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Introduction

Motivation

Atomic Force Microscopy (AFM) [1]] is perhaps the most significant
member of the scanning probe microscopes family and, because of its ca-
pability of working in air and liquid environments with virtually no lim-
itations on imaging conditions and types of samples, it is definitely one
of the most widely used. It has become an indispensable tool to measure
mechanical properties at the nanoscale in various research contexts.

Scanning probes used in AFM are micromechanical oscillators (typi-
cally cantilevers) and the theory of AFM dynamics is based on the analy-
sis of the oscillating modes of beam resonators or the simpler spring-mass
model [2,3]. Cantilevers can be driven by the thermal excitation [4-8]
and/or an external driver [2},3]. Usually cantilevers are driven near res-
onances corresponding to flexural eigenmodes that can be described as
damped harmonic oscillators [9]. Advanced techniques consider mul-
tifrequency excitation [10,/11] or band excitation [12,13]] to broaden the
measurable events in tip-sample interactions, thus expanding the variety
of sample properties that can be accessed.

Multifrequency methods imply excitation and/or detection of several
frequencies of the cantilever oscillations and concern the associated non-
linear cantilever dynamics [[10}14-25]. Such excitation/detection schemes
provide higher resolution and sensitivity to materials properties such as
the elastic constants and the sample chemical environment with lateral
resolution in the nanometer range. In order to measure these parameters,
information on peak force of interaction, energy dissipation and contact

ix



dynamics is required. Techniques to measure the parameters of the can-
tilever in the stationary regime are well established [26,27]. In dynamics
methods the external driver (thermal noise, piezoelectric driver, etc.) ex-
cites the cantilever and a number of techniques have been implemented
to gain information from the tip-sample interactions, but usually the in-
teraction of the tip with the surface is revealed by the modification of the
average value of the amplitude, frequency or phase shift over many os-
cillation cycles [28,129]. Reconstruction of the complete evolution of the
interaction force between the tip and the sample surface during a single
interaction event is not even considered [2,,3].

As an alternative to these well established techniques and to push fur-
ther the AFM possibilities, it is important to examine the possibility of an-
alyzing single-event or impulsive interactions. This opens the possibility
to capture the information conveyed by the sensing tip in a single inter-
action, in contrast to the cycle average used in many dynamic techniques.
The single-event interactions are basically of the impact kind, with the si-
multaneous excitation of many cantilever eigenmodes and/or harmonics.
The averaging techniques provide superior sensibility, allowing to probe
the details of force interactions down to the molecular level [2,28,30,31],
but to study single-event interactions it is mandatory to provide analysis
techniques that are able to characterize all excited cantilever oscillation
modes at once without averaging. The temporal evolution of the ampli-
tude, phase and frequency during few oscillation cycles of the cantilever
provides information that cannot be obtained with standard methods. In
the present thesis a data analysis method allowing to retrieve these quan-
tities during an impulsive cantilever excitation is proposed.

This thesis concentrates on the dynamics of the flexural modes of the
thermally driven cantilever in air when its tip is excited by a single impact
on the sample surface. The signal analysis is based on the combination of
wavelet and Fourier transforms that can be applied to a broad class of
AFM impulsive measurements. To exemplify the method, a short time in-
terval around the jump-to-contact (JTC) transition in ambient conditions
is investigated, with the aim to characterize the transient excitation of the
cantilever eigenmodes before and after the impact. The experimental evi-
dences that high-order flexural modes are excited in air upon a single im-
pact tip-sample interaction induced by the JTC transition are presented.
The way to retrieve information about the instantaneous total force act-
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ing on the cantilever tip, contact dynamics and energy dissipation at all
frequencies simultaneously, without averaging or interruption, is devel-
oped. The exploration of these transient conditions of the cantilever is not
possible with dynamic techniques based on the resonant driving or using
Fourier transform analysis alone.

The analysis presented in this work is useful to deal with non-
repeatable experiments and to determine the exact single interaction dy-
namics in terms of the full cantilever spectral excitations, features that are
not normally considered in dynamical AFM techniques.

Thesis overview

The thesis consists of two Parts, for a total of five Chapters. Part I is
constituted of Chapters 1 and 2 and is dedicated to introductory remarks
about the development of the techniques and the methods of analysis.
Part II is composed of Chapters 3, 4 and 5 and is devoted to the experi-
mental results. These chapters are adapted version of the articles [32-34]
which have been published before in various scientific journals. The pre-
viously published results have been modified to maintain the consistency
in style and structure.

¢ Chapter 1: Emergence of multifrequency Atomic Force Microscopy.
In this chapter a brief review of the recent developments of dynamic
atomic force microscopy is presented.

¢ Chapter 2: Data analysis in Atomic Force Microscopy by Fourier
and wavelet transforms. This chapter is devoted to the description
of the methods of data analysis. The Fourier transform (FT) and the
wavelet transform (WT) analysis are introduced. The main draw-
back of FT with comparison to WT in studying transitory regimes
(signals with a frequency spectrum rapidly changing during the
time) is discussed.

¢ Chapter 3: Experiment. In this chapter the experimental set-up,
samples and experimental conditions are described.

¢ Chapter 4: Complex eigenmodes dynamics of the interacting can-
tilever resolved by wavelet transform. In this chapter the cantilever
dynamics in time and frequency is described. It is shown that WT
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allows characterizing the instantaneous time-frequency response of
the cantilever parameters during the tip-sample interaction. As an
example, the force spectroscopy curve of the thermally driven can-
tilever in ambient conditions as it approaches the sample surface
is analyzed. The measure of the instantaneous cantilever frequency
shift carries information about the interaction of the tip with the sur-
face forces. The response of the cantilever is revealed starting from
the very beginning of the tip interaction with the surface across the
jump-to-contact transition and beyond. At the moment of the jump-
to-contact the excitation of the higher flexural modes is revealed.
The analysis for different types of materials is presented and the
advantages of wavelet transform in comparison with the Fourier
transform are discussed. This chapter is the adapted version of a
work submitted for publication [32].

Chapter 5: Wavelet transform analysis of single-impact cantilever
dynamics. This chapter is dedicated to demonstrate that the infor-
mation already present in a standard force curve can be exploited to
reconstruct the tip trajectory immediately after the jump-to-contact
impact and to access the dissipated energy per cycle in each mode.
The tip trajectory reconstruction naturally stems from the wavelet
analysis and is not the result of the fitting procedure. The instan-
taneous displacement, velocity, acceleration and total force acting
on the cantilever tip during the single impact are reconstructed.
This chapter is the adapted version of the previously published ar-
ticles [33,34].
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Introductory remarks






CHAPTER 1

Emergence of multifrequency Atomic Force
Microscopy

1.1 Dynamic Atomic Force Microscopy

Since its invention [[1] AFM is considered as a key instrument in ma-
terial science and plays an important role in the development of nan-
otechnology. In its first operating mode, the static mode, the deflection
of a cantilever is measured during the scanning across the sample sur-
face while the cantilever tip stays in the mechanical contact with the sur-
face [26)27]. The static mode has been superseded by dynamic AFM meth-
ods [28,29,35-38].

In dynamic AFM the cantilever is excited at its first resonant eigen-
mode (or very close to it) while scanning the sample surface. The exci-
tation is performed in the vertical direction, so the flexural mode is ex-
cited. Three dynamic AFM methods have been implemented: amplitude
modulation AFM (AM-AFM) [2,3,35], frequency modulation AFM (FM-
AFM) [28,38,39]] and phase modulation AFM (PM-AFM) [37,38,40]. They
can be distinguished according to the cantilever excitation and force de-
tection methods, or in other words, according to the parameter that is
used to maintain the feedback loop [28,38].

With respect to static (contact) AFM mode, dynamic methods offer
important advantages. First, soft materials can be imaged without dam-
age, since dynamic techniques operate at smaller forces. Second, dynamic
AFM has high spatial resolution: atomic resolution has been demon-
strated in liquids and vacuum [41}42]. Third, in dynamic AFM the tip-
sample interactions may be sensed not only by the cantilever deflection
but by several parameters: oscillation amplitude, frequency or phase
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shift. All these data may be acquired simultaneously to characterize dif-
ferent material properties at the nanoscale.

The invention of dynamic AFM methods stimulated an intense appli-
cation of AFM in biology and medicine and allowed to study a variety
of soft materials, such as polymers, cells, proteins and DNA [43-45] with
high resolution in different environments [37,42,46,47] that led to a re-
naissance in nanomechanics.

1.2 Multifrequency Atomic Force Microscopy

The goal of any dynamic AFM experiment is to gain information
about the properties of the sample surface encoded in the dynamics of
the cantilever. Conventional dynamic atomic force microscopy methods
(see section[L.T) consider the excitation and detection of the first resonance
frequency of the cantilever. However, the dynamic of the cantilever could
be highly nonlinear and characterized by the presence of higher harmon-
ics and eigenmodes in the recorded signal as an integral part of the can-
tilever motion. In conventional dynamic AFM information contained in
the higher frequency components is irrevocably lost.

This led to the invention of the multifrequency excitation and detec-
tion schemes [10,12,(14-16,21}44,48-52]]. Multifrequency atomic force mi-
croscopy implies the excitation and/or detection of several frequencies of
the cantilever oscillations [10]. Such frequencies are associated with ei-
ther the higher harmonics of the oscillation frequency or the eigenmodes
of the cantilever.

Multifrequency excitation/detection methods are particularly de-
signed to gain the information produced by the nonlinear regions of the
tip-sample interaction force [10]. They provide spatial resolution and sen-
sitivity higher than those of the conventional dynamic techniques. At the
present time, multifrequency AFM has already offered a number of ap-
plications in biology and medicine including the mapping of the protein
flexibility and ion diffusion, imaging of the subsurfaces of biological spec-
imens and investigation of the energy storage [18,20,53-55].

1.2.1 Theory of Multifrequency Atomic Force Microscopy

In conventional dynamic AFM methods the excitation and detection
of the cantilever oscillations are performed at a single frequency. While



the tip is interacting with the surface, higher frequency components in the
cantilever dynamics arise caused by the nonlinearities in the interaction
force. These components carry information about the sample properties.
The existence of these additional components in the detected signal has
been known for several years but their role in the cantilever dynamic, spa-
tial resolution and sensitivity to material properties was not appreciated.

The oscillations of the non-interacting cantilever are purely sinusoidal:
Acos(wt), where w is the driving frequency and A is the initial ampli-
tude of the oscillations. The contribution of the components that con-
tains higher harmonics in the cantilever motion can be described as
>0 | an cos(nwt + ¢r,) , where ay, is the amplitude (note that it decreases
as 1/n?) and ¢, is the phase shift of the n-harmonic, n is an integer num-
ber.

Worth to notice, the higher harmonics should be distinguished from
the higher modes of the cantilever. The higher harmonics are consecutive
integer multiples of the fundamental cantilever resonance. The higher
eigenfrequencies of the oscillating beam, however, do not form a series
of consecutive integer multiples [4]. As an example, for rectangular can-
tilever the frequency of the second eigenmode (6.27f) is close to the sixth
harmonic (6 f). The values of the frequencies of the higher harmonics are
close to that of the flexural eigenmodes of the cantilever. This leads to
the fact that the higher harmonics act as driving forces and excite the os-
cillations of the higher eigenmodes of the cantilever. The higher modes
contribute to the motion of the cantilever as ) ;2 b; cos(w;t + 1;) , where
b; is the amplitude and 1); is the phase shift of the i-eigenmode, i is an
integer number [11].

Usually the higher frequency components were observed when large
tip-surface forces were acting and large oscillation amplitudes were ap-
plied. The amplitude of these components are few orders of magnitude
smaller than those of the fundamental frequency [11}56,57]]. In these cir-
cumstances, to detect those components the signal-to-noise ratio need to
be increased. Last but not least to decode the information from the fre-
quency components in terms of sample properties an appropriate theory
should be developed.

Some approaches of multifrequency AFM are reported below.



1.2.2 Higher-harmonics and higher-modes Atomic Force Microscopy

To enhance the sensitivity to the tip-sample interactions, the response
of the higher harmonics [18,/19,53,58,59]] or the higher modes [14(18}54,
60-62]] of the cantilever need to be considered.

When the tip of the excited cantilever comes in close vicinity of the
sample surface it starts experiencing distortions because of forces acting
on the tip and this leads to the excitation of higher harmonics [10}|63}|64].
Such distortions modify both the amplitude and phase of the oscillating
cantilever. Thus the frequency spectrum of the higher harmonics con-
tains detailed information on the nonlinearities of the tip-sample interac-
tion forces [25}59,65,66]. In general, the higher harmonics provide en-
hanced lateral resolution due to the fact that the frequency shift due to
the tip-sample interaction is amplified by a factor of n for the n-th har-
monic [59,67]. The higher harmonics amplitudes are not influenced by
the surface topography, but by the borders of patterns where the geom-
etry of the tip-sample contact varies. Because of this, the excited higher
harmonics provide high sensitivity to surface roughness [59]]. In case of
heterogeneous samples the amplitudes of the higher harmonics change
with respect to the mechanical properties of the regions [59]. They can
also be used to probe the elastic properties and dissipative forces [68,69]
and to perform the compositional mapping in air [23]] and liquid environ-
ments [17}[19,[70,71].

The eigenmodes of the cantilever are orthogonal to each other when
the nonlinear tip-sample forces are absent. It means that the eigenmodes
dynamics are independent [64]. When the tip is close to the surface and is
influenced by the nonlinear surface interaction forces, higher harmonics
are excited. These higher harmonics are able to excite the higher modes
of the cantilever that are close to the integer multiples of the fundamen-
tal mode (see section [1.2.I). This nonlinear modal interaction is called
internal resonance [20}58,59,64,72,73]. The variations in the oscillating
parameters of the higher eigenmodes are very sensitive to changes in the
tip-sample interaction forces, consequently increasing the sensitivity to
the mechanical [14}24, 51], magnetic [53,74,|75] or electric tip-sample in-
teractions [49}[76].



1.2.3 Band excitation Atomic Force Microscopy

Understanding of the energy transformation and dissipation mech-
anisms in the nonlinear cantilever dynamic is an important task in the
field of AFM. At the macroscale it is possible to estimate the energy dis-
sipation in materials by means of direct measurements. The extension of
these measurements at the nanoscale is a challenge. AFM methods are es-
tablished to measure the surface topography and forces at the nanoscale,
and it also allows studying the local dissipation processes at the same
level [12,29]77,78]]. In these cases, the probe is considered as a sensor for
the energy dissipation. To get information about the energy dissipation
due to the tip-sample interaction the dynamic of the oscillating cantilever
need to be analyzed by recording variations of the amplitude and phase
over a band of frequencies throughout the resonance.

In conventional dynamic AFM the cantilever excitation takes place at
a single frequency, instead in BE method [10,12,13,55] an adaptive, digi-
tally synthesized signal is used to drive the cantilever over a broad band
of frequencies. The frequency region is selected to cover only the Fourier
space that contains information of interest and usually the center of the
frequency band coincides with the resonance frequency of the cantilever.
The amplitude and phase content are established in advance in the fre-
quency band. The response of the cantilever to the band excitation sig-
nal is acquired by a high speed data acquisition method during the scan-
ning process. The stored data is Fourier transformed and the amplitude-
frequency and phase-frequency curves are filed in multidimensional data
array for ensuing analysis. This allows to collect the full spectral response
in significantly reduced time [12,55].

The transfer function (full frequency response at each point) of the sys-
tem within the defined band of frequencies is obtained by the ratio of the
Fourier transform of the response and driving signals. Thus in BE the can-
tilever driving and response signals are collected over a frequency band
simultaneously (parallel detection) and these data provide the essential
parameters of the tip-sample interaction.

BE method can be applied to AFM working in ambient air and liquid
providing direct and rapid measurements of the local energy dissipation
processes at the nanoscale. This opens a way to understand the atomistic
mechanism of dissipation and to explain relationships between the en-



ergy dissipation and the material structure. The method has been already
successfully applied to study the electromechanical coupling in biological
systems and to examine the ion diffusion in Lithium-ion batteries at the
nanoscale [10}/55].

1.2.4 Thermal excitation Atomic Force Microscopy

The thermal fluctuations of the cantilever due to the Brownian motion
are referred to as thermal or mechanical noise [4}7,8,76/79,80]. The ther-
mal vibrations result in positional fluctuations of the cantilever and are a
fundamental and unavoidable source of noise in AFM that set the lower
resolution limit [4,[7,81-83].

The Brownian motion of the cantilever placed in ambient air far from
the surface and subjected to the thermal excitation is described by the
Langevin equation [9,84,85|

mz(t) = —yz(t) — koz(t) + R(t) (1.1)

where m is the cantilever effective mass, z is the vertical coordinate (dis-
placement), v is the damping coefficient, kg is the static spring constant
and the dot - is the temporal derivative. The force acting on the cantilever
is a sum of the drag force according to the Stokes’ law —vp2(t), restor-
ing force according to the Hooke’s law —k(z(t) and the thermal excitation
random force R(t).

The force R(t) has a Gaussian probability distribution, hence the cor-
relation function is defined by the Langevin hypothesis [86,87] as

< R)R(t') >= 2vkpTs(t — t) (1.2)

where kp is the Boltzmann constant, 7" is the absolute temperature and
d(t — t') is the Dirac delta function. The delta function form of the cor-
relations specifies that the driving force is uncorrelated in time, thus this
stochastic force does not depend on frequency. The thermal noise is a
white noise: discrete signal composed from a series uncorrelated random
variables with zero average, finite variance and flat power spectral den-
sity (PSD).
Solving the equation[I.1]in frequency domain gives

(—mw? + iyow + ko) z(w) = R(w) (1.3)



where w is the resonant angular frequency of the oscillator, z(w) is the
PSD of the fluctuations and R(w) is the PSD of the thermal force.

The thermal excitation force has a constant driving strength for the
entire frequency range, thus the influence of the thermal noise depends
on the system transfer function [87-90] G(w), that is defined as

(1.4)

describing the relation of the response of the system to the driving force.
From equations|[1.3|and [T.4] the transfer function becomes

2

wt L w
G(w) =ko (1 - w—% + ZWOQO) (1.5)

where wg = +/ko/m is the eigenfrequency and Q¢ = mwy/ is the quality
factor of the cantilever.

From equation the connection between the force R(¢) and the
damping coefficient 7 occurs. This is known as Einstein relation [91]]. It
states that the drag and fluctuating forces have the same origin and cannot
be treated independently. Note that the nature of damping is not consid-
ered in the analysis since it does not essentially modify the response of
the flexural modes [92].

The thermal noise of the free cantilever can be calculated through the
fluctuation—dissipation theorem [9,82,83,87,93-97] that relates the ther-
mal fluctuation power spectral density S. to the transfer function G and
the temperature of the system T’

5.w) = - 2Ly (G(lw)> (16)

where & denotes the imaginary part of the susceptibility 1/G(w).
The positional PSD of the cantilever from equations [1.5] and [1.6] be-

comes

_ 2kpT 1/Qo

S, (w) =
(w) kowo(l—%g)hr(ﬁ)?

(1.7)

From equation stems that the noise spectrum has the form of a
Lorentzian.



10

The mean square displacement of the cantilever due to the thermal
motion < 22 > can be determined by integrating PSD S, (w) from equa-
tion[1.7] Using the Parseval relation [83,(97,98] yields

T
<2>= / S.( iz = L (1.8)
ko

The same relation can be obtained by using the equipartition theorem
that connects the temperature of the system and the average potential and
kinetic energies [87,99,100]. The equipartition theorem states that when
the system is in thermal equilibrium, each degree of freedom contributes
an average energy kg71'/2 [35}88,[101]. Each eigenmode of the cantilever
is a mechanical degree of freedom. Thus the potential energy of the can-
tilever [88] is expressed as

1 1
20<Z> 2B

kgT

2 B

<z >=——
z "

The mean square displacement of the cantilever given by equation|1.§|
is the actual physical displacement < 2? >, while the measured or virtual
physical displacement < z*?
performed with the optical beam detection technique so the slope of the
cantilever rather than the actual displacement is measured [4,86,92]. Thus
the value of the measured physical displacement needs to be corrected.
For the free rectangular cantilever the virtual mean deflection is defined
as < z*2 >= 4/3 < 22 > and in the case of the pinned cantilever the
virtual mean displacement becomes < 22 >=1/3 < 22 > [4]. The real

> is different since the measurements are

situation lies between these two cases and according to the ratio between
the sample and cantilever stiffnesses, the free or the pinned case is more
probable [4,[102].

Worth to notice that the cantilever in AFM is not a simple harmonic
oscillator but has a number of eigenmodes with different eigenfrequencies
w;, quality factors @;, modal stiffnesses k;, optical detection sensitivities
o; and damping coefficients 7;, where i is the mode number. However,
since the thermal fluctuations in different modes are uncorrelated [4,92],
the preceding calculations can be applied to the higher eigenmodes [4,
88], thus allowing independent determination of the modal parameters
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[103]. It is particularly useful for the modal stiffness calculations since it
is a precondition for the quantitative interpretation of the spectroscopy
results [[88]/104-106].

The most common application of the thermally excited AFM is the
non-destructive fast calibration of the spring constant of the cantilever
[4,7,86,103,107-111]. However, using the thermal excitation is possible to
obtain information about the conservative and dissipative tip-sample in-
teraction or interaction potentials [6,112-114]. It has been already demon-
strated that by using this method it is possible to investigate the viscos-
ity and the density of the environments, electrostatic double-layer forces
[115], viscoelastic properties of compliant samples [5,(116-119] and the
local elasticity of hard surfaces [7].

1.3 Conclusions

AFM evolved from a topographical technique into a more refined tool
allowing to explore the tip-sample interaction forces by studying the can-
tilever dynamics. Such evolution was stimulated by different reasons: the
necessity to achieve lower operation forces and to improve the spatial res-
olution when soft samples are investigated and the need to perform rapid
quantitative measurements of the surface properties.

Recently the dynamic AFM family has been enlarged by incorporating
the multifrequency excitation and detection modes, where the response is
composed of a sum of responses from every excited frequency and hence
new characterization channels are available.






CHAPTER 2

Data analysis in Atomic Force Microscopy by Fourier
and wavelet transforms

2.1 Introduction

In the present work force spectroscopy measurements in the thermally
driven regime (i.e.without external excitation of the cantilever) are per-
formed. In such experiments the jump-to-contact transition (mechanical
impact composed of one or few oscillations of the cantilever tip) has been
used as an example of the impulsive tip-sample interaction to prove the
validity of the few cycles regime. The jump-to-contact transition occurs
when the surface force gradients exceed the elastic constant of the can-
tilever [120]. The required acquisition time for the measurements is just
few milliseconds.

The impulsive tip-sample interactions are investigated from one-shot
measurement and averaging is not used. This is especially important in
experiments where the sample could be permanently modified or dam-
aged by the tip interaction. The instantaneous processes occurring while
the cantilever interacts with the sample carry a wealth of information
about the dynamic of the cantilever.

To retrieve information from such short single-event interaction a
method of analysis which is able to follow the instantaneous changing
of the rapid varying signal parameters, analyze the spectroscopy curve
through the JTC transition without the interruption and perform the si-
multaneous analysis of all the cantilever frequencies within the band-
width of the detection system is required.

13
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2.2 Fourier transform

The aim of the data analysis is to explore the main characteristics of the
signal by a signal transformation. A way of analyzing the detected can-
tilever signals in AFM experiments is to use the Fourier transform (FT),
defined as [121]:

400
Flw) = / F(t)e—Ttas
—00

where f(t) is the temporal signal, w is the angular frequency and F'(w) is
the Fourier coefficients. FT projects the recorded signal of the cantilever
f(t) onto a base of complex exponentials at all frequencies. In this rep-
resentation the eigenmodes of the cantilever appear as resonance peaks
in the FT spectrum. FT may be considered as a mathematical technique
to transform the way of seeing the signal from the time to the frequency
domain with the highest possible spectral resolution.

For stationary systems, where the signal properties over time do not
change, the FT spectrum is easily interpreted. However, in cases where
the systems change their physical properties and hence their character-
istic spectrum in time, FT shows only the spectrum integrated over the
acquisition time. As a consequence the modifications of the temporal sig-
nal are not directly correlated with the frequency features of the spectrum
and impossible to point out the origin of a particular spectral feature in
time.

Traces collected in AFM measurements usually contain non-stationary
characteristics such as drifts, trends, rapid changes. For AFM these char-
acteristics are significant parts of the signal but FT is often not able to fully
display them.

For such non-stationary signals the method that combines the time
and frequency domain analysis and hence shows the signal evolution in
both time and frequency is needed. The windowed FT belongs to the fam-
ily of techniques with such temporal and spectral resolution and it has
been one of the first methods devised to operate in the time-frequency
plane. However, windowed FT has the drawback of the fixed time-
frequency resolution [121]. After the choice of a window function, the
size of the time-frequency window is fixed, implying that the time and
frequency resolution are the same at all times and frequencies.
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2.3 Wavelet transform

2.3.1 Continuous wavelet transform

The wavelet transform (WT) is a mathematical approach that gives the
time—frequency representation of a signal [121-123]. WT is an improved
alternative to the windowed FT. This analysis provides the representation
of the energy associated to the signal at specific time and frequency (i.e.
shows the correlation between the spectral features and the temporal evo-
lution of the signal) and gives the possibility to adjust the time-frequency
resolution. WT may be considered as the time-frequency analysis method
with an adjustable window.

Wavelet is a waveform function ¥(¢) with limited support in time and

/m W(t)dt = 0

—00

zero average [121]

The zero average indicates that ¥(¢) is an oscillating function. Sinu-
soids, which are the basis of FT, in opposition to the basis of wavelets, are
not limited: they continuously spread from minus to plus infinity. Sinu-
soids are periodic and smooth; wavelets are not periodic and may have
discontinuous derivatives. Obviously, the signals with rapid changes are
analyzed better with the non-periodic wavelets.

The WT is defined as the projection of the time signal f(¢) onto a set of
functions ¥, 4(t) obtained from the translations and dilations of the orig-
inal wavelet ¥(t). The function ¥(¢) is called a mother wavelet, functions
U, 4(t) are called daughter wavelets and are determined as

W, at) = Jlg (t . d)

where s is the positive adimensional scale parameter and d is the delay

[121]. The scale parameter stretches or compresses the mother wavelet
and is connected to the frequency (low scale gives compressed wavelet
and thus it can better analyze rapidly changing features what means high
frequency components of a signal and vice versa). The delay parameter
shifts the wavelet along the time axis and is connected to the time. Both
parameters vary continuously.

The projection of the signal over scaled and delayed version of the
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mother wavelet is the WT of the signal [121]]

Wiy = [ rouana= [ oo (S0 a

wavelet coefficients W/ (s, d) are functions of scale and delay, and since

these parameters vary continuously, this transform is called continuous
wavelet transform (CWT). Wavelet coefficients W/ (s,d) measure a rel-
ative similarity between the signal and the wavelet function at specific
delay and scale and the higher coefficient denotes the higher similarity.

The square modulus of the wavelet coefficients |IW/ (s, d)|? is called
scalogram and depicts the local energy density of the signal at the given
scale and delay. CWT converts one dimensional temporal signal into two
dimensional time-frequency representation [121].

CWT is a windowing technique allowing to use the stretched wavelets
where necessary to capture information from the low frequency compo-
nents of the signal, and the compressed wavelets for the high frequency
parts. Worth to notice, the basis of CWT is not unique and should be
chosen according to the characteristics of the signal.

Since CWT operates in two-dimensional space, both time and fre-
quency resolutions have to be considered and such resolutions depend on
the wavelet choice. Time and frequency resolutions cannot be improved
simultaneously: when the frequency resolution increases, the time resolu-
tion decreases, as a consequence of the time-frequency uncertainty prin-
ciple [124].

In this work Gabor mother wavelet is used because it has the
best time-frequency resolution [125,|126]. Gabor wavelet is a complex
frequency-modulated Gaussian function [121,/126]

B(t) = < i t>
= exp| ——= +1
Vo2 202 "

where o and 7 are parameters which control the time spread and carrier
frequency of the wavelet and multiplied together constitute a dimension-
less parameter called the Gabor shaping factor

Gs=on

The G parameter determines the envelope of the mother wavelet and
the time-frequency resolution. Gabor wavelet with the shaping factor
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Gs = 5 (known as the Morlet wavelet) [121] is used in the following analy-
sis. Such choice of parameters provides the balance in the time-frequency
resolution and is generally suitable for various types of signals [126].

To exemplify the advantages of wavelet transform in comparison with
Fourier transform, the analysis of chirp signals [127] with frequencies
changing linearly from 2 kHz to 10 kHz in time intervals of 10 ms is shown

(figure2.T).
H e * °
I ‘ m s > 7 ¢
\ i) 1

:

8 10 1 08 06 04 02 0 0 2 4 6 8 10
Power (a.u.) Time (ms)

L2

Amplitude (a.u.)
Frequency (kHz)

&
o

1/4

1/8

0 2 4 6 8 10

Time (ms)

s 12

W\H\
H
il

IAmpIItude (a.u.)
Frequency (kHz)
(=]
Frequency (kHz)

1/4

1/8

12

Amplitude (a.u
o
P S

Frequency (kHz)
(=]
o
Frequency (kHz)

w

1/4

S | _

“0 2 4 ) 8 10 1 08 06 04 02 0 o 2 4 6 8 10
Time (ms) Power (a.u.) Time (ms)

LX)
N

1/8

Figure 2.1: (a) Up-chirp signal swept from 2 to 10 kHz. (d) Down-chirp signal
swept from 10 to 2 kHz. (g) Sum of the chirps signal shown in (a) and (d). (b,e/h)
Fourier transforms of the signals shown in (a,d,g), respectively. (cf,i) Wavelet
transforms of the signals shown in (a,d,g), respectively. Wavelet coefficients are
coded in a color-scale. Both colors and frequencies are represented in octaves,
i.e. base 2 logarithmic scales.

Figures[2.1p,d represent the up-chirp and down-chirp signals in time
domain. Figures[2.Tp,e are FTs of the signals and as can be seen they are
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identical. This is due to the fact that the spectral components of the sig-
nals are equal, so by looking on FT power spectra it is impossible to dis-
tinguish up-chirp and down-chirp signals. Instead, the WT magnitudes
of the same signals (figures ,f) are different and it is easy to relate them
to the signals.

When only one chirp signal in the time domain is present, it is possible
to tell which one is the up-chirp and which one is the down-chirp signal
(figures 2.Tp,d). The signal from the figure is a sum of the signals
in figures 2.1p,d. From the time domain representation it is difficult to
conclude about the dynamics of the signal as well as by looking at the FT
power spectrum (figure ). Instead, the WT of the signal in figure
shows the presence of two chirps that compose the signal.

This illustrates the advantages of WT in comparison with FT analysis
when short and rapidly varying signals need to be investigated.

2.3.2 Cross-correlation wavelet transform

To get the full spectral response of the signal the phase analysis need
to be performed simultaneously with the amplitude analysis. The phase
analysis of a non-periodic motion is based on the cross-wavelet transform
(XWT) and the concept of “phase carpet”.

The cross-wavelet spectrum of two time signals h(t) and g¢(t) is de-
fined as

Whi(s,d) = Wh(s,d)W9*(s,d)

where W" (s, d) and W9(s, d) are the wavelet transforms of the signals and
* denotes the complex conjugate. The wavelet coefficients are complex
numbers that can be represented as

Wh(s,d) = [W"(s, d)] exp(®" (s, d))

where |W"(s,d)| is the wavelet amplitude and ®"(s,d) is the absolute
phase. Both power and phase pertain to the “point” (s,d) in the frequency-
time plane. Regions in the time-frequency space where the time series
concentrate power in the same spectral range and at the same time have
high cross-wavelet amplitudes, [W"9(s,d)|, for short, they have a high
common energy.
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The relative phase difference between the two time series at specified
time-frequency point (s,d) can be calculated as

®"9(s, d) = ®"(s,d) — ®9(s,d) = tan~" <g(< s_ Wh(s,d) >>>

R(< s~ 1Wha(s,d) >)

where ®"(s, d) is the phase of h, ®9(s, d) is the phase of g, <> represents
the smoothing operator, & and S are the real and imaginary parts, re-
spectively. This definition, as in optical coherence [128], depends on the
smoothing operator. A discussion on this technical aspect can be found
in [129}[130].

Impulsive signal is composed of a superposition of a number of
Fourier components oscillating at different frequencies. The phases as-
sociated with these oscillating components could be measured if a refer-
ence signal at the same frequency is available for each one of them, i.e.
if the impulsive signal could be compared with the reference constituted
by monochromatic components with a known phase (the “phase carpet”
reference).

The sinc “sinus  cardinalis”)  function, expressed  as
Asin((t — to)/a)/((t — to)/a), where a is the shape parameter that
controls the width of the function centered at time ¢y and A is the peak
amplitude, constitutes good phase reference function. Taking as a mea-
sure of the time width At the distance between the first zero-crossings at
either side of the maximum At = 2ra is obtained.

The sinc function can be expressed as a sum of cosines that have a
maximum in ¢ = ¢y and oscillation frequencies in the interval between
zero and maximal cut-off frequency f,, = 1/a. According to the indeter-
mination principle, the wider the frequency span, the narrower the time
extension of the sinc function. Each one of the cosines that build up the
sinc function is used as the phase reference. In particular, the sinc function
represents the phase reference around the time ¢, where the amplitude of
the signal is different from zero. To show an example of this analysis, a
signal composed by the sum of three cosines oscillating at different fre-
quencies, fi = 1/T, fo = 2f1, f3 = 4f1 (T is the oscillation period), with
unit amplitude and zero phase at time zero is considered.

Figure shows the signal plus the sinc function centered at time
zero. In figure the wavelet cross-correlation analysis is shown. The
three peaks in the cross-correlation spectra correspond to locations in the
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Figure 2.2: (Adapted from [33]]) The signal (continuous green line, panels a and
c) is composed by the superposition of three cosines with zero initial phase and
frequencies f1 = 1/T, fo = 2f1, f3 = 4f1, where T is the oscillation period
and f; = 5 kHz. The sinc function is centered at time zero (panel a) and at
7/4T = 350us (panel c), with amplitude A=10 and shape parameter a=3.33 ps.
In panels b and d the wavelet cross-correlations between the signal and the sinc
are shown. The amplitude in the cross-correlations is coded in color scale and
represents a measure of the energy concentration in the same spectral range and
at the same time by the correlated functions. The relative phase is represented by
the slope of the arrows (see legend in panel b). The white arrows highlight the
phase-shift at the maximum cross-correlation amplitude at the cosines frequen-
cies. The areas where edge artifacts may distort the wavelet representation are
delimited by a lighter shade.

time-frequency plane where both the signal and the reference function
have high common spectral energy. The peaks frequencies are those of
the cosines forming the signal, their temporal alignments correspond to
the location of the sinc function. Their temporal and frequency width are
limited by the time resolution of the analyzing wavelets [125,131]. The
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slope of the arrows superposed on the cross-correlation spectra measures
the local phase difference between the signal and the reference sinc. In this
case the sinc is centered around zero and each Fourier components in the
signal is in phase with the cosines forming the sinc function, as is verified
by looking at the local phase in the points of maximum correlation energy
(arrows pointing right). Moving the sinc center alters the phase relations
between the Fourier components forming the signal and those forming
the reference function. Figure shows the signal and the sinc func-
tion centered at time 7/47 and in figure the wavelet cross-correlation
analysis is shown. While the intensity of the three correlation peaks has
not been altered, the phase relations have been modified. Moving the ref-
erence function by 7/47 allows to verify that the phase difference at f3 is
unchanged, at f> is 7 and at f; is —7/2.

The wavelet transforms may show inaccurate representation of signal
near the edges that delimits its temporal duration, because of the convo-
lution of the wavelet with a sharp discontinuity in the signal. The areas in
the time-frequency plane where edge artifacts may distort the wavelet co-
efficients are delimited by a lighter shade, as in figures[2.2b,d. Note that in
all the wavelet graphics, the frequency axis and the amplitude color scale
are base-2 logarithm scales, representing the axis or color scale values in
octaves.

2.4 Conclusions

It is important to examine the possibility to study the single-event
rapid interactions to stimulate the future developments of the AFM.

The present work is dedicated to the introduction of the wavelet trans-
form as the new tool for the data analysis in dynamic force spectroscopy.
This intuitive and effective method of signal analysis can be used in dif-
ferent multifrequency AFM experiments to push further the processes of
understanding of the cantilever dynamics and thus to lead toward the
design of the next generation of AFM techniques.






Part I1

Experimental results






CHAPTER 3

Experiment

3.1 Experimental set-up, samples and conditions

The experiments consist in acquiring the deflection signal of the ther-
mally driven cantilever while the sample is moved towards the tip at a
constant velocity. During the measurements the tip-sample interaction
forces modify the Brownian motion of the cantilever. The modifications
in the thermal noise spectrum contain information about the interaction
forces and are used to investigate the tip-sample interactions [5,|7]. The
scope is to acquire the signal across the JTC transition and the subsequent
impact, that occurs when the surface force gradients exceed the cantilever
stiffness [2].

The experiments are performed on three different surfaces: a) freshly
cleaved Highly Oriented Pyrolytic Graphite (HOPG) surface, b) Silicon
(Si) surface, c) PolyEthylene Terephthalate (PET) surface. Experiments
are performed in air under ambient conditions (55% relative humidity,
296 K room temperature and atmospheric pressure), with the rectangu-
lar Au-coated silicon cantilever (the plan view dimensions 458 x 42 jim?
have been measured by using an optical microscope). For the rectangular
cantilever the modulus of elasticity can be calculated through the spring
constant and the geometrical parameters of the beam: E = (4kL3)/(ab?).
For the silicon cantilever used in the experiments the Young’s modulus
is E = 160 GPa. This value is in the range of the typical elasticity of
the silicon. The cantilever spring constant £ = 0.14 4= 0.02 N/m is mea-
sured using both Sader [132] and thermal tune [4}{86] methods applied to
the first flexural eigenmode. The inclination of about 15° of the cantilever
with respect to the sample surface has been taken into account [133]] in cal-
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ibrating the spring constant. The rms amplitude of thermal oscillations is
about 2 A at room temperature.

The microscope system is equipped with an isolation box, providing
thermal and acoustic isolation. The system stands on a spring-suspended
platform for shielding from the external mechanical noise. The cantilever
deflections are measured by a standard optical beam deflection system.
Light from the laser diode (A = 600 nm) reflects from the cantilever and
is monitored by the four-section quadrant photodiode [26]. Differential
voltage outputs from the photodiode are collected with the up—-down sec-
tors. The total bandwidth of the beam detection system exceeds 1 M H z.
The scanning system is based on a single piezotube with the maximal
vertical extension range of 2 ym.

The cantilever deflection signal from the photodiode is sampled with
a digitizing oscilloscope and in this experiment traces are recorded at the
sampling frequency of 10 M S/ s.

3.2 Force spectroscopy measurements

The atomic force microscopy is a powerful tool which allows not only
to image the topography of surfaces at high resolution nearly for all types
of samples, but can also provide maps of the local physical, chemical and
mechanical surface properties with quantitative results by measuring dif-
ferent kinds of forces (like van der Waals and Casimir forces, adhesion,
elasticity, capillary, magnetic) [120,134]. Using AFM in such force mea-
surements is commonly known as force spectroscopy, and these curves
are called force curves. This technique has brought a major effect in many
areas of science and now AFM is presented as an essential tool for nano-
technology.

To obtain the force curve, a direct measurement of the tip-sample in-
teraction forces as a function of the distance between the tip and the sam-
ple is performed. To do so, the tip is approached to the sample surface
and the consequent deflection of the cantilever is recorded as a function of
the piezoelectric displacement. This curve shows the cantilever Brownian
motion superimposed on the static deflection of the cantilever. From the
cantilever deflection the force can be measured using Hooke’s law [135].

To convert the output voltage signal from the quadrant photodiode of
the beam deflection method to the cantilever deflection in nm, the inverse
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Figure 3.1: (Adapted from [33]) Deflection of the cantilever as a function of time
during the force curve (constant approach velocity 0.817nm/ms). Time zero is
centered on the jump-to-contact transition, positive times span the contact line.
In the inset a zoom on the relaxation oscillations after the jump-to-contact transi-
tion. The vertical scale is calibrated only for the first flexural mode and does not
apply to the relaxation oscillations.

optical lever sensitivity (InvOLS) (calibration constant with dimension of
nm/V') is needed [47].

The InvOLS has been measured as the inverse slope of the linear con-
tact part of the standard force measurement made on a hard substrate,
when the tip pushes on the surface. In this case the distance moved by
the piezo-scanner is equal to the cantilever deflection, neglecting indenta-
tion. It is important to note that the shape of the first flexural mode very
nearly matches the shape of the bent cantilever when the tip is in contact
with the surface. For this reason the measured InvOLS (250 nm/V') can
be used to calibrate the bending of the first flexural mode only.

A typical force curve [134] obtained during a loading cycle is shown
in figure It is possible to observe the Brownian oscillations of the can-
tilever around the instantaneous equilibrium position while it approaches
the surface at constant velocity. Note two distinctive features, the hor-
izontal line of zero deflection, representing the free not deflected can-
tilever, and the sloped linear contact line. Between them, at a distance
of few nanometers from the surface, the cantilever is subject to a JTC tran-
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sition, an instability caused by the surface forces. The jump-to-contact
transition takes place when the gradient of the surface forces exceeds the
elastic constant of the cantilever. The jump is identified by a sharp down-
ward deflection following the horizontal line of zero deflection. After
the jump-to-contact the tip is in contact with the surface, the cantilever
is statically bent and follows the piezo displacement. The bottom abscissa
in figure 3.1/ shows the time zeroed at the jump-to-contact point so that
negative times refer to the cantilever before the jump-to-contact, positive
times refer to the cantilever after the jump-to-contact. The top abscissa
shows the piezo displacement zeroed at the point of zero-deflection after
the jump-to-contact.

The motion after the JTC transition consists of a sharp acceleration to-
wards the surface and a concomitant impact of the tip with the surface. It
is precisely this single event that is studied in this work, to demonstrate
that enough information can be captured to reconstruct the tip trajectory
on impact. In the inset a magnification of the tip-sample impact, with the
characteristic relaxation oscillations, is shown (figure . Since the mea-
sured InvOLS is used to calibrate the deflection of the first flexural mode
but not the deflection of the higher modes, that have different shapes, the
ordinates in the graph do not relate to the relaxation oscillation that, as
will be shown, are caused by the excitation of the higher modes.



CHAPTER 4

Complex eigenmodes dynamics of the interacting
cantilever resolved by wavelet transform

4.1 Introduction

Traditionally the analysis of temporal traces is performed with the
Fourier transform (see section , which breaks down temporal fluctua-
tions of the cantilever into constituent sinusoids of different frequencies,
i.e. the eigenmodes of the cantilever are displayed in the spectrum as res-
onance peaks. However, the spectral analysis provided by the FT gives
a correct interpretation only in the case of stationary systems (the signal
properties do not change over time). In transforming to the frequency do-
main by FT, time information is hidden (it is difficult or impossible to cor-
relate particular spectral feature to its origination in time) and the Fourier
spectrum displays an average of spectra corresponding to the evolution of
the system during the acquisition time interval. AFM force curves contain
numerous non-stationary or transitory characteristics such as the jump-to
contact transition during the approach curve. These characteristics are
important part of the signal, and Fourier analysis is not suited to show
them.

A powerful and well developed mathematical tool that combines time
and frequency domains is the wavelet analysis (see section 2.3). Previ-
ously, wavelet analysis has been used in atomic force microscopy mainly
to denoise or extract data from images, which is up to now the most im-
portant application of the wavelet transform. However, using the WT
in force spectroscopy allows to represent the temporal evolution of the
spectral content of the oscillating cantilever and measure its frequency
shift due to the interaction with surface force gradients. It is very useful

29
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because the correlation of the spectral features with their temporal dy-
namics could provide a new significant knowledge about the cantilever
behavior across the jump-to-contact transition. Moreover, simultaneous
analysis at all frequencies reduces the acquisition time.

In this chapter, the wavelet transform method is introduced as an ad-
vanced tool for the analysis and characterization of temporal traces ob-
tained during force spectroscopy in the thermal driving regime. The tran-
sient eigenmodes analysis is performed by using the combined Fourier
and continuous wavelet transform (see section approaches with an
acquisition times as short as few milliseconds.

4.2 Transient eigenmodes analysis combining Fourier and
wavelet transforms

The cantilever deflection versus time (figure ) is captured during
the tip approach to the sample surface at constant velocity. Analyzing
the wavelet spectra immediately after the jump-to-contact transition, the
dynamics of the cantilever flexural modes due to the impact is observed.
Interestingly the observed dynamics depends on the surface wettability
and ambient conditions.

Before focusing on the analysis of the cantilever dynamics on various
surfaces, an in-depth description of the cantilever dynamics on the HOPG
surface is described, as representative of the general trend following the
JTC transition.

The analyzed signal (figure ) is a zoomed region around the
tip-sample impact. The signal is caused by the Brownian motion of the
cantilever around the instantaneous equilibrium position, the static de-
flection of the cantilever due to a combination of forces acting on the
tip near the sample surface and the relaxation oscillations after JTC. The
zero of the time scale coincides with the JTC transition, identified by a
sharp downward deflection of the signal curve. Negative times corre-
spond to the free cantilever approaching the surface, positive times to the
cantilever in contact with the surface after the JTC transition. Accord-
ingly, three regions of the signal curve can be distinguished, all under
thermal excitation: a) free cantilever motion, b) instability region where
long-range forces affect the cantilever dynamics and lead to the JTC tran-
sition, c) ensuing contact curve, where the tip is in contact with the surface
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and the bent cantilever is under the action of short-range adhesion forces.
From the signal vs time in figure is inferred that the sharp downward
deflection (of about 5 nm) associated to the JTC transition takes around
10 s and it may be considered as an instantaneous process on the typical
time scales of the cantilever oscillation period. The maximum static load
force is Fj,,y = —0.75 nN and it is negative since an adhesion force is re-
sponsible for the JTC transition, which is opposite to the elastic force of

the cantilever (figure[d.Th).

During the tip interaction with the surface and the successive impact,
the cantilever eigenmodes structure is continuously changing due to the
modification of external forces and boundary conditions. As an exam-
ple, consider the frequency downshift of the first eigenmode due to the
attractive forces just before JTC and the abrupt change in the boundary
conditions just after JTC, from the free cantilever to the cantilever with
the tip pinned at the surface (see figure [4,102]. To refer unambigu-
ously to the cantilever eigenmodes, need to differentiate between “long-
lived eigenmodes” and “excited eigenmodes”. Long-lived eigenmodes
are modes belonging to the free cantilever (before JTC) or to the pinned
cantilever (after JTC). Excited eigenmodes are transient modal structures,
due to the action of the surface forces and the impact forces, occurring in
the time span of the JTC transition.

In figure are shown the FT spectra of the signal represented in fig-
ure[4.1p. Note that since FT is a time invariant operator and is described
as a highly non-stationary process, the FT spectra are an average over a
5 ms time interval and do not convey information on the spectral evolu-
tion in time. Instead, the wavelet time—frequency analysis in figure
follows the evolution of the spectral content of the cantilever deflection
signal and measures the frequency shift caused by the acting forces and
force gradients on the tip during the measurement. It is interesting to note
that in the time interval under consideration, after the JTC transition, the
piezo actuator moves the sample at constant velocity by approximately
5 nm, reducing the static (negative) load from maximum to zero. As seen
in figure [4.1d, the variation of the static load has no effect on the modal
structure of the thermally excited cantilever.

On the WT spectrum in figure are visible at negative times the
thermal oscillations of the first (12.01 kHz) and the second (79.67 kH z)
flexural modes (black-dashed lines). The JTC process is accompanied by
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Figure 4.1: (a) Deflection (force) of the cantilever as a function of time (sample
displacement). (b) Relaxation oscillation of the cantilever. Deflection is given
in arbitrary units (a.u.) because only the deflection of the first flexural mode is
calibrated and not that of higher modes which contribute to the relaxation oscil-
lations. (c) Fourier transforms of the cantilever deflections reported in (b). Black
dotted line: before JTC including the impact zone, time interval from —4 ms to
1 ms. Continuous red line: after JTC including the impact zone, time interval
from —1 ms to 4 ms. (d) Wavelet transform of the cantilever deflections reported
in (b). Wavelet coefficients are coded in a color-scale. Both color-scale and fre-
quencies are represented in octaves, i.e. base 2 logarithmic scales. Time zero
corresponds to the jump-to-contact transition in all frames. Black dashed lines
correspond to flexural long-lived eigenmodes of the free and interacting can-
tilever (numerical values are reported in table £.I). Red dash-dotted lines are
associated with spectral features of the cantilever excited eigenmodes due to the
JTC impact.

the spectral broadening of the first mode in the region from 1 to 34 kH z.
The impact excites for a short time the second (67.92 kH z) and the third
(203.48 kH z) modes of the cantilever (red dash-dotted lines). Moreover,
after the JTC transition, the resonance at frequency a little higher than
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the first flexural mode (16.98 kH z) and the higher resonance at nearly the
same frequency as the second free cantilever mode are identified (black-
dashed lines).

The presence of these resonances is interesting because they cannot
be explained as modes of the pinned cantilever and hint to a complex
interplay between the tip and the surface kept in ambient conditions that
influence the contact dynamics of the cantilever. It is discussed in details
in the next section.

To assign the peaks in the Fourier spectra near the JTC transition (fig-
ure[d.Tk), is taken advantage of the WT. In particular, some of the highest
peaks in the FT spectrum do not correspond to long-lived eigenmodes be-
cause very short non-stationary signal is analyzed and in this time inter-
val much of the signal energy consists in “bumps” next to JTC due to the
excited cantilever modes. Since the FT is not providing the representation
of the temporal evolution of the frequency modifications, it is not easy to
correctly assign the Fourier peaks to excited eigenmodes or to long-lived
eigenmodes on the basis of the FT only. Instead, WT enables to attribute
the origin of the peaks spotted in the FT since their temporal evolution is
unraveled.

4.3 Spring-coupled cantilever dynamics resolved by wavelet
transform

After the JTC transition the tip of the cantilever comes into the con-
tact with the sample surface and surface forces responsible for the tip-
sample interactions come into play. In this case, the cantilever tip can be
described as pinned or spring-coupled to the surface [[102,/136] and appro-
priate boundary conditions must be chosen. The spring-coupled state of
the cantilever occurs if, due to the conditions of the contact, the cantilever
is forced to oscillate either because of the sample surface vibrations or be-
cause the adhesion forces are not able to fully adhere the tip to the surface.
The oscillation amplitudes are small (of the order of 0.1 nm) and the tip-
sample interaction force can be rationalized as a linear spring with elastic
constant k*, where k* is the negative of the derivative of the tip-sample
force relative to the static equilibrium position of the cantilever [27]. From
this point of view, the free cantilever state corresponds to k* = 0 (infinitely
soft spring) and the pinned cantilever to £* = oo (infinitely stiff spring).
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Table 4.1: Frequencies and frequency ratios of the flexural modes measured
from FT spectra for the free cantilever f; and the spring-coupled (interacting)
cantilever f;. Frequency ratios are given in units of the first free flexural eigen-
mode. The theoretical frequency ratios (theo.) [4] for the free and pinned can-
tilever are reported for comparison.

/

Mode | fi | fi/fi| £ |f/Ah|  filA fil fi
i (kHz) (kH~z) (theo. free) | (theo. pinned)
1 12.01 1 1698 | 1.41 1 4.38
2 79.67 | 6.63 | 80.77 | 6.72 6.27 14.21
3 212.01 | 17.65 | 214.71 | 17.87 17.55 29.65

Knowledge of k* allows to calculate the tip-sample force and also get
quantitative information about the elasticity of the “contact area” on the
sample surface. The characteristic equation for this system (it is assumed
that the forces act as a point force on the end of the cantilever) can be
written as [[102]:

cos(k, L) sinh(k, L) — sin(k, L) cosh(k,L)
= (ko L)3k/(3k*)(1 4 cos(k,L) cosh(k,L)) (4.1)

where n is the mode number, &, is the wave number of the flexural mode
n, L is the length and £ is the spring constant of the cantilever. The char-
acteristic equation determines the value of k, L, depending on the value
of k*. The shifted flexural resonance frequencies f  are calculated through
the relation [[102]:

pab

fi = (knL)?/(2nL? ﬁ) (4.2)

where a and b are the width and the thickness of the beam, p is the mass
density of the material of the cantilever, I = ab® /12 is the area moment of
inertia and £ is the modulus of elasticity of the cantilever. As a result, by
measuring the frequency shift after the tip-sample interactions, it is pos-
sible to retrieve the tip-sample interaction spring constant £*. As shown
in figure the flexural eigenfrequencies of the cantilever in contact in-
crease with respect to those of the free cantilever when k* > 0 (repulsive
regime), decrease when k* < 0 (attractive regime). If £* is less than or
of the same order of k it has almost no influence on the higher modes
and affects mostly the first flexural frequency of the cantilever [102]. This
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Figure 4.2: (a) Flexural eigenmodes f; of the spring-coupled cantilever in units of
the first free resonance frequency f; as the function of the tip-sample interaction
constant £* in units of the first free eigenmode elastic constant k. (b) A close up
of the first eigenmode around the measured resonance frequencies. The red line
and marks point out the observed resonance frequencies.

explains why after JTC the measured spectrum is very similar to that of
the free cantilever and the typical spectrum of the pinned cantilever is not
observed.

To measure the frequencies shifted by the tip-sample interaction, con-
sider figure 4.1{where the FT and WT transforms show the signal spectra
in a small regions around the JTC transition. Numerical values for the
frequencies of flexural eigenmodes are reported in table

In figure the resonance frequencies of the spring-coupled can-
tilever are expressed as a function of k£*/k. In the present case the shifted
first flexural mode after JTC corresponds to the ratio k*/k = 0.8 £ 0.2,
where the error takes into account the experiment to experiment repeata-
bility. Note that the value of £* depends very sensitively on the length of
the beam, that should be measured for each cantilever. Using the point-
mass model [2,102]], the contact stiffness can be determined from the shift
in frequency of the first flexural mode after JTC as

K k= f2)ff -1

which yields k*/k = 1 & 0.2 (see table [£.1), in fair agreement with the
beam theory.

In the present experiment the elastic constant £* that characterizes the
tip-sample interaction most probably originates from a superposition of
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the electrostatic forces and capillary forces due to the condensation of at-
mospheric water vapor. Note that in the time span after JTC analyzed in
tigure the cantilever is still under the combined actions of the adhe-
sion forces and the elastic forces of the downward deflected cantilever,
therefore the overall resulting load force is negative.

Besides the measurements of £*, the WT allows also to estimate the
tip sample force gradient k:s responsible of the down shifting of the first
flexural frequency before the JTC transition. Figure shows that in the
time region before JTC the instantaneous frequency of the first flexural
mode is continuously shifting down, a dynamic that cannot be followed
on the FT spectrum. Immediately before the JTC transition the frequency
shift for the first flexural mode is A f; = 3.5kH 2. Each flexural mode is
equivalent to a mass spring system [137]].

The tip-sample interaction force gradient k;; = dF;s/dz, where Fy; is
the tip-sample force and z is the tip-sample distance, is expressed as a
function of the resonant frequency of the first flexural mode [2]

ks = k((f1 — Af1)?/f2 = 1)

Using the observed frequency shift ks = 0.07 N/m. This value is in
agreement with similar measurement reported in the literature [131] and
interestingly is about half the stiffness required to cause the JTC transi-
tion, suggesting that JTC is not entirely due to the surface electrostatical
forces (van der Waals interactions), but requires other adhesion forces as
the capillary condensation forces. At an ambient relative humidity near
50% the Kelvin diameter of the condensed water nanodrops is about 4
nm [138], which is the observed JTC distance in this experiment. This ob-
servation supports the scenario that a liquid bridge between the tip and
the sample is responsible for the JTC transition.

The application of the WT technique requires a signal amplitude ex-
ceeding that of the environmental noise. This is due to the fact that in WT
averaging is absent, as opposed to the FT case. The preceding analysis is
an example of the single measurement with duration of few milliseconds,
from which the WT is able to retrieve data that other techniques lose and
to provide the wealth of information on the system.
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4.4 Describing tip-samples impacts by using wavelet transform

The cantilever response after the JTC transition is influenced by the
type of surface on which the tip impacts. In figure 4.3|are shown the spec-
tral responses of the cantilever for HOPG, Si and PET. Observing the FTs
of the cantilever deflection signal after JTC (figure ,c,e), note, that in
all samples the impact excites two oscillations both at lower frequencies
than the cantilever first free flexural mode (f1). The first is a spectral peak
observed around 8.2 kH z, very sharp and with the high contrast in PET,
more broadened and with less contrast in Si and HOPG. The second is
a broad peak around 1-3 kH z, with the high contrast in Si and PET and
much lower contrast in HOPG. Besides that, a sharp oscillation mode at
frequency higher than f; is present for the HOPG surface only. In all cases
the higher order modes are much less affected by the surface properties
and have a behavior very similar to that described for HOPG in the pre-
ceding section. In addition, the frequency downshifting of the first mode
just before JTC in the various materials (figure ,d,f) can be described
along the lines shown in the preceding section.

To rationalize these findings as a whole, a simple qualitative model
of the interaction is proposed that takes into account the principal fea-
tures deduced from the experiments and well established assumptions
regarding the tip-sample interactions in air [138-140]. The key point is
the observation that an attractive tip-sample interaction, leading to oscil-
lations at frequencies lower than fi, is associated to a negative contact
stiffness. Such situation occurs when the attractive force is of the inverse
n-power law type (van der Waals has n = 2), or in general when the elas-
tic force modulus decreases elongating the spring. This is contrasted with
the Hertz regime, when short-range hardwall-like repulsive forces results
in a positive contact stiffness.

In the experiments two resonances lower than f; are measured, one
around 1-3 kH z and the other at 8.2 kH z. To explain the presence of both
resonances, the presence of a dispersive stiffness is assumed, i.e. neg-
ative linear spring with stiffness depends on excitation frequency. The
mechanism of such dispersive stiffness is most probably provided by a
nanosized water drop around the tip that acts as the frequency-dependent
negative spring, responding with different stiffnesses according to the ex-
citation frequency. The water condensation into drops has twofold action:



38

32 32 8
; 3
16 4
N s ¥ 2
£ 3
g g
5§ * & !
3 =]
g o 3
I R - 1/2
1 {\\ 1/4
05 0.8 0.6 0.4 0.2 0 /8
Power (a.u.)
32 8
c g
16 P 4
N 8 (_’;‘:2‘.\ § 2
T kY
x HIC
1
§ 4 ,___‘_J} ! § 1
@ i@
& —— iz
0 25 i o - 172
('S Y [
Ay
1
1\ ' 1/4
05 E—— : - 1/8
™ 08 0.6 0.4 0.2 0 15 10 -5 O 5 10 15
30 Power (a.u.) 8
e
16 4
%t
N ® 3 N 2
: ® HiE
[
g 4 g 1
(o) O
S Kl >
8 il 8 172
i 2 (____,____/ N
1 \\ 1/4
05 )
1 08 0.6 04 0.2 0 15 10 -5 0 5 10 15 178

Power (a.u.) Time (ms)

Figure 4.3: (a, ¢, e) Fourier transforms of the cantilever deflection for HOPG, Si
and PET, respectively, before (black dashed line) and after JTC (red line). (b, d, f)
Wavelet transforms of the cantilever deflection around the JTC for HOPG, Si and
PET, respectively. Black dashed lines correspond to flexural eigenmodes of the
free cantilever, red dash-dotted lines to the interacting cantilever (numerical val-
ues are reported inf4.T). Time zero corresponds to the JTC transition in all frames.
Wavelet coefficients are coded in a color-scale. Both colors and frequencies are
represented in octaves, i.e. base 2 logarithmic scales.
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Low freq. oscillation

- High freq. oscillation

Figure 4.4: Schematic representation of the mechanisms for low and high fre-
quency oscillations when contact between the tip (schematized as a sphere) and
the surface is mediated by a liquid meniscus. Low frequency oscillations are
caused by a deformation of the liquid drop as a whole. High frequency oscilla-
tions are due to a relative motion between tip and liquid, as represented in the
sequence numbered 1, 2, 3. Note that the high frequency oscillations take place
around an average constant tip height due to the much longer period of the low
frequency oscillations.

counteracts the elastic forces of the cantilever (by the formation of liquid
necks or menisci) and let the cantilever oscillate around the equilibrium
position due to the thermal excitation. Since these attractive forces de-
crease further away from the surface, the negative contact stiffness results,
similar to the case of the attractive part of the van der Waals interaction
potential.

In all wavelet spectra shown in figure the relative amplitudes
(coded in a color scale) of the low frequency oscillations at 1-3 kHz are
larger with respect to the higher frequency oscillations at 8.2 kHz. This
suggest to explain the low frequency resonance as the motion of the tip
and the condensed liquid drop as a whole (see figure[4.4), essentially due
to the elastic deformation of the drop pulling the tip along. The initial
deformation of the drop, with relatively large oscillations, is initiated by
the impact of the tip. At the same time, the frequency resonance at 8.2
kH z is associated with the motion of the tip relative to the water conden-
sate, having smaller amplitude. All the oscillations are sustained by the
thermal motion of the cantilever.

The tip motion is composed by the sum of the oscillations produced by
these independent mechanisms, accounting for the frequency-dependent
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stiffness (drop deformation and relative motion). The resulting tip motion
is a slow oscillation modulated by a faster one with the period ratio is
approximately equal to 8:1 (see figure [4.4).

From the boundary conditions (equation it is possible to deduce
that the contact stiffness associated to the downshifting of the first mode
resonance to 1-3 kHz is around —0.99k, as shown in figure (exactly
at —k the frequency should be zero and the tip is in static neutral equilib-
rium). By summing the cantilever stiffness (4-k) and the negative contact
stiffness (—0.99k), as springs in parallel acting on the tip, a very small
positive effective spring (0.01k) results, justifying the slow frequency os-
cillations. Analogously, the frequency resonance at 8.2 kH z is associated
with the negative contact stiffness of —0.6k.

The presence of the resonance higher than f; in HOPG (and its ab-
sence in Si and PET), is attributed to the different wettability of the sur-
faces. The more hydrophilic nature of the Si and PET surfaces implies that
water molecules are strongly bound to the surface and thus constitute a
water film on which the tip lands after JTC. Instead, on the hydrophobic
HOPG surface exposed to ambient air, there is a low probability of wa-
ter condensation, resulting in the tip-sample contact mediated to a higher
degree by short-range, Hertz-like forces, resulting in the positive contact
stiffness. The tip proximity is favored in hydrophobic surfaces and pre-
vented in hydrophilic surfaces due to the presence of the water film. The
intermittent interactions with short-range repulsive forces are responsible
of the first mode frequency upshift seen in HOPG (figure[4.3p,b).

To provide direct evidence of the different surface properties after JTC,
the Boltzmann distribution sampled by the Brownian motion of the can-
tilever tip for each surface is reconstructed. From the Boltzmann distribu-
tion the associated potentials are derived [113}141]]. The total tip potential
(Vior) is the sum of two contributions, the elastic potential of the cantilever
(Velastic) and the tip-sample contact potential (V)

‘/tot = ‘/elastic + V;fs

Figure 4.5/ shows the reconstructed potentials for HOPG, Si and PET.
The red dots represents the total potential of the interacting tip after JTC
(Viot), obtained by detrending the contact line of the force curve and fil-
tering out the high-order modes. These potentials are reconstructed from
the low frequency parts (below 32 kHz) of the cantilever spectra. The
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Figure 4.5: Potential energy of the tip retrieved from the Boltzmann distribution
for (a) HOPG, (b) Si, (c) PET. In each graph is shown the negative of the free
cantilever tip potential (black dots), total interacting potential after the jump-
to-contact transition (red dots) and effective contact potential of the tip (blue
crosses) obtained by subtracting the free potential from the total interacting po-
tential. The continuous lines are parabolic fits to the data.

black dots represents the negative of the elastic potential of the free can-
tilever (—Veiastic), after filtering out the contribution of the higher-order
modes as done for the interacting cantilever. The blue crosses show the
effective contact potential in which the tip moves after JTC obtained by
removing the contribution of the elastic potential from the total potential
of the interacting cantilever.

It is important to note that the second derivative of the effective po-
tential in HOPG has a different sign with respect to those in Si and PET.
The concave upward (i.e. the second derivative is positive) of the effec-
tive potential in HOPG (figure [£.5p, blue line) means that the potential
well of the interacting cantilever is narrower than the free potential well.
A narrower potential imply a higher contact stiffness

k= —0°Vis /02"
and a higher oscillation frequency
w X /]0?Vys /022

confirming the conclusions obtained from the cantilever spectrum. The
concave downward (i.e. the second derivative is negative) of the effective
potential in Si and PET (figure ,c, blue lines) imply a potential well of
the interacting cantilever wider that the free potential. This demonstrates
a lower contact stiffness and a lower oscillations frequency, confirming
the previous analysis.
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4.5 Conclusions

In this chapter has been demonstrated how WT can be extremely use-
ful when applied to the analysis of rapidly varying and non-stationary
signals, like tip impacts on various kind of substrates. In particular,
WT allows the analysis and characterization of temporal traces obtained
during the JTC transition avoiding interruptions and averaging. Conse-
quently it is possible to evidence the long (before JTC) and short (after
JTC) range forces simultaneously.

WT analysis captures spectral features presented in cantilever oscilla-
tions that could not be evidenced using FT. The WT technique bears great
potentials also in other research fields where transient signals are stud-
ied, for example in nanoscale thermomechanics [142]], nanoacoustic de-
vices [143] and in the investigation of nanostructures produced by laser
ablation [144].



CHAPTER 5

Wavelet transform analysis of single-impact
cantilever dynamics

5.1 Introduction

Usually the interaction of the tip with the surface, and hence the tip-
sample forces, is disclosed by the modification of the average value of the
varying cantilever parameters. The amplitude, frequency or phase shift
is calculated over many oscillation cycles [2,[3,38].

The possibility to capture information from single-event interactions
event is not usually considered. Single-event interactions are basically of
the impact kind (as the jump-to-contact transition), with the simultane-
ous excitation of many cantilever eigenmodes and/or harmonics and in
this case, the tip-sample mutual influence reaches the regime where the
interaction is limited to few oscillation cycles of the relevant cantilever
eigenmodes. To study the few cycles regime, it is mandatory to provide
analysis techniques that are able to characterize all the simultaneously
excited cantilever oscillation frequencies at once and without averaging
to retrieve quantitative information on materials properties such as the
elastic constants and the sample chemical environment, with lateral reso-
lution in the nanometer range. In addition, the few cycles regime opens
the investigation of single events or interactions with samples that get
destroyed or damaged after a single interaction with the cantilever tip.

Another fundamental aspect of the tip-sample interaction which al-
lows to quantify compositional contrast variations at the nanoscale is the
energy dissipation [12] since the applied forces and the energy delivered
to the sample are relevant for the imaging and manipulation of soft ma-
terials in a variety of environments [145]. The study of the nanomechan-
ical properties of the cell, the development of sensitive nanomechanical

43
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devices, the characterization of mobile nanoparticles are all tasks that re-
quire a control of the force and energy involved in the tip-sample interac-
tions [[146].

In this chapter the method to analyze the dynamic of the thermally
excited flexural modes of the cantilever during force spectroscopy mea-
surement, in particular, the dynamics of the flexural modes of the can-
tilever when its tip is excited by a single impact on the sample surface is
introduced.

The signal analysis is based on the simultaneous application of the
continuous and cross-correlation wavelet transforms (see section[2.3). The
results are model independent and based on the observation of the evo-
lution of the spectra of the flexural modes during the JTC transition.

This approach gives possibility to reconstruct the tip dynamics in
time-frequency space and to access the dissipated energy per cycle of
each excited during the jump-to-contact transition flexural mode. Fur-
thermore the instantaneous displacement, velocity and acceleration of the
cantilever interacting tip are reconstructed.

The possibility of analyzing the responses of the cantilever caused by
each mode participating in a few cycles interaction during an impulsive
tip-sample interaction will be useful in many research aspects. The recon-
struction of the complete evolution of the interaction force between the tip
and the sample surface during a single interaction event pushes further
the AFM possibilities.

5.2 Reconstruction the response signal of the interacting can-
tilever

The wavelet spectrum close-up of the impact region shows several
contributions (see figure[5.).

The spectrum of the free flexural modes excited by the Brownian mo-
tion of the cantilever is visible before the JTC point. A clear frequency
bending of the first flexural mode (at 11.7 £ H z, black dashed line) near the
JTC is observed [125,/131]. The second flexural mode is visible as a dim
trace at 80.5 kH z (white dashed line). In this case the frequency bending
in the thermal trace before JTC is not visible, due to the increased stiffness
of the second mode with respect to the first mode.

Upon impact, a strong excitation of the second mode at 65.3 kH z and
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Figure 5.1: (Adapted from [33]]) Wavelet spectrum of the signal before the jump-
to-contact transition (at time zero). The thermal oscillations of the first (black
dashed line, 11.7 kH z) and second (white dashed line, 80.5 k H z) flexural modes
are visible at negative times. A clear frequency bending of the first mode is visi-
ble near the jump-to-contact transition. The arrows shows the modes excited by
the tip impact on the sample during the jump-to-contact transition. Time zero
corresponds to the JTC transition. Wavelet coefficients are coded in a color-scale.
Both colors and frequencies are represented in octaves, i.e. base 2 logarithmic
scales.

third mode at 207.5 kHz is clearly visible, accompanied by a spectral
broadening of the first mode. It is interesting to note that the excited sec-
ond mode has a downshifted frequency caused by the attractive forces.
The amplitude of these contribution are proportional to the wavelet co-
efficients, coded in false colors. The excited modes have non-zero ampli-
tude in a time window of approximately 200 is. The broad region ex-
tending from 4 to 32 kH z is reminiscent of the first flexural mode, which
is statically bent due to the attractive forces that are responsible of the
JTC transition. As a consequence, in the 200 ;s time window the can-
tilever dynamics is due exclusively to the second and third excited flexu-
ral modes. Note that in this time window the base of the cantilever travels
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a small distance (0.817 nm/ms x 200 us = 0.16 nm), allowing to neglect
the effects of the piezo velocity on the cantilever dynamics.

Method to extract the frequency, amplitude and phase of the excited
modes during the impact in order to capture the cantilever impact dy-
namics and reconstruct it with a simple model is presented below.

Each flexural mode is schematized as a damped harmonic oscillator,
whose equation of motion is

F4yi+wiz=0 (5.1)

where z is the oscillation amplitude, v is the damping coefficient, wy the
resonance frequency and dot represents the temporal derivative [9]. Con-
sidering for simplicity the initial conditions z(0) = zp, 2(0) = 0 and as-
suming v < 1, the solution is well approximated by an exponentially
decaying amplitude oscillating at the resonance frequency:

2 = zpe 2 cos(wot) = zoe V7 cos(wot) (5.2)

where 7 is the decay constant and v = 2/7. The total signal V' (¢) is a volt-
age proportional to the differential current coming from the top-bottom
parts of the quadrant photodiode monitoring the beam deflection caused
by the flexural modes. The temporal trace V'(¢) captured by the beam
deflection system is modeled by a sum of damped harmonic oscillators,
representing the decaying modes,

V()= Vie /" cos(wit + ;) (5.3)
i

where V; is the eigenmode voltage amplitude, 7; is the eigenmode dacay
constant, w; is the eigenmode angular frequency, f; = 27 /w; is the eigen-

mode frequency, ¢; is the eigenmode phase, i is the eigenmode number.
The temporal trace can be reconstructed once the amplitude and phase
of the oscillating component are known at a specific time. To measure
the phases at a specific time, is used the wavelet cross-correlation with
the reference sinc function (amplitude A=3, shaping factor a=1/3 pus), as
explained before (see section [2.3.2). Since the static deflection is not im-
portant for the dynamics, the average deflection from the time window
is subtracted, so that the relaxation oscillations are centered on the ordi-
nate zero of the translated reference frame. Successively, the reference
sinc function in this reference frame is translated and centered on the first
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Figure 5.2: (Adapted from [33]) a) Relaxation oscillations of the signal after the
jump-to-contact transition with the superposed sinc function. b) Wavelet cross-
correlation of the traces shown in a. The amplitudes are coded in a color scale
and show the common power between the temporal traces. Both colors and fre-
quencies are represented in octaves, i.e. base 2 logarithmic scales. The black ar-
rows slopes code the local phase-shift between the traces. The slope of the arrows
arranged in a vertical row superposed on the wavelet spectra measures the local
phase difference between the signal and the reference sinc function at time zero.
The phase difference has been calculated through wavelet cross-correlation, as
explained in the text. Arrow pointing right: 0°; up: —90°; left: 180°; down:90°.
The areas, in which edge artifacts may distort the picture, are delimited by a
lighter shade.

maximum, at the beginning of the impact time-window, and the relative
phases between the signal and the reference sinc are measured.

Figure shows the signal and the superposed sinc in the time do-
main. Since the sinc is constituted by a sum of cosines, the measured
phases are referenced to cosines function whose origin are coincident with
the sinc center. Figure shows the cross-correlation wavelet analysis.
A vertical cut of figure allows to retrieve a bi-dimensional plot of the
phase versus frequency.

In figure is shown the wavelet spectrum with cuts at constant
frequency (continuous red line and blue dashed line) and constant time
(phase arrows lined up vertically)). Cuts at a constant time show the
phase and amplitude evolution as a function of frequency (figure ,c).
The values of interest is the amplitude and phase at the resonant fre-
quencies of the excited modes (dots in figures 5.3p,c). Cuts at a constant
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Figure 5.3: (Adapted from [33]) a) Wavelet spectrum of the signal close-up near
the JTC transition. The transiently excited modes are evidenced by the blue
dashed line (second mode) and continuous red line (third mode). Wavelet co-
efficients are coded in a color-scale. Both colors and frequencies are represented
in octaves, i.e. base 2 logarithmic scales. The black arrows slopes code the local
phase-shift between the traces. The slope of the arrows arranged in a vertical
row superposed on the wavelet spectra measures the local phase difference be-
tween the signal and the reference sinc function at time zero. Arrow pointing
right: 0°; up: —90°; left: 180°; down: 90°. b) Phase-shift between the signal and
the reference sinc as a function of frequency, at time zero. This curve is sampled
and represented by the vertical line of black arrows in a. The dots are the phase
values at the excited resonant frequencies. c) Amplitude profile as a function of
frequency at time zero. The dots are the amplitude values at the excited resonant
frequencies. d) Normalized amplitude profile as a function of time at the reso-
nant frequencies of the second (blue dashed line) and third (continuous red line)
modes. The continuous light gray line is an exponential decay with the decay
constant of 70 uis for comparison.

frequency (figure ) show that the time decay of both modes can be
approximated by decaying exponential function with the decay constant
7 =70 ps (light grey line). The ratios of the amplitudes of the excited
modes to the total initial amplitude (normalized to 1) are 0.77 and 0.23,
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Figure 5.4: (Adapted from [33]) Reconstructed signal from equation |5.3 super-
posed on the relaxation oscillations after the jump-to-contact in 200 ps window.

their phases are -19.7° and -5.4° for the second and third modes respec-
tively.

The phase angles and amplitudes, measured at the frequencies of the
excited modes, constitute the inputs of the model. Inserting these val-
ues (i.e. initial amplitudes and phases) into equation it is possible to
reconstruct the photodiode signal as shown in figure The reconstruc-
tion is not a fit, and only a multiplicative scale parameter is used to adapt
the reconstructed photodiode signal to the experimental data.

From the reconstruction shown in figure it is possible to calculate
the effective displacement of the tip (z(¢)) once the modal sensitivity of
the beam deflection system is taken into account. In fact, since the opti-
cal beam deflection method actually measures the slope of the cantilever
end, the same tip displacement generates a different photodiode signal
depending on the cantilever mode that actuates it. The amplitude of the
tirst mode (V1) is calibrated with the standard static force spectroscopy
method transforming the quadrant photodiode voltage into the tip dis-
placement z; by using the calibration constant (InvOLS) ¢; (see section
3.2): z1(t) = Viei. To retrieve the calibration constants for the higher
modes the calculated optical sensitivity ratios for the beam deflection
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Table 5.1: (Adapted from [33]])Frequencies (f;) and quality factors (Q);) of the
flexural modes measured in the 200 us window during the cantilever impact.
Frequencies are given in units of the first free flexural frequency. The theoretical
free flexural frequencies ratios [4] and scaling for force constants (k;) and optical
sensibilities (o;) for each flexural mode [10] are shown for comparison.

Mode | fi/f1 Qi filfi | ki/k | oi/or
i (exp.) | (exp.) | (theo.) | (theo.) | (theo.)
1 1 - 1 1 1

2 5.58 18 6.27 39.31 3.473
3 17.73 45 17.55 308 5.706

method need to be used [147]].

The "real” displacement signal z(¢) is composed by the sum (super-
position principle) of the total displacements of the cantilever z;(t) asso-
ciated with the eigenmode number ¢

z(t) = Z zi(t) = Z z0ie” T cos(wit + &) (5.4)

Each eigenmode displacement is given by
Zi(t) = ZOie—t/Ti COS(wit + ¢z)

where zp; = Vjc1/0; is the amplitudes of the tip displacement in nm ob-
tained from the voltage signal V; through the calibration constant of the
tirst mode ¢; and the parameter o; that takes into account the higher op-
tical sensibility of the higher mode (see table5.1).

In present case the photodiode signal is composed by the superposi-
tion of two modes. In figure the tip trajectory is reconstructed using
equation 5.4] (equation parameters are reported in table[5.2).

From the tip trajectory, all the quantities relevant to the tip motion can
be calculated: velocity, force and force gradients.

Table 5.2: (Adapted from [33])Measured parameters used for the tip trajectory
reconstruction in equation|5.4

Mode i | fi (kHz) | 7i (us) | ¢i (deg) | z0; (m)

2 65,3 70 -5.4 0.66
3 207,5 70 -19.7 0.12
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Figure 5.5: (Adapted from [33]]) a) Instantaneous tip deflection. b) Instantaneous
total force acting on the cantilever tip. The light gray line is obtained from the
tip acceleration times the effective mass. The dotted blue line is obtained by
summing the elastic and viscous forces for each mode.

In figure[5.5p the instantaneous total force acting on the tip (Fj) is cal-
culated computing the acceleration Z [148]] from the displacement in equa-
tion[5.4|and considering the cantilever equivalent mass m = meq = m./4,
which is constant regardless of the eigenmode, as discussed in [137]

Ftot =mz (55)

The quality factors of two eigenmodes (see table [5.1) contributing to
the tip total displacement are calculated as

Qi = 2 fi /v

where 7 is the friction coefficient, connected with the decay constant by
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v=2/T.

The quality factor ratio between the eigenmodes of a damped can-
tilever scales as the frequencies [10]], so the ratio Q3/Q2 = 2.8 is expected
and 2.5 is measured.

It is important to note that the cantilever is not free, but nearly behaves
as a free cantilever with modified damping factors. The external forces
occurring during the relaxation oscillations of the cantilever after the JTC
impact behave as an effective viscous force with the friction coefficient ~.
Their influence manifests in the heavily reduced quality factors measured
in this case with respect to the free cantilever (e.g. see [149]). The fact that
the quality factor scaling is approximately respected is an indication that
the viscous damping mechanism implicitly assumed in modeling the can-
tilever as a sum of damped harmonic oscillators is a good approximation.

The instantaneous total force acting on the tip can be retrieved using
the different route by summing the elastic and viscous forces acting on
each mode of the cantilever

Fiot = —kaza — k3zg — myvy — mryvs (5.6)

where ko, k3 are the force constants, zo, 23 are the deflections and v, v3 are
the velocities associated with the second and third modes of the cantilever
respectively.

In figure[5.5b the total force obtained from the tip acceleration and that
one obtained from the elastic and viscous contribution are compared. The
fact that the forces are nearly coincident constitutes a good reliability test
for the present analysis. Note, that since the quality factors are relatively
high, the viscous force is small in comparison to the elastic contribution.

From the analysis above deduced that the tip dynamics in 200 ;s win-
dow after JTC is composed by the sum of two decaying modes that re-
semble two mass-spring systems with viscous damping. It is important
to note that the modal structure of the cantilever is not that of the pinned
cantilever, but that of the damped cantilever with the blocked first eigen-
mode.

In the experiment has been used the silicon tip on HOPG sample. Con-
sidering that the maximum total displacement during the mode excitation
after the impact is of the order of the lattice spacing of silicon (5.43 A) or
1.5 times of the distance between the graphite planes (3.35 A) or four times
of the distance between the hydrogen atoms in water (1.51 A), that could
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absorb on the oxidized silicon tip or (less probably) on the hydrophobic
graphite surface, could be concluded that the relaxation oscillations after
the tip impact can be attributed to a combination of local deformation of
the materials and /or water capillary forces.

5.3 Modal energy dissipation due to the tip-sample interaction

As has been shown in preceding section 5.2} the following steps, syn-
thesized in figure allow to reconstruct the evolution of a multi-mode
excitation of the cantilever, after the jump-to-contact transition. 1) Single
out the time period of interest, i.e. the neighborhood of the impact mo-
ment (figure ). 2) Take WT of the signal and individuate the excited
modes contributing to the dynamics (figure ). 3) Each flexural mode
ia schematized as a damped harmonic oscillator (DHO) (see equation ,
then the solution is well approximated by an exponentially decaying am-
plitude oscillating at the resonance frequency (see equation [5.2). 4) Re-
trieve the parameters of each DHO through the WT and XWT analyzes
(figure[5.6). 5) Reconstruct the cantilever signal as a sum of DHO (figure
B-6d).

In particular the WT allows to retrieve, for each mode, the amplitude,
decay constant and frequency. Further, the XWT (see section re-
trieves the phase relative to the sinc function at a specific time, usually at
the beginning of the time period of interest. With this information, fol-
lowing the superposition principle, it is possible to sum the contributions
of the DHO and reconstruct the signal obtained from the beam deflection
apparatus measuring the cantilever dynamics (see section [5.2).

The first free flexural mode does not contribute to the dynamics be-
cause it remains statically bent towards the surface after the impact due to
the jump-to-contact transition. The excited modes have frequencies that
scale nearly as the second and third free flexural modes (see table and
contribute to the relaxation oscillations that are seen in figure [5.6b. For
these reasons the excited modes will be labeled as the second and third
modes.

The reconstruction of the photodiode signal does not yet represent the
effective displacement of the cantilever tip due to the characteristics of the
beam deflection apparatus, which is used in the experiments.

Usually the deflection signal measured from the cantilever does not
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Figure 5.6: (Adapted from [34]) Synthesis of the wavelet retrieval method. a)
Schematic diagram of the modal shapes of the cantilever flexural modes. b) The
time evolution of the relaxation oscillations after the cantilever jump-to-contact
transition. c) The wavelet analysis of the relaxation oscillations. The numbers
refers to the excited flexural modes of the cantilever, schematized in a. Note
that the fundamental mode does not oscillate because it remains statically bent
after the jump-to-contact. Wavelet coefficients are coded in a color-scale. Both
colors and frequencies are represented in octaves, i.e. base 2 logarithmic scales.
The slope of the arrows arranged in a vertical row superposed on the wavelet
spectra measures the local phase difference between the signal and the reference
sinc function at time zero. The phase difference has been calculated through
wavelet cross-correlation, as explained in the text. Arrow pointing right: 0°; up:
—90°; left: 180°; down: 90°. The areas, in which edge artifacts may distort the
picture, are delimited by a lighter shade. d) Reconstruction (red-dotted line) of
the relaxation oscillations (continuous black line) obtained by the superposition
of damped harmonic oscillators as detailed in the text.

relate directly to the tip displacement, this is the case only when calibrated
interferometers are used. Other techniques monitor the velocity through
the Doppler velocimeter or the bending of the cantilever when using the
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Table 5.3: (Adapted from [34])Theoretical [4] and experimental free flexural fre-
quencies of the excited modes in units of the first free flexural frequency and the
theoretical scaling of the force constants (k;) for each flexural mode [10].

Mode i | fi/fi (theo.) | fi/f1 (exp.) | ki/k1 (theo.)

1 1 1 1
2 6.27 5.58 39.3
3 17.55 17.73 308

popular beam deflection method. It is necessary to relate the signal mea-
sured by the instrument (and reconstructed by the DHO) to the real tip
deflection. In the beam deflection method used in this experiment, the
measured signal is proportional to the cantilever bending at the position
of the laser spot, usually at the end of the cantilever. While the InvOLS of
the first free flexural mode, which relates the bending of the cantilever to
the deflection of the tip, is calibrated by using the static force curve, those
of the higher modes are not. For the same tip deflection, the higher the
mode the higher the bending of the cantilever end. This means that the
InvOLS of the first free flexural mode must be corrected to relate the mea-
sured bending that is caused by higher modes to the corresponding tip
deflections. This is done by means of the optical sensitivities o; reported
in table

This procedure allows to obtain the parameters of the DHO needed
to reconstruct the cantilever deflection mode by mode. The parameters
that are used to reconstruct the second and third DHO mode dynamics,
and hence the total tip deflection, are reported in table Once the de-
flections of the second and third eigenmodes have been quantified, it is
possible to access the velocity and acceleration of the tip caused by each
flexural mode.

Table 5.4: (Adapted from [34]) Optical sensibilities ¢; and damped harmonic
oscillator parameters used for the tip trajectory reconstruction.

Mode i | o; (theo.) | zo; (nm) | 7; (us) | f; (KHz) | ¢; (deg)
1 1 - - - -
2 3.4731 0.66 70 65.3 5.4
3 5.706 0.12 70 207.5 -19.7
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The description of the dynamics by using uncoupled DHO during the
JTC is justified, because from the experiment no hints of a nonlinear cou-
pling between the modes are observed, and two uncoupled DHO are suf-
ficient to reconstruct the detail of the experimental trace. In addition, and
contrary to intuition, the second and third modes are not contact modes.
This is proved by their frequency scaling, which is similar to that of the
free flexural modes and differs considerably from that of the pinned can-
tilever flexural modes (see tables [4.1]5.3).

The energy balance of each decaying mode obtained from equation
in the time window 0 < ¢ < 7 = 200us (see figure can be written
as

E,, = Ey, (5.7)

-
E, = / MeqVi v?dt
0

AK; = Smeg(i(0)? — vi(r)’)

AU; = hi(4(0)” — z(7)?)

where E., is the term that depends on the time-integrated dissipative
power, E, is the term that depends on the balance of the potential and
kinetic energy, AK; is the variation of kinetic energy, AU; is the variation
of elastic potential energy, ¢ is the integration time, 7 is the index of the
eigenmode. The dissipative constants v; are parameters that take into ac-
count the influence of the external environment, which is modeled as a
viscous force. Note, that the elastic force of the cantilever is a conserva-
tive force that does not contribute to the dissipation. Dissipation is intrin-
sically difficult to explain microscopically in situations where the ambient
environment is complex (presence of gas molecules, water layers, etc.) but
interesting since it potentially carries information about the tip-sample
interactions. Since the coefficients 7; and k; are measured/estimated in-
dependently, the energy balance described in equation [5.7)is a test of the
internal consistency of the model.

The elastic constants of the higher modes are equal to the values cal-
culated by the scaling from beam theory (see table 5.3). The equivalent
mass (meq) for the rectangular cantilever is the same for all modes and
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Table 5.5: (Adapted from [34]) Total dissipated energy calculated by a balance
of potential and kinetic energy (£3) and by integrating the dissipative forces
(E5). Quality factor is derived as Q; = 27 f;/v;, where the damping coefficient
i = 2/7; (see table[5.4). Elastic constant is derived from the theoretical scaling
(k;) and from the oscillator parameters (m./4w3;)

Mode Ebl- E’Yi Yi Qz k‘l mc/4w(2)i
i (eV) | (eV) | (10*s71) | (exp.) | (N/m) | (N/m)
2 597 | 597 | 2.85 14 5.9 4.4
3 2.00 | 1.98 2.85 45 46.2 445

equal to one quarter of the cantilever mass (m.) [137]. Calculating the en-
ergy balance using these parameters in equation 5.7|shows the emerging
of a discrepancy in the energy balance of the second mode. The variation
of total energy Ej, = 7.8 eV does not match the integrated dissipation
E,, =6¢V.

Another way to assess the consistency of the model is to use the to-
tal force test, which means to compare the total forces acting on the tip
calculated via the inertial mass (see equation with the total forces cal-
culated via stiffness and dissipative forces (see equation[5.6). In this case a
good match is obtained (see section[5.2). This means that even if the level
of agreement in the total force test appears to be satisfactory, the more
stringent energy balance test singles out the discrepancy.

The reason of the discrepancy in the energy balance is attributed to a
different degree of interaction of the higher cantilever eigenmodes with
the surface forces. The force gradient at the sample surface modifies the
equivalent stiffness of the interacting cantilever by shifting the resonance
frequency to the lower values for the attractive interactions [2]. In this
case the effective stiffness of the cantilever is not that of the free cantilever,
as implicitly assumed using the stiffness scaling from the beam theory.

The elastic constant of each mode (%;) is connected to the mode reso-
nant frequency (wo;) as [137]

ki = %wgl
where ¢ is the mode index. Since in this case the resonant frequency
seen in the wavelet transform (figure [5.6f) is that of the interacting can-
tilever, one would expect that the cantilever stiffness calculated by using
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Figure 5.7: (Adapted from [34]) 3D representation of the main observables de-
scribing the cantilever tip dynamics during the impact following the jump-to-
contact transition.

the equivalent mass and the resonant frequency should incorporate the
effects of the surface force gradients. In the present case, the scaling of the
elastic constant from the beam theory is respected with a good approxi-
mation for the third mode but not for the second (table[5.5).

In order to obtain a good matching with the integrated dissipation, the
equivalent stiffness of the second mode has to be taken equal to m./4w3,.
The overall quality of the match F,, vs F, improves and a very good
agreement of the variation of the total energy (Ej,) and integrated dis-
sipation (£,,) for both modes is obtained (table[5.5).

Having a general consistency regarding the energy conservation, the
correct estimation of the dissipated energy per cycle in each eigenmode is
obtained as the difference between the maximum elastic energy stored in
successive cycles (figure[5.8).

As expected the energy dissipated per cycle in both eigenmodes con-
tributing to the cantilever dynamics decays exponentially. The quantifi-
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Figure 5.8: (Adapted from [34])Dissipated energy per cycle in each mode con-
tributing to the dynamics described in figure

cation of the dissipation per mode evidenced a rather gentle interaction,
with the total energy released from the tip of the order of 8 eV during the
whole impact, considering that typical tapping mode interactions release
energies per one tap on the order of several tens of eV [150]. Moreover,
the maximum energy released in a single cycle during the impact does not
exceed 1.2 eV for the second mode and 0.13 eV for the third mode. The
energy is released by eigenmodes characterized by the different oscilla-
tions frequencies, thus opening the possibility to resonant energy transfer
to samples or (nano)structures endowed with mechanical resonances at
the eigenmode frequencies.

Figure shows the evolution of the instantaneous deflection (z),
force (F') and velocity (v) as a function of time in various 3D represen-
tations and a comprehensive representation of the phase-space of the mo-
tion. The spiraling trajectories are connected and they are a visual rep-
resentation of the dissipated energy. Figure is a representation of
the displacement-velocity phase-space evolving in time. Figure[5.7p,c are
connected to the total instantaneous work (F' - zdt) and power (F - vdt),
respectively, done on the tip during its displacement dz from time ¢ to

time ¢ 4 dt. Figure is a representation of the phase-space parameters
Fiu,z.
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5.4 Conclusions

Using the wavelet transform it is possible to analyze the spectral evo-
lution of the modes of the cantilever interacting impulsively with the sam-
ple surface. The excitation of multiple flexural modes is evidenced and
the instantaneous amplitude and phase evolution of the oscillations of the
cantilever after the single tip-sample impact are extracted from the exper-
imental data at all frequencies simultaneously using the wavelet analysis.
Since the temporal development of the damped oscillating modes evolves
continuously in time, i.e. the coherence time of the mode is longer than
the observation period, knowing the amplitude and phase at a specific
time allows to reconstruct the photodiode signal from the beam deflection
apparatus. Successively, correcting for the modal sensitivity of the beam
deflection system, the tip trajectory is obtained and the instantaneous to-
tal force acting on the tip during the single impact is reconstructed. The
phases of the modes are assessed by cross-correlating their wavelets trans-
forms with the reference sinc function, acting as a phase reference for
the signal. The cross-correlation wavelet analysis allows retrieving the
energy dissipation, displacement, velocity and acceleration of the tip for
each flexural eigenmode upon impact simultaneously.

The techniques outlined in this chapter will be useful to character-
ize the mechanical contact properties of nanostructures produced by fem-
tosecond laser ablation, to disentangle oscillatory modes probed by pi-
cosecond acoustics techniques [142] and to describe the compositional
contrast of the sample at the nanometer scale through the dissipative in-
teractions [151]. The present analysis will enlarge the space of parameters
to be exploited for the sensing action.

This approach has general relevance for the development of an atomic
force spectroscopy of single tip-sample interactions that develop in few
oscillation cycles of the interacting cantilever eigenmodes and their har-
monics.



Perspectives

The wavelet analysis has already been implemented in some appli-
cations in the field of AFM spectroscopy, however the full range of pos-
sibilities offered by the WT as a method of data processing is far from
being fully developed yet. Up to recent times, the WT technique has been
used in AFM principally to denoise images or extract data from noisy sig-
nals [[152,/153].

The application of WT to extract information from dynamic AFM
spectroscopy has been introduced only recently and it is an upcoming
way to characterize surface material properties at the nanoscale. It has
been demonstrated that WT allows to characterize long- and short-range
forces as well as complex force dynamics with quantitative results. Non-
linear interactions are extremely sensitive to small changes in tip-sample
interactions and WT is a useful tool to gain information from such nonlin-
ear interactions [7,30,131}(139/|140,154]. WT is able to follow the temporal
evolution of nonlinearities in force curves [20,22,[155] and furthermore
gives the possibility to retrieve interaction forces [102].

In case of impacts (single or multiple) by the investigation of the can-
tilever signal spectrum around the impact region, information on the tip-
sample interaction dynamics can be obtained. The type of material prop-
erties that WT could contribute to study and that is not readily measured
by other methods depends on two characteristics of the wavelet analysis.
First, WT allows to study the tip trajectory and the spectral content as a
function of time for each mode separately. Second, WT can extract infor-
mation without averaging. Having a model to represent the tip-sample
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interaction as a function of time, it is foreseen that a fit of the theory, de-
pending on a restricted set of parameters, to the experiments could bring
new informations. For example, in viscoelastic materials, the elasticity
parameters depends on how fast the deformation force is applied to the
material. WT could be used to investigate these time-dependent material
responses. In situations where an impact experiment cannot be repeated,
WT provides a complete dynamical information that is not readily avail-
able through other methods. As an example, consider a tip-sample impact
that destroys the sample. In this case all the information must be retrieved
by a single force curve, without averaging.

XWT analysis has been employed only recently and it opens further
perspectives for the application of WT in AFM measurements. This tech-
nique allows to determine the phase relationship between the driving
force and the response of the cantilever [126,156].

By using WT analysis it becomes possible to get a full picture of the
temporal evolution of the amplitude and relative phase of each mode of
the cantilever which gives information about mechanical contact proper-
ties of the surface. The values of the amplitude and the phase at a precise
time allow to reconstruct the photodiode signal and the tip trajectory.

Few cycles tip-sample interactions reduce the acquisition time and al-
low for a multiparameter analysis. This will enlarge the physical infor-
mation gained by the tip-sample interaction. The methodology presented
here will be beneficial to other fields exploiting impulsive force phenom-
ena.

The techniques outlined in this thesis will find applications in a va-
riety of fields of interest for nanotechnology and with further work will
ultimately provide information about the contact mechanical properties
of the surface.
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