to slopes of the best-fitting curves (Wiley and Cunningham, 1982). 

 

10.2 Measurement of the number of EGF/Tf receptors at the cell surface by 

saturation binding with 
125

I-EGF and 
125

I-Tf 

The number of surface receptors was assessed as described previously (Tosoni et al., 

2005). HeLa cells were plated in triplicate (plus one well for the unspecific binding) into 

24 well plates in order to reach 90% confluence the following day. Cells were serum 

starved in binding buffer (MEM, BSA 0.1%, Hepes pH 7.4 20 mM) for at least 4 h and 

then incubated in the presence of 5 ng/ml of 
125

I-EGF or 0.5 µg/ml 
125

I-Tf, respectively. 

Unlabelled EGF and Tf was added to the mix to a final concentration of 50 ng/ml for EGF 

and 2 µg/ml for Tf. Samples were cooled on ice and incubated with the mix for 6 h at 4°C. 

Afterwards cells were washed 3 times with PBS and subsequently lysed with 300 l 1 M 

NaOH. These samples represent the amount of 
125

I-EGF/
125

I-Tf bound at equilibrium, 

dependent on the number of receptors on the cell surface. The unspecific binding was 

measured for each condition in the presence of an excess of non-radioactive EGF/Tf 

(300X/500X). After correction for non-specific binding, the assay provides the quantitative 

measurement of the number of EGFRs/TfRs for each well. By counting the number of cells 

plated in each well, this assay allows the determination of the number of surface receptors 

per cell. 
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 EGFR signalling and degradation  11

Cells were plated on six 10 cm cell culture dishes in order to reach 70% confluence the 

following day. Cells were serum starved for 16 h and each plate was stimulated with high 

dose EGF [100 ng/ml] or with the indicated concentration for one of the indicated time 

points. Either SDS-PAGE or ELISA (see section 13) was performed with total cell lysates. 

10 µg lysate was loaded on SDS polyacrylamide gels to investigate EGFR degradation. To 

monitor downstream signalling at least 30 µg of total cell lysate was loaded and 

immunoblots were performed as described in section 7.3. 

 

 Immunofluorescence studies 12

Cells were plated on glass coverslips. For internalization assay cells were serum starved 

for at least 4 h and incubated with Alexa488-EGF, Alexa555-EGF or Alexa647-EGF [40 

ng/ml] and/or 13A9 antibody [20 µg/ml] for 1h a 4°C and shifted to 37°C for various time 

points to allow internalization. Cells were fixed with 4% paraformaldehyde (PFA) in 

PIPES buffer (0.2% BSA, 0.1% Triton X-100, 1x PBS) for 10 min at RT. PFA fixed cells 

were permeabilized with 0.1% Triton X-100 in 1X PBS for 5 min at RT. For EEA1 and 

LAMP1 detection cells were permabilized with 0.1% saponine solution. For anti-USP25 

stainings cells were fixed with cooled MeOH for 15 min at -20°C and afterwards washed 

with PBS. To prevent non-specific binding of the antibodies, cells were incubated with 2% 

BSA in 1x PBS for 30 min at RT. Next, cells were incubated for 1 h with primary antibody 

in 1X PBS in presence of 0.2% BSA, washed 3 times with 1X PBS and incubated for 30 

min with fluorescently labelled secondary antibodies (Amersham). After 3 washes with 

PBS, nuclei were DAPI-stained for 5 min and washed again 3 times with 1X PBS. 

Coverslips were immediately mounted with either moviol and examined under a wide-field 

fluorescence microscope (Olympus) or glycerol and examined under a confocal 
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microscope. Images were further processed with the ImageJ software. To detect only 

surface EGFR (anti-EGFR Ab-1, Calbiochem) permeabilization step was avoided.  

 

 ELISA-based DELFIA assay 13

For the ELISA-based assay, the DELFIA (Dissociation Enhanced Lanthanide 

Fluoroimmunoassay) technology from Perkin Elmer was used (Sigismund et al., 2013). It 

is based on sandwich-recognition of a target protein by a capture antibody and a detection 

antibody. The capture antibody is immobilized on a solid surface (microwells) directly 

through non-covalent bonds. After the addition of the analyte (appropriate cellular lysate), 

the detection of signals relies on a lanthanide (Europium)-conjugated antibody that is able 

to produce a fluorescent signal upon enhancement with acidic enhancement buffer. 

Lanthanide ions are released in solution at low pH and they rapidly form new, highly 

stable fluorescent chelates. The fluorescence of the lanthanide chelate is amplified 1-10 

million times by this enhancement step and it develops a signal in 5 minutes that is stable 

for up to 8 hours. For the assay microwell plates were coated with the capturing antibody 

(home-made polyclonal directed against aa 1172-1186 of human EGFR, 5g/ml). Lysates 

were prepared in RIPA/1% SDS buffer and diluted to 0.2% SDS before incubation step. 

Blocking was performed for 2 h with BSA 2% in PBS. 25 μg (for EGFR degradation) or 

50 µg (for EGFR ubiquitination) of lysates from HeLa cells, stimulated with the indicated 

concentration of EGF, were incubated overnight at 4ºC for the ubiquitination detection or 

1h at RT for total EGFR detection. After three washes, wells were incubated with primary 

antibodies (either the anti-Ub FK2, or the anti-EGFR monoclonal m108 diluted at 1 μg/ml 

in assay buffer), for 1 h at RT. After three washes, anti-mouse or rabbit Europium-labelled 

secondary antibodies (1 μg/ml in assay buffer) were added for an additional hour. After 

three washes and treatment with enhancement solution, fluorescence was measured with 

EnVision instrument (excitation at 340 nm and emission at 615 nm). 
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 Densitometry and statistical analysis 14

Quantification of immunoblots was performed with ImageJ or ImageLab software version 

4.1 (Biorad). Average results from at least three independent experiments are shown. Error 

bars in the plots represent the standard deviation of the mean. All statistical analyses were 

performed using Excel. The statistical significance was obtained applying t-test. 
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RESULTS 

 Genome-wide small interfering RNA screen identified novel 1

DUBs controlling EGFR turnover  

To identify DUBs altering EGFR degradation, a genome-wide small interfering RNA 

(siRNA) screen targeting all known active DUBs was previously undertook in the lab. A 

list of 92 active deubiquitinating genes present in the human genome was compiled. Based 

on this gene list a siRNA library that contained a pool of two stealth oligos per gene target 

was designed and synthetized. These pools were transfected in HeLa cells and after EGF 

stimulation [100 ng/ml] EGFR degradation kinetics were determined with two approaches: 

(i) quantitation of EGFR levels in immunoblots (IB), and (ii) ELISA assay based on 

DELFIA technology (PerkinElmer), recently established in our lab (Sigismund et al., 

2013) and described in detail in the methods section. Data from DUB KDs were 

summarized in Figure 11, where quantification of the immunoblots (Figure 11A) and 

ELISA values (Figure 11B) of total EGFR were hierarchically clustered using 

GeneCluster program and displayed using JavaTreeView software (analyses were 

performed by Michol Savio). Three main categories of EGFR degradation kinetics were 

observed: DUBs whose downregulation result in (i) EGFR degradation rates similar to 

control, (ii) slower EGFR degradation rates and (iii) faster EGFR degradation rates with 

respect to control (Figure 11). Of note, the relative variation in EGFR degradation kinetics 

upon knock-down of AMSH, USP8 (UBPY), USP2 and OTUD7B reflected previously 

published data (Liu et al., 2012; McCullough et al., 2004; Pareja et al., 2011; Row et al., 

2006), supporting the reliability of our screen (Figure 11).  

 After validation (partially performed by me, see Appendix), we identified twelve 

novel DUBs affecting EGFR (Savio et al., manuscript in preparation) 
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Figure 11: Hierarchical clustering of EGFR degradation kinetics. 
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HeLa cells were transfected with a pool of two oligos for the indicated DUB targets or 

with a scrambled oligo (Control). Cells were stimulated with EGF [100 ng/ml] for the 

indicated time points. Total cell lysates were subjected to immunoblot (IB, A) and 

DELFIA (B) analyses. Values of EGFR were plotted as percentage of total EGFR at 

different time points against unstimulated condition. Normalized values were 

hierarchically clustered using GeneCluster program and displayed with JavaTreeView 

program. The black-to-white colour bar represents low to high log ratios of the signals 

associated to each sample. 24 DUBs that were selected for further validation by 

deconvolution experiments are highlighted in bold. These analyses were performed by 

Michol Savio. 

 

 

 

 Knock-down of USP25 impacts on EGFR fate 2

2.1 EGFR is degraded faster upon USP25 knock-down 

Among the validated DUBs (see also Appendix), USP25 KD displayed one of the 

strongest effects (Figure 11). As for the other twenty-four DUBs, deconvolution 

experiments were performed in HeLa cells with two siRNA oligos (USP25 S1 and USP25 

S2) used as a pool in the screen (Figure 12). Cells were stimulated with EGF [100 ng/ml] 

for different time points (from 0 min to 120 min). Effects on degradation kinetics were 

measured in immunoblot (Figure 12A) as well as in DELFIA (Figure 12C). EGFR levels 

detected in immunoblot were quantified and normalized to the amount of EGFR in the 

unstimulated condition and to the loading control (Figure 12B).  

DELFIA and immunoblot analyses revealed an enhanced degradation rate of 

EGFR, detectable already at early time points like 30 minutes post-EGF as well as upon 

prolonged stimulation (120 min) (Figure 12B,C). While in control conditions typically 

~40% of the initial amount of EGFR remained after two hours of EGF induction, only 20-

30% was still present upon USP25 KD (Figure 12B,C). Overall, KD efficiency was 

slightly better with oligo S1 compared to oligo S2, therefore USP25 S1 siRNA was mainly 

used for further investigations.  
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It is well known that various cell types show differences in EGFR internalization 

pathways and kinetics. To validate that the observed effects are not only restricted to HeLa 

cells, we examined alterations of EGFR degradation upon USP25 depletion in different 

cell lines (Figure 12D). The metastatic human breast cancer cell line MDA-MB231 and 

the HeLa cells used in our lab (HeLa Milan) possess both EGFR internalization pathways, 

CME and NCE. HeLa-Oslo cells instead were characterized for the absence of NCE 

(Kazazic et al., 2006; Sigismund et al., 2013). EGFR degradation kinetics was measured in 

immunoblot upon KD of USP25 in HeLa-Oslo and MDA-MB231 cells. For both cell lines 

a faster EGFR degradation was assessed in cells depleted for USP25 (Figure 12D), which 

is in line with previous data obtained in HeLa Milan (Figure 12A-C).  

In sum, we confirmed the initial data from the screening, showing that depletion of 

USP25 caused enhanced degradation of EGFR, for both siRNAs individually tested. 

Furthermore, effects of USP25 KD were substantiated in different cell lines. 
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Figure 12: EGFR degradation kinetics measured after USP25 knock-down.  

HeLa cells (Milan) were transfected with different siRNAs targeting USP25 (USP25 S1 

and USP25 S2) (A-C), MDA-MB231 cells or HeLa Oslo cells were transfected with 

USP25 S1 (D), scrambled oligo was used as control (A-D). After serum deprivation cells 

were stimulated with EGF [100 ng/ml] for the indicated time points. Total cell lysates were 

analysed by IB with the indicated antibodies (A and D) or subjected to DELFIA (C) to 

determine EGFR degradation. Graphs in panel B show the quantification of EGFR 

degradation in IB. EGFR levels were normalized to the amount of EGFR in the 

unstimulated condition and to the loading control. 
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2.2 EGFR downstream signalling is affected in USP25 knock-down cells 

Activation of EGFR mediates the intracellular signal transduction through phosphorylation 

of downstream signalling proteins (Figure 7). Following activation by EGF, the  

EGFR is rapidly routed to the lysosome for degradation in an ubiquitination-dependent 

fashion. This pathway represents the major mechanism of signalling attenuation. 

Therefore, alterations in EGFR degradation are predicted to have an impact on the 

signalling cascade (Mosesson, Nat. Rev Cancer, 2008).  

This prompted us to investigate whether depletion of USP25 affects downstream 

signalling of EGFR. HeLa control and USP25 KD cells were stimulated with high dose of 

EGF [100 ng/ml], subsequently phosphorylation status of different signalling and adaptor 

molecules (Akt, MAPK and Hrs) was assessed in IB (Figure 13). No significant difference 

was scored for MAPK, neither in protein levels, nor in the phosphorylation status. In 

accordance with a faster degradation and consequently signalling attenuation (Sigismund 

et al., 2008), a decreased phosphorylation of Akt was observed in USP25 KD cells (Figure 

13). Furthermore, the phosphorylation of Hrs was increased and anticipated in cells 

depleted for USP25. The phosphorylation peak of Hrs was shifted from ten minutes in 

control cells to three minutes post EGF in USP25 KD cells (Figure 13). It needs to be 

mentioned that there is less total Hrs at early time points in control conditions compared to 

USP25 KD cells. This might be probably caused by stripping of the immunoblot, since an 

anticipation of the phosphorylation of Hrs upon USP25 KD was observed in several 

independent experiments.   

Hrs is an endocytic adaptor protein essential for endosomal sorting of growth factor 

receptors to the lysosomal degradation pathway. It is known that Hrs phosphorylation 

occurs upon interaction with ubiquitinated EGFR (Stern et al., 2007). As such Hrs 

phosphorylation can be used to monitor the trafficking of activated and ubiquitinated 
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EGFR. Thus, alterations in Akt and Hrs phosphorylation suggest a faster trafficking of 

EGFR. 

 

Figure 13: EGFR downstream signalling is affected in USP25 knock-down cells. 

HeLa cells were transfected with siRNA targeting USP25 or with a scrambled oligo 

(Control). Cells were stimulated with EGF [100 ng/ml] for the indicated time points and 

effects on EGFR downstream signalling were revealed by IB with the indicated antibodies.  

 

 

 

 Internalization defects of EGFR in cells depleted for USP25 3

3.1 Faster trafficking of EGFR upon USP25 knock-down 

On the basis of the anticipated phosphorylation of Hrs in conjunction with the accelerated 

EGFR degradation, we assumed a faster trafficking of EGFR upon USP25 KD.  

To test this hypothesis, we examined EGFR endocytosis in immunofluorescence-based 

internalization assays at single cell level. AMSH and USP8 (UBPY) were used as positive 

controls, since it is already described that their depletion affects EGFR trafficking 

(McCullough et al., 2004; Row et al., 2006) (and chapter 2.2.4 introduction). HeLa cells 

were pre-incubated with EGF coupled to a fluorescence dye (Alexa-EGF) and an EGFR 

antibody (13A9 from Genentech) at 4°C, where no endocytosis takes place. The 13A9 

EGFR antibody recognizes the extracellular part of EGFR but does not interfere with its 
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internalization and trafficking (Winkler et al., 1989). Cells were shifted to 37 °C allowing 

endocytosis and subsequently fixed at different time points. At the early three minutes time 

point the majority of the EGFR-EGF complexes resided at the plasma membrane in control 

cells, while in USP25 KD cells a substantial portion was already internalized (Figure 

14A). Two hours post stimulation EGFR was fully degraded and not more detectable in 

control cells. In USP8 KD cells instead, a major fraction of EGFR was still present, and 

both receptor and ligand appeared to be stuck into endocytic compartments (Row et al., 

2006) (Figure 14A). USP25 KD cells showed the opposite behaviour: at later time points, 

as 30, 60 and 120 minutes, less EGF-EGFR signal was observed in USP25 KD cells 

compared to control cells (Figure 14A). In particular at 30 minutes, this phenotype 

appeared to be even stronger compared to the one of ASMH KD (McCullough et al., 

2004).  

We decided to extend our analyses and to monitor the subcellular distribution and the 

itinerary of the EGF receptor in more detail. Antibodies against EEA1 (early endosomes) 

and LAMP1 (late endosomes/lysosomes) served as endocytic markers for tracking the 

route of internalized EGFR. At three minutes, the EGF signal resided still at the plasma 

membrane in control cells. In cells depleted for USP25, a partial co-localization of EEA1 

with ALEXA-EGF was already observed at the same time point (Figure 14B). At ten 

minutes post EGF there was almost 100% co-localization of EGF and EEA1 in control 

cells, whereas in USP25 KD cells only partial co-localization between EEA1 and EGF was 

observed (Figure 14B). Analogous results were obtained with LAMP1, where co-

localization between LAMP1 and EGF was anticipated after USP25 KD. In contrast to 

control cells, co-localization of LAMP1 and EGF was already detected ten minutes post 

EGF in USP25 KD cells (Figure 14C). At 30 minutes instead fewer dots for EGF were 

detected in the USP25KD. Possibly as a consequence, the merge of LAMP1 and EGF was 

less evident compared to control cells.  
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The sum of these results indicates that lack of USP25 leads to a faster 

internalization of EGFR and a general acceleration in the kinetics of EGFR trafficking 

from the early endocytic compartment to lysosomes. 

 

 

Figure 14: Depletion of USP25 alters EGFR trafficking.  

HeLa cells were transfected with siRNA targeting USP25, AMSH, USP8 and with a 

scrambled oligo (Control) as indicated. KD cells were serum starved and incubated for one 

hour at 4°C in the presence of an EGFR antibody recognizing the extracellular part of 
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EGFR (13A9, green) (A) and/or Alexa555-EGF [40 ng/ml, red] (A-C). After washing, 

cells were shifted to 37°C for the indicated time points. Cells were fixed and stained with 

an EEA1 (green) (B) or LAMP1 antibody (green) (C), respectively. Blue, DAPI staining.  

 

 

3.2 USP25 overexpression inhibits EGFR internalization 

These results prompted us to assess if also the overexpression of USP25 might have an 

impact on EGFR endocytosis. Therefore we performed internalization assays as described 

in chapter 3.1, but this time in cells overexpressing either a GFP-tagged USP25wt 

construct or a catalytically inactive mutant USP25C178A, where the active site Cys was 

replaced by alanine (Figure 15). We observed a reduction in EGF-positive vesicles after 

ten minutes of EGF-stimulation in GFP-positive cells ectopically expressing USP25wt. 

Notably, in these cells a large amount of EGF signal was still present at the plasma 

membrane (Figure 15 left panel), suggesting impairment in EGFR internalization. 

Moreover, the partial inhibition of EGFR internalization depends on the catalytic activity 

of USP25, since no effect was visible upon overexpression of the catalytic inactive mutant 

USP25C178A (Figure 15 right panel).  

These experiments establish that overexpression of USP25wt shows the reverse 

phenotype to the one observed in USP25 KD cells. GFP-USP25wt caused a delay in EGFR 

internalization; overexpression of a catalytically inactive mutant instead had no detectable 

effect on EGFR endocytosis, indicating that USP25 activity is essential for the assessed 

internalization defects.  

 



87 

 

 

Figure 15: EGFR internalization defects upon USP25 overexpression. 

HeLa cells were transfected with GFP -USP25wt or GFP-USP25C178A. After 48 hours 

cells were serum starved and then stimulated for ten minutes with EGF-ALEXA [40 

ng/ml] at 37 °C. GFP-USP25wt causes a delay in EGFR internalization, GFP-

USP25C178A does not. IB shows levels of endogenous USP25 and overexpressed GFP-

USP25 proteins.  

 

Encouraged by these results we decided to perform functional studies in cells 

overexpressing USP25. By transient transfection, we could not reach effectual transfection 

levels and only a few cells expressed USP25 constructs (Figure 15). To overcome this 

problem we took advantage of a doxycycline-inducible lentiviral system (Shin et al., 2006) 

and we generated stable cell lines in which USP25 overexpression could be induced.  

To reach homogenous expression levels, HeLa cells were infected with lentivirus 

containing either pSLIK HA-USP25wt or HA-USP25C178A constructs. After the 

selection of infected cells with neomycin [400 µg/ml], HA-USP25wt and HA-

USP25C178A expression was induced with [1 µg/ml] of doxycycline for 48 hours. Cells 

were serum starved and stimulated with high dose of EGF [100 ng/ml] for different time 

points up to 120 minutes. The impact of USP25 overexpression on EGFR degradation 

kinetics was assessed in IB with an EGFR antibody.  
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No significant change of EGFR degradation could be detected, neither in the HA-

USP25wt nor in the HA-USP25C178A cell line compared to cells infected with pSLIK 

vector (e.v.) (Figure 16A). The lack of phenotype might be due to low USP25 protein 

levels. Indeed, only a slight increase in expression of USP25 upon doxycycline treatment 

was revealed with an USP25 antibody (Figure 16A). To check expression levels of USP25 

constructs and infection efficiency of the lentiviral system, immunofluorescence analysis 

were performed. Staining with a HA antibody revealed that similar to transient transfection 

only a few cells expressed HA-USP25 at a detectable level (Figure 16B images left), 

suggesting that the remaining cells were not infected. To investigate the reason of this poor 

expression, stable cell lines were treated with the proteasome inhibitor MG132. After 

blocking proteasomal protein degradation nearly all cells showed a positive HA-signal, 

indicating that cells indeed do express USP25 ectopically (Figure 16B images right). 

Thus, at least artificially increased protein levels of tagged USP25 appeared to be toxic for 

cells that respond degrading the DUB in a proteasome-dependent manner. However we do 

not know what happens to endogenous USP25 and the observed effect might be simply 

caused by the protein-tag. Unfortunately this counter selectivity makes the execution of 

functional investigations impossible.  
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Figure 16: Stable cell lines inducible for USP25 and USP25C178A overexpression 

HeLa cells transduced with pSLIK lentivirus expressing HA-USP25wt, HA-USP25C178A 

or pSLIK empty vector (e.v.) were grown for 48 hours in the presence or absence of 

doxycycline [1 µg/ml] (A and B). Cells were serum starved for 16 hours and then 

stimulated with EGF [100 ng/ml] for the indicated time points. Total cell lysates were 

analysed by IB with the indicated antibodies (A). For immunofluorescence cells were 

treated with 5 µM MG132 overnight. After fixation cells were stained with HA antibody 

(B).   
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3.3 EGFR internalization rates upon USP25 knock-down 

Our collected data indicate that USP25 has a direct impact on EGFR endocytosis. 

Immunofluorescence analyses in USP25 KD cells and in cells overexpressing GFP-

USP25wt suggested that already the internalization of EGFR was affected by USP25. 

However, methods applied so far allowed only qualitative observations of the 

internalization process. Thus, we decided to use a quantitative assay to monitor EGFR 

internalization with the radioactively labelled ligand
 125

I-EGF. This assay is well 

established in our lab (Sigismund et al., 2005) and enables the calculation of the 

internalization rate Ke, which describes the probability of an activated receptor to be 

internalized in one minute at 37 °C (Wiley & Cunningham, 1982).  

HeLa cells transiently depleted for USP25 and control cells were plated into 24 well plates. 

Cells were serum starved for four hours and then incubated with 
125

I-EGF [20 ng/ml] for 

three, five and seven minutes at 37°C. After extensive washes on ice the 
125

I-EGF bound 

on the cell surface was removed by acid wash and the internalized ligand was collected 

through cell lysis. The unspecific binding was measured at each time point in the presence 

of non-radioactive EGF in excess (300X). After correction for non-specific binding, the 

ratio between internalized and surface-bound 
125

I-EGF was determined for each time point. 

These data were used to obtain the internalization curves. Internalization rate constants 

were extrapolated from the internalization curves and correspond to slopes of the best-

fitting curves (Figure 17 A,B right panel). Strikingly, the average of five independent 

experiments revealed that upon USP25 KD the Ke at high dose of EGF [20 ng/ml] was 

nearly twofold increased (Figure 17A left panel), confirming initial observations from 

immunofluorescence experiments (Figure 14).  

All previously discussed experiments, as well as the genome-wide siRNA screen 

were performed in cells stimulated with high dose of EGF. In this condition, both the 

classical ubiquitin-independent CME as well as the NCE pathway are active (Sigismund et 
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al., 2008; Sorkin & von Zastrow, 2009). To gain insights into the role of USP25 in the 

clathrin-dependent internalization pathway, which is predominantly coupled with receptor 

recycling and signalling (Sigismund et al., 2008), quantitative internalization assays at low 

dose of EGF [1 ng/ml] were performed. We observed that even under these conditions the 

internalization rate was slightly but still significantly increased from 0.30 min
-1

 in control 

cells to 0.36 min
-1

 upon USP25 KD, as the average of seven independent experiments 

demonstrated (Figure 17B left panel). 

As next we examined if the steady state levels of EGFR on the cell surface were 

affected in the absence of USP25. A saturation binding assay with radioactively labelled 

ligand enables the assessment of EGF receptors on the cell surface per cell. HeLa cells 

depleted for USP25 and control cells were incubated with 
125

I-EGF for six hours on ice. 

After several washes cells were lysed. The measured radioactivity represents the amount of 

125
I-EGF bound at equilibrium. After correction for non-specific binding, the assay 

provides the number of EGFR for each well. By counting the cells plated in each well, the 

amount of surface receptors per cell was determined. The average of four independent 

experiments revealed that EGFR surface levels are moderately decreased upon USP25 KD; 

from around 270.000 receptors per cell in control conditions to approximately 200.000 

receptors per cell in the absence of USP25 (Figure 17C).  
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Figure 17: Knock-down of USP25 causes increased internalization of EGFR. 

HeLa cells were either transfected with siRNA targeting USP25 or with a scrambled oligo 

(Control), as indicated. EGFR internalization at high [20 ng/ml] (A) and low [1 ng/ml] 

doses (B) of EGF ligand was followed at early time points (0-7 min) using a radiolabeled 

ligand binding assay and I
125

-EGF. Results are expressed as a ratio between internalized 

ligand and bound ligand. The average of triplicates is shown (A, B right graph). Ke for 

high dose of EGF [20 ng/ml] is the average of five independent experiments (A left 

graph). Ke for low dose of EGF [1 ng/ml] is the average of seven independent experiments 

(B left graph). The number of EGFRs on the cell surface was measured by saturation 
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binding with I
125

-EGF (C). Results are average of four independent experiments. IB anti-

USP25 is reported to show KD efficiency (C).  

 

To substantiate the impact of USP25 on EGFR endocytosis we decided to generate 

stable cell lines in which KD of USP25 can be induced by stimulation with doxycycline. 

HeLa cells were infected with a lentiviral-system (pSLIK) containing miR-shRNAs 

targeting different sequences compared to the siRNAs (USP25 S1 and S2) previously used. 

miR-shRNAs were designed to target a sequence within the open reading frame (ORF; 

sh2962) or in the untranslated region (3’UTR; sh3746) of the USP25 mRNA (Figure 

18A). After selection, infected cells were treated with doxycycline and quantitative 

internalization assays were performed similar to transient KD conditions (see chapter 3.2). 

No significant changes upon doxycycline treatment were observed in cells infected with 

viruses that did not contain miR-shRNAs targeting USP25. This demonstrates that 

doxycycline on its own did not affect EGFR internalization. Induction of USP25 KD upon 

doxycycline treatment caused in both cell lines (sh2962 and sh3746) enhanced EGFR 

internalization (Figure 18B,C). However, the observed increase of the Ke at low [1 ng/ml] 

as well as at high dose [20 ng/ml] of EGF was less prominent compared to the results 

obtained in transient KD cells (Figure 17A,B) This is in agreement with a less efficient 

downregulation of USP25 in the inducible KD compared to transient USP25 KD, as shown 

by immunoblots in Figure 18B and Figure 17C. Therefore we decided to select clones 

from the bulk population in order to obtain a stronger KD of USP25 upon induction 

(Figure 19A). 
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Figure 18: EGFR internalization in stable inducible USP25 knock-down cell lines.  

Schematic representation of miR-shRNA locations targeting USP25 mRNA. ORF of 

USP25 is depicted as blue bar, positions of siRNAs and shRNAs are highlighted in red 

(A). Stable cell lines were stimulated with doxycycline [0.5 g/ml] for 96 hours to induce 

USP25 depletion. EGFR internalization at low [1 ng/ml] (B) and high [20 ng/ml] (C) doses 

of EGF ligand was followed at early time points (0-7 min) using a radiolabeled ligand 

binding assay and I
125

-EGF. Internalization constants (Ke) were extrapolated from the 

internalization curves and correspond to the slopes of the best-fitting curves. Immunoblots 

shown in B were performed to show KD efficiency.  

  

25 clones were generated from the bulk populations by limiting dilution procedure 

for each cell line. Figure 19 shows examples of the analysed clones. USP25 expression 

levels in all clones were revealed in the presence or absence of doxycycline treatment 
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using a USP25 antibody. Clones with a good level of USP25 depletion were selected for 

further investigations (Figure 19A, red rectangle). Clones 2_5 and 2_11 targeting USP25 

mRNA within the ORF and clones 3_5 and 3_7 targeting USP25 mRNA in the 3’UTR 

were selected and quantitative internalization assays were performed. At high dose of EGF 

[20 ng/ml] an almost twofold increase of the internalization constant was observed for all 

selected clones (Figure 19B). This proves the hypothesis that the level of depletion is 

responsible for the observed differences in the Ke between transient KD and the bulk 

population of the stable KD cell lines. Therefore all further experiments were performed 

with the selected clones or upon transient KD of USP25. 

 

Figure 19: Selection and characterization of stable USP25 knock-down clones. 

HeLa clones were treated for 96 hours with doxycycline [0.5 µg/ml]. Level of USP25 

depletion was revealed by immunoblotting with an USP25 antibody (A). Tubulin was used 

as protein loading control. Selected clones are marked with a red rectangle (A). EGFR 

internalization at high dose of EGF ligand [20 ng/ml] was followed in selected HeLa 
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clones at early time points (0-7 min) using a radiolabeled ligand binding assay and I
125

-

EGF (B). Internalization constants (Ke) were extrapolated from the internalization curves 

and correspond to the slopes of the best-fitting curves.  KD efficiency was revealed by IB 

(B).  

 

 

 

 Dissection of endocytic pathways affected by USP25  4

4.1 Role of USP25 in CME and NCE of EGFR  

As described in the introduction, EGFR can be internalized via different entry routes; 

depending on ligand concentration and cell type. We were seeking to unravel the impact of 

USP25 on distinct endocytic pathways using a genetic approach. To distinguish between 

NCE and CME, different siRNAs were used to switch off one of the two entry routes. In 

particular we employed clathrin KD for CME and reticulon KD for NCE inhibition, since 

reticulon was recently found by our collaborator to be essential for endocytosis via the 

NCE pathway (Sara Sigismund, unpublished data). Quantitative internalization assays 

were performed in cells depleted for USP25 alone or in combination with reticulon or 

clathrin KD, respectively. KD cells were stimulated with high dose of EGF [20 ng/ml], a 

condition where both internalization pathways are active. In accordance with already 

published (Sigismund et al., 2013) and unpublished data, ablation of clathrin as well as of 

reticulon led to a fractional inhibition of the EGF internalization at high dose (Figure 

20A). Notably, KD of clathrin or reticulon in USP25 KD cells was not sufficient to fully 

reverse the USP25 KD phenotype. The internalization rate was significantly increased in 

both double KDs compared to clathrin or reticulon KD alone (Figure 20A). Similar results 

were obtained at low dose [1 ng/ml] under conditions were only CME takes place. The 

simultaneous interference of clathrin and USP25 led only to a partial rescue in the increase 

of the internalization rate (Figure 20B).  
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The fact that neither clathrin KD nor the depletion of reticulon could completely 

restore alterations in EGFR internalization rates in cells depleted of USP25 suggests that 

USP25 plays a role in the clathrin-mediated as well as in the clathrin-independent 

endocytosis of EGFR. 

 

 

Figure 20: Impact of USP25 knock-down on different EGFR entry routes. 

HeLa cells were transfected with siRNA targeting USP25, clathrin, reticulon or with a 

scrambled oligo (Control) as indicated. EGFR internalization was followed for early time 

points (0-7 min) at high [20 ng/ml] (A) and low [1 ng/ml] (B) doses of EGF ligand by 

using a radiolabeled ligand binding assay (I
125

-EGF). Internalization constants (Ke) were 

extrapolated from the internalization curves and correspond to the slopes of the best-fitting 

curves. Ke for high [20 ng/ml] and low [1 ng/ml] doses of EGF are average of three 

independent experiments (A and B). Immunoblots shown in B were performed to show 

KD efficiency, respectively. 
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4.2 Transferrin as model substrate for CME 

The Transferrin receptor (TfR) is one of the best-studied endocytic cargoes and exclusively 

internalized through the clathrin-dependent pathway (see also chapter 1.3 introduction). 

Therefore we decided to use the Transferrin receptor as a tool, to further analyse the role of 

USP25 in CME.  

Quantitative internalization assays with radioactively labelled Tf (I
125

-Tf) were 

performed to examine the early internalization rates of TfR. Cells were either transiently 

depleted for USP25, or stable cell lines were treated with doxycycline to induce USP25 

KD. The average of three independent experiments revealed that the Ke for TfR 

internalization is strongly increased following USP25 depletion (Figure 21A). Consistent 

with previous data on EGFR, we assessed at least a twofold increase in the endocytic rate 

in both conditions, stably inducible and transient ablation of USP25 (Figure 21A).  

Next, we investigated if also the basal surface level of TfR was affected in USP25 

KD cells. Tf receptor numbers at the cell surface were quantified in KD cells using the I
125

-

Tf saturation-binding assay. Silencing of USP25 had a strong effect on the cell surface 

number of TfR. Approximately 1.5*10E6 receptors per cell were detected in HeLa e.v. and 

untreated cl3_7 cells (Figure 21B). When USP25 was depleted in cl3_7 cells, the number 

of surface receptors per cell dropped to 2.5*10E5. Thus, in USP25 KD cells less than 20% 

of TfR was present on the cell surface compared to control conditions (Figure 21B).  

Transferrin is constitutively internalized therefore it was expected that also the 

basal level of TfR is affected. However, the strong decrease in surface receptors led us to 

hypothesize a possible transcriptional effect on TfR mRNA levels upon USP25 KD. 

mRNA levels of TfR and EGFR were assessed by qRT-PCR in two stable KD clones (cl 

2_5 and cl 3_5) treated with doxycycline. The measured Ct-values were normalized to the 

housekeeping genes GAPDH or 18S. Depletion of USP25 caused in both cell lines a 
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reduction of TfR mRNA levels of 70-80% compared to untreated cells. On the contrary, 

transcriptional levels of EGFR were not affected (Figure 21C).  

These results show that KD of USP25 has a strong effect on TfR homeostasis. The 

transcriptional defect might at least partially account for the reduced numbers of TfRs 

measured on the surface of USP25 KD cells. Moreover, we cannot exclude that the 

differences on receptor surface levels might also distort the measurement of the 

internalization rate in quantitative assays.  
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Figure 21: Effects of USP25 knock-down on Transferrin receptor endocytosis and 

homeostasis. 

HeLa cells were transfected with siRNA targeting USP25 and a scrambled oligo (Control) 

as indicated (A left graph). Stable cell lines were stimulated with doxycycline [0.5 g/ml] 

for 96 hours to induce USP25 KD (A right graph, B,C). TfR internalization rates upon 

stimulation with I
125

-Tf [1 µg/ml] were followed at early time points (0-7 min) by using a 

radiolabeled ligand binding assay. Results are expressed as fold change of the 

internalization rate Ke compared to control conditions and are average of three independent 

experiments (A). The number of TfRs on the cell surface was measured by saturation 

binding with I
125

-Tf (B). IB anti-USP25 was performed to show KD efficiency (B). 

Expression levels of TfR and EGFR mRNA were assessed by qRT-PCR analysis and 



101 

 

normalized to the housekeeping genes 18S or GAPDH, respectively (C). Ct-values and 

fold changes in respect to control conditions are reported. 

 

 

4.3 Investigation of CME- and NCE-independent EGFR internalization 

Depletion of clathrin as well as depletion of reticulon could only partially reverse the 

increased internalization rate of EGFR caused by USP25 KD (see chapter 4.1). This raises 

the possibility that the measured alterations in EGFR uptake might be due to a possible 

third EGFR internalization pathway stimulated upon KD of USP25.  

NCE as well as CME are both dynamin-dependent, while other described 

internalization pathways are dynamin-independent (Howes et al., 2010). To investigate the 

impact of an alternative entry route, quantitative internalization assays were performed in 

cells depleted of dynamin. KD of USP25 was induced by treating cl3_7 cells with 

doxycycline and transient KD for dynaminI and dynaminII was carried out simultaneously. 

The internalization constant was determined after stimulation with high dose of EGF [20 

ng/ml]. The measured Ke of 0.04 min
-1

 for EGFR uptake in cells only depleted for dynamin 

reflects background level caused by unspecific binding of the radioactive ligand (Figure 

22A). However depletion of dynamin in USP25 KD cells could not fully reverse the 

increased EGFR internalization generated by the lack of USP25 (Figure 22A). This 

suggests that the measured EGFR internalization rate upon USP25 KD depends on a third, 

dynamin-independent pathway.  

To further substantiate this hypothesis, EGFR internalization was followed in HeLa 

cells in which both pathways, CME and NCE, were switched off. For this, cells were 

simultaneously depleted for USP25, clathrin and reticulon, eliminating CME as well as 

NCE pathway. Similar to dynamin depletion, there was still an increase of the 

internalization rate in triple KD compared to double KD of reticulon and clathrin alone in 
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cells stimulated with high dose of EGF [20 ng/ml] (Figure 22B). Again, the observed 

effect was less prominent compared to the one upon dynamin ablation.  

Taken together these data open the possibility that the observed increase in EGFR 

internalization is neither based on CME nor on NCE but is caused by a dynamin-

independent internalization pathway of EGFR. Transferrin internalization would have been 

a proper control to exclude that the increased internalization rate in double KD conditions 

is caused by residual CME activity. Therefore additional studies are needed in future to 

investigate the hypothesis of a potential third EGFR internalization pathway, activated in 

cells depleted for USP25. 

 

 

Figure 22: Characterization of EGFR internalization upon USP25 knock-down 

HeLa cl3_7 cells were treated with doxycycline [0.5 µg/ml] and transiently transfected 

with siRNA targeting dynaminI and dynaminII as indicated (A). HeLa cells were 

transfected with siRNA targeting USP25, clathrin, reticulon or with a scrambled oligo 

(Control) as indicated (B). After 72 hours EGFR internalization was followed for early 

time points (0-7 min) at high dose of EGF ligand [20 ng/ml] by using a radiolabeled ligand 

binding assay and I
125

-EGF. Internalization constants (Ke) were extrapolated from the 

internalization curves and correspond to the slopes of the best-fitting curves. KD efficiency 

was revealed by the indicated antibodies (A,B). 
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 Investigation of USP25 substrate/s 5

5.1 Endocytic proteins involved in EGFR endocytosis 

To elucidate the observed alterations in EGFR endocytosis, we were seeking for substrates 

of USP25. There are multiple steps of the endocytic process regulated via ubiquitination 

(see chapter 2.1 introduction). Since USP25 already impinges on internalization of EGFR, 

we focused our attention on proteins involved in early steps of endocytosis.  

Endocytic adaptor proteins are known to be monoubiquitinated upon EGF 

stimulation (Katz et al., 2002; Polo et al., 2002). To test whether USP25 could reverse this 

type of modification, we examined protein levels and posttranslational modifications of 

Eps15 and Epsin1 and 2 in cells stimulated for different time points with high dose of EGF 

[100 ng/ml]. We could not assess any differences in USP25 KD cells compared to control 

cells for all tested adaptor proteins (Figure 23A). Note that the decrease in Epsin 1 and 2 

at later time points in USP25 KD cells is probably based on loading problems and was not 

observed in other immunoblot analyses.    

Overall our data are also compatible with a model in which USP25 regulates the 

protein stability of an unknown positive factor. This protein has to be a limiting factor in 

EGFR internalization. Depletion of USP25 would increase protein levels and therefore 

enhance the internalization of EGFR. The most obvious candidates are E3 ligases known 

to be involved in EGFR endocytosis. The E3 ligase c-Cbl directly ubiquitinates several 

RTKs including EGFR and is indeed a limiting factor, at least in the NCE pathway 

(Sigismund et al., 2013). NEDD4 is indirectly involved in EGFR endocytosis by regulating 

ubiquitination status and stability of several endocytic adaptor and trafficking proteins 

(Woelk et al., 2006).  

Protein levels of c-Cbl and NEDD4 were assessed in USP25 KD cells stimulated 

with high dose of EGF [100 ng/ml]. Again, we could not score any major differences in 
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expression levels or posttranslational modifications compared to control conditions 

(Figure 23B,C).  

In sum, our data show that depletion of USP25 does neither affect known endocytic 

adaptor proteins, nor E3 ubiquitin ligases important in EGFR endocytosis.  

 

 

Figure 23: Characterization of endocytic proteins upon USP25 knock-down. 

HeLa cells were transfected with siRNA targeting USP25 or with a scrambled oligo 

(Control) as indicated. After 72 hours cells were stimulated with EGF [100 ng/ml] for the 

indicated time points. Effects on endocytic proteins were revealed by immunoblot on total 

cell lysate with the indicated antibodies (A-C). 
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5.2 USP25 has a direct effect on the ubiquitination levels of EGFR  

A manifest target for a DUB whose depletion increases EGFR degradation, is the receptor 

itself. To test if KD of USP25 has a direct effect on the ubiquitination of EGFR, we 

performed immunoprecipitation experiments in control and USP25 KD cells, stimulated 

with high dose of EGF [100 ng/ml] for different time points. Ubiquitination levels were 

determined by immunoblot using an ubiquitin antibody. A general increase in the 

ubiquitination of EGFR was observed in USP25 KD, as indicated by the normalized 

ubiquitin to EGFR ratio in (Figure 24A). The most striking increase in the ubiquitination 

level of EGFR was observed at three minutes post EGF (Figure 24A). Results were 

confirmed with different siRNAs in DELFIA approach, with an EGFR antibody for 

coating and anti-ubiquitin (FK2) as revealing antibody (Figure 24B). To reinforce this 

observation the ubiquitination status of EGFR was also assessed in selected clones of the 

two stable KD cell lines. A remarkable increase in EGFR ubiquitination was scored in all 

tested HeLa clones treated with doxycycline compared to untreated cells after three 

minutes of EGF stimulation (Figure 24C).  

Furthermore, EGFR ubiquitination was assessed at different EGF concentrations. HeLa 

cells transiently depleted for USP25 were stimulated with increasing dose of EGF from 0.3 

ng/ml up to 30 ng/ml. EGFR was immunoprecipitated and ubiquitination levels were 

revealed by immunoblot using an ubiquitin antibody. For all tested EGF concentration an 

increased number of EGFR modified with ubiquitin was observed in USP25 KD cells 

compared to control cells (Figure 24D).  

Taken together our data show that depletion of USP25 causes higher ubiquitination 

levels of EGFR suggesting that the receptor is a direct target of USP25. Increased 

ubiquitination of EGFR was already scored three minutes post EGF at low and high doses 

of ligand concentrations.   
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Figure 24: Ubiquitination of EGFR is increased upon USP25 knock-down. 
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HeLa cells were either transfected with siRNA targeting USP25 or a scrambled oligo 

(Control) as indicated (A,B,D). Stable cell lines were stimulated with doxycycline [0.5 

g/ml] to induce USP25 KD (C). After 72 hours cells were stimulated with high dose of 

EGF [100 ng/ml] (A-C) or with increasing EGF concentrations [0.3 – 30 ng/ml] (D) for the 

indicated time points. EGFR was immunoprecipitated using protein specific antibody and 

the ubiquitination status was revealed with an ubiquitin antibody (A,C,D). Normalization 

of ubiquitinated receptor versus total receptor illustrates an increase in ubiquitination upon 

USP25 KD as shown by numbers of ubiquitin to EGFR ratio (A) Alternatively, lysates 

were subjected to DELFIA with an EGFR antibody for coating and anti-ubiquitin as 

revealing antibody (B).   

 

 

 

5.3 Interaction of USP25 and EGFR 

To verify that EGFR is a direct substrate of USP25, we investigated a possible interaction 

between the two proteins in co-immunoprecipitation experiments. HeLa cells were 

transfected with GFP-tagged constructs, either USP25wt, the catalytically inactive mutant 

USP25C178A or with GFP alone as control. To induce EGFR ubiquitination, which might 

be essential for the interaction, cells were stimulated for three minutes with high dose of 

EGF [100 ng/ml]. EGFR was immunoprecipitated with a specific antibody from cell 

lysates. Co-immunoprecipitation was assessed either with anti-GFP or anti-USP25 

antibodies (Figure 25A,B). For none of the tested conditions a significant binding was 

detected.  
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Figure 25: Co-immunoprecipitation experiments of USP25 and EGFR. 

HeLa cells were transfected with GFP-USP25wt, GFP-USP25C178A or GFP, respectively. 

After 24 hours cells were serum starved overnight and stimulated with high dose of EGF 

[100 ng/ml]. Lysates were subjected to anti-EGFR (A) or anti-GFP (B) 

immunoprecipitation, respectively. Co-immunoprecipitation was revealed by the indicated 

antibodies (A,B).  

 

These negative outcomes prompted us to investigate USP25 and EGFR in 

immunofluorescence studies. Due to the lack of an antibody suitable for 

immunofluorescence, we decided to generate a polyclonal anti-USP25 antibody. The 

antibody was produced against GST-USP25 full length protein in rabbits. Two different 

bleedings were tested for the specificity to detect USP25 in immunoblot analyses (data not 

shown). The one that gave better response was purified against the antigen and tested in 

control cells and USP25 KD cells in immunofluorescence experiments. To better visualize 

antibody specificity, USP25 KD and control cells were mixed 1:1 and seeded on 

coverslips. Methanol- or paraformaldehyde-fixed cells were stained with different 

concentrations of USP25 antibody. Figure 26A shows that the purified USP25 antibody 

specifically recognizes USP25, since HeLa control cells and cells which were depleted 

from USP25 are clearly distinguishable. The signal to noise ratio appeared to be better in 

methanol fixed cells compared to fixation with 4% PFA (Figure 26A). Our analyses 

revealed a predominantly cytoplasmic localization of USP25 in HeLa cells.  
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To investigate an interaction between USP25 and EGFR, internalization assays 

with Alexa-EGF were performed. Due to the fact that EGFR internalization is affected in 

USP25 KD cells and an increased EGFR ubiquitination was already observed three 

minutes post EGF, we assumed that an interaction between USP25 and EGFR would take 

place at very early time points post EGF stimulation. Hence HeLa cells were stimulated for 

two and three minutes with Alexa-EGF after four hours of serum deprivation. Cells were 

subsequently fixed with methanol and stained with USP25 antibody. Subcellular 

distribution of USP25 was revealed with confocal microscopy. We could not detect any 

changes in USP25 localization between cells stimulated with EGF and serum starved 

conditions (Figure 26B). Moreover, USP25 signal appears to be highly diffused, therefore 

no clear co-localization between USP25 and Alexa-EGF could be observed (Figure 26B). 

In our analyses we were not able to establish an interaction between USP25 and 

EGFR. However substrate-enzyme interactions are very transient and therefore difficult to 

detect. The phenotype in the internalization assay suggested that USP25 and EGFR may 

interact at a very early time point, maybe only seconds after EGF stimulation. Thus, future 

experiments will entail proximity ligation and total internal reflection fluorescence (TIRF) 

assays.  
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Figure 26: Subcellular localization of USP25.  

HeLa cells were transfected with siRNA targeting USP25 and with a scrambled oligo 

(Control). KD and control cells were mixed 1:1 and seeded on coverslips. Cells were fixed 

with Methanol (MeOH) or with 4% paraformaldehyde (PFA) and stained with an USP25 

antibody (A). HeLa cells were serum starved for four hours and stimulated with Alexa555-

EGF [40 ng/ml, green] for the indicated time points. Cells were fixed with MeOH and 

stained with an USP25 antibody (red) (B). Blue, DAPI staining. 
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 USP25 and Cullin 3 6

6.1 USP25 binds preferentially the neddylated form of Cullin 3 

For a better understanding of the functional regulation and relevance of USP25 in EGFR 

endocytosis, we looked at already described substrates/interaction partners in literature. 

Previously, a global proteomic analysis of the DUB protein families was performed with 

the help of a Comparative Proteomic Analysis Software Suite (CompPASS), to identify 

stably associated interacting proteins (Sowa et al., 2009). One of the high-confidence 

candidate interacting proteins (HCIPs) identified for USP25 was the E3 ubiquitin ligase 

component Cullin 3 (CUL3) (Figure 27A). Strikingly the HCIPs comprise not only CUL3 

but also four BTB domain-containing proteins which serve as substrate adaptors in the 

CUL3 complexes (Figure 27A red rectangle). Furthermore, CUL3 was recently described 

to be involved in EGFR endocytosis and trafficking (Huotari et al., 2012). Based on all 

these indications we hypothesized that USP25 deubiquitinating activity and ligase activity 

of the CUL3 complex could counteract each other.  

As first we sought to verify the interaction between USP25 and CUL3 in GST pull-

down experiments. HeLa cells were transfected with HA-CUL3, or with HA-CUL1 as 

negative control. To ensure that the interaction is specific for USP25, GST-tagged AMSH, 

a DUB known to be involved in EGFR endocytosis, was used as additional control. GST-

proteins were incubated with cell lysates and binding was revealed with a HA antibody 

(Figure 27B). Strikingly, pull-down experiments revealed not only that USP25 specifically 

binds CUL3, but that it has a preference for the active neddylated form of CUL3 (Figure 

27B). 
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Figure 27: USP25 binds preferentially neddylated CUL3. 

The twelve best hits (HCIPs) of the CompPASS DATA for USP25 published by the 

Harper laboratory are shown in table A (taken from: https://harper.hms.harvard.edu/). 

HeLa cells were transfected with HA-CUL3 or HA-CUL1 as negative control (B). The 

indicated GST-tagged proteins were incubated with HeLa cell lysate. GST was used as a 

negative control. The extent of interaction was evaluated trough IB analysis, using a 

specific HA antibody (B). Results are representative of three independent experiments. 

 

 

6.2 Internalization defects upon Cullin 3 knock-down 

This result prompted us to investigate if there might be a functional relationship between 

USP25 and CUL3, relevant in EGFR endocytosis. We performed quantitative 

internalization assays with iodinated ligand in cells either depleted for USP25, CUL3 or 

both. Internalization rates were quantified in three independent experiments in cells 

stimulated with high [20 ng/ml] and low dose [1 ng/ml] of EGF. The Ke was about 50% 

reduced in CUL3 KD cells compared to control conditions, while KD of USP25 caused an 

increase in EGFR internalization (Figure 28A), as already previously assessed (see chapter 

3.3). Interestingly, depletion of CUL3 and USP25 compensate for each other, since in the 

double KD the measured Ke of 0.13 min
-1

 is comparable to the one in control cells (0.16 

min
-1

) (Figure 28A). Similar results were obtained in cells stimulated with low dose of 

https://harper.hms.harvard.edu/
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EGF [1 ng/ml], where only clathrin-mediated endocytosis occurs (Figure 28B). Of note, 

also the internalization of Transferrin is affected by CUL3. The endocytic rate quantified 

in internalization assays with I
125

-Tf behaved analogous to the one measured for EGFR. 

Depletion of CUL3 caused a decrease, and USP25 KD an increase in TfR internalization, 

while the observed phenotypes were fully reversed in the double KD (Figure 28C). 

Moreover, immunoblot analyses revealed that downmodulation of one of the two proteins 

reciprocally caused an increase in the protein level of the other one, as exemplified in 

Figure 28D.   

Taken together the described results show that: (i) ablation of USP25 and CUL3 

have opposite effects on EGFR internalization; (ii) the observed phenotypes compensate 

each other in double KD; (iii) there is a transregulation between USP25 and CUL3. 

 

 

Figure 28: Altered internalization rates upon CUL3 knock-down. 
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HeLa cells were either transfected with siRNA targeting USP25, CUL3 or with a 

scrambled oligo (Control) as indicated. EGFR internalization at high [20 ng/ml] (A) and 

low [1 ng/ml] (B) doses of EGF ligand was followed at early time points (0-7 min) using a 

radiolabeled ligand binding assay and I
125

-EGF. TfR internalization rates upon stimulation 

with I
125

-Tf [1 µg/ml] were followed at early time points (0-7 min) by using a radiolabeled 

ligand binding assay (C). Internalization rates are average of three independent 

experiments (A-C). IB analyses were performed to show KD efficiency (D).  

 

 

6.3 EGFR ubiquitination in Cullin 3 depleted cells 

DUBs are often found to be associated with ubiquitin ligases (Wilkinson, 2009). Based on 

prior results, one could speculate that also USP25 and CUL3 are together in a complex, 

with opposing activity on EGFR ubiquitination. Whether the observed alterations in EGFR 

internalization upon CUL3 KD and USP25/CUL3 double KD cells might be caused by 

differences in EGFR ubiquitination levels, needs to be tested.  

To induce EGFR ubiquitination, HeLa cells transiently depleted for USP25 and/or 

CUL3 were stimulated for three and ten minutes with high dose EGF [100 ng/ml]. 

Differences in EGFR protein levels and posttranslational modifications were first assessed 

in immunoblot analyses with an EGFR antibody. Silencing of CUL3 with two different 

siRNAs (CUL3 D2 and CUL3 5) caused an increase in total EGFR (Figure 29A), as it was 

already reported by the Peter laboratory (Huotari et al., 2012). We also noticed opposite 

effects of CUL3 and USP25 depletion on the smear towards higher molecular weight of 

the EGFR band upon EGF stimulation. This smear is determined by both phosphorylation 

and ubiquitination of the activated EGFR. In particular, less “high molecular weight 

smear” was observed in CUL3 KD cells suggesting a decrease in EGFR ubiquitination 

and/or phosphorylation (Figure 29A). To verify this observation EGFR was 

immunoprecipitated from different KD lysates stimulated for three minutes with high dose 

of EGF [100 ng/ml]. Modifications of EGFR with ubiquitin were assessed by blotting with 
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an ubiquitin antibody. IP experiments could confirm IB analyses, that EGFR is less 

ubiquitinated in CUL3 KD cells (Figure 29B). For the USP25 CUL3 double KD no clear 

result was obtained (Figure 29B).  

To collect more quantitative information on EGFR ubiquitination we decided to 

perform DELFIA experiments. All lysates were quantified in a parallel DELFIA assay 

with anti-EGFR and anti-ubiquitin antibodies. Values of EGFR ubiquitination were 

normalized to the amount of EGFR receptors present at 0 time point (see chapter 13 in 

methods for details). We scored a reduction in EGFR ubiquitination of almost 50% in cells 

depleted for CUL3 (Figure 29C), confirming previously collected data (Figure 29A,B). A 

twofold increase of EGFR ubiquitination three minutes post EGF was measured in USP25 

KD cells, but also upon CUL3 USP25 double KD (Figure 29C).  

In sum data indicate that KD of CUL3 caused a decrease of EGFR ubiquitination. 

The fact that EGFR ubiquitination in single and double KD behaved in the same way does 

not confirm the initial assumption that the observed compensatory effects of USP25 and 

CUL3 in EGFR internalization are caused by opposing activities on EGFR ubiquitination. 

While these preliminary data on EGFR ubiquitination need to be repeated together with the 

analysis of the phosphorylation status of the EGFR, we can conclude that CUL3 has an 

impact on EGFR behaviour already at three minutes upon stimulation and affects receptor 

internalization.   
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Figure 29: Impact of CUL3 depletion on EGFR ubiquitination. 

HeLa cells were transfected with siRNAs targeting USP25 (S1), CUL3 (5 and D2) or with 

a scrambled oligo (Control) as indicated. After serum starvation overnight, cells were 

stimulated with EGF [100 ng/ml] for the indicated time points. Total cell lysates were 

analysed by IB with the indicated antibodies (A) or subjected to DELFIA (C). To 

determine EGFR ubiquitination, anti-EGFR antibody was used for coating and anti-

ubiquitin as revealing antibody. Results are normalized to serum starved conditions and 

expressed as fold change in respect to control cells (C). Results are representative of two 

independent experiments. EGFR was immunoprecipitated from total cell lysates stimulated 

for three minutes with high dose of EGF [100 ng/ml] using protein specific antibody. The 

EGFR ubiquitination status was revealed with an ubiquitin antibody (B).  
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DISCUSSION 

 Screening for novel DUBs involved in EGFR endocytosis 1

Ubiquitination plays a fundamental role in the regulation of EGFR endocytosis. EGFR was 

one of the first endocytic cargo which was described to be modified with ubiquitin 

(Galcheva-Gargova et al., 1995). Upon binding of its cognate ligands EGFR is 

ubiquitinated by Cbl E3 ligases. For the early internalization steps, ubiquitination of the 

receptor appears to be either essential (Sigismund et al., 2005) or sufficient but not 

required (Goh et al., 2010), depending on the endocytic pathway. By contrast, sorting and 

trafficking of the internalized receptor into the lysosomal degradation pathway is clearly 

ubiquitin-dependent (Huang et al., 2006; Huang et al., 2013). This last step promotes 

downmodulation of the receptor and is crucial for signal attenuation and the maintenance 

of normal cell physiology. Moreover, various adaptor proteins along the endocytic route 

are known to be a target of ubiquitin modification upon ligand stimulation. In the 

regulation of these proteins and throughout the endocytic steps of the EGFR, DUB-

mediated removal of ubiquitin plays an important role. Until now, we have few clues 

regarding the identity and exact functions of DUBs involved in the endocytic process. This 

work represents a contribution to the investigations of DUB-mediated regulation of 

endocytic processes upon EGFR activation. In a genome-wide siRNA screen targeting all 

known active DUBs, we found twelve DUBs affecting EGFR degradation kinetic, which 

were not described yet (Figure 11). This number of identified enzymes is not surprising in 

light of the complexity of EGFR regulation. Similar to the results of our screen, for the 

HGF-Receptor (Met) up to 12 DUBs have been identified to orchestrate multiple steps of 

the Met activation response (Buus et al., 2009).  

DUBs may affect EGFR fate either directly, acting at the various step of the 

endocytic pathways or indirectly, impinging on feedback regulatory loops active on the 

EGFR pathway (Avraham & Yarden, 2011). In this context it needs to be mentioned that 



118 

 

the screen reported here did not consider the requirement of the catalytic activity of the 

DUBs. Therefore it is conceivable that some of the measured alterations in EGFR 

degradation kinetics are independent of deubiquitinating activity and might be due to 

scaffolding or other catalytic independent functions of DUBs. One example for a 

catalytically independent function of a DUB is given by USP13. It was demonstrated that 

USP13 inhibits the activity of the E3 ligase Siah2. This effect depends on the UBDs of 

USP13 but is independent of its deubiquitinating activity (Scortegagna et al., 2011).  

Nowadays siRNA screens in mammalian cells are a common tool for “loss of 

function” studies. Indeed other groups have performed similar siRNA-based DUB screens. 

A screen conducted by the Urbe’ laboratory investigated the effects of DUB KDs on 

steady state levels of ErbB2 through immunoblots (Liu et al., 2009). After the validation 

procedure a single enzyme, the proteasome-associated POH1, was confirmed to influence 

ErbB2 levels. Duex and Sorkin reported a screen in which not only DUBs but also other 

genes related to deubiquitination were included (Duex & Sorkin, 2009). They assessed 

EGFR levels present on the cell surface at a single time point post EGF in 

immunofluorescence experiments. This screen identified USP18 as an EGF-independent 

regulator of EGFR biosynthesis based on its role in EGFR mRNA translation (Duex & 

Sorkin, 2009). The rather high number of DUBs identified in our screen might be based in 

a different design of the assay. Instead of only steady state levels we monitored EGFR 

degradation kinetics, which led us to unravel DUBs involved in several ligand-dependent 

endocytic steps of EGFR. In addition to immunoblot experiments our screen was 

accomplished by a second approach, DELFIA analyses that allowed us to quantify EGFR 

degradation kinetics in a more precise way (Figure 11B). In this sense it appears to be 

more complete of one generated by Pareja et al. in which the authors assessed EGFR 

degradation kinetics upon stimulation with EGF in a similar way to our screen and 
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identified Cezanne-1 (OTUD7B) as negative regulator of EGFR turnover (Pareja et al., 

2012).  

The relative small numbers of DUBs and the fact that they are suitable “druggable” 

targets makes them to eligible subjects of genome-wide siRNA screens. Nevertheless the 

usage of siRNAs has a number of limitations. One problem is the transient inhibition of 

gene expression due to the unstable nature of siRNAs. We tried to overcome this by 

employing stealth siRNAs from Invitrogen. These oligos are chemically modified resulting 

in increased longevity and stability in cells. To ensure optimal KD efficiency we 

performed two consecutive rounds of transfection. The major concern when conducting 

siRNAs in particular in large scale is the risk of unspecific off-target effects. Therefore an 

extensive validation procedure was included in the screen. The initial data-set of IB 

quantifications and ELISA values revealed that 24 of the 82 screened enzymes influenced 

EGFR degradation kinetics (Figure 11). As a first validation step deconvolution 

experiments were performed (Appendix Figure 1) and KD efficiency was assessed by 

qRT-PCR (Table 1). Both approaches are compulsory to rule out off-target effects. Indeed 

almost ten of the positive hits from the initial screen could not be confirmed. This was 

either based on differences in the behaviour of the two siRNAs revealed in the 

deconvolution or on unspecific effects in the absence of a good level of protein depletion.  

Ubiquitination events are involved in a broad spectrum of processes; therefore not 

only protein stability but also transcriptional and translational activity can be affected by 

knocking down DUBs, as it was described for USP18 (Duex & Sorkin, 2009). Therefore, 

we included an additional qRT-PCR screen looking directly on EGFR transcription upon 

DUB KD. Indeed, 4 out of 24 DUBs showed strong alteration in EGFR transcription that 

need be further investigated at the single DUB level.  

Ultimately 15 out of 82 passed all validation steps confirming that they have an 

impact on EGFR turnover upon EGF stimulation. Beside the identification of yet unknown 
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DUBs, we were able to confirm previously published data, including AMSH and USP8, as 

well as USP2 and Cezanne-1 (Liu et al., 2013; McCullough et al., 2004; Pareja et al., 2012; 

Row et al., 2006), corroborating the reliability of the methods chosen for the screen and the 

validation procedure. Thus our screen represents a valuable source for future in-depth 

studies on specific DUBs to dissect their specific functions in EGFR endocytosis as we 

already started it in the case of USP25 and USP10 (see the Appendix). 

 

 USP25 a new DUB controlling EGFR turnover 2

2.1 Knock-down of USP25 enhances EGFR degradation kinetics 

Based on the results of the siRNA screen and the validation procedure in which USP25 KD 

significantly enhanced EGFR degradation kinetics, we decided to further characterize the 

function of USP25 in EGFR endocytosis. Quantitative analyses of DELFIA and 

immunoblot experiments unravelled that there is an enhanced EGFR degradation rate, 

which is already detectable at early time points post EGF stimulation (like 10 and 30 

minutes). Furthermore an increase in the total amount of EGFR degradation as exemplified 

at later time points (60 and 120 minutes) was assessed (Figure 12). In control cells 

approximately 40% of the initial amount of EGFR remained intact after 120 minutes of 

EGF induction, whereas in USP25 KD cells only 20-30% of EGFR was present at the 

same time point. If USP25 has also an effect on the EGFR net degradation would need 

further studies with later time points, in order to reach the steady state level of EGFR 

degradation.  

Internalized receptors can be either recycled back to the PM or are degraded in lysosomes. 

The major signal for sorting into the lysosomal degradation pathway is the attachment of 

ubiquitin to the cargo. Therefore an increase in the net degradation could be caused by 

increased ubiquitination. Indeed, we found that upon USP25 KD EGFR is more 

ubiquitinated compared to control cells (Figure 24), which probably accounts for the 
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higher amount of degraded EGFR. Furthermore, we found that also the internalization of 

EGFR is affected upon USP25 KD. Quantitative radioactive internalization assays and 

immunofluorescence analyses revealed that we have an increased internalization rate but 

also a faster trafficking of EGFR in cells depleted for USP25 (Figure 14 and Figure 17). 

Endocytic adaptor proteins involved in early internalization steps of EGFR, like Eps15, 

Epsin1 and Epsin2, are located at the PM. Via their intrinsic UIMs (Polo et al., 2002) they 

undergo coupled monoubiquitination (Woelk et al., 2006), a process that is needed for 

EGFR internalization (Savio et al., manuscript in preparation). We did not observe any 

increased monoubiquitination upon USP25 KD, disproving the hypothesis that this DUB 

may work directly on such substrates. Nonetheless, Eps15, Epsin1 and Epsin2 bind to 

ubiquitinated EGFR, facilitating its internalization (Sigismund et al., 2005). It is reasonable 

to assume that an increased ubiquitination of EGFR results in an increased internalization 

rate based on an augmented association between the receptor and the endocytic adaptor 

proteins. Whether this explanation accounts also for the faster trafficking and degradation 

of EGFR or if those are uncoupled events, needs to be further tested. To gain insight into 

this issue one possibility is to perform trafficking and/or degradation experiments only 

with a pool of already internalized receptors. After a pulse of labelled EGF, residual 

ligands are removed from the medium and only the internalized receptor-ligand complexes 

are further monitored. These conditions compensate for alterations in the internalization, 

and should give an answer if the different alterations in EGFR internalization, trafficking 

and degradation upon USP25 are causative or uncoupled events. 

 

2.2 USP25: a novel DUB at the plasma membrane? 

The overexpression of USP25 displayed the reverse phenotype observed under KD 

conditions and EGFR internalization is delayed in cells overexpressing USP25wt at early 

time points (Figure 15). Based on this result we assumed that USP25 is involved in early 



122 

 

steps of EGFR internalization. Moreover, the most remarkable increase in EGFR 

ubiquitination could be observed already three minutes post EGF stimulation (Figure 24). 

In line with this observation the phosphorylation peak of Hrs is anticipated in USP25 KD 

cells (Figure 13). Taken together our data indicate that USP25 should work at the PM, or 

it might be recruited to the PM upon EGFR activation. In an attempt to investigate whether 

USP25 is active at the PM, we immunoprecipitated EGFR from cells depleted for USP25 

alone, or in combination with KD of dynamin (data not shown). Ablation of dynamin 

blocks the EGFR internalization, thus the comparison of the EGFR ubiquitination levels 

should allow to define whether USP25 deubiquitinates EGFR already at the PM. 

Unfortunately these experiments were not conclusive due to technical difficulties. As next 

we raised a polyclonal antibody against USP25 in rabbits, to visualize the localization of 

endogenous USP25 in cells unstimulated or stimulated with EGF at different time points. 

Unfortunately we could not score any clear staining of USP25 at the PM or relocalization 

upon EGF stimulation (Figure 26). One technical problem which might prevent the 

detection of co-localization events between USP25 and Alexa-EGF could be the fixation 

with MeOH. We found that for our USP25 antibody the signal to noise ratio in 

immunofluorescence is much better in cells fixed with MeOH compared to 

paraformaldehyde-fixation. However MeOH destroys the native conformation of proteins 

which results in a decreased signal of fluorescent dyes as it happened in the case of Alexa-

EGF at least for the early time points. Another issue in the assessment of co-localization 

between USP25 and EGFR in immunofluorescence-based internalization assays might be 

poor level of USP25 expression. Global mRNA and protein abundance analyses in 3T3 

cells suggest that USP25 is one of the low abundant DUBs with only a few hundred copy 

numbers per cell (Schwanhausser et al., 2011). Low protein levels of USP25 might 

complicate the detection of USP25. To overcome the described difficulties we are planning 

proximity ligation assays (PLA) (Leuchowius et al., 2009) with antibodies against USP25 
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in endogenous condition or anti-tag in the overexpressed condition in combination with 

anti-phospho-EGFR to localize activated receptors. Based on signal amplification PLA is a 

very sensitive method, which enables the detection of transient interactions as it is the case 

for the binding of enzymes to their substrates.   

To prove the specificity of the phenotypes mediated by the used siRNAs and to rule 

out off-target effects, rescue experiments, in which USP25 expression is re-introduced 

after depletion, are needed. For this purpose we engineered a stable cell line in which the 

expression of USP25wt or the catalytic inactive mutant USP25C178A can be induced. 

Unfortunately, high protein levels of USP25 caused lethality, as we observed in cells 

transiently or stably expressing tagged-USP25 constructs. The treatment of the stable cell 

lines with the proteasome inhibitor MG132 revealed that the expression of USP25 is 

prevented by proteasomal degradation of exogenous USP25 (Figure 16B). Taken together 

these results suggest that aberrant protein levels of USP25 are harmful for cells.  

Although rescue experiments are missing so far, the wealth of the collected data 

consistently indicates that the observed phenotypes upon USP25 KD are due to the lack of 

USP25 protein. All key experiments like the assessment of the internalization rate or the 

ubiquitination level of EGFR in USP25 KD cells were confirmed with four distinct 

siRNAs, targeting different sequences of the USP25 mRNA (Figure 17, Figure 18 and 

Figure 24).  

 

2.3 Dissection of EGFR internalization pathways affected upon USP25 knock-down 

There are multiple ways to endocytose activated EGFR. In the past our group discovered a 

clathrin-independent internalization pathway (NCE) for the EGFR that is activated after 

stimulation with high dose of EGF (Sigismund et al., 2005). Our quantitative 

internalization assays revealed that ablation of USP25 leads to an almost twofold increase 

of the EGFR internalization rate at high dose of EGF [20 ng/ml], in conditions in which 
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both internalization pathways (NCE and CME) are known to be active. Also at low dose [1 

ng/ml], in which endocytosis occurs only through CME (Sigismund et al., 2008; 

Sigismund et al., 2005), the observed internalization rate of EGFR is less pronounced but 

still significantly increased. At first glance this seems to suggest that USP25 plays a role in 

both, CME and in NCE pathway.  

CME is typically faster than NCE with a measured rate constant (Ke) of about 0.3 

min
-1

 in HeLa cells (Sigismund et al., 2005). Kinetic analysis of EGFR endocytosis 

suggested that CME is saturated when a large number of surface EGFRs are activated by 

EGF, and the contribution of the slower NCE pathway leads to a reduction in the apparent 

internalization rate (Wiley, 1988). Our data are consistent with the idea that the increased 

internalization rate measured upon KD of USP25 is due to an increased capacity of the 

CME pathway. As a consequence the Ke at high dose of EGF would also be increased. In 

cells stimulated with high dose of EGF, a condition where many receptors are activated, 

about 60% of the internalized EGFR occurs via CME. The remaining 40% is accomplished 

by the NCE pathway. A shift in this contribution towards CME would result in an 

increased Ke at high dose, with values typically measured at low dose, where only CME is 

active. In this case USP25 would regulate the protein stability of an unknown positive 

factor essential for clathrin-mediated endocytosis. This protein has to be a limiting factor 

in EGFR internalization via CME. Depletion of USP25 would increase the protein level 

thus enhancing the internalization rate of EGFR. One obvious candidate would be Cbl. 

This E3 ligase is indeed a limiting factor for EGFR ubiquitination (Sigismund et al., 2013) 

and is indeed ubiquitinated and degraded at later time points (Magnifico et al., 2003). 

However, no obvious difference in the level of Cbl expression was seen upon USP25 KD 

(Figure 23B).  

To further dissect the impact of USP25 in different endocytic routes, we switched 

off either NCE or CME pathway separately, through siRNA-mediated ablation of essential 
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components of the clathrin-dependent and -independent internalization of EGFR (CHC and 

Reticulon3, respectively). Neither clathrin ablation nor Reticulon3 depletion is able to 

completely reverse the increased Ke measured upon USP25 KD. Based on these results we 

can envision two possible scenarios. In the first one, USP25 impinges on both CME and 

NCE pathways. In the second one USP25 is involved in a third pathway that is 

hyperactivated in its absence. To better discriminate between these two possibilities, we 

knocked-down dynamin. The GTPase dynamin is an essential component for both CME 

and NCE, while other described internalization pathways are dynamin independent (Howes 

et al., 2010). To switch off NCE and CME at the same time, we performed quantitative 

internalization assays with cells depleted for dynamin and USP25. In addition, we defined 

the internalization rate in HeLa cells triple KD for USP25, clathrin and reticulon. Also in 

this case CME and NCE should be abrogated at the same time. In both approaches the 

increased internalization rate upon USP25 KD was not fully reversed by the simultaneous 

interference with dynamin or clathrin and reticulon, respectively (Figure 22). This 

suggests that the measured alterations of EGFR internalization in cells silenced for USP25 

are indeed caused by the presence of a third dynamin-independent endocytic route for 

EGFR. It seems that this pathway is only activated upon USP25 inactivation. According to 

the literature there are several dynamin-independent internalization pathways, including 

the CLIC/GEEK-, flotillin-, and the Arf6-mediated pathway (Kumari et al., 2010). To 

verify the hypothesis of dynamin-independent EGFR internalization upon depletion of 

USP25, it should be examined if inhibition of the aforementioned pathways has an effect 

on EGFR endocytosis in USP25 KD cells.  

It needs to be point out that all experiments are based on siRNA-mediated depletion 

of proteins to inhibit CME and/or NCE. Although this is a potent tool to downregulate 

endogenous protein levels, protein depletion never reached 100% efficiency. In 

immunoblot analyses small amounts of remaining protein upon siRNA treatment were 
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observed. Furthermore the simultaneous interference of two or more proteins is often less 

efficient compared to single KD. Thus we cannot exclude that the residual protein levels 

are sufficient to support the observed EGFR internalization. One possibility to overcome 

this problem would be complementary studies using chemical inhibitors, e.g. dynasore is a 

potent inhibitor of dynamin I and II (Macia et al., 2006). In addition to the above discussed 

difficulties in protein depletion via siRNA it needs to be mentioned that in general the 

observed effects on EGFR internalization in low dose conditions, where only CME is 

active, are rather small compared to the assessed alterations at high dose. That it might be 

still possible that USP25 is only working in the NCE of EGFR. Consistent with this is that 

ubiquitination of EGFR is crucial in this pathway while it is not essential for EGFR uptake 

via CME (Sigismund, et al., 2005). Therefore one can assume that USP25 impinges mainly 

in the NCE pathway since a proper regulation of DUB activity might be more critical in 

the non-clathrin endocytosis of EGFR.  

 

2.4 USP25 and the Transferrin receptor 

The Transferrin receptor (TfR) is one of the best described cargoes and exclusively 

internalized via CME (Pearse & Robinson, 1990). This makes the TfR to a well-

established tool to examine alterations in clathrin-mediated endocytosis. Here we were 

using radioactively labelled Transferrin (I
125

-Tf) to control the impact of USP25 on the 

CME pathway. We observed that similar to EGFR also the internalization rate of TfR was 

about twofold increased in cells depleted for USP25 compared to control conditions 

(Figure 21A). However saturation binding assays as well as immunofluorescence analyses 

(data not shown) revealed that the cell surface levels of TfR are tremendously decreased in 

cells depleted for USP25 (Figure 21B). By inhibiting the proteasome and/or lysosomal 

degradation in USP25KD cells, we were not able to restore TfR proteins to normal cellular 

levels (data not shown). On the other hand, qRT-PCR analyses revealed that the lower TfR 
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protein expression might be rather due to alterations in the TfR transcription than to an 

increased degradation and/or a failure in recycling of TfR (Figure 21C). This low number 

of TfR at the plasma membrane has to be considered once discussing its altered 

internalization rate. Although the Ke is independent of receptor affinity and cell surface 

number, one crucial point is that the quantity of surface-bound ligand must remain 

approximately constant during the experimental measurement (Wiley & Cunningham, 

1982). This condition is presumably not given in USP25 KD cells where less than 20% of 

Transferrin receptors are present on the cell surface in cells depleted of USP25 compared 

to control cells (Figure 21B) and saturating conditions might be reached. Thus, we cannot 

exclude that the changes in TfR internalization rates upon USP25 KD are due to different 

starting numbers of surface TfRs. Consequently we could not use TfR internalization to get 

a final conclusion about a general role of USP25 in clathrin-mediated endocytosis.  

The number of DUBs is greatly outnumbered by the E3 ligases. This suggests that 

each DUB has multiple targets and might be involved in the regulation of multiple 

different processes. Therefore, we can conclude that alterations in EGFR and TfR turnover 

presumably originate from dissimilar cellular roles exerted by USP25 on these different 

receptors. It would be interesting to test whether KD of USP25 would lead to enhanced 

internalization of other receptors such as the insulin-like growth factor 1 receptor (IGF-1R) 

(Backer et al., 1991; Prager et al., 1994) or FGFR and VEGFR (Haugsten et al., 2011; 

Lanahan et al., 2010) for which alternative pathways and sensitivity to ligand 

concentration has been demonstrated. 

 

2.5 Ubiquitin and USP25 and their role in EGFR endocytosis 

The role of ubiquitin in EGFR endocytosis is object of a long-standing debate. Although c-

Cbl activity, the major E3-ligase of EGFR, seems to be necessary for EGFR 

internalization, is it not clear whether this is based on a direct ubiquitination of EGFR or 
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rather on adaptor functions executed by c-Cbl in the endocytic process of EGFR (Huang et 

al., 2006; Levkowitz et al., 1999; Zeng et al., 2005). Indeed it was demonstrated that a 

16KR mutant of EGFR, in which 15 Lys residues within the kinase domain were mutated 

to Arginine, is only marginally ubiquitinated but internalized at a normal rate (Huang et al., 

2007). By using an in-frame fusion of ubiquitin to EGFR, other studies could show that 

monoubiquitination of EGFR appears to be sufficient to induce its internalization. This 

EGFR chimera was constitutively internalized and resulted in an enhanced degradation 

(Haglund et al., 2003; Mosesson et al., 2003). At first glance these findings seem to be 

contradictory, but might be indicative of the presence of multiple redundant mechanisms 

(Acconcia et al., 2009). In the case of EGFR endocytosis, this includes ubiquitination of 

Lys residues in the intracellular kinase domain of the receptor, but also the interaction of 

the receptor with the AP2 complex and with the adaptor protein Grb2, as well as 

acetylation of C-terminal Lys residues (Goh et al., 2010). It is likely that not all 

mechanisms are simultaneously activated and that certain mechanisms are preferentially 

engaged under physiological conditions. Therefore the relative contribution might vary 

depending on the cell type, on the utilized internalization pathway and on different stimuli, 

e.g. type and concentration of ligands. 

In the present study we demonstrate that depletion of USP25 results in increased 

EGFR ubiquitination, suggesting that the receptor itself is a direct target of USP25 

deubiquitinating activity (Figure 24). Moreover we found that this correlates with an 

increased internalization rate at high but also at low dose of EGF stimulation and that CME 

and NCE are not directly implicated. It is likely that the detected increase of EGFR 

ubiquitination and the increased internalization rate of EGFR are not only correlative but 

causative. This is also supported by the observation of increased EGFR ubiquitination 

levels at lower EGF concentrations in cells depleted for USP25 compared to control cells 

(Figure 24D).   
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EGFR ubiquitination is a signal for downregulation via lysosomal degradation 

(Acconcia et al., 2009). KD of USP25 results not only in an increased internalization but 

also in an increased degradation of EGFR. Together with the higher EGFR ubiquitination 

levels assessed in USP25 KD cells, it seems to be plausible that depletion of USP25 

orchestrates the ratio of receptor recycling and receptor degradation. Our data indicate, that 

based on higher ubiquitination levels of EGFR upon USP25 KD, more receptors are 

shuttled to lysosomes and are subsequently degraded. It would be interesting to know 

whether this is also true for cells stimulated with low dose of EGFR, where under normal 

conditions only a small portion of EGFR is degraded.  

An increase in EGFR ubiquitination can be either accomplished by an increased 

activity of E3 ligases or by a diminished deubiquitination of the receptor. None of the 

tested E3 ligases described to be involved in EGFR endocytosis displayed major changes 

upon USP25 KD (Figure 23B,C). Thus, we think that EGFR is indeed a direct target of 

USP25 and that the lack of USP25 results in higher EGFR ubiquitination levels. Another 

theoretical possibility would be that USP25 regulates the stability of an alternative DUB of 

EGFR. Depletion of USP25 would result in enhanced degradation of this hypothetical 

enzyme and consequently in increased EGFR ubiquitination. Although we have not 

formally tested this possibility we think that this is rather unlikely. 

Overall DUB activity can have different functions: they (i) process ubiquitin 

precursors, (ii) rescue substrates from degradation, (iii) recycle ubiquitin from cargoes 

destined for proteasomal or lysosomal degradation (iv) but their function is also essential 

in the editing of polyubiquitin chains (Reyes-Turcu et al., 2009). Mass spectrometry 

analyses revealed that EGFR is monoubiquitinated at multiple Lys residues within the 

kinase domain but also polyubiquitinated with Lys63-linked chains (Huang et al., 2006). 

As typical for E3 ligases of the RING-type also Cbl proteins seem to be rather linkage 

unspecific. Furthermore the mechanism how Cbl E3 ligases mediate mono- rather than 
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polyubiquitination is not defined yet. Thus it seems to be likely that DUBs are involved in 

the trimming of polyubiquitin chains to monoubiquitin and/or selectively remove 

polyubiquitin chains with other linkages than Lys63. USP25 can cleave both Lys63 and 

Lys48 chains (Zhong et al., 2013b) and it was suggested that the UBDs of USP25 

preferentially bind to Lys48 linked polyubiquitin chains (Nathan et al., 2013), supporting a 

model in which USP25 modifies the ubiquitin signals on EGFR. In this case the lack of 

USP25 would result in increased ubiquitination levels of EGFR with a specific linkage 

type. To test this hypothesis we need to compare the abundance of differently linked 

polyubiquitin chains on EGFR in USP25 KD and control cells by either antibodies against 

specific chains (Lys63, Lys48 and Lys11, provided us by Genentech) or by mass 

spectrometry analyses using the AQUA methodology (Maspero et al., 2013).  

The described hypothesis opens also the possibility that upon USP25 KD EGFR 

might be not exclusively degraded in lysosomes, as it is the rule under normal conditions. 

Due to “atypical” modifications with other polyubiquitin chains than Lys63, EGFR 

degradation might occur in an abnormal way in USP25 KD cells. Most of the available 

data indicate that EGFR degradation takes place in lysosomes. However, some studies 

have demonstrated that the inhibition of the proteasome blocks the degradation of the 

EGFR as well. Increased K48-linked polyubiquitination of EGFR at the plasma membrane 

may cause its extraction (possibly via p97 ATPase (Meyer et al., 2012)) and a temporal 

increase of internalized receptors that could account for the increased internalization rate 

observed in the absence of USP25. Indeed it is easy to envision a “quality control” 

mechanism at the plasma membrane similar to the one occurring at the ER (ERAD 

pathway reviewed in (Lemus & Goder, 2014)). To get insights in a possible role of a 

proteasomal degradation of EGFR upon KD of USP25, it would be interesting to 

investigate if the increased EGFR degradation in USP25 KD cells can be rescued by the 

treatment with lysosomal versus proteasomal inhibitors.  
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 Cullin 3 and USP25: is there a functional relationship regulating 3

EGFR endocytosis? 

In search of potential interaction partners to further investigate the functional role of 

USP25 in cells, we got attracted by the CompPASS data of the Harper laboratory (Sowa et 

al., 2009). Almost half of the best hits (HCPIPs) comprehends Cullin 3 (CUL3) itself plus 

a number of BTB-containing proteins which serve as substrate adaptors in CUL3 E3 ligase 

complexes (Figure 27A). DUB function is in general opposing E3 ligase activity and these 

two types of enzymes are often found to be associated in complexes (Ventii & Wilkinson, 

2008). Moreover, a recent publication describes a regulatory role of CUL3 in EGFR and 

influenza A virus (IAV) endocytosis (Huotari et al., 2012). In GST pull-down experiments 

we could verify that there is an interaction between USP25 and CUL3 (Figure 27B). 

Strikingly, USP25 binds the neddylated form of CUL3 preferentially. Conjugation of 

NEDD8 to Cullin complexes results in an activation of the E3 ligase due to conformational 

changes (Duda et al., 2008). Our data demonstrate that the binding of USP25 to the active 

form of CUL3 is specific and not only mediated by NEDD8 alone, since USP25 did not 

bind CUL1 even in its neddylated form (Figure 27B). Moreover USP25 was not able to 

bind free NEDD8 (data not shown).  

We found that KD of CUL3 results in a decreased internalization rate of EGFR 

thus displaying the reverse effect on EGFR internalization to USP25 KD (Figure 28). The 

double KD of CUL3 and USP25 suggested that the two proteins possess opposing activity 

on EGFR internalization, since the quantified Ke was almost restored to control conditions 

at high but also at low dose of EGF stimulation (Figure 28A,B). Moreover immunoblot 

analyses revealed that depletion of one of the two proteins results in increased protein 

levels of the other, indicating a transregulation (Figure 28D). Of note, the assessed 

decreased internalization rate upon CUL3 KD is not in line to what was reported by 

Huotari et al. (Huotari et al., 2012). In this publication the depletion of CUL3 leads to 
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accumulation of EGFR in the late endocytic compartment, while the internalization of 

EGFR is not affected. Their proposed working model suggests a defect in endosome 

maturation in cells depleted for CUL3. The discrepancy to our results can be explained by 

the employment of different methods to unravel the impact on EGFR internalization. 

Huotari et al. performed immunofluorescence-based internalization assays to monitor 

EGFR fate. With this method only internalized receptors can be followed without 

considering the number of receptors on the cell surface bound to EGF. We instead 

employed radioactive labelled EGF to quantify the internalization rate of EGFR in CUL3 

depleted cells (Figure 28). The internalization rate Ke is based on the ratio of surface 

bound EGF to internalized EGF, measured at early time points post EGF stimulation. This 

assay allows a more precise quantification of the endocytic internalization kinetics of 

EGFR. We indeed observed strong effects on the EGFR internalization already at three 

minutes post EGF, a condition that was not tested by Huotari et al.. 

Based on the interaction of CUL3 and USP25 and the observed defects in EGFR 

internalization, we assumed that USP25 and CUL3 might form a complex to regulate 

EGFR ubiquitination. In immunoblot as well as in DELFIA analyses we observed a 

decreased ubiquitination of EGFR in CUL3 KD cells, a reverse phenotype compared to 

cells depleted for USP25 (Figure 29). It needs to be mentioned that also these data are 

conflicting to immunoprecipitation experiments from Huotari et al., where no differences 

in EGFR ubiquitination upon CUL3 depletion were described. KD of CUL3 increases 

EGFR expression levels in cells, complicating the immunoprecipitation of equal protein 

amounts even under limiting conditions (Figure 29B) (Huotari et al., 2012). Therefore we 

applied DELFIA analyses in which the ubiquitination of the receptor was normalized to the 

number of EGFR present in the different KD lysates (Figure 29C).  

Our assumption that CUL3 and USP25 possess opposing activity on the 

ubiquitination of EGFR implies that in double KD cells the ubiquitination of EGFR should 
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be restored to the levels in control conditions. Our data unfortunately did not confirm this 

idea. In the USP25 and CUL3 double KD, the ubiquitination of EGFR was elevated similar 

to USP25 KD alone (Figure 29C). We observed that KD of CUL3 appeared to be less 

efficient in double KD compared to the single KD, while we did not score any differences 

in USP25 protein levels for the two conditions (Figure 29A). The residual protein levels of 

CUL3 in double KD cells might be sufficient to increase EGFR ubiquitination. Overall it 

needs to be mentioned that depletion of CUL3 is always critical for cells homeostasis due 

to important regulatory functions exerted by CUL3 in cell cycle control (Sumara et al., 

2008). Thus, we cannot exclude that the occurrence of alterations in EGFR endocytosis 

might be a secondary effect. 

Another conclusive explanation which would explain the assessed alterations in 

EGFR internalization would be that USP25 is a target of a CUL3 based E3 ligase complex, 

controlling USP25 protein stability. As a result of the lack of CUL3 USP25 protein levels 

would be increased, resulting in a delayed EGFR internalization rate. Indeed we scored a 

decreased Ke for EGFR upon CUL3 KD (Figure 28A,B) and increase in USP25 protein 

levels in cells depleted of CUL3 (Figure 28D), supporting this possibility.  

Another interesting hypothesis is that CUL3, being part of the “quality control” 

mechanism at the plasma membrane, may attach Lys48-linked chains to the EGFR. These 

signals can be then edited by USP25. In absence of USP25 higher presence of these chains 

could lead to proteasomal degradation of EGFR, as previously discussed. 

Substrates modified by CUL3-based E3 ligases are almost invariably degraded by 

the proteasome. Evidence from C. elegans studies suggests that CUL3 plays a role in the 

membrane receptors turnover. It was shown that the CUL3
KEL8

 E3 ligase complex is 

critical for degradation of the Glutamate receptor (Schaefer & Rongo, 2006). Our results 

on CUL3 are only preliminary and further investigations are needed to clarify the 



134 

 

functional relationship between USP25 and CUL3 to regulate EGFR endocytosis. 

Nonetheless, our data open an interesting and novel possible regulation of EGFR level.  

 

 USP25 as a promising target in cancer therapy 4

In a recent publication, USP25 mRNA and protein levels were found to be upregulated in 

NSCLC patients correlating with advanced clinical stage, histological grade, and lymph 

node metastasis (Li et al., 2014). Li and co-workers found that high levels of USP25 

promote the epithelial to mesenchymal transition (EMT), a precondition of cancer cells 

allowing migration, invasion and metastasis. A general property induced by the transition 

is a change in cell morphology with the acquisition of spindle shape, loss of epithelial cell 

polarity and stress fibers redistribution. The possible targets of USP25 responsible for 

EMT were not identified yet. Many RTK signalling pathways play a role in EMT including 

EGFR but also c-met, PDGFR (Platelet Derived Growth Factor Receptor), NGFR (Nerve 

Growth Factor Receptor) and FGFR (Fibroblast Growth Factor Receptor) (Larue & 

Bellacosa, 2005). Therefore one interesting possibility is that the increased metastasis 

observed in vitro but also in vivo upon overexpression of USP25 is due to its role as a 

positive regulator of EGFR, and maybe also of other RTKs. Indeed we found a decrease in 

Akt signalling when USP25 was silenced (Figure 13), which could be a hint for the 

reverse effect upon USP25 overexpression. Therefore it would be worth to investigate if 

there is a connection between the reported upregulation of USP25 in EMT cells and the 

role of USP25 in rescuing EGFR from lysosomal degradation, as we described in the 

present study. 

Deregulated EGFR signalling is a typical feature of numerous solid tumours 

including breast, ovarian, NSCLC, prostate, head and neck cancers and others (Salomon et 

al., 1995). EGFR signalling activates cell proliferation, angiogenesis, metastasis and is 

anti-apoptotic, thus providing the basis for cell transformation and tumour progression 
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(Hanahan & Weinberg, 2000).  This makes the EGF receptor a prominent drug target and 

several strategies have been developed to block EGFR mediated oncogenic signalling. 

Monoclonal antibodies specific for the extracellular part of EGFR and small molecule 

tyrosine kinase inhibitors, targeting the kinase activity of EGFR, are already approved in 

clinics. However in many cases cancer cells were able to acquire resistance to this drugs 

resulting in tumour relapse (Cheng & Chen, 2014). Another promising anticancer strategy 

would be forcing EGFR downregulation and consequently compelling signal attenuation. 

Ubiquitination of EGFR plays a key role in this process, regulating receptor 

internalization, trafficking and degradation (Roepstorff et al., 2008). Therefore possible 

strategies to increase receptor ubiquitination are enhancing E3 ligases activity or 

alternatively inhibiting DUBs activity. In this context the latter one appears to be more 

practicable for clinical purposes.  

In recent years there was a massive effort in screening for and developing of small 

compound inhibitors. Targeting the ubiquitin-proteasome system for cancer therapy is an 

emerging field. Since cancer cells are more sensitive for altered protein homeostasis 

compared to normal cells, many compounds were developed for blocking the proteasome. 

The most clinically successful is bortezomib an inhibitor of the 26S proteasome, used for 

the treatment of myeloma and mantle cell lymphoma (Adams, 2004). A problem of this 

anticancer therapeutics is that a complete inhibition of the proteasomal degradation has 

also tremendous effects to normal cells and goes along with serious side-effects. Targeting 

DUBs is more specific and a promising future direction. The mechanisms of action of 

proteases and the presence of distinct catalytically active residues facilitate the 

development of specific inhibitors. Their unique biochemical structures and the fact that 

they are rather substrate- than linkage-specific, makes DUBs of the USP-type to ideal 

“druggable” targets (Pal et al., 2014). Up to date about 30 USPs have been described to be 

directly or indirectly involved in cancer (Pal et al., 2014). With the exception of CYLD, 



136 

 

DUBs are not frequently mutated in tumours (Bignell et al., 2000). Upregulated transcript 

levels of several USPs have been found in certain cancer types, including USP18 (Liu et 

al., 1999), USP9X (Schwickart et al., 2010) and also for USP25 in NSCLC (Li et al., 

2014). Moreover numerous USP-type DUBs are described to be a regulator of cancer-

associated pathways. As it is the case for USP4, USP11and USP15 in the TGF- signalling 

pathway (Aggarwal & Massague, 2012) or as it was recently suggested for USP2a and 

Cezanne in the EGFR signalling pathway (Liu et al., 2013; Pareja et al., 2012). Our study 

added USP25 to this growing list.  

Based on our data, blocking of USP25 activity would result in increased ubiquitination of 

EGFR. As a consequence EGFR is degraded in lysosomes and excessive oncogenic EGFR 

signalling would be shut off. This is in particular interesting for cancer types in which 

EGFR signalling is upregulated due to increased protein levels. Recently a novel 

mechanism of DUB inhibition was reported. Small molecules which are capable of 

generating ROS, resulting in a selective and nonreversible oxidation of the catalytic Cys 

residue were identified (Ohayon et al., 2014). Previously USP25 was shown to be sensitive 

for oxidative inhibition (Lee et al., 2013). Exploiting USP25 inhibition for cancer therapy 

might open up a promising direction for future investigations. 
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APPENDIX: Additional USPs implicated in the EGFR pathway 

 

Starting from our siRNA screen targeting all known active DUBs we selected sixteen 

USPs that displayed major alterations in EGFR degradation kinetics for further validation. 

The two oligos of the initial pool were individually tested for each of the selected DUBs 

(Appendix Figure 1) and the efficiency of the knock-down was assessed by quantitative 

RT-PCR (Table 1). Eleven out of sixteen USPs confirmed previous results (Appendix 

Figure 1A). The remaining DUBs were not validated and displayed discrepancies between 

the phenotypes observed for the two single oligos or affected EGFR degradation kinetics in 

the absence of mRNA depletion, suggestive of an off-target effect (Appendix Figure 1B). 

USP6 and USP29 were discarded since they are apparently not expressed in HeLa cells 

(Table 1). 
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Appendix Figure 1: Deconvolution experiments of selected USPs.  

HeLa cells have been separately transfected with either oligo S1 and S2, for the 16 selected 

USP-type DUBs. After serum starvation cells were stimulated with EGF [100 ng/ml] for 

the indicated time points. Total cell lysates were analysed by IB with an EGFR antibody. 

Eleven USP KDs displayed the same EGFR degradation kinetics between oligo S1 and S2 

(A). Five USP KDs showed no phenotype or discrepancy between the two oligos or a 

phenotype in the absence of mRNA depletion (B). 
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Table 1: Expression levels of USPs mRNA. 

By qRT-PCR analyses mRNA expression 

levels of selected USPs were assessed and 

normalized to the housekeeping genes 18S or 

GAPDH. Ct-values and fold changes in respect 

to control conditions are reported. 

 

 

 

 

 

 

 

 

Among the eleven validated DUBs we selected USP10, USP11 and USP31 for 

further analysis. EGFR degradation kinetics upon DUBs KD were tested by DELFIA assay 

(Appendix Figure 2). 

While depletion of USP11 caused enhanced EGFR degradation kinetics, KD of 

USP10 and USP31 showed the opposite behaviour.  
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Appendix Figure 2: DELFIA analyses of selected USPs.  

HeLa cells were transfected with different siRNAs targeting the indicated USPs or with a 

scrambled oligo (Control). Cells were serum starved and then stimulated with EGF [100 

ng/ml] for the indicated time points. Total cell lysates were subjected to DELFIA analyses 

to determine EGFR degradation. 

 

As a next step we decided to acquire information related to the ubiquitination status 

of EGFR upon depletion of the selected USPs. KD cells were stimulated with high dose of 

EGF [100 ng/ml] to induce EGFR ubiquitination. EGFR was immunoprecipitated from cell 

lysates and modifications with ubiquitin were revealed with an ubiquitin specific antibody 

(Appendix Figure 3A). This was complemented by DELFIA assay using an anti-ubiquitin 

(FK2) as revealing antibody (Appendix Figure 3B). Silencing of USP10, USP11 and 

USP31 caused a decreased ubiquitination of EGFR (Appendix Figure 3).  

We also assessed possible transcriptional effects exerted by the KD on the EGFR 

transcript levels by qRT-PCR. Downregulation of the three DUBs showed no major 

changes in EGFR transcription (Appendix Table 2).  
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Appendix Figure 3: EGFR ubiquitination upon selected USP knock-downs. 

HeLa cells were transfected with different siRNAs targeting the indicated USPs or with a 

scrambled oligo (Control). Cells were stimulated with high dose of EGF [100 ng/ml] for 

the indicated time points. EGFR was immunoprecipitated using protein specific antibody 

and its ubiquitination status was revealed with an ubiquitin antibody (A). Alternatively, 

lysates were subjected to DELFIA with an EGFR antibody for coating and anti-ubiquitin 

(FK2) as revealing antibody (B).  

 

Table 2: Expression levels of EGFR und 

USPs mRNA. 

By qRT-PCR analyses EGFR and USP 

mRNA expression levels were assessed upon 

DUB KD and normalized to the 

housekeeping genes 18S or GAPDH. Fold 

changes in respect to control conditions are 

reported. 

Sample EGFR USP10 

 USP10 s1 0,813 0,093 

USP10 s2 0,875 0,097 

Cnt 1,000 1 

Sample EGFR USP11 

USP11 s1 0,559 0,048 

USP11 s2 0,717 0,140 

Cnt 1,000 1,000 

Sample EGFR USP31 

USP31 s1 0,822 0,343 

USP31 s2 1,068 0,363 

Cnt  1,000 1,000 



142 

 

4.1 EGFR is slower degraded in cells depleted for USP10 

Depletion of USP10 caused one of the strongest effects on EGFR turnover with opposite 

outcome compared to KD of USP25. Therefore we decided to further characterize the 

impact of USP10 on EGFR endocytosis.   

To gain additional information, the phosphorylation status of selected signalling 

and adaptor proteins upon USP10 KD was monitored by IB analyses (Appendix Figure 

4). Specifically, MAPK and Akt were tested as downstream effectors of the signalling 

cascade and Hrs phosphorylation as a read-out for the trafficking of the activated EGFR. 

USP10 was transiently depleted in HeLa cells with siRNA-based oligos (USP10 S1 and 

USP10 S2), after serum deprivation overnight, cells were stimulated with high dose of 

EGF [100 ng/ml] for different time points from 0 to 120 minutes. In cells depleted for 

USP10 less Akt and Hrs phosphorylation was observed compared to that of control cells, 

while for MAPK no differences were scored (Appendix Figure 4).  

In sum our analyses showed that EGFR degradation kinetics are decreased upon 

USP10 KD. The assessed phosphorylation level of Akt instead is not compatible with the 

simple model that a reduced degradation of the EGFR may cause a prolonged signalling of 

Akt (Sousa et al., 2012; Stern et al., 2007). 
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Appendix Figure 4: EGFR degradation kinetics and downstream signalling after 

USP10 knock-down. 

HeLa cells were transfected with different siRNAs (USP10 S1 and USP10 S2) or with a 

scrambled oligo (Control) as indicated. Cells were serum starved and then stimulated with 

EGF [100 ng/ml] for the indicated time points. Total cell lysates were analysed by IB with 

the indicated antibodies.  

 

 

4.2 Internalization and trafficking of EGFR in cells depleted of USP10 

Next, we sought to visualize the effects of USP10 depletion on EGFR trafficking and 

degradation at single cell level. Therefore immunofluorescence based internalization 

assays were performed in HeLa control and USP10 KD cells (Appendix Figure 5A). After 

one hour incubation on ice with fluorescently labelled EGF, cells were shifted to 37°C 

allowing internalization of the EGF-EGFR complex for various time points. The fate of the 

receptor-ligand complex was visualized by confocal microscopy. EGFR was completely 

degraded 90 minutes post EGF stimulation, since no EGF signal was detectable in control 

cells at that time point. In USP10 KD cells instead a major fraction of the receptor was still 

present (Appendix Figure 5A).  
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This is in accordance with the previously observed slower degradation kinetics. 

Thus, in the absence of USP10, both receptor and ligand appear to be stuck into endocytic 

compartments inside the cells. To test this hypothesis we performed the same experiment 

but this time the trafficking route of the EGF-EGFR complex was observed in more detail 

by the help of endocytic markers. Co-staining with EEA1, associated with early 

endosomes, or LAMP1, known to be localized at the late endosomes/lysosomes were 

performed. At early time points the trafficking of EGF appeared to be normal in USP10 

KD cells and no alterations compared to control conditions were detected (Appendix 

Figure 5B). At the 90 min time point a strong co-localization between EGF and LAMP1 

was observed in USP10 KD cells, confirming the idea that upon USP10 KD the EGF-

EGFR complex accumulates in the late endocytic compartment (Appendix Figure 5B).  
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Appendix Figure 5: Internalization and trafficking of EGFR upon USP10 knock-

down.  

HeLa cells were transfected with siRNA targeting USP10 or with a scrambled oligo 

(Control) as indicated. Cells were serum starved for four hours and incubated for one hour 

at 4°C in the presence of Alexa555-EGF [40 ng/ml, red] (A,B). After washing, cells were 

shifted at 37°C for the indicated time points to allow internalization. Cells were 

subsequently fixed and stained with an EEA1 (green) or LAMP1 antibody (green) (B) as 

indicated. Blue, DAPI staining (A,B).  
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Although no internalization defects in cells depleted for USP10 were detected in 

immunofluorescence experiments, we decided to monitor EGFR internalization more 

accurate by quantitative analyses. Internalization assays with radioactively labelled EGF 

were performed at low [1 ng/ml] and high [20 ng/ml] doses. No significant differences of 

the internalization rates between KD and control cells were measured (Appendix Figure 

6), affirming immunofluorescence analyses (Appendix Figure 5).  

Taken together immunofluorescence experiments confirmed the initial observations 

that USP10 KD delays EGFR degradation. Co-staining with markers of the endocytic 

compartments unravelled that the non-degraded EGFR was trapped in the lysosomal 

compartment, while internalization of EGFR upon USP10 KD was not affected. 

 

 

Appendix Figure 6: Effects on EGFR internalization upon USP10 knock-down. 

HeLa cells were transfected with siRNAs targeting USP10 or with a scrambled oligo 

(Control) as indicated. EGFR internalization at high [20 ng/ml] (A) and low [1 ng/ml] (B) 

dose of EGF ligand was followed at early time points (0-7 min) using a radiolabeled ligand 

binding assay and I
125

-EGF. Results are average of triplicates and expressed as a ratio 

between internalized and bound ligand. Internalization constants (Ke) were extrapolated 

from the internalization curves and correspond to the slopes of the best-fitting curves 

(A,B).  
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4.3 Effects on endocytic proteins and phosphorylation of EGFR in cells depleted of 

USP10  

To gain a better understanding of the observed alterations in EGFR degradation, we were 

seeking for potential substrates of the deubiquitinating activity of USP10. As previously 

shown, a substantial decrease in EGFR ubiquitination was evident in both the anti-

ubiquitin immunoblot and DELFIA analysis. To complete the picture we tested the 

behaviour of endocytic adaptor proteins in the absence of USP10. No changes in 

posttranslational modifications or protein levels of Eps15, Epsin1 and Epsin2 were 

discovered in IB analyses (Appendix Figure 7A). 

The alteration of EGFR ubiquitination might be due to alterations in E3 ligase 

activity in cells depleted of USP10. Hence protein levels and possible changes in 

posttranslational modifications of the main E3 ligases involved in the EGFR internalization 

pathway (Levkowitz et al., 1999; Levkowitz et al., 1998; Woelk et al., 2006) were 

analysed in immunoblot. No significant differences were detectable for c-Cbl, Cbl-b and 

Nedd4 protein levels (Appendix Figure 7B). 

Prior to EGFR ubiquitination, Cbl binds the regulatory region of EGFR either 

directly, or indirectly mediated by Grb2 (see chapter 3.3 introduction). For both 

interactions specific phosphorylation sites at the EGFR C-terminus are essential. A 

reduced Cbl activity and consequently decreased ubiquitination of EGFR can be also 

caused by a reduced phosphorylation of EGFR Tyr residues. We checked the presence of 

pTyr1045 (necessary for direct binding of Cbl) and pTyr1068 (necessary for the indirect 

binding via Grb2) in HeLa control and USP10 KD cells stimulated with EGF [100 ng/ml] 

in immunoblot (Appendix Figure 7B). We could not detect differences in the 

phosphorylation status of pTyr1068 between control and USP10 KD cells. However, there 

was significantly less pTyr1048 present in cells depleted of USP10 (Appendix Figure 

7B).  
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Appendix Figure 7: Characterization of endocytic proteins upon USP10 knock-down. 

HeLa cells were transfected with siRNA targeting USP10 or with a scrambled oligo 

(Control) as indicated. After 72 hours cells were stimulated with EGF [100 ng/ml] for the 

indicated time points. Effects on endocytic proteins (A) or E3 ligases and phosphorylation 

of EGFR (B) were revealed in total cell lysates by immunoblot with the indicated 

antibodies.  

 

Our data show that silencing of USP10 leads to a decrease in EGFR ubiquitination. 

This might be caused by a reduction in the phosphorylation of the Tyr residue (pTyr1048) 

essential for a direct Cbl EGFR interaction and consequently Cbl activity is diminished 

(Levkowitz et al., 1999). Whether this accounts for the alterations in EGFR trafficking and 

degradation could not be finally concluded and requires further investigations. 
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