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Abstract
The present thesis work starts from the assumption that harmonic oscillations and
normal modes are key physical concepts. They are fundamental in quantum physics,
in electromagnetism (especially in treating coupled oscillating circuits and electro-
magnetic waves), in acoustics and in mechanical systems. The conceptual and prac-
tical importance of normal modes emerges also clearly from the fact that every small
and su�ciently smooth oscillation of a complex system is given by a linear superposi-
tion of its normal modes. The notion of normal modes is thus a powerful conceptual
organizer. Nevertheless, in teaching practice (at least in Italy), only short time is
devoted to harmonic motion, rarely coupled oscillators are treated and, in secondary
school text-books, normal modes are usually not even present. The purpose of this
thesis work is to develop an e�ective path on scillations for the upper secondary
school that leads to the normal modes of oscillations. To do this, an educational re-
construction of the concept of harmonic motion has been necessary as the harmonic
motion is a fundamental prerequisite for the understanding of normal modes. The
introduction of normal modes is, for upper secondary school students, complicated
by the complexity of the mathematics involved. In our path we propose to overcome
the mathematical di�culties through an experimental approach and the use of dif-
ferent tools such as video and picture analysis, also in slow motion, data logging and
data analysis techniques and applet simulations, with the goal of being as simple
as possible from the mathematical point of view but without losing the advantages
that mathematics (even at simple level) can provide. In this perspective, a multiple
representation approach has been used. The path on oscillations that we present
here is the result of a Design Based Research on normal modes with Italian upper
secondary school students. The complete path has been proposed to three classes of
11th grade students during curricular lessons. A version of the sequence has been
proposed also to other three classes (one of grade 11th and two of grade 12th) during
afternoon extra-curricular lessons, and a version with university-level formalism has
also been proposed to a group of undergraduate students in mathematics during
the third year course “Preparation of Didactical Experiments”. A reduced version
of the path has also been proposed to a number of classes of 12th grade students
within the one-shot lessons on oscillations (afternoon extra-curricular activities) in
the framework of PLS (Piano Lauree Scientifiche) activities. The one-shot lessons
have been attended, over time, by about six hundred students.
The all path is based on a number of activities in which we start from a real ex-
periment or a video or else an applet simulation to introduce and discuss a limited
topic. The general purpose is to identify, among the oscillations, those that give rise
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to a peculiar kind of motion, the harmonic motion, and determine the conditions
under which such motion can be obtained. A number of significant situations of
harmonic and anharmonic motions are investigated and criteria to establishing the
harmonicity/anharmonicity of the oscillation are discussed. An important tool for
the analysis of the data is then introduced: the Fast Fourier Transform. The FFT is
introduced as a tool and not discussed through mathematics. Then the concept on
resonance is introduced in a phenomenological way through experiments and explor-
ing related videos in the Internet videos database. The next step is the introduction
of the coupling between two oscillators and the discovery of particular motion con-
figurations: the Normal Modes of Oscillation. We then extend the experiments to
three, four, five....many coupled oscillators until we arrive to the continuous case;
first in one dimension with the string and then in two dimensions with the Cladni
plates and we study the normal modes of such complex systems.
The structure of the thesis is as follows: an introduction to the motivations, a de-
scription of the state of the art and the formulation of the research questions. Then
a brief description of the methodological framework mainly based on the Design
Based Research approach and the Model of the Educational Reconstruction. The
reconstruction of the Harmonic motion at university level follows; the translation
of such a reconstruction into upper secondary school level is developed in chapter
five. In chapter four normal modes for a system of two, three, N coupled oscillators
are treated with the proper formalism; also in this case the translation into upper
secondary school level is developed in chapter five. Then the very core of the thesis
follows , namely the developing of the path, as briefly described above. The next
chapter reports a path developed with undergraduate students as an implementation
of the study of oscillations. It is the study of the modes of oscillation in the interest-
ing case of a parametric oscillator were there is a non-linear coupling between modes
of oscillation. In the last section, the main results of the experimentation of the path
with threes classes of 11th grade students are briefly presented. These results are
based on questionnaires (pre-test and post-test), discussions and interviews.
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1. Introduction

1.1. State of the art

In the Italian school, students face the topic “oscillations” between the 11th and
12th grade, that is between the third and the fourth year of upper secondary
school, as an introduction to the wider topic of waves. Generally, in teaching
practice, only a short time is devoted to harmonic motion, coupled oscillators are
rarely treated and almost never normal modes of oscillation are presented. Of-
ten harmonic motion, in school textbooks, is treated as a complement of kine-
matics [Caforio & Ferilli, 2006, Bergamaschini et al., 2007, Fazio & Montano, 2000,
Amaldi, 2011, Amaldi, 2005, Papucci, 2008]. Moreover harmonic and coupled oscil-
lations are rarely supported by experiments in lab activities. Not only in the Italian
school, but also in the literature it is di�cult to find out teaching paths on normal
modes for secondary school with a detailed analysis of disciplinary knots and learn-
ing problems. Nonetheless harmonic oscillations and normal modes of oscillations
have a great importance for the understanding of many fundamental topics such
as acoustics and optics and, moreover, they are fundamental for studying modern
physics.

1.2. Overview

Normal modes are peculiar ways of oscillation of complex systems such that when
a system oscillates in one of its normal modes each part of the system moves of
harmonic motion at the same frequency of the other parts and with a fixed phase
relation [Barbieri & Giliberti, 2012, Crowford, 1968, Fitzpatrick, 2013]. The con-
ceptual and practical importance of normal modes clearly emerges from the fact
that every oscillation of a system is given by a linear superposition of its normal
modes [Barbieri & Giliberti, 2012, Smith, 2010]. Moreover normal modes are im-
portant conceptual organizers; in fact they allow the description of almost all os-
cillating systems (and related phenomena) of physical interest in many physical
contexts from a unifying point of view [Barbieri & Giliberti, 2012]. They are fun-
damental in quantum physics [Giliberti, 2007, Smith, 2010], in electromagnetism
(especially in the comprehension of coupled oscillating circuits and electromag-
netic waves), in acoustics, in mechanical systems and, in addition, they give the
possibility of introducing the Fourier Transform in a simple but meaningful way
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Chapter 1 Introduction

[Fitzpatrick, 2013, Smith, 2010][Fitzpatrick, 2013, Smith, 2010], at least within a
phenomenological approach. From a pedagogical point of view normal modes may
therefore give students a deeper (and sometimes also faster) learning about the many
faces of oscillations in di�erent contexts. One of the reasons of the fact that normal
modes are commonly not treated in upper secondary school is the complexity of the
mathematics involved. In fact this makes the treating of normal modes best suited
for university courses rather than for those of upper secondary school. Even if at
university level many scientific papers can be found in the literature about normal
modes, nonetheless a clear educational path about them and their didactical implica-
tions for secondary school with a detailed analysis of disciplinary knots and learning
problems is, to the best of our knowledge, still missing. The Physics Education
Research Group of the University of Milano has been studying for years ways and
paths for a meaningful introduction of modern physics in secondary school. For this
purpose an educational reconstruction [Duit et al., 2005][Duit et al., 2005]of many
physics topics has become a necessity. In this context the possibility of introduction
of normal modes in secondary school has become a priority. The work on oscillations
we are going to describe in the following is part of this general research.

1.3. The research questions

As said above, the introduction of the study of oscillations with normal modes is,
for upper secondary school students, complicated by the complexity of the math-
ematics involved. In the path that we have developed and that we are testing,
we propose to overcome the mathematical di�culties through an experimental ap-
proach and the use of di�erent tools such as video and picture analysis [tra, ],
also in slow motion, data logging and data analysis techniques [Log, ] and ap-
plet simulations [Martinez et al., 2010, Fis, , Falstad, 2014] , with the goal of be-
ing as simple as possible from the mathematical point of view but without losing
the advantages that mathematics (even at simple level) can provide. The har-
monic motion is a fundamental prerequisite for the understanding of normal modes
[Barbieri & Giliberti, 2012]. Therefore it is important to construct a definition of
harmonic motion that is both e�ective for learning and easy to handle in di�erent,
also non-standard, situations. In a dynamic perspective, we think that the defini-
tion of harmonic motion as the motion of a body subjected to a force that is the
linearization of a restoring force, suits the task. Data logging techniques and video
analysis are used to overcome the necessity of a full analytical treatment of normal
modes. Moreover, we think that the analysis of the diagrams obtained with the data
logging can help students to face the well-known di�culties [McDermott et al., 1987]
in the representation and interpretation of graphs. In the data analysis techniques
of oscillating complex systems, the FFT (Fast Fourier Transform) tool plays a fun-
damental role. We are investigating whether the use of FFT tool is e�ective even
without its mathematical treatment as this is suitable only for students of under-
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1.4 Methods

graduate courses. The main research questions can be summarized as follows:

• Is the dynamical choice of defining the harmonic motion through the lin-
earization of the restoring force more e�ective than the kinematical definition
through the projection of a uniform circular motion on a diameter (as it is
usually done in text-books in Italy)?

• Are we able to build an e�ective calculus-less path on normal modes for high
school students?

• Can the use of data-logging techniques, applied to real experiments, help stu-
dents to overcome some important di�culties in the representation and inter-
pretation of graphs?

• Can the use of the FFT tool, even without a specific mathematical treatment,
help students to reach a deeper understanding of oscillatory phenomena?

1.4. Methods

The path has been developed on the basis of an educational reconstruction of the con-
tent [Kattmann et al., 1995] namely oscillations and normal modes. In this context
the researcher designs and creates learning environments, experimental devices and
teaching/learning sequences that s(he) experiments, evaluates, revises and develops
within authentic educational settings [Duit et al., 2005]. Following the main steps of
the Educational Reconstruction Model [Kattmann et al., 1995] we: 1) started with
the analysis of the contents: from the analysis of publications, university textbooks,
high school textbooks and websites to the analysis of the key points and the con-
ceptual nodes; 2) developed the educational path; 3) experimented the path with
students; 4) performed an empirical investigation of the learning process. The path
has been experimented, revised and implemented three times with 11th and 12th
grade upper secondary students. The first goal has been the translation of the focus
from a kinematic point of view to a dynamic one in the discussion of simple har-
monic motion with the possibility of the recognition at a glance of the harmonic or
non-harmonic oscillations even without a careful mathematical analysis of the forces
involved. After this, the overall goal has been the introduction of normal modes of
oscillation for upper secondary students. In the reconstruction of the contents an
extensive use of multiple representations [Simon, 1977] has been made. The whole
experimentation has been made in the perspective of a Designed Based Research
(DBR) oriented to the production of Teaching/Learning Sequences (TLS).

The DBR recognizes the deep complexity of the teaching/learning process due to
the many variables involved. These variables are related to the social context; the
project itself to be realized; the teachers who have to implement the project. The
irreducibility of these variables makes very interesting the analysis of the relations
between the context and the results. Therefore an accurate analysis of the results
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Chapter 1 Introduction

becomes very useful. Therefore we wanted to design a research that, as suggested
by the Design Based Research Collective[Edr, 2003, DBR, 2003] is characterised by
these key points: 1) the goal is the design of the learning context and the devel-
opment of learning theories; 2) the development and the implementation of the
project take place in continuous cycles of design, implementation and redesign; 3)
the research takes into account how the project actually works in real context: it
has to document the successes and failures in order to refine the understanding of
issues related to learning. Therefore, in our experimentations we used written tests,
interviews and audio recordings in 3 classes of upper secondary school students in
curricular hours with a guided Inquiry Based Science Education (IBSE) approach
and in the 60 hours university open inquiry course “Preparazione di Esperienze Di-
dattiche” for undergraduate students in Mathematics. A reduced path has been
tested also with 600 secondary school students attending the extracurricular PLS
[PLS, ] lab on oscillations.
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2. The methodological framework

2.1. Design and research methodology

2.1.1. The Design-Based Research approach

The Design-Based Research (DBR) methodological approach was born and has de-
veloped in recent years as a response to the di�culties that the experimental-type
research had to address the problems and to acknowledge the insistent demands
coming from the real educational contexts [Ligorio & Cacciamani, 2013]. This ap-
proach starts from pioneering studies of Ann Brown [Brown, 1992] and Alan Collins
[Collins, 1992] who were pioneers in performing design experiments in real classes of
students [Collins et al., 2004]. The DBR approach has been taken up by a group of
North American researchers who have given themselves the name of “The Design-
Based Researche Collective” [DBR, 2003]. The DBR has been defined as a sys-
tematic yet flexible methodology aimed to improve the educational practicies. It is
based on a number of cycles that include: design, implementation, analysis and
re-design. The main purpose is to guide the researcher towards the definition of
principles and theories which are sensitive to the context in which these innovations
are tested[Wang & Hannafin, 2005]. There is a clear di�erence with respect to the
experimental approach. In the experimental approach the researchers formulate the
hypothesys on the basis of previous observations or theories, then they design the
experiment and, according to the results, they can validate (or rebut) the hypote-
sis. In the DBR approach, instead, the researchers analyze the practical problems,
then they develop the solutions on the basis of the design and they implement such
solutions through many cycles. At the end of each cycle, the researchers improve
the principles of the project and find new solutions to introduct in the further cycle
[Ligorio & Cacciamani, 2013].
According to the Collective directions, the DBR is characterized by the following
features:

• The DBR has two main goals: to design learning environments and to develop
theories and “proto-theories” on learning processes. The two goals are closely
linked.

• The development and the implementation of the project, as well as the research
which arises from the control of its quality, take place through cycles of design,
implementation, analysis and re-design.
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Chapter 2 The methodological framework

• The research based on projects must lead to shareable theories. They must
help comunicate to other researchers the relevant informations both on the
design and the educational implications.

• The research must account for how the project works in real environments.
It should register successes and failures and should also put into evidence the
many interactions which can make us understand the learning problems.

• The DBR makes use of mixed methods to maximize the credibility and the
adaptability of the project. The methods and the techniques can be very
di�erent: questionnaires, case studies, interviews etc. The di�erent kind of
data, qualitative and quantitative, are mixed together in the analysis of the
implementation of the project.

All these features summarize the outlines of the DBR and the assumptions on which
it is based, together with some operative indications. First of all there is the aware-
ness that the teaching/learning process is a very complex process. Such a complexity
is due to the number of variables interacting. The variables refer to the social context
(the students and the context they belong to), to the didactical project and to the
teachers and researchers who carry out the project. Because of the irreducibility of
these variables and their interactions, the role of context/environment on the results
of the educational interventions, must be considered. For this reason it is necessary
to distinguish the results that are context-dependent from the general ones. It is also
clear the necessity of implementing the analysis methods as to take into account the
interactions between variables. That’s why the DBR gives priority to internal-type
assesment criteria instead of external-type ones (for istance the ones based on the
comparison with a control group) [Battaglia, 2011].
The DBR provides many benefits that are of interest for the educational research
[DBR, 2003]. In fact it is a very versatile methodology that allows to design and in-
vestigate many di�erent innovations, from the curricula, to the didactical activities
to the introduction of artifacts such as the new technologies to support learning,
and many others. Moreover, the DBR is a methodology where the research fits the
context and is modulated, in a flexible way, on the needs of the class. Another
important point is the fact that with DBR the researcher and the teachers work
together to innovations in teaching/learning practice in real educational environ-
ments. DBR is widely used for the construction of learning environments based
on the use of information technologiy and comunication technology. It gives many
important indications about the links between theory and in-classroom didactical
practice, regarding such tecnologies [Squire, 2005].
There are many interesting examples of use of DBR in real classes. For istance the
River City project [Clarke et al., 2006] in which a multimedia virtual environment
has been contructed for teaching science and in particular biology and ecology. An-
other interesting example of use of the DBR approach is the italian project CROSS
(Comunità di ricerca online per lo studio delle scienze) born within the wider project
SeT (Scienza e Tecnologia) and implemented in six cycles in a network of italian
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2.1 Design and research methodology

schools [Cacciamani, 2008].
It appears clear that the DBR approach is an importand research method. It is a re-
search method “for the school” rather than “on the school” as it is able to support the
continuous innovation within the educational contexts [Ligorio & Cacciamani, 2013].

2.1.2. The Model of the Educational Reconstruction

A major concearn of Science Education Research is to improve instructional practices
for schools at all levels. About this, an intensive international debate has developed
since the early 90s in scientific literacy [Duit et al., 2012]. Such a debate has been
powered by di�erent international monitoring studies. For istance: TIMSS (Trends
in International Mathematics and Science Study) since 1995 [TIM, 2014] and PISA
(Programme for International Student Assesment) since 2000 [PIS, 2014].
Among the various strands of science educational research, in the middle 1990s,
the Model of Educational Reconstruction (MER) has been proposed by a group
of German researchers [Kattmann et al., 1995, Duit et al., 2005, Duit, 2007]. The
Model of Educational Reconstruction represents the merger of two lines of research
in science education: the more pedagogical oriented research which has a European
footprint and the more empirical research which is quite American-style. The first
one is more oriented to the improvement of the teaching practice while the second is
more oriented towards the specific learning outcomes of the organization of the con-
tents and to the curriculum [Jenkins, 2001]. The European current has highlighted
the need to rethink the scientific contents to be rebuilt in educational perspective
[Fensham, 2001]. In this context the model of ’"Educational reconstruction" com-
bines the hermeneutical tradition on scientific content with a constructivist approach
to teaching / learning. A key concearn of the Model is that you have to give equal
attention to science subject matter as well as to students learning needs and capa-
bilities. There are three intimately linked components of the Model of Educational
Reconstruction:

1. Analysis of the content structure1 which is made of two processes: clarification
of subject matter and the analysis of educational significance. Clarification of
subject matter can take into account content analyses of leading textbooks,
key pubblications on the topic and its historical development. Also student’s
pre-instructional conceptions not in accordance with the science concepts to
be learned, should be taken into account [Driver & Erickson, 1983].

2. Research on teaching and learning comprise empirical studies on various fea-
tures of the learning setting. It is the investigation into student and teacher
perspectives regarding the choosen subject. This includes pre-instructional
conceptions, a�ective variables like interests, self-concepts, attitudes and skills.

1
Content denotes science subject matter, structure is related to the significance of internal struc-
ture of the content
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Chapter 2 The methodological framework

3. Development and evaluation of instruction concerns the design of instructional
materials, learning activities and teaching and learning sequences. The design
of the learning environment is the very heart of this point. It has to be struc-
tured by the specific needs and learning capabilities of the students. Various
empirical methods are used to evaluate the activities, like interviews with stu-
dents and teachers, questionnaires on the development of students’ cognitive
and a�ective variables and analyses of the video registrations of instructional
practice.

Figure 2.1.: The Model of Educational Reconstruction

As said above the three components of the Model are intimately linked. At the
initial steps of the design, the science content structure has to be transformed
into a content structure for instruction. The science content structure may not
be directly transferred into the content structure for instruction as the two are
substantially di�erent. This is made possible by a process of elementarization
of the content followed by the construction of the content structure for instruc-
tion. During these processes the content has to be semplified (to be accessible for
students) and transferred into contexts that make sense to learners. The phase
of the construction of the structure for the instruction starts from students’ pre-
knowledge. In this perspective learning is meant as the construction of knowledge
that students perform their own on the grounds of the already existing knowl-
edge. So the conceptions and the believes that students already have are not
seen as ostacles of learning but as starting points [Driver & Easly, 1978]. In this
sense the Model of Educational Reconstruction is part of a constructivist episte-
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2.2 Methods and instruments for data analysis

mological framework [Phillips, 2000, Duit & Treagust, 1998, Duit & Treagust, 2003,
Widodo, 2004]. The second point is that the science knowledge itself is a human con-
struction [Abd-El-Khalick & Lederman, 2000]: there is no true content structure of
a particular content area but a consensus of a particular science comunity. Every pre-
sentation of this consensus, that we can find also in the textbooks, is an idiosyncratic
reconstruction of the explicit or implicit aims of the authors [Kattmann et al., 1995].
Consequently the science content for instruction has to be built by the designer of
the curriculum on the basis of the aims of the teaching of that particular content.
In short, the science content stucture has to be reconstructed from a educational
perspective: this is the essence of the term “educational reconstruction”.
Many teachers think that the content structure for instruction should be simpler
than the science content structure to become accessible to students. Accordingly,
they proceed to a “reduction” of the contents. This is not what the Educational Re-
construction Model suggests. On the contrary, according to the Model, the content
structure for instruction has to be more complex of the science content structure
if we want to meet the learning needs of the students. In fact, it is necessary to
include the abstract science knowledge into various contexts if we want to reach out
both the learning potentialities and di�culties of students.
The instructional design, according to the MER has to take into account also the em-
pirical studies on learning processes and on students’ interests. In this phase we have
to consider also the role of teaching methods, experiments and other didactic sup-
ports [Duit, 2006]. It appears clear that the experimentation and validation of the
didactical materials and the activities for the instruction are intimatley linked with
their design. Accordingly, in the Educational Reconstruction Model, the developing
of the materials for the instruction and the research activities are interconnected.
In agreement with the MER, this design-based research has been developed in four
phases: the design of the content structure for instruction, the construction of the
teaching/learning sequence and of the instructional materials, the experimentation
of the sequence and the analysis of the risults.

2.2. Methods and instruments for data analysis

In this section are briefly described the instruments and methods we used to asses
the level of comprehension of the contents and the e�ectiveness of the educational
path that we have designed, developed and experimented.

2.2.1. Analysis of wrtitten texts

The written test in form of a pre-test and a post-test, (where the post-test is equal
to the pre-test) is a powerful instrument to investigate the thinking, the preconcep-
tion and the misconception of students. It also helps to investigate the evolution
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Chapter 2 The methodological framework

that students’ thinking undergo as a result of the teaching/learning sequence. The
analysis of the tests are a good starting point for the final interviews.

2.2.2. Interviews

The use of the interview in research marks a move away from seeing human sub-
jects as simply manipulable and data as somehow external to individuals, and to-
ward regarding knowledge as generated between humans, often through conversation
[Kvale, 1996a]. The term itself “inter-view” denotes an interchange of views between
two or more people on the same topic. This interaction is responsible for knowledge
production and generating data [Kvale, 1996b]. In this perspective the interview is
not either subjective or objective but intersubjective [Laing, 1967].
The interview is a flexible tool for data collection as it allows the use of multi-sensory
channels: verbal, non-verbal, spoken and heard [Cohen et al., 2007]. It allows you
to keep under control the carrying out of the activities. The interview type we chose
is a semi structured interview with guide approach where the topics and issues are
decided in advance but the interviewer let the answers of students guide the ongoing
of the interview. Generally the interviews were performed on focus-groups of three
or four students (possibly the same group of students that worked together in the
experimental activities).

2.2.3. Audio and video recordings

The instructional activities in classroom have been video-recorded and reviewed
several times with the aim of identifying critical episodes, expecially during group
discussion. The analysis of recordings is very helpful to isolate particular moments
in which it is evident that the use of didactical instruments, peer discussion and
negotiation with the teacher/researcher facilitate the development of some skills
(e. g. the skills of observing, describing, interpreting and acting). Reviewing the
recordings has helped to follow the dynamics of the negoziations of meaning. This
clearly emerges from the discussion between students, both in small working groups,
both in the entire class. In particular, it has been possible to characterize the
development of precise concepts and the changes in the observation strategies and
interpretation models, that take place as a result of the negotiations.
The final interviews have been audio recorded and the recordings analysed together
with the material (writing, sketches etc.) produced by students during the interview
itself.
The analysis of recordings is particularly useful because allows to us to grasp details
that inevitably escape during classroom activities. Moreover, they can be viewed
as many times as it is necessary an do not only provide precise evidence of what
students said, but they allow us to grasp, or understanding aspects of insecurity
that come through body language.
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3. The Harmonic Motion

3.1. Introduction

The concept of harmonic motion is fundamental for the comprehension of the world
we live in. Harmonic motion is present almost everywhere, even if we usually do
not think of this fact. For istance, if we consider any solid object around us, we
know that any atom within it has a well defined position (it is solid!). However,
if we could magnify the object as to be able to distinguish its single atoms, we’
ll see each of those atoms vibrating relative to this assigned position[Smith, 2010].
The hotter the object the more violent the vibration. This is true for every atom
in every solid object in the Universe. If we consider one single vibrating atom, its
vibration can have a pattern similar to the one showed in Fig. 3.1. It could seem a
rather complicated pattern but it isn’t really if we consider that it can be obtained
by the summation of three simple sinusoids, the ones showed in Fig. 3.2. Each of
these sinusoids describes the harmonic motion associated with a “normal mode” of
the solid that contains the atoms. The pattern in Fig. 3.1 is so complex just because
the solid has many “degrees of freedom” and thereby many normal modes as will
be described in the next chapter; every atom in the solid object can move in three
dimensions and it is a�ected by the motion of the sorrounding atoms.
Despite its importance, harmonic motion isn’t always treated properly in the italian
upper secondary school. Often, harmonic motion is presented as a complement to the
kinematics, after studying rectilinear uniform and accelerated motion and circular
motion. In this perspective harmonic motion is simply defined as an oscillatory
motion whose amplitude obeys a sinusoid-like law such as: x(t) = A sin(Êt + „).
Alternatively, simple harmonic motion is defined as the motion described by the
projection of a uniform circular motion along a diameter. Usually no more than a
couple of examples are given to students or met in lab activities, namely the simple
pendulum and the mass-spring oscillator.
Both the above kinematic definitions are not very useful from an operative point of
view. In fact, it is di�cult for students recognize in a real situation if an oscillating
system performs harmonic motion or not, using such definitions. A reconstruction
of the content, in our experience, is necessary.
We believe that a dynamic definition is much more fruitful in that sense. This is true
not only for upper secondary school students but also for university level students,
at least in our experience.
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Chapter 3 The Harmonic Motion

Figure 3.1.: The complex pattern of motion for an atom in a solid object in arbi-
trary units

In fact our lab experience with graduate students in mathematics showed that the
comprehension of the link between mathematics and physics in the study of oscilla-
tions is far from clear. This fact prevents to grasp the importance of the harmonic
motion as a conceptual organizer that should emerge from the choice/recognition
of particular deep similarities/diversities among di�erent types of periodic motions.
The kinematic definition of harmonic motion is not enough to understand the physics
implied; the dynamical definition, which stems from the analysis of the potential en-
ergy, is often une�ective.

From these considerations the necessity arises of a fruitful definition of harmonic
motion which establishes some e�ective criteria for the recognition of the harmonic-
ity/anharmonicity in real contexts.

In the following we propose an approach to harmonic motion that, starting from a
dynamic definition, sets a criterion that allows to realize at a glance the anharmonic-
ity/harmonicity of an oscillation and to understand the link with the mathematical
aspects of the problem [Giliberti et al., 2014]. The goal is to make students able to
recognize if a motion is harmonic or not even without knowing the exact expres-
sion of the acting forces, but simply by watching the oscillations and sometimes
by listening to the sound generated by the oscillations themselves. We also discuss
the role of the constant and of the linear damping in relation to the concepts of
anharmonicity/harmonicity.
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3.2 Definition of Harmonic motion

Figure 3.2.: Three sinusoidal components of the motion for an atom in a solid
object in arbitrary units

3.2. Definition of Harmonic motion

Let us consider a one degree of freedom system subject to a restoring force, that is
a force that gives rise to a motion with a stable equilibrium point. Let us call › the
curvilinear coordinate measuring the oriented distance along the trajectory described
by the moving body, with the zero corresponding to the equilibrium position. In
this case, at least in a neighbourhood of › = 0, the graph of the ›-component of
the restoring force, F

›

, vs › lies in the second and in the fourth quadrant (solid line
in figure Fig. 3.3). Moreover, if the restoring force is su�ciently regular, that is the
function F

›

(›) is continuous and di�erentiable in the origin, it can be approximated
by its tangent line in that point, provided the amplitude of the oscillation is small
enough (dashed line in figure Fig. 3.3).

Figure 3.3.: A restoring force and its linearization in the origin.

As a consequence, a body subject to a su�ciently regular restoring force with the
first derivative di�erent from zero in the equilibrium point, for small amplitude
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Chapter 3 The Harmonic Motion

oscillations, will obey the equation of motion:

F
›

= ≠k›, (k > 0). (3.1)

Denoting with m the mass of the body, we immediately get:

›̈ + Ê2
0› = 0, (3.2)

where

Ê0 ©
Û

k

m
. (3.3)

We define harmonic motion, the motion of a point mass satisfying equation (3.1) or,
equivalently, equation (3.2). This is an intrinsic definition, in the sense that, once a
reference frame is fixed, it refers only to the trajectory and to the resultant acting
force, which are intrinsic characteristics of the motion. In many cases, however, it
is useful to perform an invertible regular transformation:

› = › (q) (3.4)

from the coordinate › to a new coordinate q (in general an angle or a position
on a linear axis) that is more suitable to discuss lab experiments or to make a
mathematical model of the system. Since equation (3.2) is a linear equation, if we
require that the transformation (3.4) preserves the description of the motion, or
equivalently preserves the form of equation (3.2), the only allowed tranformations
will be the linear ones. Nonetheless, since in most situations we are mainly interested
in the small oscillations around the equilibrium point, there is no need that the whole
tranformation (3.4) is linear. It is enough that it can be linearized in the origin;
namely, that in the neighbourhood of q = 0, ›(q) it can be approximated to the first
order in q by:

› (q) = d›

dq
(0) · q; d›

dq
(0) ”= 0. (3.5)

Equation (3.2) can be easily integrated to obtain the general solution [Fitzpatrick, 2013,
Mencuccini & Silvestrini, 2013, Feynmann et al., 1964]:

› (t) = A cos (Ê0t + Ï0) , (3.6)
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3.3 Harmonic or not?

where the amplitude A and the initial phase Ï0 are two integration constants that
are completely independent on the value of the (angular) frequency Ê0 which is
solely determined by dynamic conditions. The stated independence of A from Ê0 is
generally referred to as isochronism.
We would like to stress that the harmonic motion defined above is not necessarily
rectilinear, as › is a curvilinear coordinate (for instance, the ends of a torsional
pendulum describe an arc of circumference performing harmonic oscillations over
a wide range of angles). It is also important to emphasize that F

›

must not be
confused with the intensity of the total acting force, but it is only its component
along the direction of motion. This is a conceptual aspect for which particular
care is needed in describing motions on curved trajectories. In fact, in these cases,
the resultant force is di�erent from zero even in the equilibrium position, because
the contribution of the centripetal component has to be considered; while, on the
contrary F

›

is, indeed, null.
In conclusion, the path towards the previous definition leads us to formulate a four-
point criterion saying that the small oscillations of a one degree of freedom system
are harmonic if › = 0:
(a) is a stable equilibrium point;
and in › = 0:
(b) the function F

›

(›) is continuous;
(c) the function F

›

(›) is di�erentiable;

(d) dF›

d›

”= 0.

Obviously, condition (c) implies condition (b). Nevertheless we believe that, from a
didactical point of view, keeping these conditions separate allows a clearer compre-
hension of the physics involved.

3.3. Harmonic or not?

The prototype of harmonic motion is the mass-spring oscillator that has been dis-
cussed in many papers and textbooks [Fitzpatrick, 2013, Mencuccini & Silvestrini, 2013,
Feynmann et al., 1964, Arnold, 1979, Barbieri & Giliberti, 2012, Bergomi & et al, 1997].
An analysis of the motion of a one degree of freedom vertical mass-spring oscillator
can be done via sonar detection and the “Logger Pro” software [?]. In figure Fig. 3.4,
the acceleration vs position is shown. It will not be discussed here, but it will be
used in the following as gold standard in analyzing other oscillations.
Let us now discuss how the mathematical conditions (a) to (d) of our four-point
criterion are linked to real experiments and how the anharmonicity/harmonicity of
small amplitude oscillations can be in many cases decided “at sight”, even without
explicitly knowing the equation of motion. Listening to the sound produced by the
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Chapter 3 The Harmonic Motion

Figure 3.4.: Vertical mass-spring oscillator. Measured acceleration vs position: the
graph represents a typical restoring force. The data have been collected and
processed by a “Logger-Pro” sonar system.

oscillations can sometimes discriminate between anharmonicity and harmonicity.
Let us consider some examples.

3.3.1. Bouncing disk

The bouncing disk consists of a disk moving back and forth between two elastic
edges of an air table. Are these oscillations harmonic? No, they are not, because
the system has not a single stable equilibrium point, but an infinite set of neutral
equilibrium positions; a fact which implies that we cannot even introduce the notion
of small oscillations. In this case, the first point of our criterion is not satisfied. A
video of the motion has been analyzed by the software “Tracker” [tra, ]. The results
are shown in Fig. 3.5.
While in the case of the mass-spring oscillator the acceleration vs position diagram

Figure 3.5.: Bouncing disk. (a) Measured position vs time; (b) Measured acceler-
ation vs position. The data have been processed by the “Tracker” video analysis
software.

is a straight line lying in the second and fourth quadrant passing through the origin
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3.3 Harmonic or not?

of the axes, in the case of the bouncing disk such a diagram is completely flat, except
at the edges where the force is impulsive (figure 3(b)). In fact the position vs time
graph shows that we are in presence of a uniform rectilinear motion between the
turning points (figure 3(a)). The anharmonicity of the motion can be either stated
with standard methods such as the analysis of the motion waveform obtained by
data-logging techniques. In Fig. 3.6 it is reported the FFT (Fast Fpourier Transform
graph obtained by the analysis of the motion waveform. The many harmonics clearly
prove the anharmonicity of the motion.

Figure 3.6.: The FFT graph for the Bouncing Disk

3.3.2. Galileo oscillator

Let us consider a V-shaped track, as in figure Fig. 3.7, with a ball rolling over it, a
device that is sometimes referred to as the Galileo oscillator [?]. The function F

›

(›)
is not continuous in › = 0, therefore the second point of our criterion is not fulfilled
and the motion cannot be harmonic.

Figure 3.7.: The Galileo oscillator. The ›-coordinate along the trajectory and the
x-axis along which the motion is detected.

In fact, neglecting both the friction and the rolling energy, which indeed are always
present in a real experiment, the force acting on an object of mass m along this kind
of trajectory is given by:

mg sin –; › < 0 ≠ mg sin –; › > 0. (3.7)
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Chapter 3 The Harmonic Motion

If the angle – is su�ciently small so that the ball can really oscillate back and forth
between the two parts of the track, we can make a video analysis of the motion.
The results are shown in figure Fig. 3.8. The coordinate q = x is used instead of ›;
the transformation (3.4) can be written as:

› (x) = x

cos –
, (3.8)

that is clearly a linear transformation and, as already said, preserves the harmonic-
ity/anharmonicity of the motion.

Figure 3.8.: The Galileo oscillator. (a) Position vs time; (b) Acceleration vs po-
sition. The data have been processed by the “Tracker” video analysis software;
they show two di�erent values of the acceleration, as can be inferred from equation
(3.7).

The motion is much more similar to that of a freely falling bouncing ball than
to that of a mass-spring oscillator and it cannot be approximated by a harmonic
motion, however small the amplitude of oscillation. Of course also in this case,
the anharmonicity of the motion can be stated with standard methods such as the
analysis of the motion waveform obtained by data-logging techniques. In Fig. 3.9 it
is reported the FFT graph obtained by the analysis of the motion waveform. The
spread of frequencies and the presence of harmonics clearly proves the anharmonicity
of the motion.

3.3.3. The interrupted pendulum

Let us analyze a simple pendulum of length l1 that is interrupted in its motion by
a peg between the point of suspension and the equilibrium point, so that its length
abruptly changes to l2 (see figure Fig. 3.10(a)) [?]. The equation of motion is:

›̈ + g sin ›

l1
= 0; › Æ 0 ›̈ + g sin ›

l2
= 0; › > 0, (3.9)
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Figure 3.9.: The FFT graph obtained by the analysis of the motion waveform of
Fig. 3.8

which shows that › = 0 is a corner point of the function ›̈ (›) (figure Fig. 3.10(b)).
Therefore the function F

›

(›) is not di�erentiable in › = 0, the third point of our
criterion does not hold, and the motion of the pendulum cannot be approximated
by a harmonic motion, not even in the small oscillation limit.
For what concerns the period T12 of the small oscillations of this asymmetric pen-
dulum, we obviously have:

T12 = T1
2 + T2

2 , (3.10)

where T1 and T2 are the oscillation periods of the two pendulums of length l1 and
l2, respectively. Consequently, the interrupted pendulum is isochronous for small
angles of oscillation without being harmonic. The FFT of the motion waveform
(figure Fig. 3.10(c)) shows clearly, even for small oscillations, the first harmonic of
frequency ‹1 = 1/T12 and some of its multiples, as one expects for a non-sinusoidal
periodic motion of period T12, at variance to what one could naively expect, i.e.
the presence of the two frequencies 1/T1 and 1/T2. We stress that the request of
di�erentiability of the function F

›

(›) in the origin, that at first might seem a mere
mathematical question, corresponds to detectable physical e�ects.
We want also to observe that another case in which the function F

›

(›) is not dif-
ferentiable in › = 0 is when it has a vertical tangent line in that point. Physically,
we can think of a very tough spring that we are not able to stretch with our lab
equipment, so that the motion of one of its end cannot even occur.

3.3.4. The x4-track

Here we want to analyze the case when only the condition (d) of our four-point
criterion is not satisfied, that is d

d›

F
›

(0) is zero. If the force and its first derivative
are zero in the origin, also the second derivative d

2

d›

2 F
›

(0) must be zero, otherwise
› = 0 would not be a stable equilibrium point. Thus, the first term di�erent from
zero in the MacLaurin expansion of F

›

must be at least proportional to ›3. We
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Figure 3.10.: The interrupted pendulum. (a) The apparatus: the bob is shown
at two di�erent times; (b) Acceleration vs position; (c) FFT of the motion wave-
form. The data for the FFT have been collected and processed by a “Logger-Pro”
system.

want to show that, in this condition, the motion is not only anharmonic, but also
not-isochronous.

Let U (›) be the potential energy of the ball of mass m. Energy conservation can
be written as:

1
2m›̇2 + U (›) = E, (3.11)

where E is the total, constant energy of the system. Let A1 and A2 be the extremes
of oscillation (solution of U (›) = E) then the period of oscillation T is twice the
time spent by the body for going from A1 to A2. That is:

T = 2
ˆ

A2

A1

d›
Ò

2
m

[E ≠ U (›)]
. (3.12)

In the case of our interest, U (›) = c›4, where c is a positive constant. Therefore,
putting A1 © ≠A and A2 © A; with cA4 = E, we obtain:

T = 2
Ú

m

2

ˆ
A

≠A

d›Ô
cA4 ≠ c›4 = 4

Ú
m

2c

ˆ
A

0

d›Ô
A4 ≠ ›4 . (3.13)

Making the substitution › © Ax, T is given by:

T = 4
Ú

m

2c

1
A

ˆ 1

0

dxÔ
1 ≠ x4 = 4

Ú
m

2c
–

1
A

, (3.14)
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3.4 Damped oscillations

where the constant

– ©
ˆ 1

0

dxÔ
1 ≠ x4 s 1.31 (3.15)

has been numerically calculated. The period of oscillation depends on the amplitude
as A≠1 and, therefore, it is not isochronous however small the amplitude A. From
equation (3.14), we observe that when A æ 0, T æ Œ. To better understand this
behaviour, we note that the linearized equation (3.2) reads:

›̈ = 0, (3.16)

a fact that makes a small neighbourhood of › = 0 similar to a region of neutral
equilibrium.

In order to have a mechanical example of this kind of motion one can consider a
ball moving on a x4-shaped track. One observes that about the equilibrium point
the track is nearly flat and realizes that, in order to have only small amplitude
oscillations, the ball has to be substantially at rest with “long” oscillation periods.
On the contrary, to get not too long periods of oscillation, one is forced to consider
su�ciently great amplitudes. In this case, by just listening to the sound produced
by the sliding ball, one can infer that the motion is manifestly anharmonic.

Similar considerations can be done, more in general, when the first term in the
MacLaurin expansion of F

›

(›) is proportional to a generic ›2n≠1 with n > 1; the
dependence of the period T on the amplitude A would be T Ã A≠(n≠1).

3.4. Damped oscillations

In additions to the conditions previously discussed, a useful way to recognize anhar-
monicity is to find an amplitude dependence of the period of oscillation. Since real
motions are always damped, we have to exclude that this dependence comes from
damping, instead of being due to an intrinsic anharmonicity.

In the interesting case of sliding friction, it can be demonstrated that a constant
friction force does not a�ect the frequency of a simple harmonic motion, but only
the amplitude of oscillation which is decreased each cycle [Barrat & Strobel, 1981,
Onorato et al., ]. Therefore sliding friction cannot produce an amplitude depen-
dence of the oscillation period.

In the case of viscous friction, the restoring force no longer depends only on position,
but also on velocity and the situation is a little bit more complicated. In the simplest
case, for small velocities, the damping can be assumed to be linear with the velocity

23



Chapter 3 The Harmonic Motion

and the equation of motion is, therefore:

›̈ + Ê2
0› + 2“›̇ = 0, (3.17)

where “ is the damping coe�cient and Ê0 is the zero-friction angular frequency. In
the case of neither critical (“ = Ê0) nor over-damped (“ > Ê0) motion (that we do
not consider here), the solution of equation (3.17) is:

› (t) = Ae≠“t cos (Êt + Ï0) ; Ê ©
Ò

Ê2
0 ≠ “2; “ < Ê0, (3.18)

Ê © Ê0

Û

1 ≠
3

“

Ê0

42
(3.19)

where A and Ï0 are integration constants and Ê is the actual angular frequency
of the damped harmonic motion. To be more precise, since the motion is not
strictly speaking periodic, instead of the period we should refer to the notion of
pseudo-frequency (and of pseudo-period).
It is important to deeply understand the physical meaning of the constants appearing
in equation (3.18). Let us consider the problem of writing down the explicit solution
of equation (3.17) for an oscillator that starts from rest at the initial position ›(0) =
›0. For that, we have to solve che Cauchy problem:

›̈ + Ê2
0› + 2“›̇ = 0; ›(0) = ›0, ›̇(0) = 0. (3.20)

With simple calculations, we obtain the constants A and Ï0:

A

›0
=

S

WU
1

1 ≠
1

“

Ê0

22

T

XV

1
2

; Ï0 = ≠ arctan
“

Ê0
5
1 ≠

1
“

Ê0

226 1
2
, (3.21)

where the relation on the left shows that A is always greater than ›0. We can observe
that, although A depends on ›0 and on the ratio “/Ê0, the pseudo-frequency does not
depend on ›0 and, therefore, a pseudo-period dependence on the amplitude cannot
come from linear damping. Furthermore, the fact that Ï0 is negative implies that
the elapsed time T

Q

between the start (t = 0) and the first passage through the
equilibrium position is more than a quarter of a period, namely:

T
Q

= T

4 ≠ TÏ0
2fi

, (3.22)

24



3.4 Damped oscillations

while the time interval between the equilibrium position and the first maximum is
less than T/4; the period of a complete oscillation is T = 2fi/Ê. From equations
(3.18) and (3.21) we obtain the fractional increase:

I
Q

=
T

Q

≠ T

4
T

4
= 2

fi
arctan

“/Ê0Ú
1 ≠

1
“

Ê0

22
, (3.23)

that can be seen as an estimate of the “anharmonicity degree” of the motion. The
moving towards the equilibrium position and the moving away from the equilib-
rium position are not symmetric, because in the former case the friction force is
antiparallel to the restoring force while, in the latter, it is parallel.
From equation (3.18) it is straightforward to obtain:

›̈ = ≠
1
Ê2 ≠ “2

2
› + 2“ÊAe≠“t sin (Êt + Ï0) , (3.24)

which shows that the acceleration is the sum of two contributions: a harmonic-like
term, plus a temporal damped sinusoidal term. The first term in equation (3.24)
could be surprising, because the coe�cient of › is not Ê2, as one could at first expect.
The fact is that the pseudo-frequency must not be confused with the frequency.
While frequency is a property of a periodic motion that, for a harmonic oscillator,
is fixed by the slope of the acceleration vs position graph, the pseudo-frequency is
the rhythm given by the oscillator which performs a complete oscillation around the
origin.
The analysis of the graphs of the acceleration vs position allows us to understand
the di�erences between the harmonic and the linearly damped harmonic motions.
Let us first analyze the case “T=1, when the amplitude of oscillation is reduced by
a factor 1/e in a period, so that some complete oscillations are still easily visible,
though clearly damped. In this case, we have:

“

Ê0
=

1
4fi2 + 1

2≠ 1
2 ≥ 0.16, (3.25)

and I
Q

≥ 0.1 In figure Fig. 3.11(a), a plot of › vs t shows four complete oscillations.
Panel (b) of figure Fig. 3.11 displays ›̈ vs › and gives us a picture of the general
structure of the acceleration vs displacement for the so called damped harmonic
motions. When the body passes through the equilibrium position, the harmonic
force (see first term on the right side of equation (3.24) is indeed zero, but the
viscous drag opposes to the direction of motion, so that the curve F

›

(›) (that is
no more a single valued function of ›) does not touch the origin, except when the
motion stops). In figure Fig. 3.11(b) the pseudo-period is the time taken to go from
point A to point B or, equivalently, from the extremes C and D. It is this interval
of time that remains constant during the oscillation.
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It is interesting to analyze how the physical behaviour of the damped oscillator
changes for smaller or higher values of “/Ê0.

Figure 3.11.: The damped harmonic oscillator. (a) Simulated amplitude decay
with a ratio “/Ê0 ≥ 0.16; (b) Simulated acceleration vs position with the same
ratio “/Ê0 ≥ 0.16 as in panel (a).

For “/Ê0 π 1

I
Q

s 2
fi

“

Ê0
π 1, and T

Q

≥ T/4. (3.26)

Moreover,

Ê ≥ Ê0

C

1 ≠ 1
2

3
“

Ê0

42D

, (3.27)

a quantity that is di�cult to distinguish from Ê0 in most simple lab experiments.
In figure Fig. 3.12 a real damped mass-spring oscillator is analyzed. In this case,
“/Ê0 ≥ 0.0045 and I

Q

≥ 0.003. While the damping has a clear and visible e�ect on
the amplitude (see figure Fig. 3.12(a)), since Ê0 ≥ 7.73 s≠1, from equation (3.27) it
follows that, in order to observe the increase of T

Q

with respect to T/4, we should
measure time with an accuracy of 10≠4 s that exceeds most of the standard didactical
lab devices. The acceleration vs position plot has the same structure of that of figure
Fig. 3.11(b), but is completely squeezed so that, to resolve the coils of the spiral,
one should have great precision tools.
From equation (3.24) we can infer that for “ > Ê the first term on the right side
changes sign, therefore the harmonic term of the force is substituted by a moving
away one. If “ = Ê, then “/Ê0 = 1/

Ô
2, I

Q

= 1/2 and the harmonic term in equation
(3.24) is zero.
The graphs of this motion are sketched in figure Fig. 3.13, where the anharmonicity
is clearly visible in panel (b). In fact, the more the curve lies in the first and third
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3.4 Damped oscillations

Figure 3.12.: The damped harmonic oscillator (with a CD-rom stuck to the mass).
(a) Measured amplitude decay with a ratio “/Ê0 ≥ 0.0045; (b) Measured accelera-
tion vs position with the same ratio “/Ê0 ≥ 0.0045 as in panel (a). The data have
been collected and processed by a “Logger-Pro” sonar system.

Figure 3.13.: The damped harmonic oscillator. (a) Simulated amplitude decay
with a ratio “/Ê0 = 1/

Ô
2; (b) Simulated acceleration vs position with the same

ratio “/Ê0 = 1/
Ô

2 as in panel (a).

quadrant, where ›̈ has the same sign of › , the more the motion is anharmonic
because the acting force has the opposite sign of a harmonic force. The body is
accelerated towards the equilibrium position (A to B) in an initial brief interval of
time and then it is slowed down.

If “/Ê0 ≥ 1 then:

I
Q

≥ 1 and T
Q

≥ T/2, (3.28)

and the motion is practically just a coming back to the equilibrium position.

In conclusion, we stress the importance of analyzing the behaviour of the force
(acceleration) as a function of position to discriminate how much a damped motion
is di�erent from an ideal harmonic one. The physics of the problem is regulated by
the ratio “/Ê0. If “/Ê0 is generally less then 0.16 (figure Fig. 3.11(b)) we can roughly
say that the oscillation is substantially harmonic. On the contrary, when “/Ê0 is
greater then 1Ô

2 (figure Fig. 3.13(b)), a clear anharmonicity appears.
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Chapter 3 The Harmonic Motion

3.5. Some didactical considerations
From the previous analysis, it appears that it is often extremely simple to infer
the anharmonicity/harmonicity of the small oscillations, even without knowing the
exact dependence of the force on the displacement.
First of all, in first approximation, linear damping does not substantially alter the
harmonicity, provided some complete oscillations are clearly visible. Keeping in mind
the four-point criterion of section 3.2, just looking at the motion and, if needed, also
listening to the sound produced by the oscillations, we can label the oscillations
as harmonic or not. If we have just a look at the motion of a bouncing disk, we
immediately see that it has not a stable equilibrium position; by simply watching the
form of the track of a Galileo oscillator, we understand that in the equilibrium point
there is a problem of continuity of the force. Therefore we immediately conclude
that these motions are not harmonic. If one is not yet convinced, just by listening
to the changing of the ticking rhythm, which reflects a dependence of the frequency
on the amplitude, s(he) will finally be persuaded. Looking at the trajectory of the
bob of an interrupted pendulum, an abrupt curvature change as well as a sudden
variation of the half-period are evident. The case of the x4-track is particularly
intriguing, since viewing could not be enough, hearing could be necessary to realize
the great dependence of the frequency on the amplitude.
From a laboratory point of view, a little warning is also worth mentioning, in fact a
restoring force of the form

F
›

(›) = ≠k1› ≠ k3›
3; k1 > 0; k3 > 0 (3.29)

clearly satisfies the four-point criterion; nevertheless if k3 ∫ k1, anharmonic oscilla-
tions will appear as soon as the amplitude of oscillation is not small enough. This
example shows that the observed anharmonicity/harmonicity of the small oscilla-
tions depends, in general, both on the experimental set up and on the measurement
devices.
In a didactical path it should be very instructive to ask students to try to understand
at a glance the anharmonicy/harmonicity of two seesaws: a bar put on a cylindrical
shaped pivot (figure Fig. 3.14(a)) and a bar put on a square pivot (figure Fig. 3.14(b))
[Pecori & Torzo, 2001] . It should be clear that, for small oscillations, the former
seesaw performs harmonic motion, while the latter does not (the eye sees an edge
and the ear hears an increasing frequency ticking).
For completeness, in Fig. 3.15 are reported the FFT graphs obtained by the analysis
of the motion via sonar detector for a seesaw on a round pivot (a) and on a flat pivot
(b). It is evident that in the case of the round pivot, the frequency obtained is neat
and with a precise value as expected for the harmonic motion. On the other hand,
in the case of the flat pivot, the frequency is widely spread around a middle value
and it is detectable the presence of higher harmonics to confirm the anharmonicity
of the motion.

28



3.5 Some didactical considerations

Figure 3.14.: (a) The seesaw with a cylindrical shaped pivot; (b) The seesaw with
a square pivot.

Figure 3.15.: (a) The FFT for the seesaw on a round pivot and (b) on a flat pivot.

As we have already said in subsection 3.3, while harmonicity implies isochronism,
the viceversa is not true. Let us consider a body moving on a cycloidal track under
the e�ect of gravity Fig. 3.16.
Neglecting friction, the motion is harmonic along the cycloid, whatever the ampli-

Figure 3.16.: The cycloidal track.

tude. The equation of motion is [Onorato et al., 2013]:

›̈ + g

4R
› = 0, (3.30)

where R is the radius of the circle generating the cycloid and g the gravity accelera-
tion. As a consequence, the oscillations are all isochronous. It is, therefore, straight-
forward to understand that even the x-component of the motion is isochronous for
every amplitude. But it is harmonic only for small oscillations, while with increasing
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Chapter 3 The Harmonic Motion

amplitude the anharmonicity clearly appears. In fact, the invertible transformation
from › to x is not linear and, therefore, it does not preserve the form of equation
(3.30). To better understand this fact, we can consider an oscillation starting from
the point A in Fig. 3.16: the x-component of the acceleration is zero in that point,
at variance to what a harmonic motion requires. For continuity reasons, the motion
will therefore be anharmonic even in the intermediate amplitude region.

30



4. The Normal Modes of Oscillation

4.1. Overview

Every single oscillator has its own unique natural frequency1 of oscillation that is
determined by the nature of such oscillator. For instance, the natural frequency
for the mass-spring depends on the mass of the bob and the elastic constant of the
spring and it is given by Ê =

Ò
k/m. We want to see what happens to the oscillation

when two, three, N mass-spring are connected between springs as to generalize to
the continuous systems. We will inspire to the lectures given by Professor David
Morin in his undergraduate courses in the Physics Department at Harvard University
[Morin, ].

4.2. Two masses

4.2.1. The motion equations

The systems of two coupled mass-springs consists of two mass-spring oscillators
connected by a thirs spring as in Fig. 4.1 . For semplicity we will consider all the
springs with the same elastic constant k.

Figure 4.1.: The system of two coupled mass-spring oscillators

Let x1 and x2 measure the displacements of the left and right masses from their re-
spective equilibrium positions. We can assume that all of the springs are unstretched
at equilibrium. The middle spring is stretched (or compressed) by x2 ≠ x1 so the
F = ma equations for the two masses are

mẍ1 = ≠kx1 ≠ k (x1 ≠ x2) ,
mẍ = ≠kx2 ≠ k (x2 ≠ x1)

(4.1)

1we here call frequency the angular frequency Ê that is proportional to the frequency f . More
properly Ê = 2fif.
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Chapter 4 The Normal Modes of Oscillation

These two F = ma equations are “coupled”, in the sense that both x1 and x2 appear
in both equations. How do we go about solving for x1 (t) and x2 (t)? There are (at
least) two ways to solve this system of equations. The first is substantially the one
used in section 8.3.4.2 that is quick but it works only with simple and symmetric
sistems. The second that we use here, is more complex but it works almost with any
system. Our strategy will be to look for simple kinds of motions where both masses
move with the same frequency. We will then build up the most general solution
from these simple motions. For all we know, such motions might not even exist, but
we have nothing to lose by trying to findnd them. We will find that they do in fact
exist. You might want to try to guess now what they are for our two-mass system,
but it isn’t necessary to know what they look like before undertaking this method.
Let’s guess solutions of the form x1 (t) = A1 exp (iÊt) and x2 (t) = A2 exp (iÊt)
. Substituting these equations into the 4.1 and canceling the factor exp (iÊt) we
obtain

mÊ2A1 = ≠kA1 ≠ k (A1 ≠ A2) ,
mÊ2A2 = ≠kA2 ≠ k (A2 ≠ A1) .

(4.2)

that can be written as a matrix
A

≠mÊ2 + 2k k
≠k ≠mÊ2 + 2k

B A
A1
A2

B

=
A

0
0

B

. (4.3)

We can multiply both sides of this equation by the inverse of the matrix. This leads
to (A1, A2) = (0, 0). This is obviously a solution, but we’re looking for a nontrivial
solution that actually contains some motion. The only way is that the inverse of the
matrix doesn’t exist. So if the determinant is zero, then the inverse doesn’t exist.
This is therefore what we want. Setting the determinant equal to zero gives the
quartic equation,

det

A
≠mÊ2 + 2k k

≠k ≠mÊ2 + 2k

B

= 0 =∆ Ê2 = k

m
or Ê2 = 3 k

m
. (4.4)

The four solutions thus are: Ê = ±
Ò

k/m and Ê = ±
Ò

3k/m. For the case where
Ê2 = k/m, we can plug this value of Ê2 back into 4.3 to obtain

k

A
1 ≠1

≠1 1

B A
A1
A2

B

=
A

0
0

B

(4.5)

Both rows of this equation yield the same result , namely A1 = A2 . So (A1, A2) is
proportional to the vector (1, 1). For the case Ê =

Ò
3k/m , 4.3 gives

k

A
≠1 ≠1
≠1 ≠1

B A
A1
A2

B

=
A

0
0

B

(4.6)

32



4.2 Two masses

Both rows now give A1 = ≠A2 . So (A1, A2) is proportional to the vector (1, -1). If
we call Ê

s

=
Ò

k/m and Ê
f

=
Ò

3k/m, the general solution is the sum of the four
solutions we have found. In vector notation, x1 (t) and x2 (t) are given by

A
x1 (t)
x2 (t)

B

= C1

A
1
1

B

exp (iÊ
s

t) + C2

A
1
1

B

exp (≠iÊ
s

t)

+C3

A
1

≠1

B

exp (iÊ
f

t) + C4

A
1

≠1

B

exp (≠iÊ
f

t)
(4.7)

The positions x1 (t) and x2 (t) must be real for all t. This yields that standard
result that C1 = Cú

2 © (A
s

/2) ei„s and C3 = Cú
4 © (A

f

/2) ei„f . We have included
the factors of 1/2 in these definitions so that we won’t have a bunch of factors of
1/2 in our final answer. The imaginary parts in 4.7 cancel, and we obtain

A
x1 (t)
x2 (t)

B

= A
s

A
1
1

B

cos (Ê
s

t + „
s

) + A
f

A
1

≠1

B

cos (Ê
f

t + „
f

) (4.8)

Therefore

x1 (t) = A
s

cos (Ê
s

t + „
s

) + A
f

cos (Ê
f

t + „
f

) ,
x2 (t) = A

s

cos (Ê
s

t + „
s

) ≠ A
f

cos (Ê
f

t + „
f

) .
(4.9)

4.2.2. Normal modes and normal coordinates

Normal Modes Let us now see what we have found solving for x1 (t) and x2 (t).
If in 4.9 A

f

= 0, then

x1 (t) = x2 (t) = A
s

cos (Ê
s

t + „
s

) (4.10)

So both masses move in exactly the same manner. Both to the right, then both to
the left, and so on. This means that the middle spring is never stretched, as if it
did’t be there. It is as if we have two copies of a simple spring-mass system. This is
consistent with the fact that Ê

s

equals the standard expression
Ò

k/m, independent
of k. This nice motion, where both masses move with the same frequency, is called
a normal mode. To specify what a normal mode looks like, you have to give the
frequency and also the relative amplitudes. So this mode has frequency

Ò
k/m, and

the amplitudes are equal. If, on the other hand, A
s

= 0 in 4.9, then we have

x1 (t) = ≠x2 (t) = A
f

cos (Ê
f

t + „
f

) (4.11)

Now the masses move oppositely. Both outward, then both inward, and so on. The
frequency is now Ê

f

=
Ò

3k/m . This second frequency is larger than the previous
because now the central spring is stretched or compressed, so it adds to the restoring
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Chapter 4 The Normal Modes of Oscillation

force. This motion is the second normal mode. It has frequency
Ò

3k/m, and the
amplitudes are equal and opposite. The 4.9 tells us that any arbitrary motion of
the system can be thought of as a linear combination of these two normal modes.

Normal coordinates By adding and subtracting the expressions for x1 (t) and
x2 (t) in 4.9, we see that for any arbitrary motion of the system, the quantity x1 (t)+
x2 (t) oscillates with frequency Ê

s

, and the quantity x1 (t) ≠ x2 (t) oscillates with
frequency Ê

f

. These combinations of the coordinates are known as the normal
coordinates of the system. The x1 (t) + x2 (t) normal coordinate is associated with
the normal mode (1, 1), in fact they both have frequency Ê

s

. Equivalently, any
contribution from the other mode, where x1 (t) = ≠x2 (t) will vanish in the sum
x1 (t)+x2 (t). Basically, the sum x1 (t)+x2 (t) picks out the part of the motion with
frequency Ê

s

and discards the part with frequency Ê
f

. Similarly, the x1 (t) ≠ x2 (t)
normal coordinate is associated with the normal mode (1, -1), because they both
have frequency Ê

f

. Equivalently, any contribution from the other mode (where
x1 (t) = x2 (t) ) will vanish in the di�erence x1 (t) ≠ x2 (t).

4.3. Three masses

As an intermediate step to the general case of N masses connected by springs, let’s
consider at the case of three masses, as shown in Fig. 4.2. We’ll just deal with

Figure 4.2.: Three coupled mass-spring system

undriven and undamped motion here, and we’ll choose all the masses equal we’ll
also assume that all the spring constants are equal, lest the math get intractable.
If x1, x2 and x3 are the displacements of the three masses from their equilibrium
positions, then the three F = ma equations are

mẍ1 = ≠kx1 ≠ k (x1 ≠ x2)
mẍ2 = ≠k (x2 ≠ x1) ≠ k (x1 ≠ x3)

m ¨x3 = ≠k (x3 ≠ x2) ≠ kx3

(4.12)

We will use the determinant method and guess a solution of the form
Q

ca
x1
x2
x3

R

db =

Q

ca
A1
A2
A3

R

db exp (iÊt) . (4.13)
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4.3 Three masses

Substituting in 4.12 and cancelling the exp (iÊt) factor, we obtain
Q

ca
≠Ê2 + 2Ê2

0 ≠Ê2
0 0

≠Ê2
0 ≠Ê2 + 2Ê2

0 ≠Ê2
0

0 ≠Ê2
0 ≠Ê2 + 2Ê2

0

R

db

Q

ca
A1
A2
A3

R

db =

Q

ca
0
0
0

R

db (4.14)

where Ê2
0 = k/m. A nonzero solution for (A1, A2, A3) exists only if the determinant

of this matrix is zero. Setting it equal to zero gives

(≠Ê2 + 2Ê2
0)

1
(≠Ê2 + 2Ê2

0)2 ≠ 2Ê4
0
2

+ Ê2
0 (≠Ê2

0 (≠Ê2 + 2Ê2
0)) = 0

=∆ (≠Ê2 + 2Ê2
0) (Ê4 ≠ 4Ê2

0Ê2 + 2Ê4
0) = 0.

(4.15)

This is a 6th-order equations. Anyway it is just cubic in Ê2 and, as (≠Ê2 + 2Ê2
0) is a

factor, at the end we have a quadratic equation in Ê2. Using the quadratic formula,
the roots to 4.15 are

Ê2 = 2Ê2
0 and Ê2 =

1
2 ±

Ô
2

2
Ê2

0 (4.16)

If weplug these values back into 4.14 to find the relations among A1, A2, A3 we have
the three normal modes

Ê = ±
Ô

2Ê0 =∆

Q

ca
A1
A2
A3

R

db Ã

Q

ca
1
0

≠1

R

db

Ê = ±
Ò

2 +
Ô

2Ê0 =∆

Q

ca
A1
A2
A3

R

db Ã

Q

ca
1

≠
Ô

2
1

R

db

Ê = ±
Ò

2 ≠
Ô

2Ê0 =∆

Q

ca
A1
A2
A3

R

db Ã

Q

ca
1Ô
2

1

R

db

(4.17)

The most general solution is obtained by taking an arbitrary linear combination of
the six solutions corresponding to the six possible values of Ê:

Q

ca
x1
x2
x3

R

db = C1

Q

ca
1
0

≠1

R

db exp
1
i
Ô

2Ê0t
2

+ C2

Q

ca
1
0

≠1

R

db exp
1
≠i

Ô
2Ê0t

2
+ ... (4.18)

However, the x’s must be real, so C2 must be the complex conjugate of C1. Likewise
for the two C’s corresponding to the

1
1, ≠

Ô
2, 1

2
mode, and also for the two C’s

corresponding to the
1
1,

Ô
2, 1

2
mode. Following the procedure that transformed
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4.7 into 4.8, we see that the most general solution can be written as
Q

ca
x1 (t)
x2 (t)
x3 (t)

R

db = A
m

Q

ca
1
0

≠1

R

db cos
1Ô

2Ê0t + „
m

2

+A
f

Q

ca
1

≠
Ô

2
1

R

db cos
3Ò

2 +
Ô

2Ê0t + „
f

4

+A
s

Q

ca
1Ô
2

1

R

db cos
3Ò

2 ≠
Ô

2Ê0t + „
s

4

(4.19)

where the subscriptions “m”, “f”, and “s” stand for middle, fast, and slow. The six
unknowns, A

m

, A
f

, A
s

, „
m

, „
f

and „
s

are determined by the six initial conditions
(three positions and three velocities). If A

m

is the only nonzero coe�cient, then the
motion is purely in the middle mode. Likewise for the cases where only A

f

or only
A

s

is nonzero.

4.4. N masses

Let’s now consider the general case of N masses between two fied walls. The masses
are all equal to m, and the spring constants are all equal to k. The method we’ll
use below will actually work even if we don’t have walls at the ends, that is, even if
the masses extend infinitely in both directions. Let the displacements of the masses
relative to their equilibrium positions be x1, x2, ..., x

N

. If the displacements of the
walls are called x0 and x

N+1, then the boundary conditions that we’ll eventually
apply are x0 = x

N+1 = 0.
The force on the nth mass is

F
n

= ≠k (x
n

≠ x
n≠1) ≠ k (x

n

≠ x
n+1) = kx

n≠1 ≠ 2kx
n

+ kx
n+1 (4.20)

So at the end we have a collection of F = ma equations that look like

mẍ = kx
n≠1 ≠ 2kx

n

+ kx
n+1 (4.21)

These can be callected in the matrix equation

m
d2

dt2

Q

ccccccca

...
x

n≠1
x

n

x
n+1
...

R

dddddddb

=

Q

ccccccca

...
· · · k ≠2k k

k ≠2k k
k ≠2k k · · ·

...

R

dddddddb

Q

ccccccca

...
x

n≠1
x

n

x
n+1
...

R

dddddddb

. (4.22)
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We can guess a solution of the form
Q

ccccccca

...
x

n≠1
x

n

x
n+1
...

R

dddddddb

=

Q

ccccccca

...
A

n≠1
A

n

A
n+1
...

R

dddddddb

exp (iÊt) . (4.23)

Setting the resulting determinant equal to zero for large N, it would be completely
intractable to solve for the Ê’s by using the determinant method. Instead of the
determinant method, we’ll look at each of the F = ma equations individually. Let us
consider the nth equation. Substituting x

n

= A
n

exp (iÊt) in the 4.21 and cancelling
the exp (iÊt) factor, we obtain

≠Ê2A
n

= Ê2
0 (A

n≠1 ≠ 2A
n

+ A
n+1)

=∆ An≠1+An+1
An

= 2Ê

2
0≠Ê

2

Ê

2
0

, (4.24)

where Ê0 =
Ò

k/m . This equation must hold for all values of n from 1 to N, so
we have N equations of this form. For a given mode with a given frequency Ê, the
quantity (2Ê2

0 ≠ Ê2) /Ê2
0 on the righthand side is a constant, independent of n. So

the ratio (A
n≠1 + A

n+1)/A
n

on the lefthand side must also be independent of n.
The problem therefore reduces to finding the general form of a string of A’s that
has the ratio (A

n≠1 + A
n+1)/A

n

being independent of n. If we know three adjacent
A’s, then this ratio is determined, so we can recursively find the A’s for all other
n . Or equivalently, if we know two adjacent A’s and also Ê, so that the value of
(2Ê2

0 ≠ Ê2) /Ê2
0 is known (we’re assuming that Ê0 is given), then all the other A’s

can be determined. The following claim tells us what form the A’s take. It is this
claim that allows us to avoid using the determinant method.
Claim: If Ê Æ 2Ê0, then any set of A

n

’s satisfying the system of N equations in
4.24 can be written as

A
n

= B cos n◊ + C sin n◊, (4.25)

for certain values of B, C, and ◊. (The fact that there are three parameters here is
consistent with the fact that three A’s, or two A’s and Ê, determine the whole set.).
Proof: We’ll start by defning

cos ◊ © A
n≠1 + A

n+1
2A

n

. (4.26)

The righthand side is independent of n, so ◊ is well defined. If we’re looking at a
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given normal mode with frequency Ê, then in view of 4.24, an equivalent defnition
of ◊ is

2 cos ◊ © 2Ê2
0 ≠ Ê2

Ê2
0

. (4.27)

These defnitions are permitted only if they yield a value of cos ◊ that satisfies
| cos ◊| Æ 1. This condition is equivalent to the condition that Ê must satisfy
≠2Ê0 Æ Ê Æ 2Ê0. We’ll just deal with positive Ê here (negative Ê yields the same
results, because only its square enters into the problem), but we must remember to
also include the eiÊt solution in the end. So this is where the Ê Æ 2Ê0 condition in
the claim comes from.
We can prove that with walls at the ends, ◊ (and hence Ê) can take on only a certain
set of discrete values. If there are no walls, that is, if the system extends infinitely
in both directions, then ◊ (and hence Ê) can take on a continuous set of values. The
N equations represented in 4.24 tell us that if we know two of the A’s, and if we also
have a value of Ê, then we can use the equations to successively determine all the
other A’s. Let’s say that we know what A0 and A1 are (For instance, if there are
walls, A0 = 0). The rest of the An’s can be determined as follows. We define B by

A0 © B cos (0 · ◊) + C sin (0 · ◊) =∆ A0 © B. (4.28)

(So B = 0 if there are walls). Now we define C by

A1 © B cos (1 · ◊) + C sin (1 · ◊) =∆ A1 © B cos ◊ + C sin ◊. (4.29)

For any A0 and A1, these two equations uniquely determine B and C (◊ was al-
ready determined by Ê). By construction of these definitions, the proposed A

n

=
B cos n◊+C sin n◊ relation holds for n = 0 and n = 1. We will now show inductively
that it holds for all n.
If we solve for A

n+1 in 4.27 and use the inductive hypothesis that the A
n

= B cos n◊+
C sin n◊ result holds for n ≠ 1 and n, we have

A
n+1 = (2 cos ◊) A

n

≠ A
n≠1

= 2 cos ◊ (B cos n◊ + C sin n◊) ≠ (B cos (n ≠ 1) ◊ + C sin (n ≠ 1) ◊)
= B (2 sin n◊ cos ◊ ≠ (cos n◊ cos ◊ + sin n◊ sin ◊))

+C (2 sin n◊ cos ◊ ≠ (sin n◊ cos ◊ ≠ cos n◊ sin ◊))
= B (cos n◊ cos ◊ ≠ sin n◊ sin ◊) + C (sin n◊ cos ◊ + cos n◊ sin ◊)
= B cos (n + 1) ◊ + C sin (n + 1) ◊,

(4.30)

which is the desired expression for the case of n + 1. (Note that this works indepen-
dently for the B and C terms.) Therefore, since the A

n

= B cos n◊ + C sin n◊ result
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4.4 N masses

holds for n = 0 and n = 1, and since the inductive step is valid, the result therefore
holds for all n. We could have instead solved for A

n≠1 in 4.30 and demonstrated
that the inductive step works in the negative direction too. Therefore, starting with
two arbitrary masses anywhere in the line, the A

n

= B cos n◊ +C sin n◊ result holds
even for an infinite number of masses extending in both directions.
This claim tells us that we have found a solution of the form,

x
n

(t) = A
n

eiÊt = (B cos n◊ + C sin n◊) eiÊt. (4.31)

As for convention Ê is positiuve, the solution e≠iÊt works as well. So another solution
is

x
n

(t) = A
n

e≠iÊt = (D cos n◊ + E sin n◊) e≠iÊt. (4.32)

The coe�cients in this solution need not be the same as those in the eiÊt solution.
Since the F = ma equations in 4.21 are all linear, the sum of two solutions is again
a solution. So the most general solution (for a given value of Ê) is the sum of the
above two solutions (each of which is itself a linear combination of two solutions).
As usual, we now invoke the fact that the positions must be real. This implies that
the above two solutions must be complex conjugates of each other. And since this
must be true for all values of n, we see that B and D must be complex conjugates,
and likewise for C and E. Let’s define B = Dú © (F/2) ei— and C = Eú © (G/2) ei“

. There is no reason why B, C, D, and E (or equivalently the A’s in 4.23) have to
be real. The sum of the two solutions then becomes

x
n

(t) = C1 cos n◊ cos Êt+C2 cos n◊ sin Êt+C3 sin n◊ cos Êt+C4 sin n◊ sin Êt, (4.33)

where ◊ is determined by Ê via the 4.27, which it is possible to write in the form

◊ © cos≠1
A

2Ê2
0 ≠ Ê2

2Ê2
0

B

. (4.34)

The constants C1, C2, C3, C4 in 4.33 are related to the constants F , G, —, “ in 4.32
in the usual way (C1 = F cos —, etc.).
4.33 is the most general form of the positions for the mode that has frequency Ê.
This set of the x

n

(t) functions (N of them) satisfies the F = ma equations in 4.21
(N of them) for any values of C1, C2, C3, C4. These four constants are determined
by four initial values, for example, x0 (0), ẋ0 (0), x1 (0) and ẋ1 (0). Of course, if
n = 0 corresponds to a fixed wall, then the first two of these are zero.

39





5. The Path on Oscillation for Upper
Secondary School Students

5.1. Introduction

The path on oscillations that we present here is the result of a Design Based Research
on normal modes with Italian upper secondary school students. The complete path
has been proposed to three classes of 11th grade students during curricular lessons.
A version of the sequence has been proposed also to other three classes (one of grade
11th and two of grade 12th) during afternoon extra-curricular lessons, and a version
with university-level formalism as also been proposed to a group of undergraduated
students in mathematics during the third year course “Preparation of didactical
experiments”. A reduced version of the path has also been proposed to a number of
classes of 12th grade students within the one-shot lessons on oscillations (afternoon
extracurricular activities) in the framework of PLS[PLS, ] activities. The one-shot
lessons have been attended, in time, by about six hundred students.
This works origins from the necessity of introducing a complete path on oscillations
that in the Italian upper secondary school is still in part missing. The path starts
from the oscillation of single simple oscillators, considers two coupled oscillators
and presents the normal modes of oscillation up to more complex systems of many
coupled oscillators until you get to the continuous case, for instance, oscillating
strings and membranes. Coupled oscillations and normal modes are considered
complicated topics, in part because of the mathematics involved. The aim is that
to introduce such topics to 11th and 12th grade students avoiding the use of too
complex mathematics and calculus but without losing rigor and completeness.

5.2. The data-logging techniques

The path on oscillation is entirely based on an experimental approach. We chose to
collect data with students with two di�erent data-logging and data analysis systems:
the commercial Vernier Logger Pro software, with sonar motion detector [Log, ]
and the freeware video analysis software Tracker [tra, ]. The two data acquisition
systems are not exclusive but complementary. In fact, both have such characteristics
as to make one more suitable than the other, depending on the experiment and the
measurement to be made (see Fig. 5.1).
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Figure 5.1.: Comparison between the two data-logging techniques: Vernier Logger
Pro and Tracker

5.2.1. The Logger Pro System

The Vernier data-logging system consists of the Vernier motion detector2 connected
to the Vernier A/D converter interface "LabPro". The interface is connected to a
PC and the system is driven by its dedicated software, namely "Logger Pro". Up to
two digital sensors can be connected to LabPro (Fig. 5.2, Fig. 5.3). All needed data
analysis can be performed online with Logger Pro software.

Figure 5.2.: Scheme of the Vernier data-logging System

The sonar motion detector emits short bursts of ultrasonic sound waves from the
gold foil of the transducer. These waves fill a cone-shaped area about 15° to 20° o�
the axis of the centerline of the beam. The range of detection spans between 0.150
- 6.000 meters with a resolution of 0.001 meters. The interface resolution is 12 - bit
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Figure 5.3.: The apparatus

and maximum sampling rate is 50,000 samples per second [det, 2014]. In our plots
the uncertainty bars are not shown because they have the same size of dots.
This system has some characteristics that make it very suitable to track the motion
also of fast objects, provided the motion takes place along a rectilinear trajectory.
In fact the sonar detector can only detect objects that move in front of it within an
angle of about 20° o� the axis of the centerline of the beam. The Motion Detector
is capable of measuring objects as close as 0.15 m and as far away as 6 m with a res-
olution of less than 1 mm. Of course the maximum distance for tracking the motion
depends on the reflectivity of ultrasonic waves of the object. For instance, metallic
bodies are easily detectable at greater distance than plastic or wooden bodies. An
important characteristic is that this system performs real time measurements. The
duration of the measure is virtually indefinite since it depends only on the memory
available on your computer. The high sample rate available (up to 50,000 samples
per second) enables to track the motion of fast moving objects with a good reso-
lution. Moreover, the system manages a number of di�erent probes in addition to
the sonar: sound and light sensor, force sensor, pressure sensor and many others;
this makes it useful for many didactical lab activities, not only for the study of
oscillations.
The Logger Pro software has many interesting tools for managing and analysing the
collected data, in particular it can easily provide the FFT graph of the waveform of
the motion.

5.2.2. The Tracker Video Analysis Software

The Tracker Video Analysis Software is a freeware software developed at Cabrillo
University (Aptos, California) [Cab, 2014] by Douglas Brown [Dou, 2014] and it is
designed to be used in physics education.
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Tracker is an image and video analysis package and modelling tool that is built upon
the Open Source Physics Java code library. Features include object tracking with
position, velocity and acceleration overlays and graphs, special e�ect filters, multiple
reference frames, calibration points and line profiles for analysis of spectra and
interference patterns. It is designed to be used in introductory college physics labs
and lectures but it is suitable for physics courses and laboratories at upper secondary
school level, as well [Ope, 2014]. Tracker can handle any video. in particular the
videos of experiments, taken by smartphones. This turns a smartphone into an
important and versatile laboratory instruments available almost everywhere and
always. The clear advantage is the fact that the software is freeware, and so no cost
for the school, and nowadays almost every student owns a smartphone. Unlike the
sonar detector, Tracker can track the motion of an object also in two dimensions so
it can be used to study the motions in a plane such as circular motion, parabolic
motion and many others. Moreover, there is virtually no limit to the number of
targets to track and some important modelling can be performed: for instance the
study of the motion of the center of mass. Another advantage is the fact that
the students like very much the use of a technology very friendly to them such as
their smartphones and in our experience they result very enthusiastic in making the
experiments. There are a couple of main disadvantages. The first is that Tracker
does not allow a real time measurement and plotting of the results. It needs that the
video be uploaded on the computer and elaborated. This process, depending on the
quality of the video and on its length, can last a long time. The second important
limit for the use of Tracker is the fact that it is based on the recognition of the
position of the target object in subsequent video frames. Thus, if the motion is too
fast, the image of the object in each frame can be not well defined and di�cult to be
tracked. As the refresh time of smartphones is usually of 25-30 frames per second,
it is di�cult to track the videos that are too fast. Also the Tracker software has
many tools for the analysis of the collected data, such as the FFT tool. In Fig. 5.4
it is shown the typical graphic interface of the Tracker software.
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Figure 5.4.: A typical example of the graphic interface of Tracker software. In
this case a target ball fixed on a rotating disk is being tracked as to study the
projection of a circular motion along one axis. The video has been recorded by
an Iphone 4s device.

5.3. The Path

The path on oscillations is based on a number of activities in which we start from
a real experiment or a video or else an applet simulation to introduce and discuss
a limited topic [Stellato et al., 2014b, Stellato et al., 2014a]. The general purpose
is to identify, among the oscillations, those that give rise to a peculiar kind of mo-
tion: the harmonic motion, and determine the conditions under which such motion
can be obtained. A number of significative situations of harmonic and anharmonic
motions are investigated and criteria to estabilishing the armonicity/anharmonicity
of the oscillation are discussed. An important tool for the analysis of the data is
then introduced: the Fast Fourier Trasform. The FFT is introduced as a tool and
not discussed through mathematics. Then the concept on resonance is introduced
in a phenomenological way through experiments and exploring related videos in the
Internet videos database [YOU, 2014]. The next step is the introduction of the cou-
pling between two oscillators and the discovery of particular motion configurations:
the Normal Modes of Oscillation. We then extend the experiments to three, four,
five....many coupled oscillator until we arrive to the continuous case; first in one
dimension with the string and then in two dimensions with the Cladni plates and
study the normal modes of such complex systems.

Here the main activities follow:
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5.3.1. The restoring forces acting on oscillators

The path on oscillation is oriented to the introduction of normal modes in the Ital-
ian upper secondary school. Thus a deep comprehension of the harmonic motion
is needed. We think that a fruitful definition of harmonic motion is the dynamic
one, even if it is not usually present in the textbooks and in the courses for upper
secondary students, in Italy. For this reason it is necessary that the students un-
derstand the role of forces on oscillations, in fact a conceptual knot for harmonic
motion is the concept of elastic (linearized) restoring force [Giliberti et al., 2014].
The activity starts with a brief brainstorming on what is an oscillation and what is a
periodic phenomenon. In this phase the teacher/researcher just guides the discussion
without giving definitions. The ideas must come from students, mainly in peer to
peer discussion, and definitions must eventually come as the result of negotiation
between students. Here the teacher/researcher has the role of guide/facilitator only.
A particular attention should be deserved to the consideration that, in nature, al-
most none oscillation is really periodic because of friction. Anyway we can consider
periodic those motions for which damping is small enough and for a short time of
observation, provided the shapes of the motion repeats at regular time intervals.
After the brainstorming phase, some real oscillating objects are shown to students (if
requested, they are repeated and students can try themselves): a vertically bouncing
ball, a simple pendulum, a disk bouncing between two elastic edges on an air table, a
vertical mass on a spring, a seesaw on flat pivot, a seesaw on a round pivot, a ball
on a semi-circular track and a Galileo-pendulum. Students are asked to group these
experiments by some common characteristics they can identify. If it doesn’t emerge
from the peer discussion, the teacher/researchers guides the students to take into
account, in grouping the oscillations, the existence of a stable equilibrium point.
Then the analysis of the total force acting along the trajectory is performed. At this
point the students are asked to group again the oscillations taking into account the
characteristic of the forces. So two groups of oscillations can be obtained: oscillations
which have a single stable equilibrium position, subject to a restoring force, and all
the others. In a first time, the students try to produce the graphs of the force as a
function of the position, then similar graphs (acceleration as a function of position)
are produced via the two data-logging systems described above. Of course a brief
training on the use of the data-logging systems is required.

5.3.1.1. The vertical bouncing ball

The vertical bouncing ball is simply an elastic ball (it can be either made of rubber,
steel or glass) that is let free to fall from a height and bouncing on the floor as
in Fig. 5.5(a). The experiment can be performed with zero initial velocity or with
an initial vertical velocity. Let us consider a complete “oscillation”, that is a com-
plete bounce, in which the ball starts falling from a height, impacts with the floor,
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bounces and goes back toward the start position. Of course at each bounce the
maximum height decreases because of the energy loss in the impact with the ground
and the friction with the surrounding air. Once falling, the ball is subject only to
gravitational force, if we neglect the small friction due to the air. So during the fall
the total force acting on the ball is directed vertically towards the ground; the same
is true after the impact, when the ball is no more in contact with the ground and
goes back up to the starting position. Things are di�erent during the impact with
the floor: in the very short time of impact, the ball deforms and an impulsive elastic
force superimpose to the gravitational force with an opposite sign. If we choose a
reference system oriented upwards with the origin centered in the impact point 1

the overall force acting on the ball is of the form of the one of Fig. 5.5(b). Note that
the force is intended acting in the center of mass of the ball and, even if the ball
is squeezed during the impact, its thickness never equals zero. So the graph of the
force lies in the first and in the fourth quadrant and never intersects the axis of the
force (so it does not pass through the origin of the reference system).

Trying to draw the graph of the force vs the position (acceleration vs position) with
Loggerpro system or with Tracker video analysis is quite di�cult in this case. In fact
in the first case, the sonar sensor needs to be in front of the falling ball during all the
measurements and, in the second case, the velocity of the ball is too high to obtain
well-enough defined phtograms with smartphones, to be tracked with Tracker. It is
possible to track the experiment using cameras with high photogram-refresh rate;
this is not our case.

Figure 5.5.: (a) scheme of a ball bouncing on the floor; (b) diagram of the force
versus position for the bouncing ball

1the impact point is not properly a stable equilibrium point, in fact if we suppose to dig a hole
in the floor, the ball would continue to fall downwards

47



Chapter 5 The Path on Oscillation for Upper Secondary School Students

5.3.1.2. The simple pendulum

The simple pendulum is the classic pendulum that 11th and 12th grade students
already know (Fig. 5.6). In our experiment we chose to use a bifilar pendulum
because the bifilar version guarantees stability of the plan of the oscillation: this is
important if we want to track the motion by sonar detector. Also in this case we
neglect the friction with air.
The rest position for the pendulum is a stable equilibrium position: if the pendulum
is displaced rightwards, it tends to move left to return to the equilibrium position;
vice versa, if the pendulum is displaced leftwards, it moves rightwards to return to
the equilibrium position. The only force responsible for the motion is the weight
(gravitational force), in particular its component along the trajectory. A detailed
analysis of the forces with students is important, in fact, while almost all students
(in our experimentation classes) were able to identify and draw the components of
the gravitational force, none of them could predict the presence of the centripetal
force due to the fact that the bob of the pendulum moves with velocity along an arc
of circumference.

Figure 5.6.: Scheme of the simple pendulum. It is schetched the total force acting
along the trajectory

At this point we ask the students to draw the force vector in di�erent points of
the trajectory as to make them aware that in each point the force acting along the
trajectory is directed towards the equilibrium position. If we choose the equilibrium
point as the origin of the system of curvilinear coordinate describing the trajectory,
we can state that, in each point, the force results opposite to the displacement. In
this way we can define the general concept of restoring force. So, in a system with
a stable equilibrium position, a restoring force is a force that is always directed
towards the equilibrium point (the origin of the reference system) and opposite to
the displacement; namely, a force that tends to return the system to its equilibrium
position. If we try to draw such a force as a function of the position, without too
many details, it must pass through the origin of the reference system and lies in the
second and fourth quadrant as depicted in Fig. 5.7. The accurate graph of the force
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vs position can be discussed with students and their results can be compared with
the graph obtained (for acceleration vs position) with the one of the data-logging
techniques. For instance, if we process the data obtained by the sonar detector, we
obtain a graph like the one in Fig. 5.8.

Figure 5.7.: The restoring force, a general graph

Figure 5.8.: Diagram of the acceleration vs displacement for a simple pendulum.
The graph refers to a single oscillation and the data have been collected via sonar
detector and processed with the LoggerPro System.

5.3.1.3. The bouncing disk

The bouncing disk consists of a disk moving on an air table2, so to reduce friction,
and bouncing between two opposite elastic edges (see Fig. 5.9). If we give the disc

2The air table is simply a horizontal plane, with many uniformly distributed holes through which
an air compressor blows air with constant flow. The disk placed on the surface of the table is
like floating on a thin layer of air; in this way the sliding friction with the floor is practically
zero.
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an initial velocity, it will bounce back and forth between elastic edges. It is clear
that in this case there isn’t a single equilibrium position: almost all the infinite
points between the two opposite edges are equilibrium points, although not stable
equilibrium points. We want, as in previous experiments, to plot the total force
acting along the trajectory as a function of the position. It comes quite natural
to place the origin of the reference system in the midpoint of the trajectory, but
any other point is fine. The total force acting along the trajectory is zero in each
position between the edges. In fact the only force is the gravitational one that
results perpendicular to the plane of motion (and therefore to the trajectory) and
it is balanced by the impact force of the air from the compressor. As in the case
of the bouncing ball, things change at the edges, during the collision of the disk
with the elastic bands. During the impact of the disk with the rubber bands an
impulsive elastic force arises and reverses the direction of the speed of the disk. The
only e�ect of the impact with the edges is the reversing of the velocity (of course
in the assumption of perfectly elastic impact). The graph of the force acting on the
disk along its straight trajectory is like that of Fig. 5.10. So in this case the graph
of the force vs displacement, interests all the quadrants. In fact, the section where
it is zero belongs to the first and fourth quadrant as well when x is positive and it
belongs to the second and third quadrant as well when x is negative.

Usually the students have some di�culties to plot the correct graph in this case.
They tend to associate the force to velocity so imagine that the e�ect of the impact
with the edges is just the reversing of such acting force. The use of data-logging
techniques is very useful to convince students that no forces act on the disk (along
the trajectory) far from the edges. This can be done in two ways: the first is the
measure ov the velocity that results constant between the edges (Fig. 5.11(a)), hence
there is no acceleration and therefore, no force; the second is the direct plotting of the
graph of the acceleration vs the position (Fig. 5.11(b)). This experiments requires
the use of Tracker because it is di�cult to target with a sonar the motion of an
object which can have two motion components [Stellato et al., 2014a]. As shown in
Fig. 5.9 , it is necessary to mark the tracked object by a well contrasted target.
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Figure 5.9.: The bouncing disk on an air table. The black bob fixed at the center
of the disk is the target body to be tracked with Tracker video-analysis software;
the color has been chosen so as to provide the maximum possible contrast.

Figure 5.10.: diagram of the force versus position for the bouncing disk

5.3.1.4. The vertical mass on a spring

The vertical mass-spring oscillator consists of a mass appended at the bottom of
a vertical spring (see Fig. 5.12 ). The vertical configuration avoids the problem
of the friction with surfaces. The mass, given the elastic constant of the spring,
is chosen so as to have a stable vertical oscillation. In fact, a parametric res-
onance between the vertical spring mode and the transverse pendulum mode is
estabilished when the spring oscillation frequency doubles that of the pendulum
[Olsson, 1976, Cayton, 1977]. Also in this experiment, we clarify with students that
we are neglecting the e�ect of the friction with the air (and spring internal friction).

In this configuration, the system settles itself in a stable equilibrium position where
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Figure 5.11.: The bouncing disk: (a) diagram of the velocity vs time before and
after an impact with an elastic edge: the e�ect of the impact is just the reversing
of velocity; (b) diagram of the acceleration vs displacement. The graphs have
been obtained processing by Tracker video-analysis software the video of the ex-
periment. The video has been recorded by an Iphone 4s device.

Figure 5.12.: The vertical spring-mass system

the gravitational force, due to the appended mass and the mass of the spring, is
balanced by the elastic force due to a proper elongation of the spring. If we pull
the mass downwards, an additional contribute due to elastic force, arising from the
further stretching of the spring, recalls the mass towards the equilibrium position.
The same thing happens if we push the mass upwards. In both cases, the elastic
force is directed in the direction opposite to the displacement, in accordance with
Hooke’s Law. The 11th and 12th grade students already know well the Hook’s Law
and are able to make an accurate graph of the force along the trajectory versus the
displacement, which results to be linear (see Fig. 5.13). So also in this case, if we
choose the equilibrium position as the origin of the reference system, the graph of
the force passes through the origin and it lies in the second and fourth quadrant.
Moreover, this graph is a straight line: it not only represents a restoring force, but
a linear (or elastic) restoring force.

In this experiment it is particularly simple to plot the graph of the force (acceler-
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Figure 5.13.: The graph of force vs displacement for the vertical spring-mass sys-
tem. The x cohordinate in this case indicates the vertical axis, oriented upwards

ation) by collecting and processing data with a data-logging system, because the
trajectory is rectilinear. Both the Logger Pro and the Tracker techniques fit the
goal. In Fig. 5.14 it is reported the graph obtained by sonar detector and Logger
Pro. Note that in this case the amplitude of the oscillation is not very small (nearly
15 cm), nonetheless the graph of the acceleration vs position is nearly a perfect
straight line passing through the origin of the reference system.

Figure 5.14.: The vertical spring-mass: graph of the acceleration versus position.
The data have been collected by sonar detector and processed by Logger Pro.
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5.3.1.5. The seesaw on a flat pivot

The seesaw on a flat pivot is simply an homogeneous bar oscillating around a flat
pivot as in Fig. 5.15. In this experiment we ask the students to draw the graph of
the force vs position of a point (the dot in Fig. 5.15) at the end of the bar. This is
a very complicated object to describe for 11th and 12th grade students. In fact a
complete description of the experiment would require the knowledge of dynamics of
the rigid body. During the discussion the teacher can help students with a simplified
representation of the experiment. Namely, when the bar is lifted, as in Fig. 5.16, the
contact point between the seesaw and the pivot is such that the right part of the bar,
with respect to the contact point, is longer than the left one. The di�erence in length
equals the width of the pivot. As the only force responsible for the oscillation is the
weight of the seesaw, we can assume that equal parts of the bar, in opposite side with
respect of the contact point, balance each other. So the motion is substantially due
only to the part of the bar that remains unbalanced (the gray segment in Fig. 5.16
labeled by the letter “d” corresponding to the width of the pivot). The fall of the
seesaw is therefore caused by the e�ect of the weight of this unbalanced piece of
bar and it is a vertical force directed downwards. When the seesaw reaches the
horizontal position, the contact point is the opposite side of the pivot and things
just invert. In this case, the unbalanced piece of bar is at the opposite side of the
seesaw. This results in the fact that now, the apparent force we can see acting in
our dot is vertical, directed upwards. The system has a stable equilibrium position:
it is the natural configuration with the bar resting horizontally on the pivot. If we
chose the stable equilibrium position, as the origin of the reference system, we can
obtain a graph for the force vs position like the one in Fig. 5.17. So also in this case,
if we choose the equilibrium position as the origin of the reference system, the graph
of the force passes through the origin and it lies in the second and fourth quadrant.
Moreover, if we choose small-amplitude oscillations, this graph is a straight line: it
not only represents a restoring force, but a linear (or elastic) restoring force as in

Figure 5.15.: The seesaw on a flat pivot: the scheme (left) and the picture of the
real experiment (right). The dot at the very end of the bar is the target to be
tracked with Tracker software.
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Figure 5.16.: Qualitative explanation of the e�ect of the unbalanced part of a
seesaw on a flat pivot

Figure 5.17.: The seesaw on a flat pivot: the qualitative diagram of the force vs
position

So in this case the force in the diagram force vs displacement, lies almost in the
second and fourth quadrant but it is not a regular graph as it has a discontinuity
in the origin. In this experiment, a data logging is possible both with Logger Pro
both with Tracker. A typical graph obtained is the one in Fig. 5.18 where in the
left is represented the acceleration versus time and in the right, the acceleration
versus position. Here the action of the teacher is needed to explain the discrepancy
between the graphs of Fig. 5.18 and the expected graph of Fig. 5.17. In fact the
graphs of Fig. 5.18 seem to be quite regular and one could think that they do not
present a discontinuity in the origin, because of the presence of some few dots
in the neighborhood of the origin. These dots are due to the fact that both the
sonar detector and the video analysis do not really measure the acceleration: they
measure the positions as a function of time. The acceleration is obtained via the
second derivative of the position with a continuous step numerical method.
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Figure 5.18.: The seesaw on a flat pivot: (a) acceleration vs time and (b) accel-
eration vs position. In this case the graphs have been obtained by traking the
video of the experiment by Tracker software. The video has been recorded by an
iphone 4s device.

5.3.1.6. The seesaw on a round pivot

This is the same experiment as the previous one with the only (but significant)
di�erence that the pivot is no more a flat surface but it is a perfectly circular
surface. The situation is represented in Fig. 5.19. Also in this experiment we ask
the students to draw the graph of the force vs position of a point at the end of the
bar. Also in this case we choose to avoid the description of the experiment through
the dynamics of the rigid body. During the discussion the teacher can help students
with the same simplified representation of the experiment as in the previous case.
Namely, when the bar is lifted, the contact point between the seesaw and the pivot
is such that the right part of the bar, with respect to the contact point, is longer
than the left one. As the only force responsible for the oscillation is the weight of the
seesaw, we can assume that equal parts of the bar, in opposite side with respect to
the contact point, balance each other. So the motion is substantially due only to the
part of the bar that remains unbalanced . The fall of the seesaw is therefore caused
by the e�ect of the weight of this unbalanced piece of bar and it is a vertical force
directed downwards. The main di�erence with the seesaw on a flat pivot consists in
the fact that in this case there are no more only two tilting points but infinite. Thus
the unbalanced part of the seesaw changes in a continuous way. If the oscillation is
small enough, the unbalanced part of the rod results proportional to the inclination
angle and therefore to the displacement. In such a way, the force responsible for the
motion (that is the weight of the unbalanced part of the seesaw) results proportional
to the displacement. If we choose the position of the end of the rod when the seesaw
is perfectly horizontal as the origin of the reference system and we draw the force
as a function of the displacement, we expect to have a straight line passing through
the origin and lying in the second and fourth quadrant as in Fig. 5.13.
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Figure 5.19.: The seesaw on a round pivot: scheme of the experiment. The sonar
detector is placed under one end of the seesaw.

A tracking of the experiment can confirm the rude model described above and con-
vince the students. In this case both the Tracker video analysis and the sonar
detection and subsequent analysis by Loggerpro software are suitable. In fact the
oscillations in this experiments are slower than in the case of the seesaw on a flat
pivot because the force responsible for the motion, as described above, varies from
zero to its maximum value very smoothly. It is interesting letting the students per-
form the data-logging and analysis twice, with both data-logging techniques and
discuss the e�ects of errors on measures, in the two cases. In Fig. 5.20 it is reported
the graph of the force as a function of the vertical position of one end of the seesaw
obtained collecting data by a sonar and processing them by the Loggerpro software.
Despite the many errors due to the experimental conditions and the relevant e�ect
of friction, the graph can confirm our rude model in the case of small oscillations.

Figure 5.20.: The seesaw on a round pivot: the graph of the acceleration as a
function of the vertical displacement of the end of the seesaw. The graph has
been obtained processing by Loggerpro software the data collected by the sonar
detector.

At the end, regarding to the acting force, the seesaw on a round pivot experiment
is much more similar to the pendulum and the mass-spring than to the seesaw on a
flat pivot.

5.3.1.7. The ball on a semi-circular track

This experiment simply consists of a steel ball rolling on a semi-circular track as
shown in the scheme and photograph of Fig. 5.21. The dynamics of the real experi-
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ment is too complicated for 11th and 12th grade students due to the fact that the
ball, while sliding along the track, rotates and the rigid body rotational dynamics
should be taken into consideration. We will neglect the rotational component of
the problem without loosing too much descriptive accuracy. The track has to be
well fixed to the floor so as to ensure that the only possible motion is the motion of
the ball. Positioning the ball at di�erent points on the track and leaving it move,
the students can see that the system has a stable equilibrium position: the point
at the bottom of the track. Moreover, the students can be guided to realize that
the motion of the ball is governed by a restoring force. Such a force is mainly the
component of the weight along tangent to the track. The analysis of the video of the
oscillation via tracker software can provide the instant acceleration vector as shown
in Fig. 5.22. So also in this case, if we choose the equilibrium position as the origin
of the reference system, the graph of the force passes through the origin and it lies
in the second and fourth quadrant. Moreover, for small-amplitude oscillations, this
graph is a straight line: it not only represents a restoring force, but a linear (or
elastic) restoring force as in Fig. 5.13.

Figure 5.21.: The ball on a semicircular guide: scheme and photograph

In this experiment it is easy to track the motion of the ball via the Tracker software,
provided that the background is well contrasted with respect to the target ball 3.
In Fig. 5.23 it is reported the graph of the acceleration vs position obtained by the
analysis of the video in the case of small oscillations. The graph is almost a straight
line passing through the origin of the reference system and lying in the second and
third quadrant. The students should realize that such a graph for the acceleration
(and thus the force) as a function of the position is very similar to the one of the
pendulum and the vertical mass on a spring.

3In this case the use of the sonar detector is not useful because of the shape of the trajectory.
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Figure 5.22.: The acceleration acting on a ball on a semicircular guide. The red
vector representing istant acceleration was obtained by the Tracker software.

Figure 5.23.: The semi-circular track: graph of the acceleration as a function of
the position in the case of small-amplitude oscillations. The video has been taken
by an Iphone 4s device.

5.3.1.8. The Galileo oscillator

The Galileo oscillator simply it is a V-shaped track [Torzo, 2014] which consists of
two inclined planes joined to their base so as to form a V, with a steel ball free to
roll over the track as shown in the scheme of Fig. 5.24.

Figure 5.24.: The scheme of the Galileo Oscillator. In figure it is also represented
the weight component responsible for the motion of the ball.

Also in this case, as in the case of the semi-circular track, the rotation of the ball (and
friction) should be taken into account for a complete treatment of the experiment. Of
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course this is not suitable for 11th and 12th degree students. So we will neglect the
rotational component of the problem without loosing too much descriptive accuracy.
For simplicity we chose to have a symmetric V, that is the two planes have the same
angle of inclination. The students can easily check that the system has a stable
equilibrium position, namely the bottom of the V (indicated by the label “0” in
Fig. 5.24). In fact, no matter how you displace the ball along the track, its motion
always comes to a stop in the lower point of the V. If we try to analyse the forces
acting on the ball along the track, we can realize that, if we neglect the friction, the
only force acting on the ball is the unbalanced component of the weight, directed
along the track (see Fig. 5.24). This component of the weight is constant in value
in each point of the track. It simply changes in sign passing from left to right
with respect to the equilibrium position and vice-versa. It is always points to the
equilibrium position so we can say it is a restoring force. The diagram of such a
force as a function of position is the same we can plot in the case of the seesaw on
a flat pivot (see Fig. 5.17). In fact, if we choose the position coordinate › along the
trajectory as in Fig. 5.24, we can plot the graph of the total acting force as in

Figure 5.25.: The Galileo oscillator: diagram of the total acting force as a function
of the position

If we want to perform a data analysis of this experiment, the tracking of the video
is more suitable than the sonar technique because of the peculiar shape of the
trajectory. To perform a good tracking we need a well contrasted background with
respect to the moving ball. We need also that the velocity of the ball be small
enough as to have well defined images to track in each photogram of the video. We
reach this condition simply having small angles of inclination for the two planes
(that is: a “very open” V). In Fig. 5.26 a photogram from the video for the real
experiment performed with students.

In Fig. 5.27 it is reported the graph of the acceleration (which is similar to the
one of the force, except for the scale factor introduced by the mass value) vs the
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Figure 5.26.: The real Galileo Oscillator experiment: the picture is a photogram
extracted from the video. The angle of inclination is about 10°.

displacement. The data have been obtained by tracking the video of the experiment.
It is necessary to discuss the results with the students to show that, within the
many “noises” and experimental errors in the measurement, the graph obtained is
compatible with the expected diagram of Fig. 5.25. So students can point out that
the force acting on the Galileo oscillator is similar to the one acting on the seesaw
on a flat pivot. In fact it is limited to the second and third quadrant where it is
constant and has the same value, but opposite sign depending on the quadrant. In
other words the graph presents a discontinuity in the origin.
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Figure 5.27.: The Galileo oscillator: the graph of the acceleration as a function
of the position. The two points next to the origin result from the calculation
algorithm used by the Tracker software. In fact only position are really measured;
velocity and acceleration are obtained respectively by a derivative and second
derivative of the position with respect to the time. In this operation, in the
vicinity of the discontinuity, some approximations are introduced due to the fact
that the position as a function of time is made of a discrete set of values. The
video has been recorded by an Iphone 4s device.

5.3.2. The harmonic oscillation

At this point, the students are able to recognize that some of the experiments
performed have some peculiar common characteristics. In fact, both the simple
pendulum, the vertical mass on a spring, the seesaw on a round pivot and the ball
on a semi-circular track, have a stable equilibrium position and are driven by a
restoring force. Once we choose the equilibrium position as the origin of the reference
system, when we draw such a force as a function of the position, it passes through the
origin of the reference system and lies in the second and fourth quadrant. Moreover,
these forces are “regular” in the neighborhood of the origin4 and here their graph
can be approximated to the tangent line, provided the amplitude of oscillation is
small enough. So the central point is that any body subject to a su�ciently regular
restoring force, for small amplitude of oscillation, is governed by forces of the kind
F = ≠kx. The teacher has to stress that the oscillation driven by such linearizable
forces have a great importance in almost every branch of Physics, they are called
harmonic oscillation. Nevertheless this definition can lead students to think that

4This means that the force is di�erentiable in the origin. With 11th and 12th grade students
which have not been introduced to calculus yet, we simply state that the graph of the force is
regular in the origin, that is smooth (no discontinuities, no corner point etc.)
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essentially all the restoring forces give rise to harmonic motion if the oscillation is
su�ciently small. This is not always true. It is necessary to introduce a criterion
for identifying quickly the harmonicity or anharmonicity of the motion in real cases.
Namely, according to the four-point criterion [Giliberti et al., 2014] of section 3.2 we
can state that the small oscillations of a one degree of freedom system are harmonic
if x = 0:
(a) is a stable equilibrium point; and in x = 0:
(b) the function F

x

(x) is continuous;
(c) the function F

x

(x) admits tangent line in x = 0;
(d) The tangent line in x = 0 is not horizontal.
Obviously, condition (c) implies condition (b). Nevertheless we believe that, from a
didactical point of view, keeping these conditions separate allows a clearer compre-
hension of the physics involved.
Condition (d) is too sophisticated for 11th and 12th grade students to be discussed
by mathematics. It can be seen with the experiment of the x4-track reported in
section 3.3.4. In this case around the equilibrium point (the middle point of the
track) the track is nearly flat thus it is similar to a region of neutral equilibrium so
the ball can be substantially considered at rest with very long oscillation period.

5.3.2.1. The motion law for the harmonic motion

Once the definition of harmonic motion, as the one ruled by the dynamical law
F = ≠kx, has been given, one has to face the problem of finding a way to integrate
the di�erential equation a = ≠kÕx to obtain x as a function of t (with students
that have no calculus background). Our strategy is to use the projection on a
diameter of a point-mass moving in circular motion. In fact, in this way it is easy
to observe that the projection of the acceleration is given by a = ≠kÕx and that
the projected velocity and position have a sinusoidal dependence on time. Most of
Italian text-books define harmonic motion just as the projection of a circular motion
over a diameter in a cinematic perspective. We, on the contrary, have chosen a very
di�erent dynamical approach and use circular motion only as a device to integrate
a di�erential equation. Moreover this is quite simple to obtain tracking the motion
of a target dot on a rotating disk. According to this dynamic approach we can start
comparing the general expression for the force: F = ma with the linearized restoring
force: F = ≠kx to obtain the expression:

a = ≠ k

m
x (5.1)

So we are looking for an expression of the position x(t), as a function of time, that
is proportional to the acceleration through the proportionality constant k/m and
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opposite to the acceleration. This means that the graph of x(t) has the same shape
of the graph of a(t) but it is flipped with respect to the time axis. Let us consider a
point that is moving along a circumference with a fixed angular velocity Ê. Let us
now consider the projection of such a point along a diameter. If P is the position of
the point at a certain time and Q is its projection, let’s say along the x axis, it is
straightforward to see that:

x = r cos Ë (5.2)

where r is the radius of the circumference and Ë is the angular position of the point,
as depicted in Fig. 5.28. As for the uniform circular motion the angle Ë is linear
with respect to the time following the expression:

Ë(t) = Êt + „ (5.3)

then the expression 5.2 becomes:

x(t) = r cos(Êt + „) (5.4)

Now we have to obtain the expression for the acceleration. If we consider the
triangles of Fig. 5.29, because of their similitude we can wright:

a : r = a
x

: x (5.5)

from which we can obtain:

a
x

= (a

r
) x (5.6)

As in the uniform circular motion the acceleration a is centripetal acceleration, that
is a = Ê2r, the 5.6 becomes:

a
x

= Ê2x (5.7)

From the Fig. 5.28 we can see that a
x

and x have always opposite direction. So,
taking into account also the directions of the vectors, we can wright:

a
x

= ≠Ê2x (5.8)

Comparing the 5.7 with the 5.1 which is the expression for the harmonic motion, we
can establish the relationship between the angular velocity Ê and the constant k:

Ê2 = k

m
(5.9)

We can obtain the expression for the velocity in a similar way. In fact, as we can
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Figure 5.28.: The motion of a point along a circumference: projection of the posi-
tion and of the acceleration along the x axis.

Figure 5.29.: The similitude between the triangles

see in Fig. 5.30, the projection of the velocity along the x axis is:

v
x

(t) = v sin Ë = v sin(Êt + „) (5.10)

and, considering that v = Êr,

v
x

(t) = Êr sin(Êt + „) (5.11)

and taking into account also the directions of the vectors:

v
x

(t) = ≠Êr sin(Êt + „) (5.12)

A simple tracking of a dot performing a uniform circular motion can convince stu-
dents that x(t) = r cos(Êt + „) indeed represents the solution of the equation:
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Figure 5.30.: The motion of a point along a circumference: projection of the ve-
locity along the x axis.

a(t) = ≠Ê2x(t), where Ê2 is a constant depending on the particular oscillator we
are considering (k/m for the mass on a spring, g/l for the pendulum and so on...).
In Fig. 5.31 it is reported the screenshot of a tracking for a point on a disk rotating
with uniform angular velocity. All the quantities are projected along the x axis. In
Fig. 5.32 are represented the projection along the x axis for position, acceleration
and velocity as a function of time. For students it is easy to see that at each time
the position x is opposite to the acceleration a

x

, according to equation 5.1. More-
over they can see the graph for the velocity is shifted by fi/2 with respect to the
graph for the position, according to the fact that if the motion law for the position
is sinus-like, the law for the velocity is cosinus-like and vice versa.

At this point it is important to stress with students that in 5.4 r (the amplitude
of the oscillation) and Ê (the angular frequency) are independent one from each
other and are the only two parameters that characterize the motion. This is a
key point as it states that in a harmonic motion, the frequency does not depend
on the amplitude. Such a point is very easy to verify by data-logging techniques.
For instance, the teacher can let students try and analyze the harmonic motion of
a vertical mass-spring in the case of di�erent initial displacements of the mass, so
they can measure the same period (thus the same frequency) regardless the di�erent
displacements. In short, the data-logging techniques allow students to state the
harmonicity/anharmonicity of one oscillation in a number of ways:

• they can plot (or analyze the corresponding data row) the graphs of position,
velocity and acceleration as a function of time, to determine whether these
are sinusoidal-like functions. In fact position and velocity as functions of time
have the same sinus-like shape, but they are shifted of a quarter of a period.
Furthermore, the acceleration vs time graph is still a sinus-like function and
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Figure 5.31.: Screenshot of the tracking of a uniform circular motion. Here we
tracked a point marked on a disk. The disk was rotating around a pivot, on an
air table.

results, at each time, opposite to the displacement one according to F = - k x
law stating harmonic motion;

• they can directly measure the period (and thus the frequency) on di�erent
sections of the position vs time waveform or on the corresponding data row
to verify whether the period remains constant regardless of the amplitude.
So they can verify the important property of harmonic motion that the fre-
quency of the oscillation is amplitude independent, that is it is fixed by the
parameters of the system. For instance, if we track the motion of a pendulum
or a vertical mass-spring, the amplitude of oscillation registered by the sonar
decreases with time due to the air friction. In this case the restoring force no
longer depends only on position, but also on velocity. This situation has not
yet been faced by students. Nonetheless, from an experimental point of view,
for small amplitudes and for not too large time intervals, the damping is very
small so that we can neglect the dissipative contribution and consider the force
as being dependent only on position thus giving a precise sense to measure-
ments of the period. Obviously, waiting a long enough time, the amplitude of
oscillations decreases and the damping becomes evident. One can thus per-
form a new measurement of the period of our motion in a new situation when
the amplitude has diminished, but always remaining in the approximation of
friction-less motion. The students could measure the period (and consequently
the frequency) of the oscillation directly in di�erent sections of the diagram
with di�erent amplitudes and verify it is constant;

• they can plot the graph of the acceleration as a function of the position to see
if it is a straight line passing through the origin and laying in the second and
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Figure 5.32.: Projection of a circular motion along the x axis: (a) the projection
of the position along the x axis as a function of time; (b) the acceleration a

x

as a
function of time and (c) the velocity v

x

as a function of time. The vertical bar is
to facilitate the comparison between the graphs.

fourth quadrant, thus representing a = ≠Ê2 x;

• where the experiment allows it, they can listen to the sound during the os-
cillation in order to determine “by ear” if the frequency remains constant or
changes over time. For instance, this is very simple in the seesaw on a flat
pivot and in the vertical bouncing ball experiments, where the amplitude of
oscillation decreases over time while the frequency increases producing a sound
that becomes higher over time.5

• They can analyze the motion waveform and see if it is generated by a single
sharp frequency (the frequency in a harmonic oscillation is unique and con-
stant and it is determined only by the design of the experiment). Both the
data loggers, namely Loggerpro and Tracker can automatically provide an-
other powerful tool to confirm that the frequency of the harmonic oscillation
is fixed: the FFT (Fast Fourier Transform) tool. The FFT of the motion wave-
form results a sharp line at the same frequency the students found directly by
measuring the period on the diagram, in the case of harmonic oscillation. In
Fig. 5.33 are reported the FFT for a seesaw on a round pivot (harmonic mo-
tion) and a seesaw on a flat pivot (anharmonic motion). It is evident that in

5this technique is very useful to exclude the Harmonicity of the oscillation but it is not conclusive
to confirm it. In fact, if we consider the bouncing disk experiment, in which the amplitude of
the oscillation is fixed by the setup, the time between two consecutive bounces remains constant
over time, so does the frequency and thus the produced sound.
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the case (a) of the round pivot the motion is characterized by a sharp frequency
indicating a sinus-like motion. On the other hand, in the case of flat pivot the
frequency is not neat: it is spread over an interval ov values indicating a fre-
quency that varies over time. Moreover, it is also evident the presence of higher
bands of frequencies typical of non-linear phenomena. Of course 11th and 12th
grade students cannot posses the mathematical background for understanding
how FFT works in detail. They just know it is a tool, a kind of button to
push, that is able to find all the frequencies present in a waveform. To make
this clear to students we can show them, with a simulation, the complicated
waveform resulting from the sum of two (and three) sinusoidal function with
di�erent frequency. Then applying the FFT to the waveform we obtained the
frequencies we mixed. The Loggerpro program has the tools to produce such
simulations.

Figure 5.33.: Comparison between the FFT of: (a) the seesaw on a round pivot
and (b) the seesaw on a flat pivot. The graphs have been obtain by Loggerpro.

5.3.2.2. A couple of examples

We report here, for the seek of brevity, just a couple of examples of the graphs
obtained and analyzed by students: the vertical mass-spring and the seesaw on a
flat pivot. In Fig. 5.34 it is reported the comparison between the graphs of posi-
tion, velocity and acceleration as a function of time. The vertical black line helps
to compare the values of these quantities at a common time. It is evident that the
graph of the velocity is shifted of a quarter of a period with respect to the graph
of the position and that position and acceleration are opposite at each time. This
is a confirmation that the graphs represent sinusoidal functions as expected in the
harmonic motion. In the graphs only the first five seconds of the experiment are
shown to have waveforms expanded enough for the analysis. By the way, the exper-
iment lasted sixty seconds. During this time, friction caused the reduction of the
amplitude of oscillation of about one third. Nonetheless, the students could measure
that the period of the oscillation remained constant. A further evidence that this
motion is harmonic comes from the graphs of Fig. 5.35. In fact the graph of the
acceleration as a function of the position is the one required by our definition of
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harmonic motion and the FFT shows a single sharp frequency indicating that the
oscillation is sinusoidal.

Figure 5.34.: The mass-spring system: comparison between the graphs of position,
velocity and acceleration as a function of time. The data were obtained by a sonar
detector and processed by Loggerpro software.

The analysis of the same graphs for the seesaw on a flat pivot shows that in this
case the motion is not harmonic. In Fig. 5.36 are reported the graphs for the vertical
position of one point at the edge of the seesaw, the velocity and the acceleration
as a function of time. At a first sight students can think that the graph of the
vertical position vs time is a sinusoidal function even if a�ected by damping. Some
measurements, directly on the graph or on tha data raw show clearly that the period
decreases rapidly with decreasing amplitude. It is evident that this is not a harmonic
oscillation if one looks at the graphs of the velocity and the acceleration vs time.
The straight segments in the graph of the velocity show that the motion has a
uniform change of speed thus the graph of vertical position vs time is not sinusoidal.
According to the laws of motion with uniform change of speed such graph is the
result of many arcs of parabola linked together. The graph of the acceleration is
piecewise constant. The acceleration simply change sign on each of the tracts. The
few dots vertically distributed among two adjacent tracts are not real experimental
points, they are the consequence of the calculation algorithm used by Tracker: in fact
just positions are measured while velocity and acceleration are calculated. A further
evidence that this motion is not harmonic comes from the graphs of Fig. 5.37. In
fact the plot of the acceleration as a function of the position is given by two regions
in which the acceleration is almost constant and thus not satisfying the definition of
harmonic motion. Moreover, the FFT graph shows the presence of many broadened
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Figure 5.35.: The mass-spring system: the graph of the acceleration as a function
of position (left) and the FFT graph (right). The data were obtained by a sonar
detector and processed by Loggerpro software. The few points out of the line are
an artifact due to a disturbance at the switching on and switching o� the sonar
detector. For this experiment a new version of the sonar detector was used.

frequencies multiple of the first dominant frequency (the higher harmonics).

Figure 5.36.: The seesaw on a flat pivot: comparison between the graphs of posi-
tion, velocity and acceleration as a function of time. The data were obtained by
tracking the video of the experiment with Tracker video-analysis software.

5.3.3. Coupled oscillators and Normal Modes

Until this moment students have been dealing only with single oscillators, studied
their characteristics and determined the cases in which the oscillators perform a
Harmonic motion. At this point the teacher can introduce a new problem by the
question: “what if we consider a system made of two coupled oscillators?”. Of course
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Figure 5.37.: The seesaw on a flat pivot: the graph of the acceleration as a function
of position (left) and the FFT graph (right). The data were obtained by tracking
the video of the experiment with Tracker video-analysis software. The points
distributed vertically are due to the calculation algorithm.

a brief discussion on what we mean with the word coupled is needed. It is also
necessary to point out that we are to consider just couplings that are not too much
strong. After a few example of what coupling means the teacher asks the students
to observe (and then try and repeat) the first experiment on coupled oscillators as
to let the students discuss on the behaviour of such a system and introduce the
concept of normal modes of oscillation. The general idea is to introduce the normal
modes of two coupled oscillators, and extend the concept to three, five and many
oscillator up to the case of a continuous system of oscillators. This is done through
the performing of real experiments and simulations as well.

5.3.3.1. The two coupled pendulums and the two coupled mass-spring system

Two coupled pendulums. The system consists of two physical pendulums coupled
by a soft spring as to have the pendulums vertical and the spring unstretched at rest
position. In Fig. 5.38 are reported a picture and the scheme for the system of two
coupled pendulums. In a first moment the teacher moves one of the pendulums from
the equilibrium position and let the system evolve asking the students to describe
what they see. What happens in time is that the pendulum that initially was moving
slowly decreases the amplitude of its oscillations coming to a stop for a moment.
Simultaneously, the other pendulum, that was motionless at the beginning, starts
oscillating and increases its oscillation reaching the maximum amplitude exactly at
the moment the first pendulum comes to a stop. The cycle repeats indefinetly6.
In our experience the typical comment students do is: “it is strange, it is as like
the two pendulums exchange their motion the one with each other. It is as if one
pushed the other, and this restrained the first and then they reversed roles”. If it

6actually the friction with air slowly reduces the amplitude of the oscillations until stop them.
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does not emerge fron the discussion, the teacher has to guide the students toward
the consideration that the exchange of motion between the pendulums is due to
continuous to and fro exchange of mechanical energy between them. The teacher
can cover one of the two pendulums with a panel to remark this exchange of energy7:
in fact if we can see just one pendulum we see a continuous gain and loss in velocity
and thus in kinetic energy. Therefore even if one can see just one pendulum he can
say that it is coupled with at least one other pendulum because it is exchanging
energy with it(them). Now the teacher can ask the students if they can imagine
some peculiar motion configuration for the system. In our experience, surprisingly,
many students easily come to the conclusion that there are two possible special
movements: the one with the two pendulums that have the same displacement,
same direction and same velocity at each time8. The other one, with the pendulums
that have same displacement and velocity but opposite motion direction at each
time9. The students can easily realize that if one starts with a normal mode, the
system continues moving that way, never switching to the other mode. In this case,
if the teacher covers one of the pendulums with a panel, the students can’t tell
whether it is coupled to other pendulums or not. In fact, in this particular motion
configurations the two pendulums do not exchange energy and perform harmonic
oscillations both at the same frequency. Such a statement can be easily verified via
the data-logging techniques: both Tracker and LoggerPro are good for the purpose.
Students can see that no matter the initial amplitude in thes particular cases, the
frequency are fixed (as expected for a harmonic motion).

Figure 5.38.: Two coupled pendulums: on the left the picture of the actual system
and on the right the scheme. Both the picture and the scheme represent the
system in a generic motion configuration at a generic time.

7if we can see just one pendulum we can only say that it is coupled with other pendulums if there
is an oscillating variation in its kinetic energy. We cannot guess if it is coupled with a single
other pendulum or many others.

8This is the first normal mode of this system and it is usually called pendular mode

9This is the second normal mode of our system and it is usually called breathing mode
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This experiment (and the ones to follow), together with the data logging techniques,
turn out to be particularly useful because it allow: i) to easily introduce some
particular (a student said “spectacular”) motion configurations of the entire system:
the normal modes; ii) to recognize that when such a complex system oscillates
in one of its normal modes, there is no energy exchange between the single parts
(oscillators) of the system; iii) to see that every casual motion configuration of the
system is simply a superposition of its normal modes. Now students are ready for
the definition of normal modes. As a result of observation of the experiment and the
measurements performed by students we can state the following definition for the
normal modes: the normal modes of oscillation for a system of coupled oscillators,
are special motion configurations in which every part of the system (each oscillator)
performs harmonic oscillations with the same frequency and maintains a fixed phase
relation with the other parts. So in the case of two coupled pendulums, in the
first normal modes the pendulums have same frequency and phase while in the
second normal mode they have same frequency and opposite phase. The data-
logging analysis can easily show that the higher the mode, the higher the frequency
so each mode is characterized by its own frequency. An important point that the
teacher has to clarify is that a system made of coupled oscillators has as many
normal modes as the number of its degrees of freedom. In our experiments, that
are monodimensional chains of oscillators, the number of the degrees of freedom
always corresponds to the number of the oscillators that are coupled. All these
properties of normal modes can be easily verified by the data logging techniques. In
Fig. 5.39 are reported the graphs of position vs time, acceleration vs position and
the FFT graph, obtained by sonar detection of the motion of one of the pendulums
as the whole system moves in the first of its normal modes (the so called pendular
mode). In Fig. 5.40 are depicted the same graphs for the second normal mode (the
breathing mode). At last, in Fig. 5.41 the same graphs but with the system in a
casual motion configuration, di�erent from each of its normal modes. The Fig. 5.39
and Fig. 5.40 show clearly that the motion of the normal mode is harmonic. In fact
the waveform for the position vs time is sinusoidal. This is confirmed by the graph
of the acceleration vs position that is the one expected by the definition of harmonic
motion. Moreover, the FFT graphs present a single sharp line corresponding to a
well defined frequency. The graphs of Fig. 5.41 show the typical beats phenomenon
due to the superposition of the two modes. In fact the waveform for position vs
time is the same students have seen before, collecting sound from two tuning forks
with a few Hz di�erent frequencies. The FFT graph clearly shows that such a
complex waveform is generated by just two well defined frequencies: the frequencies
corresponding to the normal modes of the system. No matter how many times
with di�erent initial conditions we repeat the experiment: the result is always the
same, what may change is only the contribution of each frequency. The graph of
acceleration vs position tents to di�er from the one of Fig. 5.39 and Fig. 5.40as the
motion in a random configuration is no more harmonic.

The students can a�ord the study of the two coupled pendulums experiment also
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Figure 5.39.: Two coupled pendulums: the first normal mode. The graphs for a
single pendulum: (a) position vs time; (b) acceleration vs position and (c) FFT

Figure 5.40.: Two coupled pendulums: the second normal mode. The graphs for
a single pendulum: (a) position vs time; (b) acceleration vs position and (c) FFT

via the Tracker video analysis. In this case it is possible to track simultaneously
either pendulums and compare the waveforms due to the beats as shown in Fig. 5.42.
They can realize that when at the beginning only one pendulum is displaced, there
is a complete energy transfer between the two pendulums during the motion. In
fact, zero amplitude of oscillation for the first pendulum corresponds to maximum
amplitude of oscillation for the second pendulum and vice versa, as looked like at
eye observation. This video analysis software allows also to track the center of mass
motion. Here students can see that when the system is excited randomly each part
of the system (each pendulum) describes a motion that is the linear combination of
the two normal modes. This motion is not harmonic and in general neither periodic,
while the motion of the center of mass results always harmonic (see Fig. 5.43) and
its frequency corresponds to the frequency of the first normal mode. This is a
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Figure 5.41.: Two coupled pendulums: a random motion configuration. The
graphs for a single pendulum: (a) position vs time; (b) acceleration vs position
and (c) FFT

consequence (see next paragraph) of the fact that the first normal coordinate is the
almost the sum of the coordinates of each pendulum.

Two coupled mass-spring systems. The system consists of two up to four masses
coupled by identical springs. The students can start the experiment with two masses
and than implement the measure up to four masses. As in the case of the coupled
pendulums, at first the system can be put into motion simply displacing the masses
but it is also possible to drive it by a mechanical vibrator. In our experimental
setup the chain is disposed vertically for convenience. The upper end is bound to
a T-rod while the lower end is bound to the pivot of an electromechanical vibrator
(Pasco SF-9324 model). The vibrator is coupled with a sine wave generator (Pasco
WA-9867 model) to be frequency tunable with 0.1 Hz resolution in the range from
0.0 to 800.0 Hz. The scheme of the setup is reported in Fig. 5.44.

Also in this case students are asked to try and guess in how many ways the system
can oscillate when excited by the vibrator and to find out some "special ways of
movement". In our experience most students were able to identify the two normal
modes regarding the two masses and three springs system. On the contrary, most
students found di�cult to predict normal modes when the system was more complex
(three or four masses). To overcome this di�culty we can try to make the students
to analyse an analogue and simpler system: a vibrating string with fixed ends. The
first four normal modes (here also called stationary waves) are shown in Fig. 5.45.

This results a very useful analogy to predict the normal modes of one-dimension
system as the coupled pendulums and mass-springs:

n coupled oscillators are represented by n equally spaced points on a string
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Figure 5.42.: two coupled pendulums: graphs of the position vs time, beats. The
graphs have been obtained by tracking the video of the experiment. The exchange
of energy between the two pendulums is almost total, in fact, to the zero amplitude
points for the first pendulum, correspond the maximum amplitude points for the
second pendulum and vice versa.

the nth normal mode configuration of the oscillators is recognizable by nth stationary
waves on the string, as Fig. 5.46clearly shows.

In the case of mass-spring oscillators, this graphic analogy allows students not only
to predict the motion configuration of each normal mode but also to have a hint of
the relative amplitude of oscillators in that mode. In addition, slow motion video
analysis and simulations of the system can help students to recognize unexpected
motion details. For instance, in the case of tree masses, the displacement amplitude
and velocity of the central mass is di�erent from the one of the other masses even
in the first normal mode. If not, this mass would not be subject to an elastic force
an couldn’t perform harmonic motion.
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Figure 5.43.: two coupled pendulums: graphs of the position vs time for the center
of mass. The motion of the centre of mass is harmonic and has the frequency of
the first normal mode. The graph has been obtained by tracking the video of the
experiment.

5.3.3.2. Calculation of the frequencies of the normal modes in the simple
case of two coupled oscillators (two masses and three springs)

The mathematical treatment of normal modes for 11th and 12th grade students
must be as simple as possible. So we will not use calculus but only ordinary algebra
combined with the results of section 8.3.2.1 and limit ourselves to the case of two
simple coupled oscillators. Namely two mass-spring systems coupled by a soft spring.
Let us consider two equal masses m and three springs arranged as in Fig. 5.47.
For simplicity of calculation the elastic constant k is the same for all the springs.
Basically the system is formed by two identical mass-spring oscillators which masses
are coupled by the central spring as in Fig. 5.47.
Let x1 and x2 measure the displacement of the left and right masses from their
respective equilibrium positions. With such positions, the F = m afor the two
masses are, for the left mass:

F1 = ≠kx1 + k (x2 ≠ x1) (5.13)

for the right mass:

F2 = ≠k (x2 ≠ x1) ≠ kx2 (5.14)

If a1 and a2 are the acceleration of the left and right masses respectively, we can
wright:

Y
]

[
ma1 = ≠kx1 + k (x2 ≠ x1)
ma2 = ≠k (x2 ≠ x1) ≠ kx2

(5.15)

It is clear that the two masses cannot move with harmonic motion because in these
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Figure 5.44.: Two coupled mass-spring systems: scheme of the experimental setup

Figure 5.45.: The oscillating string with fixed ends. In figure are photraps of the
first normal modes.

equations there isn’t proportionality between the acceleration and the position. In
fact the two equations are coupled: in the equation for the first mass appears also
the position coordinate of the second mass and vice versa. We can try to uncouple
the two equation by

Y
]

[
m(a1 + a2) = ≠k(x1 + x2)

m(a1 ≠ a2) = ≠3k (x1 ≠ x2)
(5.16)

We now introduce the new coordinates:
Y
]

[
X

A

= x1 + x2

X
B

= x1 ≠ x2
(5.17)
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Figure 5.46.: The sketch a student made to use the analogy with stationary waves
to predict the shape of the four normal modes of a system made of four coupled
oscillators.

as v = �x

�t

when �t tends to zero,

V
A

= �X
A

�t
= � (x1 + x2)

�t
= �x1

�t
+ �x2

�t
= v1 + v2 (5.18)

and

a
A

= �V
A

�t
= � (v1 + v2)

�t
= �v1

�t
+ �v2

�t
= a1 + a2 (5.19)

and in the same way:

V
B

= v1 ≠ v2 (5.20)

and

a
B

= a1 ≠ a2 (5.21)

The system 5.16 becomes:
Y
]

[
a

A

= ≠ k

m

X
A

a
B

= ≠3 k

m

X
B

(5.22)
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Figure 5.47.: Two masses coupled by springs.

The equations 5.22 are no more coupled and are therefore independent the one from
each other and can be solved separately. For this reason, the new coordinates X

A

and X
B

are called normal coordinates [Fis, , Fitzpatrick, 2013]. Each of equations
5.22 represents the well known equation for the harmonic motion. The first with
Ê2

A

= k/m and the second with Ê2
B

= 3k/m. The solutions of the equations 5.22 are
therefore:

X
A

(t) = A sin (Ê
A

t + „
A

) (5.23)

and

X
B

(t) = B sin (Ê
B

t + „
B

) (5.24)

If we now want to go back to the old coordinates x1 (t) and x2 (t), from the system
5.17 we have:

Y
]

[
x1 = 1

2 (X
A

+ X
B

)
x2 = 1

2 (X
A

≠ X
B

)
(5.25)

and substituting the equations 5.23 and 5.24 we have:

x1 (t) = 1
2A sin (Ê

A

t + „
A

) + 1
2B sin (Ê

B

t + „
B

) (5.26)

and

x2 (t) = 1
2A sin (Ê

A

t + „
A

) ≠ 1
2B sin (Ê

B

t + „
B

) (5.27)

The equations 5.26 and 5.27 represent all the infinite possible laws of motion for the
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two masses. Anyway each possible motion configuration is given by the superposition
of the normal modes of the system. The pendulums will choose only one law of
motion as to satisfy the initial conditions (corrsponding to t = 0). The initial
conditions are given by the values of the initial positions x1 (0) and x2 (0) and the
initial velocity v1 (0) and v2 (0). For example, if we choose as initial conditions:

x1 (0) = x2 (0) = 0

v1 (0) = v2 (0) = v0

we obtain the first normal mode. The situation corresponds to pushing with the
same velocity the two masses simultaneously, starting from the rest position. On
the other hand, if we choose as initial conditions:

x1 (0) = x2 (0) = 0

v1 (0) = ≠v2 (0)
we obtain the second normal mode. The situation corresponds to pushing with
opposite (but equal in value) velocities the two masses simultaneously, starting from
the rest position. Any other choice of initial conditions gives rise to a motion that
is a “mix”10 of this two normal modes. In this case we can observe the beats
phenomenon. It is interesting to stress with students that in this case, even though
the motion of each mass is given by the sum “someway” of the two normal modes11,
the resulting motion not only is not harmonic but neither it is periodic. This amazing
property comes from the fact that the frequency of the two normal modes of the
system are incommensurable. In fact ÊB

ÊA
=

Ô
3.

5.3.3.3. From two coupled oscillators to the continuous of infinite oscillators

The experiments and the mathematical treating, together with the simulations and
the analysis of the slow-motion videos, that are reported above, are su�cient for
the students to understand what a normal mode is and which are the properties of
normal modes. In particular, the analogy with standing waves of Fig. 5.46, in our
experience, has proved to be powerful for the prediction of the normal modes also for
very complicated systems (many coupled oscillators). Now we have to implement the
experiments and the data-logging analysis to systems of increasing complexity. The
general idea is to increase the number of coupled oscillators up to the continuous
chain of oscillators: the elastic string that is virtually the result of coupling an
infinite number of oscillators (each point of the string). In this perspective, the
experiments that we propose to students (to perform and analyse) are: three coupled
pendulums; five coupled pendulums; twenty coupled torsional pendulums (the shive
10technically it is said a superposition of normal modes
11and thus of two motions that are periodic and more than simply periodic: they are harmonic!
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wave machine); three and four coupled mass-spring systems and at last the elastic
string. We propose also some qualitative experiments for the normal modes in two
dimensions: the Cladni plates and for the normal modes in a non-mechanical case:
two coupled oscillating circuits. For the sake of brevity we describe here just the
systems with coupled pendulums as those with the mass-springs are equivalent. We
just point out that in the case of mass-spring systems, many applet simulations are
available on the internet [Falstad, 2014, Fis, ] that are extremely helpful for students
to verify their predictions.
So the further step is to perform a quantitative analysis via the data logging. Stu-
dents have to try to put into motion the three coupled pendulums (Fig. 5.48) in the
first, the second and the third normal mode and obtained the respective frequencies
via the FFT (Fig. 5.49). Then they have to put into motion the system in many
randomly chosen di�erent ways. From the analysis of the waveform, in both cases
of normal-mode configuration and random motion configuration, the students can
see that when the system oscillates in one of its normal mode, each of its parts
(pendulums in this case) oscillates with harmonic motion at the same frequency and
with a fixed phase relation with the others. The amplitude of oscillation of each
pendulums doesn’t change, except for friction with the air, to indicate that there is
no energy exchange between parts of the system. In addition, the higher the mode,
the higher the frequency. In other words, they find the same results seen in the case
of just two pendulums.

Figure 5.48.: A screenshot of the video of three coupled pendulums. From left to
right: the first normal mode; the second normal mode; the third normal mode.

On the other hand, if the system is put into motion randomly, students can see that
there is energy exchange between the pendulums. In fact the motion waveform of
each pendulum clearly presents the beat phenomenon and the amplitude of oscilla-
tion varies in time. The more relevant didactic issue here is that, if we perform the
FFT of each pendulum waveform, we obtain exactly the same frequencies of the nor-
mal modes previously measured (see Fig. 5.50). Each frequency peak, given by the
FFT, has, in general, a di�erent amplitude according to the way the normal modes
superimpose, depending on the initial conditions. This allows to show to students
that all the oscillations of the system are a linear combination of its normal modes.
In Fig. 5.51 it is shown a system of five coupled pendulums while in Fig. 5.52 are
reported the waveforms of each pendulum. It is also shown in Fig. 5.53 the FFT
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Figure 5.49.: The three coupled pendulums system: the FFT graph for the three
normal modes. From left to the right: the frequency of thi first, second and third
normal modee. In the graphs appear a little contribution also ot he other modes
because it is very di�cult for students to put the system into motion exactly in
the coosen mode.

Figure 5.50.: The three coupled pendulums. On the left: the motion waveform
corresponding to a random excitation of the system, with the typical lobes of
the beats. On the right: the FFT with the frequencies of the normal modes
superimposed.

that some students performed for one of these waveforms with the frequencies of the
five normal modes mixing.

All these modes superimpose to give the motion of each pendulum. Moreover,
when the system is excited randomly, the motion of each pendulum, being a linear
combination of harmonic motions (the normal modes) is no more harmonic and
generally neither periodic. In this case Tracker allows to plot the motion waveform
for the centre of mass (Fig. 5.54) of the system which appear to be harmonic as
expected from the fact that the first normal coordinate is given by the sum of the
coordinates of each pendulum.

Now students can implement the number of coupled oscillator tracking the motion
of a system of 50 torsional pendulums: the Shive wave machine. The Shive machine
is a system of many torsional pendulums, as in Fig. 5.55. In our case we reduced
the system to 18 pendulums to have them spaced enough. This was required for
better data logging. In fact the sonar detector can’t distinguish between two objects
if they are too close. This experiments turns out to be of didactic interest because
it can facilitate the conceptual transition from the discrete to the continuous case
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Figure 5.51.: A sceenshot of the video of five coupled pendulums

(for instance the vibrating string). In Fig. 5.56 it is reported the motion waveform
and the corresponding FFT graph obtained by a group of students who tracked the
complex motion of one pendulum. This data collection has been performed with
the sonar and the Logger Pro software, but comparable results have been obtained
with Tracker as well. The FFT, as depicted in Fig. 5.56, shows the frequencies of
all the eighteen normal modes of the system. In this case it results evident that
the first four normal modes are those that mostly contribute to the motion of the
tracked pendulum. Furthermore, the more the number of pendulums the more the
normal modes tend to be equally spaced in frequency. In fact, in the limit case of a
continuous system, as the vibrating string, the frequency of each mode is an integer
multiple of the frequency of the first normal mode. The teacher should point out to
students that even with a limited number of oscillator, as eighteen in our case, the
shape of the normal modes of the system (see Fig. 5.55) tend to be very similar to
those of the elastic strings depicted in Fig. 5.45.

At the end of the path the teacher can perform, together with students the measure
of the oscillating voltage of two coupled oscillating circuits. Namely two circuits
with a capacitance in series with an inductance. Of course electric circuits are to
early a topic to be full treated. Nonetheless this is an important experiment and
easy to perform that can convince students that normal modes are not confined to
the mechanics but are a conceptual organizer referring to many areas. An example
of the exchange of energy between the two circuits with the usual beats waveform
is reported in Fig. 5.57.

The last experiment to propose is the visualization of the normal modes of a bi-
dimensional continuos system: the Cladni plates. They consits of plated with di�er-
ent shapes that are vibrated by a mechanical vibrator driven by a variable frequency
generator. Students can observe the many configurations of normal modes forming
as exciting frequencies increase. Neither quantitative nor qualitative analysis can
be done, but a simple observation of characteristic standing forms appearing, as can
be seen in Fig. 5.58.
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5.4. Summary of the path

• Brainstorming on oscillations and periodic phenomena
• Examples of oscillating objects: a vertically bouncing ball, a simple pendulum,

a disk bouncing between two elastic edges on an air table, a vertical mass on
a spring, a seesaw on flat pivot, a seesaw on a round pivot, the semi-circular
track, the Galileo oscillator.

• Grouping of the oscillations following common characteristics.
• Research of a stable equilibrium point and analysis of the total force acting

along the trajectory; grouping of oscillations in dependence of the presence of
a stable equilibrium point and a restoring force along the trajectory.

• Training to the use of the data-logging systems.
• Definition of harmonic motion.
• Integration of the di�erential equation of the harmonic motion via the projec-

tion of a uniform circular motion technique. Peculiar features of the harmonic
motion (sinusoidal motion law, independence of the frequency from the am-
plitude etc...).

• Revisitation of the previous experiments and identification of the harmonic
oscillation via di�erent techniques (analysis of the graphs etc.).

• Introduction of the concept of natural frequency and resonance via experiments
and videos.

• Two coupled oscillators and normal modes: two coupled pendulums and two
coupled mass-spring systems: real experiments with data-logging, applet sim-
ulations and videos in slow-motion.

• Formal definition of normal modes and calculation of the frequencies and of
normal modes in the simple case of two coupled mass-spring systems.

• Many coupled oscillatore to the continuous case: three coupled oscillators
(pendulums and mass-springs): real experiments with data-logging, applet and
video in slow-motion; four coupled mass-springs: real experiments and applet
simulation and video in slow-motion; five coupled pendulum: real experiment
with data logging; eighteen coupled torsional pendulums (Shive machine): real
experiment with data-logging; the string and the slinky spring (transverse and
longitudinal normal modes in continuous systems): real qualitative experi-
ments and applet simulations.

• Normal modes in the non mechanical system of two coupled LC circuits: qual-
itative experiment.

• Normal modes in two dimensions (membranes): the Cladni Plates: qualitative
experiments.
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Figure 5.52.: The waveform of motion for each pendulum of a system of five in the
case of random excitation. The colors are in agreement of the colors labeling the
single pendulums in Fig. 5.51.
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Figure 5.53.: The FFT graph corresponding to the first motion waveform of
Fig. 5.52, namely to the red labeled pendulum of Fig. 5.51.

Figure 5.54.: The motion waveform for the center of mass of the system of five
coupled pendulums, in a random motion configuration.

Figure 5.55.: A screenshot of the video for the Shive wave machine. From left to
right: random motion configuration, first and second normal modes.
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Figure 5.56.: The motion waveform (left) and the corresponding FFT analysis
(right) for a 18-pendulums Shive machine.

Figure 5.57.: The beats between two oscillating circuits: sceenshot from the oscil-
loscope display.

Figure 5.58.: Two dimension systems: the normal modes in Cladni plates.
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6. The vertical mass-spring
pendulum: an example of
parametric oscillator. A path for
undergraduate students

6.1. Introduction

As we have seen in previous chapter, when two or more oscillators are linearly-
coupled the modes of oscillations are someway “normal”, that is: if we switch on
just one of the modes the system will continue oscillating in that precise mode, the
other modes will remain switched o�.1From a mathematical point of view we can
say that the normal modes form a basis for the oscillation of the system. In other
words, any possible configuration of oscillation isn’t but a linear combination of just
the normal modes of the system itself. This is not true when the oscillators are not
linearly-coupled. In such cases the system still have its peculiar modes of oscillation
but these are no more “normal” in the sense that they are not independent the ones
from each other. This is evident from the fact that if we switch on one mode of oscil-
lation, in a matter of time it will transfer energy to the other modes. A continue to
and fro exchange of energy between modes will happen as shown by the beats phe-
nomenon. A well known example of oscillator in which the modes of oscillation are
not-linearly coupled is the parametric oscillator2. The vertical spring-mass pendu-
lum is an example of parametric oscillator3. We present here a teaching sequence on
parametric oscillator for undergraduate physics students. The parametric instability
is a condition that can eventually be reached while studing the vertical mass-spring
oscillator if certain conditions are met. The vertically oscillating spring-mass system
used to study harmonic oscillator physics in a first-year laboratory course has to be
pre-designed in order to reliably reproduce the motion described in textbooks. In a
laboratory organized so that students can assemble their own apparatus as they see

1In this sense the term Normal means that the modes are independent the one from each other
and form a basis for the oscillation. Switching on a single pure mode will cause the system to
oscillate in that precise mode indefinitely. Of course after a certain time the oscillation will
come to a end because of ineliminable friction.

2the parametric oscillator is an oscillator in which at least one parameter oscillates in time
3more properly the spring-mass pendulum is an auto-parametric oscillator. In fact we refer to a

parametric oscillator when....
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fit (picking components from a pile), the spring-mass system is not likely to turn out
so that it reproduces the idealized harmonic motion. There is a good chance they
will come up with a system that shows complex dynamics. Furthermore, to test the
spring-mass physics law Ê2 = k/m, students have to apply di�erent masses, thus
often running into parametric instability. Hence, studying the spring-mass system in
a laboratory where students pick the parts addresses both harmonic and parametric
behavior. We believe the spring-mass experiment can be treated in class as a har-
monic oscillator and then developed towards the parametric oscillator. This teaching
sequence allows students to approach the challenging, complex physics content of
parametric behavior.

6.2. The mass-spring pendulum

The spring-mass system studied in undergraduate physics laboratories may show
complex dynamics due to the simultaneous action of gravitational, elastic, and tor-
sional forces, in addition to air friction. In this paper, we describe a laboratory
exercise that caters to beginning students while giving those with more background
an opportunity to explore more complex aspects of the motion. If students are not
given predefined apparatus but are allowed to design the experiment setup, they
may also learn something about physics thinking and experimental procedure. Us-
ing results thus produced, we describe a variety of spring-mass oscillation patterns,
discussing the physics of the significant deviations from simple harmonic motion.
The parametric oscillation behavior we have observed is reported and investigated.
This study is based on analysis of motion waveforms.
A mass hanging from a spring is a common, easy-to-perform experiment often used to
introduce first-year physics students to simply harmonic motion[Boscolo & Lowensteim, 2011].
Although the apparatus is simple and inexpensive, under certain conditions it turns
out that the motion is not simple at all.[Olsson, 1976, Cayton, 1977, Christensen, 2004,
Geballe, 1958, Galloni & Kohen, 1979, Armstrong, 1969, Cushing, 1984] Gravita-
tional (pendulum), elastic (spring), and torsional forces [Olsson, 1976, Cayton, 1977,
Geballe, 1958, Cushing, 1984] generate numerous, complex phenomena that result in
surprising motions in the spring-mass system. These phenomena include multimode
operation (many oscillating modes can be simultaneously active),[Cushing, 1984]
parametric instability (oscillation instabilities when the system is driven at cer-
tain frequencies), and energy transfer between the spring-bouncing mode and the
pendulum-swinging mode. A real spring-mass system behaves as a simple harmonic
oscillator only under specific conditions: (i) the spring’s mass must be negligible
compared to the attached mass; (ii) the frequency of elastic oscillation must not
resonate with the frequency of pendular swinging; and (iii) initial spring stretch
must be strictly vertical.
A spring-mass system assembled with di�erent values for mass and for spring con-
stant can occasionally fall into a configuration where its elastic oscillation frequency
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Ê
k

and its pendulum-oscillation frequency Ê
p

have a ratio of nearly two. In such
cases, the motion is unstable and the mass passes from vertical to horizontal os-
cillation in apparently random fashion, showing parametric rather than harmonic
oscillations. (A parametric oscillator is a harmonic oscillator that has a parameter
oscillating in time.) In the spring-mass system, the gravitational force acting along
the axis of the spring varies periodically with the pendular motion of the mass. This
periodic action results in an exchange of energy and much more complex motion.
The vertical oscillation amplitude decreases while the pendular amplitude increases,
and vice-versa.

We noticed that an interaction between vertical and pendular oscillations sometimes
occurred in our laboratory when students are free to choose the springs and masses
themselves. The physical aspects of the configurations that are linked to parametric
behavior required further research to understand. Thus, we performed a study of
motion waveforms for a variety of frequency ratios that spanned the resonance value
Ê

k

/Ê
p

= 2. The frequency ratio is selected at will according to the equation

Ê
k

Ê
p

=

Ò
k/m

Ò
g/¸

, (6.1)

where k is the spring constant, m is the appended mass, g is the gravitational field
strength, and ¸ = ¸0 + mg/k is the equilibrium length of the vertical oscillating
spring, ¸0 being the natural (unstretched) spring length.

In order to perform this experiment, students must deal with the gap between the-
ory and practice, examine complex, multi-e�ect motion, and master experimental
techniques. Moreover, they have to treat data statistically and purge the experi-
ment of many “nuisances.” In other words, the students are forced to develop the
ability to manage unexpected experimental observations. The complexity of a phe-
nomenon that is not fully understood requires a strategy for singling out the motion
components, relaxing their interrelations so as to treat each component separately.
Afterwards, these components can be combined to understand the complete mo-
tion. In short, this experiment turns out to be a useful, guided-research activity for
students.

The theoretical work starts with the idealized equation of motion for the deviation
z(t) from the (vertical) equilibrium position for a mass on a spring

d2z(t)
dt2 + C

m

dz(t)
dt

+ k

m
z(t) = 0, (6.2)

where C is a damping coe�cient. The experimental goal is to test the solution

z(t) = z0 e≠“ t cos(Ê t), (6.3)

where z0 is the initial oscillation amplitude, “ = C/2m is the damping constant,
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and

Ê2 = k

m
≠

3
C

2m

42
= Ê2

k

≠ “2. (6.4)

In these equations, the mass of the spring is assumed to be zero, which is not actually
the case. The damping force is assumed to be proportional to velocity, although air
friction against a moving object depends on its shape and is not (generally) linear
with velocity. The investigation proceeds through the following steps: (a) test of
Hooke’s law F = ≠k �z, (b) test of Ê2 = k/m, (c) measurement of the damping
time · = 1/“, and (d) test of the sinusoidal solution Eq. (6.3).
In the following sections, we describe the procedure followed in laboratory work
with students and point out its critical steps. In the final section, we present the
experimental research work we carried out in preparation for teaching the course.
This study is meant to provide a deeper grounding for those conducting a widely
used experiment; it is also a possible topic for open-ended investigation or small,
individual research projects. Complete investigation of the spring-mass system also
requires studying forced oscillations,[Boscolo & Lowensteim, 2011] which is to be
the subject of further research.

6.3. The setup
The apparatus was kept as simple as possible: just a spring and a weight oscillating
vertically as shown in Fig. 6.1. A short piece of wire acts as a pivot. The z- and
x-coordinates of the hanging mass, defined in relation to its equilibrium position, are
tracked by the bottom (Sonar1) and lateral (Sonar2) ultrasonic motion detectors,
respectively. The system is surrounded by plastic foam to absorb the direct sonar
waves not reflected by the mass-bob. The latter is a pile of 20 g metal disks on
a support, to which plasticine may be added to obtain the desired precise weight.
The support is terminated by a diskette of 70-mm diameter to reflect the sound
waves emitted by the bottom sonar as much as possible. This technique is necessary
because the mass has wide lateral oscillations and wobbles around its pivot. Another
spurious motion can be observed, namely: transverse spring vibration, possibly
due to the mass wobbling. The value of the diskette diameter is a compromise
between a larger size for ideal sonar detection and a smaller size in order to minimize
both friction and spurious motion. These haphazard motions, superimposed on
the bouncing and pendular oscillations, cause observed motion waveforms to be
irregular. Distorted waveforms prevent us from attempting a simple analysis of the
experiment and of its physics content. To minimize spurious motion, it is essential
to start with smooth, precise initial mass displacement and to use small oscillation
amplitudes.
The two sonars ought to measure vertical and transverse oscillation exclusively, but
this is not always the case. Sonar1, which is used to detect vertical oscillation,
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partially detects transverse, pendular oscillation as well, as sketched in Fig. 6.2.
Similarly, Sonar2, meant to detect the transverse motion, also detects vertical spring
oscillation. This leads to waveforms in which an oscillation with smaller amplitude
is superimposed on the main oscillation. The resulting distortion of the oscillation
under study can be observed by restricting the oscillations to pure motions. For
pendulum motion, the spring was replaced with a wire; for vertical motion, a thin
metal stick was inserted along the spring axis. The observation of pure motions is
useful as a basis to interpret the results of combined oscillations described in the
following sections.
It is worth mentioning that vertical motion detection by Sonar1 is not a�ected by the
rotation of the pendular oscillation plane, but this is not true with Sonar2. When the
oscillation plane rotates by large angles, Sonar2 waveforms become almost useless.
Good waveforms from Sonar1 are enough to study the motion, with the occasional
help of some information from Sonar2.
A meterstick and a stopwatch are used to measure elongations and oscillation pe-
riods, respectively. Typical values of the spring parameters are mspring ƒ 4.8 g,
k ƒ 8 N/m, and rest length 18 cm. The e�ective mass values for the bob—equal
to the hanging mass plus a third of the spring’s mass[Boscolo & Lowensteim, 2011,
Christensen, 2004, Cushing, 1984, Halliday et al., 1992] (discussed more fully below)—
range from 40–80 g.
In class, students assemble the system using the bottom Sonar1 only. This paper
consists mainly of research performed after the students had completed the lab, and
was carried out to investigate their unexpected results.

6.4. Test of Hooke’s law and Ê2
= k/m

In our simple harmonic motion experiment, students determine the spring constant
in the traditional way. A test of Hooke’s law F = ≠k �z is performed by adding
di�erent masses to the spring and measuring the relative static elongations using
a meterstick. The spring constant is obtained with a precision of a few percent.
The test of Ê2 = k/m is performed using masses ranging from a maximum value,
limited by spring damage, to a minimum value, determined by excessive vibrations.
Some oscillations turn out to be very irregular, particularly when smaller masses
are used. Hence, students are guided towards using a larger mass to obtain more
regular oscillations. The oscillation period is measured using a stopwatch. The
initial objective was to verify Ê2 = k/m, rewritten in terms of the period T as

m = k

4fi2 T 2. (6.5)

A graph of the added mass versus T 2 shows the expected straight line with a small
negative intercept on the y-axis, as shown in Fig. 6.3. This test shows the ef-
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Figure 6.1.: Experiment layout. A meterstick and a light projector are used for
measuring spring extension, while motion detectors (sonars) detect the motion.
The digital data-acquisition tool LPRO (Vernier Logger Pro) acquires and sends
the coordinates z(t) and x(t) to the computer. The top arm is bent to avoid
reflecting the sonar signal.

fect of the non-negligible mass of the spring. A class discussion of the situation
[Boscolo & Lowensteim, 2011] leads to the conclusion that the spring’s mass cannot
be neglected, and that the added mass should be replaced by an e�ective mass that
can be written m

e

= m + m
s

, where m
s

is the e�ective contribution of the spring’s
mass. Hence, Eq. (6.5) must be rewritten as

m = k

4fi2 T 2 ≠ m
s

. (6.6)

The y-intercept from the data then gives the expected value of one-third of the to-
tal spring mass (m

s

= mspring/3), as reported in the literature.[Christensen, 2004,
Halliday et al., 1992] For the remainder of this paper, the pendulum mass will ac-
tually refer to the e�ective mass as defined here unless stated otherwise.

While students notice that lighter masses cause more complex oscillations, they also
realize that the system does not show the expected simple harmonic oscillation and
ask assistants for help. The new phenomenon of parametric oscillations comes to
the fore for the first time in this context, and the complexity of the movement leads
to further measurements with multiple motion detectors connected to a computer.
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Figure 6.2.: Scheme of the sound-wave paths between sonars and appended masses
going through transverse motions. Sonars measure the to-and-fro component of
movement. Transverse motion is seen as a di�erence in length between the two
triangle sides connected to a sonar.

Figure 6.3.: Graph of 6.6, showing the negative intercept at the y axis.

6.5. Decay time and frequency measurements using
motion waveforms

After completing the previous tests, students start taking measurements for the
decay time · = 1/“ in Eq. (6.3). The time interval between the beginning of the
oscillation and the moment when the amplitude is reduced to 1/e of its initial value
is measured using a stopwatch. Students use larger masses to get reasonably stable
oscillations. They observe that · depends on initial oscillation amplitude and on
the value of the added mass (as expected from the definition · = 2m/C).
At this point, the study of the motion using waveforms is introduced, with the
aim of measuring the two parameters · and Ê directly from the computer screen
to check their previously obtained results. In theory, the value of decay time is
constant for a given mass; nevertheless, we measure it for di�erent sections of the
same decay curve obtaining di�erent values. Indeed, the decay does not appear
to be exponential towards the end of the curve, instead showing decay times that
increase with time. The very slow decay at the tail indicates an e�ective reduction
of the damping coe�cient; that is, a reduction of the e�ect of air resistance when the
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mass oscillates more slowly. As a result, the mathematical form of Eq. (6.3), based
on a constant decay value, does not reproduce actual, observed motion. Initial fast
decay indicates the possibility of energy transfer from the vertical motion to other
motions. For the sake of thoroughness, we add that the assumed linear dependence
of the damping time · on the hanging mass (· = 2m/C) was tested, with better
than 80 percent agreement. [Boscolo & Lowensteim, 2011]

After recording the variation in decay time along the waveform curves on the screen,
students use the same graphs to measure oscillation frequency. They determine the
time interval relative to a set of oscillations on the computer screen, then use a
fast Fourier transform (FFT) tool, part of their data acquisition software, which
provides the frequency spectrum. In this context, students are introduced to the
concept and use of the FFT tool. After this measurement, students take a look at
the waveforms obtained with di�erent masses. The seemingly harmonic behavior
with heavy masses, the very complex motion with elastic vertical and transverse
pendular oscillation interchange, and the strong variation of waveform decay at the
beginning of the motion make it clear that a new and more complete model for the
system is needed to account for the many discrepancies between the simple motion
predicted by the theory of harmonic oscillation and actual experimental observations
at variance with expected results.

Separately, a few highly-motivated students then further studied the discrepancy
between theory and experiment by fitting the experimental waveform to the func-
tion f(t) = a(0) exp(≠t/·) sin(Ê0 t + „) + b. The values of a(0), · , and Ê0 (initial
amplitude, decay time, and oscillation frequency, respectively) are extracted from
the waveform as explained above. Fitting the whole waveform turned out to be
impossible; reasonably good fits were obtained only within sections of the decaying
waveform. The farther the waveform section the longer the relative · .

As an example, the fit of a mathematical model to a waveform using a 70 g mass
gives the following results, which are in accord with the previous conclusion: (1)
· ≥ 12 s for the first 10 s section, (2) · ≥ 17 s for the first 20 s (a longer section
averages two di�erent measured decay times), (3) · ≥ 20 s for the curve section
�t = 10–30 s, (4) · ≥ 30 s for the curve section �t = 20–60 s, and (5) a much
longer result at the curve tail. We checked the perfect correlation between the ·
enhancement at a curve section and the relative frequency enhancement at that
curve section, as expected theoretically from Eq. (6.4).

6.6. Measurements on harmonic and parametric
motions

The remainder of this paper describes details of faculty members’ research on motion
coupling within the spring-mass system. This analysis is beyond the level of first-
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year undergraduate teaching. Typical waveforms obtained with a set of 70 g, 60 g,
50 g, and 40 g masses are shown in Fig. 6.4.

Figure 6.4.: Waveforms (a), (b), (c), and (d) corresponding to 70g, 60g, 50g, and
40g masses, respectively. The system passes from out-of-resonance, with the 70g
mass and Ê

k

/Ê
p

w 1.67, to near-resonance, with the 40g mass and Ê
k

/Ê
p

w
2.04. The waveforms evolve from a classical, damped sine wave towards complete
modulation. The comb-like crests along the signal envelope, evident in frame
(d), are generated by the particular way Sonar1 detects the transverse motion
component.

Waveforms from heavier to lighter masses show a transition from an exponential
decaying sinewave to partially modulated decaying sinewaves and, finally, to a multi-
lobed, completely modulated sinewave. The same developments are observed when
looking directly at the motion, with composite vertical-pendular motion for masses
of intermediate value and the addition of frequent switches between vertical and
pendular oscillations with the lightest mass. The intermediate case of a modulated-
edge sinewave indicates that oscillation exchange between the two modes is partial.
By counting the lobes, we can measure the frequency of oscillation-mode exchange.
Another interesting observation is that the plane of pendular oscillation is not stable.
It rotates by a few degrees in the case of low partial mode exchange. Conversely,
when mode exchange is complete, the oscillation plane shifts by larger angles (up to
90 degrees) in an apparently random manner.
The study of waveforms leads us to conclude that there are two di�erent classes of
motion: harmonic and non-harmonic. The two types of motions refer to di�erent
physical phenomena.
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Let us again look at the forces acting in the system, as depicted in Fig. 6.5. We note
that the component along the spring axis of the force mg applied by the appended
mass changes periodically during pendular oscillation and, in turn, alters spring
extension. In particular, stretching-force oscillation causes the spring’s equilibrium
length to oscillate around its initial value ¸:

¸(t) = ¸ + ”¸(t). (6.7)

Therefore, pendular and spring-oscillation modes are coupled. Spring extension due
to the weight makes a complete oscillation in half the time of one complete pendulum
oscillation at resonance, that is when the ratio between the two oscillation periods
T

k

and T
p

is 1/2.

Exploded view

of bottom 

θ

z(t)

x(t)Fp

Figure 6.5.: Sketch of the applied force showing coupling between spring-bouncing
and pendulum- swinging motions. The mass’ center of gravity is not along the
spring axis.

The coupling between pendular oscillation and spring oscillation induces parametric
instability between the two modes [Olsson, 1976, Cayton, 1977, Lai, 1984, Holzwarth & Malone, 2000]
when the resonance condition is met. The energy exchange between the modes,
tested by the waveform envelope modulation, is observed up to a frequency ratio
[Eq. (6.1)] of about 1.8. The farther from the resonance condition, the lower the
energy exchange. The observed mode exchange within an interval of frequency ratio
reproduces the common physical fact that the resonance curves have Gaussian-like
form with a certain width. We can say that our resonance has a relatively large
width. Moreover, out of resonance, our measurements show that the greater the
amplitude of vertical oscillation, the more extensive mode exchange becomes, yield-
ing a wider resonance curve. The resonance curve was also observed to enlarge as
motion disorder increases, i.e. when spurious motion becomes significant compared
with the two motions of spring oscillation and pendulum oscillation. Spurious mo-
tion is always present when oscillations are large. Both spurious motion and large
oscillation lead to an increase of the mode coupling.
Motion due to oscillatory mode exchange (parametric motion) is initiated by either
vertical or lateral shift of the appended mass, i.e. with either elastic or pendular os-
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cillation excitation. Vertical motion represented by a waveform like that of Fig. 6.6
is generated by starting pendular oscillation with lateral displacement of the ap-
pended mass. This parametric motion suggests that the coupling between pendular
and elastic oscillations is nonlinear. In the literature, equations describing nonlinear
coupled pendulum and spring oscillations are given as[Olsson, 1976]

d2x(t)
dt2 + Ê2

p

x(t) = c x(t) z(t), (6.8)

d2z(t)
dt2 + Ê2

k

z(t) = c
x2(t)

2 , (6.9)

where the coupling constant c is a function of the system parameters.[Olsson, 1976]
Incidentally, damping is not considered in these equations. More refined motion
equations that satisfactorily describe the results of our experiment are presented
in Ref. 3. These equations can be obtained through Lagrangian formulation. This
system can be solved analytically only in one particular case [Olsson, 1976] and
numerically in all others.[Cayton, 1977].

Figure 6.6.: Waveform of vertical oscillation obtained after a lateral initial dis-
placement. The irregular shape of the waveform depends on the simultaneous
presence of vertical and transverse oscillations, as seen by Sonar1. A 70g mass
was used in this test.

The presence in the motion of di�erent oscillation modes can be observed directly
in the waveform spectrum lines obtained with the FFT tool. The spectra of the
waveforms in Fig. 6.4, shown in Fig. 6.7, have the expected frequency lines for the
oscillations those waveforms represent. The neater the waveform (i.e. the more
ordered the motion), the neater the FFT. In each frame, the line corresponding
to Ê

k

is largely dominant, and the line corresponding to Ê
p

is present, albeit with
limited intensity. In disordered motion, the lines for spurious oscillation modes show
up in the spectra. The two (c) and (d) spectra of Fig. 6.7 make the 2Ê

p

harmonic
stand out, because the pendular oscillation has large amplitude and Sonar1 doubles
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the pendular frequency, as explained in Fig. 6.2.

Figure 6.7.: Plots (a), (b), (c), and (d) show the FFT signals derived from 70g,
60g, 50g, and 40g waveforms, respectively. FR is the actual value of the frequency
ratio. The frequencies of some pronounced spectrum lines are labeled.

6.6.1. Behavior with mixed vertical and transverse excitation

Any excitation (initial mass shift with vertical and lateral components) that cor-
responds to a frequency ratio within the resonance width can start mixed vertical
and pendular motion. Indeed, the coupling term on the right-hand side of motion
equations (6.8) and (6.9) shows that an initial x(0) ”= 0 causes the onset of energy
exchange between the two modes. It is almost impossible to apply a pure vertical
or a pure lateral shift by hand.
The result obtained with mixed excitation is interesting: energy bouncing between
the two modes occurs even with relatively heavy masses, i.e. with a frequency ratio
that is out of resonance. The waveform obtained with 80 g mass (1.63 frequency
ratio) proves to be modulated as shown in the first frame of Fig. 6.8. Its FFT
spectrum has many sharp lines, as shown in the second frame of Fig. 6.8. A rather
intriguing observation is that the system set itself in the peculiar stable motion shown
in Fig. 6.9 after a few oscillation cycles—a behavior cited also in Ref 2. Results of
mixed-excitation experiments enable us to state that nonlinear coupling between
the two modes occurs even far from resonance.
Other observations worth reporting are:
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Figure 6.8.: Frame (a): Waveform obtained with an 80 mass and small diagonal
displacement. The energy exchange between the two modes is clearly visible.
Frame (b): Frequency spectrum. Many lines are present, besides the spring fre-
quency at 1.55 Hz and the pendular frequency at 0.95 Hz (with very small am-
plitude). Second harmonic frequencies are visible. Other clear lines, at higher
frequencies, correspond to wobble motions.

• (1) At resonance, both vertical and lateral mass displacements lead to similar
system instability.

• (2) Near resonance conditions, both strong vertical and strong lateral mass
displacements lead to substantially similar results in waveforms and spectra.
This is not the case with small displacements: a small vertical displacement
excites only vertical spring oscillation (no exchange with pendular oscillation),
whereas a small lateral displacement excites both modes.

• (3) Mixed excitation produces complete energy transfer between the two modes
even at the frequency ratio Ê

k

/Ê
p

= 1.8. The spectra are neater than in pure
vertical excitation.

Figure 6.9.: Motion gure normally assumed by masses above 60g.
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6.6.2. Analogy to optics

Parametric instability is common in nonlinear optics. This phenomenon is employed
extensively to produce and amplify laser waves at diverse desired frequencies.[Yariv, 1988,
Cialdi et al., 2011] A pump wave Ê1 launched across a nonlinear crystal generates,
from noise, a signal wave Ê2 along with a so-called idler wave Ê

i

. Among others,
the main condition that must be satisfied is

Ê1 = Ê2 + Ê
i

. (6.10)

In our spring-mass system, the spectrum clearly shows the idler frequency,

Ê
i

= Ê
k

≠ Ê
p

. (6.11)

For example, the spectrum of the waveform yielded by vertically exciting a 70 g mass
shows the idler line distinctly, as seen in Fig. 6.10. This figure reproduces a selected
section of the spectrum recorded by Sonar2, which, for this type of excitation, detects
low-amplitude components more cleanly.

Figure 6.10.: The idler frequency line at 0.62 = (1.63 ≠ 1.01) Hz from the FFT
graph of the waveform generated by vertically exciting a 70g mass (see Fig. 6.8(a)),
recorded by Sonar2.
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Experimentations

7.1. The context

The path on oscillations and normal modes has been proposed to di�erent contests
of students. The final version has been tested on three classes of 11th grade students
during curricular lessons, for a total of 86 students. All the three classes were com-
posed of students of scientific orientation attending the third year (liceo scientifico).
The entire experimentation had a duration of 21 hours spanned over 7 weeks.

7.2. The target and the steps of the experimetation

All the students were 11th grade students. They had a finite mathematical back-
ground (little trigonometry, second degree equations and no calculus) and they had
never studied waves. The experimentation developed in three phases: i) the admin-
istration of an initial questionnaire (pre-test); ii) the implementation of the activities
during curricular lessons; iii) the administration of a final questionnaire (post-test).

7.3. The questionnaire

A questionnaire has been administered to students before (pre-test) and after the
experimentation (post-test). The post-test has been administered long after the con-
clusion of the experimentation: over one month after. The post-test and the pre-test
are equal except for two additional questions in the final test related specifically to
normal modes . So the initial test is composed of ten questions while the final one
is composed of twelve questions. The students had one hour time for answering the
pre-test and twenty additional minutes for answering the post-test. The first four
questions had to deal with the relationship between forces and kinematic quanti-
ties with particular attention to the capability of students to represent on graphs
these quantities in the experiments proposed. Questions five to seven refer to the
properties of oscillating system, with a particular attention to the phenomenon of
resonance. They are meant to see the pre-conception of students and their thinking
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on such topics. Questions eight and nine refer to periodic motions and are meant
to see how students mean the concept of periodicity and how they can interpret
periodicity through the graphs. As the final question for the pre-test, the tenth
question is meant to see how students interpret di�erent kind of motions and which
are the properties they can identify as common to be able to group motions following
common properties. Both the additional two questions of the post-test deal with
normal modes. They are intended to evaluate the e�cancy of the path and to see
whether the experimental approach e�ective for student’s comprehension of normal
modes. The complete questionnaire is reported in appendix.

Question n° 1 This question has two main goals: the first is to investigate the
ability of students to identify the force responsible for the oscillation of the pendulum
and recognize it as a restoring force; the second, how they can manage graphs for
F, v and a where the independent variable is a position variable instead of time. In
the post-test 68% drew the force as restoring (both generic and elastic) while none
did it in the pre-test. In fact in the pre-test drew the force as a sinusoid, same for
the velocity and the acceleration. This happened (as emerged from the interview)
because students were used to represent the kinematic quantities as a function of
time. For the velocity, in the post-test, 66% represented the graph as an ellipse
or a circle, with the correct point of inversion of the motion while none did in the
pre-test. For the graph of the acceleration the 60% reported the same graph as the
force. 3% did not answer the question.

Question n° 2 In this question the misconception of the force bound to the ve-
locity and the same capability of managing graphs as in the previous question are
investigated. In the post-test 50% of students drew an overall correct graph for
the force and 42% a correspondent graph for the acceleration, while 33% continued
drawing a variable force as the 80% of the pre-test. 17% did not answer in the
post-test and 20% in the pre-test. For the velocity, the 40% of students could draw
an overall correct graph in the post-test; 20% did not answer. In the pre-test only
5% provided a reasonable graph for the velocity and 30% did not answer.

Question n° 3 The questions investigate the role of the forces during the oscillation
of a vertical mass-spring and their relationship with the variation of the velocity.
In the post-test 73% of students drew correctly the forces and the resultant force
with respect to the equilibrium point, 47% in the point of maximum extension of
the spring and 44% in the point of maximum compression of the spring. The re-
sults for the pre-test were respectively: 60%, 40%, 37%. It is interesting to note
that 46% of students represented an upward elastic force also in the case of maxi-
mum compression of the spring, as they were used to make exercises with elongated
springs therefore pulling instead of pushing (this explanation emerged clearly from
the interviews). In the pre-test, this misconception interested 57% of students.
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Question n° 4 In this question we investigate the conception that students have
about forces and motion, namely forces and velocity. The interesting result is that
many students (43% in the post-test and 61% in the pre-test) believed that there
must be an applied force if the body has a velocity. During the interviews, some
of the students said that they misunderstood the question and that the force they
drew was the weight of the ball. A couple of students instead were really convinced
that if there is a velocity there must be a force in any case. One said: “how can a
body have a velocity if there isn’t a force to push it?”

Question n° 5 In this question the characteristics of oscillators are investigated.
In the pre-test we wanted to see how is the common thinking of students regarding
the frequency of oscillation in relationship with the amplitude. In the post-test the
question aims to see if the idea of frequency as an intrinsic characteristic of the
oscillator has been learned. In the pre-test most students (about 80%) said that the
frequency depends on the amplitude and about 10% answered that the frequency
remains constant. In particular the more stretched the spring, the more high the
frequency. Only two students related a bigger amplitude to a smaller frequency.
72% were convinced that also an initial velocity a�ects the frequency. In the post-
test 89% of students a�rm that the frequency does not depend on amplitude; 5%
think that the more the amplitude the higher the frequency; 2% think that the more
the amplitude, the smaller the frequency; 4% does not give an answer. In case of
additional initial velocity the 13% of students think that the frequency gets higher
but the motion is still harmonic.

Question n° 6 The question is similar to the prvious one but the example is from
every day life. The percentages are very similar to those of the previous question.
During the interviews it emerged that students tend to confuse the frequency of the
sound with the intensity.

Question n° 7 This question aims to investigate the common thinking of students
about a resonance phenomenon in the pre-test and to evaluate if students have
learned the idea of resonance and normal modes of a single oscillator as the best
way to exchange energy. In the pre-test just 8% of students could manage the
question; 10% did not answer and the 82% answered that after a while both the
mass-springs system oscillate at the same frequency of 1,4 Hz. In the post-test
about 73% of students described well the resonance of the left oscillator and only
10% remained as in the pre-test.

Question n° 8 The question simply aims to see if students are able to extrapolate
the concept of periodicity from a graph. In the pre-test 87% recognized the periodic-
ity represented in the graph even if a few of these students confused the period with
the semi-period while giving the value. 10% said that the graph does not represent
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a periodic motion because the plot is not sinusoidal; 3% did not answer. In the post-
test all students a�rmed the periodicity of the graph.

Question n° 9 The question is very similar to the previous one. The main di�er-
ence is that here the graph is damped. In the pre-test 78% of students said it is not
a periodic motion because di�erent sections of the graph are not equal. About 16%
said it is not periodic, without adding an explanation; about 6% did not answer.
In the post test 73% answered that the graph represents a periodic motion damped
by friction because just the amplitude is reduced, not the shape of motion. 8%
said that the motion is periodic and also harmonic because the plot is a sinusoidal
function. 15% answered that the motion is not periodic because di�erent section of
the graph are not superimposable. 4% did not answer.

Question n° 10 This question aims to see how students see di�erent types of
motion, namely which are the characteristics of the motions that they use to group
into categories. It is interesting to see how, in the pre-test, about 80% of students
grouped the motions taking into account the trajectories (for instance, the mass-
spring with the bouncing ball because both describe a straight trajectory, and the
pendulum with the seesaw on a flat pivot because both describe an arc); about
20% considered the duration of the motion, thus the damping (long-lasting such, for
instance, the pendulum and the mass-spring and short-lasting such as the seesaw
on a flat pivot and a Waltenhofen pendulum). None considered the acting force. In
the post test 63% of students introduced the presence of a restoring force, thus the
harmonic motion as a criterion to group the motions.

Questio n° 11 This question and the next one are present just in the post-test.
Both are intended to evaluate the learning of the normal modes. The question is
divided into five sub-questions. 98% of students were able to recognize that there
are 4 normal modes because there are 4 degrees of freedom; 2% answered 5 normal
modes because confused the number of masses with the number of springs (this
emerged from the interviews). 100% were able to represent the first normal mode,
82% the second, 63% the third and 49% the forth. In many cases the errors were due
to the low precision in plotting the scheme, especially for the higher modes. 76%
of students answered that the masses perform harmonic motion when the system is
in one of its normal modes. 91% answered that in a normal mode all the masses
have the same frequency and that this is evident because the phase relationship
between masses is constant over time and there are no beats. At last, 57% answered
to the fifth sub-question that if the system is excited at a frequency di�erent from
its normal frequencies, they can see the beats phenomenon.

Question n° 12 This question is made to test the comprehension of the super-
position of normal modes and the meaning of the FFT tool. Students had to pay
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attention to the values reported in the figures, in fact in the figure (d) we have
represented the same system of the figures (a) e (c) but in a motion configuration in
which only the first two normal modes are excited. 81% of students recognized that
fig (a) and (c) represent a system of three pendulums that is in motion in a random
way so the FFT graphs provides the frequency of the three normal modes mixing.

7.4. Some hints from brainstorming, discussions and
interviews

In the initial brainstorming, students were asked to group the oscillating systems
they observed by the naked eye. Most of them decided to put together oscillators
with similar trajectories. For instance, the vertical mass-spring, the ball bouncing
on the floor and the bouncing disk were grouped together “because all move along
a straight line”; the simple pendulum, the rod tilting on a flat pivot and the ball
running along a semi-circular rail, were grouped together “because they describe an
arc”. In the final test, on the contrary, over 60% of the students grouped oscillators
taking into account the forces acting on the system, being them restoring forces or
not. Another interesting fact emerged from the initial brainstorming is that about
80% of the students thought that the oscillation frequency of a vertical mass-spring
oscillator does depend on the initial displacement. In particular, they thought that
the greater the initial amplitude, the greater the frequency. Some students said:
“when the amplitude is bigger, the frequency is higher because the movement of the
mass is faster”. A few students thought that the frequency of oscillation decreases
with the initial displacement because: “the velocity is the same but the space is
longer, so the oscillation takes more time”. Only less than 20% of the students
decided that the frequency is constant, regardless the initial displacement. They
stated this fact on the base of direct observation by naked eye: “looking at the
oscillation I can’t see di�erence”. Analogous results and similar comments were
obtained with the simple pendulum, despite the fact that almost all the students
already knew the pendulum isochronism law. The situation greatly changed after
the didactical intervention as at the end of the path nearly 90% of the students
were able to recognize that the frequency of a harmonic oscillator is independent on
the frequency. Regarding normal modes, while many students were able to imagine
“some special motion configurations” of a system of two coupled pendulums before
the topic was introduced and the experiments performed, only a couple of them
were also able to predict the motion of the third normal mode of a system of three
coupled pendulums. None could predict higher modes in more complex systems
(five pendulums). Anyway, after introducing the graphic technique, the number of
students able to predict the motion of all normal modes increased significantly. In
the final test and in the interviews was proposed a question on a system of five
coupled oscillators. All the students were able to describe the motion configuration
of the first normal mode by words and/or by sketches. Over 80% described correctly
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the second normal mode, over 60% the third and the fourth and nearly 50% the fifth
one. Most of the wrong answers on higher normal modes were due to inaccuracy in
drawing the sketches.

7.5. Answers to the research questions

In the first research question we wonder if the dynamical choice of defining the
harmonic motion through the linearization of the restoring force is more e�ective
than the kinematical definition through the projection of a uniform circular motion
on a diameter. We must say that the students of the three classes involved in the
experimentation of the path had not received any kind of definition of harmonic
motion before. So a comparison of e�ectiveness with other definition is not possible
for these students. Anyway, in the final interviews almost all students were able to
recognize the harmonicity/anharmonicity of motion they had already seen during
the implementation of the path, on the basis of the analysis of the acting forces.
About 80% could recognize the harmonicity/anharmonicity also in new cases, after
analysing the forces. Some students referred: “I think it is not harmonic because
I guess that the force is not a restoring one. I should perform a tracking to plot
the graphs to be sure”. This is somehow also a positive answer to the third re-
search question. The same request was made to the 12th grade students of the
extra-curricular lessons and of PLS activities. They had previously received the
kinematic definition of harmonic motion. They were not able with such a definition,
to state the harmonicity/anharmonicity of the experiments we proposed, exept in
the case of the pendulum. Anyway one student said: “to tell the truth I said that
the pendulum is harmonic because I was told before, but I don’t know how to prove
this by the definition”. The situation improved definitely with the dynamic defini-
tion. We don’t have the precise percentages because in extra-curricular lessons and
in PLS activities there was not a systematic data collection. Also with the under-
graduate students of PED course things did’t change. In fact we proposed to prove
the harmonicity/anharmonicty, in agreement with the kinematic definition, for the
experiments: vertical mass-spring, seesaw on a flat and on a round pivot, bouncing
disk, ball on a circular track and some other. None of the students was able to do
that, while they could by the dynamic definition.
The second research question was to assess the possibility of teaching normal modes
to 11th grade students, that is to say without the basis of calculus. The results of
questions eleven and twelve of the post-test show that the use of multiple represen-
tation, together with the data-logging techniques and the FFT can overcome the
mathematical di�culties. These results have been confirmed in the final interviews,
in which it also appeared clear that the use of the graphic analogy between normal
modes and standing waves on a string is a very e�ective tool to predict the shape of
normal modes even in many oscillators-systems. The decrease of correct prediction
as a function of the increase of mode number was mainly due to the loss in accuracy
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when plotting the graph by hand. In fact the students missing the point in the
post-test, were able to make the right prediction by plotting the “analogy” on graph
paper sheets.
As regards the third and the forth research questions, at the beginning (during
brainstorming and peer discussions) most students had great di�culty to draw the
graphs of forces as a function of a positional coordinate. In the interviews many of
them said that they had always represented kinematics quantities as a function of
time and “found weird and di�cult this new way of representation”. As reported by
students themselves, the tools of data-logging programs for the production of graphs
“helped a lot”. The comparison of the answer to question one and two of pre-test
and post-test are enlightening. Surprisingly the introduction of the FFT as a tool
encountered no particular problems. As emerged during the overall implementation
of the path, in the post-test (question 12) and in the final interviews, students had
no problem to understand what the FFT tool can provide and use it. One student
said: “when we performed the simulation in which we summed two perfect sinuses
with di�erent frequencies and obtained that strange graph and then applied to that
graph the FFT tool and we had back exactly the two frequencies of the two initial
sinuses, I really understood what the FFT does”.
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A. The questionnaire

A pretest and a post test have been proposed to the students. The postest has been
proposed long after (over one month) the conclusion of the activities as to evaluate
the e�ectiveness of the path on long term.
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Name:  ______________________                   School/Class: __________________ 
        
 

Test on Oscillations 
 
 

 
1. A pendulum is left free to oscillate in condition of small amplitude oscillations, without 
friction. If we state F the intensity of the resultant force acting on the bob of the 
pendulum, try to represent, over a period of oscillation, the graphs of force, velocity, and 
acceleration as a function of angular position θ.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. A ball is let free to fall from a certain height as shown in figure. Let us neglet the 
friction and assume that each impact with the ground is perfectly elastic so that the 
ball goes back to the starting altitude every time. Let us state F the total force acting 
on the ball. Try to represent the graphs of the force, the velocity and the acceleration 
as a function of the altitude y (considered a single complete bounce).  
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

θ 

F v a 

θ θ θ 
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x"
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3. A mass appended to a spring, as shown in the figure, is let free to oscillalte. In the three figures are 
represented the following situations: a) the ball is in the equilibrium position; b) the ball is in the position of 
maximum extension of the spring; c) the ball is in the position of maximum compression of the spring.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Draw, on the three figures, all the forces acting on the ball and their resultant. 
 
 
 
4. A billiard ball performs elastic bounces  between the edges of the table. The following figure shows the ball in 
four different moments: A and C during the impact with the edges; B at an intermediate point between the banks 
while moving towards the right and D while moving towards  the left. 
 
 
 
 
 
 

 
 
 
 
 
 
 
Draw on the figure the vector of the resultant force acting on the ball in the three situations (neglect any form 
of friction). 
 
 
 
 
 
 
 
 
 
 
 

A C B 

a) b) c) 
y 

0 

D 



5. Consider a mass hanging at the free end of a spring as in the figure. 
The mass is initially in its equilibrium position. Imagine to displace the 
mass downwards, pulling it down. The system starts to oscillate with a 
certain frequency. Repeat the operation increasing each time the 
displacement. According to you, does the frequency of oscillation 
depend on how much has been pulled the spring? (if so, the frequency increases or 
decreases with increasing elongation of the spring?). What happens if an initial speed is impressed by hitting the 
mass from bottom to top?  
 
 
 
 
 
 
 
 
 
 
 
 
 
6. If you hit the edge of a crystal glass with a spoon, it makes a sound corresponding to the frequency of 
vibration of the glass. If you repeat the operation by hitting the glass in the same point but with greater force 
(be careful not to break it!) what do you expect to hear? A more pitched sound, a deepr sound (corresponding to 
a greater or lesser frequency of vibration) or the same sound as before? 
 
 
 
 
 
 
 
 
 
 
 
7. Two mass-spring systems are appended at the same rod as in 
the figure. The system on the left, if moved from the equilibrium 
position, oscillates with a frequency of 1.4 Hz. The system on the 
right oscillates with a frequency of 17 Hz. If the whole rod is 
swung up and down (see arrows in the figure ) at a frequency of 1.4 
Hz, do you expect to see in time? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8. Look at the graph in the figure. In your opinion, does it represent a periodic motion (please jusify the answer)? 
If your answer is yes, which is the period? 

 

 
 
 
 
 
 
 
 
 
 
 
9. Look at the graph in the figure. In your opinion, does it represent a periodic motion (please jusify the answer)? 
If your answer is yes, which is the period? 
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10. Below are some examples of motion of bodies: 
• Motion of a pendulum that swings around its equilibrium position 
• Motion of a rubber ball bouncing vertically on the floor 
• Moto described by the tip of the blade of a fan cooler 
• Motion of a billiard ball bouncing between the edges of the table 
• Motion of the Moon around the Earth 
• Motion of a ball that rolls back and forth along a semi-circular track that is disposed vertically  
• Motion of a mass appended at a vertical spring oscillating around its equilibrium position 
• Motion described by the axis of a spinning top 
• Motion  traced by the end of the wiper of a car 
• Motion described by a skewered chicken during cooking 
• Motion of a mass attached to a spring arranged horizontally on a frictionless plane 
• Motion described by the end of a seesaw, laying on a cube 

 
Try to group these motions into three categories based on the features that you think they have in common. For 
each category indicate the criteria you have chosen. 
 

MOTION TYPE 1 MOTION TYPE 2 MOTION TYPE 3 

   

Common features: 
 
MOTION TYPE 1: 
 
 
 
 
MOTION TYPE 2: 
 
 
 
 
MOTION TYPE 3: 
 
 



11. A system without friction is constituted by 4 masses connected with ideal springs. The masses are free to 
move horizontally, as shown in the figure: 
 
 
 

 
 
 

 
 
 

a. How many normal modes does the system have? (justify the answer) 
b. Represent the normal modes by arrows which length be proportional to the oscillation amplitude. 
c. When the system oscillates in one of its normal modes, what kind of motion does each mass perform? 
d. Are the oscillation frequencies of each mass equal to each other when the system is in a normal mode? How can 
you determine? 
e. What do you expect to see, in time, when the system is set in motion at a frequency different from that of one 
of its normal modes? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12. In the graphs of the figures below there are plotted the frequencies obtained by the 
analysis (Fourier transform) of the motion of a pendulum. Which, plot/s may refer to a 
pendulum belonging to the system of three pendulums coupled  by two identical springs and 
put into motion in a completely random way? (justify the answer) 
 
a. all the plots 
b. none of the plots  
c. the plots (A) e (C) 
d. the plots (D) ed (E) 
e. the plots (A), (C), (D) ed (E) 
f. just the plot (C) 
g. the plots (A), (C) e (D) 
 
 
 
     
 

 
 
 
 
 

 

(A)$

(B)$ (C)$

(D)$ (E)$



B. WORKSHOP COPYCAT

The copycat refers to a workshop based on the present path on oscillations that the
Physics Education Group of the University of Milano performed at GIREP 2014
Conference, in Palermo on july 2014. I decided to attach the very last version of the
copycat as it was at the moment of the performance. It is clearly a work in progress,
in fact the text is not entirely translated into English.
The workshop is based on some theatrical strategies adopted in a two hour per-
formance in order to show some meaningful experiments and the underlying useful
ideas to describe a secondary school path on oscillations, that develops from har-
monic motion to normal modes of oscillations and makes extensive use of video
analysis, data logging, slow motions and applet simulations.
Theatre is an extremely useful tool to stimulate motivation starting from positive
emotions. That is the reason why the theatrical approach to the presentation
of physical themes has been explored by the group “Lo spettacolo della Fisica”
[della fisica, ] of the Physics Department of University of Milano for the last ten
years [Carpineti et al., 2011] ; [Carpineti et al., 2006] and has been inserted also in
the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated)
[TEMI, 2014] which involves 13 di�erent partners coming from 11 European coun-
tries, among which the Italian (Milan) group.
According to the TEMI guidelines, this workshop has a written script based on emo-
tionally engaging activities of presenting mysteries to be solved while participants
have been involved in nice experiments following the developed path.
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WORKSHOP(
(

INTRODUCTION(
(

IN(SCENA!
Cubi%neri%80x50x60;%70x40x50;%90x40x40%con%sopra%alcuni%esperimenti.%Altri%sulla%
cattedra.%Due%alogene%illuminano%la%scena.%Sul%palco%2/3%sgabelli.%Cicloide,%%X4,!X2,!
pendoli!multipli%un%po’%a%lato.%

Sulle%sedie%del%pubblico%sono%presenti%i%kit%TEMI,%una%sedia%è%senza%kit%con%sopra%una%
borsa%

%

INIZIO(
B,%C,%S%sono%impacchettati.%%

G!non!lo!è!e!fa!entrare!il!pubblico!tutto!assieme,!poi!esce.!!!

(

• SLIDE:!GOOD!VIBRATIONS!

MUSICA!DEI!BEACH!BOYS!!

%

G%quando%tutto%il%pubblico%è%entrato,%spegne%la%musica%e%entra.%%

G:!Good!afternoon!to!everybody,!I’m!Marco!Giliberti!from!the!university!of!Milan!
and!I’m!going!to!start!this!workshop!on!oscillations!by!giving!a!look!on!how!
harmonic!motions!is!generally!presented…!

!

• SLIDE:!Here!you!can!see!two!typical!definitions!of!harmonic!motions!!

1)!Disegno!con!proiezione!sul!diametro)!!

2)!An!object!performs!harmonic!motions!if!it!is!acted!upon!by!a!force!F!=!Xkx!

!

G:!As!you!probably!all!already!know,!with!definitions!such!as!these,!students!do!not!
go!much!further.!
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Our$experience$with$secondary$students$and$also$with$graduate$students$in$
mathematics$shows$that$the$comprehension$of$the$link$between$mathematics$and$
physics$in$the$study$of$oscillations$is$far$from$clear$if$we$start$that$way.$$

The$bottom$line$is$that$the$kinematic$definition$of$harmonic$motion$is$not$enough$to$
understand$the$physics$implied;$and$also$at$university,$the$dynamical$definition,$
which$stems$from$the$analysis$of$the$potential$energy,$is$often$un>effective.$$

>>>>>>>>$

$

SPACCHETTAMENTO+E+TEMI+
• SLIDE:$TEACHING$ENQUIRY$>$PHYSICS$CANNOT$BE$DELIVERED$AS$A$PACKAGE$

G:$We$cannot$deliver$students$pre>packed$definitions,$because$in$this$way$we$don’t$
give$them$instruments$and$concepts$to$analyse$and$read$the$world$around$them.$

+
Con$fare$eccessivo,$ironico.$But+now+let+me+introduce+our+PER+team+of+the+
university+of+Milano.+In+alphabetical+order:++

B,#C,#S#si#spacchettano#quando#presentati:#

the$sweet$and$shy$Sara$Barbieri!$$

B#non#si#spacchetta#e#fa#cenno#di#no#con#la#mano…##

She$never$wanted$to$be$here$now,$but,$please,$Sara,$get$out$of$that$package!$Let’s$
make$her$an$applause$of$encouragement!$

And$now$the$extraordinary,$exuberant$and$smiling$Marina$Carpineti!$

And$last$but$not$least$our$best$man!$The$always$working$and$joking$Marco$Stellato!$

$

C:$$Thank>you$Marco$for$your$introduction,$but$now$let’s$come$back$to$our$theme.$$

The$definitions$you$still$see$on$the$slide$prevents$to$grasp$the$importance$of$the$
harmonic$motion$as$a$conceptual$organizer$that$should$emerge$from$the$
choice/recognition$of$particular$deep$similarities/diversities$among$different$types$
of$periodic$motions.$$

In$the$first$part$of$this$workshop$we’ll$show$you$an$approach$to$harmonic$motion$
that$allows$to$realize$at$a$glance$the$anharmonicity/harmonicity$of$an$oscillation$and$
to$understand$the$link$with$the$mathematical$aspects$of$the$problem.$$

B#intanto#sgattaiola#nel#pubblico#camminando#come#gatto#Silvestro#dove#si#siede#
sulla#sedia#con#sopra#la#borsa.#
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!

S:!This!workshop!will!let!you!experience!the!path!we!prepared!and!experimented!
with!11th!and!12th!grade!Italian!students.!That’s!why!you!have!a!kit:!to!be!able!to!put!
herself!in!the!shoes!of!our!students.!At!the!end!you!can!take!it!home.!!

You’ll!have!to!change!your!character.!Most!of!the!time!you’ll!be!told!a!story!in!which!
we’ll!pretend!you!to!be!a!secondary!student.!But!sometimes!you’ll!have!to!wear!
back!your!traditional!habits!of!professors…!

In!fact,!sometimes!we’ll!take!our!time!and!make!a!Comment!to!discuss!with!you!
both!the!physics!and!the!educational!aspects.!

!

• SLIDE:!THE!EUROPEAN!PROJECT!TEMI!R!TEACHING!ENQUIRY!WITH!MYSTERIES!
INCORPORATED!

G:##Part#of#what#we#are#going#to#show#you#is#embedded#in#the#work#of#the#
University#of#Milan#Team#working#on#the#TEMI#project.#

TEMI#is#a#42Dmonth#science#education#project,#funded#by#the#European#
Commission#under#FP7#(Science#in#Society)#which#will#help#transform#how#sciences#
are#taught#in#classrooms.#It#has#13#partners#from#all#around#Europe.#

!

B"fa"partire"le"slide."

"

C:!The!work!of!this!workshop!is!based!on!the!5E!method!of!Bybee!

• SLIDE:!5E!

!

S:!Oscillations!are!a!great!classic!in!secondary!school.!But,!while!harmonic!motion!is!
nearly!universally!presented,!normal!modes!are!not,!even!if!they!are!at!the!heart!of!
a!lot!of!physics.!

Here!we!present!a!sequence!that!starting!from!simple!oscillations!in!a!meaningful!
way,!leads!up!to!normal!modes!of!oscillation.!

RRRRRRRR!

!

PART#I:#HARMONIC#MOTION#
#

#
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SINCRONIZZIAMO*E*PENDOLO*MENTALE*
ENGAGE%

• SLIDE:'ENGAGE'

G:'Let’s'start'with'the'first'E:'Engage.'

From'now'on'please'switch'in'the'student'mode…'

S"mette"in"azione"il"metronomo"a"40,"suono"2"e"tiene"vicino"il"microfono"per"far"
sentire"il"suono"a"tutti."

"

• SLIDE:'SYNCHRONIZE'THE'OSCILLATIONS!'

C:'This'is'the'starting'point'in'our'classroom'path.'So'we'now'act'like'you'were'
students…'I'partecipanti'vengono'invitati'a'sincronizzare'con'il'metronomo'il'loro'
pendolo.''

T=1.5s"da"cui"la"lunghezza"giusta"è"l="56"cm."I"nostri"pendoli"hanno"un"nodino"che"
non"si"vede,"ma"si"sente"al"tatto,"alla"lunghezza"giusta.""

B,%C,%G%e%%provano%tutti%con%il%loro%pendolino%uguale%a%quello%che%hanno%i%
partecipanti.%

'

C:'Io'l’ho'trovato!'E'voi?''

Andiamo"dai"workshopper…"confrontiamo"il"nostro"pendolo"con"quello"loro…"
Improvvisazione"

C:'Ci'riprovo!.'L’ho'trovato'di'nuovo…'Sono'una'maga?'No'ho'segnato'sul'mio'
pendolo'la'lunghezza'giusta!'Perché,'infatti'il'periodo'del'pendolo'dipende'solo'dalla'
sua'lunghezza!'

Utilizziamo''la'dipendenza'della'frequenza'dalla'lunghezza'per'farvi'vedere'
quest’altro'esperimento'da'mago…'

'

S:'Pendoli'a'forza'del'pensiero.'Improvvisazione.'Lei'mi'dica:'quale'pendolo'vuole'
che'faccia'oscillare'con'la'sola'forza'del'pensiero?...'E'lei?'

Raccomandiamo'di'effettuare'l’esperimento'con'l’attrezzo'alla'debita'distanza'dal'
corpo'perché'la'terza'pallina'potrebbe'essere'particolarmente'pericolosa'e'dolorosa.'

'

C:'Interrompendo"S.'Very'good'Marco.'Nice'demonstration…'

VVVVVVVV'
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!

OSCLILLAZIONI)VARIE)
G:!But!let’s!go!on,!now.!We’ll!show!you!some!different!periodic!motions.!We!ask!you!
to!try!to!memorize!them!well,!because!we’ll!need!them!later.!

Where!is!Sara?...!Sara!!Where!are!you.!Please!come!here,!you!we!need!you!now!!Va#
a#prendere#B.#B#riluttante#si#alza#e#va#

!

Please!shed!some!light!on!each!experiment,!use!the!halogen!lamp…!

C#spegne#un’alogena#l’alogena,#S#porge#l’altra#alogena#a#S#che#illumina#ogni#moto.##

#

• SLIDE:!compaiono,#illuminati#uno#dopo#l’altro!
ALTALENA!–!BOWL!AND!BALL!–!OSCILLATING!TRACK!–!BOUNCING!BALL!–!
PHYSICAL!PENDULUM!–!CICLOIDAL!PENDULUM!–!WALTENHOFEN!PENDULUM!
!

C:!Con#enfasi.#Let’s!start!with!the!seesaw!on!a!flat!pivot.!Please!Marco…!!

S:!CUBO#SeeWsaw!on!a!flat!large!pivot.!…#Blee#Bla…#

SeeWsaw!on!a!flat!small!pivot.!!

!

C:!An!now!the!seeWsaw!on!a!round!pivot!!

S:!ALTRO#CUBO!!

!

C:!And!now!another!type!of!motion!that!will!be!run!by!our!collegue!specialised!in…!!

B:!CATTEDRA!lascia#l’alogena#a#S#dice#pianissimo#the!bowl!(sollevandole)!and!
the!ball!!!

C:!Puoi!ripetere!per!favore?!

B:!sempre#pianissimo!the!bowl!and!the!ball.!

C.!Non!ho!sentito!bene…!

B:!Nell’orecchio#di#C!the!bowl!and!the!ball.!

C.!Ah!!Stentorea!the!bowl!and!the!ball!!

!

C:!An!oscillating!track!

G:!!CUBO#oscillating#track#Here!is!that!track#mostra#il#track#
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!

C:!And!now!an!experiment!that!students!like!very!much:!the!bouncing!ball!in!UV!!
con!torcia!UV!!

S:!Fa!l’esperimento.!Con!torcia!UV.!!!

!

C:!The!physical!pendulum!!

G:!CATTEDRA!physical!pendulum!

!

C:!Cicloidal!pendulum!!

S:!CATTEDRA!

!

C:!Waltenhofen!pendulum!!

G:!CUBO!Waltenhofen!poco!smorzato.!Mostra!com’è!fatto.!

!

!C:!MassEspring!oscillator!

! C:!CATTEDRA!

!

C:!And,!finally,!a!bouncing!disk!on!an!air!table.!We!have!a!video!for!that.!Fa!partire!il!
video!

VIDEO!BOUNCING!DISK.!

!

And!now:!all!together!!!

!

MUSICA!GENTLE!GIANT!Facciamo!partire!tutti!i!moti!insieme.!B!va!allo!sgabello!più!
defilato!sul!palco.!

!

S:!Dear!students,!we!are!studying!mechanics,!and!we!are!looking!for!a!way!of!
describing!these!oscillations.!Obviously!they!are!all!different,!each!one!is!particular.!
Nonetheless!they!have!some!common!points.!Try!to!classify!previous!motions!into!2!
or!3!categories,!putting!together!the!ones!that!you!believe!have!particular!
similarities!from!a!mechanical!point!of!view.!And!give!a!motivation!of!what!you!have!
done.!
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• SLIDE:''«DIVIDE'THE'JUST'SEEN'OSCILLATIONS'INTO'2'OR'3'CATEGORIES»'

77777777'

'

CATALOGAZIONE+STUDENTI+
Dopo$pochi$secondi:$Done?'Con$un$sorriso.$B$si$mette$in$silenzio$e$ferma$in$piedi$
poggiata$al$muro.$

Here'we'show'you'the'answers'you'gave'us…'

• SLIDE:'STUDENTS'ANSWERS'

77777777'

'

DESCRIVIAMO+LE+FORZE+
EXPLORE'

'

• SLIDE:'EXPLORE'

C:'And'now'comes'another'E:'we'are'in'the'Explore'phase'

'

C:'Con$gli$occhiali,$come$una$maestrina.$Every'way'of'grouping'can'make'sense.'But'
look…'you'(indicando$un$workshopper$muto)'have'written'that'a'bouncing'ball'is'
similar'to'a'bouncing'disk'because'they'are'both'bouncing!...'And'you'(indicando$un$
altro$workshopper$muto)'are'saying'that'you'would'put'I'the'same'group'the'
bouncing'ball'and'the'see7saw'on'the'large'flat'pivot'because'their'motion'is'
particularly'damped.'This'shows'how'difficult'it'is'to'look'at'things'from'a'physical'
perspective.'

• SLIDE:'' GUIDANCE:'«DESCRIBE'THE'FORCE'ACTING'IN'EACH'SYSTEM»'

'

G:'Now'let’s'think'all'together.'We'are'studying'mechanics,'right?'What'are'the'key'
concept'of'mechanics?'I’d'say:'forces'and'motion,'so'it'seems'to'me'probably'
meaningful'and'also'fruitful'to'look'at'the'forces'that'generate'previous'motions.'

Now'we’ll'have'a'very'qualitative'approach,'typical'of'an'exploration'phase.'

Let’s'begin'from'a'very'simple'motion.'

Sara…'You’re'the'only'one'of'us'able'to'make'a'readable'drawing,''you'now'that…'
So,'please,'pick'up'the'marker'and'go'to'the'paper'board.'

$
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Esperimento+dal+vero+++disegno+forza+su+lavagna+a+fogli.+B+è+alla+lavagna+a+fogli+a+
disegnare+le+forze+in+funzione+della+posizione.+Alla+fine+del+disegno+stacca+il+foglio+e+lo+
porge+a+chi+le+è+vicino+e+non+sta+facendo+l’esperimento+che+lo+posiziona+in+maniera+
che+sembri+casuale,+ma+che+poi+serva+alla+catalogazione+che+porta+al+moto+armonico.+

+

G:# Performs+mass?spring.+This#is#a#mass*spring#oscillator:#there’s#an#equilibrium#
position#here…#when#I#pull#downward,#the#force#acting#on#the#mass#pushes#
upwards.#And#if#I#push#the#mass#upward#the#total#force#is#acting#downwards,#
towards#the#equilibrium#position#

Mentre+G+descrive+l’esperimento+B+disegna+in+un+grafico+la+stessa+cosa,+quando+G+si+
volta+verso+B+…++

We#have#also#a#slide.##

• SLIDE#LOGGER#MASS*SPRING# #x#vs#t;#a#vs#x.##

It#shows#the#position#vs#time#and#the#acceleration#vs#position.#The#data#have#been#
taken#by#a#Logger#pro#sonar#system.#

!

C:## Performs++Pendolo.+

#

S:# Performs+Moon+ball+che+rimbalza.++

#

G:# Performs+Oscillating+circular+track.#Consider#a#little#piece#of#our#circle#put#on#
the#top…#The#details#are#very#complicated.#It’s#not#easy#to#choose#a#coordinate,#but#
look…#let’s#choose#a#vertical#axis.#Again:#there#is#an#equilibrium#position#and#if#I#push#
the#circle#upward#the#total#force#is#acting#downwards,#towards#the#equilibrium#
position.#On#the#contrary#if#a#pull#it#downwards#the#force#pushes#the#circle#up.#As#
before#with#the#mass*spring.#

!
• SLIDE+TRACKER+GUIDA+CIRCOLARE+OSCILLANTE+

+

This#is#an#artistic#video#made#by#a#very#peculiar#students#of#ours…#

!

S:#What#did#students#were#able#to#do#in#our#experimentations?#Here#are#some#
typical#plot#they#made#

• SLIDE:#DISEGNI#TIPICI#STUDENTI#F(X)#E#DIFFICOLTA’#
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S:#Commenta#la#slide#con#314#disegni#degli#studenti.#

11111111#

#

G:#Fa#il#gesto#di#suonare#il#gong#e#anche#il#rumore.#

!

COMMENT'PERCHE’'COINVOLGERE'GLI'STUDENTI'CON'F(X)'
• SLIDE:#WHY#INVOLVE#STUDENTS#WITH#THE#DIFFICULT#TASK#OF#FINDING#OUT#

F(X)?#
#

C:#Porre#l’attenzione#sulla#forza#che#agisce#in#ogni#oscillazione:#se#si#pone#
l’attenzione#sulla#F(x),#cioè#sulla#forza#F#in#funzione#della#posizione#x,#si#procede#in#un#
modo#che#è#del#tutto#anomalo#per#gli#studenti,#che#sanno#a#mala#pena#
rappresentare#le#grandezze#in#funzione#del#tempo#t.##

G:#It#is#indeed#very#difficult#for#students#to#draw#graphs#like#the#once#seen#before.#
But,#in#our#experience,#this#operation#increases#students’#ability#of#representing#and#
also#of#reading#graphs.#In#general,#not#only#previous#ones.#

Moreover#the#path#allows#to#recognise#the#anharmonicity#or#the#harmonicity#of#a#
motion#even#without#knowing#its#equation#of#motion#or#its#solution.#Even#without#
knowing#the#details#of#the#forces#involved.#As#for#the#small#oscillations#on#a#cycloid#
or#the#seesaw#on#a#round#pivot.#

Making#students#familiar#with#the#concept#of#a#force#depending#on#position#will#also#
make#it#easier#the#introduction#of#the#potential#energy#concept.#

11111111#

#

#

#

SPIEGAZIONE'MOTO'ARMONICO'

EXPLAIN!

!
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• SLIDE:'EXPLAIN'
'

C:'Let’s'pass'to'the'third'E:'the'Explain'

'

• SLIDE:'' THE'RESTORING'FORCE:'F(x)'='D'kx'
'

S:'Guardando(i(grafici(appesi(al(muro((

Now,'as'for'a'spell…'you'become'high'school'students'again.''

This'guided'procedure'we'showed'you,'allows'a'new'categorization'based'on'the'
analysis'of'the'forces'acting'on'each'oscillator,'some'oscillations'are'driven'by'a'
restoring'force.''

Let'us'suppose'that'the'resulting'force'on'our'moving'body'is'a'restoring'force,'that'
is'a'force'that'gives'rise'to'a'motion'with'a'stable'equilibrium'position.'Let'us'also'
use'the'curvilinear'coordinate's'to'make'our'description.'Let'the'zero'corresponding'
to'the'equilibrium'position.'In'this'case'the'graph'of'the'component'of'the'restoring'
force'along'the'trajectory''will'lies'in'the'second'and'in'the'fourth'quadrant.''

In'this'case'the'restoring'force'can'be'approximated'by'its'tangent'line'in'the'origin,'
provided'the'amplitude'of'oscillation'is'small'enough.'

• SLIDE:'Fs'='Dks;'(k'>'0)'

Therefore,'every'body'subjected'to'a'sufficiently'regular'restoring'force,'for'small'
amplitude'of'oscillation,'will'obey'the'same'equation'of'motion:'

F=4ks(

from'which'we'immediately'arrive'to'equation'

a=4k/m(s(

that'defines'harmonic'motion.''

From'which,'with'some'efforts'the'isochronism'follows.'

DDDDDDDD'

!

!

!

QUALE!E’!ARMONICO?!

G:'Which'of'the'following'oscillations'is'harmonic?'

!
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• SLIDE:'IS'THAT'OSCILLATION'HARMONIC?'

MUSICA'DA'TENSIONE'

'

S:'Domanda:'E’'armonico'o'no?'Alzate'la'mano.'

Improvvisazione.'Moti'armonici'e'non,'facili'da'riconoscere'tranne'uno…'

'

C:'Performs.'Pendolo'cicloidale.''

Sara'please…'

'

B:'Performs.'The'bowl'and'the'ball'poi'torna'al'muro'

'

G:'Performs.'Slinky'

'

S:'Performs.'Tubo'a'U'con'acqua'

'

C:'Performs.'Cicloide'e'isocronismo'

'

G:'Pendolo'di'Galileo'(si'spera'che'tutti'sbaglino).'

MMMMMMMM'

'

G:'Fa'il'gesto'di'suonare'il'gong'e'anche'il'rumore.'

'

COMMENTO'
EXTEND&

• SLIDE:'EXTEND'
'

C:'Now'comes'the'moment'for'the'fourth'E:'Extend.'

'

COMMENT'

C:'The'first'goal'is'to'make'students'able'to'recognize'if'a'motion'is'harmonic'or'not'
even'without'knowing'the'exact'expression'of'the'acting'forces,'but'simply'by'
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watching)the)oscillations)and)sometimes)by)listening)to)the)sound)generated)by)the)
oscillations)themselves.))

Later)we)will)also)discuss)the)role)of)the)damping)in)relation)to)the)concepts)of)
anharmonicity/harmonicity.)

)

S:)Let)us)consider)a)one)degree)of)freedom)system)subject)to)a)restoring)force.)As)
already)said)the)s>component)of)the)restoring)force,)Fs,)vs)s)lies)in)the)second)and)in)
the)fourth)quadrant.))

We)would)like)to)stress)that)the)harmonic)motion)defined)above)is)not)necessarily)
rectilinear,)as)s))is)a)curvilinear)coordinate)(for)instance,)the)ends)of)a)torsional)
pendulum)describe)an)arc)of)circumference)performing)harmonic)oscillations)over)a)
wide)range)of)angles).)It)is)also)important)to)emphasize)that)Fs)))must)not)be)
confused)with)the)intensity)of)the)total)acting)force,)but)it)is)only)its)component)
along)the)direction)of)motion.)This)is)a)conceptual)aspect)for)which)particular)care)is)
needed)in)describing)motions)on)curved)trajectories.)In)fact,)in)these)cases,)the)
resultant)force)is)different)from)zero)even)in)the)equilibrium)position,)because)the)
contribution)of)the)centripetal)component)has)generally)to)be)considered;)while,)on)
the)contrary)Fs)))is,)indeed,)null.)

In)conclusion,)the)path)towards)the)previous)definition)leads)us)to)say)that)the)small)
oscillations)of)a)one)degree)of)freedom)system)are)harmonic)if)in)s=0)

• SLIDE:)4>POINT)CRITERION))

1. There)is)a)stable)equilibrium)point)

2. The)function)F(x))is)continuous)
3. The)function)F(x))is)differentiable)
4. F’(0))≠)0)

)

(a))there)is)a)stable)equilibrium)point;))

(b))the)function)Fs))is)continuous;)

(c))the)function)Fs))is)differentiable;)(d))d)Fs/ds)different)from)0.)

)

Obviously,)condition)(c))implies)condition)(b).)Nevertheless)we)believe)that,)from)a)
didactical)point)of)view,)keeping)these)conditions)separate)allows)a)clearer)
comprehension)of)the)physics)involved.))

These)point)have)been)written)for)teachers.)For)students)they)must)be)simplified…)
That)is)we)can)draw)one)and)only)one)tangent)line)in)zero.)
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!!!!!!!!"

!

ARMONICO!O!NO?!
!

G:"And"now"let’s"use"our"four"point"criterion"to"detect"harmonicity/an!harmonicity."

Is"the"bouncing"disk"harmonic"or"not?"!

"
• SLIDE:"BOUNCING"DISK"

"
"
"
"
"
"
"
"
"
"

!

!

G:"No,"because"there"is"not"a"stable"equilibrium"point."

!

!

!

!

!

!

"

• SLIDE:"GALILEO"OSCILLATOR"

(

(

(

(
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!!!
C:!F(s)!is!not!continuous!

!

• SLIDE:!THE!INTERRUPTED!PENDULUM!

!

!

!

!

!

! !

!S:!Performs.!Interrupted!pendulum.!

F(x)!is!not!differentiable.!

For!what!concerns!the!period!we!have!T12!=!T1/2!+!T2/2.!Therefore!the!motion!is!
isochronous,!nonetheless!it!is!not!harmonic.!The!FFT!shows!it!clearly.!!

• SLIDE!FFT!PENDOLO!INTERROTTO!

!

MUSICA.TARTINI.

.

G:!And!now!a!very!subtle!example:!the!case!when!only!the!condition!(d)!of!our!fourR
point!criterion!is!not!satisfied,!that!is!when!!

F’(s=0)=0!

In!this!situation!the!potential!energy!goes!as!s4.!The!small!oscillations!are!as!those!of!
a!ball!on!this!track!with!a!X4!profile.!!

You!have!your!one!in!the!kit!back.!You!can!take!it!out!and!play!with!us.!

Let’s!see!what!happens.!

Near!the!equilibrium!point!the!track!is!nearly!flat!and!the!motion!is!nearly!a!uniform!
motion!!Small!oscillations!are!difficult!to!see.!

(
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Nonetheless)when)the)amplitude)is)enough)we)can)see)that)the)motion)is)not)
isochronous.)

In)fact,)as)Sara)will)show)you)in)a)moment,))

B"va"a"nascondersi"sotto"la"cattedra"
if)A)is)the)amplitude)of)oscillation,)it)can)be)demonstrated)that)the)period)of)
oscillation)T)in)proportional)to)1/A!)

Sara?...)ok,)I’ll)show)you…)

)

B"va"a"nascondersi"sotto"la"cattedra"

!

• SLIDE)PAPER)X4)CON)CALCOLO)DEL)PERIODO)
)

G:)What)I’ve)just)said)is)true)only)if)you)can)distinguish,)if)your)detector)can)
distinguish.))

If)you)can)detect)the)non)differentiability)of)the)force)vs)position)then…)ok!)But)if)
you)are)not)able,)as)it)might)be)in)the)case)of)an)interrupted)pendulum)with)very)
similar)length…)you)wouldn’t)detect)anarmonicity)

The)same)is)here:)if)your)x4)track)is)indistinguishable)from)an)x2)track,)then)the)small)
oscillations)will)appear)to)you)all)harmonic.)

All)depends)on)what)your)eyes)can)see.)And)the)eyes)can)see)only)what)the)mind)is)
prepared)to)accept…)

It)has)been)probably)a)fortune)that)Galileo)had)not)a)precise)chronometer)otherwise)
probably)he)would)never)be))able)discover)the)isochronism)of)the)pendulum…)

Most)of)physics)is)a)delicate)balance)of)seeing)in)depth)and)of)seeing)from)a)large)
perspective…)

)

VVVVVVVV)

)

DAMPING!
G:)Fa"il"gesto"di"suonare"il"gong"e"anche"il"rumore."

)

COMMENTO!
)
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COMMENT'

C:#And#now#something#about#damping.#In#fact#maybe#you#remember#that#some#
students#divided#the#motions#in#different#categories#depending#and#how#evident#the#
damping#was…#

#

•# SLIDE:#DAMPING#

C:#In#additions#to#the#conditions#previously#discussed,#a#useful#way#to#recognize#
anharmonicity#is#to#find#an#amplitude#dependence#of#the#period#of#oscillation.#Since#
real#motions#are#always#damped,#we#have#to#exclude#that#this#dependence#comes#
from#damping,#instead#of#being#due#to#an#intrinsic#anharmonicity.#

#

C:# Pendolo#di#Waltenhofen#descrivere#lo#smorzamento#

JJJJJJJJ#

#

DISCO'DI'EULERO'
#

G:'And'now'the'Euler'disk…!'

JJJJJJJJ#

#

RISULTATI'SPERIMENTAZIONE'
EVALUATE'

'

• SLIDE:#EVALUATE#
#

S:#Finally#the#last#E:#the#Evaluate#phase#

#

• SLIDE:# RISULTATI#SPERIMENTAZIONE#TEST#FINALE#SULLA#
CLASSIFICAZIONE#DEI#MOTI.#

JJJJJJJJ#

#

'

'
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!

Parte&II:&MODI&NORMALI&
&

PENDOLI&MULTIPLI&E&PENDOLI&ACCOPPIATI&
ENGAGE%

C:!Now!we!can!start!with!a!synthesis!of!a!new!complete!cycle!of!Es.!Let’s!begin!with!
the!Engage.!

• SLIDE:!ENGAGE!

!

C:!Let’s!have!a!look!at!this!different!kind!of!structures.!

!

S:!Sara?!Where!are!you?!Sara,!do!you!remember?!We!need!you,!please.!

Come!out!of!the!table!!What!are!you!doing!there?!!

B!esce!da!sotto!la!cattedra.!

Vengono!fatte!oscillare!due!strutture!di!pendoli!!

MUSICA!TARTINI!

!

S:!3!pendoli!accoppiati!

!

B:!Pendoli!multipli!

!

C:!Con!n!oscillatori!emergono!comunque!moti!collettivi,!ma!c’è!differenza?!

NNNNNNNN!

!

ISOLIAMO&DUE&PENDOLI&
EXPLORE%

G:!Let’s!Explore!in!more!details!

!

• SLIDE:! EXPLORE!
!
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In#un#caso#c’è#accoppiamento#nell’altro#no.#Per#far#vedere#questo#un#oscillatore#deve#
essere#evidenziato#(con#plastilina#fluorescente#in#UV).#Così#si#vede#che#sono#diversi.##

B#performs#prima#pendoli#multipli#poi#pendoli#accoppiati#

• SLIDE&PRESA&DATI&E&FFT.&

G:&let’s&concentrate&on&just&one&oscillator&at&a&time.&We’ll&do&this&by&marking&one&

oscillator&with&fluorescent&plastilina.&

You&see?&When&the&pendulums&are&not&coupled&the&oscillation&is&harmonic.&While&in&

the&other&it&is&not.&

Why?&Because&in&the&latter&case&there&is&not&a&fixed&equilibrium&point.&In&fact&we&

have&an&equilibrium&point&when&the&spring&is&not&stretched.&And,&during&the&motion,&

this&happens&in&this&position,…&or&this&other&position&and&so&on…&

OOOOOOOO&

&

2,#3#N#MODI#NORMALI#SU#PENDOLI#E#MASSE1MOLLE#
S:&E’&possibile&il&moto&armonico&quando&gli&oscillatori&sono&accoppiati?&Vediamo&

Si#mettono#in#oscillazione#prima#due#pendoli#poi#tre…#i#tre#pendoli#nel#primo#e#nel#
secondo#modo#normale.#Così#si#muovono#di#moto#armonico.#Una#presa#dati#mostra#
che#questi#moti#particolari#avvengono#a#frequenza#fissata,#indipendentemente#
dall’ampiezza#dell’oscillazione.#

Sono&le&uniche&due&possibilità?&Al#pubblico&voi&che&ne&dite?&

G:&Marco!&Try&to&study&this&thing&in&a&more&systematic&way!&

B:&4&masseOmolla&gradualmente#aumenta#la#frequenza.##

S:&Andiamo&a&guardare&se&la&cosa&vale&anche&per&altri&sistemi&di&oscillatori&accoppiati:&

il&sistema&di&4&masse&accoppiate&con&molle&identiche.&Se&queste&oscillazioni&

particolari&avvengono&a&frequenze&fissate&ci&chiediamo&cosa&avviene&sollecitando&

dall’esterno&il&sistema&con&frequenza&variabile.&Prima&di&farlo&proviamo&a&chiedere&al&

pubblico&se&si&aspetta&di&osservare&configurazioni&di&moto&particolari&del&tipo&di&

quelle&viste&con&i&pendoli,&quante&possono&essere&e&come&sono&fatte.&

#

Masse&molle.&Qual&è&il&terzo&modo&normale&o&il&quarto&ecc.&

Primo#modo#è#semplice#e#il#secondo#qual#è?#qual#è#il#terzo?#Difficile#vero?#Fra#poco#
capiremo#come#fare#

&

C:&Gioco&su&come&sono&i&modi&più&alti&con&il&pubblico&&
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Come%sono?%Lo%vedremo%dopo…%

////////%

%

EXPLAIN(DEI(MODI(NORMALI(
EXPLAIN(

%

S:%Sistema%per%risolvere%i%modi%normali%2X2.%

Sistema%ortonormale%

Disegnino%

%

C:#VIDEO#Enrico#e#trackeraggio##

Come%si%muove%il%centro%di%massa?%Chiede#al#pubblico.#Improvvisazione#

%

G:%Shive#machine%

%

S:%Corda%

Spiegazione%di%come%trovare%l’n/esimo%modo%normale%

////////%

%

MULTIRAPPRESENTAZIONI(
COMMENT(

S:% Importanza% delle%multi/rappresentazioni:% grafiche,% algebriche,%
sperimentali,%iconiche,%ecc.%
////////%
%

PIASTRE(DI(CHLADNI(
S:%Piastre%di%Chladni%

////////%

%

MODI(ACCOPPIATI(
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EXTEND&

Modi%accoppiati,%%

G:%guida%circolare%con%pallina%

33333333%

%

PERCHE’%PARLARE%DI%MODI%NORMALI%NELLA%SCUOLA%

COMMENT%

G:%comincia'piano'poi'delira…%

I%wander:%can%you%really%have%a%happy%life%without%normal%modes?%I%believe%no,%you%
cannot.%Every%time%I%look%at%things%I%cannot%help%but%seeing%a%large%amount%of%normal%
modes%all%in%action.%%

They%are%in%the%small%ripples%of%the%water%in%the%harbour.%

They%are%in%motion%of%the%curtain%cord.%

They%are%in%every%sound%we%listen,%in%every%music.%

They% are% at% the% heart% of% quantum% physics:% what% but% normal% modes% of% vector%
potential%are%the%photons?!%

And% maybe% that’s% why% our% universe% has% chosen% the% basis% of% normal% modes% in%
refracting%prisms%that%produce%the%rainbow.%

The%Klein%Gordon%equation%contains%a%harmonic%term…%

What,%if%not%an%expansion%in%a%Fourier%series%is%the%Ptolemaic%system%%

&
&
&
&
tutto%è%combinazione%di%(pochi)%modi%normali%

Marco%G:%%la%natura%sceglie%la%base%dei%modi%normali%(un%prisma%li%sceglie).%Il%sistema%
Tolemaico%è%uno%sviluppo%in%serie%di%Fourier.%L’equazione%di%KG%contiene%un%termine%
armonico.% La% fisica% nasce% con% l’acustica,% nutria% dei% modi% normali.% I% modi& normali%
sono%moti%armonici%speciali%nello%spazio%delle%configurazioni.%

Un% possibile% spunto% teatrale:% scena% del% pendolo% di% 1m% che% oscilla% e% il% suo%
collegamento%con%l’accelerazione%di%gravità%g%(pigreco2=g)%

%
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C:#va#a#bloccare#G…#

Va#bene#è#proprio#ora,#siamo#giunti#alla#fine#del#nostro#percorso#

#

MUSICA#BOOGIE#

#

C,#G,#S#cominciano#a#mettersi#in#posizione#di#saluto.#B#comincia#a#ballare…#

#

Saluti#e#ringraziamenti!
#
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