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Luca Griguolo (Università degli Studi di Parma)
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Introduction

Black holes, regions of spacetime which appear black since not even light can escape,
are perhaps the most striking prediction of Einstein’s General Relativity. Since their
discovery, black holes have inspired physicists to raise many deep questions about the
fundamental laws of nature.

It is by now widely believed that black holes, or at least objects which can be approx-
imately described as classical black holes, actually exist in our universe, at the center of
galaxies or resulting from stellar collapse, and are thus not merely theoretical constructs.

The study of black holes is still an extremely active topic of research, and is central
to the ongoing quest to find a quantum theory of gravity. For one thing, black holes
typically encompass spacetime singularities, which signal the breakdown of the classical
theory. It is believed that such singularities will be resolved in a full theory of quantum
gravity.

Other clues toward the construction of a microscopic theory of gravity come from
black hole thermodynamics. Classical black holes obey the four laws of black hole me-
chanics [1], which are formally analogous to the laws of thermodynamics. If one wishes
to take the analogy seriously, then thermodynamic quantities should be assigned to a
black hole, in particular a temperature T and an entropy SBH [2] proportional to the area
of the horizon. This thermodynamic picture was corroborated by the famous calculation
by Hawking [3], who showed that in the semiclassical regime a black hole emits thermal
radiation corresponding to the temperature T . The statistical interpretation of thermo-
dynamics then leads to a drastic change in the understanding of what a black hole is.
While in general relativity a black hole is a simple object, completely characterized by a
small number of parameters, the fact that it possesses an entropy suggests the existence
of a microscopic description in terms of a large number of degenerate states, all with
the same values of the macroscopic parameters. Any viable theory of quantum gravity
should then be able to reproduce, from the counting of microstates, the macroscopically
determined entropy.

One of the leading candidates for a theory of quantum gravity is string theory, or
more precisely its supersymmetric incarnation, superstring theory. According to super-
string theory all the elementary particles and forces of nature, including gravity, can
be described as vibrations of one-dimensional objects called strings, propagating in a
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10-dimensional spacetime. The low energy limit of superstring theory is a field theory
including gravity and enjoying a local symmetry relating bosonic and fermionic fields
to each other, i.e. a local supersymmetry, which is called supergravity.

To recover the universe we experience, which is 4-dimensional and possesses no un-
broken supersymmetry, from these 10-dimensional supersymmetric theories, it is gen-
erally believed that six of the ten dimensions are small and compact, giving rise to an
effective 4-dimensional theory, and that our universe is described by a supersymmetry–
breaking vacuum of this effective theory.

While supersymmetric vacua cannot describe our universe, they have played and
continue to play a key role in the development of string theory. In particular, the first
succesful computation of black hole entropy from microstate counting by Strominger
and Vafa [4] made use of the unbroken supersymmetry of the considered system. Super-
symmetry allows, owing to non-renormalization theorems, to extrapolate the result at
weak string coupling, where the system can be described in terms of strings and branes,
to strong coupling, where a description in terms of a black hole is valid. Following
this work similar tests have been performed succesfully for a large class of extremal and
near–extremal black holes, strengthening string theory’s position as a theory of quantum
gravity.

Black hole spacetimes, both with and without unbroken supersymmetries, which
asymptote to anti–de Sitter space are also interesting in the context of the conjectured
AdS/CFT correspondence. The correspondence, originally postulated by Maldacena in
1997 [5], asserts that string theory in anti–de Sitter space in d dimensions is equivalent to
a conformal quantum field theory without gravity living on the d−1 conformal boundary
of AdS. In a weaker form, the low energy limit of string theory, supergravity, is dual to
a strongly coupled CFT. Asymptotically AdS black hole solutions can be used in this
framework to approximate systems of physical interest described by field theories in the
strongly coupled regime, such as the quark-gluon plasma and various condensed matter
systems.

To find supersymmetric solutions of a supergravity theory one has to solve first or-
der differential equations called Killing spinor equations. This is typically easier than
trying to solve directly the equations of motion, which include the second order Ein-
stein equations. In this sense, supersymmetry can be regarded as a solution generating
technique. It turns out that it is possible to extend this method to non-supersymmetric
theories. This means that, at least for certain theories, it is possible to find a set of first or-
der equations, which in this case are not related to an underlying supersymmetry of the
theory, whose solutions are also solutions of all the equations of motion. This approach
is what is known as fake supergravity [6]. Fake supersymmetric solutions can exhibit
properties that are generally absent from genuine supersymmetric solutions, such as a
positive cosmological constant and explicit time–dependence.

Many open problems in black hole physics, for instance whether the cosmic censor-
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ship conjecture really holds, or what happens when black holes collide, or again how
accretion influences the growth and thermodynamics of black holes, are dynamical in
nature. To study such problems it would therefore be desirable to have dynamical black
hole solutions at our disposal. Unfortunately, not many such solutions are available in
the literature. Fake supergravity provides a way to obtain new dynamical black hole
solutions.

The goal of this thesis is to obtain novel black hole solutions, both supersymmetric
and non–supersymmetric, with potential application to the issues outlined above. The
thesis is organized as follows. In chapter 1 we briefly introduce the extended N = 2 su-
pergravity in four dimensions, writing the bosonic action, both for the ungauged and the
gauged theory, the equations of motion and the supersymmetry variations for vanishing
fermionic fields. In chapter 2 we review the classification of the timelike supersymmet-
ric solutions of N = 2, d = 4 gauged supergravity coupled to matter supermultiplets
originally published in [7]. We also present a simple supersymmetric black hole solu-
tion we found using this classification, which is, to the best of our knowledge, the first
supersymmetric solution to gauged supergravity with nontrivial hyperscalars. Chap-
ter 3 reviews the classification [8] of the fake supersymmetric solutions to fake N = 2,
d = 4 gauged supergravity coupled to vector multiplets, a theory obtained from the cor-
responding genuine supergravity by analytic continuation. Making use of these results,
in chapter 4 we obtain some fake supersymmetric solutions, representing multi–centered
black holes in a cosmological Friedmann-Lemaı̂tre-Robertson-Walker background, with
and without rotation, and with flat or curved spatial sections. We also study in some
detail the physical properties of the non–rotating single–centered solution. In chapter
5 we present a different multi–centered solution in a FLRW background, which is not
obtained from either genuine or fake supersymmetry, but rather as a generalization of
the previously known charged McVittie spacetime [9, 10]. As a particular subcase, this
solution describes multiple black holes in a background that is locally anti–de Sitter. We
also discuss some physical properties of the single–centered asymptotically AdS case
and generalize the solution to arbitrary dimension. Appendix A contains the conven-
tions we use throughout the thesis, while appendix B is a review of various geometric
structures used in the main text, in particular to define N = 2, d = 4 supergravity. Fi-
nally, in appendix C we give a succint account of the formalism for dynamical black
holes proposed by Hayward [11, 12, 13, 14], giving in particular a generalized definition
of black holes, and generalized laws of black hole dynamics.





CHAPTER 1

N = 2, d = 4 gauged supergravity

A field theory with local supersymmetry is necessarily invariant also under local space-
time translations, i.e. under spacetime diffeomorphisms. This means that it must include
gravity, which is why these theories are called supergravities. The first supergravity ac-
tion was constructed in 1976 by Freedman, Ferrara and van Nieuwenhuizen [15], and
more general theories were discovered afterwards, in higher dimensions, coupled with
matter supermultiplets, and with more than one supersymmetry generator.

Supergravity was initially considered as a good candidate for a quantum theory of
gravity, since, given the good high-energy behaviour at low perturbative order, there
was hope that it could be ultraviolet finite. This however turned out not to be the case,
and supergravity is by now considered to be just the low energy effective limit of a more
fundamental theory, namely superstring theory or M-theory.

Supergravities symmetric under N supersymmetry generators, with N > 1, are
known as extended supergravities. It is possible to use some or all of the vector fields
of a supergravity to gauge a Yang-Mills subgroup of the internal symmetries of the the-
ory; in this case the theory is called a gauged supergravity.

In what follows we will focus on extended N = 2 gauged supergravity in four di-
mensions. This class of theories is interesting on its own, e.g. for studying black hole
solutions, since it has enough symmetry to be manageable while still allowing for inter-
esting scalar manifold geometries an matter couplings. Moreover it has applications in
string theory, as it emerges naturally from compactifications of 10–dimensional super-
string theory and 11–dimensional M–theory.

In this chapter we briefly review N = 2, d = 4 gauged supergravity coupled to
matter. In section 1.1 we introduce the field content and the ungauged action for the
bosonic sector of the theory, in section 1.2 we discuss the internal symmetries and the
gauging, and in section 1.3 we give the expressions for the bosonic equations of motion
and the supersymmetry variations for vanishing fermions.

The discussion here is far from being exhaustive. For a more complete treatment we
refer e.g. to [16] or [17].

1



2 1.1 N = 2, d = 4 supergravity

1.1 N = 2, d = 4 supergravity

The field content of the theory includes of course the gravity multiplet, which consists
of the graviton eaµ, two gravitinos ψIµ (I = 1, 2) and a vector field A0

µ, called graviphoton.
The gravity multiplet can in general be coupled to matter multiplets, specifically to a
number nV of vector multiplets and a number nH of hypermultiplets.

Each of the nV vector multiplets, labeled by an index i = 1, . . . , nV , is composed of
one complex scalar Zi, two gaugini λIi, and one vector field Aiµ, while each hypermul-
tiplet contains four real scalars (the hyperscalars) and two hyperini. The hyperscalars and
hyperini of all the hypermultiplets in the theory are collectively denoted as respectively
qu (u = 1, . . . , 4nH) and ζα (α = 1, . . . , 2nH). The n̄ ≡ nV + 1 vector fields of the theory,
A0

µ , A
i
µ, are also referred to as the array AΛ

µ (Λ = 0, . . . , nV ).

Gravity Vector Hyper

Fields eaµ ψIµ A0
µ Aiµ λIi Zi ζα qu

Spin 2 3/2 1 1 1/2 0 1/2 0

Table 1.1: Field content of N = 2, d = 4 supergravity.

We describe every fermionic field of the theory, meaning the gravitinos, gauginos
and hyperini, as Weyl spinors.

In the ungauged theory, the self-coupling of both the complex scalars Zi and the hy-
perscalars qu is described by non-linear sigma models. The complex scalars parametrize
a target manifoldMV of complex dimension nV which turns out to be a special Kähler
manifold (see Appendix B.4). The special Kähler geometry, through the period matrix
NΛΣ defined by the relations (B.29), determines also the couplings of the nV scalars Zi

with the n̄ vector fields AΛ. The hyperscalars, on the other hand, parametrize a quater-
nionic Kähler manifoldMH (described in Appendix B.6) of real dimension 4nH . In the
ungauged theory, besides the self-coupling determined by the sigma model, the hyper-
scalars are only coupled minimally to gravity and do not couple directly to the vector
multiplet fields.

In this thesis we are interested in bosonic solutions, that is, solutions on which all the
fermionic fields vanish. We will therefore concentrate on the bosonic sector of the theory.
The bosonic sector of the action for the ungauged N = 2, d = 4 supergravity is

S =

∫
d4x
√
|g|
[
R+ 2Gī ∂µZi∂µZ̄ ̄ + 2Huv ∂µq

u∂µqv

+2 IΛΣ F
ΛµνFΣ

µν − 2RΛΣ F
Λµν ? FΣ

µν

]
, (1.1)

where Gī (Z, Z̄) and Huv (q) are the metrics respectively on MV and MH , the field
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strengths are defined as usual, FΛ = dAΛ, ?F is the Hodge dual of F , and we have
introduced the following abbreviations for the real and imaginary parts of the period
matrix:

IΛΣ ≡ Im(NΛΣ) , RΛΣ ≡ Re(NΛΣ) . (1.2)

1.2 Symmetries and gauging

From the expression (1.1) it is clear that all the isometries of the quaternionic Kähler
metric Huv are symmetries of the action. To preserve the supersymmetry, the isometries
must also preserve the quaternionic Kähler structure, which means that they must be
generated by quaternionic Killing vectors (see Appendix B.7).

The isometries of the Kähler metric Gī, on the other hand, should preserve the spe-
cial Kähler structure, meaning that they should not only be generated by holomorphic
Killing vectors, but also that they must be embedded in the symplectic group Sp(n̄,R)

as explained in Appendix B.5. This however is still not sufficient to guarantee that these
isometries are symmetries of the action (1.1). The isometries of Gī which are symme-
tries of the action are only those which can be embedded in the subgroup of Sp(n̄,R)

generated by 2 n̄× 2 n̄ matrices

S =

(
a b

c −aT

)
(1.3)

with b = c = 01. If the theory admits a prepotential F(χ) these are exactly the symplectic
transformations leaving F = 1

2χ
ΛFΛ invariant.

Since the theory contains n̄ = nV +1 vector fields, we can choose to gauge a symmetry
subgroup of the product scalar manifold MV ⊗MH with dimension up to n̄. This is
generated by holomorphic Killing vectors kΛ(Z) = kΛ

i(Z)∂i+kΛ
ı̄(Z̄)∂ı̄ and quaternionic

Killing vectors kΛ(q) = kΛ
u(q)∂u satisfying the same Lie algebra

[kΛ, kΣ] = −fΛΣ
ΓkΓ , [kΛ, kΣ] = −fΛΣ

ΓkΓ . (1.4)

The matrices SΛ associated with kΛ should also provide a representation of the same Lie
algebra, [SΛ,SΣ] = −fΛΣ

ΓSΓ, which means

SΛ =

(
aΛ 0

0 −(aΛ)T

)
with (aΛ)Γ

Σ = fΛΣ
Γ . (1.5)

The constraint (B.52) can then be written, for the section V , as

fΛΣ
ΩLΣMΩ = 0 , (1.6)

1It would be possible to modify the action by adding a Chern-Simons term in such a way that transforma-
tions with c 6= 0 would also be symmetries of the action. We will not however consider this possibility.
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and using equation (B.51) it implies the conditions

LΛPΛ = 0 , LΛkΛ
i = 0 , L̄Λ

kΛ
i = −if̄Λ iPΛ . (1.7)

After the gauging procedure, the action (1.1) is modified to

S =

∫
d4x
√
|g|
[
R+ 2GīDµZ

iDµZ̄ ̄ + 2HuvDµq
uDµqv

+2 IΛΣ F
ΛµνFΣ

µν − 2RΛΣ F
Λµν ? FΣ

µν − V (Z, Z̄, q)
]
, (1.8)

where now the field strengths are

FΛ = dAΛ +
1

2
gfΣΓ

ΛAΣ ∧AΓ , (1.9)

where g is the gauge coupling constant, and the covariant derivatives acting on the
scalars are

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i(Z) , Dµq
u = ∂µq

u + gAΛ
µkΛ

u(q) . (1.10)

The gauged theory includes a scalar potential,

V (Z, Z̄, q) =

g2

2

[
L̄ΛLΣ(4HuvkΛ

ukΣ
v − 3PΛ

xPΣ
x) + GīfΛ

if̄
Σ
̄PΛ

xPΣ
x − 1

2
IΛΣPΛPΣ

]
, (1.11)

where IΛΣIΣΓ ≡ δΛ
Γ and the other quantities, including the moment maps PΛ(Z, Z̄)

and PΛ
x(q), are defined in Appendix B. Using the identity

GīfΛ
if̄

Σ
̄ = −1

2
IΛΣ − L̄ΛLΣ (1.12)

the potential can be rewritten in the form

V (Z, Z̄, q) = g2

[
2L̄ΛLΣ(HuvkΛ

ukΣ
v − PΛ

xPΣ
x)− 1

4
IΛΣ(PΛPΣ + PΛ

xPΣ
x)

]
. (1.13)

The gauging procedure introduces new couplings in the theory. In particular the
hyperscalars are now directly coupled to the gauge fields and to the vector multiplets
complex scalars through the covariant derivatives and the scalar potential.

We will later restrict to abelian gaugings. If the gauge subgroup is abelian, the struc-
ture constants fΛΣ

Γ are zero. Therefore the matrices SΛ in (1.5) vanish, and so do also the
moment maps PΛ (B.51), and the holomorphic Killing vectors kΛ (B.41). The covariant
derivatives acting on the complex scalars Zi reduce then to ordinary derivatives. This
is a consequence of the fact that the sections LΛ (or equivalently χΛ) transform in the
adjoint representation of the gauge group, which is trivial in the abelian case.
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It should also be noted that even in the absence of hypermultiplets, nH = 0, the
triholomorphic moment maps PΛ

x can be non-vanishing. In this case they are constants
known as Fayet-Iliopoulos terms, and correspond to the gauging of a subgroup of the
SU(2)× U(1) R-symmetry group.

1.3 Equations of motion and supersymmetry variations

Following [7] we write the bosonic equations of motion obtained from the action (1.8) as

Eaµ ≡ −
1

2
√
|g|

δS

δeaµ
= 0 , E i ≡ −

1

2
√
|g|

δS

δZi
= 0 ,

EΛ
µ ≡ 1

8
√
|g|

δS

δAΛ
µ

= 0 , Eu ≡ − 1

4
√
|g|

Huv
δS

δqv
= 0 , (1.14)

and the Bianchi identities for the vector field strengths as

BΛµ ≡ Dν ? F
Λ νµ , (1.15)

with

Eµν = Gµν + 8IΛΣF
Λ +

µ
ρFΣ−

νρ + 2Gī[D(µZ
iDν)Z̄

 − 1

2
gµνDρZ

iDρZ̄]

+2Huv [Dµq
uDνq

v − 1

2
gµνDρq

uDρq
v] +

1

2
gµνV (Z, Z̄, q) , (1.16)

EΛ
µ = Dν ? FΛ

νµ +
1

4
g(kΛ ı̄D

µZ̄ ı̄ + k̄Λ iD
µZi) +

1

2
gkΛuD

µqu , (1.17)

E i = D2Zi + ∂iFΛ
µν ? FΛ

µν +
1

2
∂iV (Z, Z̄, q) , (1.18)

Eu = D2qu +
1

4
∂uV (Z, Z̄, q) , (1.19)

where the dual field strengths FΛ are defined by

FΛµν ≡ −
1

4
√
|g|

δS

δ ? FΛ
µν

= 2Re(N̄ΛΣF
Σ +

µν) = RΛΣF
Σ
µν + IΛΣ ? FΣ

µν . (1.20)

The supersymmetry transformation rules of the bosons are the same as in the un-
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gauged case,

δεe
a
µ = − i

4
ψ̄I µγ

aεI + c.c. , (1.21)

δεA
Λ
µ =

1

4
L̄Λ
εIJ ψ̄I µεJ +

i

8
fΛ

iεIJ λ̄
Iiγµε

J + c.c. , (1.22)

δεZ
i =

1

4
λ̄IiεI , (1.23)

δεq
u =

1

4
UαI

uζ̄αεI + c.c. , (1.24)

while for vanishing fermionic fields, the rules for the fermions are

δεψI µ = DµεI +

[
T+

µνεIJ −
1

2
SxηµνεIK(σx)KJ

]
γνεJ , (1.25)

δελ
Ii = i /DZiεI +

[(
/G
i+

+W i
)
εIJ +

i

2
W i x (σx)IKε

KJ

]
εJ , (1.26)

δεζα = iUαI u /Dq
uεI +Nα

IεI , (1.27)

where the covariant derivative on spinors is given by

DµεI =

[
∇µ +

i

2

(
Qµ + gAΛ

µPΛ

)]
εI +

i

2

(
Axu∂µq

u + gAΛ
µPΛ

x
)
σxI

JεJ , (1.28)

and Qµ is the pullback to spacetime of the Kähler connection

Q = − i
2

(
∂iK dZi − ∂ı̄K dZ̄ ı̄

)
. (1.29)

The quantities Sx,W i,W i x and NαI appearing in these rules are called fermion shifts
and are defined as

Sx =
1

2
gLΛPΛ

x , (1.30)

W i =
1

2
gL̄Λ

kΛ
i = − i

2
gGīf̄Λ

̄PΛ , (1.31)

W i x = gGīf̄Λ
̄PΛ

x , (1.32)

Nα
I = gUα

I
uL̄Λ

kΛ
u , (1.33)

while Tµν and Giµν are respectively the graviphoton and matter vector field strengths,
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defined by

Tµν ≡ 2iLΣIΣΛF
Λ
µν , (1.34)

Giµν ≡ −Gīf̄Σ
̄IΣΛF

Λ
µν , (1.35)

or equivalently, combining the vector field strengths FΛ and their duals FΛ into a sym-
plectic vector F = (FΛ , FΛ)T , by

T+ = 〈 V|F 〉 and Gi+ =
i

2
Gī〈D̄V̄|F 〉 . (1.36)





CHAPTER 2

Supersymmetric solutions

The first efforts towards a systematic characterization of supersymmetric solutions to
supergravity theories dates back to 1982, when Gibbons and Hull [18] obtained a partial
classification for pure N = 2, d = 4 ungauged supergravity. Since then many more re-
sults have been obtained, and in recent years powerful techniques have been developed
[19, 20, 21], allowing further advances in the field.

Restricting our attention to N = 2, d = 4 supergravity, the most complete classifi-
cation to date is the one given by Meessen and Ortı́n in [7], where they characterize all
the bosonic timelike supersymmetric solutions to the theory coupled both to vector mul-
tiplets and to hypermultiplets, with non-abelian gauging of the isometries of the scalar
manifold, using the bilinear method of [20]. Previous, less complete classifications in-
clude those in [22, 23, 24, 25, 26, 27].

In this chapter we review the results of [7], and subsequently use them to obtain a
new supersymmetric black hole solution, which we will present in a paper currently
under preparation [28]. This is, to the best of our knowledge, the first analytic1 super-
symmetric black hole solution to gauged supergravity having nontrivial hyperscalars,
with the exception of the solutions that can be obtained with the method outlined in
[30], in which however the hyperscalars are required to be covariantly constant.

The chapter is organized as follows. In section 2.1 we first introduce the Killing spinor
identities for a generic supergravity theory following the treatment in [31]. Then we
apply the formalism toN = 2, d = 4 supergravity, obtaining the minimal set of equations
of motion that must be imposed on a supersymmetric configuration to ensure that all
the equations of motion are satisfied. In section 2.2, starting from the Killing spinor
equations, we obtain the equations characterizing supersymmetric field configurations.
In section 2.3 we impose the residual equations of motion, and we summarize the form
of the fields of a supersymmetric solution and the equations they have to satisfy. Finally
in section 2.4 we apply these results to a simple theory with one vector multiplet and
one hypermultiplet, and obtain our black hole solution.

1Numerical supersymmetric black hole solutions in AdS4 with nontrivial hypermultiplets where obtained
in [29]

9



10 2.1 Killing Spinor Identities

2.1 Killing Spinor Identities

Consider a generic supergravity theory with action S. The local supersymmetry of the
theory means that there exists some supersymmetric transformation, with parameter
ε(x), acting on all the bosonic fields φb and fermionic fields φf of the theory such that

δεS ≡
∑
b

δS

δφb
δεφ

b +
∑
f

δS

δφf
δεφ

f = 0 . (2.1)

If we now vary this identity over the fermions, and subsequently set the fermionic
fields to zero, we obtain

δ(δεS)

δφf2

∣∣∣∣
φf=0

=

∑
b

(
δS

δφb
δ(δεφ

b)

δφf2
+

δ2S

δφf2δφb
δεφ

b

)
+
∑
f1

(
δS

δφf1

δ(δεφ
f1)

δφf2
+

δ2S

δφf2δφf1
δε φ

f1

)
φf=0

=

∑
b

δS

δφb
δ(δε φ

b)

δφf2
+
∑
f1

δ2S

δφf2δφf1
δε φ

f1


φf=0

= 0 , (2.2)

where the last equality follows because the bosonic quantities δS
δφb and δεφ

f are of sec-
ond order in fermionic fields, and consequently their fermionic variation vanishes for
vanishing fermionic fields. Equation (2.2) follows purely from the supersymmetry of the
action and is true for every bosonic field configuration.

If we restrict eq. (2.2) to bosonic supersymmetric field configurations, i.e. bosonic
field configurations satisfying

δεK φ
f
∣∣
φf=0

= 0 , (2.3)

for some supersymmetry parameter εK(x) (a Killing spinor), then we are left with

δ(δεKS)

δφf

∣∣∣∣
φf=0

=
∑
b

δS

δφb
δ(δεKφ

b)

δφf

∣∣∣∣∣
φf=0

= 0 . (2.4)

These are known as Killing Spinor Identities [31], and relate the bosonic equations of mo-
tion δS

δφb to each other through the variation with respect to the fermionic fields of the
supersymmetry variation δεKφ

b of the bosonic fields. This means that in general one
needs to impose only a subset of the equations of motion on a bosonic supersymmetric
configuration to ensure that all the equations of motion are satisfied.

We now want to apply this formalism to N = 2, d = 4 supergravity. Using the super-
symmetry transformation rules of the bosonic fields eqs. (1.21–1.24) and the definitions
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of the equations of motion (1.14) inside eq. (2.4), the Killing spinor identities become

EaµγaεI − 4i εIJLΛEΛ
µεJ = 0 , (2.5)

E iεI − 2iεIJ f̄ iΛ/EΛεJ = 0 , (2.6)

Eu UαIuεI = 0 . (2.7)

By performing duality rotations on the above identities, it is possible to obtain a formally
electric-magnetic duality-covariant version of them. These are:

EaµγaεI − 4i〈 Eµ| V 〉εIJεJ = 0 , (2.8)

E iεI + 2i〈 /E | Ū i 〉εIJεJ = 0 , (2.9)

Eu UαIuεI = 0 , (2.10)

where Eµ is a symplectic vector containing both the Maxwell equations and Bianchi iden-
tities:

Eµ ≡
(
BΛµ

EΛ
µ

)
. (2.11)

The vector bilinear V a ≡ iε̄IγaεI constructed out of Killing vectors can be either a null
or a timelike vector, dividing the supersymmetric field configurations in two classes. We
will consider only the timelike case. In this case we can use an orthonormal frame whose
time component e0 is given by V/|V |. Acting on the identities (2.8–2.10) on the left with
gamma matrices and conjugate spinors, then, we obtain

E0m = Emn = 0 , (2.12)

〈 V/X| E0 〉 =
1

4
|X|−1E00 , (2.13)

〈 V/X| Em 〉 = 0 , (2.14)

〈 Ū ı̄| E0 〉 =
1

2
e−iαE ı̄ , (2.15)

〈 Ū ı̄| Em 〉 = 0 , (2.16)

Eu = 0 , (2.17)
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where X ≡ eiα|X| ≡ 1
2ε
IJ ε̄IεJ is the scalar bilinear.

Using the special geometric completeness relation (B.34), these identities imply that
every timelike supersymmetric configuration automatically satisfies all the equations of
motion except E00 = 0, E i = 0 and the symplectic vector of equations E0 = 0. They also
imply that to guarantee that all the equations of motion are satisfied, it suffices to impose
that the time components of the Maxwell equations and Bianchi identities both vanish,
E0 = 0.

2.2 Supersymmetric configurations

Our goal is to obtain supersymmetric bosonic solutions of the equations of motion (1.16–
1.19) derived from the action (1.8). We will first look for supersymmetric field configu-
rations, and later impose the remaining equations of motion, namely the 0-components
of the Maxwell equations and Bianchi identities, as explained in section 2.1.

We will for the moment consider the field strengths FΛ and the vector potentials AΛ

as independent fields; they will become related once we impose the Bianchi identities.
Supersymmetric field configurations are those for which the supersymmetry variations
of the fermionic fields (1.25–1.27) vanish. More precisely, they are field configurations
for which the equations δεψI µ = δελ

Ii = δεζα = 0, which are first order differential equa-
tions for the supersymmetry parameters, admit at least one solution εI . The equations
are known as Killing Spinor Equations and their solutions as Killing spinors.

The Killing spinor equations imply other equations for the bilinears

X =
1

2
εIJ ε̄IεJ , Va = iε̄IγaεI , V xa = iσxI

J ε̄IγaεJ , Φxab = iσxIJ ε̄IγabεJ (2.18)

constructed out of Killing spinors. These can be obtained by acting on the left with
gamma matrices and conjugate spinors on the Killing spinor equations.

From the gravitino supersymmetry transformation rule eq. (1.25) the independent
equations we get in this way are

DµX = iV νT+
νµ +

i√
2
SxV xµ , (2.19)

∇(µVν) = 0 , (2.20)

dV = 4iXT̄− −
√

2S̄xΦx + c.c. , (2.21)

D(µV
x
ν) = T̄−(µ|ρΦ

x
|ν)
ρ +

i√
2
XS̄xgµν + c.c. , (2.22)

DV x = −iεxyzS̄yΦz + c.c. , (2.23)
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where V , V x and Φx are the differential forms associated with the corresponding bilin-
ears, and the SU(2)-covariant derivative is given by

DV x = dV x + εxyzAy ∧ V z . (2.24)

From the rule for the gauginos, eq. (1.26), we get the equation

iX̄εKIDµZi + iΦKI µνDνZ
i − 4iεIJGi+µ

νV
K
J
ν

− iW iεIJV KJ
µ − iW i IJV KJ µ = 0 , (2.25)

while the rule for the hyperinos eq. (1.27), which using (B.61) and the completeness rela-
tion for Pauli matrices (A.31), can be rewritten as

/DquεI − iKxuvσxJI /DqvεJ − igεIJ L̄Λ
kΛ

uεJ +
1

2
gL̄Λ

DuPΛ
xσx IJεJ = 0 , (2.26)

gives the equation:

V IK
µDµq

u− iKxuvσxJIV JKµDµq
v + gXδIKL̄Λ

kΛ
u +

i

2
gXL̄Λ

DuPΛ
xσx IK = 0 . (2.27)

Equation (2.20) tells us that V µ, which as said before we are taking to be timelike, is a
Killing vector, as usual in supergravity, while the V x are not Killing because of eq. (2.22).

Equation (2.19) can be rewritten in the form

V νT+
νµ = −iDµX −

1√
2
SxV xµ , (2.28)

and its consistency requires
V µDµX = 0 . (2.29)

The antisymmetric part of equation (2.25) gives

V νGi+
νµ =

1

2
X̄DµZ

i +
1

4
W iVµ −

i

4
√

2
W ixV xµ , (2.30)

which implies
V µDµZ

i + 2XW i = 0 . (2.31)

The special geometry completeness relation (B.34) implies

FΛ + = iL̄ΛT+ + 2fΛ
iG

i+ . (2.32)

Substituting equations (2.28) and (2.30) in (2.32), and using (1.7) and (1.12) we obtain

V νFΛ +
νµ = L̄Λ

DµX + X̄DµLΛ +
i

8
gIΛΣ(PΣVµ +

√
2PΣ

xV xµ) , (2.33)

which through (A.17) allows us to obtain for the field strengths FΛ the expression

FΛ = −1

2
D[RΛV ]− 1

2
?

{
V ∧

[
DIΛ +

√
2g

(
RΛRΣPxΣ −

1

8|X|2 I
ΛΣPxΣ

)
V x
]}

, (2.34)
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in terms of the zero Käler weight sections

R ≡ Re

( V
X

)
, I ≡ Im

( V
X

)
. (2.35)

The trace of equation (2.27) is

V µDµq
u − i

√
2KxuvV

xµDµq
v + 2gXL̄Λ

kΛ
u = 0 , (2.36)

and its real and imaginary parts are

V µDµq
u + 2g|X|2RΛkΛ

u = 0 , (2.37)

KxuvV
xµDµq

v +
√

2g|X|2IΛkΛ
u = 0 . (2.38)

To make further progress we introduce a time coordinate t associated to the timelike
Killing vector V by

V µ∂µ ≡
√

2∂t . (2.39)

It is then always possible to make the gauge choice

V µAΛ
µ =
√

2AΛ
t = −2|X|2RΛ . (2.40)

In this gauge, because of (1.7), equations (2.29), (2.31) and (2.37) reduce to the require-
ment of time-independence for all the scalar fields and the bilinear X ,

∂tZ
i = ∂tX = ∂tq

u = 0 , (2.41)

which of course implies also the time-independence of theR and I sections.
The definition (2.39) and the Fierz identity V 2 = 4|X|2 imply that the 1-form V must

take the form
V = 2

√
2|X|2(dt+ ω) , (2.42)

where ω is a spatial 1-form, time-independent since V is Killing, which by definition
must satisfy

dω =
1

2
√

2
d

(
V

|X|2
)
. (2.43)

This last expression, using equations (2.19) and (2.21), becomes

dω = − i

2
√

2
?

[(
XDX̄ − X̄DX + ig

√
2|X|2RΛPΛ

xV x
)
∧ V

|X|4
]
. (2.44)

From the Fierz identities we know that the V x are mutually orthogonal and that they
are also orthogonal to V . Furthermore they imply

V µVµ = 4|X|2 and V xµV xµ = −2|X|2 . (2.45)
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This means that the metric can be written as

ds2 =
1

4|X|2V ⊗ V −
1

2|X|2 δxy V
x ⊗ V y , (2.46)

and that the V x are a Dreibein for a 3-dimensional Euclidean metric:

δxyV
x ⊗ V y ≡ hmndx

mdxn , (2.47)

where we introduced the remaining 3 spatial coordinates xm (m = 1, 2, 3). The 4-
dimensional metric takes the coordinate-form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2hmndx
mdxn . (2.48)

In what follows all objects with flat (x, y, . . . ) or curved (m,n, . . . ) 3-dimensional indices
will refer to the above Dreibein and the corresponding 3-dimensional metric. The po-
sition of the flat x, y, . . . indices is irrelevant, since they are raised and lowered with
δxy .

Using these conventions, eq. (2.44) takes the 3-dimensional form

(dω)xy = 2 εxyz

{
〈I|D̃zI〉 −

g

2
√

2|X|2
RΛPzΛ

}
, (2.49)

where D̃ is the covariant derivative with respect to the effective 3-dimensional gauge
connection

ÃΛ
m ≡ AΛ

m − ωmAΛ
t = AΛ

m +
√

2|X|2RΛωm . (2.50)

More information on the spatial 3-dimensional metric comes from equation (2.23). Its
purely spatial part of equation takes the form

dV x + εxyzÃy ∧ V z + T x = 0 , (2.51)

with

Ãxm ≡ Axm − g ÃΛ
mPxΛ , (2.52)

T x =
g√
2
IΛPyΛ V

y ∧ V x . (2.53)

Equation (2.51) can be interpreted as Maurer-Cartan’s first structure equation for the
Dreibein V x, with spin connection

$xyz(V ) = −εyzwÃwx +
√

2g IΛP
[y
Λ δz]x . (2.54)

To summarize, we have shown that, in the timelike case, a bosonic supersymmetric
field configuration, with the gauge choice (2.40), necessarily satisfies equations (2.48),
(2.49), (2.51), (2.41), (2.34) and (2.38). In particular, at this stage no constraint is imposed
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on R and I, and consequently on the complex scalars Zi, other than t-independence.
These necessary conditions are also sufficient to have supersymmetry, since as proven in
[7] for any such configuration there is always a Killing spinor, taking the form

εI = X1/2ηI , (2.55)

where ηI is a constant spinor satisfying the constraints

ηI + iγ0 εIJηJ = 0 and ηI + γ0(x)σ(x)J
IηJ = 0 (no sum over x) . (2.56)

Each of the four compatible constraints in (2.56) is able to project out half of the compo-
nents of ηI . However only three of the constraints are independent, so that of the eight
real components one always survives. The configurations are then at least 1

8 -BPS.

2.3 Timelike supersymmetric solutions

As argued in section 2.1, if a supersymmetric configuration satisfies the time components
of the Maxwell equations and of the Bianchi identities, then it solves all the equations of
motion of the theory.

The time component of the Hodge dual of the Bianchi identities is just the Bianchi
identity of the effective 3-dimensional field strength F̃Λ, which has the following 3-
dimensional expression:

F̃Λ
xy ≡ −

1√
2
εxyz{D̃zIΛ + gBΛ

z} , (2.57)

where

BΛ
z ≡
√

2

[
RΛRΣ +

1

8|X|2 I
ΛΣ

]
PΣ

z . (2.58)

The integrability equation of (2.57) takes the form of a generalized gauge covariant
Laplace equation for the IΛ,

D̃2IΛ + gD̃xBΛ
x = 0 , (2.59)

where the covariant derivatives include both the gauge connection and the spin connec-
tion for the 3-dimensional base space with metric hmn.

The time component of the Maxwell equations takes instead the form of a sort of
Bianchi identity for the dual field strengths FΛ, which can be written as

− 1√
2
εxyzD̃xF̃Λ yz =

1√
2
g〈I|D̃xI〉 PxΛ +

1

2
g2fΛ(Ω

Γf∆)Γ
Σ IΩI∆IΣ

+
g2

4|X|2R
Σ [kΛukΣ

u − PΛ
xPΣ

x ] , (2.60)
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where F̃Λ is defined by

F̃Λ xy ≡ −
1√
2
εxyz{D̃zIΛ + gBΛ z} , (2.61)

with

BΛ x ≡
√

2

[
RΛRΣ +

1

8|X|2 RΛΓI
ΓΣ

]
PxΣ . (2.62)

To summarize, a timelike supersymmetric solution of N = 2, d = 4 gauged super-
gravity as defined by the action (1.8) is given by a metric gµν , n̄ = nv + 1 vector fields
AΛ
µ , nV complex scalar fields Zi and 4nH real hyperscalars qu such that the metric and

vector fields take the form

ds2 = 2 |X|2 (dτ + ω)2 − 1

2 |X|2
hmndy

mdyn , (2.63)

AΛ = −1

2
RΛV + ÃΛ

mdy
m , (2.64)

where the 3-dimensional metric hmn must admit a Dreibein V x satisfying the structure
equation

dV x + εxyz
(
Ay − gÃΛPΛ

y
)
∧ V z +

g√
2
IΛPΛ

yV y ∧ V x = 0 , (2.65)

|X|2 can be determined fromR and I,

1

2 |X|2
= 〈R|I〉 , (2.66)

the 1-form V is given by

V = 2
√

2 |X|2 (dτ + ω) , (2.67)

and the spatial 1-form ω satisfies

(dω)xy = 2 εxyz

{
〈I|D̃zI〉 −

g

2
√

2|X|2
RΛPzΛ

}
, (2.68)

The complex scalars Zi, the sections R and I, the 1-form ω, the function X and the
hyperscalars qu are all time-independent. The complex scalars are determined, in a way
that depends on the chosen parametrization of the special Kähler manifold, from the
sectionsR and I.

The effective 3-dimensional gauge connection ÃΛ must satisfy

(D̃ÃΛ)xy = F̃Λ
xy = − 1√

2
εxyz{D̃zIΛ + gBΛ

z} , (2.69)



18 2.4 A black hole solution

from which follows the integrability condition (2.59). A similar condition for the IΛ’s is
given by (2.60), which can be rewritten as

D̃2IΛ + gD̃xBΛ x =
g√
2
〈I|D̃xI〉 PxΛ +

g2

2
fΛ(Ω

Γf∆)Γ
Σ IΩI∆IΣ

+
g2

4|X|2R
Σ [kΛukΣ

u − PΛ
xPΣ

x ] . (2.70)

Finally, the hyperscalars must satisfy

KxuvV
xµDµq

v +
√

2g|X|2IΛkΛ
u = 0 . (2.71)

For a given special geometric model the sectionsR can always, at least in principle, be
determined in terms of the sections I, by solving the so-called stabilisation equations. This
means that to obtain a supersymmetric solution one needs to solve the above equations
for IΛ, IΛ, ω, V x and qu.

In what follows we will restrict ourselves to abelian gauging, in which case some of
the above equations simplify. Namely, equation (2.49) becomes

(dω)xy = 2 εxyz

{
〈I|∂zI〉 −

g

2
√

2|X|2
RΛPzΛ

}
, (2.72)

the expression for F̃Λ

(dÃΛ)xy = F̃Λ
xy = − 1√

2
εxyz{∂zIΛ + gBΛ

z} , (2.73)

and equations (2.59) and (2.60) simplify to

∇̃2IΛ + g∇̃xBΛ
x = 0 (2.74)

∇̃2IΛ + g∇̃xBΛ x =
g√
2
〈I|∂xI〉PxΛ +

g2

4|X|2R
Σ [kΛukΣ

u − PΛ
xPΣ

x] , (2.75)

where ∇̃m is the covariant derivative associated with the 3-dimensional metric hmn.

2.4 A black hole solution

We now turn to the task of obtaining an explicit solution with non-trivial hyperscalars.
To do so, we consider a simple theory with just one vector multiplet and one hypermul-
tiplet, nV = nH = 1.

More specifically, let the hypermultiplet be the universal hypermultiplet [32]. This is
called universal since it arises as a subsector in every N = 2 Calabi-Yau compactifica-
tion of M-theory or Type II string theory, and it parameterizes the quaternionic space
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SU(2, 1)/U(2). The metric on this space can be written in terms of the hyperscalars
(φ, a, ξ0, ξ0) as:

Huvdq
udqv = dφ2 +

1

4
e4φ

(
da− 1

2
〈ξ|dξ〉

)2

+
1

4
e2φ[(dξ0)2 + (dξ0)2] , (2.76)

and the corresponding SU(2) connection has components

A1 = eφdξ0 , A2 = eφdξ0 , A3 =
e2φ

2

(
da− 1

2
〈ξ|dξ〉

)
. (2.77)

As of the vector multiplet, we choose a special geometric model specified by the
prepotential

F(χ) = −iχ0χ1 , (2.78)

with the parametrization χ0 = 1, χ1 = Z. Then it is easy to obtain from (B.21) the Kähler
potential K = − log [4Re(Z)] and the scalar metric

G = ∂Z∂Z̄K =
1

4Re(Z)2
, (2.79)

while the period matrix NΛΣ, giving the scalar-vector couplings, is calculated from
eq. (B.31) to be

N = −i
(
Z 0

0 1
Z

)
. (2.80)

Using the definition (2.35), the dependence of the R section on the I section for this
special geometric model is readily seen to be

R0 = −I1 R1 = −I0 R0 = I1 R1 = I0 , (2.81)

so that the complex scalar is given by

Z =
R1 + iI1

R0 + iI0 =
I0 − iI1

I1 − iI0 , (2.82)

and
1

2 |X|2
= 〈R|I〉 = 2

(
I0I1 + I0I1

)
. (2.83)

Since the theory includes two vector fields, we can choose to gauge up to two isome-
tries of the metric Huv . We choose to gauge the (commuting) isometries generated by the
Killing vectors

kΛ = k̃Λ∂a + δ0
Λc
(
ξ0∂ξ0 − ξ0∂ξ0

)
(2.84)

where k̃Λ and c are constants, meaning that we are gauging the R group of the transla-
tions along a with the combination AΛk̃Λ, and the U(1) group of rotations in the ξ0–ξ0
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plane with the field A0. The triholomorphic moment maps associated with the Killing
vectors (2.84) can be obtained from (B.66), and are

P1
Λ = −δ0

Λc ξ
0eφ , P2

Λ = δ0
Λc ξ0e

φ ,

(2.85)

P3
Λ = δ0

Λc

[
1− 1

4
e2φ
(
(ξ0)2 + (ξ0)2

)]
+

1

2
k̃Λe

2φ .

With these choices the scalar potential (1.13) reads

V =
g2

2

{
1

Z + Z̄

[
e4φ

4

[
k̃0 −

c

2

(
(ξ0)2 + (ξ0)2

)]2
− c2 − k̃0c e

2φ

]

+
ZZ̄

Z + Z̄

e4φ

4
k̃2

1 − k̃1c e
2φ

}
. (2.86)

For simplicity we will look for solutions withR0 = R1 = I0 = I1 = 0, which implies
from (2.82) that the scalar Z is real and from (2.64) that the gauge fields are in a purely
magnetic configuration. From eq. (2.72) follows that ω is a closed 1-form, and can be
reabsorbed with a redefinition of the coordinate t, leading to static solutions. This choice
also implies that eq. (2.75) is satisfied trivially.

We will also take the hyperscalar a to be constant and ξ0 = ξ0 = 0, so that the moment
maps (2.85) become

P1
Λ = P2

Λ = 0 , P3
Λ = δ0

Λc+
1

2
k̃Λe

2φ . (2.87)

Eq. (2.65) implies then dV 3 = 0, making it possible to define a coordinate r such that
locally

V 3 = dr . (2.88)

We will impose radial symmetry on the solution by requiring the scalar fields Z, φ and
the sections IΛ to depend only on r.

The φ, ξ0 and ξ0 components of equation (2.38) reduce then to the constraint

AΛ
x k̃Λ = 0 , =⇒ ÃΛk̃Λ = 0 (2.89)

while the a component becomes

φ′ =
g

2
√

2
e2φ IΛk̃Λ , (2.90)

where the prime stands for a derivative with respect to r.
If we now introduce the remaining coordinates θ and φ by choosing

V 1 = eW (r)dθ and V 2 = eW (r)f(θ)dϕ , (2.91)
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where at this stage f is an arbitrary function of θ, the remaining components of eq. (2.65)
are satisfied provided that the following conditions are met

W ′(r) = − g√
2
P3

ΛIΛ = − g√
2

(
c I0 +

e2φ

2
IΛk̃Λ

)
, (2.92)

Ã0 = −f
′(θ)

gc
dϕ . (2.93)

From (2.93) and the constraint (2.89) we also have

Ã1 =
k̃0

k̃1

f ′(θ)

gc
dϕ . (2.94)

Finally, eq. (2.73) gives the following two equations[(
IΛk̃Λ

)′
− g√

2

(
IΛ
)2
k̃ΛP

3
Λ

]
e2W (r) = (−1)Λ

√
2k̃0

gc

f ′′(θ)

f(θ)
, (no sum over Λ) , (2.95)

while eq. (2.74) is automatically satisfied since we obtained F̃Λ as the exterior derivative
of the effective connection ÃΛ.

Equation (2.90) allows us to use the chain rule to trade the coordinate r for φ in
eq. (2.95), which summing over Λ becomes

1

2
∂φ

[(
IΛk̃Λ

)2
]
−
(
IΛk̃Λ

)2

+ 2 I0k̃0

(
I1k̃1 − I0c e−2φ

)
= 0 . (2.96)

If we impose the condition

I1k̃1 = I0c e−2φ (2.97)

this equation is solved by

I0 =
αeφ

k̃0 + c e−2φ
, I1 =

c

k̃1

αe−φ

k̃0 + c e−2φ
, (2.98)

where α is an integration constant. Substituting these expressions back in (2.95) for Λ = 0

or Λ = 1, we obtain an expression for the function W (r),

e2W (r) =

[
2

αgc

(
k̃0 + c e−2φ

)
e−φ

]2
f ′′(θ)

f(θ)
. (2.99)

The expression (2.99) is also a solution of equation (2.92), which is non-trivial, proving
the constraint eq. (2.97) to be consistent with all the equations. From (2.99) we also
conclude that f ′′(θ)/f(θ) should be a positive constant, therefore f(θ) in general takes
the form

f(θ) = γ sinh (δθ + ρ) , (2.100)
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where γ, δ and ρ are constants. We can now go back to the coordinate r by solving
equation (2.90) to obtain the dependence of φ on r, obtaining

φ = −1

3
log

(
− 3αg

2
√

2
r + β

)
, (2.101)

where β is yet another integration constant.
All the integration constants can be reabsorbed with the coordinate change

( t , r , θ , ϕ ) −→
(

4
√

2α

gk̃1c
t , −2

√
2

3αg

(
r3 − β

)
,
θ − ρ
δ

,
ϕ

δγ

)
, (2.102)

allowing us to write the complete solution as

ds2 =
16 r2

g2k̃1c

(1 +
k̃0

c

1

r2

)2

r2dt2 −
(

1 +
k̃0

c

1

r2

)−2
dr2

r2
− 1

2

(
dθ2+ sinh2 θ dϕ2

) , (2.103)

A0 = −cosh θ

gc
dϕ , A1 =

k̃0

k̃1

cosh θ

gc
dϕ , (2.104)

φ = − log r , Z =
c

k̃1

r2 . (2.105)

We start the analysis of the solution by noting that it has no free parameters, since
all the constants appearing in (2.103-2.105) are completely determined by the choice of
gauging. Observe also that in order to maintain the correct signature and to have Z > 0,
which is required to have a real Kähler potential, we have to impose k̃1 c > 0.

The metric (2.103) is singular in r = 0 and, if k̃0 c < 0, also in r =
√
−k0/c. The sin-

gularity in r = rS ≡ 0 is a true curvature singularity, while the one in r = rH ≡
√
−k0/c

is not and corresponds instead to a Killing horizon, always covering the curvature sin-
gularity.

With the metric written in the form (2.103), it is immediate to see that in the asymp-
totic limit r → +∞ it reduces to

ds2 =
16 r2

g2k̃1c

[
r2dt2 − dr2

r2
− 1

2

(
dθ2 + sinh2 θ dϕ2

)]
, (2.106)

which is manifestly conformally equivalent to AdS2×H2. Note that even if the scalar
fields diverge in this limit, this does not constitute a problem since the boundary terms
resulting from the integration by parts of the action vanish.

In the near horizon limit, r → rH , after the coordinate change t → t/4, the metric
takes the form

ds2 = − 4

g2c2
k0

k1

[
r2dt2 − dr2

r2
− 2

(
dθ2 + sinh2 θ dϕ2

)]
, (2.107)



Supersymmetric solutions 23

which exhibits the geometry of AdS2×H2, while the scalar fields take the values

φ = −1

2
log

(
−k0

c

)
, Z = −k0

k1
. (2.108)

The magnetic charges are given by

PΛ =
1

4π

∫
FΛ = pΛV , V =

∫
sinh θ dθ ∧ dϕ , (2.109)

yielding for the magnetic charge densities

p0 = − 1

4πgc
p1 =

k0

k1

1

4πgc
. (2.110)

The Bekenstein-Hawking entropy density can then be written as

s =
S

V
= −k0

k1

2

g2c2
= 32π2p0p1 . (2.111)





CHAPTER 3

Fake supergravity

Supersymmetric solutions to a supergravity theory are obtained by looking for field con-
figurations for which the Killing spinor equations admit a solution. The general form of
the Killing spinor equation arising from the vanishing of the gravitino supersymmetry
variation is given by

(∇µ +Mµ) ε = 0 , (3.1)

where ε is a spinorial function,∇µ is the general covariant derivative on spinors and Mµ

are matrix–valued functions.
Finding supersymmetric solutions is in general simpler than trying to solve directly

the equations of motion of the theory, since the first order Killing spinor equations are
usually easier to solve than the second order Einstein equations. It is then natural to
wonder whether this procedure can be generalized to find broader classes of solutions.
In other words, one would like to know if there are first order equations of the form (3.1)
for which the field configurations admitting a nonzero solution ε are solutions of the
equations of motion of some field theory with gravity, not necessarily supersymmetric.

This kind of approach is known as fake supergravity [6], since the equations (3.1), while
having a form similar to the Killing spinor equations, are not related to an underlying
supersymmetry of the theory. Fake supergravity allows to find solutions of theories
that are only loosely related to supergravity, but also non–supersymmetric solutions of
genuine supergravities.

In this chapter we review the classification of fake supersymmetric solutions pre-
sented by Meessen and Palomo–Lozano in [8]1. The considered theory is obtained by
analytic continuation from genuine N = 2, d = 4 gauged supergravity coupled to vector
supermultiplets (see chapter 1).

In section 3.1 we set up the theory, write the fake Killing spinor equations and their
integrability conditions, which relate the equations of motion, greatly reducing the num-
ber of independent equations of motion for a fake supersymmetric configuration. In sec-
tion 3.2 we proceed to characterize the fake supersymmetric solutions by deducing first

1Related work in 4 and 5 dimensions was published in [33, 34, 35].
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26 3.1 Fake N = 2, d = 4 supergravity

order equations for the fields from the fake Killing spinor equations and imposing the
residual equations of motion. We conclude by summarizing the form of the fields in a
fake supersymmetric configuration and the equations they must satisfy.

3.1 FakeN = 2, d = 4 supergravity

We start from genuine N = 2, d = 4 gauged supergravity as presented in chapter 1,
but without hypermultiplets, nH = 0, and with one (combination) of the n̄ = nV + 1

vector fields gauging a U(1) subgroup of the SU(2) factor of the full R-symmetry group
SU(2) × U(1) through the Fayet-Iliopoulos mechanism. This corresponds to having a
constant triholomorphic moment map.

Then we perform a Wick rotation on the Fayet-Iliopoulos term, or in other words we
take the constant triholomorphic moment map PxΛ to be imaginary,

PxΛ −→ iCΛδ
x
2 , (3.2)

where CΛ is a constant and we have taken P1
Λ = P3

Λ = 0 without loss of generality.
The effect of this Wick rotation is that instead of gauging a U(1) group, we are gaug-

ing an R-symmetry through the effective connection CΛA
Λ. The presence of a Fayet-

Iliopoulos term is compatible with the gauging of a non-Abelian subgroup of isometries
of the scalar manifold with structure constants fΛΣ

Γ, provided that the constraint

fΛΣ
ΓCΓ = 0 , (3.3)

which is a consequence of the equivariance condition (B.72), is satisfied. Since one vec-
tor field is used to gauge this R-symmetry, this isometry subgroup can have at most
dimension nV .

As long as we restrict to the bosonic sector without hyperscalars, the action after the
Wick rotation is real and still describes a valid theory of gravity. We rewrite it here for
convenience:

S =

∫
d4x
√
|g|
[
R+ 2GīDµZ

iDµZ̄ ̄

+2 IΛΣ F
ΛµνFΣ

µν − 2RΛΣ F
Λµν ? FΣ

µν − V
]

(3.4)

The action (3.4) has exactly the same form as in the case of genuine supergravity (1.8)
without hypermultiplets, the only difference being in the scalar potential that from the
expression (1.13) is now modified to

V (Z, Z̄) = g2

[
2
∣∣CΛLΛ

∣∣2 +
1

4
IΛΣ (CΛCΣ − PΛPΣ)

]
, (3.5)

allowing in particular to have a positive cosmological constant.
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The idea behind fake supergravity is to find first order differential equations for
which the existence of a solution implies that the equations of motion of the theory,
or at least a subset of them, are satisfied. This is analogous to what happens in genuine
supergravity, in which the Killing spinor equations, through the Killing spinor identi-
ties, reduce the number of equations of motion that one has to actually impose on a field
configuration to obtain a solution.

Since we are considering a theory that is obtained by a slight modification of a gen-
uine supergravity, it makes sense to try to obtain such fake Killing spinor equations by
modifying in some way the true Killing spinor equations of the theory from which we
started. As mentioned, we are introducing an R-connection which together with the ex-
istent Kähler U(1)-symmetry due to the vector coupling means that we should modify
the covariant derivative on spinors (1.28) as

DµεI = ∇µεI +
i

2
QµεI +

ig

2
AΛ
µ [PΛ + iCΛ] εI . (3.6)

In this chapter we will denote respectively with D and with D derivatives with or with-
out the R-connection.

We then alter equations (1.25-1.26) to obtain the following fake Killing spinor equa-
tions:

DµεI +

[
T+

µνεIJ +
ig

4
CΛLΛηµν εIJ

]
γνεJ = 0 , (3.7)

i /DZiεI +
[
/G
i+

+W i
]
εIJεJ = 0 , (3.8)

where the object

W i ≡ − ig
2
f̄ iΛ [PΛ + iCΛ] (3.9)

now combines the contributions of both the fermion shifts W i and W ix defined in (1.31)
and (1.32), and the field strengths T+ and Gi+ are still as defined in (1.34) and (1.35),

T+ ≡ 2iLΣIΣΛF
Λ + , (3.10)

Gi+ ≡ −Gīf̄Σ
̄IΣΛF

Λ + . (3.11)

Note that the fake Killing spinor equations (3.7-3.9) are not simply obtained from the
supersymmetry rules (1.25-1.26) with the substitution (3.2), since this would not lead to
the correct equations of motion2, but rather with

PxΛσ
x I
J −→ −iCΛδ

I
J . (3.12)

Since the above fake Killing spinor equations do not come from un underlying super-
symmetry of the theory, we cannot obtain Killing spinor identities with the procedure

2We thank P. Meessen for clarifications on this point.
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explained in section 2.1. In this case the relations between the different equations of
motion will instead be obtained from the integrability conditions for equations (3.7-3.9).
These can easily be calculated and give rise respectively to

BµνγνεI = −2i LΛ
[
/BΛ −NΛΣ/BΣ

]
εIJγµε

J , (3.13)

and

BiεI = −2if̄ iΛ
[
/BΛ −NΛΣ/BΣ

]
εIJε

J , (3.14)

with the Bianchi identity

?BΛ = DFΛ = 0 (3.15)

and the equations of motion defined by

Bµν = Rµν + 2GīD(µZ
iDν)Z̄

̄ + 4IΛΣ

[
FΛ
µρF

Σ
ν
ρ − 1

4
ηµνF

Λ
ρσF

Σρσ

]
− 1

2
gµν V , (3.16)

?BΛ = DFΛ −
g

4

(
kΛı̄ ?DZ̄

ı̄ + k̄Λi ?DZ
i
)
, (3.17)

Bi = �Zi − i∂iN̄ΛΣF
Λ+
ρσ F

Σ+ ρσ + i∂iNΛΣF
Λ−
ρσ F

Σ− ρσ +
1

2
∂iV , (3.18)

with the dual field strengths

FΛ ≡ NΛΣF
Σ− + N̄ΛΣF

Σ + . (3.19)

As was the case for supersymmetric field configurations in supergravity, the inde-
pendent number of equations of motion one has to impose in order to ensure that a
configuration for which equations (3.7–3.8) admit a solution is a solution to the full set
of equations of motion is greatly reduced. If the squared norm of the vector bilinear
Vµ = iε̄IγµεI is positive, meaning that V is timelike, we only need to solve the time
components of the Bianchi identity, and of the Maxwell equations,

ıV ? BΛ = 0 , ıV ? BΛ = 0 . (3.20)

The authors of [8] studied also the null case, when V has vanishing norm, but we
will only consider the timelike case.

3.2 Fake supersymmetric solutions

We now proceed as we did in the supersymmetric case. By acting on the left with conju-
gate spinors and gamma matrices on the fake Killing spinor equations (3.7-3.8) we obtain
equations for the bilinears.
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From equation (3.7) we get, in terms of the real symplectic sections of Kähler weight
zeroR and I defined in (2.35),

DX =
g

4
CΛLΛ V + i ıV T

+ , (3.21)

DµVν = g|X|2 CΛRΛ gµν + 4Im
(
X̄ T+

µν

)
, (3.22)

DV x =
g

2
CΛRΛ V ∧ V x +

g

2
CΛIΛ ? [V ∧ V x] , (3.23)

while equation (3.8) leads to

2X̄ DZi = 4 ıVG
i+ − W i V , (3.24)

The bilinear V in the supersymmetric case was a Killing vector, but this is not the
case here, as one can see from equation (3.22). We are still free however to introduce a
time coordinate τ from V by choosing an adapted coordinate system through

V µ∂µ =
√

2∂τ , (3.25)

but now the components of the metric will depend explicitly on τ .
From equation (3.23) we can calculate

£V V
x = ıV dV

x + d (ıV V
x) = g CΛıVA

ΛV x + 2g|X|2CΛRΛ V x , (3.26)

which, if we make the same gauge choice as in the supersymmetric case,

ıVA
Λ = −2|X|2 RΛ , (3.27)

reduces to

£V V
x = 0 , (3.28)

telling us that the 1-forms V x are τ -independent.
From the contraction of equation (3.21) with V we get

1

X̄
DV

1

X
= −g〈R|C〉 + ig〈I|C〉 , (3.29)

where we introduced the symplectic vector

C ≡
(

0

CΛ

)
. (3.30)

Using the identity
1

X̄
D

1

X
= 2 (〈R|DI〉 − i〈I|DI〉) , (3.31)
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that can be easily proven using eqs. (B.28) and (B.32), the real and imaginary parts of
eq. (3.29) can be written as

〈 R | ∇V I +
g

2
C 〉 = 0 (3.32)

〈 I | ∇V I +
g

2
C 〉 = 0 , (3.33)

where we used the gauge choice (3.27) and the second constraint in (1.7).
Contracting instead equation (3.24) with V leads to

DV Z
i = −2 X W i , (3.34)

which upon using again the gauge-fixing (3.27) and the constraints (1.7) takes the form

∇V Zi = −g X f̄Λi CΛ . (3.35)

Using then the first special geometry identity in (B.32) we can rewrite the above equation
to

〈∇V I + gC | Ū ̄〉 = i〈 ∇VR|Ū ̄〉 , (3.36)

which can be manipulated by using the special geometry properties and again eq. (3.34)
to give

〈 Ū ̄ | ∇V I +
g

2
C〉 = 0 . (3.37)

Equations (3.32), (3.33) and (3.37), together with the special geometric completeness re-
lation (B.34), then imply

∇V I = −g
2
C , (3.38)

which means that only the lower components IΛ of the sections I are τ -dependent, and
that this dependence is linear.

As in the supersymmetric case, the Fierz identities imply that the 1-form associated
with the vector bilinear V must take the form

V = 2
√

2|X|2 (dτ + ω) , (3.39)

but now the 1-form ω can be τ -dependent. The Fierz identities also imply that the V x

are mutually orthogonal and orthogonal to V , allowing us to introduce the remaining
coordinates and write the metric in the form

ds2 = 2|X|2 (dτ + ω)
2 − 1

2|X|2 hmndy
mdyn , (3.40)

where the three dimensional Riemannian metric hmn has the 1-forms V x as a Dreibein,

hmn = V xmV
x
n . (3.41)
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If we define
ÃΛ ≡ ÃΛ

m dym ≡ AΛ +
1

2
RΛ V , (3.42)

equation (3.23) in the chosen coordinate system reads

dV x = g CΛ Ã
Λ ∧ V x +

g

2
√

2
CΛIΛ εxyz V y ∧ V z . (3.43)

Equation (3.43) tells us that the base three dimensional space with metric hmn must be a
Gauduchon-Tod space (see Appendix B.8), with the conformal transformations sending
one element of the conformal class into another corresponding to the residual gauge
freedom

CΛÃ
Λ → CΛÃ

Λ + dw(y) , V x → ewV x . (3.44)

From the definition of ω eq. (3.39) and the antisymmetric part of equation (3.22) fol-
lows

dω + g CΛÃ
Λ ∧ (dτ + ω) =

√
2 ? [V ∧ 〈I|DI〉] , (3.45)

where we made use of the identity (A.17) to write explicitly T+
µν starting from the ex-

pression for ıV T+ that can be obtained from eq. (3.21). The time dependence of ω can be
determined by contracting equation (3.45) with V . In this way we get

£V ω = g
√

2CΛÃ
Λ −→ ω = g CΛÃ

Λτ + ω̃ , (3.46)

where ω̃ = ω̃mdy
m is τ -independent. Substituting the above result into equation (3.45)

and keeping only the τ -independent part, we arrive to

D̃ ω̃ = εxyz〈Ĩ | D̃xĨ − ω̃x∂τI〉 V y ∧ V z , (3.47)

where we defined
Ĩ ≡ I|τ=0 (3.48)

and the derivatives associated with the effective three dimensional connection Ã by

D̃ ω̃ = dω̃ + g CΛÃ
Λ ∧ ω̃ , (3.49)

D̃mI = ∂mI + gÃΛ
m SΛI . (3.50)

The field strength FΛ can be deduced as in the supersymmetric case from the expres-
sion (2.32), using equations (3.21) and (3.24) to obtain ıV T

+ and ıVG
i+, and then the

identity (A.17). The result reads

FΛ = −1

2
D
(
RΛ V

)
− 1

2
?
[
V ∧ DIΛ

]
= −1

2
D
(
RΛV

)
− 1

2
√

2
εxyzD̃xIΛ V y ∧ V z . (3.51)
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At this point we proceed to impose the remaining equations. The time component of
the Bianchi identity translates to

(D̃ÃΛ)xy = F̃Λ
xy = − 1√

2
εxyz D̃zIΛ , (3.52)

which due to eq. (3.38) is manifestly τ -independent, implying that the potentials ÃΛ are
also τ -independent. The integrability condition for eq. (3.52) is a generalized Laplace
equation for the IΛ’s.

A similar condition for the IΛ’s comes from the imposition of the time component of
the Maxwell equations, and after some manipulations it reads

D̃2
x ĨΛ −

(
D̃xω̃x

)
∂τIΛ =

g2

2
fΛ(Ω

Γf∆)Γ
ΣIΩI∆ ĨΣ −

g2

2
fΛΩ

ΣIΩĨΣ CΓIΓ . (3.53)

To summarize the results of this section, a fake supersymmetric solution to the theory
defined by the action (3.4) is given by a metric and nV + 1 vector fields of the form

ds2 = 2 |X|2 (dτ + ω)2 − 1

2 |X|2
hmndy

mdyn , (3.54)

AΛ = −1

2
RΛV + ÃΛ

mdy
m , (3.55)

and nV complex scalars Zi whose dependence on the sections V , or equivalently on R
and I, in general depends on the chosen parametrization of the special Kähler manifold.
In what follows however we will always take the scalars to be given by

Zi =
Li
L0 =

Ri + iIi
R0 + iI0 . (3.56)

The 1-form V is given by the expression (3.39), ω = ωmdy
m is a 1-form which in general

depends on τ , and h is the metric on a three-dimensional Gauduchon-Tod base space. In
particular there must exist a dreibein V x for h satisfying

dV x = g CΛÃ
Λ ∧ V x +

g

2
√

2
CΛIΛεxyzV y ∧ V z. (3.57)
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Furthermore the following equations must hold:

ω = g CΛÃ
Λτ + ω̃ , (3.58)

F̃Λ
xy = − 1√

2
εxyzD̃zIΛ , (3.59)

∂τIΛ = 0 , ∂τIΛ = − g

2
√

2
CΛ , (3.60)

D̃2
xĨΛ −

(
D̃xω̃x

)
∂τIΛ =

g2

2
fΛ(Ω

Γf∆)Γ
ΣIΩI∆ ĨΣ −

g2

2
fΛΩ

ΣIΩĨΣ CΓIΓ , (3.61)

D̃ ω̃ = εxyz〈Ĩ|D̃xĨ − ω̃x∂τI〉V y ∧ V z , (3.62)

with

F̃Λ ≡ D̃ÃΛ , ω̃ ≡ ω|τ=0 , Ĩ ≡ I|τ=0 , (3.63)

D̃mI ≡ ∂mI + g CΛÃ
Λ
mI + gÃΛ

mSΛI , D̃xI ≡Wm
x D̃mI . (3.64)





CHAPTER 4

Black holes in an expanding universe from fake
supergravity

Not much is known on dynamical processes involving black holes, since only a few time-
dependent black hole solutions have been constructed so far. The first and perhaps most
famous one is the McVittie spacetime [9], whose interpretation as a black hole in a FLRW
universe has been the subject of some controversy in the literature [36, 37, 38]. Another
example, which however violates the energy conditions, was constructed by Sultana and
Dyer [39] using conformal techniques.

Kastor and Traschen (KT) [40] obtained a solution describing an arbitrary number of
black holes in a de Sitter universe, each carrying an electric charge equal to the mass.
This leads to a no–force condition, such that the whole system is just comoving with
the cosmological expansion. This solution allowed an analytical discussion of black hole
collisions and of the issue of whether such processes lead to a violation of the cosmic
censorship conjecture [40, 41]. The KT solution is a time–dependent generalization of
the Majumdar–Papapetrou (MP) spacetime [42, 43], which describes maximally charged
Reissner-Nordström black holes in static equilibrium in an asymptotically flat space.
The MP solution is supersymmetric, and in this case the no–force condition allowing to
take arbitrary superpositions of black holes despite the high non–linearity of Einstein’s
equations can be traced back to linear differential equations arising as a consequence of
the existence of a Killing spinor.

Supersymmetry however is only compatible with a negative or vanishing cosmolog-
ical constant, thus no true Killing spinor can exist in a theory with positive cosmological
constant. Despite this, it was shown in [44] that the KT solution admits a fake Killing
spinor, leading to an explanation of the black hole superposition similar to that for the
supersymmetric MP solution. The fake Killing spinor equations are obtained in this case
from the Killing spinor equations of pure N = 2 gauged supergravity, simply taking the
gauge coupling constant to be imaginary.

Maeda, Ohta and Uzawa (MOU) obtained [45], from the compactification of higher
dimensional intersecting brane solutions, four– and five–dimensional spacetimes, fur-
ther studied in [46], describing black holes in a FLRW universe filled with stiff matter. In
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[47] Gibbons and Maeda presented a class of spacetimes interpolating between the KT
and the four–dimensional MOU black holes as solutions to a theory with a Liouville–
type scalar potential, later generalized to arbitrary dimension and further analyzed in
[48].

As of time–dependent rotating black hole solutions, only a few examples are known.
A spinning generalization of the KT solution in a string–inspired theory was given
by Shiromizu in [49], while five–dimensional multi–centered rotating charged de Sit-
ter black holes were constructed in [50, 51], and a rotating generalization of the five-
dimensional MOU solution was obtained in [52] by solving fake Killing spinor equa-
tions.

In this chapter we use the classification of fake supersymmetric solutions [8] re-
viewed in chapter 3 to construct explicitly some time–dependent solutions, describing
multi–centered black holes in a cosmological background, which were originally pre-
sented in our papers [53, 54]. All these solutions are obtained considering theories with
only one vector multiplet, nV = 1, and with Abelian gauging, i.e. with the Fayet-
Iliopoulos gauging of the R-symmetry and no additional gauging of the isometries of
the special Kähler manifold. In section 4.1 we consider a rather generic special geomet-
ric model, but with the further restriction that the complex field Z takes on real values
on the solution, which will lead to non–rotating spacetimes, which turn out to be gener-
alizations of the Gibbons–Maeda black holes [47].

We then proceed to analyze in some detail the physical properties of the solutions in
the single–centered case, making use of the formalism introduced in appendix C.

In section 4.2 we consider a different truncation of the same model, and obtain again
the spacetime of [47] but with one of the gauge fields dualized to an electric, rather than
magnetic, configuration.

In section 4.3 we consider in a general way some possible choices for the Gauduchon-
Tod structure of the base space, without referring to a specific special geometric model
and without restrictions on the values of the scalars. We give explicit expressions for
the section I and the rotation 1-form ω suitable to describe black holes, both single– and
multi–centered.

Finally in sections 4.4 and 4.5 we apply the results of section 4.3 to two specific spe-
cial geometric models. Since we are no longer requiring the scalar field to be real we are
able to obtain multi–centered solutions with rotation and NUT–charge, in a cosmological
background with flat or curved spatial sections. In particular for the first choice of prepo-
tential we are able to write the solutions with flat spatial slices in terms of two complex
harmonic functions, in a form similar to the Israel–Wilson–Perjés class of metrics [55, 56],
of which they are time–dependent generalizations.
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4.1 The F(χ) = − i
4
(χ0)n(χ1)2−n model

Given this prepotential with n 6= 0, 2, from (B.21) we can derive the Kähler potential

e−K =
n

4
Z2−n +

2− n
4

Z̄Z1−n + c.c. , (4.1)

where we took
∣∣χ0
∣∣ = 1.

If we consider the truncation Im(Z) = 0, the Kähler metric becomes

G = ∂Z∂Z̄K|Im(Z)=0 =
n(2− n)

4
Re(Z)−2 =

n0n1

16
e−2φ , (4.2)

where we defined

n0 ≡ 2n , n1 ≡ 2(2− n) = 4− n0 , φ ≡ logRe(Z) . (4.3)

From equation (B.31) we obtain then

N = − i
8

 n0e
n1
2 φ 0

0 n1e
−n0

2 φ

 , (4.4)

and for the scalar potential (3.5) we get

V =
1

2

[
n0(n0 − 1)

t20
e−

n1
2 φ + 2

n0n1

t0t1
e

n0−n1
4 φ +

n1(n1 − 1)

t21
e

n0
2 φ

]
, (4.5)

with the definition

tΛ ≡ −
nΛ

2gCΛ
. (4.6)

If one wishes to have a non-zero potential in the particular cases n0 = 1 and n0 = 3 one
has to require respectively C1 6= 0 and C0 6= 0.

Plugging these expressions into (3.4) leads to the bosonic Lagrangian

e−1L = R+
n0n1

8
∂µφ∂

µφ− n0

4
e

n1
2 φF 0

µνF
0µν − n1

4
e−

n0
2 φF 1

µνF
1µν

− 1

2

[
n0(n0 − 1)

t20
e−

n1
2 φ + 2

n0n1

t0t1
e

n0−n1
4 φ +

n1(n1 − 1)

t21
e

n0
2 φ

]
. (4.7)

We see that in order to avoid ghost fields in the Lagrangian one has to impose 0 < n0 < 4,
corresponding to 0 < n < 2 in the prepotential. One can check that for t1 → ∞ (i.e.,
C1 = 0), (4.7) reduces to the Lagrangian used in [47], if we identify n0 = nT , n1 = nS .

Rather than solving the stabilisation equations and express the R section in terms of
I, in the present case it is more convenient to express all the components of R and I in
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terms of I0, I1 and the scala field φ. The definition (2.35), together with the constraint
Im(Z) = 0, leads to

I1 = eφI0 , I0 =
n0

n1
eφI1 ,

R0 = − 8

n1
e

n0−n1
4 φI1 , R1 = − 8

n1
e

n0
2 φI1 ,

R0 =
n0

8
e

n1
2 φI0 , R1 =

n1

8
e

n1−n0
4 I0 , (4.8)

as well as
1

2|X|2 = 〈R|I〉 =
1

2
e

n1
2 φ(I0)2 +

32

n2
1

e
n0
2 φ(I1)2 . (4.9)

Notice that since both I0 and I1 must be independent of τ , either I0 = 0 or φ is also
independent of τ . In this second case using (3.60) we see that C0 = 0 ⇔ C1 = 0, so that
if we require a non vanishing scalar potential we must impose C0, C1 6= 0; we also find
that eφ = n1

n0

C0

C1
= t1

t0
.

4.1.1 Construction of the solution

The simplest solution of eq. (3.43) is the flat three-dimensional space, with

V xm = δxm, CΛÃ
Λ = CΛIΛ = 0 . (4.10)

With this choice for the base space we don’t need to distinguish between x, y, z . . . and
lower m,n, p, . . . indices.

If we require a nonvanishing scalar potential V 6= 0, then CΛIΛ = 0 together with
(4.8) implies either

I0 = 0 ⇒ I1 = R0 = R1 = 0 , (4.11)

or a constant φ with

eφ = −C0

C1
, (4.12)

and C0, C1 6= 0; but if φ is constant we should also have eφ = n1

n0

C0

C1
, so this choice is

clearly inconsistent. The only consistent possibility is then I0 = 0. Using equation (3.59)
this immediately implies

F̃ 0 = F̃ 1 = 0 . (4.13)

Because of (4.11) and CΛÃ
Λ = 0, eq. (3.62) implies dω̃ = 0, and thus locally

ω̃ = df , (4.14)

where f is a generic function of the spatial coordinates.
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Equation (3.61), since we are in the Abelian case and the structure constants vanish,
then becomes

∂p∂p(Ĩ0 + gC0

2
√

2
f) = 0 ,

∂p∂p(Ĩ1 + gC1

2
√

2
f) = 0 ,

=⇒


∂p∂p(e

φ̃Ĩ1 − n1

4
√

2

f
t0

) = 0 ,

∂p∂p(Ĩ1 − n1

4
√

2

f
t1

) = 0 ,

(4.15)

with φ̃ ≡ φ|τ=0. This can be solved by introducing two generic harmonic functions of
the spatial coordinatesH0,H1 as

Ĩ1 =
n1

4
√

2
(f/t1 +H1) , eφ̃ =

f/t0 +H0

f/t1 +H1
. (4.16)

At this point, using (3.60) and I0 = eφI1 we obtain

I1 =
n1

4
√

2

(
τ + f

t1
+H1

)
, I0 =

n0

4
√

2

(
τ + f

t0
+H0

)
,

eφ =
(τ + f)/t0 +H0

(τ + f)/t1 +H1
, (4.17)

and from (4.9) one gets

1

2|X|2 =

(
τ + f

t0
+H0

)n0
2
(
τ + f

t1
+H1

)n1
2

. (4.18)

We have now all the elements needed to write down the complete solution in terms of
the two generic harmonic functionsH0 andH1. Since f appears everywhere as a shift in
the time coordinate τ we can set it equal to zero with the coordinate change t = τ + f to
obtain

ds2 = U−2dt2 − U2d~y 2 , (4.19)

AΛ =

(
t

tΛ
+HΛ

)−1

dt , φ = ln

(
t/t0 +H0

t/t1 +H1

)
,

with

U ≡
(
t

t0
+H0

)n0
4
(
t

t1
+H1

)n1
4

. (4.20)

Here one clearly recognizes the substitution principle originally put forward by Behrndt
and Cvetič in [57], which amounts to adding a linear time dependence to the harmonic
functions in a supersymmetric solution of N = 2, d = 4 supergravity.
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4.1.2 Physical discussion

As a first remark if we set C1 = 0, corresponding to t1 → ∞, and make the choice of
harmonic functions

H0 =

N∑
i=1

Q
(i)
0

|~y − ~yi|
, H1 = 1 +

N∑
i=1

Q
(i)
1

|~y − ~yi|
, (4.21)

we recover precisely the solution presented in [47]. The same is true if we set C0 =

0, change the sign of the scalar field and exchange everywhere 0 and 1 indices. This
solution represents a system of multiple maximally charged black holes in a universe
expanding with arbitrary equation of state P = wρ, with w = 8−5n0

3n0
so that −1 ≤ w ≤ 1

for 1 ≤ n0 ≤ 4 (for n0 < 1 the scalar potential is unbounded from below). Note that
one can have w < −1 by allowing n0 < 0 or n0 > 4, but then of course the action (4.7)
contains ghosts. In this case, we would have black holes embedded in an expanding
universe filled with phantom energy. In the limit n0 = 4 one obtains the Kastor-Traschen
solution [40], describing multiple black holes in a de Sitter background, while for n0 =

0 the scalar potential is zero and the solution is the Majumdar-Papapetrou spacetime,
describing multiple extremal Reissner-Nordström black holes in an asymptotically flat
background. Notice that we can also recover the Kastor-Traschen solution keeping both
t0 and t1 finite and taking t0H0 = t1H1.

Retaining both C0 and C1 the scalar potential has critical points; the derivative of the
scalar potential can be written as

V ′[φ] =
n0n1

4t21
e−

n1
4 φ

[
t1
t0
− eφ

] [
t1
t0

(1− n0) + (1− n1)eφ
]
. (4.22)

We can see that if we take t0t1 > 0 there is, for every value of 0 < n0 < 4, a minimum in
eφ = t1

t0
, Vmin = 6 t

−n1/2
1 t

−n0/2
0 . For 0 < n0 < 1 or 3 < n0 < 4 there is also a maximum

in eφ = − 1−n0

1−n1

t1
t0

, Vmax = 2 (n0−1
1−n1

)
n0−n1

4 t
−n1/2
1 t

−n0/2
0 ; however for these values of n0 the

potential is not bounded from below. For 1 < n0 < 3 the potential is bounded and the
minimum is global.

If on the other hand we take t0t1 < 0, there is only a negative minimum in eφ =

− 1−n0

1−n1

t1
t0

if 1 < n0 < 3, Vmin = −2 ( 1−n0

1−n1
)

n0−n1
4 |t1|−n1/2|t0|−n0/2, while there are no

critical points for 0 < n0 < 1 or 3 < n0 < 4.
For t0t1 > 0 and assuming that the harmonic functions have a well-defined limit for

|~y| → ∞, one can study the asymptotic behaviour of the metric; swapping the coordinate
t for t̃ defined by

dt̃

dt
=

(
t

t0
+ k0

)−n0
4
(
t

t1
+ k1

)−n1
4

, ki ≡ lim
|~y|→∞

Hi , (4.23)

the metric asymptotically assumes a Friedmann-Lemaı̂tre-Robertson-Walker form,

ds2 = dt̃2 − a2(t̃)d~y2 , a(t̃) =
dt

dt̃
. (4.24)
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The explicit form of a(t̃) is complicated; however it is possible to obtain the time depen-
dence of the density and pressure,

ρ(t̃) =
3

128π

n2
0

t20

1

R(t̃)
n0
2

(
R(t̃) +

n1

n0

t0
t1

)2
, (4.25)

P (t̃) = − 5

128π

n2
0

t20

1

R(t̃)
n0
2

[(
R(t̃) +

n1

n0

t0
t1

)2
− 8

5n0

(
R2(t̃) +

n1

n0

t20
t21

)]
, (4.26)

where

R(t̃) ≡ t(t̃)/t1 + k1

t(t̃)/t0 + k0

, (4.27)

so that

P (t̃)

ρ(t̃)
= w(t̃) = −5

3

1− 8

5n0

R2(t̃) + n1

n0

t20
t21(

R(t̃) + n1

n0

t0
t1

)2

 , (4.28)

that gives the correct value of [47] in the limits t0 →∞ or t1 →∞.
If both t0 and t1 are finite, w is time-independent only if t0k0 = t1k1, which is equiv-

alent to consider k0 = k1 = 0, since we are free to set k0 = 0 without loss of generality
by shifting t. In this case a(t̃) = et̃/t̃0 , with t̃0 = t

n0/4
0 t

n1/4
1 , w = −1 and the spacetime is

asymptotically de Sitter independently of the value of n0, while the scalar field tends to
the critical value eφ = t1/t0.

Note that in the case t0t1 > 0, the solution (4.19) tends to de Sitter for |~y| → ∞ and
arbitrary kΛ either for t→∞ or t→ −∞ (for positive or negative tΛ respectively).

Since we are interested in black hole systems, we consider harmonic functions of the
form

HΛ(t, ~y) ≡ t

tΛ
+HΛ =

t

tΛ
+ kΛ +

N∑
i=1

Q
(i)
Λ

|~y − ~yi|
, (4.29)

and take k0 = 0 since it can be eliminated by shifting t. Notice that while we could take
some of the charges to be zero, this would lead to a divergent scalar field in the limit
|~y − ~yi| → 0.

The scalar curvature of (4.19) reads

R =
3

8

n1(3n1 − 4)t20H
2
0 + 6n0n1t0t1H0H1 + n0(3n0 − 4)t21H

2
1

t20t
2
1H

n1
2

0 H
n0
2

1

+
n0n1

8H
n0
2

0 H
n1
2

1

(
∂p ln

H0

H1

)2

, (4.30)

which is singular for H0 = 0 or H1 = 0.
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We can also consider the limit |~y− ~yi| ≡ ri → 0 for some i; then the time dependence
drops out and the metric reduces to AdS2 × S2,

ds2
ri→0 =

r2
i

l2i
dt2 − l2i

r2
i

dr2
i − l2i dΩ2

2 , (4.31)

with li ≡ (Q
(i)
0 )n0/4(Q

(i)
1 )n1/4. As we shall see later, (4.31) does actually not describe the

geometry near the event horizon of our time-dependent solution.
We turn now to study in more detail the system with a single black hole. Since in this

case there is spherical symmetry, we will work in spherical coordinates,

H0(t, r) =
t

t0
+
Q0

r
, H1(t, r) =

t

t1
+ k1 +

Q1

r
. (4.32)

IfQ0, Q1 6= 0 we will assume in the following, without loss of generality, |Q1t1| ≥ |Q0t0|.
Since r = 0 is not a curvature singularity unless one of the charges is zero, the space-

time can be extended to r < 0. The singularities are represented in the r-t plane by two
hyperbolae having the asymptotes r = 0 and respectively t = 0 or t = −k1t1; if k1 6= 0

they intersect unless Q0t0 = Q1t1. To ensure the regularity of the solution we must re-
quire H0H1 > 0; this corresponds to the area external to the singularities in the r-t plane
for t0t1 > 0 or to the area between them if t0t1 < 0 (see figure 4.1).

The present spacetime satisfies the weak energy condition; to see this, compute the
energy-momentum tensor components Tab for an observer with orthonormal frame

e0 = U−1dt , e1 = U dr , e2 = U rdθ , e3 = U r sin θdϕ .

One obtains

ρφ = F1 + F2 + F3 , Pφr = F1 + F2 −F3 , PφΩ = F1 −F2 −F3 ,

ρem = −P em
r = P em

Ω = F4 , Tφ01 = −F5 , (4.33)

where ρ = T00, Pr = T11, PΩ = T22 = T33, the other off-diagonal components are zero,
and

F1 = U2 n0n1

16

(
1

t0H0
− 1

t1H1

)2

, F2 = U−2 n0n1

16r4

(
Q0

H0
− Q1

H1

)2

, (4.34)

F3 =
U2

4

[(
n0

t0H0
− n1

t1H1

)2

− n0

t20H
2
0

− n1

t21H
2
1

]
, (4.35)

F4 =
U−2

4r4

(
n0Q

2
0

H2
0

+
n1Q

2
1

H2
1

)
, F5 =

n0n1

8r2

(
1

t0H0
− 1

t1H1

)(
Q0

H0
− Q1

H1

)
. (4.36)
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Figure 4.1: Allowed coordinate ranges in the r − t plane. The dashed curves denote the
curvature singularities, the allowed range is the white area for t0t1 > 0 or the grey area
for t0t1 < 0. We assume here k1t1 and Q0t0 positive; the other cases can be obtained by
reflection or rotation.
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Since F1, F2, F4 and F1 + F3 = U2 3
16

(
n0

t0H0
+ n1

t1H1

)2

are positive definite, the energy

densities ρφ and ρem are positive. Notice also thatF4−F2 = U−2
(
n0Q0

H0
+ n1Q1

H1

)2

/(16r4)

is positive definite and that F2
5 = 4F1F2.

T ab can always be diagonalized by changing to a different orthonormal basis. Its
eigenvalues are

ρ̂ =
1

2

(
ρ− Pr +

√
(ρ+ Pr)2 − 4T 2

01

)
, (4.37)

−P̂r = −1

2

(
ρ− Pr +

√
(ρ+ Pr)2 − 4T 2

01

)
, (4.38)

−P̂Ω = −PΩ . (4.39)

In terms of these the weak energy condition can be stated as

ρ̂ ≥ 0 , ρ̂+ P̂r ≥ 0 , ρ̂+ P̂Ω ≥ 0 . (4.40)

We have

ρ̂ = F3 + F4 + |F1 −F2| ≥ (F1 + F3) + (F4 −F2) ≥ 0 , (4.41)

ρ̂+ P̂r = 2|F1 −F2| ≥ 0 , (4.42)

ρ̂+ P̂Ω = F1 + F4 + (F4 −F2) + |F1 −F2| ≥ 0 , (4.43)

and thus (4.40) holds. Whether the strong and dominant energy conditions are satis-
fied depends on the values of the parameters; it has been shown in particular that the
Gibbons-Maeda solution (t1 →∞) satisfies the strong energy condition if and only if the
asymptotic cosmological background does [48], and that the Maeda-Ohta-Uzawa solu-
tion (t1 →∞, n0 = 1) satisfies the dominant energy condition [46].

The spherical symmetry allows us to covariantly define the circumference radius
R = |r| U = |r|Hn0/4

0 H
n1/4
1 ; it is immediate to see that this radius vanishes on the singu-

larities. In a spherically symmetric spacetime it is also possible to compute the Misner-
Sharp quasilocal energy [58], that can be interpreted as the energy inside a closed surface
of radius R,

m = 4πR (1 +∇µR∇µR) , (4.44)

where

∇µR∇µR = − 1

16

[(
tn0

t0H0
+

(t+ k1t1)n1

t1H1

)2

− r2Hn0
0 Hn1

1

(
n0

t0H0
+

n1

t1H1

)2
]
. (4.45)
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Following [46, 48] we can look for trapping horizons [11]. Introducing the Newman-
Penrose null tetrads

l =
1√
2

(
U−1dt− Udr

)
,

n =
1√
2

(
U−1dt+ Udr

)
, (4.46)

m = U r√
2

(dθ + i sin θdϕ) ,

and the complex conjugate m̄, satisfying lµnµ = 1 = −mµm̄µ, the expansions of the
outgoing and ingoing radial null geodesics are defined by

θ+ ≡ −2m(µm̄ν)∇µlν , θ− ≡ −2m(µm̄ν)∇µnν , (4.47)

which evaluated explicitly are

θ± =
1

2
√

2rU

[
rU2

(
n0

t0H0
+

n1

t1H1

)
±
(
tn0

t0H0
+

(t+ k1t1)n1

t1H1

)]
. (4.48)

While θ± are not covariant quantities, their product is; comparing (4.45) and (4.48) it is
straightforward to conclude that

θ+θ− =
2

R2
∇µR∇µR . (4.49)

A metric sphere is said to be trapped or untrapped if θ+θ− > 0 or θ+θ− < 0 respectively,
and to be marginal if θ+θ− = 0. A trapping horizon is the closure of a hypersurface foli-
ated by marginal surfaces, which means that it occurs when θ+θ− = 0, or equivalently
when ∇µR becomes null.

It is possible to geometrically define on trapping horizons a local surface gravity kl
and the associated Hawking temperature Tl = kl

2π [13, 14],

kl ≡ −
1

2
∇̃µ∇̃µR

∣∣
TH =

− 1

8R

{(
tn0t1H1 + (t+ k1t1)n1t0H0

n0t1H1 + n1t0H0

)2
[(

n0

t0H0
+

n1

t1H1

)2

−
(

n0

t20H
2
0

+
n1

t21H
2
1

)]

+

(
t2n0

t20H
2
0

+
(t+ k1t1)2n1

t21H
2
1

)
− 2

(
tn0

t0H0
+

(t+ k1t1)n1

t1H1

)}
, (4.50)

where ∇̃ is the covariant derivative associated with the two dimensional metric normal
to the spheres of symmetry. This surface gravity satisfies on the trapping horizons an
identity similar to the usual relation for stationary black holes,

Kµ∇[νKµ] = klKν , (4.51)
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where in place of a Killing vector we have the Kodama vector K ≡ g−1(∗dR), with ∗
evaluated with respect to the normal metric. It should be noted however that an observer
whose worldline is an integral curve of K does not measure the temperature Tl near the
trapping horizons; the observed temperature is, to first order, T = Tl C

−1/2, with redshift
factor C = ∇µR∇µR.

Now if we take k1 = 0 or equivalently consider the limit r → 0, t → ∞ with rt kept
finite, (4.45) vanishes for t2 = r2Hn0

0 Hn1
1 , i.e.,

t2r2 =

(
tr

t0
+Q0

)n0
(
tr

t1
+Q1

)n1

, (4.52)

or n1t0H0 + n0t1H1 = 0 if t0t1 < 0. However the latter solution doesn’t correspond
to a change of sign in θ+θ−, so it doesn’t identify a trapping horizon. Notice that the
solutions of (4.52) have constant circumference radius R, and since the gradient of R
becomes null there, the trapped horizons are null surfaces in the limit r → 0, t → ∞
with rt fixed. In this limit the geometric surface gravity (4.50) simplifies to

kl =
1

8R

(
tn0

t0H0
+

tn1

t1H1

)(
2− tn0

t0H0
− tn1

t1H1

)
. (4.53)

The identification of event horizons is a nontrivial task for dynamical black holes,
since it requires the knowledge of the entire causal structure of the spacetime. Never-
theless, we can argue as in [46], and use the fact that the event horizon has to cover the
trapped surfaces provided the outside region of a black hole behaves sufficiently well
[59]. Since the spacetime (4.19) is indeed well-behaved for positive r (as long as we are
outside the forbidden regions in fig. 4.1), and the trapping horizons contain null surfaces
(4.52) in the limit r → 0, t → ∞, we shall examine in the following if these null surfaces
are possible candidates for the black hole event horizon. As we said, the limit r → 0,
t → ∞ with rt kept finite is equivalent to taking k1 = 0. In this case, the metric is in-
variant under the transformation t → αt, r → r/α, and thus admits the Killing vector
ξ = t∂t − r∂r, which is hypersurface orthogonal. Introducing the coordinates

T = ± log |t|+
∫ R g2(R)

Rf(R)
dR , R =

rt

Q0t0
, (4.54)

f(R) ≡ (Q0t0)2R2 − g2(R) , g(R) ≡ Q2
0(R+ 1)

n0
2

(
t0
t1
R+

Q1

Q0

)n1
2

, (4.55)

such that ξ = ∂T , the metric can be written in static form as

ds2 =
f(R)

g(R)
dT 2 − (Q0t0)2 g(R)

f(R)
dR2 − g(R)dΩ2 . (4.56)

From (4.56) it is clear that there are Killing horizons where f(R) = 0, that is, in (r, t)

coordinates, t2 = r2Hn0
0 Hn1

1 ; thus the Killing horizons coincide with the trapping hori-
zons (4.52). As the near-horizon geometry (4.56) enjoys the unexpected symmetry under
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translations of the time coordinate T (which is not a symmetry of the original spacetime
(4.19)), our solution (4.19) provides (like the ones in [45, 46]) a realization of asymptotic
symmetry enhancement at the horizon of a dynamical black hole. The fact that the hori-
zon does not grow, i.e., the ambient matter does not accrete onto the black hole, was
conjectured in [52] to be related to fake supersymmetry.

Since the spacetime (4.56) is static, we can calculate the surface gravity on the hori-
zons which is given by

k2 = −1

2
∇µξν∇µξν =

1

4

(
n0R
R+ 1

+
n1R

R+ Q1t1
Q0t0

− 2

)2

, (4.57)

that depends only on R (or equivalently on rt) and where R is one root of f(R) = 0.
Note that, contrary to the asymptotically flat case, there is no preferred normalization
for the Killing vector ξ here, and that the surface gravity is sensitive to this norm. Notice
also that in general (4.57) is nonvanishing. A temperature different from zero would be
in contradiction with supersymmetry, but not with fake supersymmetry: Following the
explanation in [60], consider a black hole with temperature T . A spinor in the Euclidean
section must then be antiperiodic under translation of the Euclidean time through a pe-
riod β = 1/T . Supersymmetry implies the existence of a spinor field solving the Killing
spinor equation, and this spinor must be periodic to give a regular solution. Both re-
quirements are compatible only if the period is infinite, or equivalently when the tem-
perature vanishes. Now, in fake supergravity, there are no fermions whose variation
under a putative fake supersymmetry transformation is associated to the fake Killing
spinor equation. The latter is just an auxiliary construction, which implies (under certain
conditions) the second order field equations. Thus, the above contradiction for nonzero
temperature does not arise.

Rewriting (4.53) in static coordinates,

kl =
1

8
√
|Q0t0R|

(
n0R
R− 1

+
n1R

R− Q1t1
Q0t0

)(
2− n0R
R− 1

− n1R
R− Q1t1

Q0t0

)
, (4.58)

we see that it agrees with (4.57) up to a normalization factor constant over each Killing
horizon. This is the same factor that ties the Kodama vector K to the Killing vector ξ on
the horizons,

K|KH = ± 1

4
√
|Q0t0R|

(
n0R
R− 1

+
n1R

R− Q1t1
Q0t0

)
ξ . (4.59)

The horizon condition can be rewritten as

|R| = a|R+ 1|
n0
2 |R+ b|

n1
2 , a ≡

∣∣∣∣Q0

t0

∣∣∣∣ ∣∣∣∣ t0t1
∣∣∣∣
n1
2

, b ≡ Q1t1
Q0t0

. (4.60)

If t0 t1 > 0 the accessible regions of spacetime are those with R > max(−1,−b) and
R < min(−1,−b).
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We see that for b > 1 there are always exactly two horizons for negative R, one
for R < −b and one for −1 < R < 0; however only one of these is accessible since
they are located in disconnected regions of the spacetime. For a ≥ 1/4 one has R ≤
a(R + 1)2 < a(R + 1)n0/2(R + b)n1/2 for every positive R and consequently there are
no other horizons. On the other hand if a ≤ 1/(4 b) there is an interval for which R ≥
a(R+ b)2 > a(R+ 1)n0/2(R+ b)n1/2 and there are thus two distinct horizons for positive
R. For intermediate values of a there can be zero or two, possibly coincident, horizons
for positiveR depending on the value of the parameters. b = 1 corresponds to the single-
centered Kastor-Traschen solution, or Reissner-Nordström-de Sitter with mass equal to
the charge, the extremal case corresponding to a = 1/4. We can then identify the three
horizons in the R > −1 region as respectively inner and outer black hole horizons and
cosmological horizon.

For b ≤ −1 there is always one horizon in the regionR > −b and at least one, at most
three horizons forR < −1. In this caseR = 0 is not accessible.

For b = 0, corresponding to a black hole charged under only one of the gauge fields,
there is a solution inR = 0 which is not a horizon since it is coincident with a singularity;
depending on the value of the parameters there can be zero, one or two horizons for
R > 0. In the regionR < −1 there is always a single horizon.

If t0t1 < 0 the accessible region is given by the values of R between −1 and −b. For
b > 1 there can be zero, one or two, possibly coincident, horizons; for b < −1 there are
always two horizons, one with negative and one with positive R. For b = 0 there is
again a solution in R = 0 coincident with a singularity; depending on the value of the
parameters there can be zero, one or two additional solutions corresponding to horizons.

With the choice of coordinates we made, the radial null geodesic equations simplify
to

T̈ + 2 ΓT
TRṪ Ṙ = 0 , R̈ = 0 , (4.61)

which means thatR is an affine parameter for the radial null geodesics and consequently
all horizons and singularities are reached within a finite value of the affine parameter.
From the null condition dR = ±f(R)dT/(Q0t0g(R)) we obtain the expressions for the
radial null geodesics in the near-horizon and near-singularity limits,

R ∼ Rhor : T = ± 1
2k log |R −Rhor|+ c1 ,

R ∼ −1 : T = ±2Q0

t0

(
Q1

Q0
− t0

t1

)n1
2 (R+1)1+

n0
2

2+n0
+ c2 ,

R ∼ −Q1t1
Q0t0

: T = ±2Q1

t1

(
Q0

Q1
− t1

t0

)n0
2

(
Q0t0
Q1t1

R+1
)1+

n1
2

2+n1
+ c3 ,

(4.62)

where ci are constants and k is the surface gravity (4.57).
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4.2 Alternative truncation

In section 4.1 we considered the truncation Im(Z) = 0; we could instead have taken
Re(Z) = 0, but this choice is not consistent for every value of n with the prepotential we
had there. Here we consider a slightly modified prepotential,

F(χ) =
in−1

4(1− n)
(χ0)n(χ1)2−n , (4.63)

with n 6= 0, 1, 2, that leads to consistent results with the truncation Re(Z) = 0 (but
not with Im(Z) = 0). The model (4.63) is of course related to the one of section 4.1
by a complex rescaling of the χΛ, and thus the truncations considered here and in the
preceding section are actually two different truncations of the same model.

From (B.21), taking
∣∣χ0
∣∣ = 1 we obtain the Kähler potential

e−K =
in

4(1− n)
Z1−n[nZ + (2− n)Z̄] + c.c. , (4.64)

and, imposing Re(Z) = 0, the Kähler metric

G = ∂Z∂Z̄K|Re(Z)=0 = −n(2− n)

4
Im(Z)−2 =

n0n1

(n1 − n0)2
e

n0−n1
2 φ , (4.65)

with n0 ≡ − 2n
1−n , n1 ≡ 2(2−n)

1−n = 4− n0, φ ≡ 4
n1−n0

log Im(Z).
From equation (B.31) one obtains the vectors’ kinetic matrix

N = − i
8

(
n0e

n1
2 φ 0

0 n1e
n0
2 φ

)
, (4.66)

while (3.5) leads to the scalar potential

V =
1

2

[
n0(n0 − 1)

t20
e−

n1
2 φ +

n1(n1 − 1)

t21
e−

n0
2 φ

]
, (4.67)

where we defined as before tΛ ≡ − nΛ

2gCΛ
.

Substituting in eq. (3.4) we have

e−1L = R+
n0n1

8
∂µφ∂

µφ− n0

4
e

n1
2 φF 0

µνF
0µν − n1

4
e

n0
2 φF 1

µνF
1µν

− 1

2

[
n0(n0 − 1)

t20
e−

n1
2 φ +

n1(n1 − 1)

t21
e−

n0
2 φ

]
, (4.68)

which differs from the Lagrangian obtained in the previous section only by a sign in front
of n0 in the exponents and the absence of the cross term in the potential. To avoid ghost
fields in the action we must restrict n0 and n1 to positive values, which corresponds to
have in the prepotential either n < 0 or n > 2.
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We can again, starting from the definitions (2.35) and imposing this time the con-
straint Re(Z) = 0, write all the components of the sections R and I in terms of two
components, namely I0 and I1, and of the scalar field φ, obtaining

I0 = −n0

8
eφI1 , I1 =

n1

8
eφI0 ,

R0 = e
n0−n1

4 φI1 , R1 = −e
n1−n0

4 φI0 ,

R0 =
n0

8
e

n1
2 φI0 , R1 =

n1

8
e

n0
2 φI1 , (4.69)

as well as
1

2|X|2 = 〈R|I〉 =
1

2

[
e

n1
2 φ(I0)2 + e

n0
2 φ(I1)2

]
. (4.70)

From (4.69) and (3.60) we see that, since we exclude the case C0 = C1 = 0, I1 = 0 is
equivalent to C0 = 0, I0 = 0 is equivalent to C1 = 0, and C1I1 = −n1

n0
C0I0.

4.2.1 Construction of the solution

As before we take
V xm = δxm , CΛÃ

Λ = CΛIΛ = 0 . (4.71)

Since C1I1 = −n1

n0
C0I0, CΛIΛ = 0 with n0 6= 21 implies C0I0 = 0. One has thus either

C0 = I1 = 0 or C1 = I0 = 0. We will consider just the first case since the second can be
obtained simply by exchanging 0 and 1 indices. We have thus

C0 = 0 , I1 = I0 = R0 = R1 = 0 , (4.72)

and from CΛÃ
Λ = 0, taking into account that C1 6= 0,

Ã1 = 0 . (4.73)

Eq. (3.59) yields

F̃ 0
mn = − 1√

2
εmnp∂pI0 , (4.74)

and from the Bianchi identity dF̃ 0 = 0 we obtain

∂p∂pI0 = 0 ⇒ I0 =
√

2H0 , (4.75)

whereH0 is a generic harmonic function of the spatial coordinates.
Using (4.72) and CΛÃ

Λ = 0, from eq. (3.62) we conclude as before ω̃ = df , where f is
a generic function of the spatial coordinates. (3.61) implies then

∂p∂p

(
Ĩ1 +

gC1

2
√

2
f

)
= 0 ⇒ Ĩ1 =

n1

4
√

2
(f/t1 +H1) , (4.76)

1For n0 = 2 (n → ±∞) we could take both C0, C1 6= 0 (equivalently, I0, I1 6= 0); however this would
lead to exactly the same solution we obtain here, with just a field redefinition.
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whereH1 is another harmonic function of the spatial coordinates. Using (3.60) and (4.69)
one gets

I1 =
n1

4
√

2
((τ + f)/t1 +H1) , eφ =

(f + τ)/t1 +H1

H0
, (4.77)

and from (4.70) one computes

1

2|X|2 =

(
τ + f

t1
+H1

)n1
2

H
n0
2

0 . (4.78)

Eliminating f by introducing the new time coordinate t = τ + f , the solution can be
written as

ds2 = U−2dt2 − U2d~y 2 ,

F 0 = −1

2
εmnp∂pH0 dy

m ∧ dyn , A1 =

(
t

t1
+H1

)−1

dt , (4.79)

φ = ln

(
t/t1 +H1

H0

)
,

with

U ≡
(
t

t1
+H1

)n1
4

H
n0
4

0 . (4.80)

This is, with the right choice for H0 and H1, the spacetime found in [47] and discussed
further in [48]; however in this case, instead of having two gauge fields in an electric
configuration, one of them is magnetic due to the different sign in the exponent of its
scalar coupling. In other words, one of the field strengths in the Gibbons-Maeda solution
is dualized here.

4.3 Choice of base space

4.3.1 Flat space

The simplest solution of eq. (3.43) is three-dimensional flat space, with

V xm = δxm, CΛÃ
Λ = CΛIΛ = 0 . (4.81)

With this choice for the base space we don’t need to distinguish between x, y, z . . . and
lower m,n, p, . . . indices.

If C0 = C1 = 0, CΛIΛ = 0 is automatically satisfied and the section I is time-
independent. Using equation (3.59) and the Bianchi identity dF̃Λ = 0 it can be seen
that the IΛ must be harmonic,

I0 ≡
√

2H0 , I1 ≡
√

2H1 . (4.82)
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Moreover, (3.61) implies that the IΛ are harmonic as well,

I0 ≡
H0

2
√

2
, I1 ≡

H1

2
√

2
. (4.83)

Equation (3.62) becomes

dω̃ = ?3

(
H0dH

0 +H1dH
1 −H0dH0 −H1dH1

)
. (4.84)

If at least one of the CΛ is nonzero, e.g. C1 6= 0, CΛIΛ = 0 implies I1 = −C0

C1
I0. Then,

(3.59) and the Bianchi identity dF̃ 0 = 0 yield

I0 =
√

2Him , I1 = −
√

2
C0

C1
Him , (4.85)

where Him is a time-independent harmonic function2.
(3.61) together with (3.60) implies that the time-independent combination I0 − C0

C1
I1

is harmonic. It proves convenient to express this defining

I0 ≡
C0

C1

(
I1 −

1

2
√

2
H1

)
+

1

2
√

2
H0 , (4.86)

with H0, H1 harmonic functions independent of τ . Since there are no further constraints
on Ĩ1, the IΛ can be written as

I1 =
1

2
√

2

(
τ

t1
+ f

)
, I0 =

1

2
√

2

[
τ

t0
+H0 +

t1
t0

(f −H1)

]
, (4.87)

where tΛ ≡ −(gCΛ)−1 and f is a generic function of the spatial coordinates.
Equation (3.62) becomes

dω̃ = ?3

[(
H0 −

t1
t0
H1

)
dHim −Himd

(
H0 −

t1
t0
H1

)]
, (4.88)

and from (3.61) one gets
∂pω̃p = t1∂p∂pf . (4.89)

It is always possible to set f to zero with a shift in the time coordinate, τ = t−t1f+t1H1,
and replacing ω̃ by ω̂ = ω̃ − t1df + t1dH1, such that

I1 =
1

2
√

2

(
t

t1
+H1

)
, I0 =

1

2
√

2

(
t

t0
+H0

)
,

dω̂ = ?3

[(
H0 −

t1
t0
H1

)
dHim −Himd

(
H0 −

t1
t0
H1

)]
, ∂pω̂p = 0 , (4.90)

dτ + ω̃ = dt+ ω̂ .

2Since Him is related to the imaginary part of the scalar field Z, the label ‘im’ stands for ‘imaginary’.
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An explicit choice for the harmonic functions, best expressed in Boyer-Lindquist co-
ordinates (r, θ, φ) with x+ iy =

√
r2 + a2 sin θeiϕ and z = r cos θ, is

H = k + qRe (V ) +Q Im (V ) , (4.91)

with
V =

1

r − ia cos θ
. (4.92)

If all the harmonics have this form, (4.90) is solved by

ω̂ =
1

Σ

[
−1

2
a sin2 θ

(
2 k̂Q r + q̂Q

)
+ k̂q (r2 + a2) cos θ

]
dϕ , (4.93)

where
Σ = r2 + a2 cos2 θ , x̂y = x̃yim − ximỹ , x̃ = x0 −

t1
t0
x1 . (4.94)

This choice is also suitable to be generalized to the multi-centered case. To this end,
define

V (~x, a) =
1√

x2 + y2 + (z − ia)2
, (4.95)

and consider harmonic functions of the form

H = k +
∑
I

(qIRe(VI) +QIIm(VI)) , (4.96)

with VI ≡ V (~x − ~xI , aI), where ~xI is an arbitrary point in R3 and the parameter aI in
general depends on I . As long as the charges are taken to satisfy qimI = α q̃I , QimI =

α Q̃I for every I , with α independent of I , (4.90) reduces to

dω̂ = (αk̃ − kim) ?3 dH̃ , (4.97)

where H̃ = H0−t1H1/t0. ω̂ is thus given by a sum over I of terms of the form (4.93), with
q̂Q = 0. More explicitly, (4.93) with these charge constraints can be written in Cartesian
coordinates and generalized to

ω̂ =− 2(αk̃ − kim)
∑
I

[
Q̃IRe(VI)

|~x− ~xI |2 + a2
I + 1/|VI |2

− q̃IIm(VI)

|~x− ~xI |2 + a2
I − 1/|VI |2

]
·

· aI [(x− xI) dy − (y − yI) dx] . (4.98)

4.3.2 Three-sphere

Since Gauduchon-Tod spaces are actually conformal classes, it would be possible to take
any conformally flat three-dimensional manifold as a base space simply by applying a
conformal transformation to the quantities in 4.3.1 with appropriate conformal weights,
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leading to a nonzero CΛÃ
Λ. This would however result in the same four-dimensional

solutions expressed in different coordinates.
On the other hand there is a different Gauduchon-Tod structure that can be defined

on the same conformal class, giving nonequivalent four-dimensional solutions. Start
from a 3-sphere, with metric in the form

ds2
3 =

1

4

[
dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ)

2
]
, (4.99)

and choose the dreibein

V 1 =
1

2
(sinψ dθ − sin θ cosψ dϕ) ,

V 2 =
1

2
(cosψ dθ + sin θ sinψ dϕ) ,

V 3 =
1

2
(dψ + cos θ dϕ) , (4.100)

that obeys

dV x = −εxyzV y ∧ V z . (4.101)

Thus, equation (3.43) is satisfied with

CΛÃ
Λ = 0 , CΛIΛ = −2

√
2

g
. (4.102)

A useful consequence of (4.101) is that with this frame choice we have for the associated
spin connection ω x

y z − ω x
z y = 2 εxyz , where ω y

x z ≡ V µ
x ω y

µ z , as can easily be seen
from Maurer-Cartan’s first structure equation. This in particular implies that for a scalar
function f on the sphere

∂x∂xf = ∇m∇mf , (4.103)

where∇ is the Levi-Civita connection associated with the metric (4.99), and

[∂x, ∂y] = 2 εxyz∂z . (4.104)

From (4.102) it is clear that the ungauged theory, C0 = C1 = 0, is incompatible with
this GT-structure, hence at least one of the CΛ must be nonzero. If C1 6= 0, (4.102) gives
I1 = 2

√
2 t1 − t1

t0
I0, where the tΛ were defined in 4.3.1. The Bianchi identity dF̃ 0 = 0,

using (4.101), immediately implies εxyz∂xF̃ 0
yz = 0. Plugging in the expression for F̃ 0

xy

given by (3.59) and using (4.103) one concludes that I0 must be harmonic on the sphere,

I0 =
√

2Him , I1 =
√

2

(
2 t1 −

t1
t0
Him

)
. (4.105)
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Equations (3.60) and (3.61) again imply that the combination I0 − t1
t0
I1 is harmonic on

the base space,

I0 =
t1
t0

(
I1 −

1

2
√

2
H1

)
+

1

2
√

2
H0 , (4.106)

while no additional constraint is imposed on Ĩ1, so one has

I1 =
1

2
√

2

(
τ

t1
+ f

)
, I0 =

1

2
√

2

(
τ

t0
+H0 +

t1
t0

(f −H1)

)
, (4.107)

where a generic function f on S3 was introduced. (3.62) becomes

dω̃ = ?3

[(
H0 −

t1
t0
H1

)
dHim −Himd

(
H0 −

t1
t0
H1

)
− 2 t1df + 2 ω̃

]
, (4.108)

with ∂xω̃x = t1∂x∂xf due to (3.61). Setting as before f = 0 by taking τ = t− t1f + t1H1

and ω̃ = ω̂ + t1df − t1dH1, one gets

I0 =
1

2
√

2

(
t

t0
+H0

)
, I1 =

1

2
√

2

(
t

t1
+H1

)
, (4.109)

and ω̂ satisfies

dω̂ = ?3

[
H̃dHim −HimdH̃ − 2 t1dH1 + 2 ω̂

]
, ∂xω̂x = ∇mω̂m = 0 , (4.110)

with H̃ ≡ H0 − t1
t0
H1. If the harmonics are chosen such as to satisfy dHim ∧ dH̃ = 0, the

simplest solution to these equations is ω̊ = 1
2HimdH̃− 1

2H̃dHim +t1dH1, with dω̊ = 0, and
all other solutions can be obtained by adding arbitrary solutions of dω−2?3ω = 0, which
implies∇mωm = 0; these are clearly independent of the choice of harmonic functions.

To make an explicit choice for ω̂ and the harmonics it is convenient to work with the
usual hyperspherical coordinates,

ds2
S3 = dΨ2 + sin2 Ψ

(
dΘ2 + sin2 Θ dΦ2

)
. (4.111)

In these coordinates the simplest nontrivial choice of harmonic function on S3 is

H = k + q
cos Ψ

sin Ψ
, (4.112)

which is singular in the points Ψ = 0, π. In a neighbourhood of the singularities the
metric on S3 is well approximated by the flat metric in spherical coordinates with Ψ

playing the role of a radial coordinate, and H ∼ k + q
Ψ . If all the harmonics are chosen

to be of the form (4.112), the minimal ω̂ becomes

ω̊ =
1

2

k̃qi − kiq̃ − 2q1t1

sin2 Ψ
dΨ , (4.113)

which is the differential of a harmonic function and as such can be set to zero by a shift
in the time coordinate and a redefinition of the harmonics H0 and H1. This is equivalent
to take ω̊ = 0 from the beginning by imposing the constraint

k̃qi − kiq̃ − 2q1t1 = 0 . (4.114)



56 4.3 Choice of base space

The equation dω = 2 ?3 ω, together with (4.101) and (4.104), implies ∂x∂xωy = −8ωy ,
which means that the components of ω with respect to the dreibein V x are spherical
harmonics on S3 with eigenvalue 1 − n2 = −8. Using the well-known expressions for
these spherical harmonics and rewriting the one-forms V x in the coordinates (4.111) it is
possible to obtain the most general solution for ω which is regular on the three-sphere.
The metric (4.99) is obtained by considering S3 embedded in C2, |z1|2 + |z2|2 = 1, and
taking the parametrization

z1 = cos
θ

2
e

i
2 (ϕ+ψ) , z2 = sin

θ

2
e

i
2 (ϕ−ψ) . (4.115)

Comparing this with the usual parametrization for S3 in R4 one obtains in the coordi-
nates (4.111) the expressions

V 1 =− sin Θ sin Φ dΨ + sin Ψ(sin Ψ cos Φ− cos Ψ cos Θ sin Φ) dΘ

− sin Ψ sin Θ(cos Ψ cos Φ + sin Ψ cos Θ sin Φ) dΦ ,

V 2 = sin Θ cos Φ dΨ + sin Ψ(sin Ψ sin Φ + cos Ψ cos Θ cos Φ) dΘ (4.116)

− sin Ψ sin Θ(cos Ψ sin Φ− sin Ψ cos Θ cos Φ) dΦ ,

V 3 = cos Θ dΨ− sin Ψ cos Ψ sin Θ dΘ− sin2 Ψ sin2 Θ dΦ ,

and the most general regular ω is

ω =(a cos Φ− b sin Φ)(sin Θ dΨ + sin Ψ cos Ψ cos Θ dΘ− sin2 Ψ sin Θ cos Θ dΦ)

− sin Ψ(a sin Φ + b cos Φ)(sin Ψ dΘ + cos Ψ sin Θ dΦ)

− c(cos Θ dΨ− sin Ψ cos Ψ sin Θ dΘ + sin2 Ψ sin2 Θ dΦ) , (4.117)

where a, b, and c are constants.
It is also possible to construct multicentered solutions by taking sums of harmonic

functions with singularities in arbitrary points on the 3-sphere. Given the standard em-
bedding of S3 in R4, the harmonic function cos Ψ

sin Ψ can be written as

h =
x1√

1− x2
1

, (4.118)

and the analogous harmonic function with singularities in any couple of antipodal points
can be simply obtained by a rotation in R4 sending the point (1, 0, 0, 0), corresponding
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to ψ = 0, in one of the new points. However in this case one has in general dω̊ 6= 0, and
in order to reinstate dω̊ = 0 while keeping the possibility of having an arbitrary number
of black holes in arbitrary positions and with independent charges one has to impose
qim = α q̃ for each of them, where α is a proportionality constant.

4.3.3 Berger sphere

A more general Gauduchon-Tod space can be defined starting from the Berger sphere
[61], which is a squashed S3 with metric

ds2
3 = dθ2 + sin2 θ dϕ2 + cos2 µ (dψ + cos θ dϕ)

2
. (4.119)

Given the well-known expressions for the left-invariant 1-forms

σL1 = sinψ dθ − sin θ cosψ dϕ , σL2 = cosψ dθ + sin θ sinψ dϕ , σL3 = dψ + cos θ dϕ ,

and for the right-invariant 1-forms

σR1 = sinϕdθ − sin θ cosϕdψ , σR2 = cosϕdθ + sin θ sinϕdψ , σR3 = dϕ+ cos θ dψ ,

one can define the dreibein [62]

V 1 = cosµσR1 ± sinµ
(
cos θ σR2 − sin θ sinϕσR3

)
,

V 2 = cosµσR2 ∓ sinµ
(
cos θ σR1 + sin θ cosϕσR3

)
,

V 3 = cosµσR3 ± sinµ sin θ
(
sinϕσR1 + cosϕσR2

)
, (4.120)

that satisfies
dV x = ± sinµ cosµσL3 ∧ V x −

cosµ

2
εxyzV y ∧ V z , (4.121)

so that equation (3.43) is satisfied with

CΛÃ
Λ = ± sinµ cosµ

g
σL3 , CΛIΛ = −

√
2

g
cosµ . (4.122)

Using Maurer-Cartan’s first structure equation it is possible to see that for a scalar func-
tion on the Berger sphere

∂x∂xf ± 2 sinµ cosµ (σL3 )x∂xf = ∇m∇mf . (4.123)

Again at least one of the CΛ must be nonzero. If we assume C1 6= 0, (4.122) yields
I1 =

√
2 t1 cosµ− t1

t0
I0, where the tΛ are defined as before.

The Bianchi identity dF̃Λ = 0, using (4.121), implies

εxyz
(
∂x ± 2 sinµ cosµσL3 x

)
F̃Λ
yz = 0 .
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Substituting the expression for FΛ
xy given by (3.59) and using (4.123) one gets for Kim ≡

1√
2
I0:

∇m
[
∇m ± sinµ cosµσL3

m
]
Kim =

[
∇m ± sinµ cosµσL3

m
]
∇mKim = 0 . (4.124)

Eqns. (3.60) and (3.61) imply that the combination K̃ ≡ 2
√

2(I0 − t1
t0
I1) satisfies(

∇m∇m − sin2 µ
)
K̃ = 0 , (4.125)

while no additional constraint is imposed on Ĩ1, so one has

I1 =
1

2
√

2

(
τ

t1
+ f

)
, I0 =

1

2
√

2

(
τ

t0
+ K̃ +

t1
t0
f

)
, (4.126)

where a generic function f(θ, ϕ, ψ) was introduced. (3.62) becomes

dω̃ ± sinµ cosµσL3 ∧ ω̃ = ?3

[
K̃dKim −KimdK̃ − t1 cosµdf + cosµ ω̃

]
, (4.127)

and from (3.61) we get

∇mω̃m ∓ sinµ cosµσL3 mω̃
m = t1

(
∇m∇m − sin2 µ

)
f . (4.128)

It is possible to set f = 0 by taking τ = t − t1f + t1K1 and ω̃ = ω̂ + t1d(f − K1) ±
sinµ cosµσL3 t1(f −K1), where K1(θ, ϕ, ψ) satisfies (4.125). In this way

I0 =
1

2
√

2

(
t

t0
+K0

)
, I1 =

1

2
√

2

(
t

t1
+K1

)
, (4.129)

with K0 ≡ K̃ + t1
t0
K1, and ω̂ satisfies

dω̂ ± sinµ cosµσL3 ∧ ω̂ = ?3

[
K̃dKim −KimdK̃ − t1 cosµdK1 + cosµ ω̂

]
,

∇mω̂m ∓ sinµ cosµσL3 mω̂
m = 0 . (4.130)

There is no obvious way of finding solutions to the eqns. (4.124) and (4.125) that in the
limit µ → 0 reduce to harmonic functions of the form given in 4.3.2, which is what one
would expect for black hole solutions. It is however possible to consider simple solutions
given by the trivial choices

K0 = K1 = 0 , Kim = kim , ω̂ = 0 , (4.131)

with kim constant.

4.4 The F(χ) = − i
4
χ0χ1 model

Given this prepotential, from (B.21) we can derive the Kähler potential

e−K = Re(Z) , (4.132)
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where we fixed
∣∣χ0
∣∣ = 1. The Kähler metric is then

G = ∂Z∂Z̄K =
1

4
Re(Z)−2. (4.133)

From equation (B.31) one obtains

N = − i
4

(
Z 0

0 1
Z

)
, (4.134)

and for the scalar potential (3.5) one gets

V = g2

[
C2

0

Re(Z)
+ 4C0C1 +

C2
1

Re(1/Z)

]
. (4.135)

(2.35) leads to

R0 = −4I1 , R1 = −4I0 , R0 =
1

4
I1 , R1 =

1

4
I0 , (4.136)

as well as
1

2|X|2 = 〈R|I〉 =
1

2
I0I1 + 8 I0I1 . (4.137)

4.4.1 Flat base space

Using the results of section 4.3.1, one gets in the ungauged case from (4.137)

1

2|X|2 = H0H1 +H0H1 , (4.138)

and the solution takes the well-known form [63]

ds2 = 2|X|2(dτ + ω̃)2 − 1

2|X|2 d~y
2 , Z =

H0 − iH1

H1 − iH0
, (4.139)

F 0 = d
(
2|X|2H1(dτ + ω̃)

)
− ?3dH

0 , F 1 = d
(
2|X|2H0(dτ + ω̃)

)
− ?3dH

1 , (4.140)

with ω̃ satisfying (4.84). In the gauged case the solution can be written as

ds2 = 2|X|2(dt+ ω̂)2 − 1

2|X|2 d~y
2 , Z =

t/t0 +H0 + it1/t0Him

t/t1 +H1 − iHim
, (4.141)

F 0 = d

[
2|X|2

(
t

t1
+H1

)
(dt+ ω̂)

]
− ?3dHim ,

F 1 = d

[
2|X|2

(
t

t0
+H0

)
(dt+ ω̂)

]
+
t1
t0
?3 dHim ,
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where
1

2|X|2 =

(
t

t0
+H0

)(
t

t1
+H1

)
− t1
t0
H2

im (4.142)

and ω̂ ≡ ω̃ − t1df + t1dH1 satisfies eq. (4.90).

Both solutions can also be rewritten in terms of two complex harmonic functionsHΛ

as follows:

ds2 =
1

Re(H0H̄1)
(dt+ ω)2 −Re(H0H̄1)d~y 2 , Z =

H0

H1
, (4.143)

F 0 = d

[
Re(H1)

Re(H0H̄1)
(dt+ ω)

]
+ ?3dIm(H1) ,

F 1 = d

[
Re(H0)

Re(H0H̄1)
(dt+ ω)

]
+ ?3dIm(H0) ,

where ω is time-independent and satisfies

dω = ?3Im
(
H0dH̄1 +H1dH̄0

)
. (4.144)

In the ungauged case, the only additional constraint on the complex harmonics is that
they are independent of time. In terms of the harmonics defined above they are given
by

H0 = H0 − iH1 , H1 = H1 − iH0 . (4.145)

In the gauged case the time dependence of the harmonics is completely determined by
∂tHΛ = 1/tΛ

3. In addition they must satisfy Im(H0) = − t1t0 Im(H1), and thus

H0 =
t

t0
+H0 + i

t1
t0
Him , H1 =

t

t1
+H1 − iHim . (4.146)

In this case there is also the additional constraint ∂pωp = 0.

Notice that (4.143) reduces to the Israel-Wilson-Perjés [56, 55] solution for H0 = H1.
This means in particular that we can recover the Kerr-Newman solution with mass equal
to the charge by taking

H0 = H1 = 1 + qV ≡ 1 +
q

r − ia cos θ
, ω =

qa sin2 θ(2r + q)

r2 + a2 cos2 θ
dϕ , (4.147)

expressed in Boyer-Lindquist coordinates.

3Here one recognizes the substitution principle originally put forward by Behrndt and Cvetič in [57], which
amounts to adding a linear time dependence to the harmonic functions in a supersymmetric black hole of
N = 2, d = 4 supergravity.
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This construction suggests the more general form (4.91) for the harmonics, with ω

given by (4.93). With these choices the gauged solution explicitly reads

ds2 =
Σ2

∆
dt2 +

Σ

∆

[
−a sin2 θ

(
2 k̂Q r + q̂Q

)
+ 2 k̂q (r2 + a2) cos θ

]
dtdϕ

− ∆

Σ(r2 + a2)
dr2 − ∆

Σ
dθ2 (4.148)

+

[
1

4∆

[
−a sin2 θ

(
2 k̂Q r + q̂Q

)
+2 k̂q (r2 + a2) cos θ

]2
− ∆

Σ2
(r2 + a2) sin2 θ

]
dϕ2 ,

A0 =
Σ

∆
(Σ(t/t1 + k1) + q1r +Q1a cos θ) dt

− 1

2

[
Σ

∆
(Σ(t/t1 + k1) + q1r +Q1a cos θ)

(
2 k̂Q r + q̂Q

)
− 2Qir

]
a sin2 θ

Σ
dϕ

+

[
Σ

∆
(Σ(t/t1 + k1) + q1r +Q1a cos θ) k̂q − qi

]
(r2 + a2) cos θ

Σ
dϕ , (4.149)

A1 =
Σ

∆
(Σ(t/t0 + k0) + q0r +Q0a cos θ) dt

− 1

2

[
Σ

∆
(Σ(t/t0 + k0) + q0r +Q0a cos θ)

(
2 k̂Q r + q̂Q

)
+ 2

t1
t0
Qir

]
a sin2 θ

Σ
dϕ

+

[
Σ

∆
(Σ(t/t0 + k0) + q0r +Q0a cos θ) k̂q +

t1
t0
qi

]
(r2 + a2) cos θ

Σ
dϕ , (4.150)

Z =
Σ(t/t0 + k0) + q0r +Q0a cos θ + it1/t0(Σ ki + qir +Qia cos θ)

Σ(t/t1 + k1) + q1r +Q1a cos θ − i(Σ ki + qir +Qia cos θ)
, (4.151)

where

∆ =

[
Σ

(
t

t0
+ k0

)
+ q0r +Q0a cos θ

] [
Σ

(
t

t1
+ k1

)
+ q1r +Q1a cos θ

]

− t1
t0

[Σ ki + qir +Qia cos θ]
2
, (4.152)

Σ =r2 + a2 cos2 θ , x̂y = x̃yi − xiỹ , x̃ = x0 −
t1
t0
x1 . (4.153)
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It can be seen from these expressions that the constant k̂q in ω represents essentially a
NUT charge.

4.4.2 Spherical base space

Using the results of 4.3.2, the complete solution can be written in terms of harmonic
functions Him, H0, H1 on S3 and a time-independent one-form ω̂ as

ds2 = 2|X|2(dt+ ω̂)2 − 1

2|X|2 ds
2
S3 ,

F 0 = d

[
2|X|2

(
t

t1
+H1

)
(dt+ ω̂)

]
− ?3dHim ,

F 1 = d

[
2|X|2

(
t

t0
+H0

)
(dt+ ω̂)

]
+
t1
t0
?3 dHim ,

Z =
t/t0 +H0 − i2 t1 + it1Him/t0

t/t1 +H1 − iHim
, (4.154)

where

1

2|X|2 =

(
t

t0
+H0

)(
t

t1
+H1

)
+Him

(
2 t1 −

t1
t0
Him

)
, (4.155)

and ω̂ satisfies (4.110). In particular the harmonics can be taken to be of the form (4.112),
with ω̂ as in 4.3.2. The curvature scalars R, RµνRµν and RµνρσR

µνρσ are singular for
1

2|X|2 = 0, but not in the points ψ = 0 , π unless q0q1 = t1
t0
q2
i .

Note finally that the scalar field (4.154) assumes the constant value Z = t1/t0 (where
the potential (4.135) has an extremum4) if t0H0 = t1H1 and Hi = t0. In this case, H̃ = 0

and ω̊ = t1dH1. If we take ω = 0 and define a new time coordinate τ by t + t1H1 =

t0t1 sinh τ , the metric becomes

ds2 = t0t1
[
dτ2 − cosh2 τds2

S3

]
, (4.156)

and the gauge field strengths FΛ vanish, so that the solution is dS4. For ω 6= 0, one gets a
deformation of dS4 with nonzero FΛ. This is what happens also in the “asymptotic” limit
Ψ ∼ π/2 of the solution with the explicit choice (4.112) and with t0k0 = t1k1, ki = t0.

4We assume t1/t0 > 0.
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4.4.3 Berger sphere

For this base space, the results of section 4.3.3 imply that the complete solution can be
written in the form

ds2 = 2|X|2(dt± sinµ cosµσL3 t+ ω̂)2 − 1

2|X|2 ds
2
3 ,

F 0 = d

[
2|X|2

(
t

t1
+K1

)
(dt± sinµ cosµσL3 t+ ω̂)

]

− ?3[dKim ± sinµ cosµσL3 Kim] ,

F 1 = d

[
2|X|2

(
t

t0
+K0

)
(dt± sinµ cosµσL3 t+ ω̂)

]

+
t1
t0
?3 [dKim ± sinµ cosµσL3 (Kim − t0 cosµ)] ,

Z =
t/t0 +K0 − it1 cosµ+ it1Kim/t0

t/t1 +K1 − iKim
, (4.157)

where
1

2|X|2 =

(
t

t0
+K0

)(
t

t1
+K1

)
+Kim

(
t1 cosµ− t1

t0
Kim

)
, (4.158)

the functions K0 and K1 satisfy (4.125), Kim satisfies (4.124), and the time-independent
one-form ω̂ is a solution of (4.130).

With the trivial choices (4.131) the solution reduces to

ds2 =
t0t1

t2 + α0α1
(dt± sinµ cosµσL3 t)

2 − t2 + α0α1

t0t1
ds2

3 ,

AΛ = ±tΛ sinµ

(
t2 cosµ

t2 + α0α1
− αΛ

t0t1

)
σL3 , Z =

t1
t0

t− iα1

t− iα0
, (4.159)

with

α0 = t1kim , α1 = t0t1 cosµ− α0 = t0t1 cosµ− t1kim . (4.160)

Imposing α0 = α1, the scalar becomes constant and one obtains a solution of Einstein-
Maxwell-de Sitter theory already found by Meessen [64]. This can be seen as a deforma-
tion of dS4, which is recovered when µ = 0.
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4.5 The F(χ) = −1
8

(χ1)3

χ0 model

Using (B.21) this prepotential leads to the Kähler potential

e−K = Im(Z)3 , (4.161)

where we took
∣∣χ0
∣∣ = 1, and to the Kähler metric

G = ∂Z∂Z̄K =
3

4
Im(Z)−2 . (4.162)

The vectors’ kinetic matrix is, according to equation (B.31),

N =
1

4

 −ZRe(Z)2 − i
2 |Z|2 Im(Z) 3

2ZRe(Z)

3
2ZRe(Z) −3Z + i 3

2 Im(Z)

 , (4.163)

and from (3.5) one gets the scalar potential

V =
4

3
g2 C2

1

Im(Z)
. (4.164)

It is worth noting that with the choice C1 = 0 the potential vanishes, and the fake su-
persymmetric solutions constructed here are also solutions to the equations of motion of
the corresponding ungauged supergravity.

Requiring Re(Z), Im(Z) 6= 0 and 〈R|I〉 > 0 the stabilization equations give

R0 =
1

2S
[
(I1)3 + 4 I0I1I1 + 4 I0(I0)2

]
,

R1 = − 2

9S
[
16 I0(I1)2 + 3 I1(I1)2 − 9 I0I0I1

]
,

R0 =
2

27S
[
16 (I1)3 − 27 (I0)2I0 − 27 I0I1I1

]
,

R1 =
1

6S
[
4 (I1)2I1 − 12 I0I0I1 − 9 I0(I1)2

]
, (4.165)

with

S ≡
√
−4(I0I0)2 +

4

3
(I1I1)2 +

128

27
I0(I1)3 − 2I0(I1)3 − 8I0I0I1I1 , (4.166)

and
1

2|X|2 = 〈R|I〉 = S . (4.167)
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4.5.1 Flat base space

Using again the results of 4.3.1 the solution in the gauged case can be written in terms of
harmonic functions H0 , H1 and Him and a time-independent one-form ω as

ds2 = S−1(dt+ ω)2 − Sd~y 2 , Z =
T 1 + it1S/t0
T 0 − iS

, (4.168)

F 0 = d

(
HimT 0

S2 (dt+ ω)

)
− ?3dHim , F 1 = d

(
HimT 1

S2 (dt+ ω)

)
+
t1
t0
?3 dHim ,

with

S =

√√√√HimH0

[
T 0 +

(
t1
t0

)3

Him
2

]
+HimH1

[
T 1 − 4

27
H1

2

]
,

T 0 = Him

[(
t1
t0

)3

Him −H0 +
t1
t0
H1

]
,

T 1 =
4

9
H1

2 +
1

3

(
t1
t0

)2

HimH1 +
t1
t0
HimH0 ,

H0 =
t

t0
+H0 , H1 =

t

t1
+H1 , (4.169)

while ω solves eq. (4.90).

In the case C0 = 0 (t0 → ∞) and with the convenient redefinitions H1 → 3/2H1,
t̃1 = 3/2 t1 the solution simplifies to

ds2 = S−1(dt+ ω)2 − Sd~y 2 , Z = − H2
1

H0Him + iS , (4.170)

F 0 = −d
(
H0H

2
im

S2 (dt+ ω)

)
− ?3dHim , F 1 = d

(
HimH2

1

S2 (dt+ ω)

)
,

where

S =
√
HimH3

1 −H2
imH

2
0 . (4.171)
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With the choice (4.91) and (4.93), this can be explicitly written as

ds2 =
Σ2

∆
dt2 +

Σ

∆

[
−a sin2θ

(
2 k̂Q r + q̂Q

)
+ 2 k̂q (r2 + a2) cos θ

]
dtdϕ

− ∆

Σ(r2 + a2)
dr2 − ∆

Σ
dθ2 (4.172)

+

[
1

4∆

[
−a sin2θ

(
2 k̂Q r + q̂Q

)
+ 2 k̂q(r2 + a2) cos θ

]2
− ∆

Σ2
(r2 + a2) sin2θ

]
dϕ2 ,

A0 =− Σ

∆2
(Σk0 + q0r +Q0a cos θ) (Σkim + qimr +Qima cos θ)

2
dt

+

[
Σ

2∆2
(Σk0+q0r+Q0a cos θ) (Σkim+qimr+Qima cos θ)

2
(

2k̂Q r + q̂Q
)

+Qimr

]
·

· a sin2θ

Σ
dϕ−

[
Σ

∆2
(Σk0 + q0r +Q0a cos θ) (Σkim + qimr +Qima cos θ)

2
k̂q + qim

]
·

· (r2 + a2) cos θ

Σ
dϕ , (4.173)

A1 =
Σ

∆2
(Σkim + qimr +Qima cos θ)

[
Σ(t/t̃1 + k1) + q1r +Q1a cos θ

]2

·
[
dt− 1

2Σ

[(
2k̂Qr + q̂Q

)
a sin2θ + k̂q(r2 + a2) cos θ

]
dϕ

]
, (4.174)

Z = −
[
Σ(t/t̃1 + k1) + q1r +Q1a cos θ

]2
(Σkim + qimr +Qima cos θ) (Σk0 + q0r +Q0a cos θ) + i∆

, (4.175)

where

∆ =
{[

Σ(t/t̃1 + k1) + q1r +Q1a cos θ
]3

[Σkim + qimr +Qima cos θ]

− [Σk0 + q0r +Q0a cos θ]
2

[Σkim + qimr +Qima cos θ]
2
} 1

2

Σ = r2 + a2 cos2 θ , x̂y = x0yim − ximy0 . (4.176)
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In the case of flat gauging, C1 = 0 (which is inequivalent to C0 = 0 for this model),
the results of 4.3.1 are still valid provided one exchanges 0 and 1 indices everywhere.
Redefining H1 → 3H1, the solution simplifies to

ds2 = S−1(dt+ ω)2 − Sd~y 2 , Z = −H1 − iU
Him

, (4.177)

F 0 = −d
(
Him

U2 (dt+ ω)

)
, F 1 = d

(
H1

U2 (dt+ ω)

)
− ?3dHim ,

with

S = Him U = Him

√
3H2

1 − 2H0Him . (4.178)

The metric with the same harmonic functions and ω as before can again be written in the
form (4.172), but where now

x̂y = 3(x1yim − ximy1) , ∆ = [Σkim + qimr +Qima cos θ] ∆̃ ,

∆̃ =
{

3 [Σ k1 + q1r +Q1a cos θ]
2 − [Σ(t/t0 + k0) + q0r +Q0a cos θ] ·

· [Σkim + qimr +Qima cos θ]} 1
2 , (4.179)

while the other fields read

A0 =− Σ

∆̃2
(Σkim + qimr +Qima cos θ) ·

·
{
dt+

1

2Σ

[(
2k̂Qr + q̂Q

)
a sin2 θ − 2k̂q(r2 + a2) cos θ

]
dϕ

}
, (4.180)

A1 =
Σ

∆̃2
(Σk1 + q1r +Q1a cos θ) dt

− 1

2

[
Σ

∆̃2
(Σk1 + q1r +Q1a cos θ)

(
2k̂Qr + q̂Q

)
− 2Qimr

]
a sin2 θ

Σ
dϕ

+

[
Σ

∆̃2
(Σk1 + q1r +Q1a cos θ) k̂q − qim

]
(r2 + a2) cos θ

Σ
dϕ , (4.181)

Z = −Σk1 + q1r +Q1a cos θ − i∆̃
Σkim + qimr +Qima cos θ

. (4.182)
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8

(χ1)3

χ0 model

4.5.2 Spherical base space

Using the results of 4.3.2, the complete solution can be written as

ds2 = S−1(dt+ ω̂)2 − Sds2
S3 , Z = −T

1 − iSH̃im

T 0 + iSHim
, (4.183)

F 0 = −d
[T 0

S2 (dt+ ω̂)

]
− ?3dHim , F 1 = d

[T 1

S2 (dt+ ω̂)

]
+
t1
t0
?3 dHim ,

where

S =

√
−H0

(
T 0 + H̃3

im

)
+H1

(
T 1 − 4

27
HimH2

1

)
,

T 0 = H̃3
im +HimH̃imH1 +H2

imH0 , T 1 =
4

9
HimH2

1 +
1

3
H̃2

imH1 −HimH̃imH0 ,

HΛ =
t

tΛ
+HΛ , H̃im = 2t1 −

t1
t0
Him , (4.184)

and ω̂ satisfies (4.110). An explicit solution can be obtained with harmonics of the form
(4.112), obeying the constraint (4.114), and ω̂ given by (4.117).

4.5.3 Berger sphere

Making use of the results of 4.3.3 the complete solution can be written as

ds2 = S−1(dt± sinµ cosµσL3 t+ ω̂)2 − Sds2
3 , Z = −T

1 − iSK̃im

T 0 + iSKim
, (4.185)

F 0 = −d
[T 0

S2 (dt± sinµ cosµσL3 t+ ω̂)

]
− ?3[dKim ± sinµ cosµσL3 Kim] ,

F 1 = d

[T 1

S2 (dt± sinµ cosµσL3 t+ ω̂)

]
− ?3[dK̃im ± sinµ cosµσL3 K̃im] ,
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where

S =

√
−K0

(
T 0 + K̃3

im

)
+K1

(
T 1 − 4

27
KimK2

1

)
,

T 0 = K̃3
im +KimK̃imK1 +K2

imK0 , T 1 =
4

9
KimK2

1 +
1

3
K̃2

imK1 −KimK̃imK0 ,

KΛ =
t

tΛ
+KΛ , K̃im = t1 cosµ− t1

t0
Kim . (4.186)

Here the functions K0 and K1 satisfy eq. (4.125), Kim obeys (4.124), and the one-form ω̂

is a time–independent solution of (4.130).





CHAPTER 5

Multi-centered black holes with a negative cosmological
constant

Composite objects formed by elementary constituents with mass–to–charge ratio equal
to one have been studied for a long time in general relativity. In the Newtonian theory
of gravity it is clearly possible to obtain a system of point charges in static equilibrium
by fine–tuning the charge suitably with the particle mass in such a way as to balance
the gravitational and electrostatic forces. On the other hand, the non linearity of the
equations of motion imply that in general relativity the existence of a similar system is
not guaranteed.

The first indications that such a general relativistic analogue actually exists dates
back to 1917, when Weyl obtained his famous two–body static axially symmetric elec-
trovacuum solution [65], later generalized independently by Majumdar [42] and Papa-
petrou [43], who removed the requirement of axial symmetry. A stationary general-
ization of the MP solution was constructed by Israel and Wilson [55] and Perjés [56].
All these multi–black–hole geometries are supersymmetric and thus admit supercovari-
antly constant spinors [18, 22]. As a consequence, they satisfy rather simple first–order
equations, which explains why one can build arbitrary superpositions of the elementary
constituents, in spite of the nonlinear nature of the Einstein-Maxwell equations.

Nevertheless, supersymmetry does not seem to be necessary for the existence of these
bound states, since by now we know many examples of multicentered black holes that
are not BPS, see e.g. [66] or chapter 4.

The study of composite systems like “black hole molecules” has played a crucial role
in several recent developments of supergravity and string theory, especially in attempts
to understand the quantum structure of black holes. Moreover, they are of interest in the
field of holography, in particular for applications of the gauge/gravity correspondence
to condensed matter phenomena (see e.g. [67] for a review). In this context, it was
established recently in [68] that stable and metastable stationary bound states in four–
dimensional anti–de Sitter space exist, and it was argued that their holographic duals
represent structural glasses. The glassy feature of these black hole bound states is related
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to their rugged free energy landscape, which in turn is a consequence of the fact that the
constituents can have a wide range of different possible charges.

In this chapter we present the work published in [69], showing how to construct mul-
ticenter solutions in any FLRW spacetime and for arbitrary dimension. These geometries
are sourced by a U(1) gauge field and by a charged perfect fluid, and their construction
doesn’t rely on genuine or fake supersymmetry. Generically, the black holes that we
construct are determined by a function satisfying the conformal Laplace equation on the
spatial slices of the FLRW background universe. This can be seen as a generalization of
the characterization in terms of harmonic functions taking place for supersymmetric or
fake supersymmetric multicentered black holes.

Since anti–de Sitter space can be written in a FLRW form with hyperbolic spatial
slices and trigonometric scale factor, our recipe allows, as a particular subcase, to ob-
tain multicenter solutions in AdS. Like the underlying FLRW universe, these are highly
dynamical, and thus different from the bound states of [68]. Unfortunately, the big
bang/big crunch coordinate singularities that appear when one writes AdS in FLRW
coordinates become true curvature singularities once such a dynamical black hole is
present. We show that this implies that actually only one point of the conformal bound-
ary of AdS survives. This makes it questionable if our solutions admit an AdS/CFT
interpretation in the usual sense.

The chapter is organized as follows. In section 5.1 we show how to construct multi-
center solutions in an arbitrary FLRW universe, starting from the charged generalization
of the McVittie spacetime [9] originally presented in a little–known paper by Shah and
Vaidya [10]. In section 5.2, we discuss some physical properties of the single–centered
solution in AdS, both for mass–to–charge ratio generic and equal to one. In particular, we
determine the curvature singularities and trapping horizons, compute the surface grav-
ity of the latter, and show that the generalized first law of black hole dynamics proposed
by Hayward [13] holds. Finally in section 5.3, the higher-dimensional case is considered.

5.1 Multi-centered maximally charged McVittie solutions

In [10], Shah and Vaidya presented a charged generalization of the McVittie solution [9],
with metric

ds2 =

[
1− (M2 −Q2) 1+kr2

4 a2 r2

]2
[
1 +M

√
1+kr2

a r + (M2 −Q2) 1+kr2

4 a2 r2

]2 dt2

− 4 a2

[
1 +M

√
1 + kr2

a r
+ (M2 −Q2)

1 + kr2

4 a2 r2

]2
dr2 + r2dθ2 + r2 sin2 θdφ2

(1 + kr2)2
, (5.1)
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and U(1) field strength given by

F =
Q

ar2

1√
1 + kr2

[
1− (M2 −Q2) 1+kr2

4 a2 r2

]
[
1 +M

√
1+kr2

a r + (M2 −Q2) 1+kr2

4 a2 r2

]2 dr ∧ dt . (5.2)

(5.1) and (5.2) satisfy the Einstein-Maxwell equations

Gµν = 8πTµν , ∇νFµν = 4πJµ , (5.3)

Tµν =
1

4π

[
−FµρFνρ +

1

4
gµνFρλF

ρλ

]
+ ρuµuν + p(uµuν − gµν) , Jµ = σuµ , (5.4)

where the pressure, energy density, charge density and four-velocity of the charged per-
fect fluid source read respectively

8πp = −2

(
ä

a
− ȧ2

a2

) [1 +M
√

1+kr2

a r + (M2 −Q2) 1+kr2

4 a2 r2

]
[
1− (M2 −Q2) 1+kr2

4 a2 r2

] − 3
ȧ2

a2

− k

a2

[
1 +M

√
1 + kr2

a r
+ (M2 −Q2)

1 + kr2

4 a2 r2

]2 [
1− (M2 −Q2)

1 + kr2

4 a2 r2

]
−1

, (5.5)

8πρ = 3
ȧ2

a2
+

3k

2a2

[
1 +M

√
1 + kr2

a r
+ (M2 −Q2)

1 + kr2

4 a2 r2

]−3 [
2 +M

√
1 + kr2

a r

]
, (5.6)

4πσ = −3

4

kQ

a3

√
1 + kr2

r

[
1 +M

√
1 + kr2

a r
+ (M2 −Q2)

1 + kr2

4 a2 r2

]−3

, (5.7)

u =
1− (M2 −Q2) 1+kr2

4 a2 r2

1 +M
√

1+kr2

a r + (M2 −Q2) 1+kr2

4 a2 r2

dt . (5.8)

Moreover, k = 0,±1 determines the geometry of the spatial slices. From (5.7) it is clear
that the cosmic fluid is required to be charged if the spatial geometry of the underlying
FLRW universe is curved.

In the maximally charged caseM = |Q| (obtained in [70]), after the coordinate change
r = 1√

k
tan

√
k ψ
2 , (5.1) and (5.2) boil down to

ds2 =
1[

1 +M
√
k

a sin(
√
k ψ/2)

]2 dt2

− a2

[
1 +M

√
k

a sin(
√
k ψ/2)

]2 [
dψ2 +

sin2(
√
kψ)

k

(
dθ2 + sin2 θdφ2

)]
, (5.9)
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F =
Mk

2a

cos(
√
k ψ/2)

sin2(
√
k ψ/2)

dψ ∧ dt[
1 +M

√
k

a sin(
√
k ψ/2)

]2 = d

(1 +M

√
k

a sin(
√
k ψ/2)

)−1

dt

 , (5.10)

while the pressure, energy- and current density become

8πp = −3
ȧ2

a2
− k

a2

[
1 +M

√
k

a sin(
√
k ψ/2)

]−2

−2

(
ä

a
− ȧ2

a2

)[
1 +M

√
k

a sin(
√
k ψ/2)

]
, (5.11)

8πρ = 3
ȧ2

a2
+

3

2

k

a2

[
1 +M

√
k

a sin(
√
k ψ/2)

]−3 [
2 +M

√
k

a sin(
√
k ψ/2)

]
, (5.12)

4πJ = −3

4

kM

a3

√
k

sin(
√
k ψ/2)

[
1 +M

√
k

a sin(
√
k ψ/2)

]−4

dt . (5.13)

This solution appears to be characterized by the function

H =
M
√
k

sin(
√
k ψ/2)

, (5.14)

which happens to satisfy the conformal Laplace equation on E3, S3 or H3,

∇2H =
1

8
RH , (5.15)

where R = 6k is the corresponding scalar curvature. It is straightforward to verify
that one can take any function H solving (5.15), and the resulting fields still satisfy the
Einstein-Maxwell equations (5.3). This allows to generalize (5.9) to a multi-centered so-
lution by choosing H to be a linear combination of terms obtained by acting on H with
the isometries of the three-dimensional base space metric. Alternatively, one can use the
conformal invariance of (5.15), which implies

∇̃2H̃ =
1

8
R̃H̃ , (5.16)

where ∇̃2 and R̃ denote the Laplacian and scalar curvature of the conformally related
metric g̃ij = Ω2gij respectively, and H̃ = Ω−1/2H . Now let gij be the flat metric,
gijdx

idxj = d~x 2, and

g̃ijdx
idxj =

4d~x 2

[1 + k~x 2]
2 .

Starting from the usual one-center solution for a flat base, H =
√

2M/|~x|, one gets

H̃ =
M

|~x|
√

1 + k~x 2 =
M
√
k

sin(
√
kψ/2)

,
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which is the function appearing in (5.9). Taking instead

H =

N∑
I=1

QI
|~x− ~xI |

leads to

H̃ =
1√
2

[
1 + k~x 2

]1/2 N∑
I=1

QI
|~x− ~xI |

. (5.17)

It would be interesting to understand whether there is a deeper reason for the appear-
ance of this conformal structure.

Notice that the existence of this multi-centered generalization of (5.9) is also sug-
gested by considering a charged probe particle in the geometry (5.9), whose equation of
motion is

∇vpµ = −qFµνvν . (5.18)

If the particle is BPS, m = q, and we take v = vt∂t for its four-velocity, it is easy to
show that the attractive gravitational force encoded in the Christoffel connection exactly
cancels the repulsive Lorentz force, such that the particle can stay at rest at fixed ψ, θ, φ.

5.2 Singularities and horizons in the single-centered asymptotically
AdS case

In this section, we shall discuss some physical properties of the single-centered (non
necessarily maximally charged) solution in AdS, which does not coincide with the well-
known Reissner-Nordström-AdS black hole, but is highly dynamical.

Let us choose k = −1 and a(t) = l sin(t/l), with l > 0 and 0 < t/l < π. Then, far
from the black hole (ψ → ∞ or r → 1), the energy density and pressure approach the
values given by a negative cosmological constant Λ = −3/l2, while the charge density
(5.7) goes to zero. In this limit, the metric (5.1) tends to AdS in FLRW coordinates, i.e.,

ds2 → dt2 − l2 sin2 t

l

(
dψ2 + sinh2ψdΩ2

)
. (5.19)

The FLRW form is related to global coordinates τ, r̂ by

r̂ = l sin
t

l
sinhψ , cos

t

l
=

(
1 +

r̂2

l2

)1/2

cos
τ

l
, (5.20)

which casts (5.19) into

ds2 =

(
1 +

r̂2

l2

)
dτ2 −

(
1 +

r̂2

l2

)−1

dr̂2 − r̂2dΩ2 . (5.21)

(5.19) has a lightlike big bang/big crunch singularity in t = 0 and t = lπ respectively,
that are of course artefacts of the coordinate system t, ψ. In fact, by introducing τ, r̂, one
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big crunch (t = lπ, ψ = ∞)

big bang (t = 0, ψ = ∞)

ψ = 0

Figure 5.1: Carter-Penrose diagram for AdS in FLRW coordinates.

extends the spacetime beyond these singularities. The causal structure of AdS in FLRW
coordinates is visualized in the Carter-Penrose diagram fig. 5.1.

Notice also that, due to cos2(t/l) ≤ 1, the last eq. of (5.20) implies τ/l → π/2 for
r̂ → ∞, so that actually only the point τ = lπ/2 (which is of course a two-sphere) of the
conformal boundary of AdS is visible in FLRW coordinates.

Rewriting the metric (5.1) for brevity as

ds2 =
g2

f2
dt2 − a2f2

(
dψ2 +

sin2(
√
kψ)

k
dΩ2

)
,

with

f = 1 +

√
kM

a sin(
√
kψ/2)

+ k
M2 −Q2

4 a2 sin2(
√
kψ/2)

, g = 1− k M2 −Q2

4 a2 sin2(
√
kψ/2)

, (5.22)

the scalar curvature is

R = −12
ȧ2

a2
− 6

f

g

(
ä

a
− ȧ2

a2

)
− 3

2
k
f(g + 2) + g2

a2f3g
. (5.23)

The spacetime with k = −1 has thus curvature singularities in a(t) = 0, sinh(ψ/2) =

±
√
M2−Q2

2a and sinh(ψ/2) = ±Q−M
2a ; however the only singularity that is connected with

the asymptotic region ψ → +∞ is the hypersurface sinh(ψ/2) =

√
M2−Q2

2a . In the max-
imally charged case, M = |Q|, this singular hypersurface becomes the union of the hy-
persurfaces t = 0, t = lπ and ψ = 0.
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To determine if the present spacetime describes a black hole, one can look for trap-
ping horizons [11]. Introducing the Newman-Penrose null tetrads

l =
1√
2

(
g

f
dt− afdψ

)
, n =

1√
2

(
g

f
dt+ afdψ

)
,

m =
af sinhψ√

2
(dθ + i sin θdϕ) , (5.24)

and the complex conjugate m̄, the expansions of the outgoing and ingoing radial null
geodesics are respectively

θ+ ≡ −2m(µm̄ν)∇µlν , θ− ≡ −2m(µm̄ν)∇µnν , (5.25)

and once evaluated read

θ± =

√
2

a

[
ȧ± g + sinh2(ψ/2)(f + g)

sinhψ f2

]
. (5.26)

Marginal surfaces are defined as spacelike 2-surfaces on which θ+ = 0 (θ− = 0), and
trapping horizons are defined as the closure of 3-surfaces foliated by marginal surfaces
such that θ− 6= 0 and L−θ+ 6= 0 (θ+ 6= 0 and L+θ− 6= 0) on the 3-surface, where L± is the
Lie derivative along the outgoing or ingoing radial null geodesics. From eq. (5.26) it is
clear that if t 6= l π/2 the two expansions can’t both vanish at the same time, while in t =

l π/2 they only vanish behind or on the singularity, since outside of the singularity both
f and g are positive, so that no horizon can exist in any case for t = l π/2. Furthermore
L−θ+ and L+θ− are negative in the whole considered region; as a consequence the only
condition necessary to locate the trapping horizons is the vanishing of θ+ or θ−.

For M 6= |Q| there are always solutions to θ± = 0 that lie on the singularity; this
means that the horizons intersect the singularity and there is a time interval around
t = l π/2 for which they are not defined. On the other hand, if M = |Q| the horizons are
defined for every t 6= l π/2, while for t = l π/2 they tend to coincide on the singularity
ψ = 0. For ψ → +∞, θ± = 0 implies ȧ → ±1 which means that the horizons tend to the
axes t = 0 and t = l π.

There are always two trapping horizons: One for t > l π/2 where θ+ = 0 and θ− =

2
√

2 ȧa < 0, and the other for t < l π/2 where θ− = 0 and θ+ = 2
√

2 ȧa > 0. Since L−θ+

and L+θ− are negative these are respectively an outer future trapping horizon, which
can be interpreted as the horizon of a black hole, and an outer past trapping horizon,
which can be interpreted as the horizon of a white hole.

In figures 5.2 and 5.3 we display, respectively in the cosmological (FLRW) coordinates
(t, ψ) and in the global coordinates (τ, r̂) as defined in (5.20), the curvature singularity,
the trapping horizons and the radial null geodesics intersecting in a point with t = lπ/2

or τ = lπ/2, for arbitrarily chosen parameters; the plots are obtained by numerical meth-
ods.



78 5.2 Singularities and horizons in the single-centered asymptotically AdS case

0 ® ¥

0

Π � 2

Π

Ψ

t�
l

0 ® ¥

0

Π � 2

Π

Ψ

t�
l

Figure 5.2: Plots of curvature singularity (red), trapping horizons (blue) and one pair of
radial null geodesics (green) crossing in t = lπ/2, in FLRW coordinates (t, ψ) forM 6= |Q|
(left) andM = |Q| (right). ForM = |Q| the curvature singularities coincide with the axes
ψ = 0, t = 0 and t = lπ.
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Figure 5.3: Plots of curvature singularity (red), trapping horizons (blue) and one pair
of radial null geodesics (green) crossing in τ = lπ/2, in the coordinate system (τ, r̂) for
M 6= |Q| (left) and M = |Q| (right). The plot for M 6= |Q| is zoomed in on the vertical
axis to show its relevant features. For M = |Q|, the axis r̂ = 0 belongs to the curvature
singularity.
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The radial null geodesics satisfy

dt

dψ
= ±af

2

g
. (5.27)

For the case M = |Q| this means that the singularity at ψ = 0 is never reached, since
for finite a the derivative tends to infinity. On the other hand the t-component of the
geodesic equation for radial null or timelike geodesics in a ∼ 0 and finite ψ, using |ψ̇| ≤
|ṫ|/(af2) reads

ẗ+
cos(t/l)

l sin(t/l)
ṫ2 ∼ 0 , (5.28)

where a dot indicates a derivative with respect to the affine parameter. The solution,
t ∼ ± l cos−1 (c1λ+ c2) shows that the singularities in t = 0, lπ are always reached for
finite values of the affine parameter.

Taking advantage of the spherical symmetry, it is possible to define in a simple, geo-
metrical way the surface gravity kl on the trapping horizons [13] and the associated local
Hawking temperature T = kl

2π [14], according to

kl = −1

2
∇̃µ∇̃µR

∣∣∣
θ±=0

= −R
2

[
f

g

(
ä

a
− ȧ2

a2

)
+ 2

ȧ2

a2

+
1

2

1

a2f3 sinh2(ψ/2)

(
3

2
g − cosh2(ψ/2)

)
± ȧ

a2f

cosh(ψ/2)

sinh(ψ/2)

(
1

2
+

1

g
− g

f

)]
, (5.29)

whereR = af sinhψ is the areal radius, ∇̃ is the covariant derivative operator associated
with the two-dimensional metric normal to the spheres of symmetry, and the vanishing
of expression (5.26) was used. kl is in general not zero even in the maximally charged
case, and is positive on the horizons, as is expected for outer trapping horizons. It is
straightforward to verify that the generalized first law of black hole dynamics proposed
by Hayward in [13],

E′ =
klA
′

8π
+

1

2
T V ′ , (5.30)

holds on the trapping horizons. Here a prime represents a derivative along a vector
field tangent to the trapping horizon, A = 4πR2 is the area of the spheres of symmetry,
V = 4

3πR
3 is the areal volume, T is the trace of the total energy-momentum tensor T

with respect to the two-dimensional normal metric, and E is the Misner-Sharp energy,
defined as

E =
1

2
R (1 +∇µR∇µR) . (5.31)

Notice that ∇µR∇µR = θ+θ−R2/2 is identically zero on the trapping horizons, imply-
ing E′ = 1

2R
′.
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5.3 Higher-dimensional generalization

It is possible to construct higher-dimensional generalizations of the multi-centered solu-
tions found in section 5.1. To this aim, inspired by previous results [71, 72], we use the
ansatz

ds2 =
g2

f2
dt2 − a2f

2
D−2 ds2

D , (5.32)
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where a(t) is a function of time, H(~x) is a function of the spatial coordinates, D and
ds2
D ≡ hijdx

idxj are respectively the dimension and the metric of the spatial slices. No-
tice that the square bracket in the expression of F is equal to QH/(aD−2f) and is just a
way to express the charge Q in terms of the functions f and g.

The nonvanishing components of the Einstein tensor for (5.32) are given by
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where ∇̂, R̂ij and R̂ represent respectively the covariant derivative, Ricci tensor and
scalar curvature of the spatial metric hij . From the expression for F one obtains for the
electromagnetic energy-momentum tensor

8πT em
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, (5.35)
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The requirement to have a perfect fluid as matter source translates into the condition
Gij − 8πT em

ij ∝ hij . This implies that R̂ij ∝ hij , that is, the spatial slices must be Einstein
manifolds, and that the function H must satisfy the condition

−∇̂i∇̂jH
H

+
D

D − 2

∂iH∂jH

H2
∝ hij . (5.36)

Notice that (5.36) is conformally invariant on Einstein manifolds, in the sense that under a
conformal transformation that maps hij to h̃ij = e2ωhij , assuming that H tranforms as
H̃ = e

2−D
2 ωH , one has
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For a metric, U(1) gauge field, fluid velocity and current density of the form

ds2 = V (t, xi)dt2 − gijdxidxj , A = φdt , u =
√
V dt , J = ρedt , (5.38)

(which is precisely what we have here), the conservation laws∇µTµν = 0 imply

∂tp+
p+ ρ

2
gij∂tgij = 0 , ∂ip+

p+ ρ

2V
∂iV −

ρe√
V
∂iφ = 0 . (5.39)

These equations carry information on how the pressure gradients balance the equilib-
rium of the system. In particular, the second one shows that the spatial gradient of the
pressure cancels the gravitational and electromagnetic forces. Note that, due to the ex-
plicit time-dependence, there is one additional equation w.r.t. (17) of [73].

Let us now turn to (5.36). In the particular case of a conformally flat spatial metric,
hij = e2ωδij , for it to be Einstein it must also be of constant curvature, and one can

always take e−ω = 1+ k
4 r

2, with r2 ≡∑xixi. Then we haveH =
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4 r
2
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2 H0, with
H0 satisfying (5.36) on flat space, i.e.,

H0 = (αr2 + βixi + γ)
2−D

2 , (5.40)
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where α can always be set to 1 by rescaling the parameters M and Q. In this case the
energy density and pressure of the fluid are given by
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while the current density reads
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In the maximally charged case, |Q| = M , the ansatz (5.32) reduces to
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and the Einstein tensor boils down to
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Finally, the electromagnetic energy-momentum tensor becomes
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In this case the condition to have a perfect fluid source, Gij − 8πT em
ij ∝ hij , simply re-

duces to the requirement that the spatial slices are Einstein manifolds, R̂ij ∝ hij , while
H can now be any function of the spatial coordinates, i.e., (5.36) does not need to hold
anymore. The maximally charged solution is thus less constrained. This is of course also
true in the four-dimensional case, with suitable forms for the density, pressure and cur-
rent of the fluid. For a spatial metric of constant curvature the energy density, pressure
and current density of the fluid are respectively given by
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Given that H can be an arbitrary function in the extremal case, what was the reason
for the appearance of the conformal Laplace equation in section 5.1? To answer this
question, let us go back to the nonextremal solution, and consider the case where hij is
the metric on a space of constant curvature. As we already said, one has then (setting
α = 1)

H =

(
1 +

k

4
r2

)D−2
2

H0 , H0 = (r2 + βixi + γ)
2−D

2 . (5.47)

If the parameters in (5.47) satisfy the constraint γ = βiβi/4, H0 can be rewritten as

H0 =
1

|~x− ~x0|D−2
, (xi0 ≡ −βi/2) , (5.48)

which is harmonic on D-dimensional flat space. In this case, H in (5.47) satisfies the
conformal Laplace equation

∇̂2H =
D − 2

4(D − 1)
R̂H . (5.49)

(5.49) results thus from extrapolating the nonextremal case (where (5.36) must hold) to
the maximally charged situation, under the additional assumption that hij has constant
curvature.



Conclusions

In this thesis we obtained new black hole solutions, with and without supersymme-
try, with particular emphasis on multi–centered black holes in cosmological Friedmann–
Lemaı̂tre–Robertson–Walker backgrounds. These are highly dynamical spacetimes, and
we hope that they can be used to shed some light on some long–standing problems in
black hole physics which are dynamical in nature, such as what happens when black
holes collide and whether the cosmic censorship hypothesis holds.

In chapter 2, using the characterization of supersymmetric solutions to N = 2, d = 4

gauged supergravity coupled to matter by Meessen and Ortı́n [7], we were able to obtain
what is, as far as we know, the first analytical supersymmetric black hole solution with
a nontrivial hyperscalar field. This solution however has a rather peculiar asymptotic
behaviour, and the hyperscalar is not charged under the two U(1) gauge fields of the
theory. Our actual goal was to find analytic supersymmetric black holes with charged
hyperscalars in anti–de Sitter space, possibly generalizing the AdS black hole solutions
of [74]. This is a difficult task, since the inclusion of hypermultiplets makes the BPS
equations much more complicated. Nevertheless, we still hope to be able to obtain some
solution of this kind, perhaps by considering a different gauging or special geometric
model.

In chapter 4 we used the classification of fake supersymmetric solutions [8] to obtain
multi–centered solutions in a cosmological background. Fake supergravity allows to
apply the powerful techniques used to classify supersymmetric solutions of supergrav-
ities also to non–supersymmetric theories. In our case, it enabled us to find solutions
with and without rotation, and with both flat and curved spatial geometries. The lin-
earity of the fake BPS equations makes it possible to superimpose an arbitrary number
of black holes, obtaining multi–centered spacetimes with metrics characterized by har-
monic functions on the three–dimensional base space. We first obtained spacetimes gen-
eralizing the black holes previously obtained by different methods in [47], which in turn
were a generalization of the KT [40] and MOU [45] solutions, and analyzed some phys-
ical properties of the single–centered case. Then we added rotation and NUT–charge to
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a subclass of these solutions, and also found multi–centered solutions in a FLRW back-
ground whose spatial sections are 3-spheres.

Some possible extensions of this work include a more detailed study of the physical
properties of our solutions, in particular in the rotating case. It would also be worthwhile
to try to extend the analytic studies of nonrotating black hole collisions in de Sitter space
performed in [40, 41] to the more general solutions considered here, and see how the
results depend on the rotation, the cosmological scale factor different from dS, and the
spatial curvature of the underlying FLRW cosmology.

In chapter 5 we obtained a multi–centered generalization of the charged McVittie
spacetime [9, 10], sourced by a U(1) gauge field and a charged perfect fluid, in arbitrary
dimension. While there is no obvious relation of these solutions to genuine or fake su-
pergravity, the metric is given in terms of a function satisfying the conformal Laplace
equation on the spatial slices of the FLRW background, generalizing the usual construc-
tion in terms of harmonic functions encountered in multi–centered (fake) supersymmet-
ric black holes. Since the background of these solutions can be any FLRW spacetime,
as a particular subcase we obtained multi–centered black holes in a background that is
locally anti–de Sitter space in cosmological coordinates. For the single–centered asymp-
totically AdS case we discussed some physical properties, and verified the validity of a
generalized first law of black hole mechanics.

It would be interesting to investigate whether it is possible to mimic the perfect fluid
with one or more scalar fields, and to embed our solutions in some simple model of
matter–coupled genuine or fake supergravity. Since the charge density σ of the cosmic
fluid is nonvanishing for k 6= 0, these scalars would have to be charged under a U(1)

gauge field.



APPENDIX A

Notation and conventions

The conventions used in this thesis are the same as those of [8, 7], which in turn are based
upon the ones in [75]. We report them here for convenience.

A.1 Tensors

We use Greek letters µ, ν, ρ, . . . as curved tensor indices in a coordinate basis and Latin
letters a, b, c, . . . as flat tensor indices in a tetrad basis.

We symmetrize ( ) and antisymmetrize [ ] with weight one (i.e. dividing by n!).
We use mostly minus signature (+−−−) for the metric of a four dimensional space-

time. η is the Minkowski metric and a general metric is denoted by g.
Flat and curved indices are related by tetrads eaµ and their inverses eaµ, satisfying

ea
µeb

νgµν = ηab , eaµe
b
νηab = gµν . (A.1)

∇ is the total general and Lorentz covariant derivative, whose action on tensors and
spinors (ψ) is given by

∇µξν = ∂µξ
ν + Γµρ

νξρ ,

∇µξa = ∂µξ
a + ωµb

aξb ,

∇µψ = ∂µψ − 1
4ωµ

abγabψ ,

(A.2)

where γab is the antisymmetric product of two gamma matrices (see next section), ωµba

is the spin connection and Γµρ
ν is the affine connection. The respective curvatures are

defined through the Ricci identities

[∇µ,∇ν ] ξρ = Rµνσ
ρ(Γ) ξσ + Tµν

σ∇σξρ ,

[∇µ,∇ν ] ξa = Rµνb
a(ω)ξb ,

[∇µ,∇ν ] ψ = − 1
4Rµν

ab(ω)γabψ .

(A.3)

87



88 A.1 Tensors

and given in terms of the connections by

Rµνρ
σ(Γ) = 2∂[µΓν]ρ

σ + 2Γ[µ|λ
σΓν]ρ

λ ,

Rµνa
b(ω) = 2∂[µ ων]a

b − 2ω[µ|a
c ω|ν]c

b .

(A.4)

These two connections are related by the tetrad postulate

∇µeaµ = 0 , (A.5)

as
ωµa

b = Γµa
b + ea

ν∂µeν
b , (A.6)

which implies that the curvatures are, in turn, related by

Rµνρ
σ(Γ) = eρ

aeσbRµνa
b(ω) . (A.7)

Finally, the requirements of metric compatibility and vanishing torsion fully deter-
mine the connections to be of the form

Γµν
ρ = 1

2g
ρσ {∂µgνσ + ∂νgµσ − ∂σgµν} ,

ωabc = −Ωabc + Ωbca − Ωcab , Ωab
c = ea

µeb
ν∂[µe

c
ν] .

(A.8)

The 4-dimensional fully antisymmetric Levi-Civita symbol is defined by

ε0123 = +1 , ⇒ ε0123 = −1 . (A.9)

We define the Hodge dual of a completely antisymmetric tensor of rank k, F(k) by

?F(k)
µ1···µ(d−k) =

1

k!
√
|g|
εµ1···µ(d−k)µ(d−k+1)···µdF(k)µ(d−k+1)···µd

. (A.10)

Differential forms of rank k are normalized as follows:

F(k) ≡
1

k!
F(k)µ1···µk

dxµ1 ∧ · · · ∧ dxµk . (A.11)

The exterior and interior derivatives act on differential forms as:

dF(k) =
1

k!
∂νF(k)µ1···µk

dxν ∧ dxµ1 ∧ · · · ∧ dxµk , (A.12)

ıV F(k) =
1

(k − 1)!
V νF(k)νµ2···µk

dxµ2 ∧ · · · ∧ dxµk . (A.13)

For any 4-dimensional 2-form, we define the self-dual and anti-self-dual forms as

F± ≡ 1

2
(F ± i ? F ) , ⇒ ±i ? F± = F± . (A.14)
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For any two 2-forms F and G, we have then

F± ·G∓ = 0 , F±[µ
ρ ·G∓ν]ρ = 0 . (A.15)

Given any 2-form F = 1
2Fµνdx

µ ∧ dxν and a non-null 1-form V̂ = Vµdx
µ, we can

express F in the form

F = V −2[E ∧ V̂ − ?(B ∧ V̂ )] , Eµ ≡ FµνV ν , Bµ ≡ ?FµνV ν . (A.16)

For the complex combinations F± we have

F± = V −2[C± ∧ V̂ ± i ? (C± ∧ V̂ )] , C±µ ≡ F±µνV ν . (A.17)

A.2 Gamma matrices and spinors

We work with a purely imaginary representation

γa ∗ = −γa , (A.18)

and our convention for their anticommutator is

{γa, γb} = +2ηab . (A.19)

Thus,

γ0γaγ0 = γa † = γa−1 = γa . (A.20)

The chirality matrix is defined by

γ5 ≡ −iγ0γ1γ2γ3 =
i

4!
εabcdγ

aγbγcγd , (A.21)

and satisfies

γ5
† = −γ5

∗ = γ5 , (γ5)2 = 1 . (A.22)

With this chirality matrix, we have the identity

γa1···an =
(−1)[n/2]i

(4− n)!
εa1···anb1···b4−nγb1···b4−n

γ5 . (A.23)

Our convention for Dirac conjugation is

ψ̄ = iψ†γ0 . (A.24)
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Using the identity Eq. (A.23) the general d = 4 Fierz identity for commuting spinors
takes the form

(λ̄Mχ)(ψ̄Nϕ) = 1
4 (λ̄MNϕ)(ψ̄χ) + 1

4 (λ̄MγaNϕ)(ψ̄γaχ)− 1
8 (λ̄MγabNϕ)(ψ̄γabχ)

− 1
4 (λ̄Mγaγ5Nϕ)(ψ̄γaγ5χ) + 1

4 (λ̄Mγ5Nϕ)(ψ̄γ5χ) .

(A.25)
We use 4-component chiral spinors whose chirality is related to the position of the

SU(2) index:

γ5χI = +χI , γ5ψµ I = −ψµ I , γ5εI = −εI . (A.26)

Both chirality and position of the SU(2) index are reversed under complex conjugation:

γ5χ
∗
I ≡ γ5χ

I = −χI , γ5ψ
∗
µ I ≡ γ5ψµ

I = +ψµ
I , γ5ε

∗
I ≡ γ5ε

I = +εI . (A.27)

We take this fact into account when Dirac-conjugating chiral spinors:

χ̄I ≡ i(χI)†γ0 , χ̄Iγ5 = −χ̄I , etc. (A.28)

A.3 Pauli matrices

The Hermitean, unitary, traceless, 2× 2 Pauli matrices σx (x = 1, 2, 3) are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.29)

and they satisfy the following properties:

(σx)IJ(σy)JK = δxyδIK + iεxyz(σz)IK , (A.30)

(σx)KI(σ
x)LJ = 2 δKJδ

L
I − δKIδLJ (A.31)

(σ[x|)IJ(σ|y])KL = − i
2
εxyz[δIL(σz)KJ − (σz)ILδ

K
J ] . (A.32)

We can also define σ-matrices with only upper or lower indices as

(σx)IJ ≡ (σx)IKε
KJ , (σx)IJ ≡ εIK(σx)KJ , (A.33)

which are symmetric matrices

(σx)[IJ] = (σx)[IJ] = 0 , (A.34)
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and satisfy the property
i(σx)IJ =

[
i(σx)IJ

]∗
. (A.35)

It is possible to use the σ-matrices to switch between SU(2) indices and three dimen-
sional vector indices using the convention

AIJ ≡
i

2
Ax(σx)IJ . (A.36)

A.4 Bilinears and Fierz identities

Starting from (fake) Killing spinors it is possible to construct the following bilinears. The
scalar bilinear is defined by

X ≡ 1

2
εIJ ε̄IεJ , (A.37)

and can be inverted to give
ε̄IεJ = εIJ X . (A.38)

The vector bilinears are defined by the decomposition

V Ia J ≡ iε̄IγaεJ =
1

2
Va δ

I
J +

1√
2
V xa (σx)

I
J , (A.39)

whose inversion gives

Va = V Ia I and V xa =
1√
2

(σx)
J
I V

I
a J . (A.40)

Finally there are three imaginary self-dual 2-forms defined by

ΦIJ ab ≡ ε̄IγabεJ =
i

2
(σx)IJΦxab −→ Φx = i (σx)

IJ
ΦIJ . (A.41)

The Fierz identities imply

ηab =
1

4|X|2 [VaVb − 2V xa V
x
b ] , (A.42)

and
ıV V

x = 0 , g (V, V ) = 4|X|2 , g (V x, V y) = −2|X|2 δxy . (A.43)

The bilinear 2-form Φ can also be obtained from the vector bilinears V and V x as

Φx =
i√
2X̄

[V x ∧ V + i ? (V x ∧ V )] . (A.44)





APPENDIX B

Geometry

In this appendix we present the definitions and review some properties of the geometries
mentioned in the main text. The discussion here is mostly based on references [16, 76, 17],
the appendices of [7] and, for section B.8, appendix C of [35].

In the literature there are different definitions of special Kähler manifold, not all of
them equivalent. Our definition is based on the definition 2 of [76], which does not rely
on the existence of a prepotential.

For a more in depth analysis of the topics discussed here, and for the omitted proofs
of some statements, we refer the reader to the sources mentioned above and references
therein.

B.1 Complex manifolds

A topological spaceM is a complex manifold of complex dimension n if there is an open
cover {UI} ofM such that on each UI there is a homeomorphism ψI : UI → VI ⊂ Cn,
and on intersections UI ∩ UJ the transition maps ψI ◦ ψ−1

J are holomorphic.
From a local point of view, an n-dimensional complex manifold can be viewed as a

2n-dimensional real manifold parametrized by n complex coordinates Zi. We can start
from the 2n real coordinates x1, . . . , xn, xn+1, . . . x2n and define

Zi = xi + ixi+n , i = 1, . . . , n

Z̄ ı̄ = xi − ixi+n = Zi .

(B.1)

We can also write the 2n complex coordinates as Za, where the index a runs first through
the holomorphic coordinates i and then through the anti-holomorphic coordinates ı̄. The
map (B.1) between the coordinates xi and the coordinates Za can then be considered as a
standard coordinate transformation, and the usual relations from differential geometry
remain valid. While a generic coordinate transformation Z ′i = f i(Z, Z̄) would not pre-
serve the splitting between holomorphic and anti-holomorphic coordinates, holomor-
phic transformations of the form Z ′i = f i(Z) do.

93
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A different characterization of a complex manifold can be given in terms of a complex
structure. On every real manifold of even dimension it is possible to locally define an
almost complex structure, which is a tensor J b

a (x) mapping the tangent space in itself,
with the property J c

a J
b
c = −δ b

a . If this structure can be extended globally to define
a smooth tensor field, then the manifold is an almost complex manifold. Every complex
manifold has a global almost complex structure, which can be given in holomorphic
coordinates by

J =

(
iδ ji 0

0 −iδ ̄ı̄

)
, (B.2)

but the converse is in general not true. There is a theorem stating that an almost complex
manifold is a complex manifold if and only if the Nijenhuis tensor vanishes:

N c
ab ≡ J d

a

(
∂dJ

c
b − ∂bJ c

d

)
− J d

b

(
∂dJ

c
a − ∂aJ c

d

)
= 0 . (B.3)

B.2 Kähler manifolds

If a Riemannian metric is defined on a complex manifold, the line element takes the
general form

ds2 = GabdZadZb = 2GīdZidZ̄ ̄ + GijdZidZj + G ı̄̄dZ̄ ı̄dZ̄ ̄ . (B.4)

The metric is said to be Hermitian if there are choices of coordinates for which Gij =

G ı̄̄ = 0, or equivalently the line element takes the form

ds2 = GabdZadZb = 2GīdZidZ̄ ̄ . (B.5)

These coordinate systems are then said to be adapted to the Hermitian structure. Given
a Hermitian metric, we can define the fundamental 2-form:

J = iGī dZi ∧ dZ̄ ̄ . (B.6)

A Kähler manifold is a complex manifold with Hermitian metric such that its funda-
mental form, in this case also called Kähler form, is closed, dJ = 0. This is equivalent to
the condition

∂kGī − ∂iGk̄ = 0 , (B.7)

which implies the existence in every coordinate patch of a real function K(Z, Z̄), the
Kähler potential, such that the metric is locally given by

Gī = ∂i∂̄K . (B.8)

The Kähler potential is not uniquely defined, since a Kähler transformation

K(Z, Z̄)→ K′(Z, Z̄) = K(Z, Z̄) + f(Z) + f̄(Z̄) (B.9)
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leaves the metric invariant. In general there is no globally defined Kähler potential, but
potentials on overlapping coordinate patches differ by a Kähler transformation.

A Kähler manifold can equivalently be defined as a real even dimensional manifold
with an almost complex structure J and Hermitian metric G such that J is covariantly
constant with respect to the Levi-Civita connection:

∇aJ c
b = 0 . (B.10)

The condition for the metric to be Hermitian can be restated as the requirement that it
is invariant under the action of the almost complex structure, JGJT = G. The condition
(B.10) is sufficient to ensure that the Kähler form, which in real coordinates can be written
as

J =
1

2
Jab dx

a ∧ dxb , Jab = J c
a Gcb , (B.11)

is closed and that the Nijenhuis tensor (B.3) vanishes.
It is worth noting that the Levi-Civita connection for a Kähler metric is greatly sim-

plified. The only non-vanishing components are those of the form

Γijk = Gil̄∂jGkl̄ , Γı̄̄k̄ = Glı̄∂̄Glk̄ . (B.12)

B.3 Kähler-Hodge manifolds

Consider a holomorphic line bundle, that is a rank one complex vector bundle with holo-
morphic transition functions, over a Kähler manifold L → M. If we take a Hermitian
fibre metric h(Z, Z̄) on L, there is a unique connection compatible with both the holo-
morphic and the Hermitian structures. The curvature form of this compatible connection
is given by

F = ∂i∂̄ log(h) dZi ∧ dZ̄ ̄ . (B.13)

Since F is a closed 2-form, the equivalence class c1(L) ≡ i
2π [F ] defined from F up to

addition of exact differential forms is a cohomology. This cohomology class is what is
known as the first (and only) Chern class of the line bundle, and it is independent of
the choice of h. The fundamental form J of a Kähler manifold is also a closed differen-
tial form, and like the curvature form it defines a cohomology class 1

2π [J ], called Kähler
class. Integrating a representative of any cohomology class on a closed surface one ob-
tains a number which clearly does not depend on the choice of the representative itself,
and is thus a characteristic of the class.

A Kähler manifoldM is a Kähler-Hodge manifold if and only if there exists a holomor-
phic line bundle L →M such that the first Chern class of the bundle equals the Kähler
class:

c1(L) =
1

2π
[J ] . (B.14)

The first Chern class of a line bundle is always an element of the integral cohomology
group, which means that the integral over a closed surface of a member of c1(L) is an
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integer. This, together with (B.14), implies that the Kähler class is of integral cohomology
too. Conversely, it can be shown that on a Kähler manifold with Kähler class of integral
cohomology it is always possible to define a holomorphic line bundle whose first Chern
class equals the Kähler class.

In supergravity there are in general complex scalar fields Zi parametrizing a Kähler
target manifoldM, and Kähler transformations of the form (B.9) are symmetries of the
action. Under this symmetry the fermions of the theory transform as

ψ → e−
1
4 (f(Z)−f̄(Z̄))ψ , (B.15)

defining in a natural way a U(1)-bundle overM.
The Kähler potentials in different coordinate patches on intersections UI ∩UJ satisfy

KI −KJ = fIJ(Z) + f̄IJ(Z̄) , with fIJ = −fJI , (B.16)

and for the U(1)-bundle to be well defined on triple intersections UI ∩ UJ ∩ UK a cocycle
condition must hold:

e−
1
4 (fIJ (Z)−f̄IJ (Z̄)) e−

1
4 (fJK(Z)−f̄JK(Z̄)) e−

1
4 (fKI(Z)−f̄KI(Z̄)) = 1

=⇒ Im (fIJ + fJK + fKI) = 4π cIJK ,

(B.17)

where cIJK is a real constant. At the same time the identity (KI − KJ) + (KJ − KK) +

(KK −KI) = 0 implies from (B.16)

Re (fIJ + fJK + fKI) = 0 . (B.18)

From equations (B.17) and (B.18) follows that we can define a holomorphic line bun-
dle onM, with sections given by holomorphic functions χ(Z) and transition functions
efIJ (Z). This bundle is well defined since it too satisfies the cocyle condition on triple
intersections,

efIJ (Z) efJK(Z) efKI(Z) = 1 . (B.19)

The exponential of the Kähler potential eK(Z,Z̄) can be seen as a Hermitian metric on this
bundle, and the curvature of the unique compatible connection is

F = ∂i∂̄K dZi ∧ dZ̄ ̄ = Gī dZi ∧ dZ̄ ̄ = −iJ ⇒ c1(L) =
1

2π
[J ] . (B.20)

In supergravity then the existence and regularity of fermion fields transforming under
Kähler transformations as in (B.15) implies that the target space of the complex scalars is
a Kähler-Hodge manifold.

B.4 Special Kähler manifolds

Consider an n-dimensional Kähler-Hodge manifoldM, and let L→M be the holomor-
phic line bundle with first Chern class equal to the Kähler class of M. M is a special
Kähler manifold if there exist onM:
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1. A holomorphic flat vector bundle H → M with fibre dimension 2(n + 1), and
whose structure group is the symplectic group Sp (2(n+ 1),R).

2. A holomorphic section Ω(Z) of L⊗H satisfying the constraints

K = − log
[
i〈Ω|Ω̄〉

]
and 〈Ω|DiΩ〉 = 〈Ω|∂iΩ〉 = 0 , (B.21)

where the Kähler covariant derivative of Ω(Z) is given by DiΩ = ∂iΩ + (∂iK) Ω.
The section Ω(Z) is locally represented by symplectic vectors of the form

Ω(Z) =

(
χΛ(Z)

FΛ(Z)

)
Λ = 0, . . . , n , (B.22)

and on coordinate patch intersections UI ∩ UJ the transition maps act on Ω(Z) as

Ω(Z) −→ efIJ (z)MIJ Ω(Z) (B.23)

where the maps fIJ : UI ∩ UJ → C are holomorphic, the MIJ are constant matrices in
Sp (2(n+ 1),R), and on triple intersections a cocycle condition holds:

efIJfJKfKI = 1 , MIJMJKMKI = 1 . (B.24)

If we assume that the components FΛ depend on Zi only through χΛ(Z), the second
equation in (B.21) becomes

∂iχ
Λ
[
2FΛ − ∂Λ

(
χΣFΛ

)]
= 0 , (B.25)

and is satisfied if there is a holomorphic homogeneous function of second degree F(χ),
called a prepotential, such that FΛ = ∂ΛF . It is possible to prove that if the (n+1)×(n+1)

matrix
(
χΛ ,Diχ

Λ
)

is invertible a prepotential always exists. In general a prepotential
may not exist, but it’s always possible, for a given special Kähler manifold, to change to
a frame in which there is a prepotential by acting on Ω(Z) with a symplectic transforma-
tion [76].

A section V(Z) of a different bundle, which is only covariantly holomorphic, is often
introduced

V(Z) =

(
LΛ(Z)

MΛ(Z)

)
= eK(Z,Z̄)/2Ω(Z) , Dı̄V = ∂ı̄V −

1

2
(∂ı̄K)V = 0 , (B.26)

together with the objects

U i ≡ DiV = ∂iV +
1

2
(∂iK)V =

(
fΛ
i

hΛi

)
. (B.27)

In terms of V and U i the constraints (B.21) become

〈 V̄ | V 〉 = i and 〈 V |DiV 〉 = 〈 V | U i 〉 = 0 . (B.28)
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In extended supergravities, the coupling of the complex scalars to the vector fields is
given in terms of a (n + 1)×(n + 1) period matrix N . This matrix is entirely determined
from special geometric data, and is defined through the relations

MΛ = NΛΣLΣ , hΛi = NΛΣf
Σ
i . (B.29)

The (n+1)×(n+1) matrix
(
LΣ , f̄Σ

ı̄

)
is always invertible [76], soN is given by the matrix

product

NΛΣ =
(
MΛ , h̄Λı̄

) (
LΣ , f̄Σ

ı̄

)−1
, (B.30)

which when a prepotential F(χ) exists becomes

NΛΣ = F̄ΛΣ + 2i

(
NΛΓχ

Γ
) (
NΣ∆χ

∆
)

χΩNΩΨχΨ
, (B.31)

with NΛΣ ≡ Im(FΛΣ) = Im(∂Λ∂ΣF), showing explicitly that N is symmetric. In
the general case the symmetry of N follows from the vanishing of the matrix product(
LΣ , f̄Σ

ı̄

)T (N̄ − N̄ T
)

ΛΣ

(
LΣ , f̄Σ

ı̄

)
, due to the second constraint in (B.28), together with

the invertibility of
(
LΣ , f̄Σ

ı̄

)
.

The definitions (B.26) and (B.28) imply the relations

〈 U i | Ū ı̄ 〉 = iGiı̄ , 〈 U i | V̄ 〉 = 0 , (B.32)

while the definition of the period matrixNΛΣ (B.29) together with its symmetry leads to

〈 U i | Uj 〉 = 0 . (B.33)

The identities (B.28), (B.32) and (B.33) tell us that the n + 1 sections V and U i, and their
complex conjugates, are linearly independent. This allows us to write the useful com-
pleteness relation, for a generic symplectic section A,

A = i〈A | V̄ 〉V − i〈A | V 〉V̄ + i〈A | U i 〉Giı̄Ū ı̄ − i〈A | Ū ı̄ 〉Giı̄U i . (B.34)

B.5 Symmetries of special Kähler manifolds

For a generic Riemannian or pseudo-Riemannian manifold, the isometries are the trans-
formations that preserve the metric G. This means that they are generated by a vector
field k satisfying the Killing equation

£kGab = ∇akb +∇bka = 0 . (B.35)

When the manifold is Kähler, one also wants to preserve the complex structure

£kJ
b

a = ∇akcJ b
c −∇ckbJ c

a = 0 . (B.36)
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Since the complex structure in holomorphic coordinates has the form (B.2), when the
indices a and b are both holomorphic or anti-holomorphic this equation is automatically
satisfied, while for mixed indices it translates to the conditions

∂ı̄k
j = 0 , ∂ik

̄ = 0 =⇒ k = ki(Z)∂i + kı̄(Z̄)∂ı̄ , (B.37)

which is the reason why a vector field k satisfying both eq. (B.35) and eq. (B.36) is
called holomorphic Killing vector. If k is holomorphic, the completely holomorphic or anti-
holomorphic components of eq. (B.35) are automatically satisfied for a Kähler metric,
while the components with mixed indices become

0 = ∇ik̄ +∇̄ki = ∂ik̄ + ∂̄ki , (B.38)

which is equivalent to require that the Kähler form is preserved:

0 = £kJ = (ıkd+ dık)J = dıkJ = −id
(
kidZ

i − kı̄dZ̄ ı̄
)

(B.39)

where we made use of dJ = 0 and ık is the interior derivative with respect to k. Since
ıkJ is a closed form, by Poincaré’s lemma there exists a (real) function P(Z, Z̄), called a
moment (or momentum) map, such that locally

ıkJ = −dP . (B.40)

This means that a holomorphic Killing vector, if the function P(Z, Z̄) is known, is given
by

ki(Z) = iGī∂̄P(Z, Z̄) , (B.41)

which is the reason why P is often called Killing prepotential. Equation (B.41) can be
inverted to give

P(Z, Z̄) = −i
[
ki∂iK(Z, Z̄)− λ(Z)

]
= i
[
kı̄∂ı̄K(Z, Z̄)− λ̄(Z̄)

]

= − i
2

[
ki∂iK(Z, Z̄)− kı̄∂ı̄K(Z, Z̄)

]
− i

2

(
λ(Z)− λ̄(Z̄)

)
,

(B.42)

where λ(Z) is a generic holomorphic function. This expression is completely general
since eq. (B.40) defines P up to a constant, which can be absorbed in the function λ(Z).
Eq. (B.42) implies also

0 = i
(
ki∂iK + kı̄∂ı̄K

)
− i
(
λ+ λ̄

)
= i
(
£kK − λ− λ̄

)
, (B.43)

meaning that in general, under an isometry generated by k, the Kähler potential changes
by a Kähler transformation, determined by the holomorphic function λ(Z) appearing in
the expression of the moment map P .



100 B.5 Symmetries of special Kähler manifolds

The Killing vectors of a manifold generate a Lie algebra. In particular for holomor-
phic Killing vectors the Lie bracket relation is

[kΛ, kΣ] =
(
k i

Λ ∂ik
j

Σ − k i
Σ ∂ik

j
Λ

)
∂j +

(
k ı̄

Λ ∂ı̄k
̄

Σ − k ı̄
Σ ∂ı̄k

̄
Λ

)
∂̄

= −f Γ
ΛΣ

(
k i

Γ ∂i + k ı̄
Γ ∂ı̄

)
,

(B.44)

showing that the holomorphic and anti-holomorphic components of the Killing vectors
satisfy the algebra separately. The Lie derivative must satisfy the condition [£Λ,£Σ] =

£[kΛ,kΣ], which when applied to eq. (B.43) gives

£ΛλΣ −£ΣλΛ = −f Γ
ΛΣ λΓ . (B.45)

This in turn implies that the moment maps transform in the adjoint representation of the
symmetry group,

£ΛPΣ =
(
k i

Λ ∂i + k ı̄
Λ ∂ı̄

)
PΣ = i

(
k i

Λ Gīk ̄
Σ − k i

Σ Gīk ̄
Λ

)
= −f Γ

ΛΣ PΓ , (B.46)

where £Λ is the Lie derivative with respect to kΛ. Equation (B.46) is called equivariance
condition.

Up to now we have considered a generic Kähler manifold. For a special Kähler
manifold, we want to consider isometries that also preserve the special structure. This
amounts to require that the isometries are embedded in the symplectic group, or more
precisely that the sections Ω(Z) transform as follows:

£ΛΩ = SΛΩ− λΛ(Z)Ω , (B.47)

where the functions λΛ(Z) generate Kähler transformations and the real, constant, 2(n+

1)×2(n+ 1) matrices

SΛ =

(
a b

c −aT

)
, with b = bT and c = cT , (B.48)

generate transformations in Sp(n + 1). Note that the matrices SΛ must provide a rep-
resentation of the Lie algebra of the symmetry group, [SΛ,SΣ] = −f Γ

ΛΣ SΓ. Since Ω is
holomorphic, its Lie derivative is given by

£ΛΩ = k i
Λ ∂iΩ = k i

Λ DiΩ− k i
Λ ∂iKΩ = k i

Λ DiΩ− iPΛΩ− λΛΩ , (B.49)

where we made use of (B.42). Comparing the expression (B.49) with the one in (B.47),
and taking the symplectic product with Ω̄, one obtains

k i
Λ 〈Ω̄|DiΩ〉 − iPΛ〈Ω̄|Ω〉 = 〈Ω̄|SΛΩ〉 . (B.50)

The first constraint in (B.21) implies that 〈Ω̄|DiΩ〉 = 0, and we are left with the simple
relation

PΛ = eK〈Ω̄|SΛΩ〉 . (B.51)
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If instead we take the symplectic product with Ω we get the constraint

〈Ω|SΛΩ〉 = 0 . (B.52)

B.6 Quaternionic-Kähler manifolds

A quaternionic-Kähler manifold is a 4n-dimensional Riemannian manifold (with n > 1)
whose holonomy group is a subgroup of USp(2n)× SU(2).

An equivalent, but perhaps more transparent, characterization of such manifolds is
the following: a quaternionic-Kähler manifold is a 4n-dimensional Riemannian mani-
fold admitting a locally defined triplet ~K

v

u of almost complex structures satisfying the
quaternion relation

K1K2 = K3 , (B.53)

and whose Levi-Civita connection preserves ~K up to a rotation,

∇w~K
v

u + ~Aw × ~K
v

u = 0 , (B.54)

where ~A ≡ ~Au(q) dqu is a triplet of 1-forms on the manifold.
For n > 1 it is possible to prove that a quaternionic-Kähler manifold is necessarily

Einstein and that the SU(2) curvature is proportional to the complex structures:

Ruv =
1

4n
HuvR (B.55)

Fx ≡ dAx +
1

2
εxyzAy ∧ Az = κKx , κ ≡ R

4n(n+ 2)
, (B.56)

where Huv is the metric tensor of the manifold and Kx ≡ 1
2K

x z
u Hzvdq

u ∧ dqv are the
2-forms associated with the almost complex structures. For n = 1 we will consider
equations (B.55) and (B.56) part of the definition of quaternionic-Kähler manifold. In
supergravity the constant κ in (B.56) must be negative, in particular we take κ = −2,
which implies that the quaternionic-Kähler manifolds relevant for supergravity have
negative scalar curvature.

It should be noted that, despite the name, quaternionic-Kähler manifolds are not in
general Kähler manifolds. In fact in many cases they don’t even admit a globally defined
almost complex structure (see e.g. [77]). If however κ = 0, which means that the SU(2)

curvature is zero, the manifold is hyper-Kähler, and in particular it is Ricci flat and Kähler,
having a triplet of covariantly constant complex structures. Hyper-Kähler manifolds do
not appear in supergravity, but they are relevant for rigid supersymmetry.

In supergravity it is customary to introduce frame fields UuαI(q) connecting the scalar
fields qu, that are coordinates on a quaternionic-Kähler manifold, to the fermions ζα. The
index α runs from 1 to 2n, while I = 1, 2, so that the UuαI(q) can be seen as 4n × 4n
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invertible matrices when (αI) is considered as a single index. The inverse is written
UαIu(q):

UαIuU
v
αI = δvu , UαIuU

u
βJ = δIJδ

α
β , (B.57)

and there is a reality condition

UαIu ≡
(
UαIu

)∗
= εIJ Cαβ UβJu , UuαI ≡ (UuαI)

∗
= εIJ Cαβ UuβJ , (B.58)

where Cαβ is a non-degenerate tensor satisfying

Cαβ = −Cβα , Cαβ Cβγ = −δγα , Cαβ = (Cαβ)
∗
. (B.59)

The metric is given by
Huv = UαIu εIJ Cαβ U

βJ
v , (B.60)

so that εIJ Cαβ can be interpreted as a metric in tangent space.
From the above definitions follows that it is possible to define a triplet of almost

complex structures starting from the frame fields,

Kx v
u = −iUαIuUvαJ σx J

I , (B.61)

where the σx are the Pauli matrices. The frame fields are covariantly constant using a
connection on every index,

∇vUαIu ≡ ∂vUαIu + A I
vJ UαJu + ∆ α

vβ UβIu − Γ w
vu UαIw = 0 , (B.62)

where A J
uI ≡ i

2
~Au · ~σ J

I and ∆ β
uα is the USp(2n) connection. It is then easily verified

that the almost complex structures in (B.61) satisfy (B.54).

B.7 Symmetries of quaternionic-Kähler manifolds

To preserve the quaternionic-Kähler structure we must require that the isometries pre-
serve the complex structures Kx up to a rotation. This means that the “quaternionic”
Killing vectors k generating the isometries satisfy the equations

£kHuv = ∇ukv +∇vku = 0 (B.63)

£kK
x v
u = kw∇wKx v

u +∇ukwKx v
w −∇wkvKx w

u = −εxyzWyKz v
u , (B.64)

where we introduced a compensator field Wx. Using (B.54), equation (B.64) can be
rewritten as

∇ukwKx v
w −∇wkvKx w

u = εxyzPyKz v
u , with Px ≡ kuAxu −Wx . (B.65)

The objects Px are called triholomorphic moment maps, and they are in many ways analo-
gous to the moment maps introduced in section B.5.
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Contracting equation (B.65) with Kl uv , and using the quaternion algebra relation
Kx w

u Ky v
w = −δxyδ v

u + εxyzKz v
u , we obtain the expression

Px =
1

2n
Kx v

u ∇vku , (B.66)

which gives the moment maps Px in terms of the Killing vector k.
Equation (B.64) is equivalent to the analogous equation for the 2-forms Kx,

£kK
x = (ıkd+ dık)K

x = −εxyzWyKz , (B.67)

which, since from eq. (B.54) we have dKx = −εxyzAy ∧ Kz , can be rewritten as

DıkK
x ≡ dıkKx + εxyzAy ∧ ıkKx = εxyzPyKz . (B.68)

Taking the exterior derivative of (B.68), after some straightforward calculations and mak-
ing use of the proportionality relation (B.56) between Fx and Kx, we arrive to

εxyzωy ∧ Kz = 0 with ωx ≡ dPx + εxyzAyPz + κ ıkKx . (B.69)

Equation (B.69) in components is εxyzωy[uK
z
vw] = 0, and contracting with Kxuv it be-

comes Kx v
u ωxv = 0. Since it is always possible to rotate to a frame in which two of the

three ωx are zero, and since Kx v
u are invertible matrices, this implies ωx = 0, or

DuP
x ≡ ∂uPx + εxyzAyuP

z = κKxuvk
v . (B.70)

Equation (B.70) is the analogous for quaternionic-Kähler manifolds of eq. (B.41), and can
be considered as the defining equation of the triholomorphic moment maps.

We assume that the Killing vectors satisfy the Lie algebra [kΛ, kΣ] = −f Γ
ΛΣ kΓ. The

Lie derivative should then satisfy the condition [£Λ,£Σ] = £[kΛ,kΣ]. Applying this con-
straint to equation (B.64) we obtain for the compensator fields the relation

2£[ΛW
x

Σ] + εxyzW y
Λ W z

Σ = −f Γ
ΛΣ W x

Γ , (B.71)

which from eq. (B.70) implies for the moment maps the equivariance condition

εxyzP y
Λ P z

Σ − κ k u
Λ Kxuvk

v
Σ = f Γ

ΛΣ P x
Γ , (B.72)

analogous to the equivariance condition (B.46) for Kähler manifolds.

B.8 Gauduchon-Tod spaces

A Weyl manifold is an n-dimensional manifoldM together with a conformal class [g] of
metrics onM, and a torsionless connection D which preserves the conformal class, i.e.

Dρ gµν = 2 θρ gµν , (B.73)
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where g is any representative of [g] and θ is a 1-form onM. From the above definition
follows that we can express the connection as

Dµξν = ∇µξν + γ ρ
µν ξρ with γ ρ

µν = γ ρ
νµ = δρµθν + δρνθµ − gµνθρ , (B.74)

where∇ is the Levi-Civita connection for the chosen g ∈ [g]. The curvature tensor of this
connection and the associated Ricci and scalar curvature are defined by

[Dµ, Dν ] ξρ = −W σ
µνρ ξσ , Wµν ≡W ρ

µρν , W ≡W µ
µ . (B.75)

The Ricci tensor is not symmetric and its antisymmetric and symmetric parts are given
respectively by

W[µν] = −n
2
Fµν , where F ≡ dθ (B.76)

and

W(µν) = Rµν − (n− 2)∇(µθν) − (n− 2)θµθν − gµν [∇ρθρ − (n− 2)θρθ
ρ] . (B.77)

Equation (B.73) implies that, under a conformal transformation g → e2wg sending
one element of [g] to another, the 1-form θ transforms as θ → θ + dw. This means that
θ can be seen as a gauge field gauging a R-symmetry. W σ

µνρ and Wµν are conformally
invariant, while the scalar curvature transforms as W → e−2wW .

In analogy with the definition of Einstein manifolds, a Weyl manifold is said to be
Einstein-Weyl if the curvatures satisfy the conformally invariant condition

W(µν) =
1

n
gµνW . (B.78)

A smooth manifold with three complex structures, that is three globally defined al-
most complex structures whose Nijenhuis tensor vanishes, satisfying the quaternion al-
gebra, is called an hypercomplex manifold. If in addition a Riemannian metric is defined
on the manifold which is Hermitian with respect to each of the three complex structures,
g (JxV, JxW ) = g (V,W ), then the manifold is called hyper-Hermitian. In [61], Gaudu-
chon and Tod studied the structure of four dimensional hyper-Hermitian Riemannian
spaces admitting a tri-holomorphic Killing vector, i.e. a Killing vector compatible with
the three complex structures on the hyper-Hermitian space. A result of that study is that
the three dimensional base-space, that is the space of the orbits of the tri-holomorphic
Killing vector with the induced metric, is determined by an orthonormal frame, Ex, a
1-form θ and a real function κ that must satisfy

dEx = θ ∧ Ex − κ ? Ex , (B.79)

where ? is the Hodge operator associated to the metric constructed out of the frame fields
Ex. Equation (B.79) is equivalent to the statement that the space is a three dimensional
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Einstein-Weyl manifold with the additional conditions:

W = −3

2
κ2 , (B.80)

?dθ = dκ + κθ . (B.81)

A three dimensional Einstein-Weyl manifold that satisfies (B.80)-(B.81), or equivalently
a three dimensional Riemannian manifold satisfying (B.79), is called a Gauduchon-Tod
space.





APPENDIX C

Dynamical black holes

Black holes are conventionally defined by the existence of an event horizon. A rigorous
definition of event horizon however relies on the global assumtpion of asymptotic flat-
ness (see e.g. [78]). Furthermore the global nature of event horizons means that they
cannot be located by a physical observer, since this would require the knowledge of the
entire causal structure of the spacetime.

In this appendix we present an alternative definition of black hole, proposed by
S. Hayward and based on the quasi-local concept of trapping horizons [11], which does
not require the spacetime to be asymptotically flat and can be used also for dynamical
spacetimes. Following [13] we will also give, in the spherically symmetric case, a gener-
alized first law of black hole dynamics.

C.1 Trapping horizons

The intuitive idea behind the definition of trapping horizons is that inside a black hole
both the ingoing and the outgoing light rays converge, so that all signals are confined in
a shrinking region.

Start from the definition of marginal surface. Assuming that the spacetime is time-
orientable, let θ+ and θ− be the expansions of the future-pointing null geodesics orthog-
onal to a spatial two-surface S. Then S is a marginal surface if one of the expansions,
which we take to be θ+, vanishes on S:

θ+|S = 0 . (C.1)

A trapping horizon is the closure, H̄ , of a three-surface H foliated by marginal surfaces on
which

θ−|H 6= 0 and £−θ+|H 6= 0 , (C.2)

where £− is the Lie derivative along the direction of the null geodesics with expansion
θ−. Marginal surfaces and trapping horizons are called{

outer
inner

if
£−θ+|H < 0

£−θ+|H > 0
and

{
future
past

if
θ−|H < 0

θ−|H > 0
. (C.3)

107
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The future outer trapping horizon provides a quasi-local definition of black hole,
which does not rely on the global structure of spacetime or on the assumption of asymp-
totic flatness. This definition captures the idea that the ingoing light rays should con-
verge, θ−|H < 0, while the outgoing light rays should diverge outside the black hole and
converge inside, so that they are parallel on the horizon, θ+|H = 0 with £−θ+|H < 0. In
the same way the past outer trapping horizon defines a white hole, while inner trapping
horizons are associated with cosmological horizons.

C.2 Spherical symmetry

In a spherically symmetric spacetime, the area A of the spheres of symmetry is a geo-
metrical invariant. This enables us to define in a coordinate-independent way the areal

radiusR ≡
√

A
4π .

The line element can always be locally written in double null form,

ds2 = 2g+−dξ
+dξ− −R2dΩ2 , (C.4)

where the null vectors ∂ξ± are taken to be future directed and Ris a function of ξ±, and
the null expansions are given simply by

θ± =
∂±A

A
= 2

∂±R
R . (C.5)

Marginal surfaces are then spheres on which g−1dR is null,

∂µR∂µR = 0 , (C.6)

and trapping horizons are the closure of three dimensional hypersurfaces foliated by
marginal spheres. It also follows that marginal spheres and trapping horizons are outer
if ∇2R < 0, inner if ∇2R > 0 and degenerate if ∇2R = 0; and that they are future if
g−1dR is future directed, and past if g−1dR is past directed.

Spherical symmetry also allows to define the quasi-local Misner-Sharp energy [58],

E ≡ R
2

(1 + ∂µR∂µR) , (C.7)

which can be interpreted as the active gravitational energy and enjoys many desirable
properties, in particular reducing to the correct expression in a number of physically
interesting limits [12].

In a dynamical spacetime there is no timelike Killing vector. If the spacetime is spher-
ically symmetric, however, it is still possible to identify a preferred time coordinate. This
dynamic time is determined by an analogue of a timelike Killing vector, the Kodama vec-
tor [79] defined as

K ≡ g−1 (∗2 dR) (C.8)
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where ∗2 denotes the Hodge dual with respect to the two dimensional metric normal to
the spheres of symmetry. From the definition follows that

Kµ∂µR = 0 and KµKµ = ∂µR∂µR = 1− 2E

R , (C.9)

which means that K is spatial on trapped spheres, temporal on untrapped spheres, and
null on marginal spheres. In particular, a trapping horizon is a hypersurface on which
K is null, and can be seen as a generalization of a Killing horizon, which is defined as
a hypersurface on which a Killing vector is null. Note however that unlike a Killing
horizon, a trapping horizon is in general not null.

In the stationary, spherically symmetric case the Kodama and Killing vectors agree if
K and g−1dR commute.

C.3 Dynamical surface gravity and local Hawking temperature

A dynamical surface gravity can be defined in a spherically symmetric spacetime as

kl ≡ −
1

2
∇̃2R (C.10)

where ∇̃ is the derivative operator associated with the normal two dimensional metric.
From the definition it is immediate to conclude that kl is positive, negative or vanishes
respectively on outer, inner and degenerate trapping horizons.

From the Einstein equations follows that

kl =
E

R2 − 2πT R , (C.11)

where T is the trace of the total energy-momentum tensor Tµν with respect to the normal
metric. This expression shows that when T = 0, kl has the form of the Newtonian
gravitational acceleration, with E substituting the Newtonian mass.

The Kodama vector satisfies everywhere the relation

Kµ∇[νKµ] = kl∂νR , (C.12)

which on trapping horizons can be written in the form

Kµ∇[νKµ]

∣∣
T.H.

= ±klKν , (C.13)

analogous to the relation in the stationary case defining the surface gravity from the
timelike Killing vector. As a consequence, when the Kodama and Killing vectors agree,
e.g. in the Reissner-Nordström case, kl reduces to the usual surface gravity.

In [14] the authors used the Hamilton-Jacobi tunneling method to show that the dy-
namical surface gravity (C.10) can be identified, near a trapping horizon, with a temper-
ature

T ' kl
2π

, (C.14)
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analogously to the identification of the surface gravity with the Hawking temperature
in the stationary case. T must be positive, so this local temperature is only defined near
outer trapping horizons, on which kl > 0. It was also argued that the temperature mea-
sured to leading order near the horizon by an observer, whose worldline is an integral
curve of the Kodama vector, is not T , but instead

T̂ ' T√
C
, with C ≡ 1− 2E

R . (C.15)

The presence of the redshift factor C means that the temperature diverges on the trap-
ping horizon, where R = 2E. More precisely, T is the (finite) limit on the horizon of the
redshift-renormalized temperature:

T̂
√
C

T.H.−→ T . (C.16)

C.4 Generalized first law of black hole dynamics

The definition of the Misner-Sharp Energy (C.7) together with the Einstein equations
implies

∂µE = Aψµ +
1

2
T ∂µV (C.17)

where V ≡ 4
3πR

3 is the areal volume and

ψµ ≡ Tµν∂νR+
1

2
T ∂µR . (C.18)

In [13] it is argued that eq. (C.17) effectively expresses conservation of energy, with the
two terms on the right representing respectively an energy supply term and a work term.

Projecting eq. (C.17), evaluated on a trapping horizon, along a vector z tangent to the
horizon, we obtain the generalized first law of black hole dynamics:

E′ =
klA
′

8π
+

1

2
T V ′ , (C.19)

where the prime stands for a derivative along z. If an electromagnetic field is present,
excluding magnetic monopoles it is constrained by spherical symmetry to be in a purely
electric configuration, and (C.19) can be rewritten as

E′ =
klA
′ + E2V ′

8π
+

1

2
TotherV

′ , (C.20)

where E is the magnitude of the electric field. The contribution of the electric field to the
work term agrees with the standard expression for electric work in special relativity,

W =
1

8π

∫
Σ

E2dV , (C.21)

substantiating the interpretation as work term.
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In the stationary case, without gravitational sources besides the electromagnetic field,
the only spherically symmetric solution is the Reissner-Nordström solution. If again we
exclude magnetic monopoles this solution is characterized by two constants, the electric
charge e and the asymptotic energy m, and for m > |e| it represents a black hole with
Killing horizon at R = m +

√
m2 − e2 and surface gravity k = 1

R2

√
m2 − e2. For this

black hole the first law is usually given as

dm =
kdA

8π
+
ede

R , (C.22)

where the differentials are taken in state space (m, e). The Misner-Sharp energy for the
Reissner-Nordström black hole is

E = m− e2

2R , (C.23)

so that eq. (C.22) can be rewritten as

dE =
kdA+ E2dV

8π
, (C.24)

which has a form similar to eq. (C.20), showing that eq. (C.19) can be considered a
dynamical generalization of the usual first law. The main differences are that the gen-
eralized law is evaluated on trapping horizons, and that the state space differentials are
replaced by derivatives along the horizon.

In [11] Hayward also introduced a generalized second law of black hole dynamics.
For a spherically symmetric spacetime the generalized second law of black hole dynamics
states that if the null energy condition holds on a trapping horizon, then the area of the
spheres of symmetryA, or equivalently the energyE, is nondecreasing along the horizon
if the horizon is future outer or past inner, or nonincreasing if the horizon is past outer
or future inner.

The analogue of the zeroth law is trivial in spherical symmetry, since it simply states
that kl is constant on the marginal spheres foliating a trapping horizon.
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