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Introduction

Quantum materials are solid state systems that, when subjected to

extreme temperatures and pressures, exhibit interesting features

like superconductivity, but also unusual forms of magnetism, exotic

phase transitions, and other physical qualities we are only beginning

to understand. In many of these materials the electron-electron inter-

actions play a central role in determining their electronic, magnetic,

optical, and sometimes even mechanical properties. These systems

are often referred to as quantum correlated materials.

In conventional materials, such as common metals and semicon-

ductors, the energy of the short-range (i.e. between two electrons

occupying the same lattice site) electron-electron interactions is neg-

ligible as compared to the kinetic energy of the electrons. In this

case, the electrical, mechanical, and thermal properties may all be

understood reasonably well adopting the independent-electron

approximation, in which the interactions among the electrons are

treated as an average perturbation of the single-electron properties.

On the contrary, in many of the transition metals with partially filled

3d orbitals, the strong Coulomb repulsion forces the electrons to re-

side on spatially separated orbitals, abruptly decreasing their kinetic

energy and their mobility. In general, the interplay between electron-

electron interactions, lattice structure, kinetic energy, and magnetic

degrees of freedom is incredibly complex. The result is a competition

between distinct ground states, with different symmetries and low en-

ergy excitations. Furthermore the properties of this materials strongly

depend on the interplay between the ”local” (in real space) correla-

tions and the delocalized wavefunctions describing the Bloch orbitals

and other many-body collective excitations. New phases often appear

near ”quantum phase transitions”, when tuning a parameter such

as electronic population (doping) or magnetic field tips the balance

between one energy scale and one of its competitors. These phases

can have surprising and useful properties, such as high temperature

superconductivity. The potentiality of such materials stays in the

fact that a little modification of the external controllable parameters

(doping, pressure, temperature) can have dramatic consequences



10

on their properties. For these reasons, and for the their potentially

immense technological relevance, the attention of the scientists Has

been attracted by these materials since their discovery.

In the present thesis we focus on a family of materials that, prob-

ably, is the most studied in the last thirty years: cuprates. They are

layered copper oxide compounds that can sustain superconductiv-

ity at unexpectedly high temperatures. This important property

has been discovered by Bednorz and Muller in 1986 [Bednorz and

Müller, 1986] and soon after, the critical temperature TC of these

doped copper oxide-based compounds exceeded the boiling temper-

ature of the liquid nitrogen, rapidly rising significantly above 100
K. For this reason these materials are often known as high temper-

ature superconductors (HTCs). From the theoretical point of view,

while the conventional superconductors are well described within

the framework of the BCS theory (Bardeen, Cooper and Schrieffer

[Bardeen et al., 1957]), the comprehension of the nature and the ori-

gin of the microscopic mechanism leading to the high-temperature

superconductivity in HTCs is still lacking.

Beside the superconductivity, the phase diagram of the cuprates

presents wealth of very interesting phases. When undoped, cuprates

are charge-transfer insulators, in contrast to the predictions of the

conventional band-theory within the independent-electron approx-

imation, with an antiferromagnetic order. When doped, the system

enters the so-called pseudogap region, defined by a T∗(p) line and

exhibits the spontaneous tendency to charge and spin ordering. The

pseudogap is characterized by the presence of a d-wave gap, even

though superconductivity is absent. The debate whether this state

is a precursor or compete with the superconductivity is still open.

Embedded in the pseudogap there is a mosaic of exotic electronic

phases with various symmetry-broken ground states characterized by

charge ordering: the tendency of the valence electrons to segregate

in periodically-modulated structures. Recently, different equilibrium

techniques (Resonant X-ray scattering, Angle Resolved Photoemis-

sion, Scanning Tunnelling Microscopy...) have shown that all these

orders, together with the pseudogap line, vanish at T=0 at a precise

doping level around the optimal doping. This point of the phase dia-

gram is called quantum critical point (QCP). In the overdoped regime,

from the QCP a strange metal phase originates, characterized by the

absence of quasiparticles and a linear dependence of the resistivity

with the temperature, in contrast to the T2
dependence predicted

by the Landau Fermi-liquid for conventional metals. Despite this

results, the QCP remains mysterious and inaccessible by equilibrium

techniques, because of the low temperature and the extremely high

instability of the several orders that takes origin from it.
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Here, we tackle the problem of the origin of the quantum critical
point from a non-equilibrium perspective, by using the ultrafast
optical pump-probe technique. The scope is to disentangle the elec-
tronic dynamics from the thermal dynamics, since the first happens
on timescales much shorter than thermal heating, being the latter
related to the thermalization with the phonons. The first pioneering
pump-probe experiments performed a single probe photon energy
(1.55 eV, i.e., 800 nm, the fundamental of conventional Ti:Sapphire
lasers). However, the knowledge of the dynamics at only one wave-
length was not sufficient to unveil the microscopic mechanisms at
the origin of the time-resolved optical signal. Therefore, in this work
we will adopt broadband time-resolved techniques which allow the
simultaneous access to a broad part of the optical dielectric function.
The main experimental data have been obtained by an Optical Para-
metric Amplification-based system by which we probe the dynamics
of the optical properties in the visible region 1.8-2.4 eV and with a
temporal resolution of ∼ 6 fs. Also, we have used a microstructure
optical fiber seeded by the output of a Ti:Sapphire laser to gener-
ate supercontinuum spectrum in the energy range 1.1-2.3 eV with a
temporal resolution of ∼ 100 fs. Thanks to these novel techniques
we could investigate the behaviour of high-energy optical proper-
ties (>2 eV) of a single-layer copper oxide Bi2201. By studying the
dynamics of the charge-transfer process as a function of the doping,
we unveiled an unexpected and fundamental property of cuprates.
Even at room temperature, these systems undergo a transition from
an insulating-like behaviour, in which the charge-transfer process is
localized in real space, to a more conventional behaviour in which
the final state of the high-energy optical transitions is delocalized
over the lattice. Surprisingly, the doping at which we observe this
transition at room temperature corresponds to the critical doping,
pcr, at which the pseudogap T∗(p) line dies at T = 0 (the quantum
critical point). These results demonstrate that the quantum critical
point, from which the different ordering tendencies emerge, is de-
termined by a more general property of the ground state which is
already present at higher temperatures and can be unveiled when the
system is driven out of equilibrium.

The second goal of the present work was to investigated the role of
the high-energy excitation process (>1.5 eV) in transiently modifying
the occupation of both the conduction band and the deeper bands
related to the oxygen orbitals in double layer copper oxide Bi2212.
To this aim, we combined the pump probe technique to the XUV
photoemission technique which probes the transient occupation of
the states. Preliminary measurements have been performed in the
ARPES Laboratory of UBC (Vancouver) using a traditional laser-
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ARPES system where the probe is obtained via harmonic generations
of a Ti:Sapphire oscillator output reaching 6 eV photon energy. After
that, we have performed the core of the experiments at the XUV
time-resolved photoemission beamline ARTEMIS at the Central Laser
Facilities in UK. With this technique it is possible to generate high
harmonics using a laser pulse in a gas jet and use such harmonics (10-
100 eV) to do a photoemission experiment. We have measured, for
the first time, the ultrafast dynamics of the oxygen bands, unveiling
an unexpected bottleneck in the relaxation of the holes photoexcited
in the O-2pπ band at (π, π) point of the Brillouin zone at 1.5 eV
binding energy. This phenomenon can be understood by considering
the antibonding nature of the O-2pπ bands which do not have any
overlap with the Cu3d

x2−y2 states of the conduction band.
These results can open a new way in the understanding of the

exotic properties of quantum materials and provide a new point of
view in looking at their temperature-doping phase diagram, inves-
tigating the dynamics of the high-energy excitations directly in the
normal state which carries the seeds of unconventional superconduc-
tivity.

Outline

In this thesis we investigate the non-equilibrium optical response of
two prototypical high-temperature superconductors, more precisely,
of a Bi2Sr2−xLaxCuO6+δ single-layer copper oxide (Bi2201) and
Bi2Sr2Ca0.92Y0.08Cu2O8+δ double-layer copper oxide (Bi2212). The
optical spectroscopy technique used in this work, is characterized
by both spectral and temporal resolution and exploits the large
spectral content of the supercontinuum light produced by a non-
linear photonic crystal fiber and an OPA-based system. Besides
these optical techniques we have also performed photoemission
experiments using a XUV pulsed probe obtained exploiting the
harmonic generation in a gas jet. More precisely, we used these
non-equilibrium techniques to explore the following aspects:

• Which physical parameters determines the critical doping at which
the low-temperature QCP emerge? Is it possible to observe a
signature of the QCP at high-temperatures by driving the system
strongly out of equilibrium? Is there any relation between the
dynamics of the optical properties and the QCP? Is the high-
energy scale corresponding to the charge-transfer excitations
involved?

• How is the band occupation perturbed after the excitation with a
near-IR ultrafast pulse? Is there any selective modification in the
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k-space of the conduction band and of the oxygen bands at 1.5 eV
binding energy? Which is the relation between the dynamics of the
holes injected in the oxygen band and of the electrons promoted to
the conduction band?

The work has been organized in the following way:

Chapter 1 A general overview on the energies involved in the tight-
binding, Mott-Hubbard and J-eff models is given. These energies
are the yardstick to discern between weakly and strongly corre-
lated materials. A more detailed description of the single- and
multi-band Hubbard model is given.

Chapter 2 In this chapter we present the general crystal and elec-
tronic structure of the cuprates. Furthermore we describe in detail
the cuprate phase diagram and we provide a description of the
different orders and phases (pseudogap, strange metal, charge
ordering, quantum critical point) emerging at low temperature and
doping.

Chapter 3 We report and discuss the models used to describe the
optical properties of these materials, in particular we will focus
on the Drude-Lorentz and the Extended Drude model. We also
discuss the doping and temperature evolution of the optical prop-
erties of cuprates.

Chapter 4 An introduction to the conventional and time-resolved An-
gular Resolved Photoemission Spectroscopy (ARPES) is given.We
provide description of the tr-ARPES setup at the ARPES Labora-
tory of the University of British Columbia in Vancouver. I have
developed the optical setup to couple with the pre-existent ARPES
chamber during the second year of my PhD.

Chapter 5 We give a detailed overview on the different techniques
used, in particular: optical oscillator Ti:Sapphire-based system,
Optical Parametric Amplifier system and XUV tr-ARPES. These
experimental setups are located in Universita’ Cattolica del Scaro
Cuore (Brescia), Politecnico (Milano) and Central Laser Facilities
(UK) respectively.

Chapter 6 We report the data obtained on the single-layer copper
oxide Bi2Sr2−xLaxCuO6+δ through time-resolved optical spec-
troscopy experiments. As a first step we introduce Bi2201 crystal
and electronic structure and we describe the doping process. We
present the equilibrium optical properties of this material and we
provide a detailed analysis of the experimental transient reflectiv-
ity experiments. At the end of the chapter an interpretation and a
discussion of the results is also given.
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Chapter 7 We present the experimental data of XUV time- and

angular-resolved photoemission spectroscopy on the double-

layer copper oxide Bi2Sr2Ca0.92Y0.08Cu2O8+δ. The equilibrium

optical properties of the material are described together with their

evolution in doping and temperature. We present the data and

a detailed analysis of them. Finally we provide our proposed

interpretation of the results.

Chapter 8 Conclusions



1 Strongly Correlated Materials

1.1 Energy scale W,U and SO

In the tight-binding approximation [Kittel, 1986], the interaction be-

tween nearby atomic orbitals leads to the formation of energy bands.

These energy bands are originated by the coulomb interaction be-

tween the atom cores and the electron. Each state of given quantum

number of the free atom is spread in the crystal into a band of ener-

gies.

Figure 1.1: Energy band E(k) =
E0 + 2t cos(ka) for a tight-binding model

with a single orbital per site and nearest

neighbour interactions [Grosso and

Parravicini, 2000].

Let us consider a one-dimensional crystal made by equal atoms

centered in the lattice position i. Each of this atoms contributes with

just one local orbital φa with a ground state energy Ea. If we consider

the hopping just between nearest neighbour sites we have that the

diagonal matrix elements of H are all equal and the same happens

with the hopping integrals between nearest neighbour orbitals. We

have:

�φa(x − xi)|H|φa(x − xi)� = E0 �φa(x − xi)|H|φa(x − xi±1)� = t(1.1)

If the influence of one atom to another is small, we obtain an approxi-

mate wavefunction for one electron in the whole crystal by:

Ψσ(k, x) =
1√
N ∑

i
eikxi φa(x − xi)χ(σ) (1.2)

The state which describes those electrons are characterized by two

good quantum numbers: the number vector k and the spin σ. The

expression for the Hamiltonian reads:

H = − h̄2

2m
d

2

dx2
+ V(x) (1.3)

where V(x) is the crystal potential sketched in Figure 1.2 b).

Avoiding the spin part, the energy dispersion of the energy band

originated from atomic orbitals (φa(x − xi)) due to the presence of the

crystal potential is thus given by:

E(k) = �Ψ(k, x)|H|Ψ(k, x) =
1

N ∑
i

∑
j

eik(xi−xj)�φa(x − xi)|H|φa(x − xj)�(1.4)



Figure 1.2: a) Single atomic Coulomb

potential yields to discrete spectrum of

electronic states. b) Atoms arranged in

a regular lattice give rise to a periodic

potential. Electron states of low energy

can be considered as localized at the

atom sites. The higher energy states,

however, extend further and can

delocalize to form itinerant electron

states which form bands.

Now, distinguishing between the two cases i = j and i �= j and using

the relations 1.1 one obtains the following dispersion expression:

E(k) = E0 + 2t cos(ka) (1.5)

This shows at the most elementary level that the N degenerate states

of non-interacting atoms are smeared into a continuous band of

width W = 4|t| (Figure 1.1), where t is the so called hopping integral
and reads:

tij =
�

dxφ∗
a (x − xi)

�
− h̄2

2m
d

2

dx2
+ V(x)

�
φa(x − xj) (1.6)

Just to give an example of the energy scale of the hopping integral

t in metals, at a constrained separation of 7 Å , the bandwidth of

the sodium s-band amounts to approximately 1.4 eV [Seitz, 1940]

yielding a value for the hopping integral of nearly 0.35 eV.

In the previous picture we can distinguish the case that there is an

odd or an even number of electrons per atom (unit cell):

Even The bands can be either empty or completely filled. There is

a finite energy needed (Eg) to add to excite one electron and the

material is called insulator.

Odd The last band is not completely filled then the system is a

metal. There is not energy gap to overcome to excite the electrons.

Electrons can move and excitations with arbitrarily small energies

are possible. (Figure 1.3)

So far we have seen that the quantum mechanical description

of electrons in solids - the band theory, developed in the late 1920s

([Bethe, 1928] [F.Bloch, 1929]) - offered a straightforward account

for distinctions between insulators and metals. In this approach,

electrons are considered to move independently in a periodic back-

ground potential (Hartree-Fock approximation ) but we know that

electron-electron interaction is crucial in understanding the important

properties of some materials [F.Mott, 1990] [Mott and Peierls, 1937].
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Figure 1.3: Material classes according
to band filling: left panel: insulator or
semiconductor (partially filled bands
with the Fermi level in band gap);
center panel: metal (Fermi level inside
band); right panel: metal or semimetal
(Fermi level inside two overlapping
bands).

In particular, high-temperature superconductivity turns out to be
impossible to explain within the Hartree-Fock approximation. As
an example we cite CoO. If we treated it within the independent
electron approximation we would find that this substance is metallic,
with an odd number of electrons per unit cell and a partially filled
d band 1. In reality CoO is an insulator because the strong electron 1 Co atom has electron configuration

3d4s, and the O atom 2s2p, so the
number of electrons per unit cell is
9 + 6 = 15, an odd number.

correlations suppress the charge fluctuations required to have a non-
vanishing conductivity. So, in order to take into account the electron
correlations in those materials, we need to introduce a new energy
scale U. The Hubbard model [Hubbard, 1964] is believed to capture
the main part of the physics of the strongly correlated materials. To
give a better way to compare the tight-binding model with the Hub-
bard model it is useful to rewrite the tight-binding wave function of
one electron bounded to site i in a second quantization 3D picture:

φa(r − Ri)χ(σ) = c
†
iσ|0� (1.7)

where we have changed the coordinates from 1D to 3D and we added
the spinor function χ(σ). c

†
iσ is the creation operator that creates one

electron with spin σ on the site i. At this point the tight-binding
hamiltonian can be rewrite in the following way:

Ht = −∑
ijσ

tijc
†
iσcjσ, tii = 0, tij = tji (1.8)

The hopping hamiltonian is the sum over all hopping processes: cjσ

destroys an electron on lattice site j and c
†
iσ creates the electron on

site i. As a good approximation we can reduce the sum only between
nearest neighbour sites so that j = i ± 1. Now we can introduce
the electron-electron correlations. The most important interaction
is between two electrons on the same site that have experience of
a strong Coulomb repulsions between each other. because of the
Pauli exclusion principle there can maximally be only two electrons



per atom with opposite spins. The correlation energy between two
electrons on the same site is given by:

U =
�

dr1dr2|φa(r1)|2
e

2

|r1 − r2|
|φa(r2)|2 (1.9)

and this energy can emerges only when a single site is doubly occu-
pied. So we can define the interaction hamiltonian as the sum over all
the doubly occupied sites:

HU = U ∑
i

ni↑ni↓ (1.10)

where niσ = c
†
iσciσ is the electron number operator for spin σ on the

site i. niσ can assume just the values 0 or 1. So, the product ni↑ni↓ is
non vanishing only when, on the site i there are one electron with
spin up together with one with spin down. Finally, the one band

Hubbard hamiltonian is the sum of the two terms:

H = Ht + HU = −∑
ijσ

tijc
†
iσcjσ + U ∑

i

ni↑ni↓ (1.11)

Note that differently by the tight binding states, the wave number k
is no longer a good quantum number substituted by the position i

of the particle on the lattice sites. On the other side, the spin is still
a good quantum number. Starting from this hamiltonian we can
identify two limiting behaviours: 1) when t � U we go back to the
electrons independent approximation and to the tight-binding model;
2) when t � U the electrons are strongly correlated and they lose
their itinerant character. In the weak correlation limit a metallic state
is observed, while in the strong correlation limit the one-band model
splits into two Hubbard subbands that reflects the cost in energy for
adding a second electron on an already occupied site (Figure 1.4).

The transition between the two limits refers to the metal-insulator

transition [Imada et al., 1998] For the half-filled case (characterizing
by an average occupation electron number n = 1) the model describes
a Mott-Hubbard insulating state [Mott, 1949][F.Mott, 1956]. The Hub-
bard model well describes those elements carachterized by localized
outer orbitals as 3d and 4 f because their energy bands are narrow
(∼ 3 eV) in comparison with the strong Coulomb repulsion between
electrons which is of the order of ∼ 8 − 10 eV [Antonides et al., 1977].
Now, if we move in the periodic table of elements towards heavier
elements a new energy scale get more important: the spin-orbit cou-

pling. Electrons, moving on an orbital, have a total orbital momentum
L that can be coupled to their spin S momentum giving a total an-

gular momentum J = S + L. So, spin-orbit coupling is a relativistic
effect, which provides an interaction between the orbital angular



strongly correlated materials 19

Figure 1.4: In the half-filling case, when
the electronic correlations are weak (a)
the system is a metal with half-filled
band. When the correlations are strong
(b) an energy gap U is present due to
the energy cost in creating a doubled
occupation.

momentum and electron spin in atoms, and is usually considered
a small perturbation in the discussion of electrons in solid. How-
ever, in heavy elements it need not be weak (it effectively increases
proportionally to Z

4 [Witczak-Krempa et al., 2014], where Z is the
atomic number) and indeed has striking qualitative effects. In the
heavy transition metal compounds characterized especially by 5d and
4d orbitals, the influence of both the electronic on-site interaction U

and the spin-orbit coupling has to be taken into account. Descending
the periodic table of elements from 3d to 4d to 5d series, there are
several competing trends. First, the d orbitals become more extended
tending to reduce the electronic repulsion U and thus quenching the
correlation effects. Simultaneously, the spin-orbit coupling increases
dramatically, leading to enhanced splitting between otherwise de-
generate orbitals and bands, reducing in may case the kinetic energy.
Including the spin-orbit coupling in this picture, the hamiltonian that
describes these electrons becomes:

H = −∑
ijσ

tijc
†
iσcjσ + U ∑

i

ni↑ni↓ + λ ∑
i

Li · Si (1.12)

where λ is the spin-orbit coupling between spin S and angular mo-
mentum L. As an example of these competing energy scale in real
materials we can bring the Sr2IrO4 [Kim et al., 2008]. Considering its
odd number of electrons per unit formula (5d

5), one expect a metallic
state in a band picture. Unexpectedly it is an insulator [Crawford
et al., 1994]. It is natural to consider the spin-orbit coupling respon-
sible of this insulating nature since its energy is much larger than
in 3d and 4d orbitals. This coupling can largely modify the states
near Fermi energy EF in 5d orbitals but also correlation effect can



be important when associated to a large spin-orbit coupling to give

origin to a new Mott instability. Under the crystal symmetry the

5d states are split into t2g and eg orbital states by the crystal field

energy (Figure 1.5) and the system would become a metal with par-

tially filled t2g band. In the strong spin-orbit coupling the t2g band

splits into effective total angular momentum Je f f = 1/2 doublet and

Je f f = 3/2 quartet. As a result, with the filled Je f f = 3/2 band and

one remaining electron in the Je f f = 1/2 band, the system is effec-

tively reduced to a half-filled Je f f = 1/2 single band. At this point,

even a small U can open a gap, making it a Je f f = 1/2 Mott insulator.

In Sr2IrO4 the spin-orbit coupling is ∼ 0.4 eV [Kim et al., 2008]. The

emergent behavior of the Je f f = 1/2 Mott insulator has been explored

in experiments such as angle resolved photoemission spectroscopy

[Kim et al., 2008] [Comin et al., 2012], optical conductivity [Moon

et al., 2009], resonant x-ray scattering [Kim et al., 2009], and resonant

inelastic x-ray scattering [Ishii et al., 2011]. In this scenario the spin

is not a good quantum number any more but we have to introduce

the effective total angular momentum Je f f which will characterize the

eigenstates of the spin-orbit hamiltonian [Onishi, 2012].

Figure 1.5: Schematic energy diagrams

for the 5d5 (t2g) configuration (a)

without spin-orbit and U, b) with large

but non realistic U and no SO, c) with

SO but not U, d) with SO and realistic

U.

In conclusion, we have seen that the interplay between these

three energy scales W,U and SO and the strength of one on the

others needs a variety of different models to well describe the several

experimental evidences. The following table can help to summarize

the concepts:
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Relative Energies Elements Theory Absolute Energies
SO, U � W Delocalized orbitals s and p Band Theory W ∼ 0.35 eV

SO, W � U Localized 3d orbitals Hubbard Model U ∼ 8 − 10 eV

SO � W � U 4d and 5d orbitals Je f f model SO ∼ 0.4 eV

1.2 Mott-Hubbard Insulators

In the simplest approximation, one can consider a one-band model

and take into account only the single-electron hopping matrix ele-

ment t between the nearest neighbours and the largest single-site

Coulomb energy U (Figure 1.6). In this approximation, the compli-

cated resulting polar model Hamiltonian is reduced to the so-called

Hubbard model [Hubbard, 1963]:

H = −t ∑
i �=jσ

c†

iσcjσ + U ∑
i

ni↑ni↓ (1.13)

where c†

iσ(ciσ) are the creation (annihilation) operators for electrons

of spin σ = (↑, ↓) at the lattice site i and niσ = c†

iσciσ is the electron

occupation number. This model allows the consideration of the

cases of both weak correlations, U � W, and strong correlations,

U � W, where W = 2zt is the bandwidth (z is the number of

nearest neighbors, z = 4 for a square lattice). In the weak correlation

limit a metallic state is observed, while in the strong correlation

limit the one-band model splits into two Hubbard subbands (see

Figure 1.4). For the half-filled case (characterizing by an average

occupation electron number n = 1) the model describes a Mott-

Hubbard insulating state, which becomes an unconventional metal

under the hole doping (n < 1) of the lower Hubbard subband (LHB),

or under the electron doping (n > 1) of the upper Hubbard subband

(UHB).

Figure 1.6: Background of the single

band Hubbar model at half filling. The

green site refers to an empty site while

the red one is a double occupied site.

The tij matrix element is the probability

for one electron to hop on a neighbour

site. U is the strong Coulomb repulsion

that needs to be overcome to have a

double occupation.

1.3 Charge Transfer Insulators

In the theoretical investigation of the many-body effects in copper-

oxide superconductors, it is most frequently used a model more



complicated than 1.13, namely, the three-band p-d effective Hamilto-
nian proposed by [Emery, 1987] and [Abrahams et al., 1987]. In the
p-d model, to take into account the charge-transfer character of the
insulating state, the copper and oxygen states in the CuO2 plane are
considered explicitly:

H = ∑
iσ

�iniσ + ∑
i �=jσ

tijc
†
iσcjσ +

1
2 ∑

iσ

Uiniσni−σ +
1
2 ∑

i �=jσσ�
Uijniσnjσ� (1.14)

Here, c
†
iσ are the creation (annihilation) operators for holes of spin σ

at the copper or oxygen sites i of the square CuO2 lattice, niσ = c
†
iσciσ,

�i = (�p, �d) are the energies of the O-2pσ(x, y) states and Cu-3d(x
2 −

y
2) states, respectively, tij = (±tpd,±tpp) are the transfer integrals

for p-d and p-p states on nearest Cu-O and O-O sites, respectively;
Ui = (Ud, Up) are the on-site Coulomb repulsion energies for 3d and
2p states, and Uij = (Upd, Upp) are the intersite Coulomb interactions.
The Hamiltonian is written in the hole representation for the vacuum
state defined by filled Cu-3d

10 and O-2p
6 states. Figure 1.7 shows

Cu-d
x2−y2 and bonding O-px, O-py in-plane orbitals in the CuO4

cluster. The energy levels are sketched in the right panel: the local
one-hole �d state and the two-hole �d + �p and 2�d + Ud states. The
singlet two p-hole state with higher energy 2�p is not shown. The
ligand tpd hybridization results in a repulsion of both the one-hole
energy levels and the two-hole singlet energy levels as shown in the
right part for tpp = 0. Since the Coulomb repulsion Ud shifts up
the energy of the d-hole singlet, the tpd hybridization between three
singlet states, p-p, d-d and p-d, leads to decrease of the lowest p-d
singlet state energy. Because the energy of the p-d triplet state does
not change, the singlet and triplet two-hole p-d states are split out.
Therefore, the lowest two-hole state becomes the p-d singlet state �2:
the Zhang-Rice singlet (ZR) [Zhang and Rice, 1988]. The excitation
energy for transition from the one-hole d-like state �1 to the two-hole
ZR singlet state �2 determines the charge transfer gap ∆pd � �p − �d.
The p-hole hybridization tpp splits p-levels and the charge-transfer
gap reduces to Egap = ∆pd − tpp (see e.g. [Eskes et al., 1990]).

1.4 t-J Model

In the limit of a strong Coulomb repulsion, U � t, when the one-
band in the Hubbard model splits into two subbands with a correla-
tion gap ∆ = U − W one can consider explicitly only the subband,
which crosses the Fermi level. The other subband can be taken into
account by a perturbation theory over t/U � 1. This results in a
further reduction in the two-subband model to a one-subband t-J
model. The important role of a strong Coulomb repulsion in super-
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Figure 1.7: Cu-d
x2−y2 and bonding O-

px , O-py in-plane orbitals in the CuO4
cluster and copper �d and oxygen �p

hole energy levels.

conducting cuprates was first pointed out by Anderson [Anderson,
1987] who proposed to study superconductivity in La2CuO4 com-
pounds within the t-J model. The model has been derived earlier by
a number of researchers (for review see e.g., [Ogata and Fukuyama,
2008]). The conventional form of the t-J model is:

Ht−J = ∑
i �=j,σ

tijc
†
iσcjσ +

1
2 ∑

i �=j

Jij

�
SiSj −

1
4

ninj

�
(1.15)

where the exchange interaction can assume two forms: for the Hub-
bard model (1.13) Jij = 4t

2/U, and for the effective p-d model (1.14)
Jij = 4(tij)

2/∆pd. The second part of the hamiltonian is identical to
the antiferromagnetic Heisenberg model. The antiferromagnetism
comes out from the possibility of the particles to virtually hop on a
neighbour site. This hopping is forbidden when two near spins are
parallel (because of the Pauli principle). if they are antiparallel, the
system reduces its overall energy (see Figure 1.8). For this reason, the
antiferromagnetism in the ground state of the half filled Hubbard
model is energetically favourable.

In conclusion, we can argue that the model Hamiltonians for the
CuO2 plane considered above, in particular the three-band p-d model
(1.14) contains enough physics to explain the many body-effects in
cuprate superconductors caused by strong electron correlations.



Figure 1.8: Hopping processes with a

virtual doubly occupied site correspond-

ing to the Sz
i Sz

j and S+
i S−

j term of the

Heisenberg hamiltonian. In the case

of parallel spins virtual hopping is not

possible.



2 Cuprates

The beginning of 1986 marked the inauguration of the cuprate super-
conductor epoch in the search for high-temperature superconductiv-
ity. The discovery by Karl Alex Müller and Johan Georg Bednorz of
the occurrence of superconductivity in the lanthanum and barium
copper oxides at temperatures up to 35K caused an unprecedented
wave of scientific activity in the study of superconductivity. In 1985,
Bednorz and Müller 1 turned to study compounds of copper oxides. 1 research associates at the IBM Re-

search Division, Zürich Research
Laboratory who were awarded the
Nobel Prize in Physics in 1987

Among them, lanthanum and barium copper oxides with metallic
conductivity were known. On varying the ratio La3+ to Ba2+ in these
compounds, it was easy to control the valence of copper and the
concentration of carriers. In January 1986 when performing measure-
ments of conductivity in compounds with various concentrations of
barium, Bednorz and Müller discovered a dramatic fall of the resis-
tivity in some samples at temperatures below 35 K. The results of the
measurements were published in the September issue of Zeitschrift
fuür Physik [Bednorz and Müller, 1986]. The final confirmation of
the superconducting nature of the phase transition in these samples
was obtained after a verification of the Meissner effect [Bednorz et al.,
1987]. The publication of this discovery attracted the attention of
many scientists who, in a short period of time, confirmed the occur-
rence of superconductivity in the ceramics La − M − Cu − O, where
M = Ba, Sr, Ca [Bednorz and Müller, 1988]. Later on, it became clear
that the oxide superconductors of this type have a layered perovskite
structure La2−xMxCuO4 (LMCO).

Figure 2.1: CuO2 plane in the primitive
cell of Hg1201. The grey shadow
identifies the CuO6 octahedra. The
Cu atoms (green) together with the
oxygens (red) forms the CuO2 [Barisic
et al., 2013].

Despite the great diversity of the cuprate superconductor com-
pounds, they have a common structural element: the CuO2 planes. It
is generally believed that the high values of superconducting TC and
the anomalous normal state physical properties of cuprate materials
are determined by the unique electronic structure of the CuO2 plane
(Figure 2.1).



2.1 Electronic Structure CuO

In discussing the electronic structure of theCuO2 plane, the crystal

field splitting of the copper 3d levels and oxygen 2p levels is to be

taken into account. In Figure 2.2 taken from [Plakida, 2010] there is a

schematic outline of the formation of the in-plane electronic structure

of CuO2. In a crystal field of cubic symmetry Oh, for a proper

Figure 2.2: Formation of the electronic

structure in CuO2 planes, including

the splitting of 3d and 2p levels in the

crystal field and their covalent bonding.

octahedron CuO6, the five 3d levels split into a doublet eg = {d(x
2 −

y
2), d(3z

2 − r
2)} and a triplet t2g = {d(xy), d(xz), d(yz)}. The value of

this splitting is 1-2 eV [Bednorz and Müller, 1990]. Upon the decrease

of symmetry to tetragonal D4h, a further splitting of the 3d levels

into singlets b1g = {d(x
2 − y

2)}, a1g = {(3z
2 − r

2)}, b2g = {d(xy)}
and a doublet eg = {d(xz), d(yz)} occurs. The degenerate atomic

2p oxygen levels p(x), p(y), and p(z) split in the crystal field of D2h

site symmetry into three levels: (pπ�), (pπ⊥) and (pσ). The π-type

states correspond to the in-plane orbitals p(x) or p(y) (π�), or to the

out-of-plane states p(z) (π⊥), which are directed perpendicular to

the Cu-O bonds. The hybridization of the π-type states with the Cu

orbitals is weak. This results in narrow π-bands. The σ-type states

are formed by the oxygen in-plane orbitals p(x) or p(y), which are

directed along the Cu-O bonds and the d(x
2 − y

2) copper orbital.

The linear combination of the four oxygen σ-type orbitals of the b1g

symmetry around a copper site experiences the strongest covalent

bonding with the d(x
2 − y

2) copper orbital which gives rise to broad

bonding (σ) and antibonding (σ∗) bands of hybridized pdσ-states.
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The other configuration of the four oxygen σ-type orbitals of a1g

symmetry does not couple to the copper d(x
2 − y

2) orbital and results
in a narrow nonbonding oxygen band. The three σ-type bonding
configuration in the CuO2 plaquette are shown schematically in
Figure 2.3 [Damascelli et al., 2003]. The shaded and empty lobes of
the Cud(x

2 − y
2) orbitals and the in-plane O2 p(x, y) orbitals denote

the phases (positive and negative) of the wave functions.

Figure 2.3: Formation of the electronic
structure in CuO2 planes, including
the splitting of 3d and 2p levels in the
crystal field and their covalent bonding.

From the picture of the formation of the electronic structure
sketched in Figure 2.2, it follows that according to the band the-
ory, this compound should be a metal with a half-filled antibonding
pdσ band. However, these conclusions contradict the experiments,
which demonstrate that the cuprates compounds are antiferromag-
netic insulators with a moderately wide energy gap of 1-2 eV. This
discrepancy is related to the fact that, in the band scheme described,
one neglects the Coulomb single-site repulsion of the 3d electrons.
As already mentioned, the typical value of the Coulomb correlation
energy is U ∼ 8 − 10 eV. This is much larger than the typical width
of the pdσ antibonding band W ∼ 3 eV, thus leading to the splitting
of this band into two subbands. As we have seen, this is taken into
account by the Hubbard model where the charge fluctuations of the
type d

n

i
d

n

j
−→ d

n−1
i

d
n+1
j

between two d
n

i
ions of charges n at lattice

sites i, j, involve the large d-d Coulomb interaction U > W. In the
Mott-Hubbard model, it is also assumed that the Hubbard U that
separates the LHB and the UHB is smaller than the energy gap ∆pd

that is necessary to transfer an electron from the 2p orbitals of the
Oxigen to the 3d orbitals of the Copper. Therefore, the 2p orbital can
be neglected if one considers only the narrow d band with a direct
d-d exchange. However, the opposite situation, U > ∆pd > W, is
also possible. In that case, the insulator correlation gap is defined by
the energy of the charge transfer ∆pd of the type: d

n

i
−→ d

n+1
i

+ 1h

where h denotes a hole in the 2p Oxygen band. This type of insulator
was called charge-transfer insulator [Zaanen et al., 1985]. It is just this
situation which is realized in cuprates where the charge transfer
energy ∆pd = Ep − Ed � 3 − 4 eV is smaller than the correlation
energy U � 8 − 10 eV and therefore the copper oxide materials belong
to the class of the charge-transfer insulators. The different types of



electronic structures discussed above are illustrated in Figure 2.4
[Damascelli et al., 2003]. For a p-d model with three bands, bonding
(B), nonbonding (NB) and the half-filled antibonding (AB) band, the
following type of electronic structure can be realized, depending on
the Coulomb repulsion U at the d-site, the charge-transfer gap ∆pd
and the hybridization bandwidth W: (a) a metallic state of AB band
for U = 0, (b) a Mott-Hubbard insulator for ∆pd > U > W, (c) a
charge-transfer insulator for U > ∆pd > W. If one takes into account
the strong d-d correlations and the p-d hybridization for two-hole
states in the CuO2 plaquette, then the two-hole p-d band splits into a
triplet (S = 1) and a singlet (S = 0) bands [Zhang and Rice, 1988] (d).

Figure 2.4: Illustration of the electronic
structure of the p-d model with three
bands, bonding (B), nonbonding (NB),
and antibonding (AB): (a) a metallic
state at half-filling of AB band forU = 0,
(b) a Mott-Hubbard insulator for
∆ > U > W, (c) a charge-transfer
insulator forU > ∆ > W, and (d) the
same as (c) but with the two-hole p-d
band splitted into the triplet (T,S=1) and
the Zhang-Rice singlet (ZRS, S=0) bands

2.2 Cuprate Phase Diagram

A schematic phase diagram of the cuprates is shown in Figure 2.5
([?]). Here, the x-axis is a material property, the doping level, which
controls the electron concentration per copper site in the all impor-
tant Cu-O planes, and the y-axis is the temperature, T. The unprece-
dentedly high TC and the intimate relation between superconductiv-
ity and antiferromagnetism are only two of the unexpected features
of this phase diagram. At very low levels of hole doping, cuprates are
insulating and antiferromagnetic (the materials’ neighbouring spins
point in opposite directions). At increased doping levels, they become
conducting, and the exact temperature and doping level determine
which phase of matter they will be in. At temperatures below TC,
they become superconducting, and at temperatures above TC but
below T∗ they fall into the pseudogap phase. The boundary of the
pseudogap region at low doping levels is unknown. The transition
between the Fermi-liquid phase and the strange-metal phase occurs
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gradually (by crossover). QCP denotes the quantum critical point at

which the temperature T∗ goes to absolute zero.

• The origin and character of the antiferromagnetic state which

is the ”parent” of the high temperature superconductors is well

understood from the strong-coupling perspective in which the

insulating character derives from the classical repulsion U between

two electrons on the same atom, and the antiferromagnetism from

the superexchange interaction J.

• Various attempts to obtain a semiquantitative estimate of the

superconducting transition temperature TC, have had some mea-

sure of success [Dahm et al., 2009], but certainly, there has not

yet been any salient success in the theoretical prediction of new

high temperature superconductors, or even in predicting which

small changes to existing materials would produce increases (or

decreases) in TC. Recent developments in numerical methods for

handling the physics of strongly interacting electrons from short

to intermediate length scales [Stoudenmire and White, 2012], cou-

pled with new ways of preparing and manipulating copper-oxide

materials [Gozar et al., 2008].

• A conventional superconductor has the same symmetries as the

underlying crystal, while in the cuprates it has d-wave symmetry

[Tsuei and Kirtley, 2000], which means that the superconducting

wavefunction changes sign upon rotation by 90 degrees. Asso-

ciated with this unconventional pairing is the existence of zero

energy (gapless) quasiparticle excitations at the lowest tempera-

tures, which make even the thermodynamic properties entirely

distinct from those of conventional superconductors which are

fully gapped. The reasons for this, and its relation to a proximate

antiferromagnetic phase, are now well understood, and indeed

were anticipated early on by some theories[Scalapino et al., 1986].

• The state at temperatures just above TC, out of which the supercon-

ducting state condenses, is in most cases the pseudogap which is

characterized by a substantial suppression of the electronic density

of states at low energies that cannot be simply related to the oc-

currence of any form of broken symmetry. While much about this

regime is still unclear, increasingly clear experimental evidence has

recently emerged that there are strong and ubiquitous tendencies

toward several sorts of order or incipient order, including various

forms of charge density wave (CDW), spin density wave (SDW),

and electron nematic order, and possibly pair-density wave (PDW)

and orbital loop current (OLC) order, all of which compete with

uniform d-wave superconductivity and exhibit similar energy



scales. There are many fascinating aspects of these ”intertwined

orders” that remain to be understood.

• The fact that at temperatures well above TC, the conductivity is

almost two orders of magnitude smaller than in simple metals

and exhibits frequency and temperature dependences that are

incompatible with the conventional theory of metals has led to

this regime being referred to as a ”strange metal” or ”bad metal”.

The exhibited behavior, which is simple to describe in terms of the

so-called ”marginal Fermi liquid phenomenology” [Varma et al.,

1989], has resisted any generally accepted understanding. On

the other hand, similar behavior has now been documented in a

large number of electronically interesting materials, indicating that

this is a general property of strongly correlated electron systems,

and not directly linked to high temperature superconductivity.

This can be considered the most significant open problem in the

understanding of quantum materials.

Figure 2.5: Temperature versus hole

doping level for cuprates, indicating

where various phases occur. AF is

antiferromagnet, d-SC d-wave super-

conductivity, and FL Fermi liquid. SDW

and CDW represent incommensurate

spin density wave and charge density

wave order. Onset marks where pre-

cursor order or fluctuations become

apparent ([?]).
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2.3 Pseudogap Phase

(Figura fermi arcs) What has emerged in recent years about the
pseudogap phase is that a variety of orders different from super-
conductivity are at play here. Some involve ”crystallization” of the
electrons, in the form of stripes and other forms of charge order, but
others appear to be more novel quantum liquids. In the underdoped
regime, the doped holes remain mobile even at low temperatures,
but organize themselves collectively. All these kinds of organization
lye below a line called T∗ which denotes the onset of a partial gap
observed in spectroscopic data.

The first evidence of a pseudogap regime comes from NMR mea-
surements which showed a reduction in the low-frequency spin
excitations [Warren et al., 1989]. This pseudogap was subsequently
seen in c-axis polarized infrared conductivity measurements associ-
ated with a pronunced upturn of the c-axis resistivity [Homes et al.,
1993] together with a reduction of the in-plane resistivity [Ito et al.,
1993] [Puchkov et al., 1996].

The idea that this could be related to forms of order other than
pairing was brought to light by the experimental discovery of elec-
tronic ”stripes” in the LSCO family [Tranquada et al., 1995]. This
was inspired by earlier theoretical work that discovered that the
mean field solution for doped Mott insulators on a square lattice
in the intermediate coupling regime consists of Mott-insulating an-
tiferromagnetic domains, separated by a regular ”stripe” array of
antiferromagnetic domain walls trapping the doped holes [Zaanen
and Gunnarsson, 1989].

Quite recently, evidence has emerged that materials with static
stripes form a pair density wave: the charge stripes are internally
superconducting, with a phase that reverses from stripe to stripe.
Given that, the stripe orientation changes as one moves from one
layer to the next, this frustrates the Josephson coupling between
layers, giving rise to a two dimensional superconducting state [Tajima
et al., 2001].

In a parallel development, the structure of the pseudogap in mo-
mentum space was directly mapped by ARPES, showing that this
mimics the d-wave superconducting gap: a gap was apparent only in
the ”antinodal” regions of the Brillouin zone [Marshall et al., 1996]
[Ding et al., 1996] [Loeser et al., 1996]. The character of these obser-
vations is best illustrated by showing a map of the spectral weight at
low energy as a function of k in the first Brillouin zone (Figure 2.6).
In a Fermi liquid, the Fermi surface delineates the boundary between
occupied and unoccupied quasiparticle states, so no matter how
complicated it may be, the one thing it cannot do is abruptly end.



However, in the pseudogap regime, there appear to be ”Fermi arcs”

in the nodal regime [Norman et al., 1998]. In a mean-field theory,

the effective potential associated with a (density-wave) state that

breaks translational symmetry can reconstruct a large Fermi surface,

producing small Fermi surface pockets, but these still have to form

connected manifolds. It is plausible that the Fermi arcs are actually

the front half of such a pocket [Marshall et al., 1996] and hence there

has been an intense search to find the ”backside of the pocket”. As a

function of decreasing temperature a BCS-like gap opens on the arc

eventually merging with the antinodal gap into an overall gap struc-

ture that, at low temperatures, is not all that different from a simple

BCS d-wave gap. In lightly doped cuprates the Fermi surface that

is present in the overdoped, more conventional Fermi liquid regime

is destroyed, leaving behind only a Fermi arc [Norman et al., 1998].

The suggestion was immediate that already at the very high pseu-

dogap temperature T∗
, pairs start to form while phase fluctuations

prohibit superconducting order until much lower temperatures (see

Figure 2.6). The best evidence of a pairing correlations without

Figure 2.6: Fermi surface, Fermi

arcs, and gap functions. The large

Fermi surface predicted by band

theory is observed by ARPES and STS

for overdoped compounds (bottom

right). But once the pseudogap sets

in, the antinodal regions of the Fermi

surface are gapped out, giving rise to

Fermi arcs (top right). This is reflected

(left) in the angle dependence of

the superconducting gap (SC) and

pseudogap (PG) around the underlying

large Fermi surface (dashed curve)

as revealed by ARPES and STS. Note

the gapless region around the d-wave

superconducting node for the PG case

that defines the Fermi arcs. These arcs

appear to be reconstructed into electron

pockets centered at (Q/2,Q/2) once

charge order sets in, as revealed by

quantum oscillation studies, where

(Q, 0) is the charge order wavevector.

substantial phase coherence persisting to temperatures of order T∗

is in the temperature evolution of the gap itself as shown by [Renner

et al., 1998] in Figure 2.7 where tunnelling measurements on Bi-2212
underdoped sample are shown. It is possible to see that the sharp

coherence peaks observed at low temperatures diminish as the tem-

perature increases and above TC transform to broad maxima. The
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dip structure characteristic to the superconducting state vanishes
above TC also. Thus, the superconducting gap evolves continuously
into a normal state pseudogap above TC. With further increase of
the temperature, the pseudogap is filling up by excitations. Yet

Figure 2.7: Tunneling spectra measured
as a function of temperature on under-
doped Bi2212. The conductance scale
corresponds to the 293 K spectrum, the
other spectra are offset vertically for
clarity.

another interesting hint regarding the unusual relationship between
the charge order and superconductivity follows from the tempera-
ture evolution of the charge order. The X-ray signal begins to build
up smoothly upon cooling below some TCDW typically less than T∗

to attain a maximum at the superconducting TC, then drops signif-
icantly below TC, indicating competition between the CDW order
and superconductivity [Ghiringhelli et al., 2012] [Chang et al., 2012].
Moreover there is evidence of the onset of a small Kerr rotation at
T∗ which also indicates some type of symmetry breaking [Xia et al.,
2008]. This Kerr signal defines a phase line that cuts through the
superconducting dome, vanishing near 18% doping.

In conclusion the pseudogap regime is characterized by a plethora



of orders that are still far to be completely understood. Away from

the ordered states, things become even more mysterious and we get

into a phase called ”strange metal phase”.

2.4 Non-Fermi liquid Phase and Quantum Criticality

The gross difference of the strange metal phase from that of conven-

tional metals is the absence of quasiparticles. This has consequences

for simple physical properties like the electrical resistivity. In a nor-

mal metal, the resistivity saturates at high temperatures when the

mean free path becomes of order the electron de Broglie wavelength.

The resistivity of the cuprate strange metal can be linear in T from

near TC up to as high a temperature as measured [Martin et al.,

1990], in contrast to the T2
dependence predicted by the Landau

Fermi-liquid theory (See the phase diagram in Figure 2.8 taken from

[Hussey, 2008]). Moreover, the Hall resistivity has a different temper-

ature dependence than would be expected in a quasiparticle picture

[Chien et al.].

Figure 2.8: Crossover phase diagram

for the resistivity (ρ) in the hole doped

cuprates. The strange metal phase is

the regime above optimal doping where

ρ ∝ T.

In the 1990s the idea of quantum criticality emerged to explain

the low energy excitations of the strange metal. A quantum phase

transition occurs when a continuous phase transition occurs at zero

temperature as a function of a tuning parameter (like pressure or
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doping), where the corresponding quantum critical point (QCP)
defines the boundary between the ordered (broken symmetry) and
disordered quantum phases [Sachdev, 2001]. There is a quantum
critical wedge opening up from the QCP. This gives a suggestive
interpretation of the phase diagram in Figure 2.5, where the strange
metal is identified with the quantum critical wedge associated with
a QCP under the superconducting dome near optimal doping. The
theory of quantum criticality in metallic systems is still a work in
progress. One issue is that there may be reasons to believe that the
QCP is intrinsically unstable, since the order parameter fluctuations
mediate attractive interactions that promote superconductivity, mean-
ing that the quantum critical point might always be ”shielded” by
a superconducting dome, just as in Figure 2.5. Moreover, according
to the marginal Fermi liquid phenomenology [Varma et al., 1989],
what is needed is a rather special sort of quantum criticality that is
local in space, and so featureless in k. Is there a quantum critical
point involving the termination of pseudogap order inside the super-
conducting dome? There is evidence for this to be the case, early on
from specific heat data [Tallon et al., 1994] and more recently from
a Fermi velocity anomaly seen in photoemission [Vishik et al., 2012].
But which order parameter rules the quantum critical regime, and is
that regime large enough to encompass the entire strange metal re-
gion? The pseudogap is characterized by several competing ordering
tendencies. Even more seriously, this quantum critical description
should break down at higher (ultraviolet) temperatures. How to
explain then that the resistivity stays linear in T up to temperatures
where the crystal melts?





3 Optical Spectroscopy at equilibrium

Interaction between light and matter is the base of the spectroscopy
techniques. Usually, the description of the electrodynamics of
metals and superconductors is uniquely defined by the complex
dielectric constant �(ω) = �1(ω) + i�2(ω) and the complex opti-

cal conductivity σ(ω) = σ1(ω) + iσ2(ω). The real and imaginary
part of these two constant are related by σ1(ω) = ( ω

4π )�2(ω) and
σ2(ω) = −( ω

4π )[�1(ω)− 1]. The reflectivity R(ω) and transmittivity
T(ω) of a material are uniquely described by these optical constants:

R(ω) =

�����
1 −

�
�(ω)

1 +
�

�(ω)

�����

2

(3.1)

By the fact that the real and imaginary part of the optical constants
are linked together by the Kramers-Kroning (KK) relations, one can
infer both these parts by the analysis of the raw transmittivity and
reflectivity data of a sample.

3.1 Drude Lorentz Model

The electromagnetic energy is absorbed and dissipated in a solid
through multiple channels, with a rate that is proportional to the
imaginary part of the dielectric constant (or equivalently the real part
of the optical conductivity) W = ω�2(ω)

4π E
2 = 2σ1(ω)E

2. A classical
model to describe the various excitations of radiations in a solid is
the Drude-Lorentz oscillator model:

σ(ω) =
1

4π

ω2
pD

1/τD − iω
+

ω

4π ∑
j

ω2
pj

ω/τj − i(ω2 − ω2
j
)

(3.2)

The first term refers to the relaxation of the free charge carriers with
the scattering rate γ = 1/τD; the second term is a sum of Lorentz
oscillators - characterized by the central frequency ωj, the strength of
the oscillator ω2

pj
and the scattering rate γj = 1/τj - that describe the

response of bound charges (Figure 3.1).



Figure 3.1: Modellization of the Optical

Conductivity with the Drude-Lorentz

model.

3.2 Extended Drude Model

The Drude model describes the optical conductivity of a gas of non-

interacting electrons with a single, energy independent channel of

dissipation: 4πσ(ω) = ω2
p/(1 − iωτ). This model is insufficient to

describe the situation where the dissipation in the electron system

arises from the electron-phonon or electron-electron interactions.

To account for the life-time dependence on the frequency and the

renormalization of mass of free carriers due to many-body effects, the

extended Drude model is frequently used and the optical conductivity

writes:

σ(ω) =
1

4π

m
m∗(ω)

ω2
p

1/τ∗(ω)− iω
(3.3)

where m∗(ω) is the renormalized mass and 1/τ∗(ω) =

(m/m∗(ω))(1/τ(ω)) is the renormalized scattering rate. The pre-

vious formula can be written using the memory function:

σ(ω) =
1

4π

iω2
p

ω + M(ω)
(3.4)

where M(ω) is defined as:

M(ω) = ωλ(ω) + iΓ(ω) (3.5)

The memory function is a complex function M(ω) = M�(ω) + iM��(ω)

which determines the renormalized optic mass m∗(ω)/m(ω) =

1 + λ(ω) and the renormalized scattering rate 1/τ(ω) = Γ(ω). These

two functions are KK related:

λ(ω) =
2

π
P

∞�

0

Γ(z)dz
z2 − ω2

(3.6)
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The renormalized transport life time equals to τ∗(ω) = τ(ω)[1 +

λ(ω)] and these parameters are expressed in term of the real and
imaginary part of the inverse conductivity:

1
τ(ω)

=
ω2

p

4π
Re

1
σ(ω)

;
m∗(ω)

m
= 1 + λ(ω) = −

ω2
p

4π
Im

1
σ(ω)

(3.7)

Two related quantities are the effective mass, m∗(ω)/m = M�(ω)/ω +

1 and scattering rate, 1/τ(ω) = M��(ω). These quantities are useful
because they are more easily interpreted physically.

The real part of the memory function (3.5) is a frequency depen-
dent scattering rate due to the electron-phonon scattering (in the
Drude model the inelastic impurity scattering makes the scatter-
ing rate a constant), while the imaginary part λ(ω) is related to the
renormalization of the electronic effective mass due to the strong cor-
relations [Basov and Timusk, 2005]. The memory function M(ω) has
the same analytical properties of the one-particle self energy Σ(ω)

(averaged over the Fermi surface) used in the Green function theory,
but conceptually it is a different quantity. Σ(ω) is directly measured
by a photoemission experiment, since this technique probes the sin-
gle particle excitations of the (N − 1) particle system, which can be
described in terms of the spectral function and the single particle self
energy. An optical experiment, instead, looks at the particle-hole exci-
tations of an N−particle system and gives information about the joint
particle-hole density of states. In the so-called Allen approximation
[Allen, 1971], M(ω) can be write as a convolution integral between a
transport spectral function α2

trF(Ω) and a kernel function K( ω
2πT , Ω

2πT )

which describes the thermal dependence of the phononic excitations
coupled with electrons.

M(ω) =
� ∞

0
α2

trF(Ω)K(
ω

2πT
,

Ω
2πT

) (3.8)

where

K(x, y) =
i
y
+

�
y − x

x
[Ψ(1 − ix + iy)− Ψ(1 + iy)]

�
− {y → −y} (3.9)

where Ψ(x) is the Digamma function. An interesting method to de-
termine α2

trF(Ω) directly from the raw data was found by [Marsiglio
and Carbotte, 2001] and it is based on the second derivative of the
conductivity with respect to the frequency:

α2
trF(Ω) =

1
2π

ω2
p

4π

d2

dω2 Re
�

1
σ(ω)

�
(3.10)

The microscopic derivation of the complex conductivity σ(ω) in the
presence of strong electron-phonon correlations is achieved starting



from the Kubo formula and using complex diagrammatic techniques
to evaluate the electron and phonon Green functions. Omitting the
vertex corrections (Migdal approximation) it is possible to simplify
the calculations and to obtain an expression of σ(ω) in terms of the
one-particle self-energy function:

σ(ω, T) =
iω2

p

4πω

� +∞

−∞

f (ω + �, T)− f (�, T)
ω − Σ(ω + �, T) + Σ∗(�, T) + iΓimp

(3.11)

where f (�, T) are Fermi factors and Σ(ω) and Σ∗(ω) are self-energies
above and below the Fermi energy. Under some assumptions1 we can 1 a) neglect vertex corrections and the

energy dependence of the density of
states. b) the self-energies are assumed
to be momentum independent.

express the single particle self-energy as

Σ(ω, T) =
�

d�
�

dω�Π(ω�)

�
n(ω�) + f (�)

ω − � + ω� + iδ
+

n(ω�) + 1 − f (�)
ω − � − ω� − iδ

�
(3.12)

where n(�, T) is the Bose function and Π(ω) is the so called glue
function. A general function of Π(ω) consists of a histogram represen-
tation using N blocks with adjustable positions and heights:

Π(ω) = fi ωi−1 � ω � ωi (3.13)

where i runs from 1 to N, ω0 = 0 and fi is the height of the block.
For cuprates the function Π(ω) consists of two main features: a
peak with an energy in the range 50 − 60 meV and a broad spectrum
extending up to 400 meV [van Heumen, 2009].

3.3 Spectral Weight

The optical constants of solids obey a variety of sum rules (Smith,
1998). The origins of the sum rules can be traced back to fundamental
conservation laws and are intimately connected to the causality of
the electromagnetic response. Analysis of the sum rules is a powerful
tool that can be used to study the distribution of the spectral weight
(SW) in correlated electron systems because they indicate conserved
quantities, that is, quantities that do no change under a change, for
example, of temperature. Of special practical importance is the global
oscillator strength sum rule relating the integral of the dissipative part
of the optical conductivity to the density of particles participating in
optical absorption and their bare mass:

SW =

∞�

0

σ1(ω)dω =
πne2

2me
=

1
8

ω2
p (3.14)

The optical conductivity of a metal is dominated by the electronic
response and therefore an integration of the data using the previous
formula can be compared to the total number of electrons, including
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both core and valence electrons. The integration to infinite frequency

can rarely be exercised because of experimental constraints. In prin-

ciple, nothing prevents spectral weight transfer to occur form one

spectral region to another. To extract useful information, it is custom-

ary to consider a partial sum rule, calculating the spectral weight up

to a cutoff frequency, ωc. The partial spectral weight is defined as:

SW(ωc) =

ωc�

0

σ1(ω)dω =
πNe f f e2

2m
(3.15)

The natural cutoff frequency to be chosen, is the one at the crossover

between intraband and interband contributions to the dielectric

function. This energy cutoff equals ∼ 1 eV in cuprates, while it is

smaller in conventional, BCS superconductors. For both the normal

state and superconducting state spectral weight, one can thus write:

SW = A + B where:

A =

ωc�

0

σ1(ω)dω ; B =

∞�

ωc

σ1(ω)dω (3.16)

A represents the intraband contribution to the spectral weight, while

B represents the interband contribution. The sum rule for band

electrons is in practice the most useful. Suppose that we have a

system with only a single reasonably well isolated band around the

Fermi level that can be approximated by a tight binding dispersion

�k = −t cos(ka). In that case we find an interesting relation,

ωc�

0

σ1(ω, T)dω = −πe2a2

2h̄2V ∑
k,σ

�n̂kσ�k�T = −πe2a2

2h̄2V
Ekin(T) (3.17)

This sum rule states that by measuring the optical spectral weight

we are in fact measuring the kinetic energy of the charge carriers

contributing to the optical conductivity. In real systems this relation

only holds approximately: usually there are other bands lying nearby

and the integral on the left contains contributions from these as well.

Often the bands are described by more complicated dispersion re-

lations in which case the relation ∂2�k/∂k2 = −�k does not hold.

We can make some other observations from the sum rule for band

electrons. Suppose again we have a single empty cosine like band

(it is only necessary that the band is symmetric but it simplifies the

discussion) at T = 0. Since the band is empty, the spectral weight is

equal to zero. If we start adding electrons the spectral weight starts to

increase until we reach half-filling. If we add more electrons the spec-

tral weight will start to decrease again because the second derivative

becomes negative for k > π/2a. If we completely fill the band the



contributions from k > π/2a will precisely cancel the contributions
from k < π/2a and the spectral weight is again zero. Now consider
what happens if we have a half-filled band and start to increase the
temperature. Due to the smearing of the Fermi-Dirac distribution
higher energy states will get occupied leaving behind lower energy
empty states. The result of this is that the spectral weight starts to
decrease. One can show using the Summerfeld expansion that the
spectral weight follows a T

2 temperature dependence. In the extreme
limit of T → ∞ something remarkable happens: the Fermi-Dirac
distribution is 1/2 everywhere and the electrons are equally spread
out over the band. The metal has become an insulator.

3.4 Temperature and Doping Dependence of Cuprates Optical

Properties

Studies of frequency dependence of infrared reflection on single
crystals and films of the cuprate superconductors have provided,
complementary to the ARPES studies, information on transition
from a charge-transfer insulator to a metallic state under hole or
electron doping. In Figure 3.2 there is the doping dependence of the
optical conductivity σ1(ω) of La2−xSrxCuO4 and Nd2−xCexCuO4−y

samples [Uchida et al., 1991]. In the insulator phase (x = 0),

Figure 3.2: Optical conductivity
σ1(ω) of La2−xSrxCuO4 (a) and of
Nd2−xCexCuO4−y (b) as a function of
doping

absorption appears only at photon energies h̄ω < 1 eV, which
indicates the existence of the insulator optical gap at h̄ω ∼ 1.5 eV.
In accordance with the general structure of the electronic spectrum
shown in Figure 2.4, this gap is caused by a charge transfer from
the filled O 2p-type band to the upper Hubbard Cu 3d subband.
Under doping (hole doping-type in LSCO and electron doping-type
in NCCO compounds), the intensity of this absorption decreases,
but there appears an absorption in the mid-infrared (MIR) region,
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h̄ω < 1 eV, which increases more rapidly than the concentration of
carriers. An absorption characteristic of metals in the form of Drude
peak in Figure 3.1 also appears near ω = 0. These results suggest
a spectral weight transfer from the upper Hubbard band to the p-d
singlet states under hole doping. A strong dependence of the optical
conductivity on doping, as shown in Figure 2.4, was obtained only
for the absorption in the CuO2 plane; for the polarization of light out
of the plane the absorption spectrum preserves its insulator nature
even in the overdoped region [Uchida et al., 1996].

Figure 3.3: Schematic global density of
states of hole-doped Mott insulators.
The band around the Fermi level, the
upper Hubbard band (UHB), and
the lower Hubbard band (LHB) are
schematically illustrated. The red
arrow represents the charge-transfer
excitation, the green arrow identifies the
excitations in the mid-IR region.

According to exact diagonalization calculations for the Hubbard
model [Nakano et al., 2007] At low doping p < 0.1, a quick grows of
the MIR incoherent part of the conductivity spectrum occurred due
to the spectral weight transfer from above the Mott gap, while the
Drude weight increased as p2. At larger doping, the MIR part did
not change much and the further increase of the conductivity with
doping was due to the Drude weight growth, which saturated at over-
doping. A two-component description (3.2) in the underdoped region
with the Drude-type component for coherent motion of doped holes
at ω ∼ 0 and a broad component in the MIR region due to incoherent
hole motion or the states created in the gap region (Figure 3.3). In the
moderately doped region, 0.1 < p < 0.25, the separation of the IR ab-
sorption into the Drude-type and MIR band becomes ambiguous and
a description within the general Drude formula can be used. A de-
tailed study of temperature and frequency dependence of the optical
conductivity in a broad frequency range 30-20000 cm−1 2 in several 2 1 eV= 8064 cm−1

YBa2Cu3O6+x single crystals has be done in [Orenstein et al., 1990]
revealed in the insulator sample p = 0.2 an optical gap, h̄ω � 1.75
eV, determined by the energy of charge transfer O2 p → Cu3d. With
an increase of the doping absorption appeared in the MIR region,
accompanied by the Drude absorption peak at ω = 0. These two
regions were clearly separated by a strong suppression of σ(ω) at
ω ∼ 500 cm−1 clearly seen at low temperatures, in the underdoped
crystals even above TC. The analysis of frequency and temperature
dependence of σ(ω) at different concentrations of carriers have led
to the conclusion that two components exist in the infrared absorp-
tion. A rather narrow Drude component in (3.2) with a typical width
γ � kBT affects only a small part of the effective number of free car-
riers participating in absorption. The second component is related to
absorption in the MIR region, kBT < h̄ω < 1 eV, whose intensity, like
that of the Drude peak, rapidly increases with the number of doped
carriers. A detailed analysis of the infrared conductivity in single
crystals of YBa2Cu3Oy for ten different doping levels, 6.28 < y < 7.00,
has been reported in [Lee et al., 2005] and shows the evolution of the
infrared conductivity with doping from the antiferromagnetic (AF)



phase in strongly underdoped region to the superconducting phase

at optimal doping. The doping dependence of the optical spectra

σ1(ω) is shown in Figure 3.4. In the inset, the σ1(ω) is shown up to

the photon energy h̄ω = 3.75 eV, which demonstrates the charge-

transfer gap at ∼ 1.5 eV. Two components are clearly seen in the

conductivity at low temperature, a narrow Drude-like peak at the

energies below ∼ 30 meV and a broad MIR band with a maximum,

which decreases with doping. The effect of the temperature on these

two components is to reduce the Drude peak at low temperatures

with a strong temperature dependence, while the MIR absorption

is essentially T-independent. This behavior is demonstrated in Fig-

ure 3.5 for two crystals: (a) y = 6.35 and (c) y = 6.65 where the two

components are displayed by the dotted and dot-dashed lines in the

left panels.

Figure 3.4: Optical conductivity σ1(ω)
of YBa2Cu3Oy under various doping

6.30 < y < 6.75

To see what happen to the charge-transfer spectrum around 2 eV

we report in Figure 3.6 data taken by [Falck et al., 1992] on La2CuO4.

We report just two measurements of the imaginary part of the di-

electric function �2(ω) for temperature at 122 K and 447 K. The

charge-transfer peak around 2 eV is seen to sharpen and move to

higher energies upon cooling. At T ∼ 120 K this evolution saturates

and further cooling alters neither the position nor the width of the

peak. This behaviour can be described introducing a short-range

interaction between electrons and holes that gives origin to a polaron.

The temperature dependence of the polaron self-energy causes a shift
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Figure 3.5: Optical conductivity σ1(ω)
of the YBa2Cu3Oy single crystals for (a)

y = 6.35 and (c) y = 6.65 at high (low)

temperature shown by the thin (thick)

lines.
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Figure 3.6: Imaginary part of the dielec-

tric function �2(ω) for temperature at

122 K and 447 K of La2CuO4 sample.

The fit lines are obtained changing the

parameters of two Lorentz oscillators as

shown in details in the table.

of the band edge [Fan, 1951] given by:

Eg(T) = E0
g − 2h̄ω0αp[n(h̄ω0/kBT) + 1] (3.18)

where αp is the polaron coupling constant. Moreover, including the

coupling to a single phonon of frequency ω0, the phonon scattering

induces a decay rate of the quasiparticles and this gives:

γ(T) = 2
3/2ω0(h̄ω0/E)1/2αp[2n(h̄ω0/kBT) + 1] (3.19)

where E = h̄ω − Eg(T) denotes the total kinetic energy of the electron

and hole. With this assumptions, increasing the temperature of the

systems gives origin to a shift of the charge-transfer peak towards

lower energies and also a broadening of the peak due to the coupling

with the phonons. We have fitted the two curves at 122 K and 447
K with Lorentian oscillators and we have found that the predicted

behaviour is correct as shown in Table 3.4. In order to fit correctly

the experimental data, from 122 K to 447 K, is necessary to move

the oscillator towards lower energies, broaden it but also increase its

spectral weight.

Oscillator Position (eV) Oscillator Plasma Frequency (eV) Oscillator Width (eV)

T = 122 K 2.23 1.10 0.41
T = 447 K 2.09 1.16 0.65



4 ARPES

The cuprate high-temperature superconductors have attracted great
interest not only for the obvious application potential related to
their high TC , but also for their scientific significance. This systems
highlight a major intellectual crisis in the quantum theory of solids,
which, in the form of one-electron band theory, has been very success-
ful in describing good metals (like Cu) but has proven inadequate for
strongly correlated electron systems. In order to address the scope of
the current approach in the quantum theory of solids and the validity
of the proposed alternative models, a detailed comparison with those
experiments that probe the electronic properties and the nature of
the elementary excitations is required. In this context, angle-resolved
photoemission spectroscopy (ARPES) plays a major role because it is
the most direct method of studying the electronic structure of solids.

The energetics of the photoemission process and of the geometry
of an ARPES experiment are sketched in Figure 4.1 and Figure 4.
A beam of monochromatized radiation supplied either by a gas-
discharge lamp or a synchrotron beamline is incident on a sample
(which has to be a properly aligned single crystal, in order to per-
form momentum-resolved measurements). As a result, electrons are
emitted by the photoelectric effect and escape into the vacuum in all
directions. By collecting the photoelectrons with an electron energy
analyzer characterized by a finite acceptance angle, one measures the
kinetic energy Ekinof the photoelectrons for a given emission angle.
This way, the photoelectron momentum p is also completely deter-
mined: its modulus is given by p =

√
2mEkin and its components

parallel and perpendicular to the sample surface are obtained from
the polar (θ) and azimuthal (φ) emission angles.

Within the noninteracting electron picture, and by taking advantage
of total energy and momentum conservation laws (note that the
photon momentum can be neglected at the low photon energies
typically used in ARPES experiments), one can relate the kinetic
energy and momentum of the photoelectron to the binding energy EB



Figure 4.1: Energetics of the photoe-

mission process. The electron energy

distribution produced by incoming pho-

tons and measured as a function of the

kinetic energy Ekin of the photoelectrons

(right) is more conveniently expressed

in terms of the binding energy EB (left)

when one refers to the density of states

inside the solid (EB = 0 at EF). From

[Hüfner, 1995]

Figure 4.2: Angle-resolved photoemission spetroscopy: (a) geometry of an ARPES experiment in which the emission

direction of the photoelectron is specified by the polar (θ) and azimuthal (φ) angles; (b) momentum-resolved

one-electron removal and addition spectra for a noninteracting electron system with a single energy band dispersing

across EF; (c) the same spectra for an interacting Fermi-liquid system ([Sawatzky, 1989]). For both noninteracting and

interacting systems the corresponding ground-state (T = 0K) momentum distribution function n(k) is also shown. (c)

Lower right, photoelectron spectrum of gaseous hydrogen and the ARPES spectrum of solid hydrogen developed from

the gaseous one ([Sawatzky, 1989]).
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and crystal momentum h̄k inside the solid:

Ekin = hν − φ − |EB|; (4.1)

p� = h̄k� =
�

2mEkin · sin θ (4.2)

Here h̄k� is the component parallel to the surface of the electron

crystal momentum in the extended zone scheme. Upon going to

larger θ angles, one actually probes electrons with k lying in higher-

order Brillouin zones. Note that the perpendicular component of

the wave vector k⊥ is not conserved across the sample surface due

to the lack of translational symmetry along the surface normal.

This implies that, in general, even experiments performed for all

k� (i.e., by collecting photoelectrons at all possible angles) will not

allow a complete determination of the total crystal wave vector k.

A particular case in which the uncertainty in k⊥ is less relevant is

that of the low-dimensional systems characterized by an anisotropic

electronic structure and, in particular, a negligible dispersion along

the z axis [i.e., along the surface normal; Figure 4(a)]. The electronic

dispersion is then almost exclusively determined by k� , as in the

case of the 2D copper oxide superconductors. As a result, one can

map out in detail the electronic dispersion relations E(k�) simply

by tracking, as a function of p�, the energy position of the peaks

detected in the ARPES spectra for different takeoff angles [as in

Figure 4(b), where both direct and inverse photoemission spectra for

a single band dispersing through the Fermi energy EF are shown].

As an additional bonus of the lack of z dispersion, one can directly

identify the width of the photoemission peaks with the lifetime of the

photohole ([Smith et al., 1993]), which contains information on the

intrinsic correlation effects of the system and is formally described by

the imaginary part of the electron self-energy.

4.1 Three step model

To develop a formal description of the photoemission process, one

has to calculate the transition probability w f i for an optical excitation

between the N-electron ground state ΨN

i
and one of the possible final

states ΨN

f
. This can be approximated by Fermi’s golden rule:

w f i =
2π

h̄
|�ΨN

f
|Hint|ΨN

i
�|2δ(E

N

f
− E

N

i
− hν) (4.3)

where E
N

i
= E

N−1

i
− E

k
B

and E
N

f
= E

N−1

f
+ Ekin are the initial and

final states energies of the N-particle system. The interaction with the

photon is treated as a perturbation given by:

Hint = − e

2mc
(A · p + p · A) = − e

mc
A · p (4.4)



where p is the electronic momentum operator and A is the electro-
magnetic vector potential. At this point, a more rigorous approach is
to proceed with the so-called one-step model in which photon absorp-
tion, electron removal, and electron detection are treated as a single
coherent process. In this case bulk, surface, and vacuum have to be
included in the Hamiltonian describing the crystal, which implies
that not only bulk states have to be considered, but also surface and
evanescent states, as well as surface resonances. However, due to the
complexity of the one-step model, photoemission data are usually
discussed within the three-step model, which, although purely phe-
nomenological, has proven to be rather successful [Feibelman and
Eastman, 1974]. Within this approach, the photoemission process is
subdivided into three independent and sequential steps:

1. Optical excitation of the electron in the bulk.

2. Travel of the excited electron to the surface.

3. Escape of the photoelectron into vacuum.

The total photoemission intensity is then given by the product of
three independent terms: the total probability for the optical tran-
sition, the scattering probability for the traveling electrons, and the
transmission probability through the surface potential barrier. Step
(1) contains all the information about the intrinsic electronic structure
of the material. Step (2) can be described in terms of an effective
mean free path, proportional to the probability that the excited elec-
tron will reach the surface without scattering (i.e., with no change in
energy and momentum). The inelastic-scattering processes, which
determine the surface sensitivity of photoemission, also give rise to
a continuous background in the spectra which is usually ignored
or subtracted. Step (3) is described by a transmission probability
through the surface, which depends on the energy of the excited
electron as well as the material work function φ.

In evaluating step (1), the problem simplifies within the sudden
approximation, which is extensively used in many-body calculations of
photoemission spectra from interacting electron systems and which
is in principle applicable only to electrons with high kinetic energy.
In this limit, the photoemission process is assumed to be sudden,
with no post-collisional interaction between the photoelectron and
the system left behind (in other words, an electron is instantaneously
removed and the effective potential of the system changes discontinu-
ously at that instant). The N-particle initial ΨN

i and final state ΨN
f can

then be written as a product of single electron states φi( f ),k and the
wavefunction of the remaining system ψN−1

i( f ),k:

Ψi = Cφi,kψN−1
i,k , Ψ f = Cφ f ,kψN−1

f ,k (4.5)
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where k denotes the wave vector of the photoelectron of energy Ekin.
The factorization of the wave functions permits to write the intensity
of the photocurrent in a simple form:

I(k, ω) = ∑
i, f

w f ,i ∝ |M(k, ω)|2 A(k, E) f (E) (4.6)

where the single-electron matrix element M(k, ω) ∝ �φi,k|Hint|φ f ,k�
depends on the photon energy h̄ω and the state k of the removed
electron. The single-electron spectral function A(kE) describes the
probability of removing an electron with energy E and momentum
h̄k from the system of N electrons. The Fermi function f (E) takes
into account that direct photoemission spectroscopy probes only the
occupied electronic states. From the quantity I(k, ω) it is possible
to reconstruct a map of the population of the states in energy and
momentum. This gives an immediate and detailed information on
the band structure of the material. For a review see [Damascelli et al.,
2003].

4.2 Fermi Surface

The low-energy electron excitations close to the Fermi surface (FS)
determine many physical properties of metals and therefore the
knowledge of the FS topology is very important for the characteri-
zation of the copper-oxide materials. Numerous investigations were
devoted to studies of the shape and the doping dependence of the
FS of cuprate superconductors. The experimental evidences confirms
the existence of an FS in cuprate superconductors in agreement with
theoretical band structure calculations. The recent improvement in
the performance of ARPES measurements, and especially in getting
high angle resolution which enables to provide high quality momen-
tum distribution maps, were decisive in clarifying many controversial
results of early experiments.

The most detailed studies of the excitation spectra near the Fermi
surface have been performed for single crystals of Bi2Sr2CaCu2O8,
which have a stable surface. The quasi-two dimensional nature of the
electronic spectrum in Bi-based compounds, due to a weak disper-
sion along the kz-direction, substantially simplifies the measurements
of the photoemission spectra as a function of the in-plane momentum
components. However, the study of the FS of the Bi2212 compounds
is complicated by several secondary features besides those related to
primary electronic structure. These are the diffraction replicas orig-
inating from the incommensurate modulation of the BiO layers, the
shadow bands due to the superstructure formation, and the bilayer
band splitting caused by the two CuO2 planes in the Bi2212. The



incommensurate modulation of the BiO layers can be suppressed

using Pb-doped Bi2212 samples. A detailed and systematic ARPES

investigation of the doping dependence of the normal-state FS of the

Pb-Bi2212 crystals were performed by [Kordyuk et al., 2002] where

six samples from the underdoped (UD, TC = 76K) to the overdoped

(OD, TC = 69K) crystals were studied. Figure 4.3 shows the momen-

tum distribution maps (MDM) for these two samples in (a) and (b)

plots. The plot (c) is the same as (b) with the first Brillouin zone (BZ)

shown by the white square and the main and the shadow Fermi

surfaces emphasized by the black and white lines, respectively. The

maxima of the MDM (the bright regions), which reflect the maxima

of the MDCs measured at the Fermi energy, correspond to the FS. In

addition to the main FS represented by the large hole-like rounded

square or a ”barrel” around (π, π) point in the BZ, the much weaker

shadow bands shifted from the main FS by the wave vector (π, π)

(the white arrows in the plot c) are also depicted. With increasing

hole concentration x, the size of the FS barrels increases as can be

seen in the decrease of the interbarrel separation at the (π, 0) point

in the (b) plot in comparison with the (a) plot. With doping, the FS

shape changes from being quite rounded in the UD sample (a) to

the form of a square with rounded corners in the OD sample (b)

but no change in the FS topology was observed within the doping

range studied. The FS shape changes in Figure 4.3 are accompanied

by the intensity variation from the maximum values in the nodal

directions(0, 0) → (π, π) at the FS barrel in the UD sample to a uni-

form distribution over the FS with faint maxima at antinodal (π, 0)

points in the OD sample. This reflects the variation of the density of

electronic states (DOS) at different parts in the k-space of the FS with

doping.

Figure 4.3: The normal-state (T =

300K) Fermi surface map of Bi(Pb)−
2212: underdoped (UD, Tc = 76K) (a),

overdoped (OD, Tc = 69K) (b). Panel

(c) is the same as (b) with the first

Brillouin zone shown by the white

square and the main and the shadow

Fermi surfaces emphasized by the black

and white lines, respectively.
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4.3 Metal-Insulator Transition

In early ARPES studies of lightly doped LSCO compounds, a ”two-

component” electronic structure was observed in the ”antinodal”

(AN) region close to the (π, 0) point of BZ: a broad ”hump” at a

large binding energy around −0.5 eV and a weak QP peak close to EF
which appears at x ≈ 0.05. With doping, a weight transfer occurred

from the broad hump to the QP peak at EF, while in the nodal (N)

direction, close to the (π/2, π/2) point, the QP peak can be clearly

resolved only at moderate doping x ≈ 0.15 ([Damascelli et al., 2003]).

This behavior was explained as reflecting the evolution of the in-gap

states in the Mott insulator under doping with the chemical potential

pinned inside the Mott gap as shown in Figure 4.5.

Figure 4.4: Energy distribution curves

for La2−xSrxCuO4 at k = kF at various

dopings: along the nodal direction

(π/2, π/2) (a) and at (π, 0) (b).

Figure 4.4 shows the dependence with the doping of the EDCs for

La2−xSrxCuO4 at k = kF in the vicinity of the N point (π/2, π/2)

(a) and at the AN point (π, 0) (b) of the BZ. The QP peak in the N

direction is already visible at x = 0.03 and its intensity increases with

the doping. In contrast, the AN EDCs show pseudogap behavior for

the doping region x � 0.15.



Figure 4.5: Doping of a charge-transfer
insulator: (a) in the undoped insulator
a gap ∆ separates the occupied from
the unoccupied electronic states; (b)
upon doping, µ is pinned inside the
charge-transfer gap and states move
towards the chemical potential. [van
Veenendaal and Sawatzky, 1994]

4.4 Laser ARPES

To investigate the valence (occupied) electronic states in the solids,
various incoming photon energies in photoionization are used. The
photon energy in the ultraviolet regime (Ei = 5 − 100eV) (ultraviolet
photoemission spectroscopy - UPS) is used to study low energy
electronic states close to the Fermi energy in metals. High energy
(few mega electron volt) and momentum resolutions achieved in
recent years at photoemission beamlines on high-flux synchrotron
facilities enables one to obtain electron dispersion curves in metals
with high precision in ARPES (for a review, see [Damascelli et al.,
2003]). In the X-ray regime (Ei > 1000eV) (X-ray photoemission
spectroscopy - XPS), one can study only electron density of states
due to the low momentum resolution. Recently, a new low-photon
regime around 6eV was accessed with the help of laser-based ARPES
[Koralek et al., 2006]. Studies of Bi2Sr2CaCu2O8+δ crystals with
the new technique demonstrated a much better resolution and a
low background (see Figure 4.6). The low-energy laser ARPES is
significantly more bulk sensitive since the electron mean free paths
at this energy increase up to 16 Å in comparison with ∼ 6 Å in
standard ARPES studies with 52 eV photons (see Figure 4.7).

4.5 Laser ARPES setup

In order to develop novel skills in the field of state-of-the-art electron
spectroscopies, I spent one year at the University of British Columbia
working in the ARPES laboratory led by prof. Andrea Damascelli.
Here, I learned how to manage an ARPES experiment and I had
the opportunity to build an optical setup from scratch, wich has
been coupled to the conventional ARPES in order to obtain time-
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Figure 4.6: Comparison of ARPES
along the node in near optimally doped
Bi2212 using (a) 6 eV laser photons
at T = 25KT, (b) 28 eV photons at
T = 26K, and (c) 52 eV photons at
T = 16K. The images are scaled
identically in E and k, and all three
contain MDC derived dispersion for
the laser data (red circles). Additionally,
the dispersions for the data of panels
(b) and (c) are shown as blue squares
and black triangles, respectively. From
[Koralek et al., 2006]

Figure 4.7: The ”universal curve” for
surface sensitivity in photoemission.
Electron inelastic mean free paths from
a variety of materials are plotted versus
kinetic energy relative to EF (the lowest
kinetic energies shown will not be
able to overcome the work function).
Indicated on the plot are the kinetic
energy ranges for standard ARPES and
laser ARPES. From [Seah and Dench,
1979]



resolved photoemission. After having achieved the best configuration
to optimize the time- energy-resolution, I focused my attention on
different classes of materials: I studied the static photoemission
spectrum of the Bi2201 copper oxide, looking at the difference in its
Fermi surface using different photon energy (1.5 eV, 3 eV, 6 eV).

We illustrate our setup for Time- and Angle-Resolved Photoemis-
sion Spectroscopy (tr-ARPES) in Figure 4.8. A Ti:Sapphire oscillator
generates 820 nm infrared (IR) laser pulses, which are split into two
paths with a tunable intensity ratio using a polarizing beamsplitter.
In the probe path, two second harmonic generation stages in series
produce the 205 nm ultraviolet (UV) beam. In the pump path, a delay
stage varies the optical path length to control the pump-probe delay
with 10 fs precision. The IR has a spectral Full-Width-Half-Maximum
(FWHM) of ∼ 21 nm. Once the 205 nm beam has been produced the
pump and the probe beam are driven into the chamber and focalized
on the sample. In order to characterize this system we performed
some measurements on a gold sample and we found that the overall
energy resolution (combining the resolution of the analyzer with the
resolution of the laser light) is � 10 meV.

I studied the effect of the polarization of the laser light in the pho-
toemission spectrum of the Na2IrO3 Iridate; I performed low energy
photoemission on the Bi2Se3 topological insulator and I started an
experiment aimed at tracking the dynamics of the quasi-particle peak
around the nodal region of the Fermi Surface of Bi2212 cuprate. Con-
cerning the present work, we want to present a measurement on the
Bi2Sr2−xLaxCuO6+δ OP16 sample using the laser-ARPES system to
show the Fermi surface of such a sample and comparing it with data
already presented in literature to validate our results.

4.6 Laser ARPES measurements on Bi2212

In the BCS theory of conventional superconductors, the supercon-
ducting phase transition is accompanied by a modification of the
electronic density of states over a frequency range of the order of the
superconducting gap (SC), without significantly affecting the physical
properties at higher energies. In contrast to this, in strongly corre-
lated systems like cuprates, the electronic properties at the Fermi
energy (EF) are intertwined with those at high-energy scales. One
of the pivotal challenges in the field of high-temperature supercon-
ductivity is to understand whether and how the high-energy scale
physics associated to high-energy Mott-like excitations (|E − EF| > 1
eV) is involved in the condensate formation. A huge effort is cur-
rently devoted to develop novel spectroscopic techniques, beyond
conventional spectroscopies at equilibrium, to provide new informa-
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BBO 0.5 mm

BBO
0.2 mm

820 nm

6.05 eV
(205 nm)

70 MHz

Figure 4.8: Laser-ARPES setup based on

the generation of the fourth harmonic

(6 eV) of a Ti:Sapphire output. The path

of the residual IR beam is controlled by

a delay stage to perform pump-probe

experiments. Once the 205 nm beam

has been produced the pump and the

probe beam are driven into the chamber

and focalized on the sample to do

time-resolved ARPES.



tions and solve this issue, paving the way to finally develop a theory

to explain high temperature superconductivity.

Following this approach, with the laser-ARPES system that I have

developed, after first characterizations, we have measured the Fermi

surface of the double-layer copper oxyde Bi2212 at T=8 K. This sys-

tem will be treated in detail in Chapter 7. In Figure 4.9 we report

the first measurement of the Bi2212 Fermi surface obtained with

the laser-ARPES setup at UBC Vancouver. In the drawing on the

right, the investigated part of the Brillouin zone for the measurement

is highlighted in red. From this measurement it is possible to see

that the bonding band (BB) and antibonding band (AB) of the CuO2

bilayer are clearly resolved in the momentum space. The two con-

centric arcs that are visible around the gamma point are due to the

well known replica of the Brillouin zone in this compound ([Kordyuk

et al., 2002]).

hv=6.0 eV

AB

BB

a)

b)
EF

Momentum

E
ne
rg
y

Figure 4.9: a) Bi2212 fermi surface mea-

sured with the laser-ARPES setup of the

ARPES Laboratory at the University of

British Columbia in Vancouver. The red

highlighted part of the Brillouin zone

can help to read the measurements.

The bright signal refers to the typical

momentum-space mappings of this

compound. the bonding band (BB) and

antibonding band (AB) of the CuO2

bilayer are visible. The two concentric

arcs that are visible around the gamma

point are due to the well known replica

of the Brillouin zone in this compound.

b) Energy versus momentum plots of

the spectral image along the Fermi

surfaces identified by dotted white line

in panel a.
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In order to validate our first measurements we have compared
them with similar measurements already present in literature. In
Figure 4.10 we have reported the Fermi surface of the same sample
measured by [Anzai et al., 2013]. The comparison between the two
measurements in Figure 4.9 and Figure 4.10 is good.

In respect to the original plan, the system cannot performe yet
time-resolved measurements. This is due to the high repetition rate
(70 MHz) of the oscillator having enough average power to thermally
destroy the superconductivity of the system even at very low temper-
ature. This results in an impossibility to follow the weak change of
the bands structure driven by the pump. Nowadays improvements
on this system are in progress. The idea is to change the laser source
switching to a low rep-rate amplified system that reduces the average
power of the pump and, at the same time, increases its energy per
pulse.

Figure 4.10: APRES data taken with
different low-energy photons. The
data were collected at T=10 K for an
optimally doped Bi2212 with Tc=91
K (OP91). (a,b) Momentum-space
mappings at the Fermi level, taken
with hν = 8.5 and 7.0 eV, respectively,
over the fields of view marked by grey
rectangles in c. The globally resolved
doublet is ascribed to the BB (bonding
band) and AB (antibonding band) of
the CuO2 bilayer. Purple curves denote
the Fermi surfaces. (c) Schematic of a
Brillouin-zone quadrant. [Anzai et al.,
2013]





5 Experimental Systems

5.1 Optical Oscillator

The first stage of the laser system is a diode pumped Nd:Yag laser

(Coherent Verdi V10) which provides a beam with wavelenght

λ = 532 nm and maximum output power of 10 W. This laser pumps

a Ti:sapphire oscillator (Coherent Mira 900) converting the input

continuous wave beam into a train of ultrafast pulses characterized

by a wavelenght λ = 800 nm and a temporal width of 120 fs. The

cavity of the oscillator is equipped by a cavity dumper which is an

acousto-optical switch that allows to vary continuously the repetition

rate of the laser from 1 MHz to 200 Hz and to increase the energy

per pulse. The output energy per pulse is about 50 nJ at 100 KHz of

repetition rate. This experimental configuration is particularly suit-

able to study the strong non-equilibrium regime in cuprates avoiding

the avarage heating effects. At the output of the laser source, a tele-

scope formed by two plano-convex lenses (L) placed at the distance

2f from each other (f is the focus length of the lens) collimates the

beam and helps in obtaining a better focalization on the sample at the

end of the line. The beam is divided in two part by a beam splitter

(BS): the 70 % of the incident beam is trasmitted (pump) while the

remaining 30 % is used as probe. The temporal delay between the

two beam is varied by a motorized high-precision translational stage,

placed on the pump line, which is controlled via software and allows

to change the optical path in step of 1 µm. Because of the double

passage into the translational stage 1 µm corresponds to a temporal

delay between pump and probe of 6.6 fs. The intensity of both the

beams is tuned by an intensity attenuator given by an half-wave plate

and a polarizer (P). Pump and probe are both focused on the sample

with a plano-convex lens of 20 cm and 10 cm and have perpendicu-

lar polarizations to avoid any possible interference effect. A mirror

placed on a piezoelectric motor allows to obtain a fine control of the

spatial coincidence. Since the relative variations of the probe are very

low (tipically of the order of 10-5 is necessary to minimize all the

effects due to scattering of the pump. The size of the two beams are



measured by imaging the spots in the focal plane on a CCD camera.

The samples measured are placed in an closed-cycle cryostat that

can cool down to the minimum temperature of 10K (Nevertheless,

all the measurements done on this system are at room temperature).

Supercontiuum light is produced on the probe line, focusing the

Figure 5.1: Schematic drawing of

the experimental setup, located at

Universita’ Cattolica in Brescia, to

perform time-resolved spectroscopic

measurements. Key elements are the

Photonic Crystal Fiber employed to

generate the supercontinuum pulse,

and the acquisition system based on

fast linear array sensors.

probe pulses with an aspherical lens into a photonic crystal fiber. The

fiber is positioned on a home-made launch system equipped by three

traslational degrees of freedom and a tilting mechanism, in order to

optimize the coupling of the laser into the fiber itself. Strongly non

linear processes inside the fiber broaden the 800 nm pulse generating

a broadband pulse characterized by a spectral content ranging from

450 nm to 1500 nm and a complex spectral chirp. More details on the

temporal and spectral characterization of the supercontinuum light

will be given in the next chapter. After the fiber the white light pulse

is parallelized by an achromatic doublet (AD) and then refocused

by another doublet with focal lenght f=100 mm. An optical window,

placed before the last doublet, samples the probe. This reference

is used to monitor and compensate the probe intensity during the

measurements. Both the reference and the signal reflected by the

sample are dispersed by a prism and collected by two Si-arrays of 128
pixels. A spectral slice, whose width ranges from 2 nm at 700 nm to 6
nm at 1100 nm, is acquired by each pixel of the array, corresponding

to a constant temporal resolution of ∼120 fs [Cilento et al., 2010]. A

fast digitizer performs the scan of the arrays. Because of the large

difference between the scan frequency of the array and the repeti-

tion rate of the laser, a single-shot detection is not feasible and it is

necessary to integrate many pulses. The pump beam is chopped at

a low frequency (typically 30 Hz), and, at the same time, the pump

modulation is acquired by a photodiode and digitalized by a data

acquisition device (NI-DAQmx M-series) which is synchronized with
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the fast digitizer. In this way it is possible to discriminate between
pumped and the unpumped pulses. At the end of a single acquisition
the pump-induced variation of signal is obtained by mediating and
subtracting the two signals. To prevent the probe intensity fluctu-
ations from affecting the measurement, the reflectivity variation is
divided by the reference signal. The sensitivity of the array of photo-
diodes ranges from 500 nm to about 1000 nm, outside this range the
response of the photodiodes drops. Only this portion of the super-
continuum light will be used in the measurements reported in this
work.

5.2 Optical Parametric Amplifier

Nowadays, mainstream ultrashort pulse generation technology is
based on Ti:sapphire lasers with Kerr-lens mode-locking and chirped-
pulse amplification (CPA) [Backus, 1998], which provide highly stable
and energetic pulses. However, the frequency tunability of such laser
sources is limited in a narrow range around the fundamental fre-
quency (FF) of 0.8 µm or around its second harmonic (SH) of 0.4 µm.
Despite this limitation, the very high peak power of these sources
enables exploiting the second-order nonlinear optical effect known
as optical parametric amplification (OPA) [Boyd, 2003] [Shen, 2003]
[Baumgartner and Byer, 1979] [Giordmaine and Miller, 1965] to ex-
tend their tuning range. The principle of OPA is quite simple

Figure 5.2: (a) Principle scheme of the
OPA process; (b) photon energy balance
in the OPA process.

(Figure 5.2): in a suitable nonlinear crystal, energy is transferred
from an high frequency and high intensity beam (the pump beam, at
frequency ωP) to a lower frequency, lower intensity beam (the signal
beam, at frequency ωS), which is thus amplified. In addition a third
beam (the idler beam, at frequency ωi) is generated. The OPA process
can be given a simple corpuscular interpretation (Figure 5.2): a pho-
ton at frequency ωP is absorbed by a virtual level of the material and
a photon at frequency ωS stimulates the emission of two photons, at
frequencies ωS and ωi, respectively. In this interaction both energy
conservation

h̄ωP = h̄ωS + h̄ωi (5.1)



and momentum conservation

h̄kP = h̄kS + h̄ki (5.2)

should be fulfilled. This last condition is also known as ’phase match-

ing’ and is the key requirement that needs to be satisfied to allow

for efficient energy transfer between pump and signal/idler beams.

The signal frequency to be amplified can vary in principle from ωP/2

(the so-called degeneracy condition, with ωS = ωi) to ωP, and cor-

respondingly the idler varies from ωP/2 to 0 (as a matter of fact the

lowest frequency is limited by absorption of the nonlinear crystal). In

summary, the OPA process transfers energy from a high-power, fixed-

frequency pump beam to a low-power, variable-frequency signal

beam, generating an idler beam to satisfy energy conservation. The

OPA process thus provides an optical amplifier with continuously

variable center frequency and represents an easy way of tuning over

a broad range the frequency of an otherwise fixed femtosecond laser

system. On the other hand, if suitably designed, an OPA can satisfy

the phase matching condition over a very broad frequency range and

can thus efficiently transfer energy from a narrowband pump pulse

to a broadband signal pulse; it thus becomes a broadband amplifier

which can be used to dramatically shorten, by more than an order of

magnitude, the duration of the pump pulse. One can therefore start

with a femtosecond system producing relatively long pulses (100-200
fs) and use an OPA to shorten their duration to the sub-10 fs regime.

Figure 5.3 shows the conceptual architecture of a broadband OPA

[Cerullo, 2003]. The system is powered by energetic femtosecond

pulses, typically produced by an amplified Ti:sapphire laser at 800
nm. A fraction of the beam is split and used to produce the broad-

band seed beam by white light continuum (WLC) generation in a

sapphire plate [Reed et al., 1994]. Then the pump beam (which may

be optionally frequency-doubled) and the seed, after their timing has

been adjusted by a delay line, interact in a first amplification stage. It

is possible to further amplify the signal in a second stage (power am-

plifier), using a previously split fraction of the pump beam. Finally, a

pulse compressor is used to correct the spectral phase distortions of

the amplified beam and achieve nearly transform-limited (TL) pulse

duration.

Let us first calculate the phase matching bandwidth of an OPA. In

the limit of monochromatic plane waves and neglecting pump beam

depletion, the gain of an OPA crystal with length L can be written as

G =
Iout
Iin

= 1 +

�
Γ
g

sinh(gL)
�2

(5.3)

where g =
�

Γ2 − (∆k
2
))2 is the small gain, ∆k = kp − ks − ki is the
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Figure 5.3: Conceptual scheme for a
broadband OPA.

so called wavevector mismatch, Γ2 =
2d2

e f f ωiωs

c3
0�0ninsnp

Ip, Ip is the pump
intensity and de f f is the effective nonlinear optical coefficient. Ideally
one would like to have a broadband amplifier, i.e. an amplifier which,
for a fixed pump frequency ωp, provides a more or less constant
gain over a broad range of signal frequencies. In order to achieve
broadband amplification, one needs to keep the phase mismatch ∆k
as small as possible over a large bandwidth. Practically, however,
the phase matching condition can be satisfied only for a given set of
frequencies (ω̃i, ω̃p, ω̃s), so that

∆k = k(ω̃p)− k(ω̃s)− k(ω̃i) (5.4)

As well explained in details in [Cirmi et al., 2007], the wavevector
mismatch can be approximated to first order as

∆k ∼= δsi∆ω (5.5)

where δsi =
1

vgi
− 1

vgs
is the group velocity mismatch (GVM) between

signal and idler pulses. The full width at half-maximum (FWHM)
parametric gain bandwidth can then be calculated from equation 5.3
as

∆ν =
2(log 2)1/2

π

�
Γ
L

�
1

|δsi|
(5.6)

This equation makes it clear that, in order to obtain broad phase
matching bandwidths, one must achieve, for a given signal frequency
ω̃s, the group velocity matching between signal and idler pulsese, i.e.
δsi = 0. It will then become possible to amplify a broad bandwidth
centered around ω̃s. By using suitable nonlinear crystals, pump fre-
quencies and phase matching configurations, ω̃s can be varied over a
very broad range, spanning from the ultraviolet to the mid-infrared.
This enables the generation of widely tunable few-optical-cycle light
pulses from OPAs. Figure 5.4 shows the gain bandwidths, as calcu-
lated using equation 5.3, of collinear degenerate OPAs pumped by
the SH, panel (a), and the FF of Ti:sapphire, panel (b). In both cases
a type I configuration and β-barium borate (BBO) crystal are con-
sidered, with 1 and 3 mm thickness, respectively. It can be seen that



the gain bandwidth can be further broadened by slightly detuning
from the optimum condition. In this way, phase matching is achieved
simultaneously at two wavelengths to the blue and to the red of the
degeneracy point, obtaining a two-peaked spectrum with broader
bandwidth. The spectrum of the FF-pumped OPA has an FWHM of
about 90 THz corresponding to a TL pulsewidth of 8.2 fs (1.6 cycles
of the 1600 nm carrier wavelength) while that of the SH-pumped
OPA is 100 THz, corresponding to 6.5 fs TL pulses (2.4 cycles of the
800 nm carrier). The near-IR OPA is thus able to generate bandwidths
that are a larger fraction of the If the signal wavelength is tuned

Figure 5.4: Calculated gain bandwidths
for SH-pumped (a) and FF-pumped (b)
degenerate OPAs using 1 mm thick and
3 mm thick BBO crystals, respectively.

away from degeneracy condition ωS = ωi, then the δsi condition is
generally lost in a collinear configuration, leading to narrow phase
matching bandwidths. An additional degree of freedom can be in-
troduced using a non-collinear geometry [Gale et al., 1995] [Gale
et al., 1998], such as that shown in figure Figure 5.5(a). In this case,
pump and signal wavevectors form an angle α (independent of signal
wavelength) and the idler is emitted at an angle Ω with respect to
the signal. In such a way, for a collinear geometry (Figure 5.5(b)),
signal and idler moving with different group velocities get quickly
separated, giving rise to pulse lengthening and bandwidth reduction,
while in the non-collinear case (Figure 5.5(c)) the two pulses man-
age to stay effectively overlapped. The concept of non-collinear
phase matching, as applied to an OPA, gives rise to the so-called
non-collinear OPA (NOPA) scheme. In particular the visible NOPA
[Tzankov et al., 2006] [Cerullo et al., 1998], pumped at 400 nm by
the SH of Ti:sapphire and using a type I BBO crystal, is a very pop-
ular source. Using BBO, the NOPA concept works well in different
wavelength regions such as in the blue-green spectral range, when
pumped by the third harmonic of Ti:sapphire [Tzankov et al., 2002].
As an example, Figure 5.6(a) shows the calculated gain bandwidth
for a 400 nm pumped visible NOPA, which extends from 500 to 750
nm while Figure 5.6(b) shows the calculated gain bandwidth of the
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Figure 5.5: (a) Schematic of a non-
collinear interaction geometry; (b)
representation of signal and idler pulses
in the case of collinear interaction;
and (c) same as (b) for non-collinear
interaction.

FF-pumped near-IR NOPA using a PPSLT crystal: it extends over
90 THz and corresponds to a TL pulsewidth of about 8 fs (1.8 cy-
cles of the 1350 nm carrier wavelength). A typical visible NOPA

Figure 5.6: Calculated gain bandwidths
for an SH-pumped NOPA in BBO (a)
and an FF-pumped NOPA in PPSLT.

design [Manzoni et al., 2006]is shown in a schematic picture in Fig-
ure 5.7 The system starts with a conventional CPA Ti:sapphire
laser generating 150 fs, 800 nm pulses at 1 kHz with energy up to
500 µJ. The energy is sufficient for simultaneously pumping several
independent NOPAs. A fraction of the beam is used to generate the
400 nm pump pulses, with energy up to 30 µJ, by SHG in a 1 mm
thick BBO crystal. Another small fraction of the beam, with energy
of approximately 2 µJ, is focused into a 1 mm thick sapphire plate
to generate a highly stable single-filament white-light-continuum
(WLC) seed. The chirp of the visible portion of the WLC is small and
fairly linear with frequency. To avoid the introduction of additional
chirp, only reflective optics are employed to guide the white light
to the amplification stage. Parametric gain is achieved in a 1 mm
thick BBO crystal, cut for type I phase matching (θ = 32◦, φ = 0◦),



Figure 5.7: Scheme of a BBO based
NOPA pumped at 400 nm. BS: beam-
splitter; SPF: short-pass filter.

using a single-pass configuration to increase the gain bandwidth. The
chosen crystal length is close to the pulse splitting length for signal
and pump in the visible wavelength range. To minimize the effects of
self-focusing, we place the BBO crystal beyond the focus of the pump
beam. In that position the pump spot size is approximately 120 µm,
corresponding to an intensity of 120 GW cm−2; at higher intensities
distortions and beam break-up are observed. The WLC seed is im-
aged by a spherical mirror in the BBO crystal, with a 100 µm spot
size matching that of the pump beam. A 1 mm thick short-pass filter
removes the strong residual FF component from the WLC, preventing
its parasitic amplification. When the BBO crystal is illuminated by
the pump pulse and aligned perpendicularly to the pump beam, it
emits a strong off-axis parametric superfluorescence in the visible in
the form of a cone with an apex angle of ∼ 6.2◦ (corresponding to
an angle of 3.82◦ inside the crystal). This is the direction for which
the group velocities of signal and idler are matched and therefore
the gain bandwidth is maximized. The visible cone gives a visual aid
to the identification of the optimum condition for broadband gener-
ation, which is achieved when the pump-signal angle matches the
cone apex angle. In this condition, for optimum pump-seed delay, an
ultra-broad gain bandwidth that extends over most of the visible is
observed. A typical amplified pulse spectrum, shown in Figure 5.8(a),
displays a bandwidth of 180 THz. The amplified pulses from a single
stage have an energy of approximately 2 µJ, peak-to-peak fluctua-
tions lower than 2% and good TEM00 beam quality. Much higher
energies, up to ∼ 300 µJ [Tzankov et al., 2006], can be extracted by a
second amplification stage. After the gain stage the amplified pulses
are collimated by a spherical mirror and sent to the compressor.
Several compressor schemes have been implemented for the visible
NOPA. Simple prism pairs can correct the GDD but not third-order
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Figure 5.8: (a) Spectrum of the SH-
pumped visible NOPA; (b) retrieved
temporal intensity profile following
compression by chirped mirrors, as
measured by SPIDER.

dispersion and thus can only compress the pulses down to 10-15
fs. Sub-10 fs pulses can be achieved by using either prism-grating
[Shirakawa et al., 1998] or prism-chirped mirror combinations, as
well as adaptive compressors based on deformable mirrors [Baltuška
et al., 2002]. We chose to use a compressor employing exclusively
chirped mirrors [Cerullo et al., 1999]; this approach, besides the high
energy throughput and the broadband phase correction, greatly
simplifies the system design, allowing for compactness, insensitivity
to misalignment and high day-to-day reproducibility, which are of
great importance in practical applications. The resulting pulse length,
as shown in Figure 5.8(b) is 5.7 fs that is close to the TL value and
corresponds to less than three cycles of the carrier wavelength.

5.3 XUV-Laser Photoemission

Time-resolved measurements on Bi2212 shown in the Chapter 7 of
the present work have been performed on the ARTEMIS beam line
at the Central Laser Facility at the Rutherford-Appleton Laborato-
ries (UK). Here we report a brief explanation of the setup and its
technical specifications. More deatils can be found in [et al., 2009].

The availability of tunable, femtosecond pulses at wavelengths
spanning the ultraviolet to the infrared had a great impact in the
physics of the materials. In the past, most studies of strong field in-
teractions on an ultrafast timescale have been at 800 nm, restricted by
the gain spectrum of Ti:Sapphire based systems. As laser technology
moves to higher repetition rates, the feasibility of using XUV pulses
in the 10-100 eV energy range created through high harmonic gener-
ation increases. The shot-to-shot stability of the harmonics improves
and the average photon flux increases to the point where complex ex-
periments, such as photoemission measurements, requiring averaging
over many thousands of laser shots become possible. The Artemis
facility for ultrafast XUV science at the Central Laser Facility in the
UK aims to capitalise on these advances by bringing them together



in combination. The facility provides few-cycle, carrier-envelope

phase stabilised and tuneable laser beamlines, XUV beamlines and

interaction stations for gas-phase and condensed matter experiments.

A scheme of the entire setup is shown in Figure 5.9.

Figure 5.9: Simplified sketch of the

XUV time-resolved photoemission

setup. MIR pump is achieved by an

optical parametric amplifier setup. XUV

probe is obtained via HHG generation

in argon gas, ranging from 10 to 40
eV. The probe beam is selected by a

grating setup, and focused by a toroidal

mirror. Electrons are detected by a

hemispherical analyzer, which enables

the detection of energy and momentum

simultaneously.

Artemis is constructed around a carrier-envelope phase (CEP)

stabilised femtosecond laser system. This can be used to generate

tunable pulses across a wavelength range spanning the UV to the

far infrared, few-cycle pulses at 800 nm and short pulses of XUV

radiation through high harmonic generation (HHG). The XUV can

be delivered to interaction stations for materials science and atomic

and molecular physics through vacuum beamlines for broadband

or monochromatic (narrowband) XUV pulses. The Artemis facility

provides a variety of ultrafast, synchronised laser beamlines which

can be configured flexibly either to generate XUV or as pump and

probe pulses spanning the UV to far infrared. The core of the facility

is a 14 mJ, 30 fs, 1 kHz Ti:Sapphire CPA system operating at 785
nm. Tuneable pulses spanning the spectral range from 230 nm to

20 microns are provided by an optical parametric amplifier (HE-

Topas from Light Conversion). This is pumped with up to 8 mJ of

the output from the laser system. At 1300 nm, it can achieve pulse

energies of up to 1 mJ (1 W average power at 1 kHz) and a pulse

duration of 40 fs. This enables focused intensities exceeding 10
14

Wcm−2 to be achieved.

XUV radiation in the wavelength range 10-100 nm (10-100 eV)

is produced through high harmonic generation (HHG) in a gas

target. The resulting XUV radiation has similar pulse-duration to the

drive laser pulse and is synchronised to the drive laser pulse with

sub-fs resolution. With conversion efficiencies up to 10−6
at 30 eV,

a photon flux of up to 1011
photons s

−1
per harmonic is achievable.

For experiments requiring wavelength and bandwidth selection,

Artemis provides a narrow-bandwidth, tunable XUV beamline. In

this beamline the harmonics pass through a state of the art XUV

monochromator, which enables a single harmonic, or narrower
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bandwidth, to be selected from the spectrum, while maintaining

the femtosecond pulse-duration. Figure 5.10 shows the scanned

HHG spectrum obtained with a grating of the XUV monochromator.

The Artemis Materials Science end-station is designed for time-

Figure 5.10: HHG spectrum generated

with 1 mJ of 800nm radiation in argon,

obtained using the monochromator.

[et al., 2009]

and angle-resolved photoemission spectroscopy. The end-station is

a UHV chamber, which pumps to <2x10−10
mbar, equipped with

a hemispherical electron analyser (SPECS Phoibos 100) and two-

dimensional detector for energy- and angle-resolved measurements

with an energy resolution of ∼5 meV and an angular resolution of

<1 degree. A liquid-helium-cooled, five-axis manipulator enables the

sample to be cooled to 14 K or resistively heated to 1000 K.




