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ABSTRACT 

Over the last decade, the participation of middle-aged and older (‘masters’) involved in sport activities at 

different levels has significantly increased, particularly in long-distance events. Master athletes are 

typically characterized as people who continue physical training throughout life and in this population, the 

incidence and risk of chronic and age-related diseases are reportedly lower, and self-rated health is better 

than in apparently healthy controls. However, regardless of training a decline in peak athletic 

performance in both endurance and sprint events and for all competitions/disciplines usually occurs with 

aging. In particular, declines in endurance exercise performance and its physiological determinants with 

ageing appear to be mediated in large part by a reduction in the exercise training ‘stimulus’, mainly as a 

result of increased work and family commitments, few masters still follow structured training programs, 

and the increased prevalence of exercise training-associated injuries that probably contributes to their 

reduced training intensity and volume. Furthermore, aging is accompanied by a progressive increase in 

free radical production (i.e., synthesis of reactive oxygen species) with a concomitant decrease in the 

enzymatic defence mechanisms, promoting the development of oxidative stress.  The chronic repetition of 

exercise, i.e. exercise training, may have the capability to develop a compensation to oxidative stress in 

skeletal muscle fibres by means of an adaptation of the antioxidant and repair systems. This might result 

in a decreased resting level of oxidative damage and an increased resistance to oxidative stress.  

In general, the main types of training used to improve endurance exercise performance are: i) continuous 

training  at moderate intensity (CON); and ii) discontinuous training at high intensity (DHIT). Different 

studies showed that even in sedentary or moderately trained individuals, DHIT might be an efficient 

strategy to induce adaptations in skeletal muscle and exercise performance that are comparable with 

conventional endurance training. The first part of the thesis is focus on master runners. First study aims to 

evaluate if an individualized training schedules characterized by an overall reduction of training volume is 

able to improve running performance. Moreover, the impact of CON and DHIT training programs on running 

performance and its main physiological factors in master runners has been evaluated. The second study 

aims to evaluate the effects of 8-week of DHIT and CON on resting level and time-course changes of 

several indexes of oxidative stress. The main findings of these studies show that despite a significant 

reduction of training volume, CON and DHIT, characterized by the same total volume, improve running 

economy and running performance. Furthermore, both CON and DHIT induced similar beneficial effects, 

reducing the resting levels of oxidative stress biomarkers in plasma and urine. The second part of the 
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thesis is focused on master swimmers. The third study aims to compare the effects of two opposite 

training protocols (low-volume high-intensity vs high-volume low-intensity) in a group of trained master 

swimmers. The fourth study aims to examine the effects low-volume high-intensity training on ROS 

production and on antioxidant capacity in master swimmers by applying electron paramagnetic resonance 

measurement. The results indicate that in master swimmers an increase of training volume may lead to an 

improvement of indexes of aerobic capacity and middle-long distance performance. A subsequent period 

of high-intensity low-volume training, besides maintaining previous improvements, may positively affect 

also short distance performance. Moreover, high intensity training improves antioxidant capacity and 

significantly decreases baseline ROS production.  
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INTRODUCTION 

Master athletes  

Ageing can be considered as an inherent, progressive and decremental process common to all animal 

biology 1. Ageing process is potentially due to three theoretically independent, but actually connected 

factors 2, 3: (i) aging per se acting as a biologic, irreversible process (ii) deconditioning due to the more 

sedentary lifestyle found in most elderly people, and (iii) effects of co-morbidity, i.e., of primary diseases 

or injuries that are in principle independent of age, but which accumulate during the lifespan.  

Amongst these factors, disuse or physical inactivity seems to be the most overlooked and possibly the 

most significant 1, 4. Many of the changes in health status and physical performance that have been 

thought to be the normal result of aging have be found to be actually the result of a long-standing 

sedentary lifestyle 4, 5. Master athletes are typically characterized as people who continue physical 

training throughout life. Each sport’s national or international governing body determines the age to 

define a masters athlete. While masters athletes are typically older than 35 years of age, masters’ 

competition in swimming begins at age 25 years, track and field at 35 years, and golf at 50 years 6. In this 

population, the incidence and risk of chronic diseases, e.g. diabetes, metabolic syndrome, or coronary 

heart disease, are reportedly lower, and self-rated health is better 7 than in apparently healthy controls. 

Moreover, master athletes may be able to maintain or even increase athletic performance they achieved 

at younger ages and are considered an adequate model to determine the “successful aging”  where 

decrements in physiological function capacity can be genuinely attributed to human ageing process and 

they are not the result of pathologies that may arise from confounding factors (i.e. sedentary lifestyle) 1, 

8. Masters athletes participate in organized competitive sport for a number of reasons. Previous research 

reviewed in Reaburn et al. 6 from masters swimming, athletes competing at multisport events, or older 

people involved in regular exercise and sport has shown that masters athletes participate for enjoyment, 

competition, physical fitness, health benefits, social, travel, stress relief, personal challenge, and skill 

development reasons. However, the factors of enjoyment, health and fitness benefits, social, and 

competition appear the primary drivers for involvement. An increasing proportion of these active older 

individuals are becoming recreational or competitive athletes focused on sports performance. For 

example, the inaugural World Masters Games held in Toronto, Canada had 8,305 participants across 22 

sports, whereas in the 2013 World Masters Games held in Torino participated about 25,000 athletes across 

28 events.  
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Indeed, master athletes typically train for 10 hours or more per week, and they often do so over decades. 

However, regardless of training a decline in peak athletic performance in both endurance and sprint 

events and for all competitions/disciplines usually occurs with aging 9-12. As for endurance performance, 

age-related declines in endurance events have been observed in running 10, orienteering 13, indoor rowing 

14, and swimming 15. The age-related decrease in endurance performance of elite level masters endurance 

athletes appears curvilinear from age 35 years until approximately age 60–70 years and exponential 

thereafter 9, 16. In general, the magnitude of decline in endurance running performance with age is greater 

in women than in men 15, 17, 18. However, interpretation of this apparent widening of sex differences with 

advancing age is confounded by the relatively smaller number of female versus male runners in the older 

groups. Indeed, such increasing sex differences with age are absent in the endurance swimming events, 

where approximately equal number of men and women compete throughout the age range 15. Performance 

in endurance events is dependent upon three main physiological factors: i. maximal oxygen consumption 

(�� O2max), ii. exercise intensity at which a high fraction of the maximal oxygen consumption can be 

sustained and iii. exercise economy 17, 19. 

Amongst these factors, a progressive reduction in �� O2max appears to be a key physiological mechanism 

associated with declines in endurance performance with advancing age 9. �� O2max is estimated to decline 

approximately 10% per decade after the age of 25 years in healthy sedentary aging individuals of both 

sexes regardless of activity level 18, 20-25. Early investigations suggested the rate of decline in �� O2max of 

masters endurance athletes to be only half that observed in sedentary aging individuals 21, 26. However, 

more recent studies have suggested accelerated decline in �� O2max in older endurance athletes when 

expressed as per cent decrease from early adulthood 18, 22-25, 27, 28. In fact, endurance trained men and 

women possess higher initial �� O2max values at baseline 23, 24 and demonstrate greater absolute 

(ml·kg−1·min−1) rates of decline in �� O2max with age than healthy sedentary adults 18, 23-25, probably as a 

result of greater reductions in habitual exercise with ageing compared with sedentary adults.  

Both central (maximal heart rate and maximal stroke volume) and peripheral (maximal arteriovenous 

oxygen difference) factors may play a role in age-related declines in �� O2max. Centrally, an age-related 

decrease in maximum heart rate (HRmax) is commonly observed in male and female endurance athletes 6, 

9, 20. HRmax declines with age at a rate uninfluenced by exercise training or sex of approximately 3–5% per 

decade 20, 29. As for maximal stroke volume a significant age-related decline in maximal stroke volume in 
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both the endurance-trained men and women has been observed 30. However, compared to age matched 

sedentary controls, the available research suggests that maximal stroke volume of both male and female 

masters endurance athletes is elevated 31 suggesting that long-term physical training may maintain a high 

level of cardiac function and stroke volume in this population. Consequently, the decreased maximal 

cardiac output and �� O2max observed in masters athletes appears related to age-related decreases in 

HRmax rather than significant changes in stroke volume or cardiac morphology. Peripheral adaptations 

includes arterio-venous oxygen difference that is influenced by a variety of factors including muscle mass, 

the capacity of the blood to transport and relinquish oxygen (blood volume, hemoglobin), and the capacity 

of the working tissues to take up and utilize oxygen (capillarization, muscle fiber type, aerobic enzyme 

activity). In sedentary adults, maximal arterio-venous O2 difference clearly declines with advancing age, 

consistent with the marked reductions in capillary density and mitochondrial enzyme activities observed 

with ageing in this group 32. Reductions in peripheral oxygen extraction during maximal exercise also 

appears to contribute to the decline in �� O2max with age in endurance exercise-trained adults, as maximal 

arterio-venous O2 difference declines modestly (5–10%) over a span of ∼30 years in this group 33-35. It 

remains to be determined if the reduction in maximal arterio-venous O2 difference with ageing in 

endurance athletes reflects reductions in maximal oxygen delivery to or extraction by the active muscles. 

However, older endurance-trained athletes can oxygenate blood in the lungs to a similar extent as young 

athletes, and their contracting muscles are capable of extracting oxygen as much as their younger 

counterparts 34. Furthermore, muscle oxidative enzyme activities and capillarization (expressed per area 

or per fibre) are similar between young and older endurance-trained adults 36. Thus, it is likely that 

maximal oxygen delivery, rather than oxygen extraction, is a major contributor to the age-related 

reduction in maximal arterio-venous O2 difference in endurance-trained adults. As skeletal muscle mass is 

closely related to maximal aerobic capacity among healthy humans across the adult age range 37, a decline 

in maximal arterio-venous O2 difference may be secondary to an age-related loss of muscle mass. Cross-

sectional data demonstrated loss rates in �� O2max of approximately 9% per decade for both men and 

women that were reduced to 4% per decade when controlling for changes in lean body mass and fat mass 

38. Similarly, a recent longitudinal investigation demonstrated that maintenance of lean body mass was 

associated with maintenance of �� O2max in men master runners 39.  Rosen et al. 40 utilised statistical 
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modelling to suggest that 35% of the decline in �� O2max with age was due to age-associated declines in 

lean body mass.  

A reduction in the ability to sustain a high fraction of one’s maximal oxygen consumption during 

submaximal exercise, typically evaluated using the blood lactate threshold, also contributes to the 

reduction in endurance performance with ageing. In older runners, it appears that endurance running 

performance is correlated with both �� O2max and velocity at lactate threshold in male 41, 42 and highly 

trained older female runners 43, 44. Wiswell et al. 43 determined that 60% of the variability in performance 

for runners aged 23–47 year was explained by the running velocity at which lactate threshold occurred, 

whereas �� O2max explains 74% of the variability for the runners aged 37–56 years. Absolute work rate or 

running speed at lactate threshold declines with advancing age in endurance athletes 41, 44-46. However, 

lactate threshold has been shown to not change or even increase with increasing age when expressed 

relative to the percentage of �� O2max 41, 44, 46, 47.  

Exercise economy is measured as the steady-state oxygen consumption while exercising at a specific 

submaximal exercise intensity below the anaerobic threshold 48 and has been shown to be a stronger 

predictor of endurance performance than �� O2max in a homogenous group of endurance athletes 49, 50  . 

The few studies focused on masters endurance athletes 44, 50 concluded that exercise economy does not 

change with age in masters endurance athletes suggesting that this factor does not contribute significantly 

to age related decreases in endurance performance. 

In conclusion, amongst the main physiological determinants of endurance exercise performance, a 

progressive reduction in  �� O2max appears to be the primary mechanism associated with declines in 

endurance performance with age. A reduction in lactate threshold velocity and muscle mass, also 

contributes to the reduction in endurance performance with ageing, although this may be secondary to 

decreases in  �� O2max. In contrast, exercise economy does not change with age in endurance-trained 

adults. However, apart from these physiological factors, the age-related declines in endurance 

performance have been suggested to be due to 6: decreased training volumes and intensities as a result of 

increased work and family commitments, behavioural factors such as reduced motivation to train, few 

masters athletes having coaches, and masters athletes spending less overall time in training than 

international caliber younger athletes. In addition, the increased prevalence of exercise training-
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associated injuries among masters athletes also probably contributes to their reduced training intensity 

and volume 51. 

Taken together, these results suggest that high-intensity training and maintenance of training volume may 

mediate the age-related declines in �� O2max and endurance performance. However, the greatest 

challenge to masters athletes is to balance an adequate stimulus to the body to promote high 

performance while preventing excesive fatigue that may lead to injury 5. Thus, master athletes should 

focus on quality of training rather than quantity 52 and this implicates the selection of the most 

appropriate exercise modalities and intensities. 

 

Training modalities  

Endurance athletes often seek the most effective training methods to enhance the most important 

physiological determinants of endurance performance 53. In general, the main types of training used to 

improve endurance exercise performance are: i) continuous training (CON) at low- to moderate-intensity 

characterized by high volumes of training (> 30 min) with intensities between 60% and 80% of �� O2peak or 

below the “anaerobic threshold” (AT) with a nearly constant O2 consumption and without a “slow 

component” in  O2 kinetics 53-57 and ii) discontinuous high intensity training (DHIT) characterized by 

repeated exercises performed at intensity corresponding to �� O2peak (or slightly lower) or above AT or 

"all-out", exercise bouts are separated by brief periods of low-intensity work or inactivity that allow a 

partial but often not a full recovery 53-55, 57-59.  

When individuals are untrained and commence a period of training characterized by continuous low- to 

moderate-intensity exercise ‘aerobic’ fitness typically improves 54, 57. Improvements in exercise capacity 

are associated with changes in cardiovascular, muscular and metabolic responses to exercise 60-62. 

Cardiovascular changes include increases in working muscle capillary density, rises in blood volume and 

resultant decreases in heart rate at similar absolute exercise intensities 54, 57, 62-64. Muscular changes with 

endurance training include greater muscle glycogen storage, increases in Na+-K+ ATPase pump activity, and 

rises in most mitochondrial enzymes, with little change in glycolytic enzymes. 54, 57, 60, 65, 66. Submaximal 

endurance training increases the size and number of mitochondria in skeletal muscle resulting in increase 

in the maximal capacity of muscle to generate ATP via oxidative phosphorylation 67. Lower plasma lactate 

concentrations at similar relative work rates typically observed after endurance training are also due to a 

greater mitochondrial capacity to oxidise fat. 66, 67. Thus, with previously untrained and recreationally 
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individuals, blood flow, oxygen delivery, oxygen extraction and fat metabolism in working muscles 

increase after a long period (weeks to months) submaximal exercise-training. As a result, muscle 

contraction becomes more efficient and physical work capacity increases. However, when submaximal 

endurance training becomes habitual, such as for the endurance athlete, further improvements in exercise 

performance with an increase in training volume do not normally occur 54, 55, 68, 69. Indeed, the muscle of 

trained athletes has three to four times higher oxidative enzyme activity, up to three times more 

capillaries per muscle fibre, and a greater percentage of slow twitch fibres when compared with untrained 

muscle 70. In these individuals, additional improvements in endurance performance and associated 

physiological markers appear to require a different training stimulus than simply an increase in volume 53, 

54, 57, 69. 

In contrast to submaximal exercise training, DHIT is normally achieved through the use of intervals. 

Buchheit and Laursen 58 recently defined DHIT as either repeated short (<45 s) to long (2–4 min) bouts of 

rather high- but not maximal-intensity exercise, or short (<10 s, repeated-sprint sequences) or long (>20–

30 s, sprint interval session) all-out sprints, interspersed with recovery periods. As such, maximal, all-out 

sprint training is classified as a form of high-intensity training at the highest end of the intensity spectrum 

71. When compared on a matched-work basis or when estimated energy expenditure is equivalent, DHIT 

can serve as an effective alternate to traditional endurance training, inducing similar or even superior 

changes in a range of physiological, performance and health-related markers in both healthy individuals 

and diseased populations 54, 55, 71-75. However, one of the most interesting aspects of high intensity training 

is that performance can be improved, or at least maintained, under conditions of reduced weekly volume. 

In fact, growing evidence suggests this type of training stimulates physiological remodeling comparable 

with moderate-intensity continuous training despite a substantially lower time commitment and reduced 

total exercise volume 71, 76. 

As few as 6 sessions of HIT over 2 weeks, totaling ~ 15 min of ‘‘all-out’’ cycle exercise, has been shown to 

increase the maximal activity of mitochondrial enzymes and improve performance during tasks that rely 

heavily on aerobic energy provision 59, 77. Other adaptations documented after several weeks of HIT 

include an increased resting glycogen content, a reduced rate of glycogen utilization and lactate 

production during matched-work exercise, an increased capacity for whole-body and skeletal muscle lipid 

oxidation, enhanced peripheral vascular structure and function, improved exercise performance as 

measured by time-to-exhaustion tests or time trials 76. The impact of low-volume DHIT programs on 

maximal oxygen uptake in healthy adults has been investigated. A recent meta-analysis by Weston et al. 78 
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show that when compared with control, moderate improvements in �� O2max were likely for active non-

athletic males and possible for sedentary males and active nonathletic females. A small improvement in 

�� O2max was likely for sedentary females. The effect on athletic males was unclear. With the exception of 

a possible moderate additional increase in �� O2max for subjects with a lower baseline value. The 

comparison of DHIT with endurance training was considered unclear.   

Given the oxidative phenotype that is rapidly upregulated by DHIT, it is plausible that metabolic 

adaptations to this type of exercise could be mediated, in part, through signalling pathways normally 

associated with endurance training. A key regulator of oxidative enzyme expression in a number of cell 

types, including skeletal muscle, is peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), 

a transcriptional coactivator that serves to coordinate mitochondrial biogenesis 67, 79.  

In this respect, acute low-volume DHIT increases PGC-1α mRNA by several-fold when measured 3 h post-

exercise 80, 81. This is comparable with the acute increase in PGC-1α mRNA expression observed after a 

bout of continuous endurance-type exercise 82, 83. Similar to endurance exercise 84, acute DHIT may 

activate PGC-1α by increasing its nuclear translocation 81. The increase in nuclear PGC-1α following low-

volume DHIT coincides with increased mRNA expression of several mitochondrial genes, suggesting that a 

program of mitochondrial adaptation is engaged with these short bursts of intensity exercise.  

Several signalling pathways have been linked to exercise induced activation of PGC-1α and mitochondrial 

biogenesis, including calcium/calmodulin-dependent protein kinase (CaMK), 5'-adenosine monophosphate-

activated protein kinase (AMPK), the p38 mitogen-activated protein kinase (MAPK) 85. 

The first of these mentioned molecular signals is mediated by the prolonged rise in intramuscular calcium, 

such as that which occurs during prolonged endurance exercise or high exercise training volumes. These 

high calcium concentrations activate the CaMK, a mitochondrial biogenesis messenger. The upstream 

signals that activate PGC-1α and mitochondrial biogenesis in response to low-volume HIT is probably relate 

to robust changes in intramuscular ATP:ADP/AMP ratio following exercise 86 and the concomitant 

activation of AMPK 80, 81. Activation of p38 mitogen-activated protein kinase (MAPK), possibly via increased 

generation of reactive oxygen species (ROS) 87, may also be involved. 

Consequently, the high mitochondrial oxidative capacity, improved fat oxidation potential, and increased 

glucose transport capacity in the skeletal muscle of endurance athletes may be achieved through either 

high volumes of endurance training, high intensities of endurance training or various combinations of both 

55. At the molecular level, it may be the blend of signals induced from combined high-volume training and 
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high-intensity training that elicits either a stronger or more frequent promotion of the aerobic muscle 

phenotype through PGC-1α mRNA transcription 55.  

 

Reactive oxygen species, ageing and physical exercise. 

A “ free radical ” is a term defining an atom (or molecule) that contains one or more unpaired electrons 

that is capable of independent existence. Reactive oxygen species (ROS) are compounds (or atoms) which 

may be free radicals containing oxygen or non-radical but have reactive derivatives of oxygen, like 

hydrogen peroxide and others. Reactive nitrogen species (RNS) are nitrogen radicals and non-radical 

nitrogen reactive molecules with a nitrogen reactive center 88-90. The occurrence of one unpaired electron 

results in high reactivity by their tendency to give or subtract electrons to attain stability. As a 

consequence, ROS can in turn be stabilized by subtracting electrons to neighbouring molecules (e.g. lipids, 

proteins, DNA). 

Cells are exposed to a large variety of ROS  from both exogenous and endogenous sources. Exogenous 

sources of ROS can be identified in UV and gamma radiations, microbes, allergens, car exhausts, certain 

food, tobacco smoke, air pollutants, drugs and alcohol when assumed in a great amount. Nevertheless, 

despite the extremely strong exposure of whole our organism to ROS coming from exogenous sources, 

endogenous ROS play the most important end extensive role, since, in the time course of life, each body 

cell is continuously exposed to them. The major responsible of ROS production are in mitochondria, 

enzymes are another endogenous source of ROS 91, 92. While most enzymes produce ROS as by-product of 

their activity (e.g. xanthine oxidase) some of them are designed to produce ROS (e.g. nitric oxide synthase 

yields nitric oxide radicals, NADPH oxidase complex utilizes electrons to produce superoxide radicals from 

the oxygen molecule. It is reported that ~2 % of the O2 used by the mitochondrial electron transport chain 

creates ROS and in particular the superoxide anion (O2
•_), due to its incomplete reduction 91, 92. The O2

•_ is 

very unstable and is rapidly converted either spontaneously or after its export into the cytoplasm by 

mitochondrial and cytoplasmic superoxide dismutases (SOD), to the more stable hydrogen peroxide (H2O2), 

and then further to water by catalase (CAT) or to the very reactive hydroxyl radical in the presence of 

transition metals (e.g. Fe2+). Five enzymes complexes are localized on the inner mitochondrial membrane. 

Complexes I-IV (the electron transport chain) are involved in transporting electrons through a series of 

proteins REDOX reactions, with the final destination being a an oxygen molecule. Under normal situation, 

this oxygen is the converted to water in complex IV, and the energy stored in the proton gradient is used 

to drive ATP production in complex V. However, during this process, it would occur an inadequate 
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coupling of the electron transfer between  the complexes I and III: complex I (namely, the iron-sulfur 

clusters) releases the ROS (O2
•_) only towards the mitochondrial matrix, whereas complex III (the ubiquol 

oxidation site) releases superoxide into both matrix and outside the inner membrane. So a small 

percentage of the oxygen consumed by mitochondria at complex IV is converted to ROS rather than water 

93.      

At appropriate concentration, ROS are known to act as important signalling molecules. ROS have been 

recognized as activating multiple pathways that influence gene expression 88, 94. ROS are also produced by 

immune cells during the process of respiratory burst in order to eliminate antigens 95. Consequently, ROS 

are essential to wellbeing, having various regulatory roles in cells.  However, oxygen radicals are also 

known to damage DNA and lipids, and oxidize proteins 96-98. For this reason, a network of antioxidant 

defence mechanism is present in the body 99, 100. In general, antioxidants are often reducing agents 

(intracellular and extracellular) able to react with free radicals and reactive species minimizing their 

harmful actions. Antioxidants can be both synthesized in vivo and absorbed through diet. They can be 

divided into two groups: enzymatic and non-enzymatic. The main enzymatic antioxidants include 

superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). Each of these enzyme is 

responsible for the reduction of a different ROS, and they are located in different cellular compartments. 

The non-enzymatic group includes glutathione, vitamin C, vitamin E, carotenoids, uric acid, and similar. 

Further, there is  an evidence that bilirubin can act as antioxidant to help neutralize certain free radicals 

101.  

Oxidative stress is generally defined as an imbalance that favours the production of ROS and/or RNS over 

their inactivation by antioxidant defence systems 102. Whilst small fluctuations in the steady-state 

concentration of these oxidants may actually play a role in intracellular signalling 103, uncontrolled 

increases in the steady-state concentrations of these oxidants lead to free radical-mediated chain 

reactions which indiscriminately target proteins, lipids, and DNA 96-98, together with functional impairment 

of metabolic process as the mitochondrial respiratory chain 104, 105.  

As a consequence, the delicate balance between advantageous and detrimental ROS effects plays a great 

physio-pathological importance. In fact, conditions of oxidative stress (i.e. when oxidants overwhelm 

antioxidants) are associated with a number of neurological diseases (e.g. Parkinson’s disease, 

Huntington’s disease, Alzheimer’s disease, Amyotrophic Lateral Sclerosis and various peripheral 

neuropathies), pathogenesis of diseases states such as atherosclerosis, diabetes, ischemia/reperfusion 
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injury, inflammatory diseases, cancer, cardiovascular and/or respiratory insufficiency 103, 106, 107 as well as 

the normal aging process 108.  

There is scientific evidence that aging is accompanied by a progressive increase in free radical production 

[i.e., synthesis of reactive oxygen species, (ROS)] with a concomitant decrease in the enzymatic defense 

mechanisms, promoting the development of oxidative stress 109-112. 

The aging muscle would be also more sensitive to exercise induced muscle damage, would be less able to 

regenerate 113, and would produce more ROS because of the greater proportion of type 1 fibers, which 

have the greatest oxygen consumption 114. It has been demonstrated that aging induces an imbalance in 

the intracellular levels of prooxidants and antioxidants, which in turn elevates oxidative stress and 

increases oxidative damage 109. Nevertheless, the elderly who are physically active benefit from exercise-

induced adaptation in cellular antioxidant defense systems 111. Improved muscle mechanics, strength, and 

endurance make them less vulnerable to acute injury and chronic inflammation. Indeed, moderate levels 

of oxidative stress are essential for the organisms to adapt and reach a new level of hormesis even if the 

balance of oxidants and antioxidants becomes more fragile in advance age 115. 

Physical exercise is perhaps one of the most characteristics examples demonstrating that ROS are not 

necessarily harmful, considering that the well-known benefits of regular exercise on human organism 

accompanied by repeated episodes of oxidative stress 116, 117. We are aware that physical exercise is 

associated with a dramatic increase in oxygen uptake by the whole body and in particular by skeletal 

muscle. It has been reported an increase of 10-15-fold in the rate of whole body oxygen consumption and 

an increase of more than 100-fold in the oxygen flux in active muscles during whole-body aerobic 

exercise, so resulting in increased ROS formation shifting the cellular environment from a reduced to an 

oxidized state independently of physical activity (aerobic, anaerobic or resistance types of activities) 118-

120. 

Most of the oxygen consumed by the body is utilized in the mitochondria for substrate metabolism and ATP 

production. An increased ATP demand accompanying exercise increases both aerobic and/or anaerobic 

metabolism. Many factors might contribute to the oxidative stress induced by exercise and a variety of 

factors can influence the oxidative rate, such as muscle groups recruited, modes of contraction, exercise 

intensity, exercise duration, and the exercising population. During aerobic exercise, the generation of ROS 

increases according to a higher O2 consumption and, consequently, a higher electron leakage from the 

electron transport chain 119. Recent reports have indicate the potential role that blood may play at rest or 

during exercise on ROS production. Some important factors, that contribute to the oxidative stress during 
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exercise, are easily visible in the blood: increase in blood temperature, decrease in blood pH, decrease in 

blood oxygen partial pressure and increase in the concentration of blood lactate 121-123. The whole blood, 

or parts of it (plasma 124, erythrocytes 125, neutrophils 124, 126, lymphocytes 117, platelets 127) have reported 

an increased production of various reactive species after exercise. However, the majority of the relevant 

human studies have measured the redox status of the plasma (plasma is about 55% of blood volume; its 

composed mostly water, about 90% and contains dissolved proteins, glucose, lipids, mineral ion), this is 

probably for the reasons: the assumption that plasma better reflects tissue redox status and the easiness 

of plasma collection.  

Blood is able to produce ROS during exercise, yet it is equally evident that skeletal muscle is able to 

produce reactive species during increased conctractile activity. Referring to the appropriate level of 

reactive species, ROS are important molecules for muscle contraction. At the molecular level, the 

exercise actives p38y MAPK (mitogen-activated protein kinase) which promotes PGC-1α activity and 

expression in control of mithocondrial biogenesis and angiogenesis in skeletal muscle . The promoting 

effects of regular exercise on different cellular functions include the up-regulation of antioxidant, 

oxidative damage repairing systems, neurogenesis, and induction of trophic factors 128. 
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FIRST STUDY 

Effects of training manipulation on physiological parameters and running performance in masters 

runners. 

Introduction 

The world population has been experiencing significant ageing. The number of older persons increased 

from 202 million in 1950 to 841 million in 2013, and the older population will almost triple by 2050 129. In 

parallel with these changes in demographical age, the number of middle-aged and older (‘masters’) 

involved in sport activities, especially at different level is continuously increasing, particularly in long-

distance events 9. For example, U.S. marathon finishers aged over 40 years were 37,180 (26% of estimated 

U.S. marathon finishers) in 1980 reaching the number of 254,270 (47% of estimated U.S. marathon 

finishers) in 2013 130. Master athletes are typically characterized as people who continue physical training 

throughout life and in this population, the incidence and risk of chronic and age-related diseases are 

reportedly lower, and self-rated health is better than in apparently healthy controls 7. In addition, master 

athletes are still capable of accomplishing exceptional performances for their age categories 9. 

Notwithstanding, despite training and regular participation in sporting competitions, exercise performance 

inevitably declines with ageing 6, 9, 12, 15. The age-related decrease in performance of masters endurance 

athletes has been shown to be mainly linked to a decline in �� O2max, a decrease in neuromuscolar 

function, and a reduction in the lactate threshold, whereas running economy (RE) is preserved with ageing 

6, 9, 12. Decline in endurance performance and its physiological determinants appear to be mediated in 

large part by a reduction in the exercise training ‘stimulus’ (i.e. exercise-training intensity, session 

duration and weekly frequency) with advancing age 6, 9. In fact, masters athletes are often “busier” than 

young athletes and the increases in job- and family-related responsibilities may impinge on the availability 

of time and energy for the intensive training required to remain competitive 9. In addition, few master 

ahtletes still have coaches or follow structured training programs and the increased prevalence of exercise 

training-associated injuries in this population also probably contributes to their reduced training intensity 

and volume 6, 51.  

In general, the main types of training used to improve endurance exercise performance are: i) continuous 

training (CON) at low- to moderate-intensity characterized by high volumes of training (> 30 min) with 

intensities between 60% and 80% of �� O2peak or below the “anaerobic threshold” (AT) with a nearly 

constant O2 consumption and without a “slow component” in  O2 kinetics 53-57 and ii) discontinuous high 
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intensity training (DHIT) characterized by repeated exercises performed at intensity corresponding to 

�� O2peak (or slightly lower) or above AT or "all-out", exercise bouts are separated by brief periods of low-

intensity work or inactivity that allow a partial but often not a full recovery 53-55, 57-59. Until a few years 

ago, it was widely believed that DHIT was prerogative of elite athletes accustomed to sustain training 

periods of CON alternating with periods of DHIT, especially during competitive season 55. Instead, in 

sedentary or moderately trained subjects were prescribed primarily exercises of low-moderate intensity 

and high-volume as it was considered safer and, with reason, effective to improve aerobic metabolism 60, 

131, 132. However, different studies showed that even in sedentary or moderately trained individuals, DHIT 

might be an efficient strategy to induce adaptations in skeletal muscle and exercise performance that are 

comparable with conventional endurance training 55, 73, 74, 77, 133-136.  

To the best of our knowledge, there are no data on the effects of training program with different intensity 

and volume characteristics in master runners with several years of training experience. Thus, the aims of 

this study are: i) to evaluate if an individualized training schedules characterized by an overall reduction 

of training volume is able to improve performance and ii) to compare the impact of CON and DHIT training 

programs on running performance and the main physiological factors related to endurance performance in 

master runners 6, 9.  

 

Materials and methods  

Participants  

Thirty-four male masters runners (age: 47.2 ± 7.4 years, height: 1.75 ± 0.06 m, body mass: 70.0 ± 8.8 kg, 

BMI: 23.0 ± 1.9) participated in the study. Athletes had a training experience of 15 ± 4 years and in the 

last 6 months their average training volume was ~ 50 km·wk-1 with a training frequency of 3-4 sessions per 

week. Participants were not involved in a structured training programs and they independently managed 

their own training for at least 5 years.  All of them competed at regional level on distances between 10-

km to Marathon. Before the start of the study, participants were screened medically (history, physical 

examination, and resting ECG) to ensure that there were no contraindications to study participation. One 

participant left the study for a cardiovascular problem incompatible with exercise discovered during 

preliminary test. No subject participated in any study prior to this experiment. Each athlete was fully 

informed about the aims, methods and risks associated with participation and gave his written informed 
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consent before the start of the study. All procedures were in accordance with the Declaration of Helsinki 

and the study was approved by the local Ethics Committee. 

 

Study design  

Participants were randomly assigned to three different groups using a spreadsheet 137 in order to reduce 

difference between group means for �� O2peak, gas exchange threshold (GET) and 5-km time trial. The 

three groups were: continuous moderate intensity training (CON) (n = 11); discontinuous high-intensity 

training (DHIT) (n = 11) and control group (CTRL) (n=12).  All participants were tested before (PRE) and 

after 8-weeks of training (POST).  

Thirty of 35 participants successfully completed the protocol. Four subjects left the study: one subject for 

knee pain (CON group), and three for muscle injury occurred during training (one in DHIT and two in 

CTRL). 

 

Training characteristics 

CON and DHIT groups trained 3 times per week during a 8-weeks periods in a 400-m outdoor track.  Three 

different training sessions were prepared based on GET.  Total distance achieved during each session was 

controlled in order to obtain an identical training volume. For CON sessions were: 1) 64.5 min at 70% GET, 

2) 58.5 min at 80% GET, 3) 54 min at 90% GET. For DHIT: 1) 18 x (1 min at 120% GET, 2 min at 65% GET), 2) 

18 x (1 min at 130% GET, 2 min at 65% GET), 3) 18 x (1 min at 140% GET, 2 min at 65%GET). All athletes in 

CON and DHIT groups received a detailed training plan before the start of the study and they trained 

under the supervision of an expert.  As for CTRL, participants were asked to maintain training habits 

during 8-weeks. Competitions were not allowed during training period for all groups. 

 

Tests and procedures  

Participants were instructed to arrive at the laboratory in a rested and fully hydrated state, about 3 h 

postprandial, and to avoid strenuous exercise in the 24 h preceding each testing session. In addition, they 

were told to avoid alcohol and caffeine products intake 48 h before the exercise test. All laboratory 

exercise testing sessions were carried out in a well-ventilated climatized laboratory at 19–21°C on a 

motorized treadmill (Jaeger, Germany) set at a 1% gradient. Subjects initially performed a ramp 

incremental exercise test (IE) for the determination of �� O2peak and GET. The protocol began with 
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subjects running at 8 km·h-1 for 6 min; then the belt speed was increased by 1 km·h-1 every minute until 

volitional exhaustion. The peak values of the main cardiovascular, respiratory and metabolic parameters 

were taken as the highest 30-s mean value attained prior to the subject’s volitional exhaustion. The GET 

was determined as described previously 138. Maximal speed (Vmax) reached at the end of IE was also 

recorded. 

At least 48 hours after the incremental test, subjects performed two 6-min constant load exercises (CLE) 

at moderate intensity (60% of �� O2peak) for determination of metabolic energy cost of running (Cr). Each 

CLE was separated at least with 20 minutes of rest. As for running performance, participants completed a 

5-km endurance running time trial on a 400-m outdoor track. Running test was performed two times 

separated from at least 5 days and the best performance recorded. During trials, subjects received 

information regarding the number of laps to go. Performance time was measured using a manual 

stopwatch. 

 

Measurements 

Pulmonary ventilation (�� E, in BTPS), O2 consumption (�� O2), and CO2 output (�� CO2), both in STPD, were 

determined breath-by-breath by a metabolic cart (Vmax29c; SensorMedics, Bilthoven, The Netherlands). 

Expiratory flow was determined by a mass flow sensor (hot wire anemometer). �� O2 and �� CO2 were 

determined by continuously monitoring PO2 and PCO2 at the mouth throughout the respiratory cycle and 

from established mass balance equations. Respiratory exchange ratio (RER) was calculated as �� CO2/�� O2. 

HR was determined from the ECG signal. At rest and at various times (1, 3, 5 and 7 min) during recovery, 

20 µL of capillary blood was obtained from a preheated earlobe for the determination of blood lactate 

concentration ([La-]b) by an enzymatic method (Biosen 5030; EKF, Cosmed, Italy). The rate of metabolic 

energy expenditure was calculated by multiplying the subject's net �� O2 values (in mL·kg-1·min-1) 

(measured minus resting) during CLE per the caloric equivalent (in kJ/l O2) determined from the 

respiratory exchange ratio. Metabolic energy cost of running (Cr) were finally calculated (in J·kg-1·m-1) as 

the ratio between energy expenditure and the speed (m·min-1) during CLE 139, 140. 

 

Statistical analysis 



19 
 

Results are expressed as means ± SD. The data were analyzed using a two-way ANOVA for repeated 

measures (groups x time). Post-hoc analysis was completed using Bonferroni multiple comparisons. When 

significant effects of time were found, a student t-test for paired data was used to determine differences 

between PRE and POST. A stepwise multiple regression analysis of the PRE data has been perfomed in 

order to extract a set of physiological variables which provided the optimal prediction of 5-km time trial. 

Significance level was set at P<0.05. 

 

Results 

Training volume. During the 8 weeks, training volume was significantly reduced in CON (34.1±3.1 km·wk-1) 

and DHIT (33.3±2.8 km·wk-1) compared to CTRL (51.8±13.4 km·wk-1). (Figure 1). 

 

Figure 1. Training volume differences between groups. CON, continuous moderate intensity training; DHIT, discontinuous high-
intensity training; CTRL, control group.  * significantly different from CTRL (P<0.05) 

 

Incremental exercise. Mean (±SD) of the main cardiovascular, respiratory and metabolic parameters 

obtained in CON, DHIT and CTRL are shown in Table 1. All groups attained peak HR values around 95% of 

the age predicted maximum. Thus, taking into account also RER and [La-]b peak values, it can be assumed 

that maximum exercise capacity had in fact been reached in each condition. 

 

 
 
 
 
 
 
 
 
 
 
 



 

 

�� O2peak did not change after training in all groups (CON, 47.6±

1; DHIT, 48.8±5.5 mL·kg-1·min-1 vs. 49.0±

1·min-1, in PRE and POST respectively).

Vmax was significantly higher after training only in DHIT (16.4±

POST respectively; P) no differences were found for CON (16.4±

POST respectively) and CTRL (16.3±

Figure 2. Peak treadmill running speed (Vmax)
moderate intensity training; DHIT, discontinuous high

 

As for GET, no significant differences were found in POST (88.6±3

CON, DHIT and CTRL respectively) respect to PRE (

DHIT and CTRL respectively) in all groups

to PRE in CON (15.1±1.1 km·h-1 vs 14.6±1.4

km·h-1, respectively) whereas no diffe

respectively) (Figure 3).   

Table 1. Mean±SD of the main cardiovascular, respiratory and metabolic parameters obtained during the 
incremental test  

 
 PRE 

O2peak (L·min-1) 3.24±0.33

HR max (bpm) 173±10 

E (L·min-1) 116.5±12.8

R Q 1.19±0.04

[La-]b (Mm) 7.81±1.57

O2peak, peak oxygen uptake; HRmax, maximal heart rate; 
respiratory exchange ratio 

ning in all groups (CON, 47.6±4.2 mL·kg-1·min-1 vs. 48.0±

vs. 49.0±4.4 ml·kg-1·min-1; CTRL 48.4±4.4 mL·kg-1·min

d POST respectively). 

r training only in DHIT (16.4±1.8 km·h-1 vs 17.4±

nces were found for CON (16.4±1.5 km·h-1 vs 16.9±

ST respectively) and CTRL (16.3±1.9 km·h-1 vs 16.5±1.6 km·h-1 in PRE and POST respectively) 

 

(Vmax) PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous 
moderate intensity training; DHIT, discontinuous high-intensity training; CTRL, control group.  * significantly different from PRE 

(P<0.05) 

rences were found in POST (88.6±3.2%, 88.8±4.6%, 88.8

CON, DHIT and CTRL respectively) respect to PRE (87.6±6.1%, 86.8±4.9%, 87.6±6.3

RL respectively) in all groups. However, the speed at GET significantly improved P

vs 14.6±1.4 km·h-1, respectively) and DHIT (14.9

eas no differences were found in CTRL (14.2±1.3 km·h

of the main cardiovascular, respiratory and metabolic parameters obtained during the 

CON DHIT 
POST PRE POST 

3.24±0.33 3.30±0.34 3.50±0.39 3.51±0.38 

 170±10 175±14 172±13 

12.8 112.9±16.2 121.1±17.7 129.5±24.6 

±0.04 1.20±0.07 1.16±0.07 1.18±0.08 

7.81±1.57 8.01±1.64 7.9±0.8 8.44±0.5 

oxygen uptake; HRmax, maximal heart rate; E , pulmonary ventilation; [La-]b, blood lactate concentration; R, 
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vs. 48.0±6.5 mL·kg-1·min-

·min-1 vs. 48.3±4.0 mL·kg-

vs 17.4±1.3 km·h-1 in PRE and 

vs 16.9±1.4 km·h-1 in PRE and 

and POST respectively) (Figure 2). 

PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous 
TRL, control group.  * significantly different from PRE 

2%, 88.8±4.6%, 88.8±3.8% of  �� O2peak in 

87.6±6.1%, 86.8±4.9%, 87.6±6.3% of �� O2peak in CON, 

. However, the speed at GET significantly improved POST respect 

±1.1 km·h-1 vs 14.1±1.2 

·h-1 vs 14.0±1.6 km·h-1, 

of the main cardiovascular, respiratory and metabolic parameters obtained during the 

CTRL 
PRE POST 

3.37±0.44 3.40±0.42 

174±9 173±11 

119.8±14.2 118.1±15.4 

1.18±0.02 1.19±0.06 

8.4±1.1 8.2±0.9 

]b, blood lactate concentration; R, 



 

Figure 3. Speed at GET (km·h-1) PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous moderate intensity 
training; DHIT, discontinuous high-intensity training; CTRL, control group.  * significantly different from PRE (P<0.05)

 

Constant load exercise. Mean (±SD)

exercise are presented in Table 2. All variables 

both CON and DHIT group, wherease no change was found for CTRL. The

are shown in Figure 4. CON and DHIT significantly decreased 

was found for CTRL.  

 

 

 
Table 2. Mean±SD of the main cardiovascular, respiratory and metabolic parameters obtained during the 
constant load exercise.  

 

 PRE 

O2 ss (mL·Kg-1·min-1) 33.9±2.8

HR max (bpm) 137±12 

E (L·min-1) 61.2±9.4

R Q 0.92±0.05

^[La-]b  (Mm) 0.7±0.4 

O2ss, oxygen consumption at steady state; HR,
RER, respiratory exchange ratio. * significantly different from PRE (P<0.05).

 

PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous moderate intensity 
intensity training; CTRL, control group.  * significantly different from PRE (P<0.05)

. Mean (±SD) overall �� O2 values, �� E, HR, RER, and ^[La-]b 

are presented in Table 2. All variables are significantly different POST training respect to PRE in 

both CON and DHIT group, wherease no change was found for CTRL. The metabolic energy cost of running 

. CON and DHIT significantly decreased Cr by 4.6% and 3.9% after training

of the main cardiovascular, respiratory and metabolic parameters obtained during the 

CON DHIT 

POST PRE POST 

8 32.6±2.2* 33.1±3.3 31.7±3.1* 

 132±13* 129±11 125±10* 

9.4 57.1±10.2* 60.1±8.2 57.7±6.3* 

5 0.89±0.04* 0.94±0.02 0.91±0.03* 

 0.4±0.3* 0.7±0.4 0.3±0.3* 

tion at steady state; HR, heart rate; E , pulmonary ventilation;  ^[La-]b ,delta
. * significantly different from PRE (P<0.05). 
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PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous moderate intensity 
intensity training; CTRL, control group.  * significantly different from PRE (P<0.05) 

 at the end of moderate 

are significantly different POST training respect to PRE in 

metabolic energy cost of running 

% after training. No change 

of the main cardiovascular, respiratory and metabolic parameters obtained during the 

CTRL 

PRE POST 

33.3±2.3 33.0±2.1 

136±13 134±14 

59.7±8.3 58.1±9.0 

0.92±0.02 0.91±0.04 

0.7±0.5 0.5±0.5 

delta blood lactate concentration; 
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Figure 4. Metabolic energy cost of running during submaximal exercise PRE (white bars) and POST (black bars) 8 weeks of 
training CON, continuous moderate intensity training; DHIT, discontinuous high-intensity training; CTRL, control group.  * 

significantly different from PRE (P<0.05) 

 

 

Running performance. 5-km time trial results are shown in Figure 5. Respect to PRE, the time to cover 5 

km was statistically lower POST both in CON (1304±109 s vs. 1264±85 s, P=0.004) and DHIT (1282±155 s vs. 

1254±140 s, P=0.015). Performance did not change in CTRL (1320±149 s vs. 1309±142 s, in PRE and POST 

respectively). Results of the Pearson product moment-correlation analysis showed that all variables 

measured were significantily correlated with 5-km time trial (Table 3).  

 

Table 3. Relationships between ��O2peak, Vmax, GET, Speed at GET, Cr and  5-km time trial (n=30)  

Variables  ��O2peak 

(mL·kg-1·min-1) 

Vmax 

(km·h-1) 

GET 

(mL·kg-1·min-1) 

Speed at GET 

(km·h-1) 

Cr 

(J·kg-1·min-1) 

5-km time trial (s) -0.733** -0.856** -0.695** -0.831** 0.428* 

��O2peak, maximal oxygen uptake; Vmax, maximal speed at the end of incremental test; GET, gas exchange threshold; Cr, energetic 

cost. ** P<0.001, *P<0.05 

 
 

The stepwise multiple regression analysis revealed that Vmax (km·h-1), GET (mL·kg-1·min-1) and Cr (J·kg-

1·m-1) are the variables selected for prediction of the 5-km time trial. The analysis showed that 72.4% of 

the variance in 5-km time trial could be explained by Vmax alone (P<0.0001), and the addiction of GET 

and Cr to the prediction equation increased this significantly to 79.0% (Vmax and GET) (P<0.0001) and 

85.5% (Vmax, GET and Cr) (P<0.0001). Table 4 summarizes the linear multiple regression equations 

obtained.   
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Table 4. Linear multiple regression equations (n=30)  

5-km time trial (s) = 2353.979 – 64.350 Vmax 

5-km time trial (s) = 2690.008 – 51.091 Vmax – 13.166 GET 

5-km time trial (s) = 2181.979 – 26.394 Vmax – 23.977 GET + 146.629 Cr 
 

Vmax, maximal speed at the end of incremental test; GET, gas exchange threshold; Cr, energetic cost.  

 
 

 

Figure 5. 5-km time trial performance PRE (white bars) and POST (black bars) 8 weeks of training. CON, continuous moderate 
intensity training; DHIT, discontinuous high-intensity training; CTRL, control group.  * significantly different from PRE (P<0.05) 

 

Discussion 

The first aim of this study was to evaluate the consequences of a reduction of training volume on running 

performance in master runners. Results show that a significant reduction of self-managed training volume 

(about 35%) replaced by a controlled training program significantly improved 5-km time trial. Before the 

intervention the whole group affirmed to undertake a combination of both high-intensity (~ 4-10% of total) 

and high-volume (~ 90% of total) training sessions for a training amount of about 50 km·wk-1. However, 

subjects did not follow any individualized training program and training intensity, as well as training 

volume, were based only on the participants’ experience. Consequently, after some years of similar 

training contents and intensities, a plateau of performance was reached as suggested by the results of 

CTRL group. The variables of training should be manipulated from day to day with the goals to maximize 

physiological capacity over time and to continue to obtain performance improvements 57. In fact, the 

intracellular signaling impact of a given exercise stress (intensity x duration) almost certainly decays with 

training 141. It has been suggested that the reduction in the exercise training stimulus with advancing age 

(especially the minimun training intensity to elicit adaptive responses) may have a role in the decline of 

peak performance 18, 24, 142, 143. This issue emphasizes the importance of quality of training rather than 
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quantity 52 in master runners in order to obtain improvements on running performance and this implicates 

the selection of the most appropriate exercise modalities and intensities. 

Thus, the second aim of this study was to investigate the effects of continuous training at moderate 

intensity vs. discontinuous training at high intensity on the main physiological determinants of endurance 

performance. Some studies comparing the physiological impact of CON and DHIT on sedentary, apparently 

healthy, young adults and moderatly trained individuals showed that both training modalities may 

similarly improve exercise performance 75, 131, 144, 145 whereas others found greater improvements with DHIT 

74, 135. Results of our study are in line with previous research showing that CON and DHIT training programs, 

characterized by equivalent training volume (~ 35 km·w-1; ~ 35% lower respect to training habits) similarly 

improved 5-km time trial performance in trained master runners.  

In order to better understand the influence of each variable collected on 5-km perfomance, a stepwise 

regression analysis has been performed. Our data showed that all variables measured were significantly 

correlated with 5-km perfomance (Table 3). However, the Vmax and speed at GET have the higher 

correlation coefficient (r=-0.856 and r=-0.831, respectively). This result supports previous studies which 

found that Vmax and the fractional utilisation of the ��O2peak (expressed as lactate or ventilatory 

threshold) are highly correlated with performance in 5-km in young 146-148 and middle-aged runners 149. 

Moreover, the stepwise regression analysis revealed that only Vmax, GET and Cr statistically significantly 

predicted the 5-km performance (adjusted R2=0.855). This finding is in accord with other studies showing 

that Vmax, lactate or ventilatory threshold and RE may be better predictors of endurance performance 

than ��O2peak in a homogeneous group of trained endurance athletes 49, 50, 149-151.   

After training a significant improvement of at least one of the variables selected for prediction of 5-km 

performance has been observed. Both CON and DHIT significantly decreased Cr by 4.6% and 3.9%, 

respectively reflecting an improvement in running economy. RE is likely influenced by metabolic, 

biomechanical factors and/or neuromuscular efficiency 151, 152. In our study we observed a significant 

reduction of the overall ��O2 at steady state during exercise at 60% ��O2peak togheter with a significant 

reduction of ��E, HR, ^[La-]b, and RER. It has been suggested that training interventions able to reduce 

��E, HR and [La-] during exercise may be beneficial to RE by decreasing the energy demand associated with 

this parameters 153, 154. Moreover, the reduction of the RER after training indicates a greater fat oxidation 

and a conservation of carbohydrate energy reserves shifting the “start” of glycolitic activity to produce 

ATP aerobically and/or anaerobically at a higher intensity of running 60. In addition, it is reasonable to 
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speculate that training may have also induced an increase in the respiratory capacity of skeletal muscle 

reducing the ATP demand per mitochondria at given submaximal work rate 67, 79.  

Beside physiological aspects, neuromuscular factors may also be important determinants of RE 148, 152. For 

example, Piacentini et al. 155 showed that an increased neuromuscular function after concurrent strength 

and endurance training improves running economy and performance in master runners.  

High intensity training may lead to high engagement of the neuromuscular system 156 and improve 

muscular function especially for older athletes which experience a significant decrease in muscle mass and 

neural function with ageing. Even if we did not directly measure neuromuscular function, the 

improvement in Vmax (with no change in ��O2peak) for DHIT group after training might be related also to 

improvements in muscular function 157-159.  

These data confirm that both CON and DHIT may positively affect the main factors related to exercise 

economy in master runners. The present result is compatible with earlier studies showing that RE similarly 

improved after CON and DHIT in moderately trained subjects 135, 154. Franch et al. 154 showed that RE was 

significantly improved in recreationally men (30.4±4.0 yrs) after 6-weeks continuous-distance training 

(3.1%) and long interval training (3.0%).   Helgerud et al. 135 found that running economy improved in 

young university students (24.6±4.0 yrs) after 8 weeks of long-distance training and short- or long-interval 

training (range, 7.5 to 11.0%).  

The more economical runners are able to run at lower percentage of their ��O2peak, resulting in lower 

metabolic perturbations at a given speed. Our results show that CON and DHIT group significantly 

improved speed at GET by 3.7% and 4.8% for CON and DHIT, respectively. It is known that a rightward shift 

of the GET to a higher running speed is characteristic of successful endurance training programs. This 

adaptation allows a higher absolute exercise intensity to be sustained without the accumulation of blood 

lactate that can be translated in an higher average running speed during competitions 48.  

Our data show that a significant reduction in training volume did not change ��O2peak after both CON and 

DHIT. Nevertheless, the 5-km running performance improved after both training periods. This findings 

indicates that when master athletes reached a good level of ��O2peak others factors seem to be important 

in order to obtain further improvements in running performance. GET expressed as an absolute value 

(mL·kg-1·min-1) has been previoulsy indicate as a significant predictor of 5-km performance. However, 

when expressed as a percentage ��O2peak subjects in this study had a pretraining GET of ~87% ��O2peak. 
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This represents an already high value and it was unlikely that ��O2 at GET improved without a further 

improvements in absolute ��O2peak. 

 

Conclusion 

In conclusion, this study indicates that a well-controlled training program may significantly reduce the 

amount of weekly training volume (with a consistent reduction of time) and significantly improve running 

performance in masters endurance runners.  

Vmax, fractional utilisation of ��O2peak and running economy are the best predictor of 5-km performance 

in master runners suggesting that need to focus training on the improvement of this parameters. 

Both continuous moderate intensity training and discontinuous high intensity training, characterized by 

the same total volume, improve running economy and running performance in master runners. Further 

research is required in order to better understand the effects of different forms of high-intensity training 

programs on long term adpations on cardiopulmonary and skeletal muscle function in master endurance 

runners. 
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SECOND STUDY 

Time-course changes of oxidative stress response to high-intensity discontinuous training versus 

moderate-intensity continuous training in masters runners  

 

Introduction 

During exercise, the high energy demand required by muscle contraction causes an increase of oxygen 

delivery/uptake, leading to an increase of O2 consumption up to 200-fold compared to rest in the muscle 

fibres 118. The high O2 flux along the mitochondrial electron transport chain, in association with an 

electron leakage, is correlated with an increased production of free radicals and reactive oxygen and 

nitrogen species (ROS) 119, 120, 163. This phenomenon, usually defined as exercise-induced oxidative stress, 

has been implicated in the damage of cellular membranes, increased cellular swelling, decreased cell 

membrane fluidity, and DNA damage 96-98. In skeletal muscle fibres, exercise-induced oxidative stress is 

also linked to fatigue, longer recovery time and increased injury rate 164, 165. Indeed ROS can modify 

sarcoplasmic reticulum calcium handling, acting on calcium-release channels and SERCA, and alter 

structure and function of  myofilaments 90, 166.  

It has been demonstrated that exercise intensity plays an important role in ROS production by modulating 

the level of exercise-induced oxidative stress 116, 117. During aerobic exercise, the generation of ROS 

increases according to a higher O2 consumption and, consequently, a higher electron leakage from the 

electron transport chain 119. If ROS generation exceeds antioxidant defences (i.e. when exercise intensity 

is greater than 60-70% of maximal oxygen uptake) oxidative damage is observed. 

Nevertheless, the association between exercise and oxidative stress is not always negative. The chronic 

repetition of exercise, i.e. exercise training, may have the capability to develop a compensation to 

oxidative stress in skeletal muscle fibres 166 by means of an adaptation of the antioxidant and repair 

systems. This might result in a decreased resting level of oxidative damage and an increased resistance to 

oxidative stress 120, 167, 168. Several studies have demonstrated that antioxidant enzymes adaptation is one 

of the fundamental changes in response to exercise training within the skeletal muscle 166, as described 

for mitochondrial oxidative enzymes 169. Indeed, increased levels of ROS and oxidative damage are 

initiators of specific adaptive responses, such as the activation of antioxidant enzymes and enhanced 

oxidative damage repair 94, 167. The effects of training on oxidative stress depend on training 

characteristics (i.e., intensity, type, volume, duration) 170-172. Several studies have demonstrated that in 

humans continuous aerobic training, characterized by a constant sub-maximal intensity, reduces ROS 
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production and increases antioxidant defences 166, 173, 174. Recently, focus has shifted toward training 

modalities different from the traditional continuous aerobic training, such as high-intensity discontinuous 

training (HIDT). This training method is characterized by brief intermittent bouts of vigorous activity 

interspersed by periods of rest or low intensity exercise 54, 58. HIDT causes repeated O2 consumption 

fluctuations related to changes of exercise intensity as opposed to continuous endurance training where O2 

consumption is nearly constant during the exercise.  

HIDT, traditionally used by athletes, it is now increasingly employed in young healthy sedentary 

individuals as an effective time-efficient alternative to moderate intensity continuous endurance training, 

inducing similar or even superior changes in a range of physiological parameters, performance and health-

related markers 71. Indeed, the benefits of HIDT extend to health promotion and are currently proposed 

for improving health and reducing fatigue also in middle-aged subjects and in many diseases (COPD and 

cardiac patients) 175. 

Aging is associated with increased free radical generation in the skeletal muscle that can cause oxidative 

modification of protein, lipid, and DNA. Research evidence indicates that senescent organisms are more 

susceptible to oxidative stress during exercise because of the age-related ultrastructural and biochemical 

changes that facilitate formation of reactive oxygen species (ROS). Aging also increases the incidence of 

muscle injury, and the inflammatory response can subject senescent muscle to further oxidative stress 109-

112. Furthermore, muscle repair and regeneration capacity is reduced at old age that could potentially 

enhance the accrual of cellular oxidative damage 176. Nevertheless, the elderly who are physically active 

benefit from exercise-induced adaptation in cellular antioxidant defence systems 111. Improved muscle 

mechanics, strength, and endurance make them less vulnerable to acute injury and chronic inflammation. 

Indeed, moderate levels of oxidative stress are essential for the organisms to adapt and reach a new level 

of hormesis even if the balance of oxidants and antioxidants becomes more fragile in advance age 115. 

Up to date no study has investigated the effects of prolonged (> 1 week) high-intensity discontinuous 

training on ROS production and exercise-induced oxidative stress in middle-age subjects. These data could 

be particularly relevant to older subject since it has been reported that both resting and exercise-induced 

free radical-mediated lipid peroxidation is more pronounced in senescent compared with young human 

skeletal muscle 177. 

The aim of this study was to evaluate the effects of 8-week high-intensity discontinuous training (HIDT) on 

resting level and time-course changes of several indexes of oxidative stress in masters runners. Since HIDT 

is characterized by repeated variations of intensity associated with changes of redox potential, ATP/ADP 



 

ratio and, consequently, disturbances of cellular homeostasis

higher level of exercise-induced oxidative stress compared to a workload

continuous training (MOD).  

 

Materials and methods  

Participants  

Twenty healthy masters runners volunteered to participate in this study. The physical and physiological 

characteristics of the participants are shown in 

national level, with several years (21 ± 4 years) of training experience and training habits of about 45 

km.wk-1. Participants were matched on PRE gas exchange (GET) value (see above for further details) 

before being stratified into two groups

moderate-intensity continuous (MOD, n = 10) or high

training intervention for further details). All participants signed a written consent after

all risks, discomforts and benefits associated with the study. All tests were conducted in the laboratories 

of the Institute of Bioimaging and Molecular Physiology of the National Research Council under close 

medical supervision and subjects were continuously monitored by 12

Procedures were in accordance with the Declaration of Helsinki, and institutional review board (Comitato 

Etico Indipendente ASL Milano Due) approval was received for this study. 

 

 

 

 

 

 

 

 

 

 

 

Experimental Design  

Table 5.  Physical and physiological characteristics of the participants

 

Age (years) 

Body mass (kg) 

Height (m) 

BMI (kg·m-1) 

O2peak (L·min-1) 

MOD, moderate-intensity continuous training

training   ��O2peak, maximal oxygen consumption

ratio and, consequently, disturbances of cellular homeostasis 178, we hypothesised that HIDT might cause a 

induced oxidative stress compared to a workload-matched, moderate

Twenty healthy masters runners volunteered to participate in this study. The physical and physiological 

characteristics of the participants are shown in Table 5. They were all male athletes, 

national level, with several years (21 ± 4 years) of training experience and training habits of about 45 

1. Participants were matched on PRE gas exchange (GET) value (see above for further details) 

before being stratified into two groups completing 8 weeks (3 times non consecutively per week) of 

intensity continuous (MOD, n = 10) or high-intensity discontinuous training (HIDT, n = 10) (see 

training intervention for further details). All participants signed a written consent after

all risks, discomforts and benefits associated with the study. All tests were conducted in the laboratories 

of the Institute of Bioimaging and Molecular Physiology of the National Research Council under close 

ects were continuously monitored by 12-lead electrocardiography (ECG). 

Procedures were in accordance with the Declaration of Helsinki, and institutional review board (Comitato 

Etico Indipendente ASL Milano Due) approval was received for this study.  

Physical and physiological characteristics of the participants

       MOD (n=10)               HIDT

50.6±6.3 45.1±8

69.6±10.1 72.2

1.74±0.07 1.76

22.8±1.9 23.1

3.24±0.33 3.30±0.34

intensity continuous training; HIDT,  high-intensity discontinuous 

eak, maximal oxygen consumption; BMI, body mass index
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, we hypothesised that HIDT might cause a 

matched, moderate-intensity 

Twenty healthy masters runners volunteered to participate in this study. The physical and physiological 

. They were all male athletes, competing at 

national level, with several years (21 ± 4 years) of training experience and training habits of about 45 

1. Participants were matched on PRE gas exchange (GET) value (see above for further details) 

completing 8 weeks (3 times non consecutively per week) of 

intensity discontinuous training (HIDT, n = 10) (see 

training intervention for further details). All participants signed a written consent after being informed of 

all risks, discomforts and benefits associated with the study. All tests were conducted in the laboratories 

of the Institute of Bioimaging and Molecular Physiology of the National Research Council under close 

lead electrocardiography (ECG). 

Procedures were in accordance with the Declaration of Helsinki, and institutional review board (Comitato 

Physical and physiological characteristics of the participants 

T (n=10) 

45.1±8.5 

72.2±9.1 

1.76±0.06 

23.1±2.3 

3.30±0.34 

intensity discontinuous 

, body mass index 
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Participants underwent medical examination and were carefully instructed about the experimental 

procedures in a preliminary session. In the same occasion, anthropometric measures were collected and 

familiarisation with the testing procedures and equipment was requested. After that, subjects visited the 

laboratory twice (DAY1 and DAY2) both before (PRE) and at the end (POST) of training. In DAY1, 

participants performed an incremental test up to voluntary exhaustion (IE). In DAY2, at least 48 hours 

after, participants underwent two constant-load submaximal exercises (CLE). Blood and urine samples 

were collected: at rest (REST) in DAY1 and DAY2; and, in DAY2, immediately at the end (END), after 1 (1H) 

and 2 (2H) hours of CLE. Blood samples at rest were also collected after 4 weeks (4WK). During all the 

experimental period was recommended to keep unchanged dietary habits, in particular oxidant and 

antioxidant food (diet reports were administered throughout the study). 

Inclusion criteria. Subjects were included in the study if they: 1) were free of musculoskeletal problems 

and potentially orthopaedic/neuromuscular limitations; 2) had a resting blood pressure below 140/90 mm 

Hg (subjects on antihypertensive medications (n=6) maintained their medication throughout the study); 3) 

had no signs of cardiovascular/respiratory complications (at rest and during testing); 4) reported no 

tobacco use in the 6 months before the study or during the study; 5) did not assume aspirin, as cyclo-

oxygenase can affect oxidant/antioxidant status, at least 1 week before exercise testing, and 6) were not 

consuming antioxidant compounds including vitamins, minerals, and medications (i.e., probucol, 

nebivolol, and anti-inflammatory agents). 

 

Exercise testing procedures. The following exercises were performed on a motorized treadmill 

(Laufergotest, Jaeger, Germany): a) An incremental exercise (IE) up to voluntary exhaustion (after 6 min 

warm-up at 10 km·h-1 at 1% grade the speed of the belt was increased by 1 km·h-1 every minute). 

Voluntary exhaustion was defined as maximal levels of self-perceived exertion using the validated Borg 

scale 179. Peak oxygen uptake (�� O2peak) was determined as the average of the last 20 s values; b) Two 6-

min constant-load exercises (CLE) of moderate (< gas exchange threshold, GET ) and heavy (> GET) 

intensity respectively, separated by a 20-min recovery period. Pulmonary ventilation (�� E, expressed in 

BTPS - body temperature, pressure, and saturated), O2 uptake (�� O2), and CO2 output (��CO2), both 

expressed in STPD (standard temperature, pressure, and dry), were determined breath-by-breath by a 

computerized metabolic cart (SensorMedics Vmax29c, Bilthoven, The Netherlands). Expiratory flow 

measurements were performed by a mass flow sensor (hot wire anemometer), calibrated before each 
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experiment by a 3 litres syringe at three different flow rates. Tidal volume and �� E were calculated by 

integration of the flow tracings recorded at the mouth. �� O2 and ��CO2 were determined by continuously 

monitoring PO2 and PCO2 at the mouth throughout the respiratory cycle and from established mass balance 

equations, after alignment of the expiratory volume and expiratory gases tracings and A/D conversion. 

Calibration of O2 and CO2 analyzers was performed before each experiment by utilizing gas mixtures of 

known composition. Digital data were transmitted to a personal computer and stored on disk. Gas 

exchange ratio (R) was calculated as ��CO2/�� O2. Heart rate (HR) was determined by ECG. Blood pressure 

(BP) was measured using a standard cuff sphygmomanometer. Severe hypertension (systolic BP value > 250 

mmHg) or falling BP during exercise were considered criteria for the termination of the test.  

Blood Sampling and Analyses. Each subject reported to the laboratory at 9:00 a.m. after an overnight fast 

for blood sampling. Subjects abstained from alcohol and caffeine consumption for at least 24 h, and did 

not perform physical exercise for the 48 h before testing. Approximately 3 mL of blood was drawn from an 

antecubital vein, with subjects remaining supine. The blood samples were collected in heparinised 

Vacutainer® tubes, and plasma was separated by centrifuge (5702R, Eppendorf, Germany) at 1000 g for 10 

min at 4 °C. The plasma samples were then stored in multiple aliquots at -80 °C until assayed. Samples 

were thawed only once before analyses, which were performed within two weeks from collection. 

 

Thiobarbituric acid-reactive substances (TBARS). A TBARS assay kit (Cayman Chemical, U.S.), which allows 

a rapid photometric detection of the thiobarbituric acid malondialdehyde (TBAMDA) adduct at 532 nm, 

was used. Samples were read by a microplate reader spectrophotometer (Infinite M200, Tecam, Austria). 

A linear calibration curve was computed from pure MDA-containing reactions.  

 

Protein Carbonyls (PC). Reactive species produced directly or indirectly through lipid peroxidation 

intermediates also may oxidatively modify proteins. The accumulation of oxidized proteins was measured 

by content of reactive carbonyls. A Protein Carbonyl assay kit (Cayman Chemical, U.S.) was used to 

evaluate colorimetrically-oxidized proteins. The samples were read at 370 nm, by a microplate reader 

spectrophotometer (Infinite M200, Tecam, Austria), as described in detail by the manufacturer. Oxidized 

proteins values obtained were normalized to the total protein concentration in the final pellet 

(absorbance reading at 280 nm), in order to consider protein loss during the washing steps, as suggested in 

the kit's user manual.  
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Total antioxidant capacity (TAC). Plasma TAC was measured by an enzymatic assay kit (Cayman Chemical, 

U.S.) using a microplate reader spectrophotometer (Infinite M200, Tecam, Austria). This assay is based on 

the ability of antioxidants in the plasma to inhibit the oxidation of 2,2'-azinobis (3-ethylbenzithiazoline) 

sulfonic acid (ABTS, Sigma) to the radical cation ABTS+ by a peroxidase. The amount of the produced 

ABTS+ has been assessed by measuring the absorbance signals at 705 nm. The antioxidants concentration 

is proportional to the suppression of the absorbance signal. TAC was evaluated by a trolox (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid, Aldrich) standard curve, and was expressed as trolox-

equivalent antioxidant capacity concentration (mM).  

Urine Sampling and Analysis. Each subject reported to the laboratory at 9:00 a.m. after an overnight fast 

for urine sampling. All samples were collected by voluntary voiding in a sterile container provided to the 

subject. Aliquots of the urine were stored at -80 °C until the analyses were performed. 

8-hydroxy-2-deoxy Guanosine (8-OH-dG). 8- hydroxy -2-deoxy guanosine (8-OH-dG) has been established as 

a marker of oxidative DNA damage. A commercially-available enzyme immunoassay EIA kit (Cayman 

Chemical, U.S.) was utilized. The EIA employs an anti-mouse IgG-coated plate and a tracer consisting of 

an 8-OH-dG-enzyme conjugate. This format has the advantage of providing low variability and increased 

sensitivity compared to assays that use antigen-coated plates. This assay is based on the competition 

between 8-hydroxy-2-deoxy guanosine and a 8-OH-dG acetylcholinesterase (AChE) conjugate (8-OH-dG 

Tracer) for a limited amount of 8-OH-dG. Because the concentration of the 8-OH-dG Tracer is held 

constant while the sample concentration of 8-OH-dG varies, the amount of 8-OH-dG Tracer that is able to 

bind to the 8-OH-dG monoclonal antibody will be inversely proportional to the concentration of 8-OH-dG 

in the sample. This antibody-8-OH-dG complex binds to goat polyclonal anti-mouse IgG that has been 

previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman's 

Reagent (which contains the substrate to AChE) is added to the well. The product of this enzymatic 

reaction absorbs at 412 nm. The sample 8-OH-dG concentration is determined using a 8-OH-dG standard 

curve. Urinary concentrations of 8-OH-dG, as any urinary marker, vary considerably, therefore the urinary 

parameters are usually standardized based on the amount of creatinine excreted in the urine when the 

collection of the 24 h urine is not possible. 

 

Creatinine. In the absence of renal disease, the excretion rate of creatinine in an individual is relatively 

constant. Thus, urinary creatinine levels may be used as an index of standardization for 8-OH-dG. A 
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creatinine assay kit (Cayman Chemical, U.S.) was used to measure creatinine levels in urine samples. 

Samples were read by a microplate reader spectrophotometer (Infinite M200, Tecam, Austria). Creatinine 

concentration was determined using a creatinine standard curve. 

 

Training Intervention. On the basis of the individual values of GET (expressed as % of the �� O2peak) 

obtained at PRE, participants were matched and assigned to either moderate-intensity continuous training 

group (MOD, n = 10) or high-intensity discontinuous training group (HIDT, n = 10). Each group undertook 8 

weeks of training, three times a week. Three different types of training sessions were scheduled, with the 

total distance covered in each session being matched between the groups, in order to control for the 

training volume performed. For MOD, the sessions were as follows: a) 64.5 min at 70 % GET, b) 58.5 min at 

80 % GET, and c) 54 min at 90 % GET. For HIDT, the work-matched sessions were: a) 18 x (1 min at 120 % 

GET, 2 min at 65 %), b) 18 x (1 min at 130 % GET, 2 min at 65 %), and c) 18 x (1 min at 140 % GET, 2 min at 

65 %). In week 1 and 4, the participants performed only the session type “a” and “b”, while in week 8, the 

volume of session type “c” was reduced by decreasing the exercise duration (for MOD, 27 min at 90 % GET; 

for HIDT, 9 x 1 min at 140 % GET, 2 min at 65 %).  

 

Statistical analysis. Data are expressed as Mean ± Standard Deviation. All results were tested for normal 

distribution using a Shapiro-Wilk test, and when the assumption of normality was not met, a natural log 

transformation was applied to reduce the bias due to non-uniformity of the error. Data from the resting 

oxidative stress measurements were analysed using a Two-Way ANOVA with repeated measures (group x 

training). Data from the oxidative stress kinetics were analysed using a Three-Way ANOVA with repeated 

measures (group x training x time). When statistical significance (p < 0.05) was obtained for a main factor, 

a Bonferroni post hoc test was performed. The test-retest variability of the oxidative stress measures was 

analysed on the resting data in PRE and POST. In our hands the inter- and intra-assay coefficients of 

variation of the above-mentioned analyses were as follows: TBARS, 5.4% and 7.6%; PC, 4.8% and 11.8%; 

TAC, 8.5% and 7.7%, respectively. 

 

Results 

Resting values 
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The resting plasma TBARS and PC concentrations are shown in Fig. 6. The upper panels show TBARS values 

before (PRE), after four weeks (4WK) and at the end (POST) of training in both MOD and HIDT group. In 

MOD, TBARS concentration declined significantly from PRE (7.53±0.30 µM) to 4WK (6.50±0.25 µM) and 

remained low in POST (6.46±0.27 µM). Also in HIDT, TBARS concentration declined from PRE (7.21±0.32 

µM) to 4WK (6.78±0.25 µM), reaching a statistical significance at POST (5.85±0.46 µM). No significant 

differences were observed in TBARS concentration between MOD and HIDT in all conditions. The lower 

panels show PC values in PRE, 4WK and POST for both MOD and HIDT. Training did not significantly modify 

the PC concentration both in MOD (0.74±0.04, 0.73±0.04 and 0.73±0.05 nmol·mg-1 protein in PRE, 4WK and 

POST respectively) and HIDT (0.78±0.08, 0.78±0.04 and 0.76±0.06 nmol·mg-1 in PRE, 4WK and POST 

respectively). No significant differences were observed in the resting concentrations of PC between MOD e 

HIDT. 

 

Figure 2. Effect of continuous moderate-intensity training (MOD) and high-intensity discontinuous training (HIDT) on 
thiobarbituric acid-reactive substances (TBARS) and protein carbonyls (PC). White bars represent pre-training (PRE) values, 
grey bars 4 weeks (4W) of training values and black bars post-training (POST) values. Values are expressed as means ± SD. * 

Significantly different from PRE (P<0.05); § Significantly different from 4WK (P<0.05) 

 

In Fig. 7, resting plasma TAC values are shown. In MOD, TAC values resulted significantly reduced in 4WK 

(1.84±0.12 mM) respect to PRE (2.40±0.20 mM), without any other significant change in the last four 

weeks of training (1.87±0.11 mM, POST). In HIDT, TAC values were unaffected by training (1.95±0.15, 
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1.79±0.12 and 1.98±0.13 mM in PRE, 4WK and POST, respectively). No significant differences were 

observed in TAC between MOD e HIDT.  

 

 

Figure 3. Effect of continuous moderate-intensity training (MOD) and high-intensity discontinuous training (HIDT) on total 
antioxidant capacity (TAC). White bars represent pre-training (PRE) values, grey bars 4 weeks (4W) of training values and black 

bars post-training (POST) values. Values are expressed as means ± SD. * Significantly different from PRE (P<0.05) 

 

In Fig. 8 individual TAC values are shown. A large individual difference in resting TAC values among the 

subjects was observed at PRE both for MOD and HIDT. At POST, TAC values distribution was less scattered 

both for MOD and HIDT.  

 

Figure 4. Individual changes in TAC value in MOD and HIDT. White squares represent pre-training (PRE) values and black squares 
represent post-training (POST) values. 
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The urinary levels of 8-OH-dG, biomarker of in vivo oxidative DNA base modifications, are shown in Fig. 9. 

The 8-OH-dG concentration significantly decreased from PRE (5.50±0.66 and 4.52±0.50 ng . mg-1 

creatinine in both MOD and HIDT, respectively) to POST (4.16±0.40 and 3.18±0.34 ng . mg-1 creatinine in 

both MOD and HIDT, respectively). No significant differences in 8-OH-dG concentration were observed 

between HIDT and MOD.  

 

Figure 5. Effect of continuous moderate-intensity training (MOD) and high-intensity discontinuous training (HIDT) on oxidative 
damage of DNA measured by 8- hydroxy -2-deoxy guanosine (8-OH-dG). White bars represent pre-training (PRE) values and 
black bars are post-training (POST) values. Values are expressed as means ± SD. * Significantly different from PRE (P<0.05) 

 

Kinetics of adjustment 

The time course of TBARS and PC concentration changes obtained before, immediately after and at 1 and 

2 hours of recovery from CLE carried out PRE and POST are shown in Fig. 10. In both groups and in all 

conditions TBARS concentration significantly increased immediately after exercise and returned toward 

resting levels thereafter. In MOD (Fig. 10a), as for PRE, TBARS concentration increased significantly in END 

(9.90±0.68 µM) and returned toward resting levels thereafter (8.28±0.57 µM and 7.62±0.63 µM in 1H and 

2H respectively). As for POST, time course of TBARS concentration was similar but TBARS values were 

always significantly lower than PRE. In HIDT (Fig. 10b), the time course changes of TBARS were similar to 

those described for MOD. No significant differences were observed between MOD and HIDT.  
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Figure 6. Time course changes of TBARS concentration recorded before (REST) and after (END, 1H and 2H) constant-load 
submaximal exercise trials (CLE). White squares indicate pre training (PRE) values and black squares post-training (POST) 

values. Values are expressed as means ± SD. *P<0.05 compared to REST; #P<0.05 compared to PRE 

 

The time course changes of PC concentration are shown in Fig. 11. In PRE, PC increased progressively after 

CLE, reaching the significantly highest value at 1H (1.33±0.22 and 1.32±0.30 nmol·mg-1 protein in both 

MOD and HIDT, respectively), and returning to resting values at 2H (0.87±0.07 and 0.90±0.09 nmol·mg-1 

protein in both MOD and HIDT, respectively). In POST, the time course of PC concentration was very 

similar but, as for MOD (Fig. 11a), the peak value reached at 1H (1.04±0.07 nmol·mg-1 protein) was 

significantly lower than in PRE. 

 

A 

B 
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Figure 7. Time course changes of PC concentration recorded before (REST) and after (END, 1H and 2H) constant-load 
submaximal exercise trials (CLE). White squares indicate pre training (PRE) values and black squares post-training (POST) 

values. Values are expressed as means ± SD. *P<0.05 compared to basal value; #P<0.05 compared to PRE 

 

Discussion 

This study was designed to evaluate the oxidative stress response to high-intensity discontinuous training 

versus moderate-intensity continuous training in masters runners. The main findings are listed hereafter. 

 

- TBARS resting values were significantly reduced after training both in MOD and HIDT.  

It is known that moderate intensity aerobic training such as those adopted by Fatouros et al. 173, i.e. 50-

80% of HRmax for 16 weeks, or by Leeuwenburgh et al.115 i.e. 75% of �� O2max for 6 weeks, decreases 

resting lipid peroxidation levels. Our data are in agreement with these results since we observed in MOD a 

reduction of TBARS resting values. As for HIDT, the effects on lipid peroxidation levels are not well 

understood. A trend towards a reduction of resting plasma TBARS levels was shown in young subjects 

performing three sessions of HIDT within 1 week 180. Our data confirm and extend these findings. We 

observed in masters runners a significant reduction in TBARS resting values only after 8 weeks of HIDT, but 

not after 4 weeks. Thus, the training duration seems to be an important variable affecting this adaptation. 

It is plausible that free radicals production and, consequently, lipid peroxidation induced by every single 

A 

B 
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session of HIDT could be progressively reduced as observed within 1 week by Fisher et al. 180. Moreover, it 

has been suggested that exercise training lowers resting lipid peroxidation by up-regulating antioxidant 

enzyme levels in tissues engaged in systematic exercise 181. So, the 8 weeks of training could have allowed 

enough time for the antioxidant systems to reduce the acute damage of each single session of high-

intensity training. 

 

- No significant change in PC resting values was observed in both MOD and HIDT. 

It is know that aging is associated with increased free radical generation in the skeletal muscle and 

increased oxidative modification of protein, lipid, and DNA 96-98. Moreover, some studies show that long-

term training increases the macromolecular oxidative damage in elderly men. For example, Gonzalo-Calvo 

et al. 182 recently demonstrated that the level of carbonyl protein content in plasma and erythrocytes, are 

higher in a group of older men (>65 years) undergoing long-term training than in one group of sedentary 

subjects. Our data showed no significant changes in PC resting values after training in both MOD and HIDT, 

confirming previous reports on sedentary individuals undergoing 12 weeks of resistance training 183. Now, 

oxidative modifications of protein (as accumulation of reactive carbonyl derivates) can serve as a tag to 

indicate which proteins need to be replaced 168. Proteins are usually replaced by proteasome complex and 

an increased activity of proteasome could be an important factor that affects the rate of protein turnover 

and the remodeling of skeletal muscle 184. Since it is known that exercise can induce the activity of 

proteasome complex and increase the rate of protein turnover, it is plausible that MOD and HIDT induced 

both the accumulation of reactive carbonyl derivates and the increase of damaged proteins proteolysis, 

leading to no significant changes in PC resting values. Therefore the unchanged PC resting values recorded 

in our study may be seen as a positive effect of both training protocols adopted. 

 

- The accumulation of 8-OH-dG in urine was significantly reduced in MOD and HIDT. 

Several studies conducted submaximal aerobic exercise protocols under laboratory conditions to 

investigate DNA effects. DNA damage was neither seen after intense treadmill running in male subjects of 

different training status 185 nor in well-trained endurance athletes 186. However, conflicting findings were 

reported when maximal exercise protocols, i.e. tests until exhaustion, were conducted under laboratory 

conditions. Increased levels of DNA strand breaks were observed after exhaustive treadmill running in 

subjects of different training status 171.  Moller et al. 187 demonstrated DNA strand breaks and oxidative 

DNA damage after an maximal cycle ergometer test under high altitude hypoxia, but not normal 
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(normoxic) conditions. Furthermore, there were no differences in urinary 8-OHdG concentrations before 

and after supplementation with β-carotene within the 3 d following a cycle ergometer test to exhaustion 

188. 

As for training, a few studies have examined whether periods of intensified training affect genome 

stability. Increased urinary 8-OHdG levels were observed in 23 healthy males in response to a vigorous 

physical training programme (about 10 h of exercise for 30 d) 189 and in male long-distance runners 

throughout a training period for 8 d compared to a sedentary period 190. However, in a longitudinal study 

no differences in urinary excretion of 8-OHdG between a group of long-distance runners and a sedentary 

control group were observed 191. Our data showed a decrease (~25%) in urinary 8-OH-dG excretion in both 

MOD and HIDT groups. These results could be explained by less DNA damage but also by activation of DNA 

repair processes. In fact, the activities of DNA damage-repairing enzymes are up-regulated by training 192. 

To our knowledge this is the first study to evaluate oxidative DNA damage in humans following high 

intensity training. Contrary to our hypothesis the disturbances of cellular homeostasis caused by repeated 

variations of intensity in HIDT did not determine DNA damage significantly different from MOD. Therefore 

the beneficial adaptation observed may be independent from the intensity of training.  

 

- The defences against oxidative damage were lowered only in MOD, not in HIDT.  

Skeletal muscle is a remarkably adaptive tissue that is capable of changing its morphological, 

physiological, and biochemical properties in response to various perturbations. The adaptations are 

accomplished by various signal transduction pathways that relay external stimuli to changes in 

intracellular enzyme activity and/or gene expression. Exercise-induced oxidative stress serves as an 

important signal to stimulate muscle adaptation of antioxidant systems via activation of the redox-

sensitive signalling pathways 88, 94. While an acute bout of muscular contraction is sufficient to activate 

these pathways, up-regulation of enzyme protein synthesis requires cumulative effects from repeated 

bouts of exercise, that is, exercise training. 

The effect of chronic exercise on redox status and antioxidant defence is a much-debated question. 

Chronic exercise training has been suggested to induce an increase of the activity of the antioxidant 

defence systems by animals 193 and humans studies 173, 194. However, other studies have shown no change 

in sedentary individuals 94, 193, 194, or even a decrease in antioxidant capacity with training 115, 195-197. 

Results of the present study showed a significant decrease of the resting TAC values in MOD but not in the 
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HIDT group. Even though it cannot be excluded that the different intensity of the training programmes 

could be responsible for this finding, an alternative explanation could be proposed. 

TAC value can be considered a reliable biomarker of antioxidant defence, although it should be 

interpreted with some caution. It is well known that oxidative stress biomarkers are influenced by sex, 

age, lifestyle (i.e. smoking), dietary intake, previous strenuous exercise and/or training status. To 

overcome this inconvenience a “theoretically” homogeneous experimental group (males, no smokers, 

masters athletes) was chosen in present study. Nevertheless, large individual differences in resting TAC 

values among the subjects were observed at PRE (Fig. 7), resulting in a higher starting antioxidant defence 

level in MOD than in HIDT. Therefore, we believe that the significant training-induced decrease of TAC 

value observed in MOD might be attributed to a higher baseline. If we compare the participants’ individual 

data before, during and after training it is easy to notice that training has induced a converging of TAC 

values towards an optimal level, especially in MOD (Fig. 7). In fact, participants who were characterized 

by low pre-training TAC values showed an increase of these, while subjects with high pre-training values 

showed a decrease. It is becoming increasingly clear that reactive species act in a hormetic manner 198 

since an optimal ROS level is beneficial for the cell survival, whereas too little or too much ROS result in 

impaired physiological function. Therefore, excessive attenuation of ROS production, caused by high total 

antioxidant capacity values, if on one hand reduces oxidative damage on the other might be considered 

detrimental for cellular functionality. 

 

- Kinetics of adjustment of oxidative stress biomarkers to acute exercise. 

There is an abundance of literature indicating that exercise increases the production of reactive oxygen 

species to a point that can exceed antioxidant defenses and thus cause oxidative stress 163, 197, 199-201. Few 

studies, however, have investigated with an adequate sampling time, the kinetics of adjustment of 

oxidative stress biomarkers after exercise. Michailidis et al. 200 after a specific aerobic exercise protocol 

have observed the highest value of TBARS and PC at 1 h and 4 h after exercise, respectively. In the 

present study the highest value of TBARS and PC was measured immediately at the end and 1 h after 

exercise, respectively. This shorter-lived response of PC and TBARS could be attributed, at least in part, 

to the lower intensity and shorter duration of the exercise protocol used in our study. More generally, the 

findings of the present study provide further evidence to the notion that non-muscle-damaging exercise 

induces alterations in redox homeostasis that last only few hours post exercise 121. 
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Moreover, our study also evaluated the effect of training protocols to the exercise-induced oxidative 

damage kinetics. According to Nikolaidis et al. 121, it becomes clear that the resting levels of many redox 

biomarkers return limited information compared to the ones modified by an acute exercise session. In 

other words, it may be easier to find an existing effect of a redox agent on body fluids redox status after 

exercise than at rest, simply because the stimulus of exercise may extend the magnitude and the duration 

of change in redox homeostasis. Both MOD and HIDT did not affect the time-course of plasma oxidative 

stress biomarkers. However, TBARS values at any time resulted significantly lower after training and PC 

peak value decreased after both HIDT and MOD resulting statistically different only for the latter. The 

decrease in the peak PC value observed might be a consequence of the activation of mechanisms induced 

by training procedures that more efficiently remove the oxidatively modified proteins from circulation.  

 

Limitations of the study 

This manuscript attempts to evaluate the effects of high-intensity discontinuous training on oxidative 

damage. Many approaches allow evaluation and demonstration of the participation of ROS in biochemical 

events. Indeed, the literature is replete with descriptions of different methodologies and approaches for 

these purposes. The only technique for direct detection of radicals is electron spin resonance, which 

allows the detection of relatively stable radicals. The indirect detection of ROS intervention is based on 

the dosage of specific end products resulting from the interaction of the ROS with biological 

macromolecules, such as DNA, proteins and lipid. The appearance of these end products serves as proof of 

the prior existence of ROS that left their footprints in the cell. The authors are aware that neither 

thiobarbituric acid ractive substances nor protein carbonyls or 8-hydroxy-2deoxy guanosine represent 

specific biomarkers of lipid peroxidation, protein oxidation or DNA base modifications. Nevertheless, we 

believe that our array of biomarkers is well able to characterize the oxidative status during the post-

exercise period (and clearly equals or exceeds that of many similar investigations see for example 120 and 

167). It is possible that oxidative stress may have occurred in tissues aside from blood, such as skeletal 

muscle, which may be the ideal tissue when studying exercise stress. Of course, biopsies are required for 

obtaining samples for analyses, which is likely the reason why so few human investigations include the 

analysis of oxidative stress biomarkers in skeletal muscle. 

 

Conclusion 
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In conclusion, high-intensity discontinuous and continuous moderate-intensity training induced similar 

beneficial effects in masters runners, reducing the resting levels of oxidative stress biomarkers in plasma 

and urine. In addition, we provide further evidence that aerobic exercise induces alterations in redox 

homeostasis that last only few hours post exercise and are attenuated by training. 

Therefore our hypothesis that HIDT might cause a higher level of exercise-induced oxidative stress 

compared to a workload-matched, moderate-intensity continuous training appears to be incorrect. It is 

also important to underline that these training adaptive responses appear effective even in middle-aged 

subjects.  

 

 

FUNDING 

The study was financially supported by the Italian Sports Medicine Federation (FMSI). The funder had no 

role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

THIRD STUDY  

Effects of manipulating volume and intensity training in masters swimmers 

 

Introduction 

An intense exercise event is generally considered to be one lasting between 1 and 8 min, where there is a 

mix of ATP-derived energy from both aerobic and anaerobic energy systems 55. It has been claimed that 

successful training programs for athletes who compete in events like olympic rowing, kayak and canoa, 

most swimming races, running up to 3000 m and track cycling depend from an appropriate blend of both 

high-volume and high-intensity training components 55, 202. Whereas high-volume low-intensity training has 

positive long-term effect on several physiological variables 203, high-intensity low-volume training plays a 

key role for short-term improvements in performance 55. Indeed, when a period of high-intensity training 

is supplemented into the already high training volume of well-trained athletes further enhancements in 

both intense and prolonged performance are possible 72. 

As far as swimming is concerned, most events last less than 8 minutes and thus can be classified as intense 

exercises 55. Nevertheless, in swimming practice the relationship between training volume and intensity is 

still debated and training programs are usually characterized by high-volume sessions (~ 4-10 km·d–1) 

mainly performed at low-intensity 68, 204-208.In literature, a limited number of studies have investigated the 

influence of manipulating training volume and/or intensity in swimmers 68, 205, 206, 209. For example, Costill 

et al. 68, 205 showed that a consistent increase in training volume (from 4.3 to 9.0 km·d–1 and from 5.0 to 

9.3 km·d–1, respectively), without changing the training intensity, did not lead to further performance 

improvements in trained athletes. More recently, it has been found that 4 weeks of either high-volume 

(with higher contribution of low-intensity) or low-volume (with higher contribution of high-intensity) 

training program induced the same effects in highly-trained, and untrained subjects 209. In these studies, 

however, the difference between high-intensity and high-volume training was not clear. For example, 

Faude et al. 206 observed that high-training volumes are not advantageous compared to a high-intensity 

training of lower volume in ten young swimmers (nationally ranked 42th or better). Nevertheless, more 

than ~45% of training volume during high-intensity training period was performed below individual 

anaerobic threshold (i.e. low intensity). Similarly, Soultanakis et al. 209,  evaluating if 4-week sprint 

training alone would create equally favourable adaptations to performance compared with a combined 

endurance and sprint training (i.e. “high-volume” training) in collegiate swimmers, concluded that both 

training programs provide similar improvements in swimming performance. However, in the daily 
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endurance training program they included about 1.0 km (47%) of high-intensity (i.e. at and above lactate 

threshold) swimming.  

To the best of our knowledge, previous studies were focused on young subjects and the difference 

between high-volume and high-intensity training was blurred whereas there are no data on the effects of 

training program with different intensity/volume characteristics in older swimmers. Thus, the aim of this 

study was to investigate the effects of a substantial manipulation of training volume and intensity in a 

group of trained “masters” swimmers. Our hypothesis was that an increase in training volume performed 

at low-intensity did not lead to improvement of indexes of aerobic capacity and performance. Conversely, 

6 weeks of high-intensity and low volume training could positively affect physiological variables and 

performance, underling the importance of training intensity on performance also in masters swimmers. 

Since the number and the level of performance of masters swimmers has been continuously increasing (at 

a much greater rate than young athletes) 9, 15, these data should be also interesting for coaches and 

athletes in order to design training program. 

 

Materials and methods 

Participants 

10 male masters swimmers (age: 32.3 ± 5.1 years, height: 1.81 ± 0.04 m, body mass: 77.0 ± 6.5 kg) 

participated in the study. Athletes had a training experience of 11 ± 4 years and their average training 

volume was ~ 3 km·d-1, three times a week. They were specialized in freestyle on distances between 50-

400m and they competed in the “14th FINA World Masters Championship” two weeks after the end of the 

study. Before the start of the study, subjects were screened medically (history, physical examination, and 

resting ECG) to ensure that there were no contraindications to study participation. No subject 

participated in any study prior to this experiment. Each athlete was fully informed about the aims, 

methods and risks associated with participation and gave his written informed consent before the start of 

the study. All procedures were in accordance with the Declaration of Helsinki and the study was approved 

by the local Ethics Committee.  

 

Design  

The training protocol was conducted at the beginning of the competitive season, after a period of early 

preparation including water and dry-land training. All swimmers were tested before (PRE) and at the end 

of two different 6-week training periods. Each testing session was preceded by a week of tapering (Figure 
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12). Between the two training periods 14 days of low-intensity training of short duration were performed. 

The first training period was characterized by an increase in training volume and a decrease in training 

intensity (high-volume low-intensity training, HvLi) in relation to training habits. The second training 

period was characterized by a reduction of total training volume and an increase of training intensity 

(low-volume high-intensity training, LvHi). See below for further details. 

 

 

Figure 8. Study design. Each subject performed the HvLi training period first then the LvHi training period. HvLi, high volume-
low intensity; LvHi, low volume-high intensity. 

 

Methodology  

Prior to the beginning of the study all athletes were fully familiarized with testing procedures. Athletes 

were invited to keep a food diary for the two days before and during the first testing session and 

encouraged to follow the same diet before and during all subsequent testing sessions. Tests were 

performed in an indoor 25-m swimming pool.  Subjects were tested after a week of tapering (PRE), one 

week after the HvLi training period and one week after HiLv training. During the weeks of tapering only 

low-intensity training of short duration was performed to ensure that subjects were similarly recovered at 

the start of the testing period. Tests were carried out at the same time of the day and in the same order. 

Monday morning subjects performed an incremental test to exhaustion to assess  �� O2peak. Wednesday 

morning a 100 and 400m freestyle test were performed with at least 2 h rest between trials. In the 

evening, at least 4 h after morning testing session, subjects performed an incremental swimming test to 

assess individual anaerobic threshold (IAT). Friday morning a re-test on 100 and 400m freestyle was 

performed. In the evening, at least 4 h after morning testing session, subjects performed a 2000m 

freestyle test. 



47 
 

 

�� O2peak. Tests were carried out under medical supervision and subjects were monitored by 12-lead ECG. 

A mechanical braked arm ergometer (Cardio Rehab 891E, Monark, Sweden) was used. The subject was 

seated in front of the ergometer; chair height was adjusted so that the crankshaft of the ergometer was 

at approximately shoulder height and the arms were fully extended horizontally during cranking. Arm 

cranking was digitally displayed to the subjects and maintained constant at 60 rpm. The subject began 

arm cranking at 15 W for three minutes. Resistance was then increased of 15 W every minute up to 

exhaustion. Values of cardiovascular, ventilator and gas exchange variables determined during the last 30 

seconds of the exhausting load were considered “peak” values. Pulmonary ventilation (�� E, in BTPS), O2 

consumption (�� O2), and CO2 output (�� CO2), both in STPD, were determined breath-by-breath by a 

metabolic cart (Vmax229, SensorMedics, The Netherlands). Gas exchange ratio (R) was calculated as  

�� CO2/�� O2. HR was determined from the ECG signal. At rest and at various times (1, 3, and 5 min) during 

recovery, 20 µL of capillary blood was obtained from a preheated earlobe for the determination of blood 

lactate concentration ([La]b) by an enzymatic method (Biosen 5030; EKF, Germany). 

 

Performance tests. All test sessions took place in an indoor 25-m swimming pool, 1.90 m deep, with a 

water temperature of 26 °C. A standardized warm-up, consisting primarily of 1000 m of aerobic swimming 

of low- to moderate intensity, was conducted before each protocol. Athletes reported at the poolside in a 

fasted state and performed the test at the same time (±1 hour). Swimming performance was evaluated by 

100m, 400m and 2000m freestyle trials. They started from inside the water in order to avoid the influence 

of the dive. Time was taken with a manual stopwatch. The 100m and 400m tests were performed to 

evaluate possible training-induced changes during standardized race distances. The 2000m maximal test 

was chosen because it represents a distance with a very-high component of aerobic energy production.16  

 

Individual anaerobic threshold (IAT). An incremental swimming test (IST) was used to assess IAT 206, 210. 

The IST consisted of 7 x 200 m crawl bouts which were swum with increasing intensity. The predefined 

speed of the last step was chosen according to the personal best time in the 400m freestyle distance that 

each swimmer was able to accomplish at that time. The mean target speed for each step of the 

incremental protocol was successively determined by subtracting 0.05 m·s−1. Swimming speeds were 

precisely given by a light emitting diode system (LEDs) positioned on the bottom of the pool and 
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controlled wirelessly through PC. (Virtual Trainer 2.0, Aqvatech engineering, Italy). Rest between stages 

was standardized at 45 s to allow an adequate blood sampling. Capillary blood samples (20 µl) were taken 

from the earlobe before start, at the end of each stage and 1 and 3 min after cessation of exercise and 

analyzed for lactate concentrations. These data allowed assessing IAT through the [La]b vs. speed curve 

modelling method assumed to be the interception point of the best fit of a combined linear and 

exponential pair of regressions used to determine the exact point for the beginning of an exponential rise 

in [La]b, also known as lactate inflexion point 211. 

 

Training characteristics. The swimmers trained 3 times per week during the two 6-week periods in an 

indoor 25-m swimming pool. The athletes’ coach collaborated in the schedule of training programs and 

conducted all training sessions. Training contents were classified in four intensity zones based on the 

individual anaerobic threshold (IAT): zone 1, 80-90% IAT; zone 2, 100-105% IAT; zone 3, 110-120% IAT; 

zone 4, >130% IAT. Weekly training volume and percentage of training at different intensity zones during 

the HvLi and LvHi are presented in Table 6. HvLi was characterized by a nearly 30% increase in total 

volume as compared to their previous training habits, whereas in LvHi percentage of training volume was 

decreased by 50% in relation to HvLi. At the start and at the end of each training session swimmers 

performed controlled warm-up (500 m per session) and cool-down (300 m per session) respectively. All 

athletes received a detailed training plan before the start of the study and they filled in a daily training 

log book. Dry-land training (resistance, athletics, cross training) was not performed. Competitions were 

not allowed during both training periods. 

 

Table 6.  Total week training volume and training amount at different intensity zones during HvLi and LvHi 

  HvLi HiLv 

Training contents 
Example training sets Distance 

(m) 
% of 
total 

Distance 
(m) 

% of 
total 

Zone 1 (80-90% IAT) 
4x400m, rest 60s / 16x100m, rest 

20s / 2x800m, rest 20s 
4000 33.3 0 0 

Zone 2 (100-105% IAT) 
8x250m, rest 30s / 4x100m, rest 15s 

/ 5x400m, rest 40s 
6800 56.7 600 10 

Zone 3 (110-120% IAT) 4x50m, rest 15s / 2x100m, rest 15s 600 5 2700 45 

Zone 4 (>130% IAT) 8x25m, rest 10s / 4x50m, rest 10s 600 5 2700 45 

Total amount 
 

12000 100 6000 100 
HvLi, high volume-low intensity; LvHi, low volume-high intensity;  IAT, individual anaerobic threshold 



49 
 

 

Statistical Analysis 

Data are expressed as mean ± standard deviation (SD) and as mean change (%) ± 90% confidence limits 

(CL). All results were tested for normal distribution using a Shapiro-Wilk test, and when the assumption of 

normality was not met, a natural log transformation was applied to reduce the bias due to non-uniformity 

of the error. Data were analysed using a One-Way ANOVA with repeated measures. When statistical 

significance (p < 0.05) was obtained, a Bonferroni post hoc test was performed (Prism 5, GraphPad). Race-

to-race variability on 100m and 400m was calculated over the last five competition performed by 

participants and expressed as %CV (coefficient of variation). CV was 1.2% and 1.8% for 100m and 400m, 

respectively. Reliability of 2000m performance test was assessed before the study by two trials separated 

each one by 48h of rest. Typical error expressed as %CV was 1.8%. Intraclass correlation coefficients (ICC) 

were calculated to assess the reproducibility of performance tests. ICC values of 0.97, 0.98, 0.96 were 

found for 100m, 400m and 2000m respectively. The magnitude of changes was assessed with a spreadsheet 

212. The qualitative probabilistic terms were defined by the following scale:20 <0.5%, almost certainly not; 

0.5–5%, very unlikely; 5–25%, unlikely; 25–75%, possibly; 75–95%, likely or probably; 95–99.5%, very likely; 

>99.5%, most likely or almost certainly. The effect was deemed unclear if its CL overlapped the thresholds 

for small positive and negative effects 213. We used a smallest worthwhile change (SWC)  (0.3 of CV) of 

0.4% and 0.6% for 100m and 400m respectively. As for �� O2peak, speed at IAT and 2000m, the SWC 

(0.2xSD) was 0.67 ml·kg-1·min-1, 0.03 m·s–1 and 26.7 s, respectively.  

 

Results 

In relation to PRE, �� O2peak was significantly higher after HvLi (35.6 ± 3.3 vs 40.1 ± 5.1 ml·kg-1·min-1, 

P=0.002) and LvHi (35.6 ± 3.3 vs 39.8 ± 6.3 ml·kg-1·min-1, P=0.002) (Figure 13, upper panel). No 

differences were found between HvLi and LvHi. �� E values were 116.4 ± 22.7, 128.7 ± 21.9 and 118.2 ± 

25.5 L·min-1 in PRE, HvLi and LvHi respectively (P>0.05). Subjects attained peak HR values (174 ± 7, 174 ± 

9 and 171 ± 7 b·min-1 in PRE, HvLi, and LvHi respectively, P>0.05), around 95% of the age predicted 

maximum. R (1.3 ± 0.1, 1.3 ± 0.1 and 1.2 ± 0.1 in PRE, HvLi, and LvHi respectively, P>0.05) and [La]b peak 

(11.8 ± 2.0, 12.1 ± 2.6 and 12.1 ± 3.0 mM in PRE, HvLi, and LvHi respectively, P>0.05) values indicated 

that all subjects reached maximum exercise capacity in testing session. 
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Figure 9. Upper panel:  �� O2peak (ml·kg-1·min-1) values (mean ± SD) before intervention (PRE), after 6 weeks of high volume-low 
intensity training (HvLi) and after 6 weeks of low volume-high intensity training (LvHi) (n=10). * significantly different from PRE  

(P<0.05). Lower panel: Speed (m·s-1) at individual anaerobic threshold (IAT) (mean ± SD) before intervention (PRE), after 6 
weeks of high volume-low intensity training (HvLi) and after 6 weeks of low volume-high intensity training (LvHi) (n=10). * 

significantly different from PRE  (P<0.05). 

 
Best performance on 100m, 400m and 2000m is shown in Table 7. After HvLi, swimmers significantly 

improved performances on 400m (P=0.002) and 2000m (P=0.025). No differences were found on 100m. In 

relation to HvLi, 100m time performance significantly improved (P=0.001). As for 400m and 2000m, time 

performance did not change. In whole, all performance tests after LvHi were significantly better than 

PRE. After LvHi, speed at IAT was significantly higher than PRE (P=0.004); no significant differences were 

observed between PRE and HvLi. 

 

Table 7. Performance results before and after the two training periods (n=10) 

 
PRE HvLi LvHi 

100m (s) 62.8 ± 4.5 
%WR (81 ± 9) 

63.1 ± 4.9 
%WR (81 ± 10) 

62.0 ± 4.7 * # 
%WR (82 ± 10) 

400m (s) 312.1 ± 24.4 
%WR (76 ± 10) 

303.2 ± 22.0 * 
%WR (79 ± 9) 

303.3 ± 24.0 * 
%WR (79 ± 10) 

2000m (s) 1743.6 ± 133.5 1683.9 ± 116.0 *  1686.5 ± 135.0 *  

Data are presented as mean ± SD. %WR,  percentage of the FINA  masters world record; HvLi, high volume-low 

intensity; LvHi, low volume-high intensity; * significantly different from PRE; # significantly different from HvLi. 

(P<0.05) 



 

 

Training effects expressed as mean changes (± 90% CL) are shown in 

were found on 400m (-2.8 ± 1.8%), 2000m 

4.9%). Moreover, a possible negative effect was found on 100m time performance (0.5 ± 0.7%).  After 

LvHi, qualitative analysis showed beneficial effects for 

2.8 ± 1.8%), 2000m (-3.3 ± 1.3%) and speed at IAT (12.4 ± 5.3%), in relation to PRE. Additional practical 

effects were found after LvHi for 100m (

 

 

Discussion 

The main results of this study show that in mast

low intensity lead to an improvement of 

distance (2000m) swimming events whereas short distance performance (100m) may be impaired. A 

subsequent period of high-intensity low

performance (100m) and speed at IAT without impairing 

The present data underline the role of intensity of tr

short distance events. 

 

Effects of high-volume low-intensity training

Table 8. Effects of training on peak oxygen uptake, individual anaerobic 

performance (n=10) 

 
PRE vs HvLi

 
change (%) 
±90% CL 

qualitative
descriptor

O2peak 11.9 ± 4.9 Most Likely

Speed at IAT 4.9 ± 4.7 

100m 0.5 ± 0.7 Possibly

400m -2.8 ± 1.8 Very likely

2000m -3.4 ± 2.9 

HvLi, high volume-low intensity; LvHi, low volume

threshold.     

Training effects expressed as mean changes (± 90% CL) are shown in Table 8. After HvLi, beneficial effects 

2.8 ± 1.8%), 2000m (-3.4 ± 2.9%), speed at IAT (4.9 ± 4.7) and 

4.9%). Moreover, a possible negative effect was found on 100m time performance (0.5 ± 0.7%).  After 

LvHi, qualitative analysis showed beneficial effects for �� O2peak (10.8 ± 4.1%), 100m (

.3%) and speed at IAT (12.4 ± 5.3%), in relation to PRE. Additional practical 

effects were found after LvHi for 100m (-1.7 ± 0.6%) and speed at IAT (7.1 ± 6.3%), in relation to HvLi.

The main results of this study show that in masters swimmers an increase of training volume  performed at 

low intensity lead to an improvement of �� O2peak and enhances performance on middle (400m) and long 

distance (2000m) swimming events whereas short distance performance (100m) may be impaired. A 

intensity low-volume training results in an improvement of short distance 

performance (100m) and speed at IAT without impairing �� O2peak and middle-long distance performance. 

The present data underline the role of intensity of training stimuli as a key factor for athletes engaged in 

intensity training 

. Effects of training on peak oxygen uptake, individual anaerobic threshold and swimming 

PRE vs HvLi PRE vs LvHi 

qualitative 
descriptor 

change (%) 
±90% CL 

qualitative 
descriptor 

change (%)
±90% CL

Most Likely 10.8 ± 4.1 Very likely -1.0 ± 5.1

Likely 12.4 ± 5.3 Most likely 7.1 ± 6.3

Possibly -1.2 ± 0.8 Very likely -1.7 ± 0.6

Very likely -2.8 ± 1.8 Very likely -0.1 ± 0.5

Likely -3.3 ± 1.3 Very likely  0.1 ± 2.8

low intensity; LvHi, low volume-high intensity; CL, confidence limits; IAT, individual anaerobic 
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. After HvLi, beneficial effects 

speed at IAT (4.9 ± 4.7) and �� O2peak (11.9 ± 

4.9%). Moreover, a possible negative effect was found on 100m time performance (0.5 ± 0.7%).  After 

peak (10.8 ± 4.1%), 100m (-1.2 ± 0.8%), 400m (-

.3%) and speed at IAT (12.4 ± 5.3%), in relation to PRE. Additional practical 

1.7 ± 0.6%) and speed at IAT (7.1 ± 6.3%), in relation to HvLi. 

ers swimmers an increase of training volume  performed at 

peak and enhances performance on middle (400m) and long 

distance (2000m) swimming events whereas short distance performance (100m) may be impaired. A 

volume training results in an improvement of short distance 

long distance performance.  

aining stimuli as a key factor for athletes engaged in 

threshold and swimming 

LvHi vs HvLi 

change (%) 
±90% CL 

qualitative 
descriptor 

1.0 ± 5.1 Unclear 

7.1 ± 6.3 Likely 

1.7 ± 0.6 Very likely 

0.1 ± 0.5 Trivial 

0.1 ± 2.8 Unclear 

high intensity; CL, confidence limits; IAT, individual anaerobic 
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High-volume training represents an essential part of training content in well-trained and elite athletes 56, 

214. It is recognized that high-volume low-intensity training leads to positive adaptations on key 

parameters of aerobic fitness 48, 69, contributes to the high muscle energy status of athletes 215, and 

increases the ability to sustain high muscular power output for long durations 216. So far, few 

investigations have examined the effects of an increased training volume in swimming performance. 

Costill et al. 68 showed that in highly-trained swimmers (training volume, ~ 4.2 km·d–1) a 10 day training 

period characterized by doubled volume and similar intensity, did not enhance sprinting (22.86 m 

freestyle)  and endurance (365.8 m freestyle) performance. Some years later Costill et al. 205 reached 

similar results when comparing two groups of collegiate swimmers who trained with quite different 

volumes (5.0 vs. 9.0 km per day for 6 weeks) and concluded that a considerable increase in training 

volume does not lead to further swimming performance (45.8 m and 91.4 m sprint freestyle) 

enhancements. However, in this study the authors, comparing different training protocol in two separate 

groups of swimmers, followed a case-control design and training intensity was not modified. More 

recently, Faude et al. 206 reported that in young competitive swimmers 4 weeks of high volume training 

(6.6 km·d–1; about 30% increase in relation to their usual training), lead to only a modest increase on IAT 

without any change in 100 and 400m performance. Moreover, in a retrospective study of high-level 

swimmers Mujika et al. 207 found no correlation between seasonal training volume and performance. 

Conversely, our study shows that in masters swimmers (training volume ~ 3 km·d-1) a ~ 33% increase in 

weekly volume compared with training habits, mostly (90%) performed at intensity around IAT, 

significantly improves aerobic capacity, as indicated by the increase in �� O2peak (about 12%), and by test 

performances on 400 and 2000m freestyle test.  Speed at IAT, an index of aerobic capacity, did not 

significantly changed after HvLi but a worthwhile effect was observed (likely). The discrepancy between 

our data and those obtained in the above studies could be ascribed to the different performance level and 

training habits of the athletes investigated. It is known that an increase of low intensity training volume, 

especially in untrained or moderate-trained subjects, leads to an improved delivery of oxygen to the 

exercising muscles coupled with increased utilization of oxygen by the working muscles, resulting in an 

increase of physical work capacity 54. However, it has been suggested that in an already high-volume 

training program, an increase in training volume, especially if performed at low-intensity, do not lead to 

further improvement of endurance performance or associated variables 54. Compared to the athletes of 

the previous studies, our masters swimmers performed a significantly lower volume of training. As a 
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result, the increase of training volume (by 30%) over this period of training coupled with the level of our 

masters swimmers may explain the improved indexes of aerobic capacity and 400m/2000m performance.   

As for 100m, our subjects did not show an increased performance in accordance with results of previous 

studies 205, 206. This is not surprising, since for an intense exercise lasting ~ 60s energy contribution arises 

mostly from anaerobic sources 217. Thus, an increase of training volume, mostly performed at low-

intensity, does not improve performance in short intense events, suggesting the necessity of a different 

stimulus. 

 

Effects of low-volume high-intensity training 

Effectiveness of high intensity training on performance and physiological factors in trained and untrained 

subjects is now largely recognized 54, 71, 72. There is a general consensus that for well-trained athletes a 

short period of high intensity training supplemented into an already high volume training program can 

elicit improvements in both intense and prolonged endurance exercise performance. One of the most 

interesting aspects of high intensity training is that performance can be improved, or at least maintained, 

under conditions of reduced weekly volume. For example, Iaia et al. 136, 218 demonstrated that in runners 4 

weeks of consistent reduction in training volume (from 45 to 15 km·wk–1), with concomitant increase in 

training intensity (175% of aerobic power), did not impair 10 km performance, �� O2peak, skeletal muscle 

oxidative enzyme activity and muscle capillarization. The importance of training intensity on performance 

has been recognized also in swimmers. Mujika et al. 207 found that performance improvements in high-

level swimmers were correlated with the mean training intensity of the preceding season (R=0.69), but 

not with training volume. Soultanakis et al. 209 reported in recreational swimmers that 4 weeks high 

intensity (above lactate threshold) training (training volume, ~ 5.5 km·wk–1) improved performance on 50 

m freestyle. In the present study, our masters swimmers performed, after a period of high volume and low 

intensity training, 6-week of high-intensity (~90% of training contents above the IAT) and low volume (50% 

reduction in respect of previous one). This change in training did not affect middle (400m) and long 

(2000m) distance performance, significantly increased speed at individual anaerobic threshold and 

reduced 100m freestyle time. Moreover, a classical physiological variable related to aerobic performance 

(�� O2peak) did not change after high-intensity training (compared to high-volume). These results confirm 

our hypothesis that high-intensity and low volume training could positively affect physiological variables 

and performance but the lack of improvements in middle-long distance performance and �� O2peak were 
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unexpected. Even if we do not have an exhaustive explanation, the different physiological determinants of 

aerobic performance may be responsible. Indeed, it has been hypothesize that both central 

(cardiovascular) and peripheral (muscular) changes are associated with high-volume low-intensity training 

60 whereas performance improvements reported after low-volume high-intensity training seem primarily 

due to peripheral adaptations 73. Thus, it is possible that cardiovascular adaptations induced by the first 

period of high-volume low-intensity training may be responsible for the improvements in middle-long 

distance performance and �� O2peak, and a significant reduction of training volume even performed at 

high-intensity did not determined further changes. Our results are in accordance with other studies 

showing that typical determinants of aerobic metabolism (muscle oxidative capacity and capillarization), 

�� O2max and performance were maintained despite a significant reduction in the total training volume 136. 

In addition, these data seem to support hypothesis that an extraordinary high-aerobic capacity does not 

seem necessary prerequisite for maximal performance in short intense swimming events 206. Moreover, the 

results of this study confirm the importance of training intensity for maximal swimming performance in 

competitions lasting between 20 s and 5 min (50 m to 400m events, > 80% of swimming competitions). 

Adaptations induced by intensity- or volume- training should be addressed in future studies in order to 

better understand the relevance in swimming of more intense training period in high-training volumes. 

 

Limitations of the study 

To our knowledge, only three studies 206, 209, 219 investigated the interactions between training intensity 

and training volume by comparing one swimming training regimen with another. In these studies the 

difference between high-volume and high-intensity training was blurred. In our opinion, the present study 

is the first that compares two completely opposite training programs, high-volume low-intensity and high-

intensity low-volume. Nevertheless we cannot exclude the influence of the first training period on the 

second one. Therefore, although our results seem to show that high intensity training is at least as 

effective as high volume training, further studies are needed to provide a definitive answer on this topic.  

Secondarily, our swimmers were “masters” athletes competing primarily at regional/national level and 

not directly comparable with other swimmers of different age and/or performance level. Thus, our results 

need to be considered in the context of the subjects evaluated and it is not possible to directly extend our 

conclusions to younger and/or elite swimmers. 
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Practical applications and Conclusions 

In conclusion, this study indicates that in masters swimmers an increase of training volume may lead to an 

improvement of indexes of aerobic capacity and middle-long distance performance. A subsequent period 

of high-intensity low-volume training, besides maintaining previous improvements, may positively affect 

also short distance performance. Thus, it seems possible to attain the same effects on aerobic capacity 

with a consistent reduction of time that could be reserved for other relevant training contents. The 

present data also suggest that intensity and not volume is the key factor for athletes engaged in short 

distance events. From a practical point of view, as the number of masters swimmers is increasing, our 

study can provides new insights into mechanisms of training effects in masters and contribute to the 

effectiveness of training programs specifically designed for the large public of masters swimmers.  
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FOURTH STUDY 

Training effects on ros production determined by electron paramagnetic resonance (EPR) in master 

swimmers 

 

Introduction 

Cells are exposed to a large variety of Reactive Oxygen Species (ROS) from both exogenous and 

endogenous sources. At appropriate concentration, ROS are known to act as important signaling molecules 

essential to cell function, playing various regulatory roles in cells 88. Nevertheless the effects of ROS are 

dose dependent and when ROS generation exceeds antioxidant defenses oxidative damage is observed 102. 

Exercise is associated with an increase in oxygen uptake by whole body and particularly by skeletal 

muscle, utilized, among others, into mitochondria for substrate metabolism and ATP production 118. As 

reported, an increase of 10-fold in the rate of whole body oxygen consumption and an increase of more 

than 100-fold in the oxygen flux in active muscles, during whole-body exercise, results in increased ROS 

formation, shifting the cellular environment from a reduced to an oxidized state, independently of 

physical activity types (aerobic, anaerobic or resistance) 166. Many factors might contribute to the 

oxidative stress induced by exercise also influencing the oxidative rate, such as recruited muscle groups, 

types of contraction, exercise frequency and intensity and exercising population. Physical exercise is one 

of the most characteristic examples demonstrating that ROS are not necessarily harmful, considering that 

the well-known benefits of regular exercise on muscle function and health are accompanied by repeated 

episodes of oxidative stress 121. The promoting effects of regular exercise on different cellular functions 

include the up-regulation of antioxidant and oxidative damage repairing systems and induction of trophic 

factors 128. Finally, training can play positive or negative effects on oxidative stress, depending on training 

load and specificity 220. 

Previously it was demonstrated that high-intensity discontinuous and continuous moderate-intensity 

training induced similar beneficial effects in master runners, reducing the resting levels of oxidative stress 

biomarkers and inducing changes in total antioxidant capacity level 221. 

Many investigators have assumed that skeletal muscle provides the major source of ROS generation during 

exercise 90. Nevertheless, other tissues such as heart, lungs, or blood may also contribute to total body 

ROS generation during exercise 121. Recent reports have indicated the potential role that blood may play 

at rest or during exercise on ROS production  122. The whole blood or parts of it: plasma 124, erythrocytes 

125, neutrophils 124, 126, lymphocytes 117, platelets 127 have reported an increased production of various 
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reactive species after exercise. However, the majority of the relevant human studies measured the redox 

status by using plasma. This probably can be ascribed to two reasons: 1) the assumption that plasma 

better reflects tissue redox status 123 and 2) the easiness of plasma collection. During exercise, ROS are 

generated by both blood and muscle and it is reasonable to assume that a corresponding systemic steady 

state level is reached in blood. The same may hold true for exchanges among blood constituents 123 once 

that certain basic assumptions are met: reactive species with adequate half-life have the ability to cross 

membranes and generate new reactive species at the vicinity of the considered compartments. 

Usually, direct measurements of free radical and reactive species production are very difficult due to 

their high reactivity and low steady-state concentration 222. Consequently, for the assessment of oxidative 

stress, indirect methods are mainly used. Indeed, Electronic Paramagnetic Resonance (EPR) spectroscopy 

is the only technique available to directly detect the ‘instantaneous’ presence and to quantitate ROS 

concentration in biological samples. Nevertheless ROS half-life (t1/2 (s): superoxide [O2
·-] 10-4; Nitric 

oxide [NO·] 4·10-1, at room temperature) is too short when compared to the EPR time scale so they are 

EPR-invisible. This is only when ‘trapped’ and transformed in a more stable radical species that they 

become EPR detectable. Moreover, in EPR spectra, signal areas are proportional to the number of the 

excited electron spins, leading to absolute concentration levels, when a stable radical compound is 

adopted as reference. 

The present study aimed at examining the effects of High-Intensity Discontinuous Training exercise on ROS 

production and on antioxidant capacity in master swimmers by applying reliable, rapid, and micro-invasive 

EPR measurement of the instantaneous concentration of ROS  and antioxidant power using a novel redox 

sensor to measure the levels of reducing species directly in human peripheral blood 223, 224.  

 

Materials and Methods 

Participants 

10 male masters swimmers (age: 32.3 ± 5.1 years, height: 1.81 ± 0.04 m, body mass: 77.0 ± 6.5 kg) 

participated in the study. Athletes had a training experience of 11 ± 4 years and their average training 

volume was ~ 3 km·d-1, three times a week. They were specialized in freestyle on distances between 50-

400m. All athletes belonged to the Master swimmer category as established by both Féderation 

Internationale de Natation Amateur (FINA: http://www.fina.org). No special diet, minerals, vitamins or 

other kind of supplementation were administered to swimmers. During the experimental phase of the 

study antioxidant supply was excluded and participants sustained only the programmed training protocol. 
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Furthermore, participants abstained from food (6h) and physical activity, alcohol and caffeine 

consumption (24h) prior to testing and were not currently taking any medications or supplements.  

Before the start of the study, subjects were screened medically (history, physical examination, and 

resting ECG) to ensure that there were no contraindications to study participation. No subject 

participated in any study prior to this experiment. Each athlete was fully informed about the aims, 

methods and risks associated with participation and gave his written informed consent before the start of 

the study. All procedures were in accordance with the Declaration of Helsinki and the study was approved 

by the local Ethics Committee 

 

Experimental Protocol 

All subjects visited the laboratory two times: before (PRE Trg (Trg = Training)) and after (POST Trg) 6-

weeks of High-Intensity Discontinuous Training (HIDT). On the experimental day, the subjects arrived at 

the laboratory 2.5 h after consuming a standardized breakfast. All tests were performed under close 

medical supervision and subjects were continuously monitored by 12-lead electrocardiography (ECG). 

Participants sat at the arm crank ergometer (Monark 891E, Stockholm, Sweden) with the crankshaft in line 

with the shoulder joint 225. All subjects were instructed to remain seated during the test. Subjects 

performed an incremental exercise (IE) up to voluntary exhaustion. The subject began arm cranking at 15 

W for three minutes. Resistance was then increased of 15 W every minute up to exhaustion. Values of 

cardiovascular, ventilator and gas exchange variables determined during the last 30 seconds of the 

exhausting load were considered “peak” values. Pulmonary ventilation (�� E, in BTPS), O2 consumption 

(�� O2), and CO2 output (�� CO2), both in STPD, were determined breath-by-breath by a metabolic cart 

(Vmax229, SensorMedics, The Netherlands). Gas exchange ratio (R) was calculated as  �� CO2/�� O2. HR was 

determined from the ECG signal. At rest and at various times (1, 3, and 5 min) during recovery, 20 µL of 

capillary blood was obtained from a preheated earlobe for the determination of blood lactate 

concentration ([La]b) by an enzymatic method (Biosen 5030; EKF, Germany). 

 

EPR measurements 

At rest, at the end of IE and after 10 minutes of recovery, ROS production rate was determined in 50µl 

capillary blood by means of a recently developed EPR micro-invasive method 223, 224. The capillary blood 

samples were collected at both PRE and POST Trg periods.  
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In summary, EPR experiments were carried out by using e-scan spectrometer (Bruker, Germany), operating 

at the common X-Band microwave frequency (~9.8 GHz). Acquisition EPR parameters were: microwave 

frequency: 9.652 GHz; modulation frequency: 86 kHz; modulation amplitude: 2.28 G; sweep width: 60 G; 

microwave power: 21.90 mW; number of scans: 10; receiver gain: 3.17·10-1. The instrument was 

interfaced to a temperature and gas controller unit (Bio III, Noxigen Science Transfer & Diagnostics GmbH, 

Germany) allowing temperature to be kept at the constant chosen level (37°C). Radical signals generated 

by the reaction of the 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine probe (CMH, Noxygen 

Science Transfer & Diagnostics, Germany) with the blood radicals, were acquired and the spectra 

sequentially transformed for about 6 min in order to calculate the ROS production rate. The calculated 

spectral data were transformed in absolute concentration levels (µmol·min−1) by recording the CP• (3-

Carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) stable radical signal adopted as reference (10 µM). All EPR 

data were handled using the software standardly supplied by Bruker (Win-EPR version 2.11). 

 

Antioxidant capacity 

Reducing capacity in blood was measured by a redox sensor in 10µl of capillary blood. The electrochemical 

measurements were performed using a commercial EDEL potentiostat electrochemical analyser (Edel 

Therapeutics, Switzerland) in a three-electrode arrangement. The working electrode (WE) was a screen-

printed carbon electrode operating in conjunction with a screen-printed counter and a silver/silver-

chloride (Ag/AgCl) reference one. This technique is an electrochemical-based method responding to all 

water-soluble compounds in biological fluids, which can be oxidized within a defined potential range 226, 

227. Blood sample was loaded onto a chip and an increasing potential between 0 and 1.2 V at a scan rate of 

100 mV·s-1 (versus Ag/AgCl reference electrode) was applied while the resulting current was measured at 

the working electrode. The result was then pseudo-titrated to account for the most biologically relevant 

antioxydants. Data are expressed in nW. 

 

Training intervention  

Subjects trained 3 times per week during 6-weeks in an indoor 25-m swimming pool. Training contents 

were classified in three intensity zones based on the individual anaerobic threshold (zone 1, 100-105% IAT; 

zone 2, 110-120% IAT; zone 3, >130% IAT). Total training volume and training amount at different intensity 

zones are presented in Table 6. The athletes’ coach participated in the schedule of training programs and 

conducted all training sessions. Dry-land training (resistance, athletics, cross training) was not performed. 
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At the start and end of each training session swimmers performed controlled warm-up (500 m per session) 

and cool-down (300 m per session) respectively.  

 

 

 

 

 

 

 

 

 

 

Statistical Analysis 

Descriptive statistics such as mean ± SD were used to summarize continuous variables. Data were analyzed 

using parametric statistics following mathematical confirmation of a normal distribution using Shapiro-

Wilks W test. Experimental data were compared by ANOVA variance analysis followed by Bonferroni’s 

multiple comparison test to further check the among groups’ significance (GraphPad Prism 6, Software 

Inc. San Diego, CA). The relationship between selected dependent variables was assessed using Pearson 

Correlation coefficients. P<0.05 statistical significance level was accepted. 

 

Results 

The kinetics of ROS production data estimated by the EPR spectra recorded at rest, immediately after the 

IE and at 10 min of recovery are shown in Figure 14. 

After IE, ROS production increased significantly with respect to REST (P<0.01) in PRE Trg (2.82±0.66 vs 

3.28±0.66 µmol·min-1) while the increase was not significant in POST Trg (2.24±0.14 vs 2.46±0.12 

µmol·min-1). Thereafter ROS production attained the resting levels in the time course of recovery, 

although in PRE Trg ROS level was found still more significantly (P<0.05) higher (3.13±0.30 µmol·min-1) at 

10 minutes of recovery in relation to REST. 

HIDT induced a significant (P<0.001) decrease in the ROS production rate at REST in POST Trg compared to 

PRE Trg (2.24±0.14 vs 2.82±0.66 respectively). Moreover, the attained peak value (END) resulted 

significantly (P<0.001) lower in POST Trg than in PRE Trg despite a similar trend. Finally, a significant 

Table 6. Weekly training contents were classified in three 

intensity zones based on the individual anaerobic threshold 

 HiLv 

Training contents Distance (m) % of total 

Zone 2 (100-105% IAT) 600 10 

Zone 3 (110-120% IAT) 2700 45 

Zone 4 (>130% IAT) 2700 45 

Total amount 6000 100 
HiLv, High-intensity Low-volume; IAT, individual anaerobic threshold 
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difference (P<0.001) in the time course of recovery (10 minutes after exercise: 3.13±0.30 vs 2.29±0.11 

respectively) between ROS production in PRE Trg and POST Trg was observed.  

 

Figura 10. Time course of ROS production rate (µmol.min-1) detected by EPR technique before (REST), immediately after the IE 
(END) and at 10 minutes of recovery. The data obtained during two sessions of IE are shown: PRE Trg (full squares) and POST 
Trg (empty squares). Changes over time were significant at: P<0.05 during recovery (10 minutes after exercise) in PRE Trg (* 
symbol); P<0.01 comparing peak levels in PRE Trg vs REST (# symbol); P<0.001 between PRE Trg and POST Trg at REST, END 

and 10 minutes of recovery (§ symbol). 

 
Antioxidant capacity changes after IE are displayed in Figure 15 as well. This parameter was found 

significantly increased respect to the REST at the END, and at 10 minutes of recovery, in both PRE 

(136.6±11.34; 151.1±13.1; 165.3±10.9 nW respectively) and POST Trg (154.7±15.1; 171.4±12.6; 191.5±14.7 

nW respectively). HIDT induced a significant (P<0.01) increase of antioxidant capacity in POST Trg 

compared to PRE Trg at REST, END and after 10 minutes of recovery (+13%; +13%; +16% respectively). 
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Figura 11. Time course of antioxidant capacity (nW) before (REST), immediately after the IE (END) and at 10 minutes of 
recovery: PRE Trg (full squares) and POST Trg (empty squares). Changes over time were significant in PRE Trg at: P<0.001 at 
the END of exercise and during recovery (10 minutes after exercise) (§); in POST Trg at: P<0.001 at the END (§) and P<0.05 

during recovery (10 minutes after exercise) (*); P<0.01 between PRE Trg and POST Trg at REST, END and 10 minutes of 
recovery (# symbol). 

 

 

Discussion 

Many experimental works have analyzed the redox biology of exercise with high relevance to the area of 

Sport Science 222: the general benefits of physical exercise are widely known and understood 228 but it is 

important to emphasize that exercise may generate an excessive production of free radicals 119. As well 

known and widely reported in the literature, compared to enzymatic methods able to measure end point 

biomarkers of oxidative stress damage (oxidized proteins and membrane lipids), EPR is the only technique 

allowing the direct detection and quantification of ROS. However despite the great interest in measuring 

ROS in biology and medicine, EPR technique has not till now been widely used because of several 

technical and methodological problems 229. The observation that muscular exercise increases ROS 

production in skeletal muscles was for the first time reported by Davies 163. In the following years, a lot of 

studies on animals and humans have showed an increase of free radicals production after aerobic or 

anaerobic exercise both in sedentary or athletes subjects, according to exercise intensity 177, 220. 

This increase was also observed in this study using an innovative method 223, 224 that employed EPR 

technique to attain a rapid and micro-invasive measurement of ROS concentration in human peripheral 

blood. Compared with other spin trap and/or probe molecules, CMH was considered the spin probe of 

choice to quantify ROS in a most physiological way. Indeed, it shows greatest efficacy for trapping O2·- 
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radicals, the reaction being much faster (1.2 x 104 M-1 s-1) and producing stable CM-nitroxide, thereby 

enabling the reaction with both extra and intracellular O2·-. Moreover CMH detects ROS from all cellular 

compartments, including mitochondria 230. 

During PRE and POST Trg sessions a significant increase of ROS production was found at the end of IE (+16% 

and +10% respectively); this was followed by a gradual decrease in the magnitude of the ROS production in 

both sessions, returning toward resting values after 10 min (+11% and +2% respectively). This finding is in 

agreement with the idea that increased ROS generation caused by physical exercise overwhelms the body 

capacity to detoxify ROS and that upon chronic training, adaptive responses, including the one of the 

antioxidant defense system, better controls ROS production both at rest and after IE. Indeed antioxidant 

capacity significantly improved at REST (+13%) and maintained high levels 10 min after the end of the 

exercise (+16%). 

One of the aims of this study was to investigate, by means of the same mini-invasive measurement method 

adopted for ROS production levels determination, whether alterations in redox homeostasis can be 

monitored to assess the fitness of intensively training athletes. 

Aiming at minimizing the invasiveness of the method and hence to improve its potential for routine 

applications, oxidative stress markers (e.g. thiobarbituric acid substances, protein carbonyls) 

determination, requiring more invasive venous blood samples, was herein avoided. This choice was also 

supported by the linear correlation between ROS production rate and the above-mentioned biomarkers 

concentration previously observed at rest 223, 224. In addition, the time-course changes of the same 

oxidative stress biomarkers were found delayed and of longer duration with respect to ROS production 

kinetics so that no correlation was possible in dynamic conditions 223. 

Finally the obtained results support that such HIDT protocol, characterized by repeated variations of 

intensity associated with changes of redox potential, ATP/ADP ratio and, consequently, disturbances of 

cellular homeostasis, can play a positive effect on oxidative stress leading to decrease in lipid 

peroxidation and DNA damage and on antioxidant capacity reducing ROS production. 

 

Conclusions 

The study showed that 6-weeks of HIDT training improves antioxidant (+13%) capacity and significantly 

(p<0.001) decreases baseline ROS production (-20%). Results also show that after identical exercise trained 

individuals produced lower levels of ROS related to higher level of antioxidant capacity compared to an 
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untrained state. The adopted micro-invasive procedure for ROS rate production measurement by EPR 

appeared to be a reliable method to evaluate oxidative stress adaptation to acute exercise and training. 

 

Funding: The study was financially supported by the Scientific Commission of Italian Federation of Sport 

Medicine.  
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