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Abstract 

Abstract 
  

Anthropogenic emissions of carbon dioxide into the atmosphere has indirectly driven 

acidification and reduced carbonate saturation of the oceans. Among calcareous plankton, 

coccolithophore algae are the major producers of pelagic CaCO3 in the modern ocean: 

they are direct contributors of the ocean biogeochemical cycles and climate system and, 

therefore, coccolithophore sensitivity to changes in surface water conditions is of major 

concern. Coccolithophores build around the cell an exoskeleton of calcite (coccosphere) 

that consists of single platelets called coccoliths and nannoliths. This phytoplanktonic 

group are affected by changes in surface water temperature, fertility, salinity, light and 

consequently are important instrument to A) predict the future state of the ocean, 

particularly its carbonate chemistry B) to reconstruct changes in past surface-water 

conditions. This PhD thesis is aimed to combine the geological and biological 

approaches, quantifying tempo and mode of coccolithophore response to specific 

combinations of stressing environmental conditions through investigation of a geological 

case history and laboratory experiments trying to simulate conditions of the past. 

During the Aptian Oceanic Anoxic Event 1a (OAE 1a) an extreme global perturbation of 

the atmosphere-ocean system was documented, with evidence of geologically rapid 

warming associated to ocean fertility and acidification at global scale. Erba et al. (2010) 

demonstrated that calcareous nannoplankton was extremely sensitive to ocean 

acidification during OAE 1a, allowing separation of most-, intermediate-, and least-

tolerant taxa. After a major calcification failure of heavily calcified forms, ephemeral 

coccolith dwarfism and malformation represent the most remarkable species-specific 

adjustments to survive surface water acidity. 

The case history I focused on, is the latest Cenomanian Oceanic Anoxic Event 2 (OAE 2, 

~ 94 Ma) which represents a profound perturbation of the ocean-atmosphere system 

caused by natural CO2 emissions related to the emplacement of the Caribbean Plateau 

causing climate change, ocean fertilization and acidification.  The study was performed 

on pelagic sediments from five localities: Eastbourne (Sussex, United Kingdom), Clot de 

Chevalier (France), Novara di Sicilia (Sicily, Italy) and two Western Interior sections 

(Pueblo, Colorado and Cuba, Kansas, USA). These five sections have been chosen based 
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on availability of integrated stratigraphy. In fact, they all have a good time control, 

especially C isotopic stratigraphy and biostratigraphy, that offers the opportunity to 

correlate data from the different localities, discriminating between local, regional and 

global changes. Moreover, the selected sections represent short and long-distance 

locations with respect to the Caribbean Plateau paleo-position. 

Morphometric analyses were performed on selected calcareous nannofossil taxa namely 

Biscutum constans, Zeugrhabdotus erectus, Discorhabdus rotatorius and Watznaueria 

barnesiae. During OAE 2 calcareous nannoplankton responded to variations in surface-

water fertility, temperature and CO2-induced acidification with a calcification decline in 

the form of a general size reduction of coccoliths. Calcareous nannoplankton, also, was 

affected by dwarfism in a species-specific way: in all the five analyzed sections B. 

constans shows the amplest size fluctuations through the event. D. rotatorius  shows a 

well express reduction in size while Z. erectus displays the minor size decrease. W. 

barnesiae doesn’t show significant changes in mean coccolith size or in morphology (e.g. 

ellipticity).  

Coccolith size fluctuations across OAE 2 are similar and synchronous in all the analyzed 

sections located at great distance in different oceans and settings. The nannofossil 

preservation was carefully assessed in order to avoid diagenetically altered material 

Accurate screening under light polarizing microscope ascertained that individual 

coccoliths considered for morphometry were complete, with a continuous outline and 

without evidence of crimping due to etching or overgrowth.  

At the OAE 2 onset an increase in coccolith size leads to maximum dimension around the 

first δ13C isotopic peak (peak A). Subsequently, B. constans, Z. erectus and D. rotatorius 

show a progressive decrease in the mean size, reaching the maximum reduction 

(dwarfism) at δ13C isotopic peak B. Smaller specimens are still present till the end of the 

event and only after δ13C isotopic peak C, in the upper part of the analyzed sections, a 

partial recovery in size is observed. High-resolution integrated stratigraphy allows to say 

that coccolith size fluctuations match paleoceanographic changes: 

• the first decrease in coccolith size is coeval with a CO2 pulse at the beginning of 

OAE 2; 
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• the increase in coccolith size at δ13C isotopic peak A is well correlated with a 

significant CO2 drawdown and a discrete cooling episode. 

• the major decrease in coccolith size at δ13C isotopic peak B correlates with a 

strong metal peak along with a new increase in sea surface temperature. 

B. constans appears to be the most sensitive species to OAE 2 perturbations: the decrease 

in its coccolith size recorded in all the analyzed sections, is associated to some 

malformation (increased ellipticity). 

Calcareous nannofossil morphometric and morphological data obtained for the latest 

OAE 2 were compared with those available for the early Aptian OAE 1a data in order to 

derive similarities and differences. Such a comparison suggests that species-specific 

coccolith dwarfism was experienced during both OAE 1a and OAE 2. Such calcification 

change is associated to: 

- high pCO2 (> 900 ppm); 

- high temperature (ca. 35°C); 

- trace metal enrichment. 

Temperature and nutrient availability in surface waters do not seem to have been crucial 

for B. constans size, although warmer and more fertile oceans preconditioned the 

environmental perturbation. Available data, instead, suggest that ocean chemistry related 

to the amount of CO2 concentrations, played a central role in coccolith secretion by B. 

constans with a repetitive reduction in size during OAE 1a and OAE 2. Massive 

submarine volcanism of Ontong Java Plateau during OAE 1a and the Caribbean Plateau 

during OAE 2 triggered a disruption in the oceanic carbonate system: excess CO2 

arguably induced ocean acidification associated that was detrimental to some marine 

calcifiers, with temporary failure of a few taxa and production of dwarf and malformed 

coccoliths in B. constans. Hydrothermal plumes during construction of large submarine 

plateaus introduced biolimiting metals that fertilized the global ocean. However, 

submarine hydrothermalism might have also pumped in some toxic metals that might 

have disturbed the functioning of some intolerant coccolithophorid species, thus affecting 

their biocalcification. Species-specific coccolith dwarfism seems to be the response of 

nannoplankton to ocean acidification during OAE 1a and OAE 2, and this resulted in a 
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reduction in total calcification under high pCO2.  Evidence of dwarfism and production of 

malformed coccoliths possibly represents species-specific adjustment to survive lower 

pH. Therefore, there is possibly a causal link between intervals of major submarine 

volcanism and changes in nannoplankton composition, abundance and biocalcification 

through OAE 1a and OAE 2.  

The second part of this thesis focuses on laboratory experiments of coccolithophores 

performed at the GEOMAR Helmholtz Centre for Ocean Research Kiel (Kiel, Germany). 

Only preliminary results are here presented. The starting point was the idea that changes 

in some environmental factors directly affect the physiology of coccolithophorid algae, 

thereby directly causing a change in coccolith mean size and weight. Environmental 

factors known to modify coccolith size and/or weight are salinity (Green et al., 1998; 

Bollmann and Herrle, 2007; Fielding et al., 2009), temperature (Watabe and Wilbur, 

1966), nutrient availability (Batvik et al., 1997; Paasche, 1998), growth stage (Young and 

Westbroek, 1991), seasonality (Triantaphyllou et al., 2010) and carbonate chemistry 

(Riebesell et al., 2000, Iglesias-Rodriguez et al., 2008; Halloran et al., 2008; Beaufort et 

al., 2011; Bach et a., 2012). In this thesis I consider the potential role of some of these 

environmental factors - specifically salinity, carbonate chemistry, light intensities, trace 

metal enrichment and nutrient depleted conditions) as triggers of changes in coccolith size 

and/or weight. Five species were investigated (Emiliania huxleyi, Gephyrocapsa 

oceanica, Pleurochrysis carterae, Coccolithus pelagicus ssp. braarudii) in five different 

experiments. Similarly to fossils data, a species-specific response to the different 

treatments has been observed. E. huxleyi evidences an increase in the coccosphere 

diameter associated to an increase in coccolith volume under nutrient-starved conditions 

and specifically with low phosphate content. On the other hand, major decrease in 

coccolith volume has been observed for E. huxleyi only with the highest CO2 

concentration (3000 ppm). However, with increased trace metal contents, a reduction in 

coccolith volume has been detected, too. G. oceanica appears to be very sensitive to 

carbonate chemistry variations and future more specific analyses should be done to figure 

out which parameter(s) of the carbonate system drive morphological modifications (e.g. 

carbon dioxide, bicarbonate, carbonate ion, protons). P. carterae instead shows very 

erratic patterns to the tested parameters. Furthermore, among experiments, different 

replicates resulted in different response suggesting unclear sensitivity to specific 
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environmental conditions. Finally, Coccolithus pelagicus ssp. braarudii calcification 

appears to be beneficial under low-nutrient conditions and, specifically, in the phosphate-

limited treatment. On the contrary, increased CO2 concentration appears to impart a 

negative feedback to coccolith volume, with an evident decrease hand in hand with 

increasing CO2 content. As mentioned above, further analyses are planned in the near 

future and particularly SEM investigation of coccolith morphology and morphometry to 

quantify changes in coccolith size and malformation.  

The results of my thesis emphasize that changes in environmental factors do affect 

coccolithophore growth: salinity, carbonate chemistry, nutrient content and trace metal 

can significantly impact coccolith calcification in present and past oceans. The OAE 2 

paleoenvironmental perturbation indicates that there is a causal link between intervals of 

abnormal submarine volcanism and changes in nannoplankton biocalcification through 

OAE 2. Comparison with data available for OAE 1a and OAE 1d indicate that analogous 

causes (construction of large igneous provinces) have induced similar response at 

different times in the Cretaceous. Finally, the geological record indicates that at wide 

spatial scale calcareous nannoplankton can adapt to high pCO2, but past changes occurred 

over tens of thousands of years, giving time for life to adjust or even take advantage. 

Laboratory experiments on modern coccolithophore species (evolutionary-linked to 

Cretaceous taxa) remain the only means to assess if and which role environmental 

parameters have on quantity, type and amount of coccolith secretion. Although conscious 

of the very different time scales of processes and resolution, the double biological and 

geological approach to coccolithophore calcification is aimed at integrating the daily-

decadal datasets with medium to long-term (thousands to millions of years in duration) 

data. This has the potential for achieving an improved understanding of coccolith 

biomineralization mechanisms and providing some guidance as to the response of biota to 

abrupt massive CO2 releases and how and at what rate pre-perturbation conditions are 

eventually restored. 

  

The work developed for this doctoral thesis resulted in two submitted publications. For 

further information see Appendix I and II. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 
 

One of the most pressing issues for humankind is the understanding of the future state of 

the planet within the context of increasing carbon dioxide (CO2) concentrations (Keeling 

& Whorf 2004). In the past 650,000 years atmCO2 has varied between 180 to 300 parts 

per million (ppm) till the inception of the Industrial Revolution that marks a major turning 

point also for the global environment and biota evolution. Industrialization and new land 

use have caused accelerated rising of atmCO2 at rates unprecedented in Earth history. The 

unfortunate consequence has been the emission of billions of tons of carbon dioxide 

(CO2) and other greenhouse gases in the Earth’s atmosphere (IPCC, 2013). About half of 

this man-made CO2 has been already absorbed by the ocean (Sabine et al, 2004), slowing 

down/mitigating the climate change that these emissions would have instigated if the total 

CO2 amount had remained in the atmosphere. However, relatively recent research has 

pointed out the so-called “other pCO2 problem” (Doney et al., 2009): the massive amount 

of CO2 into the sea is altering the water chemistry, inducing ocean acidification and 

affecting the life cycles of many marine organisms. Indeed, when CO2 dissolves in 

seawater, it forms carbonic acid, which increases seawater acidity and decreases 

carbonate ion concentration and carbonate saturation: the price for restoring CO2 is an 

ongoing decrease of seawater pH (Fig. 1.1). 

Fig. 1.1 Credits: http://www.oceanacidification.org.uk 
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The natural recovery from global ocean acidification implies A) accelerated dissolution of 

marine carbonates and removal of excess CO2 via enhanced burial of organic matter and 

B) weathering of rocks exposed on land. All these processes, however, operate on long 

timescales, especially if ocean acidification occurs in conjunction with global warming, 

fertilization and pollution. Moreover the CO2-driven pH lowering, is causing a reduction 

of CaCO3 saturation state and shoaling of Calcite Compensation Depth (CCD), generating 

serious problems for calcifying organism, such as corals, foraminifera and 

coccolithophorid algae, becoming vulnerable and unable to produce their shells-skeletons. 

The ecological effects of such changes on calcareous plankton are largely unknown but 

need to be quantified. The impact of atmCO2 concentrations on marine calcification rates 

emerged about 40 years ago (Broecker & Takahashi, 1966). Early calculations predicted 

that the surface ocean would become undersaturated with respect to calcite by the year 

2000, but were biased by improper consideration of seawater C system equilibrium. Later 

laboratory-field experiments revealed the influence of the CaCO3 saturation on 

calcification rates and controversial response on different species. 

Among marine calcifiers, coccolithophores, golden-brown algae (phylum Haptophyta), 

have a very long evolutionary history (their appearance is dated as Late Triassic) and they 

stay at the base of the food chain in the oceans and are, therefore, expected to be seriously 

affected by the anthropogenic perturbation that we are experiencing. Coccolithophorid 

algae are most effective calcite producers on Earth: they build around the cell an 

exoskeleton of calcite (coccosphere) constituted by single platelets called coccoliths and 

nannoliths. Biocalcification made coccolithophores very important rock-forming 

organisms during the Jurassic and Cretaceous as well as through the Cenozoic (e.g. Erba, 

2006). They are directly affected by changes in surface water temperature, fertility, 

salinity, light, and pH and, consequently, their remains (coccoliths and nannoliths) can be 

studied to reconstruct changes in past surface-water conditions. At present, 

coccolithophores are affected by increasing CO2 emissions which are rapidly inducing 

climatic changes and altering surface-water carbonate saturation state causing ocean 

acidification (OA). Laboratory experiments of coccolithophores indicate a direct effect of 

OA on calcification rates, production of malformed coccoliths or incomplete 

coccospheres (Riebesell et al., 2000), although the CO2 and pH sensitivity among species 

is different (Langer et al., 2006; Krug et al., 2011). Additional factors, such as 
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temperature and nutrients, have also an influence on coccolithophores. Recent studies 

provide evidence for different pCO2 and pH sensitivities among species and strains 

(Langer et al 2006; Iglesias Rodriguez et al., 2008) with some species more tolerant (e.g. 

C. pelagicus braarudii, Krug at al 2011) than others. However, most of the experiments 

focus on a limited number of model species  (specifically E. huxleyi and G. oceanica) and 

not many studies have focused on how changes in coccosphere/cell diameter influence the 

coccolith volume or size. In addition, the understanding of the effects of OA on living 

coccolithophores is limited, due to the presence of multiple factors (e.g. temperature, 

nutrients availability) concurring during climate changes, which can influence the 

coccolithophore response. As discussed by Herfort et al. (2004) coccolithophore 

morphology, rates of calcification and photosynthesis are also influenced by calcium and 

magnesium concentrations. Coccoliths are formed of low-Mgcalcite, and calcification 

rates in E. huxleyi are positively correlated with the Ca concentration of the medium, with 

significant undercalcification at low [Ca2+] and malformation with incomplete grown 

elements and decreased width of the distal shield elements (Young & Westbroek 1991). 

Low [Mg2+] also cause malformations, while high concentrations cause under-

calcification and malformation. No variation in width was determined. 

The geological record offers the opportunity to investigate case histories marked by 

profound changes in the ocean-atmosphere system, including volcanic injection of large 

amounts of CO2, super-greenhouse conditions, ocean anoxia, increased surface-water 

fertility and introduction of bio-limiting metals (e.g. Larson & Erba, 1999; Erba, 2004; 

Jenkyns 2010; Erba et al., 2015). These intervals can be seen as “natural experiments” 

useful to decipher the ecosystem response to major perturbations. Under such extreme 

conditions, the oceans experienced prolonged global anoxia, known as Oceanic Anoxic 

Events (OAEs), when unusually large amounts of organic matter accumulated in marine 

sediments (Schlanger and Jenkyns, 1976). 

This thesis is aimed at combining geological and biological approaches, quantifying 

tempo and mode of coccolithophore response to specific combination of stressing 

environmental conditions through investigation of a geological case history and 

laboratory experiments trying to simulate conditions of the past. Specifically, I focused on 

the latest Cenomanian Oceanic Anoxic Event 2 (OAE 2), in order to trace the effects of 

extreme environmental changes on calcareous nannoplankton. A comprehensive 
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background characterization of the latest Cenomanian OAE 2 is available based on 

integrated stratigraphy (bio-, chemo-, litho-, cyclo- stratigraphy) and sedimentological, 

paleontological and geochemical signatures (Leckie et al 2002; Erba 2004; Jenkyns 2010; 

fig. 1.2). 

 

However, the transient or permanent response and/or adaptation of calcareous 

nannoplankton to excess CO2 and climate change during OAE 2 are still poorly known. 

The investigation was conducted on five sections from different paleolatitudes and 

paleoceanographic contexts, in order to distinguish global and local responses of 

calcareous nannoplankton during OAE 2.  

Data on calcareous nannoplankton response to OAE 2 perturbations will be compared 

with published data from another extreme case, namely the early Aptian Oceanic Anoxic 

Event 1a (OAE 1a; e.g. Erba et al, 2010). 

The Cretaceous OAE 1a has been demonstrated to record a strong CO2 perturbation of the 

atmosphere-ocean system (Larson & Erba 1999; Leckie et al 2002; Weissert & Erba 

2004; Erba 2004; Mehay et al 2009; Erba et al 2010), with evidence of a geologically 

rapid warming (increase of 5-6°C) and decreased pH in surface and deep waters at global 
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scale. In an unprecedented high-resolution (Malinverno et al., 2010) study of organic 

matter compounds, Mehay et al., (2009) dated successive CO2 emissions (total of 

~9600Gt C) and one episode of methane hydrate dissociation (~270 Gt C). Os isotopes 

(Tajada et al 2009; Bottini et al. 2012) confirmed multiple volcanic phases before and 

during OAE 1a, plus one episode of accelerated weathering (Fig. 1.3). 

Quantitative studies on nannoplankton changes across OAE 1a showed a decrease in 

calcification (Erba and Tremolada 2004) with production of dwarf/malformed coccoliths 

(Erba et al. 2010, 2015; Bottini et al., 2014, 2015). In particular, Erba et al. (2010) 

demonstrated that calcareous nannoplankton was extremely sensitive to OA associated to 

OAE 1a, allowing separation of most-, intermediate-, and least-tolerant taxa. After a 

major calcification failure of heavily calcified forms, ephemeral coccolith dwarfism and 

malformation represent the most remarkable species-specific adjustments to survive 

surface water acidity. Deep-water acidification started with a delay of 25-30kyr, with a 1-

2 km CCD shoaling just prior to onset of global anoxia. Repetitive abundance peaks of 

peculiar heavily-calcified nannoliths trace intermittent alkalinity recovery alternating with 

OA peaks marked by coccolith dwarfism and malformation.  

 

 

 

Fig. 1.3 Synthesis of the events occurred during the Late Barremian-Early Aptian interval, adapted from Erba 
et al., 2010, 2015; Bottini et al., 2014, 2015; Patruno et al., 2015.  
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The overarching goal of my thesis is the identification of the effects on coccolithophores 

calcification of the past episode of OA, excess CO2, global warming and ocean 

fertilization associated to OAE 2.  

In second part of the thesis, I tried to simulate environmental conditions associated to the 

latest Cenomanian OAE 2 and tested coccolithophore response through laboratory 

cultures. Five experiments have been performed at the GEOMAR (Helmholtz Centre for 

Ocean Research Kiel) in the Biological Oceanography unit in order to reproduce some of 

the “extreme” physical and chemical changes known for the onset of Cretaceous OAEs. 

Every experiment tested a single abiotic parameter (e.g. temperature, carbonate 

chemistry, nutrient content, metal enrichment) on four coccolithophore species (Emiliania 

huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus ssp. 

braarudii) and focused on coccolith size (volume) and morphology. Emiliania huxleyi 

and Gephyrocapsa oceanica belong to the Noelaerhabdaceae family derived, from the 

extinct Prinsiaceae that, in turn, developed from the Mesozoic Biscutaceae (Liu et al., 

2010; Fig. 1.4). C. pelagicus, belonging to the Coccolithacease, is a descendant of the 

Mesozoic Watznaueriaceae family. Therefore, E. huxleyi and G. oceanica are assimilated 

to B. constans, while C pelagicus might be a living analogue of W. barnesiae. 

Fig. 1.4 Synthesis of coccolithophorid phylogeny and taxonomical position of 
investigated living coccolithophores [from Young and Bown, 1999, modified].  
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 For the experiments on coccolithopores only preliminary results will be presented and 

discussed in this thesis. Quantification of calcification and characterization of coccolith 

ultrastructure will be achieved in the next few months under the supervision of Dr. 

Lennart Bach (GEOMAR, Helmholtz Centre for Ocean Research Kiel). 

The main objectives of this thesis can be summarized as follows: 

a) To reconstruct the response of calcareous nannofossil assemblages to ocean 

acidification and extreme climatic conditions associated to OAE 2.  

b) To determine time relationships between nannoplankton changes, ocean 

acidification, fertilization, temperature and anoxia.  

c) To compare variations in coccolith morphometry in different case histories 

(OAE 1a, OAE 1d, OAE 2) in order detect similarities and differences of 

calcareous nannoplankton response to chemical and physical extreme 

conditions through time. 

d) To decipher which abiotic parameter mainly influenced coccolithophore 

calcification and specifically coccolith size. 

 

During my PhD I spent one year at the GEOMAR Helmholtz Centre for Ocean Research 

Kiel (Kiel, Germany) where I learn how to culture and perform experiments on 

coccolithophores, under the supervision of Prof. Ulf Riebesell, Dr. Linn Hoffmann and 

Dr. Lennart Bach.  

Some of the results obtained during this PhD project have been submitted for publication, 

and the papers are included as part of this thesis in Appendix I and II. 
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Chapter 2 

The Marine Carbon Cycle 
 
Since the beginning of the industrial era, the Earth is experiencing progressive increase in 

carbon dioxide (CO2) concentration in the atmosphere: the never-ending use of fossil 

fuels and intensive use of land for agriculture are responsible of an increase in CO2 of 

almost 40%. Anthropogenic CO2 emissions has increased from ∼ 280 parts per million 

(ppm) in the mid of the 18th century to around 398 ppm in 2014 (Mauna Loa Observatory, 

Scripps Institution of Oceanography) with an annual rate of increase of about 2.07 ppm. 

As indicated from analysis on bubbles trapped in Antarctic ice, such levels are the higher 

level ever recorded in the last 800,000 years (and likely much more than what has 

occurred in several ten of millions years; Kump et al., 2009). Many studies are focusing 

on the impacts of anthropogenic CO2 on climate: one primal consequence of this 

extraordinary atmospheric CO2 input, in fact, is the intensification of the greenhouse 

effects. But in the recent years, much of the scientific debate takes into account a second 

major impact of CO2 emissions, namely ocean acidification. This is also called “the other 

CO2 problem” and refers to the ongoing decrease in oceanic pH owing to ocean capability 

to uptake CO2 (Royal Society, 2005). In the past 150 years surface ocean pH significantly 

dropped from 8.0-8.3 (before the Industrial Revolution) to present 7.9-8.1 units. The 

phenomenon of ocean acidification requires a brief introduction to seawater carbonate 

chemistry to be properly understood.  

 

2.1 Seawater carbonate chemistry 
Dissolved carbon dioxide (CO2) is present in the ocean water in three inorganic forms: 

free aqueous carbon dioxide (CO2(aq)), bicarbonate ion (HCO3-) and carbonate ion (CO3
-

2). There’s a fourth form that is H2CO3 that occurs in a very small concentration (≤ 3%) 

and is chemically indistinguishable from CO2. Therefore, the sum of [CO2(aq)] and 

[H2CO3] is denoted as [CO2]. There’s a constant equilibrium and exchange of inorganic 
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carbon between the atmosphere and the ocean that is ruled by the Henry’s law:  

[CO2]= K0 [CO2]  

where K0 is the temperature and salinity-dependent solubility coefficient of CO2 in 

seawater (Weiss, 1974). CO2 rapidly reacts with the seawater to form H2CO3 that rapidly 

dissociates into (HCO3-), (CO3
2-) and protons (H+) following the reactions: 

CO! + H!O 
!!∗ HCO!

! +   H!
!!∗ CO!

!! +   H! 

where K1 and K2 are temperature, salinity and pressure dependent and usually expressed 

in terms of concentrations and has been analytically determined. This equation represents 

the marine carbonate system (Fig. 2.1): for eg. in sea surface, temperature of 15°C, 

salinity of 35 ‰, surface pressure P= 1 atm, at a typical surface seawater pH of 8.2, the 

speciation between dissolved inorganic carbon is 0.5% [CO2], 89% [HCO3
2], 10.5% 

[CO3
2-] (Zeebe, 2012).  

 

The second fundamental chemical concept is the DIC that is the sum of all dissolved 

inorganic carbon species and is defined as 

DIC= [CO!]+ HCO!
! + [CO!!!] 

The last fundamental chemical concept is total alkalinity (TA), which is a measure of 

charge balance in seawater 

L
o

g
1

0
[c

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l 
k
g

-1
)]

-2.0

-2.5

-3.0

-3.5

-4.0

-4.5

-5.0

-1.5

CO2(aq)

H+

HCO3- CO32-

OH-

m
od
er
n
se
a-
w
at
er

20 4 6 8 10 12 14

pH

Fig. 2.1 Concentration of the dissolved carbon species as a function of 
pH [from Ridgwell and Zeebe, 2005]. 



11 

 

Chapter 2: The Marine Geological Cycle 

TA=[HCO!
!]+ 2 CO!!! + B(OH)!

! + OH! − [H+] + minor component 

TA can also be described as the amount of negative charge that is able to accept the H+ 

released in the dissociation reactions of carbonic acid (or on the other way round, the 

number of moles of H+ equivalent to the excess of the proton acceptors); it’s analytically 

determined from tritation of seawater with a strong acid (Dickson, 1981). As the 

equations indicate, DIC and TA are unaffected by changes in pressure or temperature 

(conservatives quantities) and along with pCO2 and pH, can be determined analytically 

(Dickson et al., 2007). Furthermore for given temperature, salinity and pressure, two 

parameters are needed to calculate all the other parameters (pCO2, [CO2], [HCO3-], 

[CO3
2-], pH, DIC and TA).  

The last parameter that is important to take in consideration is the calcium carbonate 

saturation state of seawater (Ω) that is expressed as 

Ω=
[Ca!!  ]sw×  [CO!!!]sw

ksp
∗  

where sw refers to the ion concentration in seawater and k*
sp is the solubility product of 

calcite or aragonite at the in situ temperature, salinity and pressure conditions. When Ω 

>1 it means supersaturation (CaCO3 doesn’t dissolved) while on the contrary when Ω <1, 

the seawater is undersaturated (dissolution is favored).  The calcite saturation horizon 

occurs at depth where Ω=1. Dissolution proceeds slowly below this depth reaching the 

lysocline where the dissolution impact becomes noticeable. Finally, the calcite 

compensation depth (CCD) is the depth at which the dissolution flux balances the rain 

flux of calcite. Nowadays saturation states of surface water for CaCO3 ranges between 4.8 

- 3.2 (Ridgwell and Zeebe, 2005).  

 

2.2 The Marine Carbon Cycle 

The Carbon Cycle can be represented as a series of major reservoirs of carbon in the 

Earth system, connected by exchange fluxes of carbon. These four reservoirs are the 

atmosphere, the hydrosphere, the lithosphere and the biosphere. The reservoir turnover 

time (carbon cycling within or between reservoir), significantly vary among them, 
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ranging from a few years for the atmosphere to million of years for the geological 

processes (Fig. 2.2). Conceptually, in the global carbon cycle, two domains can be 

distinguished: a fast domain with large and rapid reservoir turnover, which consists of 

carbon in the atmosphere, fresh water and surface ocean sediments and on land soils. And 

a slow domain where the huge carbon stores in rocks and sediments, exchange carbon 

with the fast domain through volcanic emission, chemical weathering and sediment 

formation on the sea floor (IPCC 2013). The ocean contain almost 50 times more carbon 

than either the atmosphere or the world’s terrestrial vegetation, but even if shifts in the 

abundance of carbon among the major reservoirs will have a much greater significance 

for the terrestrial biota and for the atmosphere than for the ocean, the strong exchange of 

considerable amounts of carbon from the atmosphere to the ocean, will strongly influence 

the marine carbon cycle too.  

 

Two processes are ruling the marine carbon cycle: the ‘solubility pump’ and the 

‘biological carbon pump’. The solubility pump determines about one third of the surface-

to-deep gradient of dissolved inorganic carbon; it’s a physical process driven by 

latitudinal solubility gradient of CO2: as the solubility of gases increases with decreasing 

seawater temperature, the cold waters, sinking to depths during deep water formations at 

high latitudes, are CO2-rich (DIC increased) relative to average surface waters. In one 
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Fig. 2.2 a) Surface carbon cycle: reservoir sizes are in unit of petagrams of carbon, PgC (1Pg=1015g). Grey 
boxes demarcate the reservoirs involved in carbon exchange on the respective timescales. b) Long-term 
carbon cycle [From Zeebe 2012]. 
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thousand years flowing towards lower latitudes, they spread CO2 throughout the deep 

ocean and finally upwell to the surface ocean releasing back the excess CO2 to the 

atmosphere.  

The remaining two thirds of the surface-to-depth DIC gradient is caused by the biological 

carbon pump that can be furthermore subdivided in two different processes: the ‘organic 

carbon pump’ and the ‘carbonate pump (or ‘carbonate counter pump’). The organic 

carbon pump is related to the phytoplanktonic photosynthesis that fixes DIC in the 

organic particles. Particulate organic matter usually aggregates and sinks into deep ocean 

where they oxidize through heterotrophic respiration, releasing DIC back in the water 

column. In the carbonate pump on the other hand, calcifying organisms, like foraminifera, 

coccolithophores and pteropods, band together the DIC with CaCO3.  When shell material 

sinks in the water column, it dissolves in undersaturated water in respect to CaCO3. These 

two pumps have an opposite effect on the atmospheric pCO2 budget: the photosynthetic 

carbon fixation lowers CO2 partial pressure in the euphotic zone with a net reduction flux 

of CO2 from the atmosphere to the ocean. On the contrary, in the counter carbonate 

pump, calcification cause an increase in CO2 partial pressure (about 0.6 mole of CO2 for 

every mole of CaCO3), which is eventually released in the atmosphere. In equilibrium 

sinking (biological carbon pump) and upwelling (carbonate counter pump) reinforce each 

other maintaining a vertical DIC gradient. 

 

2.3 Sensitivities of marine carbon fluxes and 
perturbations of the marine carbon cycle 

Anthropogenic carbon dioxide emission is forcing rapid ocean chemistry alterations in 

the ocean. The ocean global carbon cycle will be directly affected by increase in [CO2] 

that will decrease the pH and indirectly by ocean warming and consequently change in 

the circulation and mixing regime (Fig. 2.3). Both solubility and biological carbon pump 

will be affected.  

The solubility of CO2 increases with decreasing temperature and is therefore higher at 

high latitudes where deep-water formation takes place: this resulted in a downward 



14 

 

Chapter 2: The Marine Geological Cycle 

transport of CO2-enriched waters. The strength of the ocean sink for CO2 is going to 

decrease in the future: in the last 50 years the ocean has uptaken 20 times more heat than 

the atmosphere and climate models project a mean temperature increase of the sea-

surface water between 1 and 4°C by the end of the 21st century. Climate change will 

decrease the ocean buffer capacity in two ways: first of all decreasing the CO2 solubility 

in seawater due to an inverse relationship between temperature and CO2 solubility. And 

secondly, the solubility pump buffer capacity will be affected by the increase in seawater 

stratification and slowdown of the surface to deep exchange of carbon (Gattuso and 

Hansson, 2011). As for the biological carbon pump, the excess atmospheric CO2 will 

cause both carbonification and acidification; the resulting changes in seawater chemistry, 

will in fact expose marine organism to conditions that they may not have experienced 

during their recent evolutionary history. Both carbonification and acidification are 

expected to result in winner and losers potentially leading to loss of biodiversity and 

restructuring of ecosystem (Riebesell et al., 2009).  The consequences of carbonification 

on marine life are still uncertain but it is expected that the increase in CO2 concentration 

will be likely beneficial to some phytoplanktonic organism: carbon fixation and primary 

production may increase in organism with inefficient DIC uptake and CO2 production 

(Riebesell et al., 2007). On the other hand the increase in [CO2], [DIC] and [HCO3-] will 

consequently decrease and [CO3
2-] and pH ~ 0.25-0.45 in 2100 compared to the industrial 

values. Ocean acidification has been proved to have negative effects on calcifying 

organism (Riebesell et al., 2000; Fabry et al., 2009; Riebesell and Tortell, 2011): 

coccolithophore algae show decreased calcification with decreasing pH in both laboratory 

and field observations (Engel et al., 2005). However, an increase in calcification of a 

strain of E. huxleyi has been observed (Iglesias-Rodriguez et al., 2008); this unexpected 

result seems to be mainly due to a different laboratory methodology (Riebesell et al., 

2008). Studies on different coccolithophores strains and species suggest an inter- and 

intra-specific variation in response to ocean acidification and particularly an optimum 

response curve has been proposed (Krug et al., 2011), with the optimum met at different 

levels for different strains and or species, resulting in variations in observed responses 

over the same pCO2 range.  
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Fig. 2.3 Schematic representation of the global carbon cycle. Numbers represent reservoir mass 
(carbon stocks) expressed in PgC (1PgC=1015 gC) and annual carbon exchange fluxes (in Pg yr-1). 
Black numbers and arrows are the reservoir mass and exchange fluxes estimated for the time prior 
to the Industrial era (prior to 1750). Red arrows and numbers indicate annual anthropogenic fluxes 
averaged over 2000-2009 time period. They represent the perturbation of the carbon cycle during the 
Industrial Era post 1750. These fluxes are: Fossil fuel and cement emissions of CO2, Net land use 
change and the Average atmospheric increase of CO2. The uptake of anthropogenic CO2 (carbon 
sink) by the ocean and terrestrial ecosystem are represented by the red arrows of the Net land use 
and Net ocean flux. Red numbers in the reservoir highlight the cumulative changes of anthropogenic 
carbon over the Industrial period 1750-2011: positive cumulative changes mean that the reservoir 
has gained carbon since 1750. Fluxes of volcanic eruptions, rock weathering, export of carbon from 
soils to river, burial of carbon in freshwater lakes and reservoirs and transport of carbon by rivers to 
the ocean are assumed to be pre-industrial fluxes unchanged during 1750-2011 [from Jansen et al., 
In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change]. 



16 

 

Chapter 2: The Marine Geological Cycle 

The expected decrease in calcification will have two different consequences on the global 

carbon cycle that will result in two opposite feedbacks:  

1. Positive feedback: the calcite produced in surface waters acts as ballast and 

favors the downward flux of the biological pump.  A decrease in CaCO3  

2. Production will determine a reduction in calcite ballast and therefore a reduction 

of the export of organic carbon into deep water (Armstrong et al., 2002). This will 

determine a reduction of the air-to-sea CO2 flux. 

3. Negative feedback: the decrease in calcification will reduce the carbonate counter 

pump, increasing the air-to-sea CO2 flux (Riebesell et al., 2009).  

It’s not clear which of these two process will prevail and particularly which will be 

the response of coccolithophores over longer time-scales. 
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Chapter 3 

Ocean acidification in the past 
 

3.1 Introduction 
Ocean acidification may have severe consequences for the marine ecosystem. The so-

called “great geophysical experiment” (Revelle and Seuss, 1957) that we are experiencing 

has no precedents in the recent history of the Earth: reconstruction of pH evidences that 

the ocean surface has not been so acid (low pH) for the last 2 million years (Hönish et al., 

2009).  Laboratory simulations and computer models are currently insufficient to predict 

the future ocean scenario. However, the Earth has already experienced a huge numbers of 

natural perturbations of carbon cycling and climate change (Fig. 3.1). These global 

carbon cycle perturbation events share many of the characteristics of anthropogenic ocean 

acidification. Studies of the geological record can therefore provide valuable insights into 

ocean and marine ecosystem impact and recovery to natural perturbations, in order to 

understand and predict the consequences of the ocean acidification that we are nowadays 

experiencing. Particularly, studies of geological records may provide new information 

about the ability of marine species to adapt to extreme climatic conditions. Even if it is 

important to take in mind that there’s not a perfect analogue for today in the Earth history, 

the strength of the geological record lies in revealing past coupled warming and ocean 

acidification events sharing with future events the same combination and sign of 

environmental changes.  
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3.2 Oceanic Anoxic Events 

In the early phases of ocean explorations (Deep Sea Drilling Project), blackish sediments 

exceptionally rich in organic carbon (Corg) were recovered from Cretaceous successions 

in a great variety of settings including rises and plateaus in the central Pacific Ocean and 

in the Atlantic ocean, in addition to the Tethyan continental margins and the shallow-shelf 

areas of northwest Europe. These coeval lithologies suggest widespread to global 

deposition of Corg -rich sediments (primarily black shales) during time intervals named 
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Oceanic Anoxic Event (OAE; Schlanger & Jenkyns, 1976) indicating dysoxic if not 

anoxic conditions at the seafloor. The general definition in early works was applied to 

two time intervals: Aptian-Albian (OAE 1) and Cenomanian-Turonian (OAE 2). 

Afterwards, the numbers of OAEs has multiplied over time and high-resolution 

stratigraphy modified the original lithostratigraphic concept of a long OAE 1 interval, by 

recognition of a number of discrete subevents. The most prominent OAEs have been 

identified within the Cretaceous; only another one is dated as early Toarcian (Jurassic), 

but a number of similar events are recognized also from the Palaeozoic Era. Nevertheless, 

of all OAEs only three are suggested to be of global significance: early Toarcian OAE 

(∼183 Ma), early Aptian OAE 1a (∼120 Ma) and latest Cenomanian-OAE 2 (∼ 93 Ma). 

The definitions of these three truly global OAEs are “Corg rich black shales with 

extremely low or absent carbonate and locally abundant radiolarian layers “ (Jenkyns, 

1999). On the contrary, other OAEs (OAE 1b, OAE 1c, OAE 1d, OAE 3) seem to have a 

regional significance: OAE 1c and OAE 1d have been recognized particularly from the 

Tethyan domain (Arthur et al., 1990), while, although the Coniancian to Santonian OAE3 

is essentially represented by extensive black shales in the Atlantic, equivalent outcrops in 

the Western Interior of United States are known (Fig. 3.2; Arthur et al., 1990; Wagner et 

al., 2004). Although global anoxia and enhanced organic matter burial are the most 

striking and intriguing paleoceanograhic phenomena, OAEs can be studied to decipher 

the oceanic ecosystem response to (sequence of) CO2 pulses (e.g. Kemp et al. 2005; 

Turgeon  & Creaser 2008; Mehay et al 2009), extreme warmth (Jenkyns, 2003), 

weathering changes (Cohen et al., 2004; Tejada et al 2009; Bottini et al. 2012), and ocean 

acidification (Erba 2004; Weissert & Erba 2004, Kump et al 2009; Erba et al. 2010). The 

main problem of using geological examples is the major difference in change rates, which 

are much faster today than for the long-term geological processes leaving fingerprints in 

sedimentary successions. I’m conscious of the limitations intrinsically imposed by the 

geological records, but believe that past episodes of excess CO2, extreme warmth and 

ocean acidification should be analyzed to add the long-term and large-scale prospective to 

investigations on current, very-short-term and local responses. 

For both the Toarcian and Cretaceous OAEs recent data suggest an abrupt rise in 

temperature, induced by rapid influx of CO2 into the atmosphere from volcanogenic 
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and/or methanogenic sources, that set in train a concatenation of sedimentary, 

geochemical and biological events (e.g. changes in stratification and mixing, changes in 

marine productivity and/or turnover in the marine biota). Since OAEs are characterized 

by anomalously high burial rates of marine and organic matter, an increase in the δ13C 

values of marine and atmospheric carbon is predicted. This is confirmed across the 

Cenomanian-Turonian boundary since 1980; instead, the Early Aptian and Early Toarcian 

OAE are more complex since carbonate and organic matter show both positive and 

negative excursions (Menegatti et al. 1998; Erba et al. 1999; Schouten et al., 2000; 

Jenkyns, 2003; Herrle et al., 2004; Jenkyns, 2010): early Aptian OAE 1a shows a 

negative excursion that coincides with the lowest stratigraphic levels of the organic-rich 

black shales; after it, isotopic values start to rise. A similar pattern is seen in the Torcian 

OAE: a positive excursion with an abrupt negative fall is registered in the central portion. 

The positive excursion may be attributed to massive global burial of marine organic 

matter on global scale (Jenkyns, 2010), while influx of isotopically light carbon into the 

ocean-atmosphere system may be responsible of the opposite negative excursion. 

Explanation for the input of isotopically light carbon might be large-scale venting of 

volcanogenic carbon dioxide, dissociation of methane gas hydrates and/or thermal 

metamorphism of coals. There’s still a strong debate on the importance of these processes 

(Menegatti et al. 1998; Hesselbo et al. 2000; Jahren et al., 2001; McElwain et al., 2005; 

Kuroda et al., 2007; Jenkyns, 2003, 2010). The traditional model implies an accelerated 

hydrological cycle caused by global warming and consequently increased continental 

weathering (Weissert, 1989; 2000); this might have risen up nutrient content in oceans, 

intensified upwelling and increased production and preservation of organic matter. 

However, submarine igneous events per se probably have stimulated increases in organic 

productivity, with the introduction of biolimiting metals by hydrothermal plumes (Sinton 

and Duncan, 1997; Snow et al., 2005; Erba et al, 2015). Indeed the Mesozoic OAEs are 

interpreted as the related to submarine volcanism during the construction of large igneous 

provinces (LIPs). LIPs are massive emplacement of intrusive or extrusive rocks erupted 

over geologically short periods (1-3 My). The Early Aptian OAE 1a is correlated to the 

emplacement of the Ontong Java Plateau, while the Cenomanian-Turonian OAE 2 to the 

extrusion of the Caribbean Plateau and Madagascar traps. The osmium and strontium 

isotopic have the potential to reflect the balance among weathering and stream transport 
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and/or volcanism and hydrothermal activity (Tajada et al., 2009). During OAE 1a a 880 

kyrs Os-isotope interval of unradiogenic values is unambiguously derived from a mantle 

source and most likely related to the Ontong Java Plateau eruption (Tajada et al., 2009; 

Bottini et al., 2012). Furthermore the unradiogenic Os isotopic excursion is accompanied 

by an increase in δ13Corg suggesting a causative link between volcanism and enhanced 

organic deposition. However a short-lived (100 kyrs) radiogenic Os-isotope excursion 

during OAE 1a suggests a diminished Ontong Java Plateau volcanic activity and/or an 

increase in the total flux of radiogenic Os supplied to the ocean through continental 

weathering. The same pattern is observed in the strontium isotope signature where the 

general negative excursion, is interrupted by an increase in the 87Sr/86Sr (Jones & 

Jenkyns, 2001). With or without a temporary cessation in the Ontong Java Plateau 

volcanic activity, the documented increase in global temperature (e.g. Ando et al., 2008; 

Erba et al., 2010) during the first phase of OAE 1a is likely to have been responsible for 

accelerated weathering rates and subsequent Os- and Sr positive isotope excursion. 

Similarly, the isotopic data for the latest Cenomanian OAE 2 highlight a progressive trend 

to unradiogenic Os values and a decline of the 87Sr/86Sr ratio that slightly preceded the 

OAE 2 onset (Jones & Jenkyns, 2001; Du Vivier et al., 2014): the mafic volcanism of the 

Caribbean plateau is considered responsible of the unradiogenic values. This trend is 

synchronous in different sections from different paleoceanographic settings, suggesting 

that the magnitude of the Caribbean plateau volcanism was sufficient to influence the 

seawater chemistry at a global level. During OAE 2 a progressive return to more 

radiogenic values might indicate a more intense weathering. However it is plausible that 

the extent of weathering on seawater chemistry is masked by the Caribbean LIP and vice 

versa: quantifying the magnitude and isolating the extent of the two signals appears to be 

problematic (Du Vivier et al., 2014). On the contrary across the Toarcian OAE the 
87Sr/86Sr curve increases, with no evidence of a negative shift (McArthur et al., 2000). 

This positive excursion of the 87Sr/86Sr data is explained by the formation of subaerial 

flood basalts in the Karoo-Ferrar province (Jenkyns, 2010). Termination of OAEs may 

have been forced by sequestration of CO2 by both silicate weathering and photosynthetic 

fixation into sedimentary organic matter, causing final sowing of the hydrological cycle.  
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Fig.3.2 Cretaceous OAEs correlated with the Large Igneous Provinces (LIPs) and 
bio-, chrono-, magneto-, and chemo-stratigraphy [from Erba et al., 2004] 
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3.3 The latest Cenomanian 

 Oceanic Anoxic Event 2 

The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2) is one of the best 

documented and most extensively studied oceanic anoxic events. It is dated at ~93 Ma 

(Fig. 3.3), close to the Cenomanian-Turonian boundary, and is associated with short-term 

changes in atmospheric pCO2, extinction of a number of marine biota and ocean 

chemistry turnover. The sedimentary record of OAE 2 varies from place to place: the 

distribution of black shales during OAE 2 is clearly diachronous relative to the δ13C 

anomaly and was therefore influenced by a variety of environmental factors peculiar to 

the basin (Tsikos et al., 2004; Meyers, 2007). This is in conflict with the original 

definition of an OAE that implies coeval deposition of organic-rich sediments at global 

scale. These organic-rich sediments, however, became globally significant: the increase 

of organic matter deposition led to enhanced burial of 13C-depleted carbon, which 

resulted in a 13C-enriched global carbon reservoir. This is registered as a positive 

excursion in the stable carbon isotopic composition, δ13C, of sedimentary components 

(including organic matter and carbonates) across the OAE 2 (Tsikos et al., 2004). This 

positive excursion is a major characteristic of OAE 2 and a fundamental tool to correlate 

different OAE 2 sections. Therefore, recent studies highlight that the total duration of 

OAE 2, from the first rise of the carbon isotope excursion to the termination of the 

plateau when values start to decrease (Fig 3.3; Kuypers et al., 2002), must range from 435 

to 600kyr (Sageman et al., 2006; Joo & Sageman, 2014). 

New high-resolution carbon- and oxygen-isotope records of OAE 2 were obtained for 

three Italian Tethyan sections: Cismon (Belluno Basin), and Furlo, and Monte Petrano 

(Umbria–Marche Basin) deposited in pelagic settings characterized by the alternation of 

nannofossil-planktonic foraminiferal oozes, radiolarian-rich intervals and shales (Fig. 3.4; 

Gambacorta et al., submitted). The δ13C records a large positive anomaly (~2–3‰) in 

δ13Corg of the Bonarelli Level corresponding with OAE 2. Detailed carbon-isotope 

stratigraphy, calibrated with nannofossil biostratigraphy, provided high-resolution dating 

and correlation, allowing the identification of hiatuses in the studied sections. In 
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particular, the high-resolution δ13C profiles across the OAE 2 interval highlight the 

presence of hiatuses of variable extent that affect the middle to upper part of the 

characteristic carbon-isotope excursion and part of the following interval in all the studied 

sections. Locally, there is some evidence for a possible hiatus at the base of the Bonarelli 

Level. Correlations with complete carbon-isotope records available for widespread 

localities, allow an estimate of 400 to 700 kyrs missing time in the middle to late part of 

OAE 2 and the immediately following interval. The origin of such gaps can be attributed 

to physical and/or chemical processes operating at the seafloor. Complete recovery from 

the peculiar physico-chemical conditions that characterized the deeper parts of the Tethys 

Ocean during OAE 2 took at least 1 million years. For further details, the reader should 

consider Appendix I. 
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Sea-waters during Cenomanian-Turonian OAE 2 were influenced by oxygen deficiency 

that set up frequent and prolonged suboxic conditions (Kuypers et al., 2002a; Kolonic et 

al., 2005; Scopelliti et al., 2006, 2008). Anoxic conditions can be triggered by different 

mechanism: restriction of the basin, intense upwelling and enhanced primary productivity 

with subsequent consumption of oxygen, or freshwater input promoting stratification of 

the water column. Restricted basin were favoured by the Cenomanian-Turonian 

paleogeography: the proto-North Atlantic was a semi-enclosed basin with steep 

continental slopes and relatively narrow connections to the Tethys in the East and Pacific 

Oceans in the West. Increased sea level during the mid-Cretaceous caused the formation 

of a vast epicontinental seaway (Western Interior Seaway) in the middle of North 

Fig. 3.4 Carbon-isotope profiles for the OAE 2 interval at the GSSP key-locality of Pueblo 
(Colorado) and the English section of Eastbourne. On the left the cyclostratigraphy is reported 
to show duration of OAE 2 [after Gambacorta et al., submitted] 
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America (Watkins, 1986; Eleson & Bralower, 2005; Corbett & Watkins, 2013) and an 

archipelago with extensive continental shelves in Europe (Hancock and Kauffmann, 

1979). The restriction of the proto-North Atlantic Basin may have therefore favored the 

formation of oxygen-depleted water masses. Climatic conditions during OAE 2 were 

linked to very high carbon dioxide concentrations; reconstruction of sea surface 

temperature (SST) indicate strong warming within OAE 2, with SST increased of more 

than 5°C (Bice et al., 2006; Forster et al., 2007), possibly reaching 33-42°C in the mid 

and tropical latitudes and potentially more than 20°C in the Artic region (Jenkyns et al., 

2004). However, the mid-Cretaceous temperature rise, at shorter timescales, displays 

temperature variations in relation to the global carbon cycle (Voigt et al., 2004): in the 

mid-Cenomanian, and late Turonian two cooling episodes of ∼ 2-3°C are registered in the 

isotope signature; this is also testified by intrusion of boreal fauna, including belemnites 

and bivalves (Voigt et al., 2004; 2006). Cooling events are explained with two 

mechanisms: the decrease of CO2 connected with excess carbon burial intervals (Kuypers 

et al., 1999, 2002a; Voigt et al., 2004; Gale et qal., 2005), or the increase in weathering of 

continental crust. Indeed OAE 2 models suggest that global warming, triggered from 

massive volcanism, caused an intensification of the hydrological cycle, promoting an 

increase in the basaltic weathering rate and intensity (Pogge von Strandmann et al., 2013). 

Weathering started to intensify almost 25-30 kyrs before the OAE 2 onset (Turgeon and 

Creaser, 2008; Pogge von Strandmann et al., 2013), and reached its peak around 300 kyrs 

after the start of volcanism. Intense weathering might have increased the flux of nutrient 

to the ocean and thus help to stimulate biological activity (Jones & Jenkyns, 2001). 

Subsequently, weathering began to decline to a more weathering-limited regime, reaching 

pre-excursion levels in 100-300 kyrs, allowing a gradual recovery of the ocean. Extensive 

volcanism was associated to the formation of the Caribbean, Madagascar and/or part of 

the Ontong Java Plateaus that acted as a natural source of CO2. Geochemical data indicate 

that CO2 started to increase (by ~600 ppm) prior to the major organic carbon burial and 

OAE 2 onset (Turgeon and Creaser, 2008; Du Vivier et al., 2014) reaching concentrations 

of about 900 – 1300 ppm (Damstè et al., 2008; Barclay et al., 2010).  
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Recently, Du Vivier et al. (2014) documented high-resolution osmium isotope 

stratigraphy across the Cenomanian–Turonian Boundary Interval from sections from 

different basins. The 187Os/188Os profiles show a comparable trend with radiogenic values 

before OAE 2 and a synchronous abrupt unradiogenic interval at the onset of and through 

the first part of OAE2. At the end of the event, Os values return more radiogenic. The 

synchronicity of the unradiogenic Os pattern suggests that the Caribbean LIP volcanism 

was crucial in promoting global perturbation, perhaps with contributions by the High 

Arctic LIP. In the Western Interior Seaway, Du Vivier et al., (2004) noticed a radiogenic 

Os peak just before the onset of OAE 2, possibly indicating the onset of global warming 

promoting accelerated weathering and continental nutrient recycling into the ocean, thus 

pre-conditioning the environment to the major perturbation. 
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During OAE 2 a temporary CO2 drawdown (decrease of circa 25%) is recorded reflecting 

the delicate balance between CO2 input versus continental weathering and organic carbon 

burial, coherently with the previously quoted short-term temperature decrease. In 

particular, a marked pCO2 minimum occurred with a SST minimum of the Plenus Cold 

Event showing >4°C of cooling in ∼40kyr  (Jarvis et al., 2011). This CO2 minimum was 

also documented by terrestrial proxies (stomatal indices; Barclay et al., 2010). In the later 

phase of OAE 2, reduced negative feedbacks allow a further pCO2 rise, indicating 

continued input of volcanic greenhouse gas emission. The end of OAE 2 points to several 

factors that might have synergically acted: decrease of volcanic activity (reduced CO2 

emissions), transgression and flooding of continental interiors (lower erosion rates), 

reduced weathering and subsequent reduction of terrestrial nutrient supply with a 

resulting drawdown of open-ocean productivity. 

Changes in abundance and composition of calcareous nannoplankton precede the δ13C 

anomaly and deposition of Corg-rich sediments (Erba, 1993, 2004). Therefore, 

nannoplankton responded to the early phases of paleoenvironmental variation and 

continued to trace the perturbation in the ocean/atmosphere system during OAE 2. 

Phytoplankton (and zooplankton) changes are interpreted as the response of the biosphere 

to increasing fertility, culminating in the high-productivity event coincident with OAE 2 

(Erba, 2004): fertility could have become so high that only the most opportunistic 

nannoplankton taxa continued to thrive. Since enhanced primary productivity is the most 

accepted explanation for OAE 2 (Jenkyns, 1999), a mechanism capable of triggering 

eutrophism at a global scale must be found. Coastal nutrification due to increased 

continental weathering and run-off and/or local upwelling cannot explain the high 

productivity documented in remote parts of large oceans during the latest Cenomanian. 

High-resolution studies of sedimentary successions representing OAE 2 show trace-metal 

peaks coincident with major biotic changes reported before and during this event (Snow 

et al., 2005). Thus, increasing geological evidence suggests that OAE 2 was mainly an 

oceanic productivity event, largely controlled by submarine eruptions. Higher trophic 

levels were essentially induced and maintained by hydrothermal inputs of biolimiting 

metals (e.g. Fe, Zn) during the construction of the Caribbean Plateaus, which also 

affected ocean dynamics by warming deep - and intermediate - waters, causing more 
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efficient nutrient-cycling (warm upwelling; Erba, 2004). The Cenomanian-Turonian OAE 

2 is characterized by a carbonate crisis, both in pelagic and neritic environments, during 

times of extreme greenhouse conditions. By analogy with extant communities, excess 

volcanogenic CO2 most probably inhibited biocalcification in calcareous nannoplankton 

(Erba et al., 2006) and planktonic foraminifers, as well as in reef communities (Erba, 

2004). Carbonate sedimentation resumed after excess CO2 was drawdown by accelerated 

weathering and burial of organic matter and perhaps nutrient supply slowed down as well. 

The global carbonate decrease, expressed as deposition of large quantities of organic 

matter and temporarily biosiliceous sediments, was possibly caused by a combination of 

excess volcanogenic CO2, preventing biocalcification in nannoplankton (and 

foraminifers), and eutrophic conditions favouring organic-walled and siliceous plankton. 

Extreme conditions during OAE 2 negatively affected nannofloras and a turnover 

characterizes nannofossil assemblages during OAE 2: several species disappeared, one 

after the other and then new species originated (Fig. 3.5, 3.6). 

 

 

Fig. 3.6 Summary  of the latest Cenomanian OAE 2 [from Erba et al., 2004]. 
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Chapter 4 

Calcareous nannoplankton 
 

4.1 Coccolithophores algae 
Coccolithophores include all haptophyte algae, which have evolved the ability to produce 

calcified scales (coccoliths) at some stage of their life. Coccolithophores first appearance 

is dated as Late Triassic, ca. 220 Ma (Bown et al., 1998) and their appearance and 

evolution can be considered a major revolution in the marine ecosystem. During the 

Carnian they were represented by 4 families (Fig. 4.1). They aren’t convincingly 

documented in the Palaeozoic, although a few papers report coccolith-like structures 

(Deflandre, 1970; Pirini Radrizzani 1970; Noel, 1971). It can be hypothesized that 

nannoplankton already existed in the Paleozoic, but didn’t produce mineralized scales at 

that time: the appearance of coccoliths corresponds to the emergence of calcite 

biomineralization within the haptophyte algal group, but the origin of haptophyte is 

considered far more ancient: molecular genetic analyses suggest that the divergence from 

other algal groups is as old as Neoproterozoic, almost 1200 Ma (Medlin et al., 2008). 

Observing the significant lag, that intercourse between haptophyte appearance and 

coccolith diversification (e.g. Falkoski et al., 2004) it can be speculated that coccolith 

biomineralization was evolutionary difficult to achieve, but once established, was 

fundamental for the diversification and prosperity of the group. Both Coccolithophore 

algae and Dinoflagellates appeared soon after the Permian/Triassic boundary mass 

extinction suggesting a major reorganization of the ocean plankton community at that 

time during a phase of complete collapse of the marine ecosystem. The oldest 

nannofossils had a very simple morphology: they were relatively large and heavily 

calcified nannoliths. But it was a little bit after, that real coccoliths, tiny and with simple 

morphology, appeared. After the Triassic/Jurassic boundary extinction, that affected 

calcareous nannofossils too, coccolithophores experienced an impressive diversification 

(Pliensbachian – early Toarcian; Roth, 1987, Erba 2006), becoming in the Jurassic and 

Cretaceous the most efficient rock-forming group. Together with planktonic foraminifera 

they still form the bulk of calcareous deep-sea deposits (Baumann et al., 2004), playing a 
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major role in oceanic biogeochemical cycle (Rost & Riebesell, 2004). Nowadays, of the 

approximately 300 haptophytes in the oceans, about 200 are in fact coccolithophores and 

so far these contribute significantly to the biodiversity of the group (Jordan & 

Chamberlain, 1997).  

 

They are a dominant phytoplanktonic group in all oceans except in the Artic seas and 

high latitudes of Southern Ocean and range from oligotrophic subtropical gyres to 

temperate and higher latitude eutrophic regimes. They are the most productive calcifiers 

Fig. 4.1 Synthesis of coccolithophorid phylogeny [from Young et al., 1999]. 
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of our planet: with their shell they produce a continuous rain from the surface to the deep 

ocean, modifying upper-ocean alkalinity (reduction of the ocean’s capacity to uptake 

CO2), producing massive deposits of calcium carbonate at the sea floor and transferring 

organic matter to the deep ocean (contributing to the vertical CO2 gradient in the ocean). 

As calcifying primary producers they contribute to both the organic carbon pump and 

carbonate counter pump: for instance the draw down of CO2 due to organic carbon 

production is compensated by the release of CO2 via calcification. Thus changes in the 

contribution of coccolithophores to ocean primary production, can deeply impact the 

global carbon cycle. 

 

4.2 Coccolithophores biology and ultrastructure 
Coccolithophores main cytological aspects have been extensively studied (Pienaar, 1994, 

Inouye, 1997, Billard and Inouye, 2004a). Briefly, the Coccolithophores consist of single 

cell composed of nucleus, and normally two golden brown chloroplasts, which contain 

chlorophylls a + c and capture available light. Chloroplasts are the centre of carbon 

dioxide fixation. The cell also contains mitochondria (production of enzymes which 

provide the energy for cell functions), vacuoles (deal with waste products), and the Golgi 

apparatus (Fig. 4.2). The Golgi body is involved both in the synthesis of organic scales 

and coccolithogenesis.  

Fig. 4.2 Diagrammatic 
cross-section of a 
coccolithophore cell and 
cell wall coverings [from 
Bown et al., 1998]. 
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Furthermore Coccolithophores have two flagella and one haptonema. The real function of 

the haptonema is not clear but it is considered a multi-functional organelle that might 

have a sensitive or adherence function or plays a role in food capture (Inouye, 1995; 

Billard and Inouye, 2004a). The flagellar-haptonema apparatus emerge from the cell wall: 

the periplast consists of various layers of organic scales; the distal scales of the periplast 

are the calcified coccoliths.  Base plate scales are covered with polysaccharide that seems 

to have a role in attachment (Pienaar, 1994). Organic scales form a base for the 

precipitation of calcite heterococcolith, which are produced by the Golgi apparatus.  

 

Fig. 4.3 Examples of haplo-diploid phases in a few Coccolithophorids.  Diploid and 
haploid stages of a single species express radically different phenotypes and can be 
either calcifying or non-calcifying. Scale bars are 2 µm. [from De Vargas et al., 2007]. 
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Coccolithophores developed two types of plates: heterococcoliths and holococcoliths.  

The two forms were previously regarded as belonging to independent species; however, 

it’s still not entirely clear if holococcolithophores are not autonomous but stages in the 

life cycle of heterococcolith-covered oceanic species (Billard and Inouye, 2004a). 

Heteococcoliths consist of radial arrays of complex crystal units and holococcoliths are 

characterized by large numbers of tiny morphologically simple crystallites. 

Coccolithophores distinct feature is their haplo-diplontic life cycle: their typical life cycle 

consists of independent haploid and diploid phases, both of which are capable of 

indefinite asexual binary fissions (Billard, 1994).  During both phases they produce 

coccoliths with this kind of alternation (Fig. 4.3): the diploid phase is characterized by 

heterococcoliths, whereas the haploid phase is characterized by holococcoliths. Within 

these basic categories, various terms are used to identify different kinds of coccoliths 

based on morphology: cricoliths, helicoliths, appoliths, etc. for heterococcoliths; 

calyproliths, liminoliths, etc. for holococcoliths (Young et al., 1997).  

It should be mentioned that the function of coccoliths is unknown. Coccosphere is widely 

considered a protection against predation: the coccosphere could have the function to 

protect the cell from organism that can penetrate or ingest the algae. Penetrators can be 

considered both viruses and bacteria. The former needs to attach the cell surface and in 

that scenario, the coccosphere act as strong barrier against infections. In E. huxleyi, in 

fact, viral attack mostly happens during cell division (when the coccosphere is not 

completely closed, Mackinder et al., 2009). On the other hand bacteria, as is known, can 

both act as host and not only as infectious. There isn’t any information available about the 

action of bacteria on coccolithophore algae. The most potent predator of coccolithophore 

is probably microzooplankton, which is a dominant group in today Ocean, and has a size 

that matches coccolithophores. Coccolith production and structure (e.g. spines that 

increase the coccosphere diameter) can be a strategy to become unappetizing. 

It has been hypothesized that coccolith might act as light concentration regulators: 

phytoplankton in the upper ocean passively circulates up and down in the mixing layer, 

receiving fluctuating light levels. Biomass production is strictly related to sunlight: the 

coccosphere may act as a light gatherer (Gartner & Bukry 1969), as a protection to 

damages to the cell, or reflect the light inside the cell, allowing life at lower depth 

(Braarud et al., 1952). It is also plausible a connection between calcification and 
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photosynthesis: calcification might act as a source of carbon dioxide and the two 

reactions might be linked (Passche, 1962). Coccolithophore photosynthesis might benefit 

from calcification that produces CO2, lowering the energy request from the cell to 

photosynthesize. 

Experimental data are controversial: on one hand, it appears that when coccolithophores 

are grown in low calcium concentration, there’s reduction in calcification but 

photosynthetic rates are not altered (Trimborn et al., 2007, Mackinder et al., 2011). At the 

same time there’s evidence that the carbonate source that coccolithophorid algae need to 

photosynthesize is HCO3- instead of CO2 (Rost et al., 2002). On the other hand, coccolith 

production requires high energy-cost: there isn’t any evidence of a reduction in the 

growth-rate of calcifying cell compared to naked one as we can expect. A possible 

function of the coccosphere might also be floating regulation (Young, 1994): accelerated 

or reduced sinking may help the cell to enter or to remain in suitable levels of the water 

column.  

Besides their function, it’s not completely understood how coccoliths are produced. 

Heterococcoliths production is better understood while fewer observations are available 

for holococcoliths.  Coccoliths occur outside the cell forming a composite shell named 

coccosphere; coccoliths have a disc-shaped morphology with a more or less concave 

inner surface.   

Heterococcoliths calcite precipitation and growth occurs in vesicles derived from the 

Golgi body (Young et al., 1999). The coccolith calcification process is, therefore, 

separated from the surrounding seawater by at least two membranes and can be 

considered a biological process (Fig., 4.4). Coccoliths are then transfer via exocytosis and 

become part of the coccosphere (Dixon, 1900). Calcification process starts with the 

formation of an organic scale named base plate (Van der Wal et al., 1983a) that normally 

has a microfibrillar structure. Some scales are exocytosed without any evolution while 

other scales undergo a nucleation process: nucleation of calcite occurs on the rim of the 

base plate, forming a closed ring (proto-coccolith ring), followed by an upward and 

outward crystal growth to form the complete coccoliths. 
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The coccolith ring is based on two crystals unit type with two different orientations that 

are alternated with one another:  vertical oriented axes (V-unit) and radial oriented axes 

(R-unit). Nucleation controls total crystallographic orientation (Davis et al., 1995, Young 

et al, 1999). Coccoliths growth occurs inside vesicles that remain in close contact with it 

throughout the development; it is therefore plausible that the vesicle concur to the final 

coccolith shape (mechanical control), causing the crystal to grow in specific directions 

(Westbroek et al., 1984).  Coccolith crystals seem to be also enveloped with a narrow 

coating of organic matter that cover coccoliths cover and extends between crystals. Even 

if in some species this coating material has not been detected, there are indirect evidences 

of its presence (e.g. obscured surface on SEM images; selectivity on dissolution of 

coccoliths…) 

V/R nucleation process is a very common feature among heterococcoliths and has been 

identified in both fossils and modern coccoliths (Fig. 4.5, Young et al., 1999) and is 

supposed to have evolved only once and been conserved through the 230 Ma evolution of 

the group, suggesting a monophyletic origin for heterococcolithophores (Fig. 4.6). 

Fig. 4.4 A conceptual model of Ci, Ca2+ and H+ transport related to calcification in 
coccolithophores [from Mackinder et al., 2011]. 
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Less data are available for holococcoliths production. Holococcoliths are less common: 

they also have a disc-shaped structure but they are formed entirely of uniform-shaped 

crystallites. Even if, like heterococcoliths, they are surrounding by an organic coating, 

their calcification occurs outside the cell (Manton and Leedale, 1969) and it is 

hypothesized that the coccosphere grows progressively starting from the flagellar pole 

(Young et al., 1999). Holococcoliths calcification seems to involve less regulation of 

crystal growth and there are not clear indications of holococcolith-shape control 

mechanism.  

 Holococcoliths fossil record is much less complete, but is proven to be present in the 

Jurassic era (Young et al., 1999). It seems therefore plausible that both heterococcoliths 

and holococcoliths evolved near the evolution on the group and they both can be 

considered an alternative adaptation of a similar calcification mechanism. 

 

 

 

 

 

 

 

Fig.4.5 Heterococcolith structure and terminology (exemplified by Watznaueria). A single segment 
consists of two crystal units, V unit, and a R unit consisting of several superficially discrete 
elements. The concave surface is directed toward the cell and so is termed proximal, or lower [from 
Young et al.1999]. 
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4.3 Cellular calcification to changing 
environmental conditions 

In the face of global warming, coccolithophores are subjected to strong alterations of their 

environmental conditions. Dependency or interconnections on photosynthesis and 

calcification in coccolithophores are still under debate (Riebesell, 2004).  Most of the 

available information originates from the massive works on Emiliania huxleyi that 

evolved only 270 kyrs ago and became the most dominant coccolithophore in the ocean.  

It seems plausible that calcification can be influenced by many environmental parameters 

that will be elucidated in the next paragraphs 

 

 

Fig. 4.6 The multiple origins of coccolithogenesis in the haploid and diploid stages of 
calcihaptophytes, based on DNA data. The horizontal dotted lines in the middle of the figure 
indicate, from bottom to top, the P/T boundary, the first fossil heterococcolith, and the first fossil 
holococcoliths [from De Vargas et al., 2007]. 
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4.3.1 Light 

The general habitat for coccolithophores is the photic zone that provides the necessary 

sunlight necessary for photosynthesis. Coccolithophores have no photoinhibition: E 

huxleyi and P. carterae are known to photosynthesize and calcify even at very high 

irradiances up to 1700-2500 µmol photons m-2 s-1 (Nanniga & Tyrrell, 1996, Zordevan 

2007) where other phytoplanktonic groups are inhibited (Nanniga & Tyrrell, 1996). As a 

comparison, the irradiance of the sun, that is controlled by the intensity of sun radiation, 

by the albedo and by the angle in between the sea surface and the sun, at noon and under 

clear skies is 2000 µmol photons m-2 s-1. Even if lab experiments and midsummer bloom 

observations suggest that coccolithophores prefer growing at high irradiance (Baumann et 

al., 2000), although they are able to grow also at low irradiance but with lower growth 

rates (e.g. 0.5 day-1 at µmol photons m-2 s-1, Zondervan et al., 2002). Cell volume and 

particulate organic matter concentrations are reported to increase with increasing light 

intensity (Muggli & Harrison, 1996) but, on the other hand, chlorophyll a concentration is 

reported to decrease relative to organic carbon with increasing light intensity (Harris et 

al., 2005). Coccolith production is less dependent to strong light compared to 

photosynthesis because up to 15% of the coccolithogenesis process happens in the dark 

(Paasche and Brubak, 1994).   

 

4.3.2 Nitrogen and phosphorus 

Nitrate and phosphate are distributed in the global ocean at a ratio 16:1 (Redfield, 1934) 

and they both increase with depth due to the consumption by phytoplankton in the 

euphotic zone and later recycling during sinking of organic matter particulates. Nitrogen 

is the most abundant element in the atmosphere and it dissolves in the sea-water, where 

the dominant bioavailable reservoir is represented by nitrate (NO3). Phosphorous oceanic 

reservoir comes from continental weathering and the dominant bioavailable species is 

phosphate (PO4
3-). 

In coccolithophores it seems that reduced level of P increases the number of coccoliths in 

E. huxleyi (Paasche, 1998). Furthermore, E huxleyi displays an increase in size under P 

limitation situation. This is not observed in low N conditions. In general, coccoliths in N 
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limitation conditions appear to be undercalcified, while overcalcification is evident in P 

limitation condition (Paasche, 1998). Finally, E huxleyi in both lab and field observations 

show that malformations and size changes can be imposed by nutrient stress (Passche, 

1998) with an inverse relationship: high nutrient stress induces smaller sizes and 

malformation.  

 

4.3.3 Carbonate System 

The dissolved inorganic carbon (DIC) is present in 3 forms: 

DIC=[CO2]+[HCO3-]+[CO3
2-] 

bicarbonate (HCO3) that is the most abundant carbonate species, carbonate (CO3) and 

dissolved carbon dioxide (CO2) that consists of less than 1%. 

Coccolithophore algae mostly use bicarbonate to synthetize coccoliths (Paasche, 2002) 

but are very sensitive to carbonate ion concentrations. The on-going ocean acidification is 

altering the ocean carbonate chemistry with a reduction of [CO3
2-], seawater pH, 

increasing DIC, [CO2], and [HCO3
-] and keeping TA constant. The effect of ocean 

acidification and decrease in ocean calcium carbonate on living coccolithophores is 

difficult to measure because a combination of factors (nutrient, light, temperature…) can 

determine the response of coccolithophore algae to elevated CO2 (Ridgwell et al., 2009). 

What we know so far it that there’s a species-specific response of coccolithophores algae 

to increase CO2 emission and low carbonate saturation state: experiments and 

observations on morphologically close species E. huxleyi and G. oceanica display 

reduced calcification per cell and a concomitant increase in photosynthesis rate 

(decreased PIC/POC ratio; although some strains of E. huxleyi show a less sensitive 

behaviour).  G. oceanica furthermore appears to be more sensitive to changes in pH and 

pCO2.  At the same time there’s also production of malformed coccoliths (Riebesell et al., 

2000; Rost and Riebesell, 2004).  On the other hand, other species like C. pelagicus and 

C. leptoporus seem to be less sensitive to increased [CO2]. Particularly, C. pelagicus 

calcification is just a little bit affected by elevated CO2 (Langer et al., 2006), while C. 

leptoporus display a CO2/pH optimum interval (of both calcification and photosynthesis) 

with a maximum value at present CO2 concentration (Krug et al., 2011). 
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4.3.4 Trace Metals 

Coccolithphore algae need trace metals, such as iron, zinc, manganese, cobalt, selenium 

and cadmium for their metabolic processes. Trace metals play a critical role in a number 

of metabolic processes involving the utilization of essential algal resource like light, 

nutrients and CO2. Macronutrients (like P, C, N, Si) and major ions (like Mg2+, K+, Ca2+, 

Cl-, Na+, SO4
2-) are fundamental for coccolithophore growth and are generally highly 

soluble and non-toxic. On the other hand, trace metal content might become toxic for 

coccolithophorid algae if threshold values are reached. The presence or absence of trace 

metals can play the role of limiting micronutrients. For example, iron is the most 

important of these micronutrients and can limit or increase phytoplanktonic growth in 

many regions of the ocean. Elevated concentrations of micronutrient metals, like copper 

or zinc, can have two effects: they can poison the cell entering into the cell via transport 

system of essential nutrients or can inhibit the nutrient uptake and interfere with the 

nutrient metabolism (Sunda et al., 2005). Not many studies have taken into account this 

subject and the effect of single trace metal on coccolithophorid metabolism and or 

calcification is not clear.  Hoffmann et al. (2012) highlighted that in extreme local 

conditions (like desert dust or volcanic emissions), trace metal peak can both fertilize and 

have a toxic effect on coccolithophorid algae. So far Mg is supposed to play an important 

role in regulating antagonistic and synergistic effects on different trace metals.  

  

4.3.5 Mg/Ca ratio 

Calcium and magnesium concentrations varied over geological time scale. In the 

Mesozoic the shift from aragonitic to calcitic sea almost 200 Ma, coincides with the 

oldest record of relatively diversified nannofossils (Erba, 2006). It seems plausible 

therefore that increase Ca2+ concentration and consequently reduction in Mg/Ca ratio 

played a fundamental role in the appearance of calcified calcareous nannoplankton. 

Furthermore the maximum of Ca2+recorded in the mid-Cretaceous define the beginning of 

expansion of coccolithophores: at a time when the very high CO2 would have retarded the 

precipitation of calcium carbonate in the ocean, it can be hypothesize that both low 

Mg/Ca ratio and or increase in Ca2+ in the Cretaceous ocean, were responsible for the 

higher coccolithophorid growth rate and subsequent massive chalk deposits fin the Late 
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Cretaceous (Stanley & Hardie 1999, Erba, 2006).  

On a short time scale, Mg/Ca variations influence coccolithophorid physiology and 

chemistry of biogenically produced coccoliths. Stanley et al. (2005) observed an increase 

in the population growth rates of three analysed species with decreasing Mg/Ca ratio and 

concomitant Ca increase. Furthermore, other studies (Herfort et al., 2004, Leonardos et 

al., 2009), revealed that increasing Ca concentration, have an effect on PICprod that 

increases till reaching a threshold value (50 mml L-1), where it decreases again. Muller et 

al. (2011) suggested that only changes in [Ca2+] affect coccolithophorid physiology and 

that, on the contrary, coccolithophorid algae are insensitive to [Mg2+] changes. It seems 

however that coccolithophores respond in a specie-specific way to Mg/Ca ratio variations.  
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Chapter 5 

Paleoecology of the Cenomanian-

Turonian calcareous nannoplankton 
 

Calcareous nannofossil assemblages have the potential to yield information about surface 

water conditions (e.g. temperature, productivity). During the Cenomanian - Turonian 

OAE 2, calcareous nannoplankton show anomalies that don’t parallel the dramatic 

changes observed in other faunal groups such as ammonites, belemnites and foraminifera, 

in which major extinctions occurred. However, calcareous nannofossil experienced 8-9% 

turnover through the upper Cenomanian and lower Turonian. At least nine originations 

and four extinctions occurred between the second peak of the 13C excursion and the base 

of the Turonian (Hardas and Mutterlose, 2006, 2007; Corbett and Watkins 2013). 

Therefore, calcareous nannoplankton experienced a very high rate of turnover in less than 

20 kyrs (Corbett and Watkins, 2013), suggesting major paleoceogranographic changes 

during this interval and environmental stress for marine microplankton (Fig. 5.1). 

 

87Sr/86Sr
0.7075 0.7074 0.7073

Fig. 5.1 Synthesis of nannofossil changes across the Cenomanian-Turonian OAE 2 [from 
Erba 2004]. 
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The Cretaceous genera Watznaueria, Biscutum and Zeugrhabdotus are thought to indicate 

a range of trophic conditions (from oligotrophic to eutrophic fertility levels) depending on 

peaks in relative abundance between species (Corbett and Watkins, 2013). In the 

Cenomanian - Turonian boundary interval, Watznaueria barnesiae is known to dominate 

nannofossil assemblages. W. barnesiae is a cosmopolitan species, common in tropical and 

subtropical regions and dominant especially in oceanic gyres; it is described as an r-

selected opportunistic species (Hardas and Mutterlose, 2007) and used as a low-

productivity indicator (Erba, 2004). In the Cenomanian/Turonian boundary interval, 

Watznaueria spp., including W. barnesiae, show a decrease in abundance and nearly 

disappeared during some parts of the δ13C excursion in tropical sections. This has been 

interpreted as an increase in primary productivity (Hardas and Mutterlose, 2007). On the 

other hand an increase of this low-fertility taxon is recorded at higher latitudes 

(Eastbourne section, Wunstorf core; Linnert et al., 2010; Linnert et al., 2011). Biscutum 

constans and Zeugrabdothus erectus, on the contrary, are described as high-nutrient 

indicators; Z. erectus is seen as an eutrophic species and shows a high increase in relative 

abundance during the δ13C  excursion in different sections: it is well represented in both 

Eastbourne and Tunisia sections (Paul et al., 1999; Tantawy, 2008; Linnert et al., 2011). 

B. constans, on the contrary, records a decrease in some area such as at Eastbourne, 

Gubbio, and Wunstorf (Paul et al., 1999; Erba, 2004; Linnert et al., 2010; 2011). 

However, B. constans show an increase in abundance in Tropical Atlantic (Demerara Rise 

ODP Site 1258) and Tethyan sections (Melinte-Dobrinescu & Bojar, 2008). 

Discorhabdus rotatorius, very rare in several sections (such as Eastbourne and Demerara 

rise) is also viewed as indicator of mesotrophic conditions (Erba, 1992; Hardas and 

Mutterlose, 2007). Eprolithus floralis has been observed at different high-and-low 

latitude successions. It is inferred to be adapted to cool surfaces waters (Roth and 

Krumbach, 1986). In Demerara Rise sections, two peaks are record at the top and above 

OAE 2, while in Eastbourne and Gubbio sections, two peaks are record in late phases of 

OAE 2 and immediately after it (Erba, 2004; Hardas and Mutterlose, 2006). Moreover, 

Demerara Rise sections show a decrease of E. floralis suggesting warmer conditions, in 

agreement with other isotopic data (Forster et al., 2007): this might indicate that the onset 

of OAE 2 coincided with a rapid warming of surface waters. All these information 

highlight very complicated picture suggesting higher trophic level in the tropical area and 

more oligotrophic conditions at higher latitudes. However, other parameters must be 
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taken into account: B. constans decline might also be explained with trophic conditions 

above threshold values or toxicity of specific metals or inability to thrive in very warm 

waters (Erba, 2004). Furthermore nannofossil decrease in total abundance and species 

richness might be determined by higher concentrations of biolimiting metals (e.g. Fe, Zn) 

and higher nutrient content that have favoured siliceous and organic walled groups 

(diatoms, dinoflagellates, cynobacteria; Erba, 2004).  
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Chapter 6 

Studied Sections 
 

For this thesis I investigated the Cenomanian- Turonian boundary interval recovered in 5 

sedimentary successions (Fig. 6.1): Eastbourne section (Sussex, United Kingdom), Clot 

de Chevalier (France), Novara di Sicilia (Sicily, Italy) and two Western Interior sections 

(Pueblo, Colorado and Cuba, Kansas, USA). These five sections have been chosen based 

on availability of integrated stratigraphy. In fact, they all have a good time control, 

especially C isotopic stratigraphy and biostratigraphy, that offers the opportunity to 

correlate data from the different localities, discriminating between local, regional and 

global changes. Moreover, the selected sections represent short and long-distance location 

with respect to the Caribbean Plateau paleo-position. 

Novara di Sicilia

Eastbourne
Pueblo

Cuba

-120˚ -90˚ -60˚ -30˚ 0˚ 30˚

-120˚ -90˚ -60˚ -30˚ 0˚ 30˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

Clot de Chevalier

Fig. 6.1 Paleo-location of the studied sections: 
Eastbourne, Clot de Chevalier, Novara di Sicilia, Pueblo 
and Cuba [paleo-map from C/T-Net programm —Rapid 
global change during the Cenomanian/Turonian oceanic 
anoxic event: examination of a natural climatic 
experiment in earth history]. 
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6.1 Eastbourne section 

The sea-cliffs on the English Channel (Fig. 6.2) between the town of Eastbourne (Sussex) 

and the promontory of Beach Head, 4 Km southwest, display an expanded succession 

spanning the late Cenomanian and early Turonian. The outcrops at Gun Gardens, Beach 

Head and Holywell are the thickest and most complete successions of the Cenomanian-

Turonian transition in the Anglo-Paris Basin (Gale et al., 1995; 1996; Gale et Hannock, 

1999; Paul et al., 1999).  

 

The succession I’ve focused on is almost 27 m thick and consists of an alternation of 

chalk, marly chalk and rhythmically bedded marlstones (Fig. 6.3). The chalk consists of 

clay-poor carbonate – rich in microfossils (calcispere-, coccolith-, and inoceramid – 

limestones); on the contrary, the marlstones consist of clay-rich carbonates (Fig., 6.4; 

Paul et al., 1999). Boundaries between chalk and marly chalk are variably bioturbated.  

The lithological variations observed denote sea level changes: marls are associated with 

high detrital influx, increase erosion under arid and or cooler climatic conditions in 

Fig. 6.2 Location of the Eastbourne section (Sussex, UK; from Pearce at al., 
2009) 
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relationship with low sea level. In contrast, chalks are associated with a rise in the 

carbonate production, low detrital input under warm and humid conditions related to 

higher sea level period (Keller et al., 2001). 

Following Gale et al. (2005), the Eastbourne section can be divided into two formations: 

Lower Chalk formation  (from 0 m to almost 14 m) and the White Chalk formation (from 

14 m to 27 m). Each of them has been divided into different members. The Lower Chalk 

formation is described as a variably rhythmically bedded bioturbated marly chalk 

containing 10-30% clay (Gale, 1995). It can be divided in four parts: Glauconite member, 

Chalk Marl member, Grey Chalk member and Plenus Marl member. At Eastbourne only 

the two uppermost members are outcropping. The Grey Chalk member (from 0 m to 

almost 6 m) is represented by well-developed, relatively pure chalks and marlstones.  
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Fig. 6.3 Lithostratigraphy, biostratigraphy and C isotopic 
stratigraphy of the Eastbourne section studied within the CT-
NET Project [after Tsikos et al, 2004 and Erba, unpublished 
data]. 
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The Plenus Marls member (from 6 m to 14 m) is a succession of marlstones and marly 

chalks which form a prominent marker in the upper Cenomanian throughout southern 

England, northern France and the North Sea basin (Gale et al., 2005). The term “Plenus 

Marls” was first used by Rowe, 1900, for the marly unit at the top of the Lower Chalk 

formation, for the presence of the belemnite Actinonocamax plenus (now 

Preactinonocamax plenus). The Plenus Marls is a relatively thin but highly distinctive 

Fig. 6.4 Lithostratigraphy and nannofossil biostratigraphy of the 
Eastbourne section [from Paul et al., 1999] 

 



53 Chapter 6: Studied sections 

unit color: it has a greenish-grey coloration caused by a few percentage of chlorite (Gale 

et al., 2005). The outcrops in the west of Eastbourne are very thick (8 m at Gun Gardens) 

but lateral variations in the facies and thickness are recorded. The uppermost part of the 

Eastbourne section, shows, from a lithological point of view, the transition between the 

Plenus Marl member and the Ballard Cliff member: it is calcisphere-rich and has 

intermediate characteristics between the two underlying members (Gale et al., 2005). 

Mortimore (1986) introduced the first White Chalk lithological scheme; a newer scheme 

for the lower part was introduced by Gale (1996). He recognized three members: the 

Ballard Cliff member, the Hollywell member and the New Pit member. In the 

investigated section only the first two lower members are expressed (Ballard Cliff 

Member: from 14 to 19 m; Holywell member: from 19 m to the top). Gale et al. (2005) 

described the Ballard Cliff member and the Hollywell member as thinly bedded 

calcisphere-rich nodular and weakly nodular chalks, separated by wispy, flaser 

marlstones. 

The Eastbourne section was investigated for integrated litho- bio- and chemostratigraphy 

(Jenkyns et al., 1994, Paul et al., 1999, Keller et al., 2001, Gale et al., 1993, 2005; Tsikos 

e al., 2004, Pearce et al. 2009, Linnert et al., 2011) and many geochemical and 

paleoenvironmental studies (e.g. Voigt et al., 2004, 2006, Kolonic et al., 2005, Pearce et 

al., 2009). The association of calcareous nannofossils allowed the recognition of two 

biozones (Paul et al., 1999): Eifellithus turriseiffelii Thierstein (1971) emend. Crux 

(1982) and Quadrum gartneri Cepek and Hay (1969) emend. Manivit et al., (1977). 

Samples analyzed for my thesis were collected during the CTN Project. Nannofossil 

biostratigraphy was published in Tsikos et al (2004):  that the OAE 2 is constrained by the 

last occurrence of Corollithion kennedyi and Axopodorhabdus albianus and the first 

occurrence of Quadrum gartneri at the onset and end, respectively. These events are 

consistent with more recent biostratigraphic data by Linnert et al. (2011).
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6.2 Clot de Chevalier section  

Clot de Chevalier section is located in the Vocontian Basin (France). The Vocontian 

Basin forms a part of the hemipelagic intrashelf basin of the European Tethyan passive 

margin (Wilpshaar et al., 1997). Major tectonic changes occurred in this basin at the 

beginning of the Late Cretaceous, with a transition from dominant extensional regime 

until the Albian, to dominant compressional or transgression starting in the Cenomanian 

(e.g. Fries and Parize, 2003). The study of this section is still on going, and no 

information about lithostratigraphy is available. Calcareous nannofossil biostratigraphic 

investigations of Clot de Chevalier section are part of an integrated litho-, chemo- and 

biostratigraphic study of this section. Samples were provided by Hugh Jenkyns (Dept. of 

Earth Sciences, Oxford University, UK) to E. Erba and M.R. Petrizzo (Univ. of Milan) to 

investigate nannofossil and planktonic foraminiferal biostratigraphy (Fig. 6.5). 

Specifically, nannofossil biostratigraphy was part of the pH thesis of Fabio Russo 

completed in 2014. 

Fig. 6.5 Clot de Chevalier lithostratigraphy and isotope stratigraphy after Gale and Jenkyns 
(unpublished data); calcareous nannofossils after Erba, Russo, Bottini (unpublished data); 
planktonic foraminiferal zones after Falzoni and Petrizzo (unpublished data). 
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6.3 Novara di Sicilia section 

 

This Upper Cenomanian to Turonian section is located east of Novara di Sicilia, in the 

North East of Sicily. The section exposes a 19 m stratigraphic interval and is contained in 

one of the several exotic blocks within the Argille Varicolori that is the informal name of 

a unit in the Peloritani Thrust Belt. The Peloritani Mountain belongs to the southern 

section of the Calabrian Arc that represents the conjunction between the North Alpine-

Apennine system and the south Sicily-Maghrebide chain. The Peloritani Belt is formed by 

a set of south-verging tectonic units including crystalline basement and a sedimentary 

cover that over-thrusts the more external Sicilide Group along the Taormina Line 

(Amodio-Morelli et al., 1976; Giunta et al., 1989). Argille Varicolori is a pelitic unit that 

outcrops in Eastern Sicily and Southern Calabria and is tectonically located between the 

overlying Flysh Di Capo d’Orlando formation, a terrigenous deep - water succession 

dated as Aquitanian-Burdigalian and the overlying Calcareniti di Floresta formation, a 

shallow - water mixed deposit dated as Langhian. The contact between Argilli Varicolori 

and Flysh di Capo d’Orlando is interpreted as tectonic (Fig. 6.6). 

Argille Varicolori is described as a lithosome characterized by a massive fine-grained 
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Fig. 6.6 Schematic structural map of northeastern Sicily and location of the Novara di 
Sicilia section (red open circle) [from Scopelliti et al., 2008] 
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“matrix” that consists of a multi-colored chaotically textured clay-rich material, bearing 

huge exotic blocks, that lies on the underlying unit with stratigraphic contact (Cavazza e 

al., 1997). This complex unit represents a time interval of Cretaceous-Paleogene age: it 

includes the Aptian-Albian, the Cenomanian, the Eocene and the late Burdigian-

Langhian.  

The Novara di Sicilia section crops out in the form of an olistolith embedded within the 

melange of the Argille Varicolori (Scopelliti et al., 2008) and shows many similarities 

with coeval facies cropping out in Tunisia and Morocco (e.g. Nederbragt and Fiorentino, 

1999).  This section most probably has a southern provenance and might be derived from 

a depositional ramp located on the northern African continental shelf. 

 

 

 

 

Fig. 6.7 Lithostratigraphy at Novara di Sicilia section [from Scopelliti et al., 2008] 
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The Novara di Sicilia section is 19 m thick; it has been dated as late Cenomanian using 

planktonic foraminifera and nannofossil biostratigraphy (Scopelliti et al., 2008) and 

represents an expanded record of the Cenomanian-Turonian ocean anoxic event. The 

section can be divided into three parts (Fig. 6.7):  

1.  Lower part from 0 to about 8.5 m; irregular alternations of thick marly limestone with 

light and dark marlstones and calcarenites; only one horizon of black shales (at 4.7 m); 

2.  Intermediate part from 8.5 to 11.5 m; thinner and light colored marlstones alternated 

with dark marlstones; 

3.  Upper part from 11.5 m to almost 19 m; black shales alternating with dark marlstones 

and claystones. 

The boundary between intervals 2 and 3 marks the base of the Bonarelli Level equivalent. 

Calcareous nannofossil biostratigraphy shows that the organic-rich interval (from 9.5 m 

upwards) represents only part of the late Cenomanian. In fact, n the Novara di Sicilia 

section the lower part of the section represent the upper NC11* zone; the transition 

between NC11* and NC12* at 13.54m, is defined by the last occurrence (LO) of 

Axopodarhabdus albianus. The Cenomanian/Turonian boundary, according to calcareous 

nannofossil biostratigraphy is not reached because the LOs of Helenea chiastia and 

Rhagodiscus asper were not detected and the first occurrence (FO) of Quadrum gartneri 

was not registered (Scopelliti et al., 2008). In the analyzed section there’s a virtual 

absence of rotaliporidsdue to scarcity of this species before its disappearance  (lower 

critical interval, Coccioni et al., 1991) or related to local oceanographic conditions 

(upwelling; fig. 6.8). The d13Corg stratigraphy shows a moderate fluctuations and an 

increasing trend: values vary from -26% at the bottom to -23% at the top. The first δ13Corg 

peak at ∼ 10 meters corresponds to the Bonarelli Level equivalent onset. Three other 

peaks occur but a well-defined positive plateau is not observed, thus confirming the 

biostratigraphic interpretation of absence of the upper part of the OAE 2 anomaly. Hence, 

from a stratigraphic point of view the Novara di Sicilia section contains only the lower 

part of the Bonarelli Level of the Umbria-Marche Basin (type area) and the underlying 

interval. 
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6.4 Pueblo and Cuba sections (Western Interior 
Seaway) 

During the Cenomanian, the Western Interior Basin of North America was inundated by 

an epicontinental seaway that connected the Gulf of Mexico with the Artic Ocean 

(Hancock and Kauffman, 1979, Kennedy et al., 2005, Bowman and Bralower 2005, Snow 

et al., 2005, Corbett and Watkins 2013, Corbett and Watkins, 2014). The Western Interior 

Seaway (WIS; fig. 6.9) extended for 6000 km and at the Cenomanian-Turonian boundary 

it was 2000 km wide and 500 m deep (Hay et al., 1993). The WIS was characterized by a 

range of different climatic regimes, because of its large latitudinal extent and 

oceanography was very variable too. Water column structure and circulation was affected 

by freshwater input from the Sevier Highlands (West), Mogollon Highlands (South 

West), influx of waters from the Artic sea (North, dense, cold and salty waters) and the 

Tethys sea (South, less dense, warm surface waters) that determined significant sea level 

fluctuations (Fisher et al., 1994, Watkins et al., 1998, Eleson and Bralower, 2005).  
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The Cenomanian-Turonian boundary interval in the WIS lies within the Bridge Creek 

Limestone Member above the Hartland Shale Member. They are both part of the 

Greenhorn Formation (Kennedy et al., 2005). Rhythmically bedded thin calcarenite or 

nodular calcarenite layers alternated with grey shale layers characterize the Hartland 

Shale Member. Bentonite layers are common and vary from 1-2 to 20 cm thick. The 

Bridge Creek Limestone Member in the Great Plain region on the United States is a 

widespread unit, generally 10-15 m thick, consisting of a striking alternation of limestone 

and dark grey marlstone (Eicher and Diner, 1989). 
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The Rock Canyon Anticline section is located in South central Colorado, near Pueblo. 

This section has been ratified in 2003 as the Global boundary Stratotype Section and 

Point (GSSP) for the base of the Turonian. The boundary coincides with the FO of the 

ammonite Watinoceras devonense that is at the top of the global positive δ13C excursion 

and is bracketed by widespread bentonites that have yielded ages of 93-93.5 Ma 

(Kennedy et al., 2005). At the Cenomanian-Turonian boundary, Rock Canyon was 

located in the deepest part of the foreland basin at an estimated depth of 175-300m during 

peak transgression. The Bridge Limestone at Rock Canyon consists of a cyclically 

alternating pelagic carbonates (chalk and limestone) and more Corg-rich beds (marlstone 

and calcareous shale; Bowman and Bralower, 2005).  Much of the section is bioturbated 

with laminated and sublaminated units. Petrographically limestones are fossiliferous 

biomicrites (Kennedy et al., 2005). The Rock Canyon section was sampled from the 

uppermost part of the Hartland Shale through the lower Bridge Creek Limestone spanning 

about 8m below and 6 m above the C/T boundary as defined by ammonites. I analyzed 

the upper 10m of the section that consists of the Bridge Limestone Member including the 

OAE 2 interval.  

The Rock Canyon section was investigated for lito- bio- chemo- stratigraphy and for 

paleoecological and paleoenvironmental reconstructions (fig. 6.10; ammonite fauna: 

Stanton, 1894, Kennedy and Cobban 1991, Kennedy et al, 1999, 2000; inoceramid 

bivalves Kennedy & Cobban, 1991; planktonic foraminifera: Eicher and Diner, 1985, 

Leckie, 1985, Keller and Pardo, 2004; calcareous nannofossils: Watkins, 1985, Bralower, 

1988, Russo, 2014; dinoflagellates: Dodsworth 2000, stable isotopes: Pratt, 1983, 1984, 

Pratt et al., 1993, Keller et al., 2004, Gale et al., 2005, Bowman and Bralower,2005; 

iridium anomalies: Orth et al., 1988; trace metal abundances: Snow et al., 2005). 

At Rock Canyon well-defined lithological variations and a number of well-dated 

bentonite layers (Kauffmann et al., 1993) allow excellent time constraints and a good 

correlation with other WIS section. Furthermore the section shows a well expressed 

positive δ13C shift (> 3‰) in both organic carbon and carbonate fractions (Pratt et al., 

1993) that allows precise dating and correlations (Fig. 6.11) 

For my thesis, I analyzed samples provided by Bob Duncan and taken from the same 

levels studied by Snow et al (2005). The same samples were also investigated for 



61 Chapter 6: Studied sections 

nannofossil biostratigraphy by Russo (2014): the results are compared to previous data in 

figure 6.11. 

 

Fig. 6.10 Stratigraphic logs, calcareous nannofossil biostratigraphy, and carbon isotope values of 
Rock Canyon Anticline GSSP Pueblo section (CO) studied from the central Western Interior Basin. 
Letters A, B, and C indicate interpreted placement of bentonite marker beds of Elder (1985) [from 
Corbett and Watkins, 2014]. 
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The Cuba section in  northen-central Kansas, is about 600 Km East of the Rock Canyon 

section. Equivalent strata around Cuba consist of more fine-grained calcareous to chalky 

shale within the Jetmore Chalk and Pfeifer Shale Members of the Greenhorn Formation. 

These two members are dominated by marlstone and calcareous shale (Bowman and 

Bralower, 2005). 

Fig. 6.11 Calcareous nannofossil bioevents and zones/subzones of the Rock Canyon section. 
Lithostratigraphy, ammonites and planktonic foraminiferal zones and ages after Kennedy et al. (2005); isotope 
stratigraphy after Snow et al. (2005) (from Russo, 2014). 

 

Fig. 6.12 C isotopic 
stratigrapgy and 
calcareous nannofossil 
biostratigraphy across the 
Cenomanian–Turonian 
boundary at Cuba. Points 
A–C refer to distinct 
segments in the 
d13Corgcurves of Pratt 
(1985) (Bowman and 
Bralower, 2005; Eleson 
and Bralower, 2005) 
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At the Cuba section the stratigraphic control is based on integrated lito- chemo- bio- 

stratigraphy (Fig. 6.13; Hattin, 1975, 1985; Desmares et al., 2007, Eleson and Bralower, 

2005, Bowman and Bralower, 2005, Corbett and Watkins, 2013, Corbett et al., 20014). 

For my thesis I analyzed samples kindly provided by Tim Bralower and previously 

investigated by Eleson and Bralower (2005), Bowman and Bralower (2005) and Russo 

(2014). 

 

 

Fig. 6.13 Stratigraphic logs, calcareous nannofossil biostratigraphy, and carbon 
isotope values of Road 46 Road cuts, Cuba (KS) studied from the central 
Western Interior Basin. Letters A, B, and C indicate interpreted placement of 
bentonite marker beds of Elder (1985) [from Corbett and Watkins, 2014]. 
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Chapter 7  
Material and Methods 
 
 

7.1 Calcareous nannofossil biometric analyses 
 
Samples from five sections (Fig.7.1) were analyzed through micropaleontolgical analysis. 

The investigated sections are Eastbourne, Clot de Chevalier, Novara di Sicilia, Pueblo 

and Cuba. In the Eastbourne section 53 samples were analyzed: samples have been 

collected every 40 cm across the Oceanic Anoxic Event 2 interval and every 80 cm before 

and after the event. The Clot de Chevalier section was sampled every 90 cm, resulting in 

37 samples. In Novara di Sicilia, Pueblo and Cuba sections all the available samples have 

been analyzed, resulting respectively in 31, 19 and 18 samples investigated. The 

stratigraphic ranges of the studied sections are shown in Fig.7.2.   

 

 

 

 

  

 

CdC

E

NdS

Western 
Thethys

WIS

proto 
North 

Atlantic

P

C

Fig. 7.1 Paleo-location of the studied sections (E Eastbourne,  CdC Clot de 
Chevalier, NdS Novara di Sicilia, P Pueblo and C Cuba (paleo-map from Du 
Viver et al., 2014) 
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7.1.1 Calcareous nannofossil preparation and study techniques 

Calcareous nannofossils were investigated in smear slides under light polarizing 

microscope at 1250X magnification. 

7.1.2 Smear slides 

For examination of calcareous nannofossils, smear slides were prepared using standard 

techniques without centrifuging and/or ultrasonic cleaning in order to retain the original 

Fig. 7.3 Materials used for smear slides 
preparation 

7.2 Summary of studied stratigraphic intervals 
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sediment composition. A few grams of rocks were powdered with bidistillate water in an 

agata mortar; some ml of suspension were extracted with a pipette and spread over a 

slide, leaving to dry on a hot plate. The dried suspension was sealed on a glass slide with 

Norland Optical adhesive under an UVA ray lamp (Fig.7.3).  

 

7.1.3 Biometric Analyses 

Morphometric analyses were performed with an image analysis system (Young et al., 

1996). For each sample 30 specimens of B.constans, D. rotatorius and Z. erectus and 50 

specimens of W. barnesiae were digitally photographed (Fig. 7.4; Tab. 7.1). In some 

sample, due to the paucity of calcareous nannofossils a smaller number of specimens 

were analyzed (Tab. 5.1). Specimens were chosen by scanning random traverses and all 

nannofossils were measured excluding those that were broken or heavily overgrowth. 

Specimens were photographed at 1250X magnification with a Q-imaging Micro publisher 

5.0 RTV camera mounted on a Leitz Laborlux light microscope and a PC with Q-capture 

Pro suite software adapted for nannofossil analyses. Measurements were taken using 

ImageJ software. On each image length and width of distal shield of B. constans, Z. 

erectus and W. barnesiae were measured. Since D. rotatorius has a circular shape, the 

diameter had been measured. Statistical mean, median, maximum and minimum values, 

standard deviation (the error of measurements is ± 0.08 µm), 25 and 75 percentile have 

been calculated for each sample. Measurements of W. barnesiae and B. constans were 

also used to calculate ellipticity and surface area. Data have been statistically analysed 

using different software: Excel, R and Mathematica.  

 W. barnesiae B. constans Z. erectus D. rotatorius 
Eastbourne 2,152 1,566 1,460 1,206 

Clot de Chevalier 1,850 1,110 990 1,110 
Novara di  Sicilia 1,998 1,035 940 1,049 

Pueblo 1050 600 533 570 
Cuba 449 532 534 482 

Tab. 7.1 Number of specimens analysed for each section. 
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7.2 Coccolithophores culture methods  

7.2.1 Stock culture and experimental culture  

Experiments on living coccolithophores algae have been performed at the Geomar, 

Helmotz Centre for Ocean research Kiel under the supervision of Prof. Ulf Riebesell, Dr. 

Lennart Bach and Dr. Linn Hoffmann. During my internship, that last nearly a year, I 

performed five experiments on fours coccolithophores species. 

The four different strains of coccolithophores used to test the response of 

coccolithophorid algae to environmental different conditions are: 

1) Emiliania huxley RC1216  

2) Gephyrocapsa oceanica 

3) Coccolithus pelagicus ssp. braarudii 

4) Pleurochrysis carterae 

 

All experiments were conducted with dilute batch cultures (LaRoche et al., 2010) at 15° C 

in a 16/8 light/dark cycle and 150 µmol photons m-2s-1 incident photon flux density 

(except for the light experiment). The monospecific strains were grown in seawater-based 

K/2 medium after Kerster et al. (1967) but without addition of NaHCO3. In the control 

treatments, the artificial seawater medium was enriched with 64 µmol kg-1 nitrate, 4 µmol 

kg-1 phosphate (that result in N:P ratio of 64:4) to avoid nutrient limitations, f/8 

a b

c d

Fig. 7.4 Size parameters 
measured in the 
morphometric analyses a) 
W. barnesiae length and 
width; b) Z. erectus length 
and width; c) D. rotatorius 
diameter d) B. constans 
length and width  
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concentrations for trace metals and vitamins (Guillard and Ryther, 1962), 10 nmol kg-1 of 

SeO2 and 10 nmol kg-1 of natural North Sea Water. In the controlled treatments the 

carbonate chemistry was adjusted by bubbling CO2 –enriched air through the medium 

overnight, elevating [DIC] and decreasing pH. The medium was then sterile-filtered (0.2 

µm) into sterile glass bottles. The culture medium was acclimated at 15°C overnight in 

order to avoid a thermal shock when transferring the cell from the pre-culture to the 

bottles where the experiments were performed. Cells were acclimated to the specific 

conditions of the main experiments for 7 generations prior inoculation.  

All culture bottles where manually and carefully rotated three times a day, each time with 

20 rotations in order to avoid cell precipitation.  

Reaching the established number of cells, samples were processed after sampling and 

measured 3 times with the Coulter counter (Beckman coulter Multisizer). Afterwards, 

samples were acidified with 0.1 mmoll-1 HCl to dissolve all free and attached coccoliths 

and subsequently measured again 3 times.  

Finally 5-10 ml of sample were filtered by gravity on polycarbonate filters (0.2 µm pore 

size) and dried directly after filtration at 60°C for SEM analyses resulting in a total of 240 

filters. 

7.2.2 Coulter Counter  

In the coulter principle method, particles suspended in an electrolyte solution flow 

through a small cylindrical opening (the aperture) that separates two electrodes between 

which an electric current flows (Fig., 7.5). This current has a small magnitude but the 

resistance created by the restriction separating the electrodes produces considerable 

current density within the aperture. Particles that pass through the aperture, with their 

own volume, increase the impedance of the aperture, creating a tiny but proportional 

current flow into an amplifier. The current fluctuation is then converted into a voltage 

pulse. The amplitude of this pulse is proportional to the volume of the particle that 

produced it. The height of the pulses are measured and scaled as volume units and a size 

spectrum can be obtained. Furthermore it is possible to obtain the concentration of 

particles per unit volume in the suspension. 
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To simplify: the number of pulses can be transferred to the number of particles measured 

while the amplitude is transferred to the volume of the particle and finally the volume can 

be translated to the particle’s diameter. After placing a sample in the Multisizer the 

instrument was set to carry out three replicate measurements of 500 µm subsample. 

Samples were acidified by addiction of HCl to remove coccoliths and measure cell 

volume (Buitenhuis et al., 2008). 

Following Muller et al., 2012, and subtracting the acidified-sample spectrum from the 

non-acidified-spectrum, resulted in a spectrum to determine the average volume of the 

free coccoliths assuming normal distribution (Fig. 7.6).  

Fig. 7.5 Schematic image of the Coulter Counter principle. The aperture with 
an internal and an external electrode and filled with electrolyte solution is 
immerged into the sample. 500 µl of the sample is transported through 
aperture, particles displace a volume of the electrolyte and create voltage 
pulses, which are processed through an analog and a digital pulse processor 
to convert them into information on cell concentration, volume and diameter 
of the particles in the sample [from the Multisizer Brochure]. 
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Fig. 7.6 Multisizer volume 
spectra. (a) Spectra of the 
E. huxleyi population 
(black line) and after 
treatment with HCl (grey 
line). b) Volume spectrum 
of the free coccoliths after 
subtracting the acidified 
sample from the normal 
sample [from Muller et al., 
2012]. 
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Coccolith measurements are expressed in volume (µm3), while coccosphere/cell 

measurements are expressed in diameter (µm). This is due to the fact that measured 

volume can be translated to particle’s diameter only if particle is of spherical appearance. 

This account for the coccosphere and for the cell but does not apply for coccoliths.  

7.2.3 Growth rate 

Cell density and size spectrum has been analyzed with the Multisizer Coulter counter: 

every sample was gently turned 10 times in order to obtain a homogenous suspension of 

the cells before sampling. Samples with densities above 150*103 cell/ml were diluted 

prior to measurements (Coulter counter measures most accurate between 10-20 *103 

cell/ml). Growth rate µ(d-1) was determine taking into account the mean cell number as: 

𝜇 =
𝑙𝑛𝑐1 − 𝑙𝑛𝑐0
𝑡1 − 𝑡0  

Where c0 and c1 are the cell concentrations respectively at the beginning (t0) and at the 

end of incubation period (t1), expressed in days. 

7.2.4 Methodology adopted in Culture experiments  

Five experiments were performed to test the reactions of coccolithophorid species (C. 

pelagicus, E. huxleyi, G. oceanica and P. carterae) to changes in light intensity, nutrients, 

carbonate chemistry, [Mg2+] and [Ca2+], and metal concentrations. Individual procedures 

are summarized below. 

Experiment 1: Response of Coccolithophores to light intensities 

The climate change is causing an increase in sea surface temperature in the oceans with 

the effect of a progressive reinforce of the temperature gradient between water masses 

and intensification of stratification. This might have an indirect effect on phytoplanktonic 

community: intense stratification is paralleled with a decrease of the mixed layer 

thickness establishing an increase in the light irradiance which phytoplankton in general 

and coccolithophorid algae in particular are exposed to. 

Medium has been filtered in 60 ml polycarbonate bottles. The light was set at the highest 

and lowest possible intensity in the light chamber resulting in 12 different light levels for 
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each species. All the 4 species (C. pelagicus ssp. brarudii, E. huxleyi, G. oceanica and P. 

carterae) were investigated. The tested light intensities are: 

45, 100, 130, 200, 250, 300, 350, 400, 450, 500, 560, 600 µmol photons m-2s-1. 

This resulted in 48 polycarbonate bottles. From the stock culture, 50 specimens were 

inoculated for each species, starting the acclimation phase. After 7 generations, the same 

amount of cells was transferred in the bottles where the main experiment was performed. 

Cell volume was measured with the Beckman coulter Multisizer 3, after ∼ 7 generations, 

reaching more or less: 

1. 50000	
  cell/ml	
  for	
  E.	
  huxleyi,	
  

2. 20000 cell/ml for G. oceanica	
  

3. 3000 cell/ml for C. pelagicus ssp. brarudii and P. carterae.	
  

Samples were processed after sampling and measured 3 times with the Coulter counter. 

Afterwards, samples were acidified with 0.1 mmoll-1  HCl to dissolved all free and 

attached coccoliths and subsequently measured again 3 times. Coccolith growth rate was 

then calculated. Finally, Filters for Scanning Electron Microscope (SEM) analyses were 

prepared.  

Experiment 2: Response of Coccolithophores algae to carbonate chemistry  

The chosen treatments only differed with respects to the carbonate chemistry 

manipulation of the culture medium. Four different treatments were chosen (see Table 

7.2). In the first two treatments, cell was cultured at constant TA (2350 ± 22 µmol Kg-1). 

In the control treatment the carbonate system was adjusted by bubbling with CO2, 

increasing [CO2], [HCO3
–] and DIC, decreasing pH and [CO3

2-]. This resulted in a pH of 

8.1 and fCO2 of 400 µatm. In the other three treatments, the carbonate parameters, TA or 

DIC, were added to the culture medium by calculated additions of hydrochloric acid 

(3.571 mol l-1, certified by Merck), and Na2CO3 (Merck, Suprapur quality dried for 5 

hours at 400°C). In the second treatment this resulted in a DIC of 2264 µmol Kg-1 at 

constant TA (2350 µmol Kg-1). In the third and fourth treatments, DIC and fCO2 were 

adjusted to reach respectively 3500 (1000 µatm) and 5000 µmol Kg-1 (3000 µatm). For an 

overview of the carbonate chemistry conditions in all treatments see Table 7.1.  
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Carbonate chemistry parameters were tested on 4 different species in triplicates under 

dilute batch culture conditions in autoclaved and acid cleaned 600 ml glass bottles and 

this resulted in 16 treatments and 48 glass bottles. The headspace in the bottles was kept 

below 5 ml to avoid gas exchange. From the stock culture 50 µl have been inoculated for 

each species, starting the acclimation phase. Cells were acclimated to the carbonate 

chemistry conditions of the main experiment for at least 7 generations. In the main 

experiment, 50 specimens for each species were inoculated.  

Cell volume was measured with the Beckman coulter Multisizer 3, after ∼ 7 generations. 

For each bottle, filters for SEM analyses were prepared. 

Samples for pH and Total Alkalinity (TA) analyses were taken at the beginning and at the 

end of the experiment. Samples were filtered (0.7 µm) and stored at 4°C until 

measurements (within 2 days for pH measurements and 14 days for TA). pH was 

measured spectrophotometrically with Varian Cary 100 in 10 cm cuvette at 25°C as 

described in Dickson (2010) and then recalculated to in-situ temperature (15°C). Every 

sample was measured 3 times. Samples for TA were measured in duplicate with Metrhom 

862 Compact Tritino Sampler device, according to Dickson, 2003. TA data were 

corrected with certified reference material (A. Dickson, La Jolla, CA). 

Experiment 3: Response of Coccolithophores to [Mg2+] and [Ca2+]  

Calcium and magnesium concentrations in seawater have varied over geological time 

scales. During the Cretaceous, and particularly during the so-called “Calcite II” seas 

(Lowenstein et al., 2001) coccolithophores were responsible for the massive and 

widespread deposition of the Late Cretaceous chalk. The success of these algae suggests 

that low Mg/Ca ratio of the Cretaceous seawater permitted coccolithophores to flourish, 

whereas the composition of modern seawater retards their productivity. To test this 

 Control 1st treatment Ocean 
Acidification (OA) 

2nd treatment 
Cretaceous 1 

(Creta1) 

 

3rd treatment 
Cretaceaous 2 (Creta 

2) 
ta 2350.0 2350.0 3709.8 5052.2 

DIC 2118.7 2264.8 3500.0 5000 
fCO2 400 1000 1000 3000 
pHf 8.134 7.781 7.964 7.649 

HCO3
- 1939 2146 3275 4755 

CO3
2- 164 80 187 131 

 Tab. 7.2 Carbonate chemistry speciation; TA, DIC, HCO3
-, CO3

- are given in µm Kg-1; fCO2 in 
atm.  
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hypothesis, four species of coccolithophore (E. huxleyi, G.oceanica, C. pelagicus ssp. 

brarudii, P. carterae) were cultured in seawater with different Mg/Ca ratio and [Sr]. 

This culturing setup was designed to test the physiological and morphological response of 

all the four chosen species (E. huxleyi, G. oceanica, P. carterae and C. pelagicus ssp. 

brarudii) to changing Ma/Ca ratio and [Sr]. The first experiment was the control one: 

Mg/Ca ratio was fixed at the modern ocean values (Mg/Ca = 5.2) with Ca2+  = 9.8 ± 0.1 

mmol L-1 and Mg2+  = 50 mmol L-1. In the second treatment the Mg/Ca ratio of the 

culturing fluid was modified keeping [Mg2+] constant, adjusted [Ca2+] reaching 50 mmol 

L-1. This resulted in Mg/Ca ratio equal 1. In the third treatment, [Mg2+] was kept constant 

and [Ca2+] was increased reaching 25 mmol L-1. This resulted in Mg/Ca ratio equal 2. In 

the last treatment Mg/Ca ratio was kept constant and the [Sr] was increased with double 

the amount (97.0 µmol L-1). We obtained 16 different treatments tested in triplicates in 

autoclaved and acid cleaned glass bottles. The headspace in the 48, bottles was kept 

below 5 ml to avoid gas exchange. From the stock culture 50 µl have been inoculated for 

each species, starting the acclimation phase. Cells were acclimated to the salinity 

conditions of the main experiment for at least 7 generations, prior to inoculation (50 cells 

for each species). Cell volume was measured with the Beckman coulter Multisizer 3 after 

∼ 7 generations. For each bottle, filters for SEM analyses were prepared. 

Experiment 4: Response of Coccolithophores to nutrient limitations 

Studies on coccolithophores under nutrient-limited conditions are rare, even if micro- and 

macro-nutrient supplies in the upper ocean are the main factors controlling phytoplankton 

growth. The current progressive global warming, derived from an increase in greenhouse 

gasses, induces stratification of the water column. This can reduce the nutrient supply into 

the euphotic zone. Consequences of biogeographical nitrate and phosphate limitations in 

conjunction with ocean acidification seem to vary within species and strain of the same 

species. It is therefore a crucial theme that needs to be investigated. 

This culturing setup was designed to test the physiological and morphological response of 

4 species of coccolithophores to replete or limited nutrient conditions. All the other 

environmental parameters (salinity, temperature, light/dark cycle, carbonate chemistry) 

remained stable. In the acclimation phase the nutrient content was reduced by half of their 

concentration (32 µmol kg-1 nitrate and 2 µmol kg-1 phosphate, maintaining the same N:P 
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ratio, 64:4) except for the replete/control treatment. In the main experiment, the control 

treatment maintains the stable N:P concentration (64 µmol kg-1 nitrate and 2 µmol kg-1 

phosphate). In the nitrate-limited experiments the N:P ratio was reduced to 2N:4P 

(resulting in 2 µmol kg-1 nitrate and maintaining the same concentration of phosphate). In 

the low phosphate experiment N:P ratio varies as low as 64N:0.1P (resulting in 0.1 µmol 

kg-1 phosphate and maintaining the stable concentration of nitrate). The experiments were 

performed in triplicates for every species in 600ml glass bottles. In the main experiment 

10 cell/ml of E. huxleyi, G. oceanica, P. carterae and 20 cell/ml of C. pelagicus ssp. 

brarudii were transferred. Growth rate was checked every other day for E. huxleyi and 

every three days for the other three species.  Reaching the stationary phase, samples were 

processed after sampling and measured 3 times with the coulter counter Beckman coulter 

Multisizer 3. Afterwards, samples were acidified with 0.10 mmoll-1 HCl to dissolved all 

free and attached coccoliths and subsequently measured again 3 times and 5/10 ml of 

samples were filters by gravity on polycarbonate filters and dried after filtration, for SEM 

analyses. This procedure had been repeated again during the stationary phase, after four 

days. 

Experiment 5: Response of Coccolithophores to trace metal enrichment 

Phytoplankton growth is not only dependent on micro- and macro-nutrients (P, C, N, Si) 

and major ions (Mg2+, K+, Ca2+, Cl-, Na+, SO4
2-) but also a number of trace metals like Fe, 

Mn, Zn, Co, Cu, and Mo. Macronutrients and major ions are easily soluble (except for 

ammonium) and are normally present at high concentrations in surface waters. On the 

other hand, most trace metals become toxic beyond a threshold value. Furthermore, in lab 

simulations, trace metals are highly insoluble and create precipitates that are largely 

unavailable to aquatic algae. It is therefore fundamental to use a chelator (EDTA, 

ethylenediamine tetraacetic acid) as a buffering agent in seawater media. Nowadays 

antagonistic and synergistic effects of trace metals in coastal regions or open ocean are 

still very limited understood.  
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The chosen treatments only differ with respects to the metal manipulation of the culture 

medium; the control trace metal concentration from Kerster et al. (1967) was modified in 

all the treatments except for the control one. In the second, third, forth and fifth 

treatments Pb, V, Ni and Zn concentrations were progressively increased, maintaining the 

same concentrations of the other trace metals indicated in Kerster et al. (1967). Trace 

metal stocks were treated with EDTA chelators in order to let the non-chelated metals to 

be available for phytoplankton and to be readily replaced by dissociation of an equivalent 

concentration of the metal chelate, once they are removed by algal uptake in the 

exponentially growing batch cycle. For an otherview of the metals conditions in all 

treatments see Table 7.3. 

Twenty different treatments were obtained. The main experiment regarded the control 

treatment and the 2nd, 3rd and 4th treatments. Metal concentrations of the last treatment (5) 

was too high and none of the species where able to grow in the acclimation phase. In 

treatments 1 to 4, cells were acclimated to the metal conditions of the main experiment 

for at least 7 generations, prior to inoculation. Reaching the established concentration, 50 

specimens were inoculated for each species, starting the main experiment. Every 

treatment was performed in triplicate and resulted in 48 glass bottles (300ml). Cell 

volume was measured with the Beckman coulter Multisizer 3, after ∼ 7 generations. For 

each bottle filters for SEM analyses were prepared. 

 

 

Control treatment 2nd treatment 3rd treatment 4th treatment 5th treatment 

 µmol/l  µmol/l  µmol/l  µmol/l  µmol/l 
 
 

FeCl3·6 H2O 
Na2·2H2O 

CuSO4·5H2O 
Na2MoO4·2H2O 
ZnSO4·7H2O 
CoCl2· 6H2O 
MnCl2·4H2O 

 

 
 

11.65 
11.71 
0.039 
0.026 
0.077 
0.042 
0.91 

FeCl3·6 H2O 
Na2·2H2O 

CuSO4·5H2O 
Na2MoO4·2H2O 

CoCl2· 6H2O 
MnCl2·4H2O 

 
 

11.65 
11.71 
0.039 
0.026 
0.042 
0.91 

 
 
 

FeCl3·6 H2O 
Na2·2H2O 

CuSO4·5H2O 
Na2MoO4·2H2O 

CoCl2· 6H2O 
MnCl2·4H2O 

 
 

11.65 
11.71 
0.039 
0.026 
0.042 
0.91 

 
 
 

FeCl3·6 H2O 
Na2·2H2O 

CuSO4·5H2O 
Na2MoO4·2H2O 

CoCl2· 6H2O 
MnCl2·4H2O 

11.65 
11.71 
0.039 
0.026 
0.042 
0.91 

FeCl3·6 H2O 
Na2·2H2O 

CuSO4·5H2O 
Na2MoO4·2H2O 

CoCl2· 6H2O 
MnCl2·4H2O 

11.65 
11.71 
0.039 
0.026 
0.042 
0.91 

   nmol/l 
  nmol/l 

  nmol/l 
  nmol/l 

 
…… 
….. 
….. 
….. 

 

….. 
….. 
….. 

 

Pb 
ZnSO4·7H2O 
NiCl2 ·6H2O 

VOSO4 
 

10 
80  
80 
80  

Pb 
ZnSO4·7H2O 
NiCl2 ·6H2O 

VOSO4 

80 
80  
80 
80 

Pb 
ZnSO4·7H2O 
NiCl2 ·6H2O 

VOSO4 

800 
800 
800 
800 

Pb 
ZnSO4·7H2O 
NiCl2 ·6H2O 

VOSO4 

8000 
8000 
8000 
8000 

!
Tab. 7.3 Trace metal concentrations in µmol/l or nmol/l of the growth medium 
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Scanning Electron Microscope analyses (SEM) 

SEM analyses have been performed at the Università degli Studi di Milano, Earth 

Sciences Department with the Electron Microprobe under the supervision of Prof. S. Poli 

and A. Risplendente.  Until now, SEM analyses have been performed for E. huxleyi first 

experiment (response of Coccolithophores to light intensities; e.g. Fig. 7.7). 

 

For every sample 50 specimens of E. huxleyi have been detected and photographed. I’m 

planning to performed SEM analyses for all the experiments and among experiments I 

have conducted and for every treatment among experiment. For every mono-specific 

sample, 50 specimens will be digitally taken. Subsequently morphometric analyses will 

be performed: length and width will be measured and obtained data will be statistical 

analyzed. Following Bach et al., (2012) calculation for the malformation index (an 

algorithm that quantify the degree al malformation) will be performed for E. huxleyi in 

order to record eventual irregular coccolith formation (e.g. reduced symmetry or altered 

shape of individual elements). Moreover, I will try to create a new malformation index for 

the remaining three species.  

 

  

1μm

Fig. 7.7  Emiliania 
huxleyi coccospheres 
and coccoliths from the 
light intensity 
experiment. E. huxleyi 
cultured at  450 µmol 
photons m-2s-1  
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Chapter 8 

Results 
8.1 Calcareous nannofossil morphometric analyses 
The nannofossil preservation was carefully assessed in order to avoid diagenetically 

altered material. In fact, partial dissolution or overgrowth have the potential to artificially 

decrease or enlarge the coccolith size, respectively.  This is particularly relevant for the 

delicate Biscutum coccoliths that are diagenetic-prone (e.g. Theirstein, 1980). In the 

studied samples preservation is moderate to good and coccoliths show only very minor 

indications of etching and overgrowth. Accurate screening under light polarizing 

microscope ascertained that individual B. constans, Z. erectus, D. rotatorius and W. 

barnesiae coccoliths considered for morphometry were complete, with a continuous 

outline and without evidence of crimping due to etching or overgrowth. Further 

evaluation of diagenetic modifications was based on scanning electron microscope 

(SEM) analyses of selected samples from each section.  I also tested the potential control 

– and its degree - of lithology on coccolith preservation, because it is well known that 

marlstones normally contain the best preserved nannofossil assemblages, while coccoliths 

in limestones are often affected by strong overgrowth and by etching in carbonate-poor 

lithotypes (Thierstein & Roth 1991).  Samples analyzed from the five sections randomly 

consist of various lithologies with very similar degree of preservation and there is no 

correlation between coccolith size and carbonate content. 

Four taxa were investigated through morphometric analyses in the five sections 

(Eastbourne, Clot de Chevalier, Novara di Sicilia, Pueblo and Cuba.) described in chapter 

6. Tables 8.1 and 8.2 report all the obtained data and calculated parameters (mean length 

and mean width, maximum and minimum length and width, standard deviation, surface 

area, ellipticity). The results are here discussed per individual species.  
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8.1.1 Biscutum constans 

Eastbourne section 

Morphometric analyses were performed on 1,565 specimens. Coccolith length ranges 

from 6.62 to 1.67 µm (mean 3.79 µm, standard deviation sdt. dev. 0.70).  Coccolith width 

ranges from 5.29 to 1.19 µm (mean 2.96 µm, standard deviation sdt. dev. 0.63; Tab. 8.1).  

Scatter plot in Fig 8.1 shows that the total coccolith length is linearly correlated with the 

total width with high Pearson correlation coefficient (r= 0.75). Table 8.2 illustrates mean 

sizes (length and width), maximum and minimum length and width, surface area and 

ellipticity in the different intervals (pre-event, during OAE 2 and after the event). B. 

constans displays smaller size during OAE 2, with a shift from mean length of 4.24 µm 

and mean width of 3.35 µm before the event, to 3.62 µm length and 2.83 µm width during 

OAE 2. Bigger sizes are recorded after the event (mean length of 3.83 µm and mean 

width of 2.95 µm).  

Clot de Chevalier section 

Morphometric analyses were performed on 1,110 specimens. Coccolith length ranges 

from 5.31 µm to 1.84 µm and width varies from 4.32 µm to 1.36 µm (mean length 3.31 

µm, sdt.dev 0.57, mean width 2.56 µm sdt. dev. 0.50) Scatter plot in Fig. 8.1 displays a 

linear correlation of coccolith length and width (r=0.79). Table 8.2 illustrates mean length 

and width and other calculated parameters (e.g. surface area) in the three defined intervals 

(pre-event, OAE 2 and post-event). In the Clot de Chevalier section, B. constans shows 

bigger sizes (both length and width) before and after the event. During OAE 2 B. 

constans shows smaller mean size, with a shift from mean length of 3.77 µm and mean 

width of 2.97 µm, to respectively 3.24 µm and 2.50 µm during OAE 2. Partial increase in 

size (both length and width) is evident in the interval following the event.  
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Novara di Sicilia section 

Morphometric analyses on B. constans were performed on 1,035 specimens. Mean length 

is 2.82 µm (sdt. dev. 0.60) while mean width is 2.13 µm (sdt.dev. 0.48). Length ranges 

from 4.82 to 1.40 µm and width ranges from 4.00 to 1.05 µm. Throughout the 

investigated interval, specimens of B. constans are smaller in size compared to all the 

other analyzed sections. Scatter plot in Fig. 8.1 shows high Pearson correlation coefficient 

among length and width (r=0.77).  Table 8.2 illustrates mean, maximum and minimum 

length and width and calculated sdt.dev, surface area and ellipticity in the two studied 

intervals: from the pre-event to the OAE interval, B. constans displays only a slight 

reduction in size (mean length shifts from 2.94 µm to 2.74, while mean width shifts from 
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Fig.  8.1 Scatter plots of length and width of the total coccolith of B. constans; in addition the 
Pearson correlation coefficient (r), the number of measurements (N) and the linear regression 
function is given. 
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2.24 to 2.05 µm). No data are available for the uppermost part of the event and post event 

interval that do not outcrop in the area. 

Pueblo section 

Morphometric analyses were performed on a total of 600 specimens.  B. constans shows 

mean length and width of 3.31 µm (sdt. dev. 0.52) and 2.56 µm (sdt.dev 0.44), 

respectively. Length ranges from 5.66 to 2.03 µm while width ranges from 4.16 to 1.50 

µm, Scatter plot in Fig 8.1 shows a high Pearson correlation coefficient among length and 

width (r=0.69) indicating that length and width are linearly correlated. There’s any data 

available for the pre-event interval. Table 8.2 is a summary of obtained data and 

calculated parameters during OAE 2 and after the event. Mean length and width don’t 

show significant variations. Maximum and minimum length and width shift respectively 

to bigger and smaller values from the OAE 2 interval to the overlying interval.  

Cuba section 

Morphometric analyses were performed on 534 specimens.  Coccolith length ranges from 

5.53 to 1.98 µm  (mean length is 3.26 µm, sdt dev. 0.51) and width ranges from 4.25 to 

1.24 µm  (mean width 2.41 µm, sdt. dev. 0.45). Scatter plot Fig. 8.1 displays smaller 

values of the Pearson correlation coefficient (r=0.58), suggesting a less strong correlation 

among length and width in this section. Table 8.2 illustrates mean, maximum and 

minimum length and width and calculated parameters like ellipticity, surface area and std. 

dev. in the three defined intervals: pre-event, OAE 2 and after the event. Specimens of B. 

constans show a slight decrease in size in both length and width (length shifts from 3.41 

to 3.23 µm, while width shifts from 2.55 to 2.40 µm) during OAE 2. 
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8.1.2 Zeugrhabdotus erectus 

Eastbourne section 

Tab 8.1 and 8.2 summarize all the measured values and calculated parameters for Z. 

erectus (mean length and width, maximum and minimum length and width, surface area, 

ellipticity and sdt. dev.). Z. erectus length ranges from 4.34 to 1.94 µm (mean length 3.11 

µm, sdt. dev. 0.42) while width ranges from 3.14 to 1.17 µm (mean width 2.12 µm, sdt. 

dev. 0.31). Total coccolith length is linearly correlated with the total width with high 

Pearson correlation coefficient (r= 0.72). Z. erectus consists of smaller coccoliths during 

the OAE 2 interval. Instead, bigger coccoliths are observed before and after the event.  
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max. 6.62 5.29 27.48 2.60 9.22 8.67 4.55 1.89 4.34 3.14 10.41 2.23 4.80 72.35

min. 1.67 1.19 1.66 1.01 2.67 2.17 60.50 1.01 1.94 1.17 2.11 1.01 1.20 4.52

mean 3.79 2.96 9.06 1.31 5.76 5.03 23.50 1.15 3.11 2.12 5.25 1.48 3.05 29.82

N 1564 1564 1564 1564 2152 2152 2152 2152 1460 1460 1460 1460 1576 1576

sdt. dev. 0.70 0.63 3.35 0.21 1.08 1.00 8.65 0.11 0.42 0.31 1.37 0.16 0.45 8.85

max. 5.31 4.32 17.86 1.98 8.32 7.64 49.14 1.83 5.31 4.32 17.86 1.98 4.43 61.65

min. 1.84 1.36 2.18 1.01 2.65 2.00 4.17 1.01 2.00 1.36 2.68 1.01 1.46 6.71

mean 3.31 2.56 6.83 1.31 5.38 4.54 19.75 1.19 3.32 2.57 6.86 1.31 2.61 21.87

N 1110 1110 1110 1110 1850 1850 1850 1850 1080 1080 1080 1080 1110 1110

sdt. dev. 0.57 0.50 2.47 0.16 0.95 0.86 6.98 0.10 0.56 0.50 2.46 0.16 0.36 6.13

max. 4.82 4.00 12.56 3.05 9.35 8.47 60.47 1.95 5.08 3.86 15.30 2.57 4.61 66.77

min. 1.40 1.05 3.31 1.01 2.35 2.15 4.08 1.02 1.40 1.09 1.32 0.90 1.19 4.44

mean 2.82 2.13 6.68 1.35 5.49 4.66 20.80 1.19 3.04 2.08 5.06 1.47 2.66 22.76

N 1035 1035 1035 1035 1998 1998 1998 1998 930 930 930 930 1019 1019

sdt. dev. 0.60 0.48 1.52 0.22 1.04 0.94 7.74 0.12 0.47 0.34 1.55 0.18 0.42 7.18

max. 5.66 4.16 15.39 2.48 8.10 6.89 42.41 2.22 3.90 2.61 7.47 2.33 4.00 50.17

min. 2.03 1.50 2.69 1.01 2.92 2.32 5.57 1.01 1.92 1.23 1.92 1.05 1.27 5.07

mean 3.31 2.56 6.76 1.31 5.32 4.50 19.31 1.19 2.90 1.98 4.54 1.48 2.60 21.65

N 600 600 600 600 1050 1050 1050 1050 532 532 532 532 570 570

sdt. dev. 0.52 0.44 2.10 0.18 0.90 0.83 6.51 0.11 0.33 0.26 1.00 0.16 0.38 6.27

max. 5.53 4.25 14.95 2.40 9.36 8.11 53.05 1.98 4.25 2.79 9.31 2.32 5.22 85.47

min. 1.98 1.24 2.14 1.01 2.82 2.18 4.82 1.00 2.06 1.35 2.66 1.01 1.27 5.07

mean 3.26 2.41 6.28 1.37 5.74 4.94 22.96 1.17 2.95 1.99 4.64 1.50 2.52 20.47

N 532 532 532 532 449 449 449 449 482 482 482 482 482 482

sdt. dev. 0.51 0.45 1.98 0.23 1.03 0.98 8.24 0.12 0.35 0.24 0.99 0.19 0.43 7.71

D. rotatoriusZ. erectusW. barnesiae

W
I C

ub
a

Ea
st

bo
ur

ne
C

lo
t d

e 
C

he
va

lie
r

N
ov

ar
a 

di
 S

ic
ili

a

B. constans

W
I P

ue
bl

o

Table 8.1 Overview of the gained simple statistical parameters of the studied species and morphotypes. 
Abbreviation: max., maximum; min., minimum; N, number of measurements; sdt.dev., standard deviation.  
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Furthermore during OAE 2 an increase in ellipticity (increase in the length/width ratio) is 

detected, shifting from the pre-event interval to OAE, from 1.46 to 1.49.  

Clot de Chevalier section 

In the Clot de Chevalier section 1,080 specimens have been measured. Z. erectus length 

ranges from 5.31 to 2.00 µm (mean length 3.32 µm, sdt. dev. 0.56), while width ranges 

from 4.32 to 1.36 µm (mean width 2.57 µm, sdt. dev. 0.50). Total coccolith length is 

linearly correlated with the total width with very high Pearson correlation coefficient 

(r=0.79). In Table 2, Z. erectus size parameters are subdivided in the pre-event, OAE 2 

and post-event intervals. During OAE 2 Z. erectus coccoliths show smaller width and 

length. In the OAE 2 interval there’s an increase in coccolith ellipticity. 

Novara di Sicilia section 

In the Novara di Sicilia section, from the pre-OAE 2 event to OAE 2 a slight decrease in 

Z. erectus mean length and width is observed. Mean length is 3.04 µm and sdt. dev. 0.47 

(length ranges from 5.08 to 1.40 µm), while mean width it 2.08 and sdt.dev. 0.34 (length 

ranges from 3.86 to 1.09 µm). Length and width appear to be linearly correlated and 

Pearson correlation coefficient is r=0.72. Shifting from the pre-OAE 2 interval to OAE 2, 

a small reduction in size of both length and width is observed, with a reduction of the 

mean surface coccolith area. Furthermore, during OAE 2 an increase in coccolith 

ellipticity is observed. 

Pueblo section 

A total of 532 specimens have been analyzed in the Pueblo section. Z. erectus length 

ranges from 3.90 to 1.92 µm (mean length 2.90 µm, sdt dev. 0.33) and width ranges from 

2.61 to 1.23 µm (mean width 1.98 µm, sdt. dev. 0.26). Length and width have a lower 

Pearson correlation coefficient value compared to previous section (r=0.66). No data are 

available for the pre-OAE 2 interval. From OAE 2 interval to the post-event interval 

there’s a minor increase in size and decrease in mean ellipticity. 

Cuba section 

The 482 analyzed specimens show a length range from 4.25 to 2.06 µm (mean length 2.95 

µm, sdt. dev. 0.35), while width ranges from 2.79 to 1.35 µm (mean width 1.99 µm, sdt. 
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dev. 0.24 µm). The Pearson correlation coefficient (r=0.49) appears to be lower than in 

the other studied sections. Table 2 shows Z. erectus morphometric data, subdivided in the 

three intervals and highlights a little increase in size trend from the pre-OAE 2 event to 

the post-event interval. As size increases, a decrease in mean ellipticity is detected. 

8.1.3 Discorhabdus rotatorius 

Eastbourne section 

In the Eastbourne section 1,576 D. rotatorius specimens were measured. Coccoliths of D. 

rotatorius show diameter ranging from 4.80 to 1.20 µm  (mean diameter = 3.05 µm, 

sdt.dev. 0.45). Table 8.2 shows D. rotatorius variations in the three established intervals: 

from the pre-OAE 2 interval to OAE 2 there’s a slight decrease in the diameter mean 

value. In the Eastbourne section D. rotatorius shows the largest mean diameter compared 

to the other investigated sections.  

Clot de Chevalier section 

D. rotatorius diameter ranges from 4.43 to 1.46 µm (mean diameter 2.61 µm, sdt. dev. 

0.36). In the pre-OAE 2 interval the mean diameter is 2.99 µm while during OAE 2 it 

decreases to 2.54 µm. A slight increase in size is observed in the post-OAE 2 interval.  

Pueblo section 

In the Pueblo section 570 specimens were analyzed. Coccoliths of D. rotatorius display 

diameter ranging from 4.00 to 1.27 µm (mean diameter 2.60 µm, sdt.dev. 0.38). A very 

minor increase in diameter is observed passing from the OAE 2 interval to the overlying 

samples. 

Cuba section 

In the Cuba section a total of 482 specimens of D. rotatorius were measured. The 

diameter ranges from 5.22 to 1.27 µm (mean diameter 2.52 µm, sdt.dev. 0.43 µm). In the 

pre-OAE 2 interval, the mean diameter is 2.41 µm and slightly increases during OAE 2 to 

2.57 µm. In the post-OAE 2 interval, mean diameter decrease once again to 2.49 µm. 
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8.1.4 Watznaueria barnesiae 

Eastbourne section 

Morphometric analyses were performed on 2,152 specimens. W. barnesiae length ranges 

from 9.22 to 2.67 µm (mean length 5.76 µm, std.dev. 1.08) while width ranges from 8.67 

to 2.17 µm (mean width 5.03 µm, sdt.dev. 1.00). Scatter plot in Fig 8.2 displays that the 

coccolith length is linearly correlated with the total width with very high Pearson 

correlation coefficient (r= 0.81). In table 8.2 W. barnesiae displays very stable length, 

width and ellipticity through the three established intervals.   

Clot de Chevalier section 

A total of 1,850 specimens were analyzed in the Clot de Chevalier section. Length ranges 

from 8.32 to 2.65 µm (mean length 5.38 µm, sdt.dev. 0.95) and width ranges from 7.64 to 

2.00 µm (mean length 4.54 µm, sdt. dev. 0.86).  Length and width are linearly correlated 

with a high Pearson correlation coefficient (r=0.79). 

Novara di Sicilia section 

The 1,998 analyzed specimens show a size range of length from 9.35 to 2.35 µm (mean 

length 5.49 µm, sdt.dev. 1.04) and width from 8.47 to 2.15 µm (mean width 4.66 µm, sdt. 

dev. 0.94). Length and width are linearly correlated with a high Pearson correlation 

coefficient (r=0.79). Cocoliths of W. barnesiae display very stable values for length and 

width, and therefore ellipticity in the interval preceding OAE 2 and within the event. 

Pueblo section 

Size analyses of W. barnesiae coccoliths were performed on 1,050 specimens. The mean 

length is 5.32 µm (sdt. dev. 0.90) and it ranges from 8.10 to 2.92 µm. The mean width is 

4.50 µm  (sdt. dev. 0.83) and it ranges from 6.89 to 2.32. Length and width are linearly 

correlated with a high Pearson correlation coefficient (r=0.89). W. barnesiae displays 

very stable values for length and width and consequently ellipticity before, during and 

after OAE 2.  
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Cuba section 

A total of 449 specimens were measured. W. barnesiae mean length is 5.74 µm (it ranges 

from 9.36 to 2.82 µm) and mean width is 4.94 (it ranges from 8.11 to 2.18 µm). Length 

and width are linearly correlated with a high Pearson correlation coefficient (r=0.86). W. 

barnesiae coccoliths display larger sizes during OAE 2.  
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Fig. 8.2 Scatter plots of length and width of the total coccolith of W. barnesiae; in addition the 
Pearson correlation coefficient (r), the number of measurements (N) and the linear regression 
function is given. 
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8.2 Stratigraphic representations  

8.2.1 Small coccolith: B. constans, Z. erectus and D. rotatorius 

In the next paragraph the size variations through time are represented for every section. 

Morphometric mean length and width of each sample is represented in stratigraphic order, 

using the d13C curve as reference tool to correlate the investigated sections and compared 

the obtained results discriminating the interval before OAE 2, OAE 2 and the following 

interval. In order to identify possible trends, in each section, the coccolith size of 

individual species was compared to the total mean size of all analyzed specimens. 

Furthermore, the 25%, and 75% percentile values and standard deviation (sdt.dev.) of 

each sample are represented in the graphs. 

Eastbourne section 

B. constans, Z. erectus and D. rotatorius show the same size trends through the 

Eastbourne section. Six different size trends can be separated from the base to the top of 

the section. These trends are closely related to δ13C variations (Fig. 8.3). 

From base to the top of the section, in stratigraphic order, we observed: 

a) Interval 1: mean sizes of all the three species appear bigger than the mean value.  

b) Interval 2: at the OAE 2 onset the mean size of the three taxa decreases becoming 

slightly smaller than the mean values. 

c) Interval 3: a slight increase in coccolith size is detected. During OAE 2, the bigger 

values are measured across the δ13C peak A. 

d) Interval 4: a decrease in size is observed in all the three species. Trend size 

displays a wavy pattern with frequent decreases and relative recoveries in size. 

The strongest reduction in size (dwarfism) is coeval with the δ13C peak B. 

e) Interval 5:  a relative increase in size of all the three analyzed species. The 

increase in size of D. rotatorius  coccoliths in more visible than in the other two 

species. The increase in size starts soon after the δ13C peak B. 

f) Interval 6: in the uppermost part of the section, approximately from the δ13C peak 

D upwards, B. constans, Z. erectus and D. rotatorius show a progressive increase 

in size, that become slightly larger than the mean size (light blue line). 
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Clot de Chevalier section 

In the Clot de Chevalier section the interval preceding OAE 2 is rather thin and, therefore, 

just a few samples were available before the OAE onset. Furthermore, due to availability 

of samples, morphometric analyses were performed at lower resolution compared to the 

Eastbourne section.  Not all the six intervals distinguished in the Eastbourne section are 

recognized at Clot de Chevalier. The mean values of length and width of B. constans is 

smaller than in the Eastbourne section, while Z. erectus and D. rotatorius display very 

similar values in both sections.  

From the base to the top of the Clot de Chevalier section, five intervals are distinguished. 

These intervals are well expressed in B. constans while size fluctuations are less evident 

in the other two species. The four intervals are here described with the same numbers 

used for the Eastbourne section (Fig. 8.4).  

Fig. 8.3 Eastbourne section: size changes of B. constans, Z. erectus and D. rotatorius during OAE 2 against 
δ13C curve. L total coccoith length, W total coccolith width and D total coccolith diameter.  
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a) Interval 1: from the base both B. constans and D. rotatorius show an increase in 

size compared to the total mean length and width or diameter.  

b) Interval 2: only D. rotatorius evidences a reduction in size in one sample at the 

OAE 2 onset. There isn’t any evidence of a reduction in size trend in B. constans. 

This however might be due to the low resolution analyses were performed or to 

possible presence of a hiatus at the beginning of OAE 2.  

c) Interval 3: from OAE 2 onset an increase in size trend is observed. Major sizes are 

recorded around δ13C peak A. In Z. erectus no specific trends are observed in the 

first part of the OAE 2.  

d) Interval 4: a decrease in size trend is observed in all the three species. Particularly, 

this is well evident in B. constans that shows a marked reduction reaching the 

minimum size values (dwarfism) just after δ13C peak B 13C. 

e) Interval 5: between δ13C peak B and C, coccoliths of B. constans and D. rotatorius 

start to increase in size, although values remain smaller than the mean length, 

width or diameter. Z. erectus values are aligned to the mean value. 

f) Interval 6: in the uppermost part of the section and particularly after δ13C peak C, 

coccoliths of B. constans, Z. erectus and D. rotatorius show an increase in size. 

The diameter of D. rotatorius is very similar to the mean diameter value. 
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Novara di Sicilia section 

In the Novara di Sicilia section only the pre-OAE 2 interval and the first part of the event 

are represented: as explained in Chapter 6, the outcrop physically ends just after the δ13C 

peak B. At this location, the coccolith mean length and width of B. constans are smaller 

compared to all the other investigated sections. Indeed B. constans coccoliths are very 

tiny even before the OAE 2 onset. Similarities and differences of the previously described 

intervals are illustrated below (Fig. 8.5): 

a) Interval 1: before OAE 2 onset all the three species show a wavy pattern with an 

increase, a subsequent decrease in size and another increase in size just below the 

base of the Bonarelli level equivalent. Moreover at the OAE 2 onset a barren 

interval has been detected. 

 

b) Interval 2: at the base of the Bonarelli level equivalent, similarly to the results of 

the Eastbourne section, the three species show an approximately coeval decrease 

in size trend.  
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c)  Interval 3: B. constans, Z. erectus and D. rotatorius show an increase in size trend 

and, in particular B. constans reaches maximum size values around δ13C peak A.  

d) Interval 4: below the δ13C peak B, B. constans and Z. erectus show a reduction in 

size. Both species reach minimum values (dwarfism) at δ13C peak B. Coccoliths 

of D. rotatorius do not show any size variation and values mean diameter value. 

 

Pueblo section 
In the Pueblo section no samples are available in the interval prior to the OAE 2 onset. 

Therefore, only  four out of the six intervals identified at Eastbourne are observed 

(Fig.8.6). 

a) Interval 3: an increase in size is observed in both B. constans and D. rotatorius; 

bigger sizes are coeval with δ13C peak A. The size of Z. erectus coccoliths are 

similar to the mean length and width. 

b) Interval 4: B. constans and D. rotatorius display a decrease in size, reaching 

minimum values around δ13C peak B. Z. erectus doesn’t show any change, 

however at the top of this interval smaller coccoliths are detected.  

c) Interval 5: a slightly increase in size is observed after δ13C peak B. However a 

subsequent new decrease in size trend is displayed reaching minimum values 

around δ13C peak C. Thereafter an increase in size trend is observed in all the 
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three species: size increase trend firstly occur in Z. erectus and subsequent in B. 

constans and D. rotatorius.  

d) Interval 6: in the last part of the section B. constans and D. rotatorius show a 

increase in size trend with length, width or diameter bigger than the total mean 

values. 

Cuba section 

In the lowermost portion of this section, only a few samples were available to 

characterize the pre-OAE interval. The results are very similar to those obtained for the 

other sections. In particular, B. constans, Z. erectus and D. rotatorius show similar size 

trends although of different amplitude compared to the Eastbourne section (Fig. 8.7): 

a) Interval 1: only the bottom 2 samples contain coccoliths of B. constans larger than 

the mean size. 

b) Interval 2: both B. constans and D. rotatorius are represented by coccoliths 

smaller than the mean size. Z. erectus has an erratic behavior. 

c) Interval 3:  B. constans and D. rotatorius show an increase in size reaching 

maximum values around δ13C peak A.  
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d) Interval 4: B. constans displays a reduction in size reaching minimum size around 

δ13C peak B. Coccoliths of D. rotatorius also show a decrease in although at a 

lesser extent. 

e) Interval 5 (and 6): in the upper part of the section, above δ13C peak C, the three 

species show an increase in size that return to values similar to the mean sizes.  
 

8.2.2 Watznaueria barnesiae 

Morphometric analyses of W. barnesiae through time were perfomerd in all the analysed 

sections. W. barnesiae doesn’t show any specific trend through the OAE 2: the coccolith 

size remains rather stable and around the mean value (Fig. 8.8, Fig. 8.9). In the Clot de 

Chevalier and Pueblo sections a sligth reduction in size is observed during event.  

 

 

 

Fig. 8.8 Eastbourne, Clot de Chevalier and Novara di Sicilia sections: size changes of W. barnesia during 
OAE2 against δ13C curve. L, total coccoith length, W total coccolith width. 
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8.3 Biscutum constans morphometric analyzes 

B. constans  displays the greater variations in coccolith size throught the OAE 2 in all the 

analyzed sections. Furthermore, in all the studied sections, this taxon shows a major 

reduction in size in the same stratigraphic level (around the δ13C peak B). Therefore 

further analyses on morphometric data were performed for B. constans.  

Box Plot representation of B. constans length is represented in Fig. 8.10. In the pre-OAE 

2 interval a reduction in size from the highest-latitudes section (Eastbourne) to the lowest 

one (Novara di Sicilia) is observed. At Clot de Chevalier, this taxon displays halfway 

values. During the OAE 2 the same latitudinal trend is observed. However, in the 

Eastbourne and Clot de Chevalier sections a strong reduction in size is observed. It is 

important to take into account that the Novara di Sicilia section physically ends just after 

the δ13C peak B. Thus, most probably the major reduction in size interval observed in the 

other sections, is not recorded in this section. In the post-OAE 2 interval a partial 

recovery in size is observed especially in Eastbourne and Clot de Chevalier sections. To 

better understand the amplitude of the B. constans reduction in size, size ratios were 

calculated relative to the holotype values (length 5 µm, width 4.5 µm). Size ratio among 

OAE 2 data and holotype values are expressed as percentage. As indicated in table 8.3, 

Fig. 8.9 Pueblo Rock Canyon and Cuba sections: size changes of W. barnesia during OAE2 against δ13C 
curve. L, total coccoith length, W total coccolith width. 
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the Eastbourne and Clot de Chevalier sections record a stronger decrease in size from the 

pre-OAE 2 interval to OAE 2. Partial recovery is observed after the event. The Novara di 

Sicilia section shows a less expressed reduction in size during OAE 2, but coccolith size 

is very tiny even before OAE 2. In the Cuba section a small reduction in size is observed 

from the pre event interval to OAE 2.  

B. constans ellipticity (length/width ratio) was calculated for all the studied samples in 

order to point out possible malformation during OAE 2. In general an increased in 

ellipticity is observed when coccoliths reduce their size. This is less expressed in the 

Cuba section. In the Eastbourne section a wavy pattern is observed: size variation and 

ellipticity show the same fluctuating variation around the δ13C peak B, with increased 

ellipticity when size values decrease (Fig. 8.11, 8.12). In the Novara di Sicilia section a 

trend towards more elliptical coccoliths is observed in the uppermost portion of the 

section, where a decrease in size is detected 
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In all studied sections, there is a difference in the mean ellipticity of B. constans between 

the pre-OAE 2, OAE 2 and post-OAE 2 intervals (Tab. 2): the pre-OAE 2 interval is 

characterized by less elliptical specimens (more circular) having a mean ellipticity 

ranging from 1.02 to 2.08. During OAE 2 the mean ellipticity is higher and it comprised 

between 1.31 and 1.36. The post-OAE 2 interval is characterized by mean ellipticity 
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Fig. 8.12 B. constans length (L) versus B. constans ellipticity expressed as length/width (l/w) in Pueblo and Cuba 
sections. Morphometric and morphological data are expressed against δ13C curve through OAE2. 
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ranging from 1.30 and 1.39. Smaller coccolith specimens are more elliptical (Fig., 8.13); 

specifically there is a negative correlation (r=-0.46) between width and ellipticity (smaller 

width corresponds to higher ellipticity), and between surface area and ellipticity (r=-0.23). 

The length does not show any correlation with the ellipticity, but more elliptical 

specimens are comprised between a length range of 2 - 4 µm 

 

B. constans data were compared to results of morphometric analyses conducted across the 

OAE 1a interval (Erba et al., 2010; Bottini unpublished PhD thesis 2010, Fig. 8.14). The 

Cismon core and DSDP Site 463 morphometric data were compared with the two most 

complete sections for OAE 2, which are respectively the Eastbourne and Clot de 

Chevalier sections. Data are represented with box plots: OAE 1a sections were 

subdivided in three main intervals: pre-OAE 1a, OAE 1a and post-OAE 1a. Data for the 

Eastbourne and Clot de Chevalier sections are subdivided in four intervals: pre-OAE 2, 

OAE 2 and two post-event intervals before and after the δ13C peak  D, respectively. 
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All the analyzed sections, both for OAE 1a and OAE 2, evidence e decrease in size from 

the pre-OAE to the OAE interval. At all sections, in the post event interval, B. constans 

coccoliths show an increase in size even if they remain smaller compared to the pre-event 

measurements. Coccolith sizes were compared to the holotype (length 5 µm, width 4.5 

µm). In particular the coccolith length was used to calculate the percentage of dimension 

relative to the length of the holotype (Tab. 8.3). For both the OAE 1a and OAE 2 intervals 

(including pre- and post-OAE) the size reduction is evident during the perturbation. As 

far as OAE 1a is concerned, B. constans shows holotypic values before the event. A 

strong reduction in size is observed in both studied sections (Erba et al., 2010) but is more 

evident at DSDP Site 463. A recovery in size is observed after OAE 1a, although 

coccoliths remain slightly smaller than the holotype.  During OAE 2 the same pattern is 

observed with smaller coccoliths during OAE 2 and a partial recovery after the event. I 

noticed that at all studied localities in the interval preceding OAE 2, B. constans 

coccoliths are already smaller than the holotype (mean length 72% of the holotype) and 

reach the smallest size (mean length 63% of the holotype) during OAE 2. This 

“dwarfism” is more accentuated than during OAE 1a, although the reduction B. constans 

size is larger for OAE 1a (- 21%) than for OAE 2 (- 9%). 
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8.4.4 W. barnesiae ellipticity analyzes  

The ellipticity of W. barnesiae ranges from 1.01 to 2.22 (mean 1.18, 0.11 sdt. dev., Table 

1). Any significant variation in the ellipticity is detected throughout the studied interval. 

However, I noticed that also for W. barnesiae, the smaller specimens are more elliptical 

(Fig. 8.13); specifically there is a negative correlation (r=-0.37) between width and 

ellipticity (smaller width corresponds to higher ellipticity), and between surface area and 

ellipticity (r=-0.17). The length does not show any correlation with the ellipticity, but I 

noticed that more elliptical specimens are comprised between a length range of 5 - 7 µm. 

Following Erba et al., 2010, I analysed W. barnesiae ellipticity of normal-sized specimens 

(length >5 µm) and small specimens (length <5 µm) in three intervals (Tab. 8.4): 

1) Pre: consists of all analyzed specimens till interval 4.  

2) Interval 4: all specimens measured around δ13C peak B (maximum OAE 2 

perturbation interval).  

3) Post: consists of all specimens analyzed after interval 4.  

<5 μm >5 μm <5 μm >5 μm <5 μm >5 μm
Eastbourne 1.15 1.16 1.15 1.17 1.14 1.15

Clot de Chevalier 1.18 1.19 1.20 1.20 1.18 1.20
Novara di Sicilia 1.18 1.20 1.14 1.16

Pueblo 1.15 1.19 1.20 1.20 1.18 1.20
Cuba 1.15 1.18 1.23 1.22 1.15 1.16

All measurements 1.17 1.18 1.18 1.18 1.17 1.18

<5 μm >5 μm <5 μm >5 μm <5 μm >5 μm
All measurements 1.18 1.19 1.17 1.18 1.16 1.18

Pre- Interval 4 Post

Pre OAE2 Post

No data

Tab. 8.4  W. barnesiae ellipticity (l/w)  of small-specimens (< 5 µm) and normal-specimens (> 5 µm) in 
established intervals.  

Cismon 463 Total Reduction Eastbourne
Clot de 

Chevalier

Novara di 

Sicilia
Pueblo Cuba Total  Reduction

Post 93% 93% 93% -7% 76% 66% no data 66% 64% 68% -32%

OAE 86% 71% 79% -21% 72% 55% 54% 67% 65% 63% -37%

Pre 104% 106% 105% 5% 85% 75% 59% no data 68% 72% -28%

OAE 1a OAE 2

Tab. 8.3 B. constans coccolith length vs holotype length ratio (percentage) in OAE 1a and OAE2.  
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Moreover ellipticity mean values of the pre-OAE 2, OAE 2 interval and post-OAE 2 are 

given.  Very stable ellipticity values were detected for Eastbourne, Clot de Chevalier, in 

the three intervals in both normal-specimens and small-specimens. In Novara di Sicilia 

section both normal-specimens and small-specimens displayed a more circular shape (less 

elliptical) during OAE 2. In the two Western Interior sections, Pueblo and Cuba, small-

specimens are more elliptical during interval 4. More circular shapes are detected in the 

pre and post interval. In cuba section more elliptical W. barnesiae are detected in normal- 

specimens too. 
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8.4 Coccolithophores algae response to 
environmental parameters 

Only preliminary results of culture experiments on living coccolithophores are presented 

here. I intend to apply specific statistical analyses in the future and SEM analyses on 

already prepared filters will be performed in order to measure coccolith size and 

characterize the ultrastructure. These planned investigations aim at elucidating the 

environmental parameters (combination of individual) that influence coccolithophore 

calcification and more specifically coccolith size and morphology.  

 

8.4.1 Light experiment 

Emiliania huxleyi  

E. huxleyi reached the established cell concentrations in all the light intensity treatments. 

E. huxleyi growth rate is lower with low light intensities, then starts to increase reaching 

faster growth rate at 450 µmol photons m-2 s-1 (Fig. 8. 14). From 500 µmol photons m-2 s-1 

growth rate starts to decrease. Coccosphere diameter and cell size are very stable and 

similar among treatments. Low light intensities show smaller coccosphere and cell 

diameter. Under 200 µmol photons m-2 s-1 coccospheres display the bigger diameter and 

under 130 µmol photons m-2 s-1 the bigger cell size is detected. Following Muller et al. 

(2012), and subtracting the acidified-sample spectrum from the non-acidified-spectrum, I 

obtained the spectrum of the average volume of the free coccoliths. The resulted coccolith 

volume shows variable values: low light intensities correlate with higher coccolith 

volumes while middle-range light intensities have halfway coccolith values. Coccolith 

volume in the 300 µmol photons m-2 s-1 experiment displays the lowest coccolith volume.  
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Gephyrocapsa oceanica 

G. oceanica  nicely grew in every light intensity treatment, reaching the established cell 

concentration. Growth rate is very similar among treatments (Fig. 8.15). Data for the 130 

µmol photons m-2 s-1 treatment are not available due to a problem during cell counting 

measurements. Coccosphere diameters show variable values and low diameters are 

observed in the high light intensities treatments (500, 560 and 600 µmol photons m-2 s-1). 

Bigger cell diameters are displayed in the 100 µmol photons m-2 s-1; smaller cell 

diameters are observed in the lowest light intensities treatment (45 µmol photons m-2 s-1) 

and in the higher light intensities treatments (from 300 µmol photons m-2 s-1). The 

resulted coccolith volumes show higher values in the 100 and 200 µmol photons m-2 s-1 

treatments. All the other treatments show similar coccolith volume values. 
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Fig. 8.14 Emiliania huxleyi growth rate, coccosphere diameter, cell diameter and coccolith 
volume over a range of light intensities. Points are data of individual coccolithophore cultures 
based on coulter counter measurements. Coccolith volume has been calculated following Muller 
et al. (2012) and subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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Pleurochrysis carterae 

Data for the run at 200 µmol photons m-2 s-1 are not available due to a problem during cell 

counting. All treatments show very similar growth rate (Fig. 8.16). Slightly higher values 

are observed in the 130 and 250 µmol photons m-2 s-1 treatments. Coccosphere diameter 

show different values among treatments: the run at 45 µmol photons m-2 s-1 (lowest light 

intensities) shows the lowest coccosphere diameters. Halfway diameter values are 

observed in the runs at 100 and 130 µmol photons m-2 s-1 and in 450 and 500 µmol 

photons m-2 s-1. The remaining treatments show higher coccosphere diameters. Cell 

diameter, on the contrary, shows small values in the low light treatments (45, 100, 130 

µmol photons m-2 s-1) and bigger cell size in the remaining treatments. Coccolith volume 

resulted in different and variable values. 
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Fig. 8.15 G.oceanica growth rate, coccosphere diameter, cell diameter and coccolith volume over a 
range of light intensities. Points are data of individual coccolithophore cultures based on coulter 
counter measurements. Coccolith volume has been calculated following Muller et al., 2012 and 
subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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Coccolithus pelagicus ssp. braarudii 

 C. pelagicus ssp. braarudii grew in every light intensity treatments. Low growth rates are 

detected in low light intensity conditions, while higher values are recorded in the halfway 

light intensities (Fig. 8.17). Coccosphere diameters are very stable but three peaks, 

respectively in the runs with 45, 200 and 450 µmol photons m-2 s-1, are obtained. Cell 

diameters are very similar among light treatments. The coccolith values show a 

progressive increase in volume from the lowest light intensities (45 µmol photons m-2 s-1) 

reaching maximum values in the 200 µmol photons m-2 s-1.  
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Fig. 8.16 Pleurochrysis carterae growth rate, coccosphere diameter, cell diameter and coccolith 
volume over a range of light intensities. Points are data of individual coccolithophore cultures based 
on coulter counter measurements. Coccolith volume has been calculated following Muller et al., 2012 
and subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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8.4.2 Nutrients, carbonate chemistry, [Mg2+] and [Ca2+] and trace metals  

Emiliania huxleyi 

Cultures in nutrients limited conditions, altered salinity, trace metal enrichments and 

altered carbonate chemistry reached significant levels of cell concentration (Fig. 8.17 and 

8.18), demonstrating the ability of  E. huxleyi to live under “stressed” environment.   

Response of of  E. huxleyi to carbonate chemistry  

In the carbonate experiment, E. huxleyi shows different growth rates among treatments 

even if it reaches a significant cell concentration; the control experiment shows the 

highest growth rate compare to the other treatments (Fig. 8.17). The “Creta 2” treatment 

(highest TA and DIC and lowest pH) shows the lowest growth rate values. In second 

place, the “Creta1” treatment (intermediate TA and DIC) shows high growth rate, while 

the “OA” (stable DIC, increased DIC and low pH) shows intermediate values. The 

coccosphere diameter shows a parabolic pattern with higher diameter in the OA treatment 
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Fig. 8.16 C. pelagicus ssp. braarudii growth rate, coccosphere diameter, cell diameter and coccolith 
volume over a range of light intensities. Points are data of individual coccolithophore cultures based on 
coulter counter measurements. Coccolith volume has been calculated following Muller et al., 2012 and 
subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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followed by “Creta 1” and subsequently by the control experiment, while the “Creta 2” 

run shows the lowest diameter values. Cell diameter obtained after HCl acidification 

shows very similar values with the exception of the OA treatment that evidences higher 

cell diameter values. This results in coccolith volume with erratic patterns: in the control, 

“OA” and “Creta1” treatments coccolith volume is very similar even if some differences 

among replicates are observed within individual treatment. However, the “Creta 2” 

treatment shows very low coccolith volume in all the replicates.  

Response of  E. huxleyi to [Mg2+] and [Ca2+] 

E. huxleyi shows very similar growth rate (cell/d-1) in all the treatments. In the control 

treatment the growth rate is slightly higher than in the third (Mg/Ca=2) and fourth 

treatment (Sr x 2). The second treatment that has the highest calcium content (Mg/Ca=1), 

the growth rate is lower compared to the other experiments (Fig. 8.17). On the contrary E. 

huxleyi coccospheres show bigger diameters in the Mg/Ca=1 experiment. Coccosphere 

diameter is progressively smaller in Mg/Ca=2 and in Srx2 treatments, while the control 

treatment shows the smaller diameter. The same pattern is observed for the cell diameter 

after HCl acidification: the highest values are observed in the Mg/Ca=1 treatment and the 

lowest in the control treatment.  Subtracting the acidified-sample spectrum from the non-

acidified-spectrum, the average volume of the free coccolith shows very similar values 

among all the analyzed treatments.  

Response of E. huxleyi nutrient limitations 

E. huxleyi  shows higher growth rates (cell/d-1) in the control treatment compared to the 

other two runs (Fig. 8.18). In the second (low nitrogen) and third (low phosphate) 

treatments E. huxleyi shows lower concentrations and that results in a lower growth rate. 

On the other hand, E. huxleyi coccosphere is smaller compared to low nitrogen and low 

phosphate treatments and, specifically, in the “64N:0.1P” treatment E. huxleyi reaches the 

biggest size in all the analyzed replicates. After HCl acidification, cell diameter shows the 

same pattern with bigger cell in the low phosphate treatment followed by low nitrate 

treatments. The control treatment shows the smallest cell diameter. Following Muller et 

al. (2012) and subtracting the acidified-sample spectrum from the non-acidified-spectrum, 

I obtained the spectrum of the average volume of the free coccoliths. Once again the low-
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phosphate treatment shows higher coccolith volume. However, coccolith volume of the 

control and low-nitrogen treatments appear to be very similar. 

Response of E. huxleyi to trace metal enrichment  

No control treatment was performed in the metal experiment E. huxleyi reached 

significant levels of cell concentration and high growth rates. Specific trends among the 

three toxic treatments aren’t observed (Fig. 8.18). Furthermore coccosphere diameter and 

cell diameter show very similar and stable values. Therefore the average volume of free 

coccoliths, obtained after subtracting the acidified-sample spectrum from the non-

acidified-spectrum, show very similar values among treatments. It is important to 

emphasize that in the fourth treatment with highest metal concentration (8000 nmol/l of 

Pb, ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4) cells weren’t able to survive in the acclimation 

phase and, therefore, no data are available.  
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E. huxleyi size response to environmental parameters 

E. huxleyi data shows different values among experiments (Fig. 8.18) as summarized below. The 

growth rate of the control treatments shows different values in different experiments. This 

might be due to the different time (months) when the experiments were performed (winter 

time vs summer time). Growth rate of the control data therefore should be compared only 

among every single experiment. However, for the metal concentration experiment, the 

comparison could be made with the nutrient data because the runs were performed 

simultaneously.  
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Fig. 8.17 E. huxleyi growth rate, coccosphere diameter, cell diameter and coccolith volume in the different 
experiments. Points are data of individual coccolithophore cultures: every treatment has been performed in 
replicates. Measurements are based on coulter counter analyses. Coccolith volume has been calculated following 
Muller et al. (2012) and subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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1. Growth rate 

E. huxleyi shows very high growth rate in the all the treatments of the metal experiment. 

The “Creta1” (carbonate chemistry) experiment shows high growth rates, while the 

“Creta 2” experiment shows the lowest values of all treatments. All the other treatments 

show halfway values.  

2. Coccosphere and cell diameters 
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Fig. 8.18 E. huxleyi data comparison among different experiments and treatments: coccosphere diameter, 
cell diameter. coccolith volume and growth rate in the different experiments. Points are data of individual 
coccolithophore cultures: every treatment has been performed in replicates. Measurements are based on 
coulter counter analyses. Coccolith volume has been calculated following Muller et al., 2012 and 
subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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The diameter of E. huxleyi  coccospheres displays lowest values in all the three metal 

treatments compared to the other experiments. The low-phosphate treatment shows, 

on the contrary, the highest values in both coccosphere and cell diameters. Cell 

diameter is very similar for the metal experiment and the control treatment.   

3. Coccolith volume  

E. huxleyi coccolith volume shows very high values in the low-phosphate treatment. On 

the contrary, lower values are observed in the metal experiment. The smallest values are 

recorded in the “Creta 2” (carbonate chemistry) treatment. 

Gephyrocapsa oceanica  

Cultures in nutrient-limited conditions, altered salinity, trace metal enrichments and 

altered carbonate chemistry reached significant levels of cell concentrations (Fig. 8.19, 

Fig. 8.20), demonstrating the ability of G. oceanica to adapt to stressed conditions.   

Response of G. oceanica to carbonate chemistry  

G.oceanica in the carbonate experiment shows different growth rates among treatments 

(Fig. 8.19). Furthermore, in the “OA” and “Creta 2” treatments the experiment was 

stopped before reaching the established cell concentration (∼ 20,000 cell/ml). In this 

respect it is noted that the growth rate is very low in the “Creta 2” treatment and in “OA” 

treatment. On the other hand, the control and “Creta”1 treatments show higher and very 

similar values. The coccosphere diameter shows bigger size in the control treatment and 

the smallest sizes are recorded in the “Creta 2” treatment. Results of the “OA” and 

“Creta1” treatments show halfway values.  Cell diameter shows very similar values for 

the control, “OA” and “Creta 1” treatments, while the “Creta 2” run shows a reduction in 

cell size. Subtracting the acidified-sample-spectrum from the non-acidified-spectrum, 

coccolith volume has the biggest values in the control treatment compared to all the other 

experiments. Furthermore, the “Creta 1” treatment shows the highest values followed by 

“OA” treatment while the “Creta 2” run evidences the smallest coccolith volume. 

Response of G. oceanica to [Mg2+] and [Ca2+] 

In the salinity experiment the growth rate is higher in the control treatment compared to 

all the other experiments. The “Mg/Ca=1” treatment has the lowest growth rate. The 



112 

 

Chapter 8: Results 

“Mg/Ca=2” and “Sr x 2” experiments resulted in similar growth rates. The coccosphere 

and cell diameters don’t show any specific trend and similar values are observed among 

treatments. This results in similar values for the coccolith volume for all the experiments 

(Fig. 8.19). 

Response of G.oceanica to nutrient limitations 

G.oceanica easily adapted to live with reduced nitrate or phosphate levels. This species 

shows a slightly increase in growth rate (µ) in low-nitrate and low-phosphate treatments 

compared to the control treatment. Specifically, the higher µ is observed in the low-

phosphate treatment. G.oceanica coccospheres evidence an increase in size from the 

control to the low-nitrate and the low-phosphate treatments reaching very similar values. 
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Fig. 8.19 G. oceanica growth rate, coccosphere diameter, cell diameter and coccolith volume in the different 
experiments. Points are data of individual coccolithophore cultures: every treatment has been performed in 
replicates. Measurements are based on coulter counter analyses. Coccolith volume has been calculated 
following Muller et al., 2012 and subtracting the acidified-sample spectrum from the non-acidified-spectrum. 
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The same pattern is observed for cell size. Following Muller et al. (2012) and subtracting 

the acidified-sample spectrum from the non-acidified-spectrum, I obtained the average 

volumes of the free coccoliths. Coccolith volumes of the low-nitrogen and low –

phosphate treatments appear to be very similar with slightly higher values in the former 

treatment. Coccolith volume shows smaller values in the control treatment (Fig. 8.19).  

Response of G. oceanica to trace metal enrichment  

In the metal experiment any control treatment has been performed. The growth rate is 

very similar in all the three treatments (Fig. 8.19). The diameter of G.oceanica 

coccospheres is smaller in the last treatment (800 nmol/l of Pb, ZnSO4·7H2O, NiCl2 

·6H2O, VOSO4). The same pattern is observed for the cell diameter with bigger diameters 

in the first two treatments (10 nmol/l of Pb and 80 nmol/l of ZnSO4·7H2O, NiCl2 ·6H2O, 

VOSO4, and 80 nmol/l of Pb, ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4). The coccolith 

volume, on the other hand, doesn’t show any variation among treatments. In the fourth 

treatment with highest metal concentrations (8000 nmol/l of Pb, ZnSO4·7H2O, NiCl2 

·6H2O, VOSO4) the cells weren’t able to survive the acclimation phase and therefore no 

data are available.  

G. oceanica size response to environmental parameters 

The control treatment wasn’t performed for the metal experiments on G. oceanica; 

comparisons were made with the nutrient data because the experiments were performed 

simultaneously.  

1. Growth rate 

G. oceanica shows similar growth rates in the all the experiments. The “OA” and 

“Creta 2” treatments evidence the lowest growth rates.  

2. Coccosphere and cell diameters 

G. oceanica shows the bigger coccosphere diameter and cell diameter in the low-

phosphate and low-nitrate treatments. The carbonate chemistry treatments (OA, 

Creta1 and Creta 2) show the smallest coccosphere diameter. However, the cell 

diameter shows very similar values in the salinity, metals and carbonate chemistry 

treatments, with the exception of the “Creta 2” run that displays the smallest cell size 

(Fig. 8.20). 
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3. Coccolith volume 

Coccolith volume is bigger in the nitrogen-limited experiment, while the smallest 

volumes are recorded in the carbonate chemistry experiments (OA, Creta 1, Creta 

2) reaching the smallest coccolith volume in the “Creta 2” treatment. 
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 Pleurochrysis carterae 

Cultures in nutrient-limited conditions, altered salinity, trace metal enrichments and 

altered carbonate chemistry reached significant levels of cell concentrations (Fig. 8.21, 

Fig. 8.22), demonstrating the ability of P. carterae to live under stressful conditions. 

Response of P. carterae to carbonate chemistry  

P. carterae shows very similar growth rates among treatments. Coccosphere diameters, 

on the contrary, show some differences: the control treatment has the bigger coccosphere 

diameter, followed by the “Creta 1” treatment. On the contrary, the “OA” and “Creta 2” 

treatments resulted in the smallest diameters. Cell diameter shows very erratic values 

among replicates among treatments. Subtracting the acidified-sample-spectrum from the 

non-acidified-spectrum, the calculated coccolith volumes show bigger values in the “OA” 

treatment followed by the control treatment. The “Creta 2” treatment exhibits the most 

reduced coccolith volume.  

Response of P. carterae to [Mg2+] and [Ca2+] 

P. carterae has very similar growth rates in all the salinity experiment treatments. 

However, the “Srx2” treatment growth rate is more erratic and in the three replicates, 

values are slightly different. The coccosphere diameter exhibits the highest values in the 

“Mg/Ca=1” treatment followed by the control treatment and subsequently by the 

“Mg/Ca=2” treatment. The “Srx2” treatment shows the smallest diameter size. However, 

replicates number 3 has bigger coccosphere diameters compared to the other two 

replicates. After HCl acidification, cell diameters show a progressive decrease from the 

control treatment to the “Mg/Ca=1”, to “Mg/Ca=2” and “Srx2” treatments. The resulted 

coccolith volumes show smaller values in the control treatment compared to the other 

three experiments. However, the “Srx2” run shows very erratic values; the “Mg/Ca=1” 

and “Mg/Ca=2” evidence very similar values. 

Response of P. carterae to nutrient limitations 

P. carterae was able to adapt and live in nutrient-limited conditions. The growth rate is 

very similar among all three treatments: control, N-limited and P-limited. Replicate 2 of 

the control treatment and replicate 1 of the P-limited experiment show lower growth rate 
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values. The diameter of P. carterae coccospheres shows similar values in the control and 

nitrogen-limited treatments. In the phosphate-limited experiment coccosphere diameter is 

bigger than in the other experiments. The cell diameter doesn’t follow the same pattern: 

bigger cell diameter is observed in the control treatment. Nitrogen-limited experiment 

shows smaller size even if replicate 1 shows bigger diameters. The P-limited experiment 

gave halfway values. Following Muller et al. (2012) and subtracting the acidified-sample 

spectrum from the non-acidified-spectrum, I obtained the average volumes of the free 

coccolith. Coccolith volumes of the nitrogen-limited and phosphate-limited treatments are 

similar and bigger than in the control treatment. 
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Response of P. carterae to trace metal enrichment  

In the metal experiment any control treatment was performed. In the fourth treatment, 

with highest metal concentrations (8000 nmol/l of Pb, ZnSO4·7H2O, NiCl2 ·6H2O, 

VOSO4), P. carterae cells weren’t able to survive the acclimation phase and, therefore, 

no data are available. However, P. carterae easily adapt to live in the other three 

treatments (10 nmol/l of Pb and 80 ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4, 80 ZnSO4·7H2O, 

NiCl2 ·6H2O, VOSO4 and 800 ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4). P. carterae showed 

very similar growth rates in all three treatments reaching the established cell 

concentration. The coccosphere diameter is very similar among the three treatments, 

although a slightly decrease in size is observed in second and third treatments. The cell 

diameter is similar in the three treatments. The obtained coccolith volumes show very 

similar values among treatments even if a small reduction in size in the second (80 

ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4) and third (800 ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4) 

treatments was observed. 

P. carterae size response to environmental parameters 

The control treatment wasn’t performed for the metal experiments on P. carterae; 

comparisons were made with the nutrient data because the experiments were performed 

simultaneously.  

1. Growth rate 

Metal and carbonate chemistry experiments show the higher growth rates Nutrient 

and salinity treatments have very similar and slower growth rates. The “Sr x 2” 

treatment of the salinity experiment has the slowest growth rate even if values 

among treatments are erratic. 

2. Coccosphere and cell diameter 

The bigger coccosphere diameter is recorded in the phosphate-limited treatment of 

the nutrient experiment. Metal treatments, however, show relatively high diameter 

values. The salinity “SrX2” treatment shows the smallest coccosphere diameters. 

However, in the “Mg/Ca=2” treatment P. carterae has small sizes, too. The cell 

diameter doesn’t show the same patterns: cell diameter mostly lies in the same 

size range. The “Creta 1” and “Creta 2” treatments of the carbonate chemistry 

experiment resulted in bigger cell sizes. Replicates 2 and 3 of the nitrogen-limited 
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treatment of the nutrient experiment and replicate 3 of the OA treatment of the 

carbonate chemistry experiment show the smaller cell diameters (Fig. 8.22). 

3. Coccolith volume The smaller coccolith volume is recorded in the “Srx2” 

treatment of the salinity experiment. However, replicate 1 of the “Creta 1” 

treatment and replicate 1 of the “Creta 2” treatment (carbonate chemistry 

experiment) show reduced coccolith volumes, too. 
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Coccolithus pelagicus ssp. braarudii 

Cultures in nutrient-limited conditions, altered salinity, trace metal enrichments and 

altered carbonate chemistry reached significant levels of cell concentration (Fig. 8.23, fig. 

8.24), demonstrating that C. pelagicus ssp. braarudii can live under stressful conditions.   

Response of Coccolithus pelagicus ssp. braarudii to carbonate chemistry  

C. pelagicus ssp. braarudii shows very different response in the various treatments. The 

control treatment shows the highest growth rate. The “OA” and “Creta 1” treatments 

display similar growth rates, while the “Creta 2” treatment has the smallest growth rate. 

However, every treatment has reached the established cell concentration. The control 

treatment shows the highest coccosphere diameter. The smaller size is observed in the 

“Creta 2” treatment even if replicates have different mean values. The “OA” and “Creta 

1” treatments gave similar values. The cell diameter shows bigger values in the control 

treatment while the “OA”, “Creta 1” and “Creta 2” treatments show a progressive 

increase in size trends. Coccolith volume shows different mean values among replicates 

and among treatments. However, higher values are observed in the “OA” treatment 

followed by the “Creta 1” treatment. Both the “Creta 2” and the control treatments show 

the smallest volume values. 

Response of Coccolithus pelagicus ssp. braarudii to [Mg2+] and [Ca2+] 

C. pelagicus ssp. braarudii shows a progressive decrease in growth rates from the control 

treatment to the “Mg/Ca=1” and “Mg/Ca=2” reaching minimum values in the “Srx2” 

treatment. The mean coccosphere diameter is similar in the control, “Mg/Ca=2” and 

“Srx2” treatments, while the “Mg/Ca=1” treatment resulted in smaller values. The cell 

diameter shows the biggest size in the control treatment, while the “Mg/Ca=1” treatment 

evidences the smallest sizes. The coccolith volumes are smaller in the control treatment 

compared to the other 3 experiments. After the “Mg/Ca=1”, “Mg/Ca=2” and “Srx2” 

treatments the coccolith volumes are very similar values. 

Response of Coccolithus pelagicus ssp. braarudii to nutrient limitations 

C. pelagicus growth rate is higher in the control treatment compared to the nitrogen-

limited and phosphate-limited conditions. N-limited and P-limited treatments show 
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similar growth rate values. The coccosphere diameter is higher in the control treatment 

compared to the other two treatments. The P-limited resulted in slightly larger 

coccosphere diameters compared to the N-limited conditions. On the other hand, cell 

diameter is much bigger in the control treatment compared to nutrient-limited treatments: 

P-limited treatment shows the smallest cell diameters. Following Muller et al. (2012) and 

subtracting the acidified-sample spectrum from the non-acidified-spectrum, I obtained the 

average volumes of the free coccoliths. Contrarily to the coccosphere and cell diameters, 

the coccolith volume shows the highest values in the P-limited treatment followed by the 

N-limited treatment. The control treatment shows smallest values for coccolith volumes.  
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Fig. 8.23 C. pelagicus ssp. braarudii growth rate, coccosphere diameter, cell diameter and coccolith volume in 
the different experiments. Points are data of individual coccolithophore cultures: every treatment has been 
performed in replicates. Measurements are based on coulter counter analyses. Coccolith volume has been 
calculated following Muller et al. (2012) and subtracting the acidified-sample spectrum from the non-acidified-
spectrum. 
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Response of Coccolithus pelagicus ssp. braarudii to trace metal 
enrichment 

In the metal experiment no control treatment was performed. In the fourth treatment, with 

highest metal concentrations (8000 nmol/l of Pb, ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4), C. 

pelagicus ssp. braarudii cells weren’t able to survive the acclimation phase and therefore 

no data are available. The growth rate is very similar among the three treatments. 

Furthermore, the coccosphere and cell diameters are very stable and similar among the 

three treatments (10 nmol/l of Pb and 80 ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4, 80 

ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4 and 800 ZnSO4·7H2O, NiCl2 ·6H2O, VOSO4). This 

resulted in very similar coccolith volumes among the three treatments.  

Coccolithus pelagicus ssp. braarudii size response to environmental 
parameters 

The control treatment wasn’t performed for the metal experiment on C. pelagicus ssp. 

braarudii; comparisons were made with the nutrient data because the experiments were 

performed simultaneously. 

1. Growth rate 

The control treatments show the highest growth rates. The “Creta 2” treatment of the 

carbonate chemistry experiment and “Srx2” of the salinity experiment show the 

slowest growth rates.  

2. Coccosphere and cell size 

Metal treatments show the smallest diameters compared to the other experiments. The 

“Creta 2” treatment (carbonate chemistry experiment) shows smaller sizes, too. 

Bigger sizes are reached in the “Srx2” treatment of the salinity experiment. Cell size, 

however, shows different size amplitude: bigger sizes are reached in the control 

treatment, while smallest diameters are observed in the phosphate-limited treatment of 

the nutrient experiment.  

 

 

 



122 

 

Chapter 8: Results 

3. Coccolith volume 

Most treatments appear to be beneficial to coccolith volumes: in fact smaller coccolith 

volume is reached in the control experiment. The lowest values, however, are reached 

in the “Creta 2” treatment of the carbonate chemistry experiment. Bigger volumes are 

observed in the nutrient-limited treatment and in the P-limited treatment the highest 

coccolith volume values were reached.  
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Chapter 9 

Discussion 
9.1 Size analyses of the coccolith species  
B. constans during OAE 2   
 
B. constans shows a consistent decrease in size during OAE 2. B. constans size variations 

during OAE 2 have been compared to OAE 1a data (Erba et al., 2010; Bottini, 

unpublished PhD thesis). Furthermore previously published data from Bornemann and 

Mutterlose  (2006) who analyzed B. constans size variations during OAE 1d have been 

taken in account. Ranges of length of B. constans coccoliths in OAE 1a, OAE 1d and 

OAE2 are: 

1. in OAE 1a length ranges from: 7.30 to 2.07 µm; mean length 4.63 µm; 

2. in OAE 1d length ranges from: 5.85 to 1.58 µm; mean length 3.43 µm; 

3. in OAE 2 length range from 6.62 to 1.40 µm; mean length 3.27 µm. 

The analyses obtained in this thesis are therefore consistent with literature data. The 

holotype of Biscutum testudinarium, considered to be synonymous to both B. constans  

(Perch-Nielsen, 1968; Bukry, 1969) and B. ellipticum  (Grün and Allemann, 1975), has a 

length of 3.7 µ m according to Black in Black and Barnes (1959). Bukry (1969) 

documented a maximum length of 6.6 µ m for B. testudinarium. For B. ellipticum, Górka 

(1957) documented a maximum dimension of 7 µ m, and Grün and Allemann(1975) 

observed length measurements between 2 and 10 µ m. Subsequent revisions subdivided 

the two species depending on the number of distal elements. Separation of different 

morphotypes based on morphometric analyses is rather problematic and permits a wide 

range of interpretations depending upon authorship. Therefore, in this study I preferred to 

maintain one species attribution and consider size variations as related to intraspecific 

variability of ephemeral morphotypes influenced by paleoenvironmental stress or 

stability.  
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During OAE 1a and OAE 2 B. constans shows a strong decrease in size. In OAE 1a, in 

the pre-event interval, coccoliths have holotypic values and their dimensions decrease of 

about 20% in the event. The available data for the post-event interval suggest a recovery 

in size although without reaching the pre-event values. I notice that the strongest decrease 

in size is measured at DSDP Site 463 where coccoliths, during OAE 1a, are even smaller 

than in the Cismon section. This suggests that the same paleoenvironmental factors 

control coccolith size during OAE 1a, however the response to the paleoenvironmental 

perturbation was expressed with different amplitude in the Pacific Ocean and in the 

Thethys. Bornemann and Mutterlose (2006) highlight a reduction in size in “Niveau 

Breistroffer” black shales representing the late Albian OAE 1d. In the analyzed France 

section smaller sizes are observed during the event and specifically after the second black 

shale. Also, the Authors evidence short-term size fluctuations, which however don’t 

parallel any lithological variation. During OAE 2 a decrease in size of B. constans 

coccoliths is observed followed by a partial recovery in size at the end of the event. Size 

reduction is less expressed in OAE 2 compared to OAE 1a: coccoliths show a general 

reduction of about 10% from the pre-event values, but B. constans size in the pre-event 

interval is already smaller than the holotype.  

A latitudinal decrease in size is evident in our dataset for the pre-OAE 2 and OAE 2 

interval (in the post-OAE2, no data are available for Novara di Sicilia): with larger B. 

constans coccoliths at Eastbourne and Clot de Chevalier and smaller specimens at Novara 

di Sicilia The two sections located at intermediate paleolatitudes in the WIS display in-

between values. This suggests that coccoliths size variations are controlled by 

regional/local conditions. 

Studies on modern and culture coccolithophores assemblages highlight the impact of 

trophic and temperature of surface waters (Zondervan, 2007; Muller et al., 2013; Sett et 

al., 2014) on coccolith morphology. Coccolith calcification might be therefore controlled 

by paleoenvironmental factors. Mattioli et al. (2004) suggest that coccolith size of 

different Biscutaceae species during the Pliensbachian-Toarcian was related to higher 

trophic and/or very high surface-water paleotemperature. Bornemann and Mutterlose 

(2006) observe a parallel long-term trend of B. constans size and surface water 

temperature suggesting that forms consisting of a large central unit were formed during 

intervals with warmer surface water, as indicated by the nannofossil temperature index 
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(TI) and oxygen isotopes. They suggest that the trend towards smaller coccoliths is 

related to a cooler interval. Contrarily, a correlation between coccolith size and water 

trophic conditions is excluded.  

OAEs are characterized by extreme environmental conditions and specifically very high 

CO2 concentration and an abrupt increase in SST that set in train an accelerated 

hydrological cycle.  

B. constans size might have been influenced by the nutrient content: in tropical oceanic 

settings (e.g. ODP Site 1258, Demerara Rise) increase in TOC up to 20-35 % (Kolonic et 

al., 2005), evidence an intense surface productivity in the area that resulted in anoxia and 

carbon sequestration. On the other hand, the more boreal sites, like mid-latitude shallow 

shelf, epicontinental settings in WIS or Europe where characterized by an interval of 

more oligotrophic and probably less anoxic conditions during OAE 2, returning to more 

mesotrophic conditions in the early Turonian. Particularly, in the WIS, Tethyan influx of 

saline and dense water from the south, and contemporary incursion of lighter and 

freshened Boreal water mass due to a rise in sea level, might have resulted in strong 

ocean stratification (Corbett and Watkins, 2013). This might have prevented mixing of 

nutrient with surface waters and subsequently established oligotrophic conditions. 

However, the Cuba section appears to be an exception because nannofossil abundances 

and dinoflagellates cysts data, suggest periodic mixing through the event that may have 

sustained continued eutrophic conditions along the shallower western margins of the 

seaway through OAE 2 (Corbett and Watkins, 2013). Linnert and Mutterlose (2012), 

highlight a reduction in size of Biscutum specimens that is positively correlated with the 

nannofossil nutrient index in the Eastbourne section and hypothesized therefore, that large 

Biscutum coccoliths may have favored higher nutrient availability. This is not consistent 

with size variations observed in this thesis. Particularly, in Eastbourne, Clot de Chevalier 

and Pueblo sections characterized by intervals of oligotrophic conditions, B. constans 

coccoliths are generally larger than at Novara di Sicilia where mesotrophic conditions 

marked the latest Cenomanian interval. In the Cuba section, where constant eutrophic 

conditions continue through the event (Corbett and Watkins, 2013), coccoliths show 

already smaller size in the pre-OAE2 interval but a minor reduction in size is observed 

within OAE 2. Similarly, Novara di Sicilia black shales have a southern provenance and 

is considered to be derived from a depositional ramp located on the North of African 
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continental shelf. This succession was probably characterized by an upwelling regime and 

high surface productivity under meso/eutrophic conditions. Here, B. constans shows the 

minimum size compared to the other analyzed sections and a less intense size reduction is 

recorded. I hypothesize that the smaller mean size of B. constans specimens observed in 

the Cuba and Novara di Sicilia sections, are the result of an accelerated life cycle due to 

high nutrient availability with secretion of smaller coccoliths.  

The shift in temperature during OAEs may have affected the size of B. constans; OAE 2 

onset coincided with a rapid shift towards a very warm regime at both high and low 

latitudes. It is plausible therefore, that species with cooler-water preferences might have 

reacted with a reduction of their mean size. However, during OAE 2, SST fluctuations are 

recorded at different latitudes: intermitted cooling events are seen in the latest 

Cenomanian in tropical records (cooling of about 4°C) (Forster et al., 2007) and a coeval 

southward migration of boreal faunal elements to mid latitudes is registered (Gale and 

Christensen, 1996; Jarvis et al., 2011). B. constans was globally common in the latest 

Cenomanian, from high to middle and tropical latitudes (Erba, 2004; Hardas and 

Mutterlose, 2006, 2007; Linnert et al., 2010, 2011). The low abundance interval of B. 

constans (Linnert et al., 2010; Linnert et al., 2011) detected in the Boreal realm during 

OAE 2, postdates the “Plenus Cold Event” and is coeval with a trend towards higher SST. 

It doesn’t seem, therefore, that B. constans size was affected by surface-water 

temperature.  

During OAE 1a proxy data suggest that large quantities of CO2 was emitted in subsequent 

volcanic pulses, reaching a concentration of about 1000/2000 ppm. During OAE2 an 

increase up to 600 ppm CO2 has been stated, reaching values of about 900-1000 ppm 

(Barclay et al., 2010). It is plausible therefore that the occurrence of dwarf coccoliths is 

the response to a pressure of CO2 (pCO2) above threshold values: decrease in size 

correlate with high CO2 concentration hence if calcification is a strategy to reduce the 

energy cost of photosynthesis, living in a high-concentration world, made calcification 

less necessary.  

Submarine volcanism possibly introduced high concentrations of biolimiting metals 

(Erba, 2004): trace metals peak have been detected in the Pueblo section (Snow et al., 

2005) and Novara di Sicilia (Duncan et al., 2013).  Some living nannoplankton species 
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appear to be sensitive to high trace metal concentration (Brand, 1994; Hoffmann et al., 

2012). Therefore it can’t be ruled out that B. constans suffered the introduction of large 

quantities of toxic metals via hydrothermal plumes during OAEs and reacted with a 

reduction in size and/or reduction in calcification rate. For further details, the reader 

should consider Appendix II. 

 

9.2 Calcareous nannofossil response to extreme 
environmental condition during OAE 2 

Morphometric analyses of calcareous nannofossil reconstructed in the five analyzed 

sections, Eastbourne, Clot del Chevalier, Novara di Sicilia, Pueblo and Cuba, show 

similar variations and patterns. The major change in calcareous nannofossil size 

corresponds to the time interval around the second δ13C isotopic peak, named peak B, 

when dwarf coccoliths of the analyzed species are dominant. 
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OAE 2 was characterized by extreme environmental conditions that lasted around 450-

500 kyrs. It is hypothesized that OAE 2 is related to the formation of large igneous 

provinces (LIPs) and specifically to the formation of the Caribbean plateau traps. Intense 

submarine volcanic activity would have increased oceanic and atmospheric CO2 and set in 

train a numbers of consequences (e.g. increase SST, accelerated hydrological cycle...). As 

summarized in figure 9.1, volcanic activity was influencing atmospheric pCO2 levels 

before the OAE 2 onset (Barclay et al., 2010): an increase in atmospheric CO2 from about 

60 ppm to 300 ppm has been reconstructed and suggests that a massive magmatic episode 

occur up to 500 kyrs in advance of the positive C-isotopic excursion that described and 

defined OAE 2. Furthermore lithium and osmium isotopic signature move towards less 

radiogenic values around 23-30 kyrs before OAE 2 onset and are interpreted as a switch 

towards a mantle source of these elements before OAE. This major magmatic pulse 

released up to 7-12 x 104 Gt of CO2 (Kuroda et al., 2007) and triggered an increase in 

SST globally recorded. An intensification of the hydrological cycle is also expected 

(Blättler et al. 2011; Pogge von Stradmann et al., 2013) with a consequent increased in 

the basaltic weathering rate and intensities in both subaerial and marine real. Pogge von 

Stradmann et al. 2013, reconstructed that almost a third of the CO2 emitted was balanced 

by silicate weathering by the end of OAE2 and highlight that a weathering peak occur ∼ 

200/300 kyrs after the volcanism onset. This well fixed with the temperature fluctuations: 

a cooling trend is observed between the first δ13C isotopic peak, named peak A, and the 

second δ13C isotopic peak, named peak B (Forster et al., 2007; Pearce et al., 2009). 

However Turonian temperature reconstructions suggest peak warmth and indicate that the 

cooling trend, owing to CO2 decrease, was only transient. A new and more intense 

increase in SST temperature indeed nicely correlate with the δ13C isotopic peak B that 

occur slightly after (Forster et al.2007): no direct CO2 reconstruction are available but 

major, minor and trace metal analyses highlight a strong peak suggesting an increase of 

the submarine volcanic activity (Snow et al., 2005). A progressive reduction of the 

volcanic activity and at the same time a decline of the strength of continental weathering 

suggest a gradual recovery of the oceanic-atmospheric system reaching pre-eruption 

levels is ∼ 100 kyrs after δ13C isotopic peak B. 
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Calcareous nannofossil data were compared with C isotope data (Tsikos et al., 2004; 

Bowman and Bralower, 2005, Snow et al., 2005; Scopelliti et al., 2008; Gale et al., in 

prep). Morphometric analyses performed on B. constans, Z. erectus and D. rotatorius 

revealed the existence of “dwarf” coccoliths with evident reduced sizes with respect to 

the holotype value. In all the five analyzed sections B. constans shows the most expressed 

size fluctuations through the event. D. rotatorius  shows a well express reduction in size 

while Z. erectus displays the less express size fluctuations. In Eastbourne section size 

fluctuations through the event are better expressed compared to the other sections, 

however in all the other sections similar size trends are observed. Specifically from the 

OAE 2 onset an increase in size trend leads to the maximum size increase around the first 

δ13C isotopic peak (peak A). Subsequently B. constans, Z. erectus and D. rotatorius show 

a progressive decrease in the mean size, reaching the maximum size reduction at δ13C 

isotopic peak B. Smaller specimens are still present till the end of the event and only after 

δ13C isotopic peak C and in the upper part of the analyzed sections a partial recovery in 

size is observed. W. barnesiae doesn’t show significant changes in mean size furthermore 

any morphological variation (e.g. ellipticity) has been observed. 
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Changes in size are similar and synchronous in all the analyzed sections therefore at 

distant sites, different ocean contests, yielding identical preservation state: for this reason 

diagenesis can be excluded as the cause of the detected dwarfism. Thence dwarfism is 

observed in complete specimen with no corrosion in the outline. In Fig. 9.2 all the 

available data for the western interior area has been used in order to reconstruct the 

paleoceanic and paleoenvironmental characteristic of the WIS seaway during the 

Cenomanian - Turonian OAE2 and compared it with the obtained morphometric data of 

this area. During the first phase of OAE 2, the Osmium isotopic curve from Du Viver et 

al., 2014, suggests an intense submarine volcanism. Furthermore, the stomatal leave index 

shows an increase in the atmospheric pCO2 concentration: two pulses are reconstructed 

and separated from a slightly CO2 drawdown.  

The correlation of pCO2 intervals with the δ13C isotopic curve suggests that OAE 2 was 

characterized by enhanced marine primary productivity that induced a global increase in 

rates of organic carbon burial (Barclay et al., 2010). The marine system therefore was 

able to remove the pCO2 emitted in the atmosphere within 0-100 kyrs and specifically it 

seems plausible that the CO2 removed was proportional to the associated pCO2 pulse. 

Similarly in the first phase of OAE, calcareous nannofossils and especially B. constans, 

displays a decrease in size trend during the pCO2 pulse. A subsequent increase in size 

trend, reaching maximum values at δ13C isotopic peak A, is well correlated with the pCO2 

drawdown event described by Barclay et al., 2010. There’s any further pCO2 

reconstruction for the upper part of OAE2, however the subsequent calcareous 

nannofossil decrease in size trend and the most expressed dwarfism is nicely correlated 

with δ13C isotopic peak B where a strong minor, major and trace metal peaks occur. The 

presence of these concentration anomalies needs an explanation other than influx of 

terrigenous sediment and the most reliable explanation is the release of magmatic fluids 

in event plumes (Snow et al., 2005). Furthermore the metal-rich intervals are more 

abundant in the less volatile and more reactive elements (such as Sc, Co, Mn and Fe) and 

this is in good agreement with the position of the Caribbean plateau, which was 

reasonably proximal to the WIS area. Cuba and Pueblo area are therefore expected to be 

rich in a wide range of near-field and far-field elements. 

For the Eastbourne section all the available data for paleoceanographic and 

paleoecological reconstruction has been used and compared to the morphometric obtained 
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results (Fig. 9.3). Lithium, calcium and strontium isotopic signature (δ7L, δ44 Ca, δ87/86 Sr) 

are used to reconstruct the intensity of continental weathering. Data and models suggest 

that just before the OAE2 onset increase submarine volcanism increased the CO2 

concentration. This triggered global warming as suggested by δ18O isotope and SST 

reconstruction. An intensification of the hydrological cycle might have promoted basaltic 

weathering intensification and could explain the negative trend of δ7Li and δ44Ca. 

Coccolith size follow this trend: starting from bigger specimens at the OAE 2 onset, a 

progressive decrease in size trend go hand in hand with the decrease of the δ7Li and δ44Ca 

isotopic signature. A consequent increase in size trend, that reached maximum size at the 

δ13C isotope peak A, is coeval with a slightly increase of the δ7 Li signature that suggest a 

less intense basaltic weathering as a direct consequence of a reduced intensity of the 

hydrological cycle. This furthermore is in good agreement with δ18O and SST 

temperature reconstruction: a short term decrease of about 4°C (named Plenus Cold 

Event) corresponds exactly to a trough of the carbon-isotope curve (δ13C peak A) and is 

associated with a temporary spread southwards of North Boreal biota (including the index 

belmnite Praectinocamax plenus). This support the idea of a sea-level fall, oxidation of 

organic matter and release of light 12 C back to the ocean-atmosphere system that result in 

transient drawdown of atmospheric CO2 levels. Eastbourne data suggest a subsequent 

increase in SST and unstable δ7Li fluctuations with a first decrease trend, subsequent 

higher value and a new gradual reduction trend. It can be therefore hypothesized a new 

intense volcanic pulse as furthermore suggested from the trace metal peak that is coeval, 

or slightly preceded, the δ13C peak B. From δ13C peak A, calcareous nannofossils show 

size fluctuation and a progressive reduction in size trend. The maximum dwarfism occurs 

at δ13C peak B and goes along with a strong reduction of the nannofossil productivity 

index (Linnert et al., 2011). W. barnesiae, B. constans and Z. erectus, in fact, are used as 

proxies for surface water fertility: a decrease of B. constans and Z. erectus suggests lower 

nannofossil productivity. The end of OAE 2 at Eastbourne, evidence a reduced silicate 

weathering and a more weathering limited regime after δ13C peak B, allowing a gradual 

ocean recovery. Similarly calcareous nannofossil displays a progressive recovery in size 

after δ13C peak C and a gradual increase of the productivity index. 
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All the gathered information suggests a direct influence of the oceanic abiotic conditions 

on coccolith morphologies and/or abundances. The main paleoenvironmental factors 

influencing calcareous nannofossil size will be summarized here under:   

 

1) Nutrients 

Linnert and Mutterlose, (2012) evidence a decrease in size of Biscutum specimens 

during OAE 2 in sections from northwestern Europe. They underline that the 

detected decrease in mean coccolith size is accompanied by a decrease of 

Biscutum abundance: the positive correlation between Lmax Biscutum/relative 

abundance Biscutum spp, and Lmax Biscutum/Nutrient index, is therefore 

interpreted as evidence of a nutrient-affinity for Biscutum. This is in good 

agreement with the data from Eastbourne and Pueblo sections where oligotrophic 

conditions (Linnert et al., 2011; Corbett and Watkins, 2013) have been 

reconstructed around δ13C peak B where dwarfer coccoliths are observed. 

Specifically in the WIS seaway, Tethyan influx of saline and dense water from the 

south and contemporary incursion of lighter and freshened Boreal water mass due 

to a rise in sea level might have resulted in ocean stratification (Corbett and 

Watkins, 2013). This might have prevented mixing of nutrient with surface water 

Fig. 9.3 Eastbourne δ 13C curve and δ 18O (Tsikos et al., 2004), δ 44Ca, δ 7Li, 87Sr/86Sr  from Pogge von 
Strandmann et al., 2013; Sea Surface Temperature from Pearce et al., 2009; Metals peak from Gambacorta 
et al., (in prep.): nannofossil productivity index from Linnert et al., 2011; against calcareous nannofossil 
morphometric data (this study). 
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and established sea surface oligotrophic conditions. However, the WIS Cuba 

section is an exception because nannofossil abundance and dinoflagellates cyst 

data, suggest periodic mixing through the event: along the shallower western 

margin of the seaway eutrophic conditions might have been persistent through 

OAE 2. Furthermore Novara di Sicilia was located in an area of permanent 

upwelling regime and was therefore characterized by high surface productivity 

under meso-eutrophic conditions. In both Cuba and Novara di Sicilia sections the 

same decrease in size trend around δ13C peak B has been observed. In addition, 

coccolith size shows the smallest mean values in Cuba and even more in Novara 

di Sicilia section. It can be speculated, therefore, that in these localities high 

nutrient availability induced accelerated life cycle: smaller cells might have 

resulted in secretion of smaller coccoliths.  

2) Sea surface temperature 

Calcareous nannofossil morphometric data evidence an increase in size around 

δ13C peak A, where a cooling has been recognized at global scale, while the 

smallest specimens occur in both B. constans, Z. erectus and D. rotatorius at δ13C 

peak B where an increase in SST has been reconstructed. A cool-water preference 

has not been ascertained for these three species. Contrarily to the Boreal sections, 

B. constans is abundant through OAE 2 in the tropical Atlantic (Hardas and 

Mutterlose, 2007) that was characterized by SST up to 35°C. Also, high SST are 

recorded in the earliest Turonian where an increase of about 3°C has been 

reconstructed  (Forster et al., 2007). During the early Turonian, B. constans is 

present with high abundances in the Boreal area and all the three species display a 

gradual recovery in size.  

3) Carbonate Chemistry and ocean acidification 

Proxy-based detailed reconstruction of pCO2 is available only for the lower part of 

OAE 2 (Barclay et al., 2010). The stomatal index suggests an increase of about 

600 ppm in the first part of the event. Pogge von Strandmann et al. (2013) 

furthermore calculated the amount of CO2 sequestered via continental weathering 

(~4-8 x 104 Gt CO2) and the estimated CO2 drawdown is in agreement with 

previous calculation of the amount of CO2 emitted in the first phase of the 

volcanic activity (7-12 x 104 Gt CO2; Kuroda et al., 2007). It is therefore plausible 

that calcareous nannofossils were subjected to a progressive acidification of 
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seawaters in the early phase of OAE 2. As a matter of fact in the studied sections, 

coccolith size fluctuations mimic CO2 reconstructions: a decreasing trend is 

observed in the interval with high CO2 concentration and, conversely, bigger 

coccoliths occur at δ13C peak A, where a reduction in CO2 has been reconstructed. 

Then, the reduction of coccolith dimensions correlates with a further increase of 

pCO2. I noticed that small B. constans coccoliths are characterized by more 

elliptical shape interpreted as malformation: both characters (dwarfism and 

malformation) might be linked to chemically stressed surface water conditions and 

hint towards an ocean acidification episode. Linnert and Mutterlose (2012) argued 

that the more massive Eprolithus nannoliths should have declined during a 

potential OAE 2 acidification event. But these groups of polycyclolthaceae are 

generally quite abundant with the exception of the tropical Atlantic area (Linnert 

and Mutterlose, 2012), thus arguing against an ocean acidification scenario. 

However, genus Eprolithus typically occurs in discrete abundance peaks in the 

OAE 2 interval (e.g. Erba 2004) and might represent intermitted alkalinity 

recovery similarly to Assipetra-Rucinolithus peaks during OAE 1a (Erba et al., 

2010)  

4) Toxic trace metals 

Submarine volcanism introduced high concentrations of biolimiting metals during 

OAE 2 (Snow et al., 2005) that might results in ocean fertilization and/or 

toxification (Leckie et al., 2002; Erba, 2004) and possibly influence coccolith 

calcification. This is in agreement with morphometric data here presented: the 

metal peak detected at Pueblo (Snow et al., 2005), Eastbourne (Gambacorta et al., 

in prep), Novara di Sicilia (Duncan et al., 2013) is coeval with δ13C peak B 

interval where dwarf coccoliths are observed. 
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9.3 Calcareous nannoplankton response to OAEs: 
comparison between OAE 1a and OAE 2 

Calcareous nannofossil morphometric and morphological data of the latest Cenomanian 

OAE 2 have been compared with the early Aptian OAE 1a data in order to derive 

similarities and differences.  

OAE 1a was an extreme oceanic event triggered from the emplacement of the Ontong 

Java Plateau (Larson, 1991; Larson & Erba 1999; Kuroda et al., 2011; Erba et al., 2015) 

that altered the structure, composition and dynamics of the ocean-atmosphere system. 

OAE 1a was associated with major climate change, ocean fertilization and acidification. 

The marine biota responded to these extreme conditions in different ways. Specifically, 

calcareous nannoplankton was able to survive extreme climatic, trophic and chemical 

conditions without extinctions. In fact, during OAE 1a the nannofossil calcification 

failure best expressed by the nannoconid crisis is interpreted as a false extinction 

assimilable to a case of “Lazarus effect” (Erba and Tremolada, 2004; Erba et al., 2010). 

Moreover before, during and after OAE 1a a major origination episode has been 

documented (Erba, 2004). However, calcareous nannofossils display morphological 

response to OAE 1a perturbation similar to those observed across OAE 2. 

Before the OAE1a onset a progressive failure of heavily calcified nannofossils has been 

interpreted as related to increased surface-water fertility and incipient acidification: 

excess nutrients and trace metals combined with increasing CO2 concentrations might 

have affected the oligotrophic and heavily calcified nannoconids (Erba 1994, 2004; Erba 

and Tremolada, 2004; Weissert and Tremolada, 2004; Erba et al., 2010, 2015; Bottini et 

al., 2014, 2015). In the early phase of OAE 1a a final crash of nannoconids was 

accompanied with a progressive coccolith size reduction of the mesotrophic species such 

as B. constans, Z. erectus and D. rotatorius. During the most negative carbon isotopic 

anomaly of OAE 1a (segment C3/A3 sensu Bottini et al., 2015), a brief cooling pulse 

followed a warming maximum. During this cooling interval that might be related to a 

temporary CO2 drawdown subsequent to a weathering spike (Bottini et al., 2012, 2015), a 

partial nannofossil recovery has been observed. However, a following further CO2 pulse 

caused an increased in temperature and shoaling of the CCD up to 1200m: in this interval 
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B. constans, Z. erectus and D. rotatorius are characterized by dwarf coccoliths while W. 

barnesiae specimens are affected by some deformation/malformation (Erba et al., 2010). 

At the end of the negative carbon isotope excursion nannofossil total abundance recovery 

is paralleled by a decrease in paleotemperature and metal concentration that are inferred 

to represent a significant CO2 decrease (Bottini et al., 2015; Erba et al., 2015). 

Mesotrophic taxa are still abundant, suggesting high nutrient availability, but they are no 

longer affected by dwarfism.  

Similarly to OAE 2, during OAE 1a there’s a species-specific response to the ocean-

atmosphere perturbation: B. constans turns out to be the most sensitive species displaying 

the maximum reduction in size; D. rotatorius shows a significant reduction in size while 

Z. erectus diminishes to a lesser extent.  Moreover, in both OAE 1a and OAE 2, seawater 

fertility combined with temperature, trace metal enrichment and CO2 concentration 

played a fundamental role on calcareous nannoplankton calcification. During OAE 1a 

nutrient content was very high during the first part of the event when dwarfism is 

observed. Since during Cretaceous episodes of enhanced fertility other than OAEs, no 

evidence of coccolith size reduction has been documented, it is unlikely that the trophic 

level was crucial for calcification changes. On the contrary a direct link among coccolith 

size and malformation with CO2 concentration appears to be the most plausible 

explanation: from the early phase of OAE 1a perfect match between CO2 reconstructions 

and coccolith dwarfism has been observed. Data suggest that increase and/or decrease in 

pCO2 could favor a decrease or increase in biocalcification and that dwarfism and 

production of “malformed” coccoliths possibly represents species-specific adjustment to 

survive lower pH.  

The results of coccolith morphometry for both OAE 1a and OAE 2 point to a potential 

control of metal enrichment on coccolithophores calcification.  Indeed, in both episodes, 

species-specific dwarfism and some malformation occur in the intervals with metal spikes 

and it might be that toxic metals disturbed the functioning of some intolerant 

coccolithophore species affecting the calcification of their coccoliths (Fig. 9.4).  
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Fig. 9.4 Summary diagram for (A) OAE 1a and for OAE 2 (B) reporting estimated CO₂ 
concentrations, sea surface temperatures (SST), peaks in trace metals abundance and calcareous 
nannofossil response (size variations 
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9.2 Coccolithophores responses to environmental 
parameters 

Coccolithophores calcification is not exclusively related to carbonate chemistry 

conditions but also to other environmental parameters such as light availability, 

temperatures and nutrient concentrations. The main goal of the experiments I’ve 

performed is to recognize if environmental parameters affect coccolith growth and/or 

which environmental parameter is crucial for coccolithophore calcification. Aside from 

laboratory results, that are discussed here, I intend to perform in the near future statistical 

analyses on the obtained data and perform detailed SEM analyses. In this respect, the 

planned SEM investigations of individual treatments are aimed at quantification of 

coccolith size and ultrastructure, including the malformation index designed by Bach et 

al. (2011) for E. huxleyi. Also I’ll try to derive analogous (new) malformation indices for 

the other three species I’ve investigated. Only preliminary results and an overview of the 

main experiment results available from literature, will be discuss here; the discussions 

will be mainly focussed on coccolith volume and cell size.  

The 4 analyzed species, respectively E. huxleyi, G. oceanica, P. carterae and C. pelagicus 

ssp. braarudii, have been chosen based on Liu et al. (2010): the Isochrysudales group 

(G.oceanica and E. huxleyi) diverged from Coccolithales (C. pelagicus ssp. braarudii and 

P. carterae) 220 million years ago (Fig. 9.5). P. carterae, furthermore, produces frequent 

blooms in coastal area. E. huxleyi forms large bloom over wide areas in the ocean but, 

because of it’s small coccoliths and cell volumes, is not dominant in term of production 

and vertical flux of calcite to the deep sea. In contrast, C. pelagicus ssp. braarudii is a 

heaviest calcifying living coccolithophore and probably the most important in term of 

calcite export to the sediments.  
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Response of Coccolithophores to light intensities 

The progressive increase in temperature related to the global warming will have an 

indirect effect on light for phytoplankton: the reinforcement of the temperature gradient 

among surface water and deep water will result in stratification. The vertical mixing of 

the upper layer of the ocean modifies the light intensity; however, the phytoplankton have 

a specific affinity to light or the ability to deal with light irradiance variability: 

photosynthetic rates versus irradiances curve (Fig. 9.6) highlight three steps: 

1) Light limitation conditions where photosynthesis increases rapidly 

2) Light optimum conditions: threshold levels by which photosynthesis is light 

saturated and reaches maximal rate 

3) High light conditions where photoinhibition occurs. 

Sarmiento and Gruber (2006) documented a species-specific response to varying light 

irradiances and, specifically, evidenced that different taxa has different light affinity. For 

Fig. 9.5 Benchmarks in the evolutionary history of the Haptophytes and Calcihaptophytes. Major innovations 
are shown along a geological time scale on the left side of the figure [from De Vargas et al., 2007]. 
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example green algae, has the highest light affinity compared to diatoms and 

dinoflagellate, becoming light-saturated at lower light irradiances.  

The data I’ve obtained are only partially in agreement with previous studies. E. huxleyi 

displays a progressive increase in growth rates with increasing light intensities. The 

coccosphere diameters and cell diameters show smaller values in low light intensities and 

higher and very stable values in all the other treatments. The obtained coccolith volumes 

show erratic values and not specific pattern was observed.  G. oceanica has similar 

growth rate among treatments, with higher values with low and high light intensities. The 

resulted coccolith volumes show bigger sizes with low light irradiances (up to 200 µmol 

photons m-2 s-1) and smaller volumes in all the other treatments with higher light 

intensities.  P. carterae shows very erratic values for coccolith volumes and no specific 

trends were observed. However, P. carterae growth rate appears to be very stable among 

treatments. Finally, C. pelagicus ssp. braarudii has bigger coccolith volumes in 

treatments among 100 and 200 µmol photons m-2 s-1, while lower values are observed in 

higher light intensities treatments.  

E. huxleyi blooms with a shallow mixed layer (between 10 and 20 m) where high light 

intensities (light exceed 500 µmol photons m-2 s-1) occurs. Indeed, light might be a 

requisite for E. huxleyi bloom formation (Tyrrell and Taylor, 1996). This is further 

supported by lab experiments where growth rate is saturate with light intensities among 

200 and 300 µmol photons m-2 s-1 but doesn’t decrease up to the 800 µmol photons m-2 s-1 

(Harris et al., 2005), while at low irradiances (15 µmol photons m-2 s-1) E. huxleyi is still 

able to grow (Zondervan et al., 2002). Photosynthesis is not inhibited even at the highest 

tested light intensities of 1700 and 2500 µmol photons m-2 s-1 (Paasche, 2002) that are 

equal to the higher light intensity by full sunshine. Different saturation irradiances has 

been detected for different species: Brand & Guillard (1981) highlighted that G. oceanica 

and P. carterae saturate at 1000 µmol photons m-2 s-1; while Calcidiscus leptoporus 

saturate already at 200 µmol photons m-2 s-1. Calcification is a light-depended process, 

too: increased calcification has been observed with increased light intensity (Zondervan, 

2002). However, calcification is less affected than photosynthesis andsaturate at lower 

light intensities (Paasche, 1998 and Zondervan (2002). It is important, therefore, to 

compare results coming from other experiments, using the same light intensities, to avoid 

any irradiances influx on coccolithophore calcification.  
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Response of Coccolithophores to nutrient limitations 

The performed nutrient experiments display an increase in coccolith volume in all 

investigated species. Specifically, E. huxleyi shows a considerable increase in coccolith 

volume in the phosphate-limited (P-limited) treatment while nitrogen-limited (N-limited) 

treatment displays a slight increase in coccolith volume compared to the control 

treatment. G. oceanica shows similar coccolith volumes under N and P deficiency with a 

minor increase in coccolith volume compared to the control treatment. P. carterae shows 

a similar behavior with bigger and similar coccolith volume under N and P deficiency 

conditions, compared to the control treatment. Finally, C. pelagicus ssp. braarudii shows 

higher coccolith volumes in the P-limited treatment, and N-limited conditions induce 

bigger coccolith volumes too compared to the control treatment. Most experiment data 

available in the literature are based on E. huxleyi, whose blooms almost always occur in 

areas with low nitrate and/or phosphate concentrations (Balch et al., 1991).  It was 

therefore argued that E. huxleyi produces massive blooms by outcompeting other 

phytoplankton species sensitive to low P and N concentrations (Riegman et al., 1992 and 

2000). However, in culture experiments E. huxleyi appears to grow well under both high 

and low nutrient concentrations. Paasche (1998) suggests that phosphate and nitrate have 

Fig. 9.6 Photosynthesis response at different light intensities for different 
phytoplanktonic groups; from Sarmiento and Gruber, 2006. 
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a pronounced effect on the regulation of cellular calcification. Specifically, Paasche 

(1998) evidences and increase in the number of coccoliths per cell in both N- and P- 

limited conditions: from 36 coccoliths per cell in nutrient replete conditions, the number 

rises to 70-120 coccolith/cell in strongly limited N or P conditions (Paasche, 1998). 

Moreover, Paasche & Brubak, (1994) evidence an increase in the proportion of cells with 

two or more coccolith layers in nutrient-limited conditions. Analyzing both E. huxleyi and 

G. oceanica, Berry et al. (2002) and Shiraiwa et al. (2003) document increased 

calcification to photosynthesis ratio in cultures starved by N or P and highlight that this is 

mainly due to an absolute increase in the rates of calcification and not inhibition of 

photosynthesis or cell division. Finally, Paasche et al. (1998) evidence morphological 

changes in single coccoliths N- and P- starved cultures: P deficiency leads in some cases 

to coccolith overcalcification even if not drastic variations for coccolith morphology has 

been observed. N deficiency, on the contrary, reduces calcification of individual 

coccolith: this might be related to a delay in the crystal growth and or premature release 

of coccoliths. Future SEM analyses on all the four species, will give a better 

understanding of calcification response to limited nutrient concentrations.    

Response of Coccolithophores to [Mg2+] and [Ca2+]  

The salinity experiment shows very stable and similar coccolith volume and growth rate 

in E. huxleyi, G. oceanica and P. carterae. On the contrary, C. pelagicus ssp. braarudii, 

displays larger coccolith volumes in the treatments with altered salinity compared to the 

control treatment. Growth rates, however, are higher in the control treatment while a 

progressive decrease in observed for the “Mg/Ca=1”, “Mg/Ca=2” and “Srx2” treatments.  

The composition of seawater has changed significantly during the Phanerozoic: major 

constituents of seawater Mg2+ and Ca2+ have varied between 1.0 and 5.2 (Stanley and 

Hardie, 1998; Lowenstein et al., 2001, 2003; Erba, 2006). Based on these fluctuations two 

different types of oceans are distinguished: the  “Calcite” seas and the “Aragonitic sea”. 

Calcareous nannoplankton evolution seems to be strictly connected to Mg/Ca and Ca2+ 

fluctuations: the shift from the “Aragonitic” sea to the “Calcitic sea” around 200 Ma, 

correlates with the oldest nannofossil record and it is plausible that seawater composition 

played a key-role in the appearance of coccolithophores biocalcification (Erba, 2006). In 

the same way, maximum Ca2+ concentration correlates with the maximum expansion of 
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coccolithophores in the Late Cretaceous, while the progressive decline in coccolithophore 

diversity of the past 30 Ma correlates with an increase in Mg/Ca ratio due to a rise in 

Mg2+ concentrations. Experiments on living coccolithophores highlight a general increase 

in growth rate with low Mg/Ca ratio culture water. Conversely, high Mg/Ca ratio and low 

Ca2+ concentrations are observed to be limiting factors: Ochrosphaera neopolitana for 

example displayed a low growth rate that quadrupled once transferred to seawater with 

lower Mg/Ca ratio (Stanley et al., 2005). Morphological variations have been detected, 

too: Ochrosphaera neopolitana appeared to be more heavily calcified in “Cretaceous 

seawater medium” compared to modern seawater (Ries et al., 2010). Moreover, there is 

apparently a species-specific sensitivity to low Mg/Ca ratios (Ries et al., 2010; Muller et 

al., 2011) that results in a major or minor decrease in growth rate, PIC content and 

calcification.  

Response of Coccolithophores algae to carbonate chemistry 

Coccolithophores have been tested under different CO2 concentration ranging from 400 

µatm to 3000 µatm. The “OA” and “Creta 1” treatments differed for the TA and DIC. The 

most sensitive species to carbonate chemistry variations appears to be G. oceanica: in all 

treatments there’s a reduction in coccolith volume relative to the control. E. huxleyi, on 

the other hand, shows very similar coccolith volumes in all treatments with the exception 

of “Creta 2” treatment. This is also observed in P. carterae while C. pelagicus ssp. 

braarudii seems to be insensitive to carbonate chemistry variations and in some cases, 

increases in CO2 appear to be beneficial.  

The absorption of anthropogenic CO2 into the ocean has been changing the marine 

carbonate chemistry by increasing carbon dioxide [CO2] and [H+], decreasing carbonate 

ion [CO3
2-] and slightly increasing [HCO3

-]. During the last 15 years coccolithophores 

have gained considerable attention due to the sensitivities of calcification to changing 

pCO2. Coccolithophores are significant pelagic calcifiers that contribute about half of the 

calcium carbonates in open ocean sediments. They are the best-examined organisms 

because of their double response to ocean acidification and carbonification (e.g. Riebesell 

et al., 2000; Langer et al., 2006; Langer et al., 2009; Iglesias Rodrigues et al., 2008).  

Therefore it’s a big challenge to discuss and take into consideration all the results 
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available from other studies. However, most works mainly focus on one species, namely 

E. huxleyi. 

The species analyzed so far show different response to changing carbonate chemistry: E. 

huxleyi and G. oceanica usually decrease calcification rates with increased pCO2 

(Riebesell et al., 2000). Furthermore, G. oceanica appears to be even more sensitive to 

carbonate chemistry conditions than E. huxleyi (Riebesell et al. 2000). However, different 

strains highlighted partial different behaviour even if this might be due to different 

experiment procedures (e.g. Iglesias Rodriguez et al., 2008). Calcidiscus 

quadriperforatus showed an optimum cure response with maximum calcification rates at 

present CO2 concentration. Coccolithus braruudii on the other hand didn’t show any 

significant variation in calcification with increasing pCO2 from 180 to 800 µatm (Langer 

et al., 2006). However, Krug et al. (2011) highlighted that when extending the pCO2 range 

towards higher values, C. brarudii displayed the same changes observed in E. huxleyi and 

G. oceanica and, specifically, a decreased calcification rate with increasing pCO2 (Fig. 

9.7). 

Indeed, it seems that both calcification and photosynthesis in all coccolithophore species 

follow an optimum curve suggesting the same cellular mechanism, but different 

sensitivities among different species and strains to carbonate chemistry. However, it still 

not completely understood how changing calcification rates are reflected in coccolith size, 

shapes and weight. Bach et al. (2011) stated that malformations in E. huxleyi are most 

likely induced by high concentrations of [H+] this might be due to coccolith formation, 

because H+ is known to easily enter into the cytosol of E. huxleyi where a change in [H+] 

could disturb the correct functioning of cytoskeleton elements or enzymes associated, 

resulting in an altered expansion of the coccolith vesicles where coccolith formation takes 

place. Langer and Bode (2011) analyzed malformations in Calcidiscus leptoporus and 

identified CO2 as the parameter causing distortion in coccoliths. Malformations in 

different species (or strains) might be caused by different carbonate parameters and, thus, 

different species and strains might have different sensitivities to carbonate chemistry 

changes.  
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The planned SEM analyses will give a better understanding on the influence of altered 

carbonate chemistry on coccolith size and shapes on a wide number of coccolithophores. 

 

Response of Coccolithophores to trace metal enrichment 

Three treatments with progressive increases in metal contents were tested on the four 

analyzed species. Different responses were observed, compared to the other experiments. 

They show similar response in the three treatments: increased metal content doesn’t seem 

to affect growth rates. E. huxleyi shows substantially high growth rate but small coccolith 

volumes compared to the other experiments. G. oceanica shows similar changes in the 

various treatments as far as growth rate and coccolith volume are concerned, with 

comparable values with the other experiments. Likely, C. pelagicus ssp. braarudii shows 

similar coccolith volumes compared to the other experiments while growth rate is smaller 

than the control treatments; this suggests some limits/difficulties in C. pelagicus ssp. 

braarudii growth under higher metal contents. On the other hand, P. carterae shows 

comparable values among treatments in both growth rate and coccolith volume. 

Furthermore, coccolith volume is relatively high and might be related to P. carterae’s 

 
Fig. 9. 7 Conceptual model of coccolithophorid photosynthesis an calcification 
in response to changes in carbonate chemistry speciation due to increasing 
DIC and decreasing pH; [from Krug et al., 2011]. 
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preference to coastal environment that is expected to be enriched in nutrients and trace 

metals. Moreover, all species weren’t able to survive the acclimation phase in the 5th 

treatment with the highest trace metal concentrations (8000 nmol/l of Pb, ZnSO4·7H2O, 

NiCl2 ·6H2O, VOSO4): this suggests that there’s a threshold value over which trace 

metals have a toxic effect on coccolithophores. Very few studies focused on 

coccolithophore response to trace metal concentrations. Some works have demonstrated 

that E. huxleyi needs metals for its metabolism such as iron, zinc, cobalt, selenium, 

cadmium and manganese (Brand et al., 1983; Sunda et Huntsman 2000). Schulz et al. 

(2004) investigated the influence of the essential trace metals iron and zinc on CaCO3 

production of E. huxleyi, showing that this species experiences a reduction in both growth 

rate and calcification under iron-limited conditions. On the other hand, a decrease in zinc 

content induces a growth rate reduction while CaCO3 production rates per cell remains 

unaffected with highly calcified cells. It seems, therefore, that trace metal limitation can 

affect biogenic calcification. 

Hoffmann et al. (2012) studied the response of phytoplanktonic organisms to increased 

metal contents: trace metals released in different volcanic ashes have been tested in order 

to verify their fertilizing or toxic effects. The experiment focused on E. huxleyi among 

coccolithophores and took into account only cell concentrations and growth rate. E. 

huxleyi displayed no growth variations during treatments  (Hoffmann et al., 2012). 

The experiments that I performed are pioneristic and it will be fundamental to analyze 

coccolith sizes and shapes on SEM pictures in order to evidence potential malformations 

and or errors in crystal growth due to high trace metal contents.  
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Chapter 10 

Conclusion 
 

The study performed for this thesis, aimed at combining geological and biological 

approaches, and can be regarded as a first step to identify whether specific 

(paleo)ecological factors or a combination of stressing environmental conditions can 

affect calcareous nannoplankton calcification in the geological record and in living 

coccolithophores and if positive and negative feedbacks are similar in the geological 

archive and in laboratory cultures.  The geological case-study selected for morphometric 

analyses of a few nannoplankton taxa, is the latest Cenomanian OAE 2. The quantitative 

characterization of coccolith size and morphology in the intervals preceding, coeval and 

postdating OAE 2 was aimed at assessing the relationship between nannoplankton and 

paleoenvironamental changes. My results were compared with available nannofossil data 

for other Cretaceous OAEs in order to evaluate similarities and/or differences in 

nannoplankton response to chemical and physical extreme conditions in subsequent 

episodes of paleoenvironmental perturbation. 

The results obtained for nannofossils across OAE 2 integrated with paleoceanographic 

and paleoclimatic reconstructions led to the following conclusions: 

• During OAE 2 B. constans, Z. erectus and D. rotatorius coccoliths show a decrease in 

mean size and area followed by a partial recovery at the end of the event, but 

dimensions remained smaller than in the interval preceding the paleoenvironmental 

perturbation. B. constans results to be the most sensitive species to environmental 

changes compared to the other analyzed taxa. Indeed, dwarf B. constans specimens 

are affected by some malformation marked by increased ellipticity during OAE 2. 

Conversely, specimens of W. barnesiae display very constant sizes, with very minor 

changes and negligible variation of ellipticity across OAE 2. I underline that B. 

constans, Z. erectus and D. rotatorius dwarfism is observed in complete specimens 

with no corrosion in their outline and therefore cannot be explained as an artifact of 

diagenesis. 
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• The size reduction of B. constans is less expressed in OAE 2 compared to OAE 1a. 

Although during OAE 2 their mean length is only 63% of the holotype while during 

OAE 1a the average size is 72% of the holotype, the reduction relative to the 

preceding interval is of ~10% for OAE 2 and ~ 20% for OAE 1a. Indeed, B. constans 

coccoliths are already smaller than the holotype in the pre-OAE 2 interval whereas in 

the pre-OAE 1a interval average size of  B. constans is close to holotipic values. 

• B. constans evidences a latitudinal decrease in size in the dataset for the pre-OAE 2 

and OAE 2 interval (in the post-OAE 2, no data are available for Novara di Sicilia), 

with larger B. constans coccoliths at Eastbourne and Clot de Chevalier and smaller 

specimens at Novara di Sicilia. The two sections located at intermediate 

paleolatitudes in the Western Interior display in-between values. This suggests that 

coccolith size variations are somehow controlled by regional/local conditions. 

• I observed a progressive decrease in the mean length and area of B. constans 

coccoliths from the early Aptian OAE 1a to the late Albian OAE 1d and to the latest 

Cenomanian OAE 2 - when the lowest average size is reached. I speculate that size 

variation are somehow affected by the degree of paleoenvironmental global changes: 

the early Aptian OAE 1a marks the onset of the mid-Cretaceous supergreenhouse 

(Larson and Erba, 1999), OAE 1d correlates with a marked warming in the late 

Albian and OAE 2 is linked to most extreme paleoceanographic conditions and 

warmth culminating in the early Turonian thermal maximum. 

• The comparison of these morphometric data (this study) with those available for the 

early Aptian and latest Albian OAEs indicates that B. constans repeatedly underwent 

size reduction and some malformation (increase in ellipticity). This presumably 

suggests that the same paleoenvironmental factors controlled calcification of B. 

constans coccoliths during OAE 1a, OAE 1d and OAE 2. Z. erecuts and D. rotatorius 

evidence a less-expressed decrease in size in both OAE 1a and OAE 2 and show 

dwarfism only in the interval of strongest perturbation during these events. The very 

little variability measured in W. barnesiae specimens indicate that this taxon was most 

adaptable and was only marginally affected by the paleoenvironmental perturbations 

characterizing Cretaceous OAEs. 

• The reconstructed paleoclimatic and paleoceanographic changes across OAE 1a, OAE 

1d and OAE 2 allow the evaluation of the factor or combination of factors inducing 

coccolith dwarfism and malformation. Temperature and nutrient availability in 
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surface waters do not seem to be crucial for B. constans size, although warmer and 

more fertile oceans preconditioned the specific environmental perturbation associated 

to OAEs. Available data, instead, suggest that ocean chemistry related to the amount 

of CO2 concentrations, played a central role in coccolith secretion with a repetitive 

reduction in size during OAE 1a, OAE 1d and OAE 2. 

• Experiments on living coccolithophore algae highlight, similarly to fossil data, a 

species-specific response to different environmental parameters. In particular, E. 

huxleyi shows a decrease in coccolith volume with the highest CO2 concentration 

tested (3000 ppm) while nutrient-depleted conditions appear to be beneficial to 

coccolith growth. G. oceanica appears to be the most sensitive species to carbonate 

chemistry variations. P. carterae on the other hand shows very erratic patterns to 

tested parameters, suggesting very little sensitivity to specific environmental 

conditions. Calcification of C. pelagicus ssp. braarudii appears to be advantaged 

under low nutrient content, while increased CO2 concentration seems to impart a 

negative feedback on coccolith volume with decreasing values that go hand in hand 

with increasing CO2 concentration. As mentioned, these data are only preliminary 

and further analyses are planned in the near future and particularly SEM 

investigation of coccolith morphology and morphometry to quantify changes in 

coccolith size and malformation. 

 

In conclusion the observed variations in both culturing and fossils data reflect the 

biomineralization response to changes in surface waters conditions and ocean carbonate 

chemistry. My data suggest that changes in environmental factors like temperature, 

nutrient content and carbonate chemistry have the potential to significantly influence the 

pelagic carbonate production. Parallel changes among fossils data and living 

coccolithophores suggest that biomineralization “failure” and “success” during past 

extreme events were likely to be just as significant as today.  

Geological evidence of Cretaceous OAEs indicates that past oceanic perturbations were 

quite severe and that the species-specific production of dwarf and malformed coccoliths 

possibly represents adjustment of individual taxa to survive lower pH. It seems, therefore, 

that calcareous nannoplankton has been resilient to pH changes (and other extreme 

conditions), but it is certainly possible that the rate of change have been decisive for 
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coccolithophores adaptation. The geological record indicates that at wide spatial scale 

calcareous nannoplankton can generally adjust to high pCO₂, but past changes occurred 

over tens of thousands of years, giving enough time to adjust or even take advantage. 

Laboratory experiments on modern coccolithophore species (evolutionary-linked to 

Cretaceous taxa) remain the only means to quantitatively assess if and which role 

environmental parameters have on quantity, type and amount of coccolith secretion. 

Although conscious of the very different time scales of processes and achievable 

resolution, the double biological and geological approach to coccolithophore calcification 

is aimed at critically integrating the daily-decadal datasets (biology) with medium- to 

long-term (thousands to millions of years in duration) data (paleontology = paleobiology). 

The ultimate goal of this challenging approach is an improved understanding of coccolith 

biomineralization mechanisms to derive some guidance as to the response of biota to 

abrupt massive CO2 releases and how and at what rate pre-perturbation conditions are 

eventually restored. 
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!
The late Albian–early Turonian time interval was marked by major environmental changes at 
regional to global scales. Oceanic Anoxic Event (OAE) 1d and OAE 2 and the mid-
Cenomanian Event (MCE) are both associated with !13C anomalies that indicate 
perturbations of the global carbon cycle. In this study, new high-resolution carbon- and 
oxygen-isotope records are presented from four Italian Tethyan sections: Cismon (Belluno 
Basin), and Furlo, Le Brecce and Monte Petrano (Umbria-Marche Basin) deposited in pelagic 
settings characterized by the alternation of nannofossil-planktonic foraminiferal oozes, 
radiolarian-rich intervals and shales. The !13C records exhibit a  ~1‰ positive excursion in 
!13Ccarb corresponding with OAE 1d and a much larger positive anomaly (~2–3‰) in 
!13Corg corresponding with OAE 2. Between these two events. a double-spiked minor 
(~0.7‰) excursion in the !13Ccarb marks the MCE. Locally, between deposition of the MCE 
and the Bonarelli Level, sedimentation shifted to alternate dysoxic/anoxic and well-
oxygenated conditions as represented by lithological rhythms of black shales/black chert 
bands and whitish limestones. !18O data indicate a common pattern throughout the studied 
sections: values progressively decrease from the upper Albian up to the Bonarelli Level 
(uppermost Cenomanian), indicating an overall warming trend. Low !18O values are 
recorded across the OAE 1d suggesting relatively warm conditions. The interval above the 
Bonarelli Level presents very low !18O values, indicating the persistence of warm conditions 
in the early Turonian followed by a relative cooling trend. 
Detailed carbon-isotope stratigraphy, calibrated with biostratigraphy, provides high-resolution 
dating and correlation, allowing identification of hiatuses in the studied sections. The high-
resolution !13C profiles across the OAE 2 interval highlight the presence of hiatuses of 
variable extent that affect the middle to upper part of the characteristic carbon-isotope 
excursion and part of the following interval in all of the studied sections. Locally, a hiatus may 
also be present at the base of the Bonarelli Level. Correlations with carbon-isotope records 
from widespread other localities, allows the duration of missing intervals to be estimated 
(between 400 and 700kyrs in the middle to late part of the OAE 2 and succeeding interval). 
The origin of these stratigraphic gaps can be attributed to physical and/or chemical processes 
operating at the sea floor. Complete recovery from the peculiar physico-chemical conditions 
that characterized the deeper parts of the Tethys Ocean during OAE 2 took a long time (at 
least 1 million years). 
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Abstract 

Morphometric analyses were performed on Biscutum constans and Watznaueria 

barnesiae specimens from five sections spanning the Cenomanian-Turonian boundary 

interval including Oceanic Anoxic Event (OAE)2 (~ 94 Ma). The study provided evidence 

for tiny specimens of B. constans, smaller than the holotype, throughout the entire studied 

interval with further marked reduction, interpreted as dwarfism, in size during OAE 2, 

followed by a partial recovery at the end of the event. The decrease in size has also 

resulted to be accompanied by an increase in the mean ellipticity of the coccoliths. 

Preservation is moderate to good in all studied sample and dwarfism is observed in 

complete specimens with no corrosion in their outline and, therefore, cannot be explained 

as an artifact of diagenesis. Specimens of W. barnesiae display rather constant sizes, with 

very minor changes and negligible variation of ellipticity across OAE2. A latitudinal 

decrease in  B. constans size has been noticed in our dataset for the pre-OAE 2 and OAE 2 

intervals, with the larger coccoliths found at middle-higher latitudes. The comparison of 

our morphometric data with those available for the early Aptian OAE 1a and latest Albian 

OAE 1d, indicates that B. constans repeatedly underwent size reduction and malformation 

possibly suggesting that the same paleoenvironmental factors controlled calcification of B. 

constans during OAEs. The analyses also pointed out a progressive reduction of the mean 

size of B. constans through time, with generally larger specimens in the early Aptian, 

intermediate in the late Albian and smaller in the Cenomanian-Turonian boundary 

interval, here potentially ascribed to different degrees of paleoenvironmental changes. The 



data available for OAE 1a, OAE 1d and OAE 2 suggest that ocean chemistry related to the 

amount of CO2 concentrations, played a central role in coccolith secretion by B. constans 

with a repetitive reduction in size during the three OAEs, while temperature and nutrient 

availability in surface waters do not seem to have been crucial for B. constans size.  
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