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CHAPTER 1
Introduction

Neutron stars are surely one of the most interesting astronomical objects: in no other
place of the observable universe, in fact, matter is so compressed that the density
reaches and overcomes the nuclear saturation value. This is a such extreme condition
that in no terrestrial laboratory we can directly reproduce it in order to study its
properties. Neutron stars are therefore a very fascinating research field that can bring
us to a deeper understanding of this exotic matter, by modeling the observations of
peculiar phenomena related to these stars. In this work we focus on the pulsar glitches,
which are rapid jumps in the rotation velocity of the star. Even if pulsars are known to
be very stable clocks, many of them show sudden increase in their spin frequency that
are instantaneous to the accuracy of the data.

To date several hundreds of glitches have been detected, with relative increases
in the spin frequency ν that range from as low as ∆ν/ν≈ 10−11 to ∆ν/ν≈ 10−5. In
particular a class of pulsars, of which the Vela pulsar is the prototype, exhibit what are
known as “giant” glitches (Espinoza et al., 2011), large steps in the spin frequency
(∆ν/ν ≈ 10−6) which are accompanied by an increase in the spindown rate ν̇ and
exhibit a rough periodicity in their recurrence rate (for example giant glitches in the
Vela occur roughly every three years).

Shortly after the first glitches were observed it was suggested that they could be
due to a superfluid component in the stellar interior, weakly coupled to the normal
component and to the electromagnetic emission, that could store angular momentum
and then release it catastrophically, giving rise to a glitch (Baym et al., 1969; Anderson
and Itoh, 1975; Alpar, 1977; Alpar et al., 1984b). Large scale superfluid components
are, in fact, expected in neutron star interiors on theoretical grounds. The qualitative
picture can be explained by considering that a superfluid rotates by forming an array of
quantized vortexes which carry the circulation of the fluid. In the NS crust the vortexes
can be strongly attracted, “pinned”, to the nuclear lattice (Pines et al., 1980; Anderson
et al., 1982) and cannot move outward. If the superfluid cannot remove vortexes it
cannot spin down and it therefore acts as an angular momentum reservoir. As the crust
spins down due to electromagnetic emission a lag will develop between the superfluid
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2 Chapter 1. Introduction

and the normal component, leading to a hydrodynamical lift force (Magnus force)
acting on the vortexes. Eventually when the lag reaches a critical value the pinning
force will no longer be able to contrast the hydrodynamical lift and the vortexes will
unpin, transferring their angular momentum to the crust and giving rise to a glitch.

Although there is some evidence that smaller glitches in young active pulsars (like
Crab) may be related to crust quakes, there is a growing consensus that the basic
idea outlined above can be used to describe the main features of pulsar glitches. In
this work we want to propose models which implement the superfluid framework
realistically in order to reproduce the physical observable parameters of the event.

The picture outlined above indicates that the problem must be faced by merging
results which come from the microphysics point of view into a more macroscopic
simulation. Our research has been developed in parallel on these complementary
aspects and the structure of the thesis reflects this approach. After the introductory
Chapter 2, where we review the background concepts on which the models are built
(superfluidity, hydrostatic equilibrium, TOV integration, stellar structure, entrainment),
contents are divided in three main parts, described here.

Part I The first part of the thesis is focused on the microphysical ingredients of the
problem, in particular on the pinning interaction. One of the main difficulties
in performing calculations about glitches is the relative scarcity of realistic
estimate of the pinning force between vortexes and nuclei, addressed on the
mesoscopic scale. Although some authors have performed realistic calculations
of the interaction between a vortex and a single nucleus of the lattice, the
evaluation of the pinning force per unit length haven’t been tackled deeply, and
some work is required to fill this gap. In this part we propose our averaging
procedure that allow us to move from the pinning per site towards the force over
the whole vortex, which is the relevant quantity of the superfluid models. We
call this approach “mesoscopic” because it’s the fundamental bridge which brings
our knowledge about nuclear physics into a macroscopic model of glitches.

Chapter 3 In this chapter we use the vortex–site interaction results of Donati
and Pizzochero (2004, 2006) to propose the first realistic estimate of the
pinning force per unit length in the inner crust of a neutron star. We take
into account all possible vortex–lattice orientations and we obtain a force
fcrust ∼ 1015 dyn/cm, nearly two orders of magnitude less than previous
naive estimates.

Chapter 4 If protons in the interior of NS are in a type II superconducting
state, an interaction between magnetic flux tubes and rotational vortexes
is possible and must be estimated (in case of type I superconductivity the
interactions are much weaker). The same qualitative approach used for
the crust is adopted also in this chapter to perform a calculation of the
pinning interaction per unit length in the core of a neutron star. Our results
indicate that even if the superconductivity is of type II, the interaction
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between vortexes and flux tubes will be significantly weaker than in the
crust, because the force per unit length is fcore ∼ 1012–1013 dyn/cm.

Part II The second part of the thesis is focused on static models of pulsar glitches,
in particular the snowplow model. The pinning profiles of chapter 3 are im-
plemented, together with spherical geometry and realistic background, in a
macroscopic model that provides interesting hints about the interior of neutron
stars.

Chapter 5 In this chapter the snowplow model of Pizzochero (2011) is imple-
mented using realistic equations of state and therefore realistic density
profiles for the pulsars. In this chapter we don’t consider a pinning inter-
action in the core, thanks to the results of chapter 4. The main goal is to
reproduce the typical order of magnitude of the observable quantities that
are relevant in a giant glitch. The model described naturally explains the
angular momentum storing mechanism that is responsible of the glitch,
with minimal assumptions on the dynamic of vortexes. We find that the
results are in agreement with observations and support the outcome of
chapter 3 ( fcrust ∼ 1015 dyn/cm).

Chapter 6 Even if the results of chapter 4 indicates that the pinning in the core
of a pulsar is negligible, in this chapter we try to estimate with the snowplow
model (with realistic physical inputs) what happens if a variable fraction
of vorticity is blocked in the core by a strong pinning–like interaction. By
comparing the results of the model with the observational data of the
Vela 2000 glitch (step in frequency and in frequency derivative), we have
constrained the pinned fraction of the core superfluid. Our conclusion is
that both quantities cannot be fitted if a considerable fraction of vorticity is
blocked: this means that either most of the core is a type I superconductor
or the vortex/flux–tube interaction is very weak, in agreement with the
mesoscopic result of chapter 4.

Chapter 7 Although there is still considerable debate on the real nature of the
“trigger” of a glitch and several mechanisms have been proposed, we can
anyway use the snowplow model to evaluate the amount of the angular
momentum exchange as a function of the interglitch time between two
events. By including also the entrainment in our calculations, this approach
let us to fit well the observational data and infer the masses of the most
frequent glitching stars. The model proposed in this chapter gives a unified
description of the glitch phenomenon both for small and large glitchers and
indicates an interesting correlation between mass and glitching strength.

Part III The last part of the thesis is focused on the development of dynamical model
which can follow the whole time evolution of this phenomenon. We implement
the multi–fluids formalism developed by Prix (2004); Andersson and Comer
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(2006) in a consistent computer code, following the same approach of Haskell
et al. (2012c), but using also realistic equations of state and the pinning profiles
obtained in chapter 3. Moreover the entrainment effect is fully included in
the model together with the most realistic benchmarks for the mutual friction
between the components.

Chapter 8 In this chapter we derive the required formalism and describe in
detail all physical ingredients of the model, like pinning, drag forces and
entrainment, and how these inputs are encoded in the simulations.

Chapter 9 The results of the simulations are presented in this last chapter. The
model allows us to study both the rise of a glitch and the recovery phase
and analyze the dependency of these behaviors on the drag parameters
used in the calculation. We perform a parameter study for the relevant
physical quantities in order to understand more deeply all the aspects of
this phenomenon. We also compare our simulations with the observational
data of the frequent glitchers in order to estimate the masses of the pulsars.
It’s noteworthy the fact that the results are in good agreement with the ones
of chapter 7, showing again the same mass–glitching strength relation.



CHAPTER 2
Background concepts for
superfluid glitch models

Neutron stars are commonly classified by the modern astrophysics as “compact object”
for their exceptional density. If we look at the macroscopic characteristics we can
immediately understand how strange these stars are. A typical neutron star in fact
has a mass of the order of (1÷2)M� but its radius is 105 times smaller (only about
10km): this results in a very high central density that overcomes the value of the
nuclear density ρ0 = 2.8g cm−3, unreachable in any other place of the universe.

To construct models of pulsar glitches we must know the properties of matter
at these densities: in other words we must have a valid equation of state that can
be integrated to obtain the density profile inside the star. The high density is also
responsible of the presence of superfluid matter inside the core of the star: this fact is
very important for us because in this work we will focus on models that use precisely
the superfluidity to explain the glitch phenomenon.

2.1 Neutron stars formation

The formation of a NS can be considered the last step of the entire evolution of a
normal star that begins with its formation from a gas cloud. If the mass of this gas
reaches a critical value, the conditions for the existence of a self–gravitating object
are satisfied and the protostar begins its life. The Big Bang has produced a universe
composed mainly by hydrogen (75%) and helium (25%) so we can consider that the
cloud has the same composition. We have

EG = −
GM2

R
EK =

3
2

NkbT (2.1)

where EG is the gravitational energy of the cloud and EK is the kinetic energy (assuming
an ideal gas). In these equations M is the total mass involved in the process, R its

5
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GAS CLOUD

MAIN SEQUENCE STAR

RED GIANT

FUSION OF HEAVY ELEMENTSSUPERNOVAE

BROWN DWARF

WHITE DWARF

BLACK HOLE
NEUTRON STAR

M < 0.085 M�

M < 0.5M�

M < 8 M�

Figure 2.1: Diagram of the typical stellar evolution: the initial mass controls the entire life of
a star. The neutron star is a possible final phase if the core mass is below of the critical value
for the black hole collapse.

radius and T the temperature. The crucial condition for the star formation is that
|EG|> EK that lead us to the following critical values:

M > MJ ≡
3kbTR
2Gm

(2.2)

R< RJ ≡
2GmM

3kb
(2.3)

ρ > ρJ ≡
3

4πM2

�

3kbT
2Gm

�2

(2.4)

These values are commonly know as the Jeans’ mass, radius and density.
If these conditions are met, there is a first phase of free collapse due to the fact that

the loss in gravitational energy is used in the dissociation of the hydrogen molecules
(H2 + γ→ H + H) and in the following ionization of the atoms (H + γ→ H+ + e−).
When the hydrogen is totally ionized, the hydrostatic equilibrium condition is reached
and the protostar phase is completed. If the involved mass if above the threshold of
0.08M� the internal temperature of the object (which increase during the collapse)
is enough to trigger nuclear fusion reactions. The longer phase of the life of the star
begins now, and it’s characterized by the conversion of hydrogen in helium: the star is
said to be in “main sequence”. When the core exhausts the reservoir of hydrogen, the
star begins to evolve in order to restore the equilibrium: the outer envelope expands,
while the inner part compresses as a consequence of the reduction of the rate of nuclear
reaction; therefore the temperature rise triggers the fusion of helium in heavier nuclei
bringing the star into a new burning phase. The whole life of the star is determined by
the initial mass: if it’s above the threshold of ≈ 8M� the process repeats several times,
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using each time the product of the previous phase, until the core of the star is made
up of iron (if the initial mass is below the threshold, the star becomes a white dwarf,
sustained by the electron degeneracy pressure). At this point, no nuclear reaction is
energetically favorable and the core collapses in a hot, dense, neutron rich sphere of
about 30 km, thanks to a fast neutronization process which produces a very high flux
of neutrinos. This collapse is eventually halted by the short range nuclear force, while
the outer parts of the star are involved in the process known as supernovae explosion.

Neutron stars are one possible end point of this evolution, when the remaining
core is not too massive to overcome the neutron degeneracy pressure and becoming a
black hole. This threshold is Mmax and is about 2M�; we will discuss this aspect later.
The process described explains the name given to these objects: thanks to the inverse
β–reactions most of protons and electrons are transformed in neutrons which form a
high density degenerate gas.

2.2 Stellar structure

In this work we are interested in the glitch phenomenon that schematically is the
exchange of angular momentum between the superfluid part of the star and the normal
one (this aspect will be covered deeply later, see section 2.3). Is therefore important
to calculate precisely the moment of inertia of the star and the distribution of matter
(normal and superfluid) inside the compact object: in other words we must know the
stellar structure.

The first step is to consider the hydrostatic equilibrium of the star. A neutron star
doesn’t collapse on itself and this means that exists a balance between the pressure and
the gravitational force, in every point on the star. If we look at the figure section 2.2
we can see that a generic dV element at distance r from the center is subjected to a
gravitational acceleration that can be written as

g(r) =
G
r2

∫ r

0

4πr ′2ρ(r ′)dr ′ (2.5)

due to the fact that, for the Gauss theorem, the gravitational attraction in spherical
symmetry at distance r is given only by the enclosed mass; here in fact ρ(r) is the
matter density. On the other hand, the force consequent to the pressure P acting of
the element is

Fp(r) = P(r + dr)dA− P(r)dA= dA
�

dP
dr

�

=
dP
dr

dV (2.6)

that produce an acceleration

ap(r) =
dP
dr

dV
dm
=

1
ρ(r)

dP
dr

(2.7)
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Figure 2.2: Schematic representation of the
forces involved in the hydrostatic equilib-
rium: the gravitational force is balanced by
the pressure inside the star.

r

P(r)
Fg

P(r + dr)

dr

The condition that the resulting force must be null leads us to the equation of the
hydrostatic equilibrium in the newtonian case:

dP
dr
(r) = −ρ(r)

Gm(r)
r2

(2.8)

2.2.1 TOV equations

Until now we have ignored the relativistic effects on the gravitational force. Anyway
for a neutron star GM/R ≈ 0.2c2 and therefore these aspects must be taken into
account. A full relativistic analysis of the hydrostatic equilibrium has been done by
Tollman, Oppenheimer and Volkoff with the following set of equations (known as the
TOV equations):

dm(r)
dr

= 4πr2ρ(r) (2.9)

dφ(r)
dr

=
�

Gm(r)
r2

+ 4πGr
P(r)
c2

��

1−
2Gm(r)

c2r

�−1

(2.10)

dP(r)
dr

= −
�

ρ(r) +
P(r)
c2

�

dφ
dr

, (2.11)

where m(r) is the mass contained in a sphere of radius r, ρ(r) is the density profile and
P(r) is the pressure. As already said, these differential equations model the hydrostatic
equilibrium inside the star with relativistic approach and, of course, require the P(ρ(r))
function. The last two equations can be combined in one that gives an expression
for the mass and pressure derivatives and the system can be solved with valid initial
conditions. We obtain the functions that describe the star with the fourth–order Runge–
Kutta method, starting at r = 0 with m(0) = 0 and ρ(0) = ρc , for a valid choice of the
central density ρc . The integration stops when we reach the condition ρ(R) = 10−8ρc
and we take R as the radius of the star. Of course the mass of the star is M = m(R).
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Figure 2.3: Mass–radius relation for different equations of state. Each EoS implies a precise
value of the maximum mass for a neutron star. In this work we will consider SLy (moderate)
and the stiffer GM1. References for the other EoSs can be found at http://www.gravity.
phys.uwm.edu/rns/source/eos/

2.2.2 EoS and integration of TOV equations

The function P(ρ(r)) is called the equation of state (EoS) because is the relation
between pressure and density and it is therefore linked to the microphysic at the
typical densities of a NS. The formulation of a realistic EoS is a very challenging task,
especially at so high densities: we cannot conduct an experiment to measure the
pressure for such values of ρ. This means that an EoS is the result of a theoretical
model about the microscopic nature of matter and depends strongly on the assumptions
used. In literature there are many EoS and each one results in a different mass–radius
M(R) relation as we can see in fig. 2.3 This figure clearly identifies also the presence
of a limit for the mass for a neutron star. The existence of a maximum mass Mmax is
an effect of the relativistic nature of the TOV equations, where pressure contributes to
the gravitational field: above the critical value, the pressure required to contrast the
collapse increases, in turn, the field and the object became a black hole (moreover
the EoS can’t violate causality requirement, as showed by the upper shaded region
of fig. 2.3: the speed of sound must be less then the speed of light). Of course Mmax
depends on the EoS: a stiffer equation of state gives a higher Mmax. The evidence of
the existence of a 2 M� neutron star (Demorest et al., 2010) allows, in fact, to reject
soft equations of state that predict a maximum mass below this value. The fig. 2.3

http://www.gravity.phys.uwm.edu/rns/source/eos/
http://www.gravity.phys.uwm.edu/rns/source/eos/
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Figure 2.4: This plot shows the mass–central density relation for the EoSs considered. As
expected, we find a maximum mass value above 2 M� for each equation of state (see table 2.1).

indicates that there is a minimum mass for a neutron star (lower shaded region):
below this limit the gravitational attraction is not enough to resist to the centrifugal
force.
Therefore we have decided to use these two different EoSs:

1. SLy (Douchin and Haensel, 2001) is a moderate EoS, based on a non–relativistic
parametrisation; this equation describes the whole star with a single analytical
expression and so it is more convenient to integrate;

2. GM1 by Glendenning and Moszkowski (1991) is a stiff P(ρ) relation that is very
similar to SLy in the crust of star, but not in the core due to different microscopic
approach used to describe hadrons at densities higher than ρ0.

The fig. 2.4 shows the relation between the central density chosen as the initial
condition for the TOV integration and the resulting final mass, showing again the
existence of a limit mass Mmax (see table 2.1 for numerical details). Considering two
stars with the same total mass M , we can see in fig. 2.5 how the choice EoS affect the
resulting star obtained after the TOV integration: the stiffer EoS (GM1) requires a
lower central density and produce a larger radius. In this work we consider stars with
masses from 1M� to Mmax.

The interior of a neutron star can be divided in three shell shaped regions, each
one characterized by a different composition. The outermost layer is called the outer
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Figure 2.5: This plot shows the result of the TOV integration performed with SLy and GM1
in order to obtain a star of 1.4M�. We can see how the stiffness of the EoS controls the
dependency on the radius r of the density ρ, the pressure P and the contained mass m.

Table 2.1: This table shows, for each EoS, the maximum allowed mass with the corresponding
central density ρc (in units of nuclear saturation density ρ0), radius of the star R, radius of
the core Rc and radius of the inner crust Ric.

EoS ρc M R Rc Ric
(ρ0) (M�) (km) (km) (km)

SLy 10.2 2.04 9.98 9.68 9.86
GM1 7.1 2.35 11.98 11.57 11.82
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crust and it’s composed mainly by iron and heavier nuclei which are arranged in a
BCC lattice (the electrons form a degenerate gas); the Coulomb interaction between
sites is very strong and this results in a very rigid crust, with thickness of ® 1 km.
In this region matter is neutron–rich thanks to the inverse β–decay, but it’s still in
normal state because the density is not enough to produce superfluid condensates.
The EoSs in this layer are constructed by taking into account the contributions to the
total energy density that come from the electrons, lattice structure and of course the
nuclei. This last term is generally based on the standard “liquid drop model”.

The outer crust ends at the neutron drip density point ρd ≈ 4× 1011 g/cm3. Above
this point the nuclei become unstable and release free neutrons: the BCC lattice is
therefore immersed in a degenerate neutron superfluid. This region is the inner crust
(≈ 1 km thick) in which coexists matter in normal and superfluid state. The model
used for the outer crust to describe matter must be improved to consider this particular
condition: the energy density expression gains another term to encompass the free
neutron gas and for the nuclei the “compressible liquid drop model” is adopted (this
approach takes into account the influence of the increase of density).

When the density approaches the nuclear saturation value ρ0 ≈ 2.8× 1014 g/cm3,
nuclei dissolve gradually in a homogeneous n–p–e gas. This transition phase is called
“pasta phase” (because nuclei are deformed away from the spherical geometry) and it
marks the beginning of the core, which contains most of the matter of the neutron star.
In the inner part of the core, where density is highly above the saturation point, more
exotic forms of matter are possible, like pions, hyperons and maybe even deconfined
quarks: this is the most unknown region and all these considerations explain why it’s
difficult to describe precisely matter at so high density and why so many different
EoSs has been proposed.

Thanks to the TOV integration, we obtain the density profile ρ(r) and therefore
it is possible to identify, for each star, the structural regions that are relevant for our
models. In particular we calculate the radius of the core Rc as the distance from the
center of the star where ρcore = ρ(Rc) = 0.5ρ0 (we fix ρ0 = 2.8g/cm3); the inner
crust–outer crust interface Ric corresponds, on the other hand, to the density value
ρd = 0.0015ρ0 that is the neutron drip point. It is easy also to calculate the moment
of inertia of a shell delimited by radii r1 and r2:

I(r1, r2) =
8π
3

∫ r2

r1

r4ρ(r) dr. (2.12)

We can then calculate also the moment of inertia of every region, considering that
Icore = I(0, Rc), Iic = I(Rc , Ric) and Ioc = I(Ric, R).

Table 2.2 shows all the relevant parameters for the considered stars, obtained from
the integration of the TOV equations with SLy and GM1.
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Table 2.2: We give all the structural parameters (as defined in section 2.2.2) of the stars used
to test our models, for both EoSs tested. See also fig. 2.6 for a graphical representation of
these quantities.

EoS M R Rc Ric Itot Icore Iic Ioc

(M�) (km) (km) (km) (1045 gcm2) (1045 g cm2) (1043 gcm2) (1040 g cm2)

SLy 1.0 11.86 10.35 11.23 0.739 0.697 4.181 6.638
1.1 11.83 10.49 11.28 0.827 0.788 3.923 5.945
1.2 11.80 10.60 11.31 0.914 0.878 3.652 5.317
1.3 11.76 10.69 11.32 0.999 0.965 3.370 4.738
1.4 11.71 10.75 11.32 1.079 1.048 3.078 4.198
1.5 11.64 10.79 11.29 1.154 1.126 2.777 3.685
1.6 11.55 10.79 11.24 1.222 1.197 2.469 3.194
1.7 11.42 10.76 11.16 1.279 1.258 2.150 2.718
1.8 11.26 10.68 11.03 1.322 1.303 1.818 2.248
1.9 11.03 10.54 10.83 1.339 1.324 1.463 1.769
2.0 10.62 10.23 10.47 1.299 1.289 1.042 1.233

GM1 1.0 13.94 11.79 13.02 1.021 0.896 12.505 19.061
1.1 13.94 12.01 13.12 1.146 1.025 12.068 17.532
1.2 13.94 12.19 13.20 1.271 1.156 11.555 16.108
1.3 13.93 12.35 13.27 1.395 1.285 10.991 14.780
1.4 13.91 12.47 13.32 1.516 1.412 10.382 13.530
1.5 13.89 12.58 13.34 1.634 1.536 9.738 12.340
1.6 13.85 12.66 13.35 1.747 1.657 9.062 11.198
1.7 13.79 12.71 13.35 1.854 1.771 8.362 10.099
1.8 13.72 12.74 13.32 1.954 1.878 7.635 9.031
1.9 13.62 12.74 13.26 2.043 1.974 6.885 7.987
2.0 13.49 12.70 13.17 2.118 2.057 6.107 6.956
2.1 13.33 12.63 13.05 2.173 2.120 5.292 5.922
2.2 13.10 12.48 12.85 2.194 2.150 4.411 4.851
2.3 12.71 12.20 12.51 2.146 2.113 3.371 3.631

2.3 The role of superfluidity

To understand the underlying mechanism of a glitch is necessary to frame some of the
properties of a superfluid because, in the models discussed here, they are responsible
for this phenomenon. The superfluidity is a special condition of the fluids in which they
do not show signs of internal friction (viscosity). If we consider a fluid in the ground
state (T = 0) flowing through a container, its energy can be expressed in the reference
frame of the container to be due only by the kinetic contribution. If we suppose that a
simple excitation arises in the fluid, we can characterize that by a momentum p and
an energy contribution of ε(p); then the total energy will be of course

E =
1
2

M v2 + ε(p) + p · v (2.13)

where we recognize the kinetic term (first one) and the change in energy due to the
appearance of the excitation, ε(p) + p · v. This change must be negative because
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Figure 2.6: The first figure shows the dependence of the radius of the neutron star on the
total mass, for the SLy and GM1 EoSs. The other plots represent the thicknesses of the stellar
regions (core, inner crust and outer crust) as function of mass. As one can see, a more massive
star has thinner crusts, while a stiffer equation of state produces a larger star.

otherwise the excited state would not be energetically favored. Bearing in mind that p
and v are antiparallel the algebraic relation is

v >
ε(p)

p
. (2.14)

It’s easy to verify that when ε(p) = p2

2m this condition is always satisfied, in other
words there is no chance for the fluid to remain in its ground state. But in a fermionic
superfluid, the excitation energy can be expressed as

ε(p) =

√

√

√

�

p2

2m

�2

+∆2,

and this fact implies that the condition in eq. (2.14) can be rewritten as v >
p

2m∆.
(In a bosonic superfluid the excitation are phonons and this means that ε = csp and
then v > cs). In other words this means that if the velocity is below this threshold the
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excitement does not occur and we can refer to this state as superfluidity. As we will
see in more detail, the presence of the dispersion term ∆ in the excitation energy, also
called pairing gap, it is crucial for the existence of superfluidity.

If we consider a superfluid in the ground state, we can describe its state with a
single wave function

ψ=
p

n0 eiφ , (2.15)

where φ is a global phase factor, as |ψ|2 = n0. We can immediately draw some
important general properties of this class of fluids that will be crucial to understand
the underlying mechanism of glitches. From quantum mechanics we know that
v= p

m = −
iħh∇
m , from which follows that

vψ= −
iħh∇
m
ψ= −i

p

n0
ħh
m

eiφ∇φ =
ħh
m
∇φψ. (2.16)

This means that ħhm∇φ is an eigenvector of the velocity; for a Cooper pair m = 2mn and
then v= ħh

2mn
∇φ. The result v∝∇φ implies that the macroscopic velocity field of a

superfluid is irrotational, because its curl is null: ∇× v =∇×∇φ = 0. In other words
we can state that a superfluid will never rotate as a rigid body (namely ∇× v= 2Ω).

Consider now a cylinder rotating around its axis and a “normal” fluid inside,
initially at rest: if there is a friction between the walls of the container and the fluid,
this will be dragged and ultimately will rotate with its container. If instead we take a
superfluid, this is not possible and it will persist in its groud state, as shown before, as
long as this condition is thermodynamically favorable. In fact, if E is the total energy
seen by a fixed “external” reference system, then when we move to the “rotating”
coordinates, we have Erot = E −M ·Ω, where M is the angular momentum of the fluid
and Ω is the rotational angular velocity of the container. The preferred thermodynamic
state is the one that minimizes Erot and we can see that if Ω is big enough, then it
becomes favorable a configuration with M 6= 0.

It’s important now to clarify the apparent contradiction with what has been ex-
plained above, namely the fact that the superfluid has always ∇× v = 0 and therefore
can not rotate. The contradiction is resolved if we introduce singularities in the velocity
field. In other words, considering the circulation in place of the curl, we can write that

∮

C
v · dl= κ, (2.17)

where we consider a closed loop that encloses a straight singularity and it is centered
with it. The value of the constant κ is obtained considering the relationship

∮

C
v · dl= κ=

ħh
2mn

∆φ,

where ∆φ is the variation of the phase obtained by completing the circuit. Because of
course this amount must be an integer multiple of 2π, we have

κ= n
πħh
MN
= n

h
2mn

. (2.18)
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Figure 2.7: Schematic representation of a
vortex bundle. The macroscopic rotation is
quantized in vortexes, where each one carries
a quantum of angular momentum.

Since the case n= 1 is energetically favorable compared with n> 1, from now on we
assume κ= h

2mn
.

Talking again in terms of the curl, the relation in eq. (2.17) can be rewritten as

∇× v= κδ2(rv)

and this is the starting point for deriving the expressions of “ macroscopic” quantities
of the superfluid: the system is in fact a lattice of “quantized vortex lines” (κ) that,
from the macroscopic point of view, simulates a classical rotation.

It ’s very interesting to see that the macroscopic quantities relevant to the proposed
models of glitches can be written in a very general way as substantially dependent
on the density of vortexes per unit area. These expressions are obtained easily if we
imagine a cylinder rotating on its axis, with a superfluid inside. From what we have
seen before, it’s easy to see that, for azimuthal symmetry around the vortex,

2πx v(x) =

∮

C
v · dl=

ħh
2mn

∮

C
∇φ · dl=

ħh
2mn

∆φ =
ħh

2mn
2πN(x), (2.19)

where we take the circuit as a circle of radius x concentric and perpendicular to the
axis of the cylinder: N(x) then indicates the number of vortexes included within the
radius x . If we write this quantity as N(x) =

∫

r n(x ′)da′, where da′ = d(πx ′2), we
can obtain that the velocity at a distance x from the axis is:

v(x) =
ħh

2mn

N(x)
x
=
ħh

2mn

1
x

∫

x
n(x ′)da′ (2.20)

Ω(x) =
ħh

2mn

N(x)
x2

=
ħh

2mn

1
x2

∫

x
n(x ′)da′. (2.21)

Note that the azimuthal symmetry and the Stokes’ theorem ensure that the two
formulas above apply to both cylinders that spheres: in the latter case x still represents
the distance from the rotational axis and not the radius.

The last physical quantity important for the model is the angular momentum of
the superfluid. His expression is obtained, of course, starting from d L = ρrv sinθ dV .
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If we consider a system with spherical symmetry, like a star with the density only
dependent on the radius, then the above equation is integrated in the following way:

L =
ħh

2mn

∫

r,θ ,φ

ρ(r)N(r,θ )r sinθ dr dθ dφ. (2.22)

2.4 Superfluidity in neutron star and entrainment effect

A system of bosons, due to the fact that the excitations are phonons as described previ-
ously, can condense into a ground state at low temperatures, manifesting superfluid
properties. Speaking instead of neutron stars, it is clear that we are interested in a
superfluid of fermionic type: the existence of a ground state is guaranteed thanks to the
formation of Cooper pairs. Basically, the neutrons near the Fermi surface are correlated
in pairs so that they express bosonic features. The pairing gap ∆ corresponds precisely
to the binding energy per particle of these couples, and therefore it’s the gap between
the ground state and the first excited one. The value of this quantity is also linked to
the critical temperature of the superfluid from the relation kbTc = ∆(T = 0)/1.76.
Above this temperature, the thermal energy is enough to break the pairs, bringing
back the fluid to the “normal” condition.

Referring to what is described above with regard to the equation of state for
neutron star matter, every region of the star has its own specific feature also in terms
of superfluidity. The outer crust of course does not exhibit this behavior because, with
the density less than the drip value (ρd), there is no “free” neutrons that can organize
into Cooper pairs and then condensate to the ground state. The situation is different
for the inner crust and the core, where ρ > ρd . The Fermi energy is density dependent
and therefore it’s easier for neutrons to form pairs: in the inner crust it’s only possible
the formation of neutron superfluid (no proton superconductor is present here), which
are of type 1S0 (S wave), since this condition with antialigned spins maximizes the
binding energy, as shown by fig. 2.8. In the core, instead this state is possible only
for protons (for their lower density compared to neutrons), while neutrons will be
organized with the configuration 3P2: a hypothetical 1S0 pair would be broken by the
nuclear repulsive interaction related to the high density, this does not happen in case
of aligned spin, because the p–wave scattering length for neutrons is longer than the
repulsive range.

The superfluid condition indicates that the fluid can flow without internal friction,
thanks to the existence of the pairing gap. Anyway, as we will consider a system made
up of two fluid (the superfluid and the “normal” one) for modeling NS glitches, we
must also take into account the possible interactions between the two species. In
chapter 8 we will consider the drag effects which are dissipative forces that occur both
in the core and in the crust of a neutron star and are responsible of the glitch dynamic.
But there is also a non–dissipative effect that can’t be neglected: the entrainment. The
entrainment in the crust (in this work we will not consider non–dissipative entrainment
effects for the core) is related to the elastic scattering of neutrons by the nuclear lattice.
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Figure 2.8: This plots shows the dependency of the pairing gap energy∆ on the barion density
nb, for different kinds of Cooper pairs. The 3PF2 phase is a mixed wave pairing (Lombardo
and Schulze, 2001).

This phenomenon has been successfully studied by using the band theory of solids
(Chamel, 2012), applying the same ideas used in solid–state physics. As neutrons are
Bragg–diffracted by the lattice, their motion is not free: a free neutron that is reflected
cannot propagate as it is trapped in the crust.

Thanks to the band theory approach, it’s possible to introduce an “effective neutron
mass” m∗n to encode this phenomenon. This parameter is related to the density nc

n of the
conduction neutrons (neutrons which are effectively free and therefore not entrained)
and the total density of superfluid neutrons nn with the following considerations. In
the reference frame where the crust is at rest, the mass current jn is written as

jn = nc
npn = nnmnvn (2.23)

which implicitly define the average velocity of neutrons vn. We also define the effective
mass m∗n in such a way that pn = m∗nvn and we immediately obtain the relation

m∗n = mn
nn

nc
n

. (2.24)

In an arbitrary frame where the lattice is moving with velocity vp, the mass current
must be corrected as

jn = nc
npn + (nn − nc

n)mnvp (2.25)
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because the fraction (nn − nc
n) of “blocked” neutrons are moving with the crust. This

leads directly to equation

pn = m∗nvn + (mn −m∗n)vp = mn

�

vn + εn(vp − vn)
�

, (2.26)

where we have defined εn = (1−m∗n/mn). This relation shows that the neutron mass
current is no longer aligned with neutron momentum, and this fact has important
consequences over the superfluid dynamics, and therefore over the glitch, as we will
treat later in chapters 7 and 8. For a more detailed discussion about these aspects and
the multi–fluid formalism for a NS, see Carter et al. (2006); Andersson et al. (2006).

A realistic calculation of the densities nn and nc
n has been performed by Chamel

(2012): the results indicate that in the intermediate part of the inner crust, where
ρ ≈ 4.5× 1013 g/cm3, we have m∗n ≈ 14 mn. This means that most of the superfluid
neutrons are actually entrained and therefore we cannot neglect this effect in our
models.
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THE PINNING FORCE





CHAPTER 3
Crustal pinning

The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed
in a sea of free electrons and neutrons. As the neutrons are superfluid their angular
momentum is carried by an array of quantized vortexes. These vortexes can pin to the
nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to
store angular momentum which can then be released catastrophically, giving rise to a
pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the
lattice can exert on the vortexes, as this allows us to estimate the angular momentum
that can be exchanged during a glitch. In this chapter we perform, a detailed and
quantitative calculation of the pinning force per unit length acting on a vortex immersed
in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider
realistic vortex tensions, allow for displacement of the nuclei and average over all
possible orientation of the crystal with respect to the vortex. We find that, as expected,
the mesoscopic pinning force becomes weaker for longer vortexes and is generally
much smaller than previous estimates, based on vortexes aligned with the crystal.
Nevertheless the forces we obtain still have maximum values of order fpin ≈ 1015

dyn/cm, which would still allow for enough angular momentum to be stored in the
crust to explain large Vela glitches, as will be deeply discussed in the next chapters.

3.1 Introduction

The physics of the Neutrons Star (NS) crust plays a crucial role when attempting to
model these objects. First of all the outer layers of the star provide a heat blanket
that shields the hot interior and determines the observable thermal emission from the
surface (Gudmundsson et al., 1983). The elastic properties of the crust are also crucial,
as “crust-quakes” have been invoked to explain a number of phenomena, such as
magnetar flares (Thompson and Duncan, 1995) and pulsar glitches (Alpar et al., 1994;
Middleditch et al., 2006). Furthermore the crust may sustain a large enough strain
to build a “mountain” that leads to detectable gravitational wave emission (Bildsten,
1998). In this thesis we focus on the glitch phenomenon and therefore we want here

23
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to understand the role of the crust (in particular with the pinning interaction) in these
events.

Glitches are sudden increases in frequency (instantaneous to the accuracy of
the data) of an otherwise smoothly spinning down radio pulsar. Soon after the
first observations, the long timescales associated with the post–glitch relaxation (up
to months) were associated with the re-coupling of a loosely coupled superfluid
component in the NS crust (Baym et al., 1969). Neutron superfluidity in NS interiors
is, in fact, expected on a theoretical basis (Migdal, 1959) as most of the star will be
cold enough for neutrons to form Cooper pairs and behave as a superfluid condensate,
that can flow with little or no viscosity relative to the ’normal’ component of the crust.

A crucial aspect of superfluid dynamics is that the neutron condensate can only
rotate by forming an array of quantized vortexes, which determine an average rotation
rate for the fluid. For the superfluid to spin-down it is necessary for vorticity to be
expelled. If vortexes are, however, strongly attracted to the ions in the crust (i.e. they
are ’pinned’) their motion is impeded and the superfluid cannot follow the spin-down
of the crust, and stores angular momentum, releasing it catastrophically during a
glitch (Anderson and Itoh, 1975).

The nature of the trigger for vortex unpinning is still debated, with proposals
ranging from vortex avalanches (Alpar et al., 1996; Warszawski and Melatos, 2012b)
to hydrodynamical instabilities (Glampedakis and Andersson, 2009) or crust quakes
(Ruderman, 1969, 1976; Alpar et al., 1994; Middleditch et al., 2006). Whatever the
trigger mechanism, an important ingredient in this picture is the maximum pinning
force that the crust can exert on a vortex, before hydrodynamical lift forces (the Magnus
force) are able to free it. This quantity obviously determines the maximum amount
of angular momentum that can be exchanged during a glitch. An understanding of
how much angular momentum can be stored in different regions of the star would, in
fact, allow detailed comparisons with observations of glitching pulsars and potentially
constrain the equation of state of dense matter (Andersson et al., 2012; Chamel, 2013;
Piekarewicz et al., 2014).

Early theoretical work focused on the microscopic interaction between a vortex
and a single pinning site (Alpar, 1977; Epstein and Baym, 1988). The pinning force
per unit length of a vortex depends, however, on the mesoscopic interaction between
the vortex and many pinning sites, and thus on the rigidity of the vortex, on its radius
(represented by the superfluid coherence length ξ) and on the lattice spacing. This
naturally leads to the possibility of different pinning regimes in different regions of
the crust. Alpar et al. (1984a,b) interpreted the slow post-glitch recovery of the Vela
pulsar in terms of vortex “creep”, i.e. thermally activated motion of pinned vortexes,
and distinguished between three regimes: strong, weak and super weak pinning. The
different regimes depend on the interplay between the quantities mentioned earlier:
in strong pinning the coherence length ξ of a vortex is smaller than the lattice spacing,
and the interaction is strong enough to displace nuclei; while in the weak pinning
regime this is not the case. Superweak pinning, on the other hand, comes about when
the coherence length ξ is greater than the lattice spacing and a vortex can encompass
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several nuclei. In this case there is little change in energy as the vortex moves and thus
no preferred configuration for pinning. The pinning force is expected to be weak and,
in the limit of infinitely long vortexes all configurations are equal and there would be
no pinning Jones (1991b). Fits to the post-glitch relaxation of the Vela pulsar, within
the vortex creep framework (Alpar et al., 1984a), were used to set observational
constraints on some of these parameters, leading to the conclusion that only weak
and super weak pinning are likely to be at work in a neutron star crust (Alpar et al.,
1984b). The theoretical calculations of the mesoscopic pinning force relied, however,
on estimates in the weak pinning case for the very particular configuration of vortexes
aligned with the crystal axis. Although very little is known about the defect structure
of the crust, one does not in general expect the crystal lattice to be oriented in the
same direction over the whole length of a vortex (note also that a vortex will have
cylindrical symmetry set by the rotation axis, while the only preferred direction for
the crystal will be set by gravity and pressure which have spherical symmetry, slightly
modified by rotation). More recently Link (2009) has performed simulations of motion
of a vortex in a three-dimensional random potential, and found that the rigidity of the
vortex does, indeed, play a fundamental role in setting the maximum superfluid flow
above which vortexes cannot remain pinned.

In this chapter we perform a realistic calculation of the mesoscopic pinning force,
that is the force per unit length acting on straight vortexes in the neutron star crust. We
average over all possible vortex-crystal orientations and show that, although the force
is considerably weaker than previous estimates based on particular configurations, it
could still be strong enough to account for angular momentum transfer in large pulsar
glitches.

3.2 Lattice properties

The crust of a NS is thought to form a crystal in which completely ionized neutron-rich
nuclei form a body centered cubic (BCC) lattice, immersed in a sea of electrons and
free neutrons. In this configuration each nucleus is at the center of a cubic cell of
side s = 2Rws with nuclei at each vertex. The separation between the ions (i.e. the
potential pinning sites) thus depends on Rws, the radius of the Wigner-Seitz cell, which
is a function of the density ρ. In our calculation we use the classic results from Negele
and Vautherin (1973) where the crust is divided in five zone, each one characterized
by a specific value of Rws and RN , which is the radius of the nucleus that occupies a
single site of the lattice. Table 3.1 summarizes these results, together with the nuclear
composition of the Wigner-Seitz cells.

Note that there is still significant uncertainty on the exact composition and structure
of the crust (Steiner et al., 2014; Piekarewicz et al., 2014) and not only electrons, but
also free neutrons, may partially screen the Coulomb interaction between the nuclear
clusters, leading to different, and more inhomogeneous, configurations than a BCC
lattice (Kobyakov and Pethick, 2014). Nevertheless the procedure we describe below
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Table 3.1: Fiducial values of the quantities used in our calculations. These values are taken
from Negele and Vautherin (1973): the NS crust is divided in five zone and here we give
the baryon density ρ, the Wigner-Seitz cell radius (Rws), the element corresponding to the
cell nuclear composition, the nuclear radius (RN ), the superfluid coherence length (ξ), which
represents the vortex radius, and the pinning energy per site (Ep). The last two quantities are
taken from the results of Donati and Pizzochero (2004, 2006)

# ρ [g cm−3] Element Rws [fm] RN [fm] ξ [fm] Ep [MeV]

β = 1 β = 3 β = 1 β = 3

1 1.5× 1012 320
40Zr 44.0 6.0 6.7 20.0 2.63 0.21

2 9.6× 1012 1100
50Sn 35.5 6.7 4.4 13.0 1.55 0.29

3 3.4× 1013 1800
50Sn 27.0 7.3 5.2 15.4 -5.21 -2.74

4 7.8× 1013 1500
40Zr 19.4 6.7 11.3 33.5 -5.06 -0.72

5 1.3× 1014 982
32Ge 13.8 5.2 38.8 116.4 -0.35 -0.02

can easily be adapted to different configurations.
To calculate the mesoscopic pinning force we need to identify the configurations in

which the vortex is most strongly pinned to the lattice and the configurations in which
it is ’free’. Once this has been done the maximum pinning force Fp simply follows
from:

Fp =
Efree − Epin

∆r
(3.1)

where Epin is the energy of the most strongly pinned configuration and Efree the energy
of the free configuration. The average distance the vortex has to move between the
configurations is ∆r.

The energy of a particular vortex configuration will depend on the number of
ions that it is able to pin to. Intuitively, the more sites it can pin to, the greater the
energy gain, the stronger the pinning. In order to perform the calculation it is thus
necessary to consider the pinning energy per pinning site Ep, i.e. the amount by which
the energy of the system is changed when a single nucleus is inside the vortex. This
quantity depends on the competition between the kinetic energy and the condensation
energy of the superfluid, which is strongly density dependent and will thus change if a
dense nucleus is introduced in the vortex. In this work we use the results of Donati
and Pizzochero (2003, 2004, 2006), who calculate Ep consistently in the local density
approximation. The values of Ep for different densities are given in the last columns
of table 3.1. Note that in some regions Ep is positive, i.e. it costs energy to introduce a
nucleus in a vortex. In these regions the vortex-nucleus interaction is repulsive and one
has ’interstitial’ pinning (IP), in which the favored vortex configurations are in-between
nuclei. We refer to the case in which the interaction between nuclei and vortexes is
attractive as ’nuclear’ pinning (NP). We shall see in the following that the effect of
attraction or repulsion does not strongly influence the calculation of the mesoscopic
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pinning force. The parameter β refers to the suppression factor for the neutron pairing
gap used in the calculations: ∆= ∆0

β , where ∆0 is the pairing gap of the superfluid
obtained by using the bare interaction (i.e. not accounting for in-medium corrections).
This factor is related to the polarization effects of matter on the nuclear interaction.
The case β = 1 describes the non–polarized interaction, while the case β = 3 describes
the one in which the effect of the polarization is maximum. When β = 1 the mean
pairing gap has a maximum of about 3 MeV, which corresponds to the strong pairing
scenario, while when β = 3 the mean pairing gap has a maximum of about 1 MeV,
as usually assumed in the weak pairing scenario. Realistic Montecarlo simulations of
neutron matter (Gandolfi et al., 2008) indicate a reduction of the pairing gap consistent
with the choice β = 3.

The total energy of the interaction between a given vortex portion and the lattice
is calculated summing the contribution of each nucleus that can be captured by the
pinning force. Naively this could be done by considering the vortex as a cylinder of
radius ξ and counting how many nuclei are contained within it (we will discuss how
to count nuclei at the boundary in the following). This approach can be improved
to take into account the possible deformation of the nuclear lattice. The lattice has
elastic properties, so it is possible for nuclei to be displaced from their equilibrium
position under the action of the pinning force. The resulting energy per site can be
expressed as

E(r) = Ep + El(r) (3.2)

where r is the distance of the vortex axis from the equilibrium position of the considered
nucleus. In this approach, the pinning energy per site Ep is corrected by the factor
El(r) that encodes the change in electrostatic energy due to the displacement of the
nucleus. We will then define the capture radius rc as the radius within which it is
energetically favorable for the nuclei to be displaced: this will be the radius of the
vortex to be used in the counting procedure. Let us now estimate rc for both nuclear
and interstitial pinning.

3.2.1 Nuclear pinning

In the nuclear pinning regime (Ep < 0) we define a pinning region assuming that a
nucleus contributes to the total interaction by a factor Ep if it is completely inside the
vortex: in other words its distance from the vortex axis must be less than γ= ξ− RN
(fig. 3.1). If a site is at a distance r > γ from the vortex axis, the nucleus must be
dragged by a distance δ(r) = r−γ. The electrostatic energy is calculated in a standard
way using Gauss theorem together with the Wigner-Seitz approximation, which divides
the lattice in independent spherical cells of radius Rws each with an ion in the center
surrounded by the electron and neutron gas:

El(r) =
Z2e2

2R3
ws
δ2(r) (3.3)
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Figure 3.1: Representation of a nucleus dis-
placement (NP case). The empty and full cir-
cles represent respectively the starting and
final position of the nucleus. The dashed
line represents the displacement δ(r).

r

r − γ

γ= ξ− RN

where e is the elementary charge and Z is the number of protons and electrons in the
cell. Of course, a nucleus whose equilibrium position is already inside the pinning
region does not need to be dragged, so its energy contribution has no electrostatic
term (E(r) = Ep if r < γ). We can now define the maximum drag distance r0 as the
value of δ(r) for which the effective pinning interaction of eq. (3.2) becomes zero:

r0 =

√

√

−
2EpR3

ws

Z2e2
. (3.4)

From these consideration, it follows that the final capture radius that must be used in
our calculation will be

rc = γ+ r0 = ξ− RN + r0 (3.5)

The total energy of the interaction between the considered vortex portion (of
length L) and the lattice is calculated summing the contribution of each nucleus that
can be captured by the pinning force. This energy is calculated through an integral
over a uniform distribution of nuclei, that is valid when the number of nuclei which
are taken into account becomes very large, so for L� Rws. Given N the number of
pinning sites that fall inside a cylinder of radius rc and length L, the superficial density
will be nN =

N
πr2

c
. Then the total energy is calculated as

E =

∫ γ

0

EpnN 2πr dr +

∫ γ+r0

γ

�

Ep + El(r)
�

nN 2πr dr

=
N Ep

(γ+ r0)2

�

γ2 +
4
3
γr0 +

1
2

r2
0

�

(3.6)
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r

γ− r

γ= ξ+ RN Figure 3.2: Representation of a nucleus dis-
placement (IP case). The empty and full cir-
cles represent respectively the starting and
final position of the nucleus. The dashed
line represents the displacement δ(r).

From this equation we can immediately evaluate the effective interaction energy per
site Eeff, defined by E = N Eeff:

Eeff =
Ep

(γ+ r0)2

�

γ2 +
4
3
γr0 +

1
2

r2
0

�

(3.7)

In table 3.2 we give the values of the above quantities, which have been calculated
using the fiducial inner crust and superfluid properties of table 3.1.

3.2.2 Interstitial pinning

The evaluation of rc and Eeff in the interstitial pinning regime (Ep > 0) follows the
same steps of the previous section, but taking into account the fact that in this case
the interaction is repulsive and thence a nucleus that lies in the vortex core must be
expelled instead of dragged into it in order to lower the energy. We define a nucleus as
expelled if it is completely outside the vortex, that is if its distance from the vortex axis
is larger than γ = ξ+ RN (fig. 3.2); a nucleus which is expelled does not contribute to
the pinning energy. The drag distance now is δ(r) = γ− r and the maximum value
for this quantity, r0, is given by the energy balance Ep = El(δ = r0). This encodes the
idea that the nuclear displacement is favorable until the energy of the dragged nucleus
configuration is lower than the energy of the configuration where the nucleus is still
in its equilibrium position in the lattice:

r0 =

√

√2EpR3
ws

Z2e2
. (3.8)

The capture radius that must be used in the counting procedure in this case is equal to
γ because the nuclei that contribute to the pinning energy are only those that lie in
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Table 3.2: Lattice properties for the five zones of table 3.1. The values in table 3.1 are used
here to calculate the capture radius rc (in units of Rws) and the effective pinning energy per
site Eeff as explained in section 3.2

β = 1 β = 3

# IP/NP γ r0 rc Eeff γ r0 rc Eeff
[fm] [fm] [Rws] [MeV] [fm] [fm] [Rws] [MeV]

1 IP 12.7 14.0 0.289 0.36 26.0 3.9 0.591 0.17
2 IP 11.1 6.2 0.313 0.64 19.7 2.7 0.555 0.24
3 NP 0.0 7.6 0.204 -2.60 8.1 5.5 0.504 -2.08
4 NP 4.6 5.7 0.531 -3.46 26.8 2.1 1.490 -0.69
5 NP 33.6 1.1 2.514 -0.34 111.2 0.3 8.080 -0.02

Figure 3.3: Representation of the vortex de-
formation. We sketch a rigid vortex (a) and
a bent vortex (b). L is the vortex length and
Rws is the Wigner-Seitz radius. L

Rws
(a)

(b)

the pinning region
rc = γ= ξ+ RN (3.9)

Now, if r0 < γ the total energy is calculated as

E =

∫ γ−r0

0

EpnN 2πr dr +

∫ γ

γ−r0

El(r)nN 2πr dr (3.10)

where the second term of the integral contains only the electrostatic contribution
because the nuclei in that region have been expelled. If instead r0 > γ all the nuclei
that contribute to the pinning energy are dragged outside the vortex: in this case we
have

E =

∫ γ

0

El(r)nN 2πr dr (3.11)

Solving these integrals and defining again E = N Eeff we obtain the effective pinning
energy per site (see table 3.2 for numerical results):

Eeff =

(

Ep
1
γ2

�

γ2 − 4
3γr0 +

1
2 r2

0

�

r0 ≤ γ

Ep
γ2

6r2
0

r0 > γ
(3.12)

3.2.3 Vortex length

The length-scale over which a vortex can be considered straight corresponds the
length L of the cylinder on which we perform the counting procedure described. We
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Figure 3.4: Representation of the vortex
rigidity on different scales. L is the maximum
length of the unbent vortex as discussed in
section 3.2.3.

can estimate the order of magnitude of L with a simple argument based on energy
considerations (we develop the argument in the NP regime, but the same result obtains
in the IP regime). Assuming that the vortex, under tension T (self-energy per unit
length), will bend under the influence of the pinning force, we can equate the energy
of two limiting configurations: the straight (infinitely rigid) vortex (fig. 3.3a) and the
vortex that has bent in order to pin to an additional nucleus at a typical distance Rws
(fig. 3.3b):

T L = Ep + T (L +∆L) (3.13)

The difference ∆L of the vortex length in the two configuration is obviously

∆L = 2

√

√

√

�

L
2

�2

+ R2
ws − L ≈

2R2
ws

L
(3.14)

where we have expanded the expression following the realistic assumption that
Rws� L. Finally we have

L
Rws
=

2TRws

|Ep|
∼ 103 (3.15)

where the standard neutron star values have been used: T ∼ 20 MeV fm−1 (as in Jones
(1990b)), Rws ∼ 30 fm and |Ep| ∼ 1 MeV. We will thus study the dependence of our
results on variations of the parameter L around the estimate in eq. (3.15). Note that
the ability of a vortex to bend and adapt to a pinned configuration plays an important
role in determining the maximum of the pinning force, as also found by Link (2009).

3.3 Mesoscopic pinning force

The calculation of the pinning force per unit length is done here by counting the actual
number of pinning sites intercepted by a randomly oriented vortex. We consider
vortexes parallel to the rotation axis and that thread the whole star. Due to the
finite rigidity of the vortex we assume that it can be considered straight only on a
characteristic length-scale L, as described in the previous section (fig. 3.4). This idea,
combined with the fact that the lattice is made up by macro-crystals with random
direction (Jones, 1990b), indicates that a macroscopic portion of vortex immersed in
the crust experiences all possible orientations with respect to the lattice. The force
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per unit length should then be calculated as an average over all angular directions.
In following this procedure we neglect the effects of turbulence, which may arise
in NS interiors (Peralta et al., 2005, 2006; Andersson et al., 2007), possibly due to
modes of oscillations of the superfluid that may be unstable in the presence of pinning
(Glampedakis and Andersson, 2009; Link, 2012b). In this case the vortex array is likely
to form a complex tangle, that must, however, still be polarized due to the rotation
of the star. Given that the problem of polarized turbulence is poorly understood (see
Andersson et al. (2007) for the description of a possible approach to this issue) we
shall focus on a regular vortex array, and leave the complex problem of turbulence for
future work.

We consider an infinite BCC lattice with its symmetry axes oriented as x̂ , ŷ and ẑ,
and with a nucleus in (0, 0, 0). A vortex is modeled as a cylinder of length L and radius
rc with its median point initially in the origin and the orientation is given by the angles
θ and φ in spherical coordinates. For a given choice of θ and φ, we evaluate the
pinning force per unit length fL(θ ,φ) by a counting procedure: from the initial position
the vortex is moved parallel to itself, covering a square region of side l in the plane
perpendicular to the vortex axis, with steps of an amount dh. For each new position,
identified by the displacement (λ,κ), it is possible to count the number N(λ,κ) of
lattice nuclei that are within the capture radius of the vortex. In figs. 3.5 and 3.6, we
show two examples of a density plot where for each translation of the vortex (λ,κ) we
plot the number of captured pinning sites N(λ,κ). The difference between the cases
of vortex aligned with the lattice and vortex with arbitrary orientation is evident from
the figures.

As discussed in the previous section, the number of captured pinning sites N in a
vortex-lattice configuration is directly related to the energy of the configuration by the
expression E = EeffN where Eeff is the effective contribution of every single interaction.
As previously discussed, the interaction between the vortex and the nuclei can be
attractive (NP) or repulsive (IP) in different regions of the crust. The calculation
procedure presented here is valid for both cases, with the following distinction: in
the NP regime, the bound configuration (state of minimum energy) is identified by
the positions (λ,κ) where the number of pinning site reach its maximum. This means
that Nbound(θ ,φ) = max(N(λ,κ)). On the other hand, in the IP case, we must take
the minimum: Nbound(θ ,φ) =min(N(λ,κ)).

This leads to the fact that, for both the NP and IP cases, the change in energy
obtained by moving the vortex away from its bound configuration (unpinning energy)
will be:

∆E(θ ,φ) = Eeff∆N(θ ,φ)

= Eeff (Nfree(θ ,φ)− Nbound(θ ,φ)) , (3.16)

where we take Nfree as the average number of pinning sites counted in all visited
displacements: Nfree(θ ,φ) = 〈N(λ,κ)〉. Obviously, we have∆E(θ ,φ)> 0 for both the
NP and IP cases, since it takes energy to remove the vortex from the location where it is
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Figure 3.5: Number of captured pinning sites N(λ,κ) when the vortex is aligned with the
lattice. The color codes are described in the sidebar. The axes λ and κ represent the translation
of the vortex with respect to the initial position, and they are measured in Rws units. The grid
step size is dh = 0.1Rws, the vortex is L = 200Rws and the capture radius is rc = 0.204Rws
(region 3 with β = 1). Note that the simple geometry leads to several disjoint maxima that
spread over several steps, given that for a small grid step dh the energy of the configuration
does not change until the vortex has been moved by one capture radius away from the aligned
nuclei.

pinned. We see that in any given zone (fixed Eeff and rc) the unpinning energy depends
on the vortex orientation only through ∆N(θ ,φ) = Nfree(θ ,φ)− Nbound(θ ,φ), the
change in the number of captured nuclei between the two configurations. In fig. 3.7
we plot the quantity |∆N(θ ,φ)|/eL as a function of (θ ,φ), where eL = L/Rws is the (adi-
mensional) vortex length in units of Rws; the plot corresponds to region 3 (NP regime),
so that actually ∆N(θ ,φ)< 0. Notice that the aligned configuration of fig. 3.5 would
correspond to ∆N(0,0)/eL = −0.5, since Nfree(0,0) = 0 and Nbound(0,0) = L/(2Rws)
(the captured nuclei are a distance s = 2Rws apart). It is evident from the figure that
most orientations have |∆N(θ ,φ)| � 0.5.

The force required to move the vortex away from the bound configuration can be
easily calculated using the following expression:

F(θ ,φ) =
∆E(θ ,φ)
D(θ ,φ)

(3.17)

where D(θ ,φ) identifies the average distance required to reach the free configuration
from the pinned one. We estimate this quantity by counting in the density plot the
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Figure 3.6: Number of captured pinning sites N(λ,κ) when the vortex is non–aligned with
the lattice (we selected a random orientation). The color codes are described in the sidebar.
For details on the parameters used to produce this plot see fig. 3.5.

number nNbound
of disjoint positions where N(λ,κ) = Nbound (we sometimes omit the

angular dependence for notational simplicity). In other words, nNbound
represents the

number of distinct extremal configurations (maxima in the NP regime, minima in the
IP regime) found in the sampling square region. For a uniform distribution of these
extremal points (square array of step 2D) we would have nNbound

πD2 ' l2, where l is
the side of the square region tested by parallel–transporting the vortex. We thus take
as a reasonable definition for the average distance in the general case:

D(θ ,φ) =
l

Æ

πnNbound
(θ ,φ)

(3.18)

Finally, the force per unit length is

fL(θ ,φ) =
F(θ ,φ)

L
(3.19)

For the procedure described above it is clearly necessary to unambiguously count
nNbound

(θ ,φ). With the parallel–transport operation, we explore a portion of the plane
that is perpendicular to the vortex axis. This region is a square region of side l that is
sampled with a grid of step dh. This means that we have to look for the position of max-
ima/minima analyzing a set of points (λ,κ)i j = (−l/2+ i dh,−l/2+ j dh). If we merely
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Figure 3.7: Difference between the number of pinning sites of the free and bound configura-
tions as a function of the vortex orientation (θ ,φ). Here we plot |∆N(θ ,φ)|/eL, where eL is the
(adimensional) vortex length in units of the Wigner-Seitz radius. The color codes are described
in the sidebar. The figure has been obtained considering a vortex of length L = 200Rws and
capture radius rc = 0.204Rws (region 3 with β = 1).

count the number of points for which Ni j = N(λ,κ)i j reaches its maximum/minimum
value, this result would be strongly conditioned by the choice of the dh parameter. In
fact, for small values of dh, it is obvious that a single “maximum/minimum position”
will be split over several points (λ,κ)i j , altering the final result.

One possible solution is to take into account only disjoint maxima/minima: this
means that two extremal points count as one if they are “first–neighbors”. This
approach requires a second–pass analysis over the values Ni j to identify the clusters in
the density map, and it allows us to correctly evaluate a configuration such as the one
in fig. 3.5, in which the alignment of the vortex with the symmetry axis of the crystal
leads, for small grid steps, to several neighboring equivalent configurations. Without
considering clustering, we would have counted nNbound

= 1745 for this particular case
(dh = 0.1Rws). Counting only disjoint extremal points, instead, gives the correct
answer of nNbound

= 145, and this result does not change if we explore the square
region with a smaller step size.

In this work the method just described has been slightly generalized to treat
extremal points that are topologically disjoint but “very close” and thence physically
equivalent. As described previously, the actual vortex radius (ξ) and the site radius
(RN ) are encoded together in the single parameter rc because this is the only relevant
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quantity (from the geometrical point of view) in the evaluation of the number of
vortex–lattice interactions for a given configuration. However, the site radius in this
picture has still a physical meaning: in order for a nucleus to actually enter or exit
the vortex core and thus change the vortex-lattice energy, the vortex axis must move
by at least 2RN . Therefore, if two extremal points are less than 2RN apart there is no
actual change in energy for the vortex to move from one to the other and therefore
they must be counted together as a single pinning site. In other words we choose to
count two extremal points as one if their distance is less than a quantity η∼ 2RN .

In conclusion, the number nNbound
(θ ,φ) appearing in eq. (3.18) is corrected to take

into account the “clusters” of extremal points as determined by the parameter η: it
corresponds to the number of disjoint clusters, each representing a physically distinct
pinning site. For the five zones in table 3.1, the quantity 2RN is always in the range
(0.25÷ 0.75)Rws. In order to make the calculations affordable, we fix η= 0.5Rws for
every zone, after testing that there is no significant difference in the final results for the
pinning force (below 10% and anyways well within the error bars) under variations
of η in the previous range. Altogether, it is evident that the main uncertainty in the
calculation of the pinning force comes from the determination of nNbound

(θ ,φ): in order
to have some measure of this and since we are dealing with a counting measurement,
we will associate to nNbound

the standard error ±pnNbound
.

To obtain the final value fL for the mesoscopic pinning force, we must repeat the
above calculations for each value of (θ ,φ), and then take the angular average:

fL = 〈 fL(θ ,φ)〉=
1

4π

∫

fL(θ ,φ) dΩ (3.20)

An estimate of the error ±σ fL
on fL can also be obtained, by propagating the error on

nNbound
(θ ,φ) in eqs. (3.17) and (3.20).

We also checked that our results are reasonably independent from the choice of
the parameters l and dh used in the parallel-transport sampling procedure. In figs. 3.8
and 3.9 we show an example of the convergence of the calculated fL for different
values of l and dh. In the following we will fix l = 16 Rws and dh= 0.005 Rws, which
provide an acceptable accuracy (well within the error bars ±σ fL

) while allowing for a
not too long computational runtime.

3.4 Results of the model

The results of our calculations are summarized in table 3.3. We have applied the
algorithm described in the previous sections to different choices of the parameter L,
starting from a short vortex with length equal to 100Rws up to a configuration with
L = 5000Rws. For each value of L and for each zone of table 3.1 we have calculated
the pinning force per unit length fL and the estimated error σ fL

for two values of the
polarization correction factor, β = 1 (i.e. the case of a bare interaction) and β = 3,
which is close to the value obtained in realistic Montecarlo simulations of neutron
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Table 3.3: Results of the calculations for vortexes with length L up to 5000Rws. The parameters
of table 3.2 were used as inputs for the counting procedure. The quantities 〈D〉, 〈∆N〉/eL and
〈∆E〉/L are the angular averages of D(θ ,φ), ∆N(θ ,φ)/eL and ∆E(θ ,φ)/L respectively. The
last two columns show the force per unit length and its uncertainty.

L β # rc 〈D〉 〈∆N〉/ L̃ 〈∆E〉/L fL σ fL
[Rws] [Rws] [Rws] [10−2] [104 erg/cm] [1015 dyn/cm] [1015 dyn/cm]

100 1 1 0.289 1.320 4.185 0.549 1.222 0.086
2 0.313 1.356 4.466 1.290 3.404 0.250
3 0.204 1.270 -3.687 5.689 22.970 1.453
4 0.531 2.064 -5.994 17.127 61.521 5.689
5 2.514 3.893 -13.779 5.439 12.578 2.501

3 1 0.591 2.072 6.730 0.417 0.630 0.069
2 0.555 2.005 6.496 0.704 1.362 0.143
3 0.504 2.060 -5.866 7.240 18.459 1.751
4 1.490 3.396 -9.725 5.542 10.904 1.698
5 8.080 4.634 -23.797 0.553 0.994 0.256

500 1 1 0.289 2.066 1.940 0.254 0.367 0.058
2 0.313 2.142 2.031 0.587 1.015 0.167
3 0.204 1.732 -1.504 2.321 7.190 0.833
4 0.531 2.880 -2.342 6.693 17.690 3.028
5 2.514 4.348 -5.184 2.046 4.349 1.277

3 1 0.591 3.092 2.900 0.179 0.191 0.046
2 0.555 2.970 2.809 0.304 0.416 0.095
3 0.504 2.804 -2.305 2.845 5.418 0.946
4 1.490 3.915 -3.541 2.018 3.529 0.726
5 8.080 4.842 -8.812 0.205 0.375 0.130

1000 1 1 0.289 2.407 1.431 0.188 0.238 0.053
2 0.313 2.467 1.491 0.431 0.651 0.152
3 0.204 2.049 -1.086 1.676 4.388 0.744
4 0.531 3.210 -1.615 4.616 11.033 2.587
5 2.514 4.467 -3.575 1.411 3.024 1.090

3 1 0.591 3.358 2.113 0.131 0.133 0.042
2 0.555 3.283 2.044 0.221 0.286 0.088
3 0.504 3.129 -1.606 1.982 3.403 0.816
4 1.490 4.131 -2.362 1.346 2.350 0.566
5 8.080 4.938 -6.037 0.140 0.267 0.112

2500 1 1 0.289 2.845 1.031 0.135 0.149 0.050
2 0.313 2.900 1.067 0.308 0.420 0.143
3 0.204 2.533 -0.756 1.167 2.462 0.688
4 0.531 3.544 -1.062 3.034 6.777 2.324
5 2.514 4.648 -2.355 0.930 2.184 0.981

3 1 0.591 3.663 1.513 0.094 0.096 0.040
2 0.555 3.530 1.455 0.158 0.207 0.083
3 0.504 3.468 -1.074 1.325 2.205 0.740
4 1.490 4.294 -1.463 0.833 1.506 0.466
5 8.080 4.992 -3.941 0.092 0.190 0.101

5000 1 1 0.289 3.067 0.852 0.112 0.123 0.049
2 0.313 3.147 0.884 0.255 0.339 0.140
3 0.204 2.783 -0.603 0.930 1.828 0.656
4 0.531 3.731 -0.828 2.366 5.317 2.233
5 2.514 4.681 -1.834 0.724 1.801 0.936

3 1 0.591 3.799 1.223 0.076 0.080 0.039
2 0.555 3.714 1.183 0.128 0.171 0.080
3 0.504 3.632 -0.844 1.042 1.677 0.713
4 1.490 4.482 -1.085 0.618 1.133 0.433
5 8.080 5.044 -2.996 0.070 0.153 0.096
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Figure 3.8: Convergence test for the l parameter used in our calculation. In this figure we
can see the pinning force per unit length for the five zones of the inner crust, obtained with
different choices of the parameter: increasing the value of l the curves become closer, showing
the convergence of the model. This picture corresponds to a vortex of length L = 200Rws.

matter (Gandolfi et al., 2008). The results for the pinning force per unit length are
also plotted in fig. 3.10 for β = 1 and in fig. 3.11 for β = 3. In the table we also show
the results for 〈D〉, for 〈∆N〉/eL and for 〈∆E〉/L, which are the angular averages of
D(θ ,φ), ∆N(θ ,φ)/eL, and ∆E(θ ,φ)/L respectively. We notice that | 〈∆N〉 |/eL� 0.5
when eL ∼ 103, which confirms the inadequacy of using symmetric vortex-lattice
configurations when evaluating the mesoscopic pinning force (Jones, 1990b).

From these results it is possible to see that there is a strong dependence of the
pinning force per unit length on the parameter L: increasing the length of the vortex
a consistent decrease in the mesoscopic pinning force can be observed. This behavior
was indeed expected, following the argument by Jones (1991b) that the difference in
energy between adjacent configurations becomes vanishingly small for infinite vortex
rigidity (L →∞). However, using a realistic vortex length of order ∼ 103Rws, as
discussed in section 3.2.3, the pinning force is still not negligible.

The other important parameter of the model is the polarization factor β . The
results show that fL doesn’t depend very strongly on the choice of this parameter in the
three lower density regions, while the effect is more important in the two high density
regions, where the mesoscopic pinning force is significantly larger in the strong pairing
scenario (β = 1) than in the weak one (β = 3). It’s also worth noting that changing
the polarization factor from β = 1 to β = 3, results in a shift to lower densities of the
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Figure 3.9: Convergence test for the dh parameter used in our calculation. As in fig. 3.8 we
can see that decreasing the value of dh the curves become closer, showing the convergence of
the model also for this parameter. This picture corresponds to a vortex of length L = 200Rws.

maximum of the pinning profile. The position in density of the maximum pinning
force can be relevant to determine the angular momentum accumulated in the crust
between pulsar glitches, as discussed in Pizzochero (2011).

A comparison between our results and those found in the literature shows that the
maximum pinning forces per unit length obtained in this work are at least two orders
of magnitude smaller than those found for an aligned vortex (Alpar et al., 1984a;
Anderson et al., 1982) and which have been commonly used in the study of pulsar
glitches. As we shall discuss in the following, however, they are still large enough to
account for the large glitches observed in the Vela pulsar.

3.4.1 Analytic approximations

The results presented up to now refer to the calculation of the mesoscopic pinning force
corresponding to the fiducial parameters Rws, RN , ξ and Ep in table 3.1. However,
existing or future calculations of the inner crust nuclear structure, of the neutron
superfluid pairing properties and of the microscopic vortex-nucleus interaction may
provide alternative sets of parameters to those used in the present work. It is possible
to generalize our approach and obtain a simple analytic expression which allows
to calculate the pinning force per unit length fL for different choices of the input
parameters.
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Figure 3.10: The pinning force per unit length for the β = 1 case. The mesoscopic pinning
force is plotted as a function of the baryonic density of matter for the five zones considered
and for different vortex lengths.

In eq. (3.20), the quantity Eeff can be factorized. We can also express all the
lengths in Rws units and then define an adimensional quantity ef

eL(erc) that depends
only on the adimensional capture radius erc = rc/Rws and the adimensional vortex
length eL = L/Rws. The quantity ef

eL(erc) is purely geometrical and it contains all the
information obtained from the counting procedure described in the preceding sections.
The force per unit length fL (in dyn/cm) can then be obtained as

fL =
Eeff

R2
ws

ef
eL

�

rc

Rws

�

(3.21)

where Eeff must be expressed in MeV and the radius of the Wigner–Seitz cell in cm.
We have calculated ef

eL(erc) for different choices of erc (in the realistic range 0÷ 8)
and for different vortex lengths (of order eL ∼ 103) for both the NP and IP regimes
We then fitted a non-linear function f ∗(x) to the calculated values of ef

eL: we used a
function of the form

f ∗ = Ax + B [log(1+ x)]W + C (3.22)

where A, B, C and W are the parameters to be fitted. In fig. 3.12 we show the results
for the eL = 5000 case; the error bars have also been added, as obtained from the
propagation of the error on nNbound

(θ ,φ). We see that the calculated points can be fitted
reasonably (within the error bars) with the choice of parameterization in eq. (3.22).
In table 3.4 we give the parameters obtained from the fitting procedure.
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Figure 3.11: The pinning force per unit length for the β = 3 case. The pinning force per unit
length for the β = 1 case. The mesoscopic pinning force is plotted as a function of the baryonic
density of matter for the five zones considered and for different vortex lengths.

Table 3.4: Fit parameters for the function f ∗ = Ax + B [log(1+ x)]W + C . Three different
vortex lengths L are considered for both the NP and IP regimes.

A B W C
[10−10] [10−9] [10−8]

L = 1000 Rws NP - 5.04 -2.08 1.974 -1.169
IP -33.63 14.49 1.586 1.155

L = 2500 Rws NP -12.10 1.80 -0.366 -0.995
IP - 5.99 12.31 0.997 0.490

L = 5000 Rws NP -10.35 0.75 -0.643 -0.726
IP -12.36 12.24 1.114 0.389
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Figure 3.12: Plot of the calculated values of ef
eL (for eL = 5000) as a function of the capture

radius rc (in units of Rws). The error bars for the estimated errors on ef
eL are also shown. The

squares are the values of ef
eL corresponding to the ten values of rc in table 3.2. The fitting

curves f ∗ for both the interstitial (above) and nuclear (below) pinning regimes are also shown
(see table 3.4).

We notice that, within the uncertainty given by the quite large error bars, there is no
significant difference in the magnitude of ef

eL(erc) between the nuclear and the interstitial
regime. This means that the force per unit length, for given erc and Eeff, remains roughly
the same if we take the microscopic vortex-nucleus force to be attractive or repulsive.
The fact that attractive and repulsive vortex-nucleus interactions are equivalent for
the pinning of vortexes to the lattice was already noted by Link (2009).

3.5 Conclusions

In this chapter we have presented a realistic calculation of the pinning force per unit
length acting on a vortex in a neutron star crust. We have calculated the mesoscopic
pinning force at different densities for straight vortexes that cross the star inner crust,
and averaged over all the possible orientations of the crustal lattice with respect to
the vortex. Our results confirm the expectations of (Jones, 1991b), that the averaging
procedure over different orientations tends to smooth out energy differences between
different configurations, leading to weaker pinning forces. In the limit of infinitely
long vortexes the pinning force would vanish; for realistic values of the vortex tension
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the force per unit length is, however, still sizable and in the range fL ≈ 1014 − 1015

erg/cm depending on the position in the crust. We find that the mesoscopic pinning
force depends very little on whether the pinning force is attractive (nuclear pinning) or
repulsive (interstitial pinning) in a given region of the star, but it can be quite sensitive
to in-medium polarization effects, which can shift the position of the maximum and
thus alter the angular momentum distribution in the crust of a neutron star.

In the following chapter we will apply the calculated forces to the problem of
pulsar glitches in order to understand if these results can explain large glitches in the
Vela pulsar, within the framework of the “snowplow” model (Pizzochero, 2011). More
generally the forces that we have calculated can be used to generate realistic pinning
profiles for glitch models (Haskell et al., 2012c; Haskell and Antonopoulou, 2013),
simulations of vortex dynamics in neutron stars (Warszawski and Melatos, 2008) or
mode calculations (Glampedakis and Andersson, 2009; Link, 2012a).





CHAPTER 4
Core pinning

The pinning interaction in the core of a neutron star is a much less explored problem
than the crustal pinning one faced in chapter 3. In the NS interiors, matter is not orga-
nized in lattice because it’s in superfluid and superconductive state: an hypothetical
pinning force can’t be related to vortex–lattice interaction. Instead it’s possible, under
certain circumstances, an interaction of the vortex with the magnetic flux carried by
the superconductive protons. Currently it’s yet unclear if protons in the core form a
type I superconductor, in which the magnetic field is contained in regions of normal
protons (Sedrakian, 2005) and therefore pinning effects are excluded (Jones, 2006),
or they make a transition to a type II superconductivity state (Migdal, 1959; Baym
et al., 1969). In this latter case the magnetic flux is confined to flux tubes and a
pinning interaction between vortexes and flux tubes is possible. The transition from
type II to type I occurs above a critical density that is expected to be bigger than
the nuclear saturation density but it’s still unknown, due to the uncertainties in the
nucleon–nucleon potentials (Link, 2003).

In the following chapters we will face the problem from a macroscopic point of
view: we will test the “snowplow” model firstly without any form of pinning in the
neutron star interiors, and after, in chapter 6, considering that a fraction of the vorticity
in the core is completely blocked by entanglement with the flux tubes. Conversely in
this chapter we want to adopt a mesoscopic approach, applying the same conceptual
ideas of chapter 3 to estimate the pinning force per unit length in the core of a neutron
star. We will show that the core pinning (if the star is actually in type II state) is two
orders of magnitude lower than the crustal one, and this means that, according to the
results of chapter 6, it can be safely neglected in our macroscopic glitch model.

4.1 A simple approach

In type II superconductor core of a neutron star, the magnetic flux is confined inside
tubes that have a core of normal protons; the radius of this region can be taken equals
to the proton coherence length ξp ≈ 10 fm. On the other side the coherence length
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for neutrons, and therefore the radius of the vortex, is ξn ≈ 25 fm (Link, 2003). The
coupling between the two condensates is due to the induced proton current around the
vortexes that magnetizes them (Alpar et al., 1984c; Chau et al., 1992; Harvey et al.,
1986): this kind of entrainment generate the pinning force because a magnetized
neutron vortex interact with the flux confined in the tubes. Outside the flux tube,
the magnetic field falls off exponentially over a distance equal to the London length.
We identify this quantity with Λp that is approximately equals to 80 fm, and in the
same way we call Λn ≈ 10 fm the length scale over which the magnetic field of the
vortex decays. Results of Ruderman et al. (1998); Link (2003, 2012a) indicate that
the energy increase per single interaction between a vortex approaching a flux tube is
Ep ≈ 5MeV, over the length range Λp.

To calculate the pinning force per unit length in the core we can use a very simple
model, as done by Link (2003). We can consider a straight vortex immersed in an
array of flux tubes. These tubes form a two dimensional quadratic array in the x y
plane and they extend in the z direction. The vortex lies in the x y plane, aligned
with a versor of the lattice and therefore perpendicular to the flux tubes. Given that
the force per single interaction is Fp = Ep/Λp, the force per unit length can be easily
evaluated as

f =
Fp

lφ
=

Ep

Λp lφ
, (4.1)

where lφ is the average spacing between flux tubes. This quantity depends on the
magnetic field B of the star because lφ = 1/

p

nφ, where nφ = B/Φ0 (Φ0 = πħhc/e
is the flux quantum). We can express B in unit of 1012 G (we identify this quantity
as B12, and we will use the realistic value of ≈ 1 in the following; for a magnetar
B12 ≈ 100÷ 1000, as we’ll discuss) obtaining the benchmark lφ ≈ 3000/

p

B12fm. As
a conclusion, the approach here described gives as result an order of magnitude for
the core pinning force per unit length of 1015 dyn/cm (see Link (2003)).

4.2 The realistic mesoscopic model

The naive calculation just described here gives as result the maximum pinning force
because it considers only the aligned configuration. Qualitatively this is the same
approach of the first works about the crustal pinning, that were focused on the force
per single interaction Fp; then the force per unit length was simply found by dividing
this quantity by the spacing between pinning site. In chapter 3 we overcome this
schema, justifying the need to consider and average all possible orientations between
vortex and the lattice. Here we are focusing on the core pinning due to the vortex–
fluxtube interaction that is quite different under some physical points of view, but
we can apply the same conceptual approach (that we review here) of the previous
chapter to correctly estimate the force per unit length fp. In fact the vortex has a finite
rigidity and this means that can be considered straight only on a length scale L; on
larger scale the interaction with fluxtubes will bend the vortex, changing its orientation
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Figure 4.1: Schematic representation of a
vortex immersed in a regular lattice of flux–
tubes, all oriented in the same direction.

with the lattice. Moreover, unlike the vortexes that are expected to be approximately
parallel to the rotational axis of the star (except for bending), the flux tube array
has a complicated structure because the tubes are twisted and therefore entangle
the vortexes. The geometric configuration that we take into account is described in
fig. 4.1. We consider a vortex of finite length immersed in a lattice of straight fluxtubes
with a generic casual orientation. The tubes extend parallel over the z direction and
are infinitely long; in the x y plane they are equally spaced on a regular grid. The
Wigner–Seitz radius of the lattice cell is Rws and of course the distance between two
consecutive tubes in the grid is 2 Rws. As discussed before, Rws = lφ/2 and therefore
its value depends on the magnetic field of the star by the following relation:

Rws =
1500
p

B12
fm. (4.2)

It’s important to note that here, by the moment, we don’t take into account the twisted
structure of the fluxtubes (for the entanglement effect), as this aspect will be covered
later. To estimate the length L on which the vortex can be considered rigid, we can use
the same technique of section 3.2.3: the eq. (3.15) indicates that L, in units of Rws,
scales as ∼ 2TRws/Ep where T is the tension of the vortex. Even if we use the same
tension used in section 3.2.3 for crustal pinning, the results in this case will be different
because Rws, that control the scale of the problem, is bigger. In fact, following the
prescription used by Link (2003), Rws ≈ 1500 fm (in the crustal pinning this parameter
is ∼ 30 fm), and this lead certainly to L ∼ 104 Rws. As we will show later, a longer
vortex will results, as expected, in a lower pinning force per unit length f . We’ll
see that even just taking L = 1000 Rws, f will be at least two orders of magnitude
lower that the crustal pinning case (enough to justifying the neglect in the snowplow
model). Iin order to maintain the computational time affordable, we will perform our
calculations here with these four different choices of L: 1000 Rws, 2500 Rws, 5000 Rws
and 10000 Rws.
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Figure 4.2: Number of captured pinning sites N(λ,κ) when the vortex is aligned with the
lattice. The color codes are described in the sidebar. The axes κ and λ represent the translation
of the vortex with respect to the initial position, and they are measured in Rws units. The
grid step size is dh = 0.01 Rws, the vortex length is L = 500 Rws and the capture radius is
rc = 0.027 Rws. The lattice is the one represented in fig. 4.1

To explain the algorithm used, let’s start with a vortex with a random orientation
with respect the fluxtubes array. The orientation is identified using standard polar
coordinates, therefore with the angles θ and φ that the vortex form with the lattice.
For a given choice of (θ ,φ), we perform a counting procedure by moving the vortex
parallel to itself, covering a square region with side l, with steps of an amount dh. We
identify the displacement of the vortex from the initial position with (λ,κ), and for
each new position we count the number of intersections N(λ,κ) that the vortex has
with the tubes.

This problem becomes simpler (and is geometrically equivalent) if we consider
the fluxtube as a line without dimension, while the vortex is a cylinder with a capture
radius rc = ξp+ξn. This means that every time a “flux–line” falls into the cylinder that
represent the neutron vortex we must increment our counter. The fig. 4.2 shows with
color codes the number of interaction as a function of the position (λ,κ). This plots
represents the extreme case when the vortex is perfectly aligned with the fluxtubes array,
namely θ = φ = 0: as expected a single interaction is recorded only at correspondence
of a tube, creating a regular simple pattern. The coordinates λ and κ are given in
Rwsunits and the dark dots are so small because the capture radius is tiny compared
to the spacing between tubes: the benchmarks by Link (2003) in fact indicate that
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Figure 4.3: Number of captured pinning sites N(λ,κ) when the vortex is non–aligned with
the lattice (we selected a random orientation). The color codes are described in the sidebar.
For details on the parameters used to produce this plot see fig. 4.2

rc ∼ 0.025 Rws. On the other hand, fig. 4.3 shows a more general situation, in which
the vortex is randomly aligned with the lattice: we can see an alternation of light and
dark lines that represent zones where the number of interactions reaches its minimum
and maximum value respectively.

The single vortex–fluxtube interaction can be repulsive (R) or attractive (A) de-
pending on whether the magnetic fields are aligned or antialigned: this fact reflects in
a different sign of the quantity Ep that can be positive (R case) or negative (A case).
We must cover these two cases separately, in order to correctly evaluate the pinning
force per unit length. In the attractive regime, we identify the bound positions with
the displacements (λ,κ) of the vortex for which the number of interactions is maximal,
i.e. N(λ,κ) = Nbound =max(N(λ,κ)). On the contrary, the repulsive situation focuses
on the minimum number of interaction (this defines the bound positions), and this
means that Nbound =min(N(λ,κ)).

Once we have dealt this distinction, we can properly calculate the force with a
generalized approach that covers both cases. In fact the change in energy obtained by
moving the vortex away from its bound configuration will be:

∆E(θ ,φ) = Ep(Nfree(θ ,φ)− Nbound(θ ,φ)) (4.3)

where we take Nfree as the average number of interactions counted in all visited
displacements: Nfree(θ ,φ) = 〈N(λ,κ)〉. The force (per unit length) required to move
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away the vortex from the bound position is therefore easily calculated as

fL(θ ,φ) =
∆E(θ ,φ)
L D(θ ,φ)

, (4.4)

where D(θ ,φ) is the average distance between the bound and free configuration.
Until now, the procedure described is the same one that has been applied also for

the pinning in the inner crust of the neutron star. The calculation of the mean distance
D(θ ,φ) is however a little different. In chapter 3 we have used the surface density of
the bound configurations, but here the pattern showed in fig. 4.3 suggests another
approach. The degeneration of the lattice in the z direction reflects in density plot
with alternating “vertical” stripes of positions with equal energy. The fact that these
stripes are oriented vertically depends on our choice of the reference system for (λ,κ);
with a different choice the stripes would be oblique, but the model remains valid and
consistent. Therefore we count the number nNbound

of disjoint line–like regions for
which the number of intersection is Nbound and use the linear density of these, i.e:

D(θ ,φ) =
l

nNbound
(θ ,φ)

, (4.5)

where l is the side of the square region covered with the parallel transport procedure.
The last step of our algorithm is averaging over all possible orientation, thus performing
an integration over the whole solid angle dΩ= sinθ dθ dφ.

As described before, a single interaction affects the energy of the configuration
by a fixed amount Ep, no matter at what angle, between vortex and fluxtube, the
intersection occurs. A better approach could be considering the intersecting volume,
but unfortunately this picture would be computationally intractable. A reasonable
solution can be found by following the idea that this intersecting volume leads to a
factor 1/ sinθ that must be included in the calculations. We can therefore define a
new quantity Eeff which is the effective energy per interaction and has the following
expression:

Eeff = Ep
| cosθ |
sinθ

(4.6)

The factor | cosθ | in this equation cames from the expression of the magnetic energy
between two dipole. The final equation for the pinning force per unit length is then:

fL =
1

4π
Ep

∫

Nfree(θ ,φ)− Nbound(θ ,φ)
L D(θ ,φ)

| cosθ |
sinθ

dΩ. (4.7)

4.2.1 Flux–tubes entanglement

Until now we have considered straight flux tubes that are parallel to the z axis and
therefore they form a regular oriented array. Anyway, as pointed out by Ruderman
et al. (1998); Link (2003) this array has likely a much more complicated structure
because the flux tubes are twisted and entangled. Of course this effect can impact
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Figure 4.4: Schematic representation of a
vortex immersed in the lattice used to model
the entanglement. We can see the different
planes of parallel fluxtubes.

over the results of our model and we want now to take into account this aspect. In
order to accomplish this requirement, we change the lattice structure by considering
alternating planes of tubes perpendicular to the y direction. Each plane contains
parallel tubes oriented with an angle α relative to the z direction. The sequence of
the angles α is {0,−π/4, 0,π/4, 0,−π/4, . . . }. This configuration, showed in fig. 4.4,
permits us to model the entanglement, maintaining a net magnetic field oriented as
the z direction. The spacing between these planes is the same of the spacing between
the flux–tubes in one plane, i.e. 2 Rws: this guarantees that the distance between two
tubes is always greater than this value.

With this new configuration we can apply the same counting procedure, by moving
a randomly oriented vortex with a parallel transport operation. The typical density
plot is different from the case without entanglement, because the alternate planes
of tubes brake the degeneracy showed in fig. 4.3. The plot of fig. 4.5 represent the
situation of a randomly oriented vortex when the entanglement is taken into account.
The details of the model described until now remains valid except for eq. (4.5) which
specifies our definition of the average distance between the bound configuration, and
must be corrected. We adopt the same approach used for the crustal pinning (see
eq. (3.18) in chapter 3), as the typical patterns in the density plots are similar. The
number nNbound

, in this case, is therefore the number of disjoint regions for which
the number of intersection between the vortex and the flux–tubes is Nbound. In this
context we consider two points spaced by less that η= 2ξp as belonging to the same
disjoint region, for the reasons treated in chapter 3 (we will discuss mode deeply about
the parameter η in the following section). The average spacing between extremal
conditions is

D(θ ,φ) =
l

Æ

πnNbound
(θ ,φ)

(4.8)

as they are uniformly distributed in the (λ,κ) plane. The expression for the force per



52 Chapter 4. Core pinning

Figure 4.5: Number of captured pinning sites N(λ,κ) when the vortex is non–aligned with
the lattice (we selected a random orientation) when the entanglement is considered. The color
codes are described in the sidebar. For details on the other parameters used to produce this
plot see fig. 4.2.

unit length of a single orientation remain identical to eq. (4.4), and the average over
the whole solid angle leads to the final result:

fL =
1

4π
Ep

∫

Nfree(θ ,φ)− Nbound(θ ,φ)
L D(θ ,φ)

| cosθ |
sinθ

dΩ. (4.9)

4.3 Results

In eq. (4.7) we can see that Ep is factorized and, from the discussion of the previous
section, we know that all the counted quantities depend only on the capture radius rc .
A specific discussion must be done for the disjoint parameter η because this quantity
apparently doesn’t depends on rc, as we take it to be η = 2ξp. Anyway it’s easy to
show that this is not true. In fact, the neutron and proton coherence lengths can be
expressed in the following way (Mendell, 1991):

ξp ≈ 16 x1/3
p ρ

1/3
14 ∆p(MeV)−1fm (4.10)

ξn ≈ 16 x1/3
n ρ

1/3
14 ∆n(MeV)−1fm (4.11)
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where we have neglected the entrainment in the core; moreover xp and xn represent
respectively the proton and neutron fraction over the total density andρ14 is the density
expressed in 1014 g cm−3 units. By taking the realistic benchmarks ∆n =∆p = 1 MeV,
xn = 0.95, xp = 0.05 and ρ14 = 2.8 we obtain ξp ≈ 8.5 fm and ξn ≈ 22 fm. The

expressions provided indicate also that (ξp/ξn) '
�

xp/xn

�1/3
and therefore we can

express the capture radius as

rc = ξp + ξn =

�

1+

�

xn

xp

�1/3�

ξp (4.12)

and then, as we take η= 2ξp, we have

η=
2

1+
�

xn
xp

�1/3
rc (4.13)

With realistic values for the proton and neutron fractions in the core of a neutron star
we obtain η' 0.55rc . We can thus express all the lengths in Rwsunits (for this purpose
we will write eL to indicate L/Rws) and define a new quantity ef

eL that depends only on
the parameter erc = rc/Rws. Then the force per unit length fL (in dyn cm−1) can be
obtained as fL = ef

eL(erc)Ep/R
2
ws, where Ep must be expressed in MeV and the radius of

the Wigner–Seitz cell in cm.
In the following, the pinning force per unit length will be given thus as ef

eL because
this generalized version gives the possibility of calculating the result for specific
values of Ep and Rws. Of course the dependence of ef

eL on the vortex length L can’t
be removed, therefore the four cases indicated will be explored, namely 1000 Rws,
2500 Rws, 5000 Rws and 10 000 Rws. The calculations rely on the appropriate choice
of the parameter l (side of the square region considered during the parallel–transport
operation) and of the grid step dh. In fig. 4.6 we show the convergence of our results for
l and dh. The first parameter affects the calculation of the factor D because increasing
l reflects in a more accurate evaluation of the density of maximal position: covering a
square region of side l = 16 Rws (as done in the following) is enough to count a good
value of bound sites, from the statistical point of view. In the meanwhile a tiny grid
step dh= 0.005 Rws is required to resolve all the bound positions, for the smallness
of the capture radii used. A further reduction of this parameter wouldn’t change the
result thanks to the fact that we consider only the disjoint regions, regardless of how
densely they are sampled.

The figs. 4.7 to 4.9 show our calculations with the parameters indicated, for
different vortex lengths. We cover both the attractive case (A, negative values of
the force) and the repulsive one (R) by evaluating the pinning force per unit length
ef
eL as a function of the capture radius rc: the dots in the plots correspond to the

configurations considered. Every case is explored with the two lattice types, to cover
both the non–entangled and the entangled condition. The confidence levels of 1σ
are also plotted: given that we are dealing with a counting procedure, we can simply
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Figure 4.6: Convergence test for the parameters l and dh used in our calculation. In this
figure we can see the pinning force per unit length ef

eL for different values of the capture radius
rc: increasing the value of l the curves become closer, showing the convergence of the model.
An analogous effect is obtained by reducing the step size dh in the parallel transport operation.
These pictures correspond to a vortex of length L = 5000 Rws.

assume that the result of our integration for a single orientation is nNbound
±pnNbound

.
We can then propagate this error in eqs. (4.4) and (4.7) to obtain the required result
ef
eL ±σef

eL
. The explored range for the capture radius is (5× 10−3÷0.7)Rws: this choice

is driven to the fact that for a magnetar rc/Rws is much bigger than in a normal pulsar.
In this work we consider rc = 30 fm for both cases, but of course the magnetic field in
eq. (4.2) change significantly from B12 = 1 for a pulsar (and therefore rc = 0.02 Rws)
to B12 = 1000 (which corresponds to rc = 0.6 Rws) for a magnetar.

The curves in these plots are the results of a fitting procedure that provides an
analytic expression for the quantity ef

eL(rc). We fit a non-linear function f (x) to the
calculated values of ef

eL for different choices of rc/Rws: the function used is

f ∗ = Ax + B [log(1+ x)]W + C (4.14)
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Figure 4.7: Plot of the calculated values of ef
eL (for eL = 1000) as a function of the capture

radius rc (in units of Rws). The error bars for the estimated errors on ef
eL are also shown. The

left picture refers to the simple regular lattice of flux–tubes, while on the right we have taken
into account also the entanglement by using the described lattice. The fitting curves f ∗ for
both the repulsive (above) and attractive (below) regimes are also shown (see table 4.1). The
squares indicate the inferred values for a typical neutron star, while the triangles are referred
to the capture radius for a magnetar (see text for details).

where A, B, C and W are the parameters of the fit and x is the fit variable, which
describes the capture radius in Rws units. The table 4.1 reports the obtained values
which describe the curves. All the curves are finally plotted together in fig. 4.11 for
the non–entangled case, and in fig. 4.12 for the entangled one. As expected, a longer
vortex is related to a smaller pinning force per unit length. It’s also worth noting
that there is no significant difference in the order of magnitude of the result from
the attractive configuration to the repulsive one. This means that the force per unit
length, for a given capture radius, remain roughly the same if we consider the single
site interaction attractive or repulsive. Moreover we note that there is no significant
difference in the order of magnitude between the two lattice configurations (with or
without the entanglement) taken into account: the following considerations about the
impact of these result on pulsar glitch models are valid for both cases.
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Figure 4.8: Plot of the calculated values of ef
eL (for eL = 2500) as a function of the capture

radius rc (in units of Rws). See fig. 4.7 for other details.
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Figure 4.10: Plot of the calculated values of ef
eL (for eL = 10000) as a function of the capture

radius rc (in units of Rws). See fig. 4.7 for other details.
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Figure 4.11: Plot of the fitting curves of table 4.1 obtained with the simple lattice without
considering the entanglement effect.
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Table 4.1: Fit parameters for the function f ∗ = Ax+B [log(1+ x)]W +C . Four different vortex
lengths L are considered for both the attractive (A) and repulsive (R) regimes. We give the
results also for the entangled configurations.

A B W C
[10−7] [10−6] [10−8]

N
o

En
ta

ng
le

m
en

t

L = 1000 Rws A 6.546 −0.986 1.325 −3.610
R −11.230 1.695 1.296 4.814

L = 2500 Rws A 2.667 −0.396 1.319 −1.778
R −4.044 0.611 1.301 2.328

L = 5000 Rws A 1.496 −0.218 1.297 −1.128
R −1.818 0.274 1.297 1.473

L = 10 000 Rws A 0.865 −0.119 1.252 −0.798
R −0.803 0.121 1.293 1.083

W
it

h
En

ta
ng

le
m

en
t L = 1000 Rws A 9.315 −1.403 1.328 −6.051

R −21.590 3.253 1.289 8.503
L = 2500 Rws A 3.924 −0.585 1.330 −3.198

R −8.319 1.249 1.284 3.681
L = 5000 Rws A 2.214 −0.328 1.335 −2.194

R −3.137 0.470 1.285 1.912
L = 10 000 Rws A 0.981 −0.141 1.348 −1.542

R −0.770 0.113 1.295 1.087

4.4 Conclusions

The results presented here are given in such way that they don’t depend on the
particular value of the Wigner–Sietz cell radius and of the single interaction energy:
they are valid over a large range for the capture radius rc and can be specialized when
needed. However it’s interesting to estimate the force, using the benchmarks presented
previously (see also Link (2003)) that are so far the most realistic indication for the
values of Ep, Rws and rc in the core of a neutron star. These results are reported in
the upper part of table 4.2. Similarly we evaluate the same quantities for a magnetar
(lower part of the table), for which we take a different capture radius, as described
before. With regard to the values related to the pulsar case, they are significantly
lower (more than two orders of magnitude) that the ones obtained with analogue
technique of the crustal pinning (see chapter 3): this justify the assumption used in
the snowplow model (see chapter 5) where we consider that the part of a vortex which
threads the core of the neutron star is not subjected to a pinning–like interaction.

Anyway, a comparison of these results with the ones obtained for the crust can
reveal an interesting aspect of the mesoscopic pinning force. In both cases we have
seen that the geometric factor ef

eL (which depends only on the structure of the lattice
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Figure 4.12: Plot of the fitting curves of table 4.1 obtained with the lattice constructed to take
into account the entanglement effect.

and doesn’t contain any scale parameter) has always the same order of magnitude
of ≈ 10−8 dyn cm MeV−1 ≈ 0.006, regardless of the type of lattice used. This means
that the pinning force per unit length is overall dependent on the term Ep/R

2
ws; in

other words, as the pinning energy per site Ep is nearly the same in all configurations,
the differences in the final results for the pinning in the crust and core (both with
and without entanglement) must be addressed to the different scale factor Rws which
describes the spacing between the lattice sites.
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Table 4.2: In this table we specialize the results of the fitting procedure of table 4.1 for the
typical benchmarks of a pulsar and a magnetar.

rc Ep Rws A/R L fL fL
[fm] [MeV] [fm] [Rws] [1012 dyn/cm] [1012 dyn/cm]

No Ent. With Ent.

Pu
ls

ar

30 5 1500 A 1000 6.323 11.015
2500 3.263 6.068
5000 2.142 4.279

10000 1.583 3.149

30 5 1500 R 1000 8.043 13.901
2500 4.200 6.288
5000 2.840 3.529

10000 2.219 2.229

M
ag

ne
ta

r

30 5 50 A 1000 1139.737 3294.471
2500 818.247 2152.945
5000 666.678 1747.798

10000 459.340 1479.343

30 5 50 R 1000 2330.755 3674.238
2500 1863.837 2274.851
5000 1705.225 1754.075

10000 1628.853 1452.359



PART II

THE SNOWPLOW MODEL





CHAPTER 5
The “snowplow” model

In this chapter we present the snowplow model, a fully consistent model that can
explain the large glitches (∆ν/ν≈ 10−6−10−5) recorded in a subset of pulsars known
as giant glitchers. This model has been proposed by Pizzochero (2011) and applied
analytically to describe the average properties of giant glitchers such as the inter-glitch
waiting time, the step in frequency and that in frequency derivative. The model has
been initially developed in Newtonian gravity and for a polytropic equation of state, but
here we want to we extend the model to realistic backgrounds, obtained by integrating
the relativistic equations of stellar structure and using physically motivated equations
of state to describe matter in the neutron star. Especially the pinning forces used is of
the orders of magnitude suggested by the calculations shown in the previous chapters,
i.e. ∼ 1015 dyn cm−1.

We find that this more detailed treatment still reproduces the main features of
giant glitches in the Vela pulsar and allows us to set constraints on the equation of
state. In particular we find that stiffer equations of state are favoured and that it is
unlikely that the Vela pulsar has a high mass (larger than M ≈ 1.5 M�).

5.1 Pinning and vorticity

One of the most important ingredients of the model is clearly fpin(ρ), the pinning force
per unit length that acts on the vortex line as a result of its interaction with the lattice
(in the inner crust). As shown in the previous chapters, although the pinning force
per pinning site can readily be evaluated from the knowledge of the pinning energy
(Alpar, 1977; Epstein and Baym, 1992; Donati and Pizzochero, 2003, 2004, 2006),
the force per unit length of a vortex, which is the quantity that must be equated to the
Magnus force in order to understand whether a vortex is pinned or free, is much more
complex to evaluate, as it depends on the rigidity of a vortex and on its orientation
with respect to the crustal lattice. In chapter 3 we have have performed numerical
simulations to evaluate this quantity, taking into account different orientation of the
bcc lattice. We have found that the order of magnitude of the maximum pinning force
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Figure 5.1: The profile of the pinning force fpin(ρ) for the two cases β = 1 and β = 3, with a
choice for the maximum of fPM = 1015 dyn cm−1.

fPM is approximately 1015 dyn cm−1 and that there is no significant difference for the
pinning force per unit length in considering vortex–nucleus interaction attractive or
repulsive in different regions. Another interesting result found regards the position of
the maximum fPM that is dependent on the pairing gap profile used. It is known that
the polarization effects of the neutron medium reduce the paring gap, but there is yet
no agreement on how strong this suppression will be, although it seems reasonable to
divide the ∆(ρ) by a factor β between 2 and 3. Here we consider here the case β = 1
and β = 3, as we have done also previously. The results in chapter 3 suggest that for
the two corresponding profiles fpin(ρ) the maximum is shifted at different densities,
even if the parameter β is, of course, only a scaling factor on the same pairing gap
profile. The precise height of the maximum thus depends on the vortex tension (and
thus “rigidity length”) used in the model (although the order of magnitude remains
1015 dyn cm−1) and does not affect the location of the maximum (once β is fixed).

In this work we therefore constrain the exact value of the maximum amplitude of
the pinning force by fitting the average waiting time between giant glitches in the Vela
pulsar, as will be explained in the next sections. In fig. 5.1 we show the two pinning
profiles fpin(ρ) used in this work for β = 1 and β = 3 (plotted here with the choice
of fPM = 1015 dyn cm−1). The case β1 has a maximum at ρ ≈ 0.325ρ0, while in the
β3 case the maximum is at ρ ≈ 0.14ρ0. In both configurations we take the pinning
force to vanish at ρcore and ρd , due to the fact that the lattice exists only in the crust
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Figure 5.2: A schematic representation of
the geometry of our problem (out of scale).
The whole shaded area represents the inner
crust of the NS, where vortexes are pinned
to the lattice. The darker part indicates the
strong pinning region, where the vortexes are
subjected to pinning for their whole length.
The star is threaded by straight continuous
vortexes.

and that in the outer crust there are no free neutrons to produce vortexes. In this
chapter we neglect any kind of pinning interaction in the core of the neutron stars:
the results in chapter 4 supports this approach; anyway we will discuss this possibility
in the following chapter.

A single vortex line will be described parallel to the rotational axis and distant
from this axis by a distance x , that represent the cylindrical radius. We consider also
the vortex line to be continuous throughout the core: there is, in fact, no theoretical
evidence for the existence of an interface of normal matter between the core and the
inner crust, that can justify the hypothesis of a core with vorticity separated from the
crust (Zhou et al., 2004). Naturally the vortexes may not be straight and parallel to
the rotational axis, as turbulence may develop in the stellar interior, especially in the
presence of strong pinning (Link, 2012a,b). We will not consider this possibility here,
but will discuss some of its likely consequences in the following.

With the above hypothesis, we can identify two (cylindrical) pinning regions based
on the strength of the pinning interaction. The strong pinning region is defined by
x > Rc and corresponds to the part of the star in which the vortexes lie entirely in the
inner crust region, and are therefore subject to pinning for their whole length. On the
other hand, in the weak pinning region (x < Rc), a vortex line is pinned only at its
extremities that are immersed in the crust, while there is no pinning interaction in the
core (see fig. 5.2).
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5.2 The model

Thanks to the axial symmetry of the problem, we can describe the macroscopic quanti-
ties of the rotating superfluid in terms of the variable n(x) that represents the number
of vortexes per unit area, at a distance x from the rotational axis of the star. The
angular velocity Ωs(x) of the superfluid component of the star is in fact proportional
to the number N(x) of vortexes enclosed in a cylindrical region of cylindrical radius x ,
and can be expressed as:

Ωs(x) =
κ

2π
N(x)

x2
=

κ

2πx2

∫

x
n(x ′) da′ (5.1)

where the integration is performed on the area enclosed by the radius x . This result
follows from the quantization of the circulation per vortex line that is encoded in the
constant κ= πħh/mN .

Once a star has been fixed by the choice of an EoS and the integration of the TOV
equations, the model requires, as a first step, the evaluation of the pinning force for the
whole length of a generic vortex line. This can be obtained starting from the function
fpin(ρ) discussed previously. Let us imagine a vortex line parallel to the rotational axis
of the star and distant x: the total pinning acting on it is given by the integration of
fpin(ρ) over its length:

Fpin(x) = 2

∫ `(x)/2

0

fpin

�

ρ
�p

x2 + z2
��

dz (5.2)

where `(x) = 2
q

R2
ic − x2 is the length of the vortex line, obtained considering that

the vortex line ends at the inner–outer crust surface. To understand better the role of
the pinning force, we choose a neutron star of 1.4 M� with SLy equation of state and
we plot the function Fpin(x) for x from 0 to Ric (fig. 5.3, corresponding to β = 1 and
fPM = 1015 dyn cm−1).

The pinning interaction is not the only force that acts on a vortex line. As shown in
Ruderman and Sutherland (1974), pinning prevents the vortex line from moving with
the local superfluid velocity because the vortex line is compelled to have the velocity
of the normal matter component (the normal component rotates as a rigid body with
angular velocity Ωc). This fact give rise to a Magnus force:

fm = κρs ez × (vv − vs) (5.3)

where vv is the velocity of the vortex line and vs is the superfluid velocity; here fm
must be intended as force per unit length.

In this expression ρs is the density of the superfluid fraction of the star. In fact
the whole star can be divided in two components: the normal one (which includes
also the protons in the core as they are coupled with the crust by the magnetic field)
and the superfluid one, on which the Magnus force will act. It thus follows that
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Figure 5.3: The total pinning force Fpin(x) integrated on the whole length of a vortex line
distant x from the rotational axis of the star. This plot is obtained taking a star of 1.4 M� and
SLy EoS. The pinning profile used is the β = 1 case plotted in fig. 5.1.

ρs = (1 − xp)ρ where xp is the proton fraction at a given density. Of course this
quantity is a microphysical property of matter and for this reason is strictly dependent
on the EoS used. As this information is not provided with the EoSs used, we use the
results of Zuo et al. (2004) who give the proton fraction xp(ρ) as a function of the
total density in the case of two–body interactions and also in the case of three-body
forces. We use both the xp(ρ) relations of Zuo et al. (2004) but we consider also a
third case where the proton fraction is a constant that does not depend on the total
density. We also introduce the parameter Q that represent the superfluid fraction of
the star. It is defined for the general case as:

Q = Is/Itot =

∫ R
0 r4(1− xp(ρ))ρ(r) dr

∫ R
0 r4ρ(r) dr

(5.4)

where we have used eq. (2.12); Itot is the total moment of inertia and Is is the moment
of inertia of the superfluid component. In the case of a constant proton fraction it then
follows that Q = 1− xp. The average value is Q ≈ 0.95 and therefore we shall test our
model also with this prescription.

The Magnus force in eq. (5.3) has only one component in the radial direction (vv
and vs are, in fact, directed along eθ , so the cross product is directed along ex) and
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therefore can be rewritten as:

fm(x , z) = fm(x , z)ex = −κρs(x , z)x∆Ω(x)ex (5.5)

where the difference of the two velocities is written as:

∆v(x) = x∆Ω(x) = x [Ωc −Ωs(x)]

and depends only on the coordinate x , as described by eq. (5.1). This quantity is
negative between two glitches because the normal component spins slower that the
superfluid one; indeed the Magnus force is a hydrodynamical lift that pushes the
vortex outward from the rotational axis. The key point here is the fact that the normal
component spins down as a consequence of the loss of energy by electromagnetic
radiation of the star: the result is an increase of fm(x , z) in the time interval between
glitches.

The same integration performed with fpin over the length of the vortex can be done
with the Magnus force. We can consider the total Magnus force acting on a vortex line
distant x from the rotational axis:

Fm(x) = 2

∫ `(x)/2

0

fm(x , z) dz

= 2κx∆Ω(x)

∫ `(x)/2

0

ρs

�p

x2 + z2
�

dz. (5.6)

The basic idea here is to compare the pinning force and the Magnus force to find
the critical lag ∆Ωcr(x) that represents the depinning condition: when the actual lag
between the two components of the stars reaches the value ∆Ωcr at some point with
cylindrical radius x , the vortexes here are unbound from the lattice, as the Magnus
force now exceeds the pinning interaction that held the vortexes in place:

Fpin(x) = Fm(x) =∆Ωcr(x)F
∗
m(x) (5.7)

Here F∗m(x) = Fm(x)/∆Ωcr(x) and it is plotted in fig. 5.4 using the same reference star
as in fig. 5.3. The important quantity is therefore the critical lag that can be easily
evaluated as:

∆Ωcr(x) =

∫ `(x)/2
0 fpin

�

ρ
�p

x2 + z2
��

dz

κx
∫ `(x)/2

0 ρs

�p
x2 + z2

�

dz
. (5.8)

In fig. 5.5 we plot the critical lag for sample stars from table 2.2.
It is important to point out that the lag shows a peak ∆Ωcrmax = ∆Ωcr(xmax) in

a region that corresponds to the inner crust, that is the region where the pinning
is stronger. In this region our estimate of ∆Ωcr(x) is reasonable since pinning is
continuous along the whole single vortex. This is not the case for the critical lag in
the core, because here pinning acts on vortexes only at their extremities: as explained



5.2. The model 69

0

2.0⋅1023

4.0⋅1023

6.0⋅1023

8.0⋅1023

1.0⋅1024

1.2⋅1024

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

F* m
 [

dy
n]

x [cm]

Figure 5.4: Plot of the expression F∗m(x) = Fm(x)/∆Ω(x) as a function of the cylindrical
radius x . This plot is obtained taking a star of 1.4M� and SLy EoS.

by Pizzochero (2011) this fact is responsible of the weak pinning in this region, even
though we can assume that the system maintains axial symmetry due to the collective
rigidity of vortex bundles(Ruderman and Sutherland, 1974).

As the star slows down, the depinning condition ∆Ω(x)≥∆Ωcr(x) is first reached
in the core: as shown by Link (2009), in this region repinning is dynamically possible
if the lag falls below a critical value (smaller than the one for depinning). This suggest
the following interpretation: in the core, as the star slows down, the vortexes are
continuously depinned and repinned, establishing a dynamical creep that removes the
excess vorticity on short timescales. Furthermore the Magnus force in the interior is
likely to overcome the tension of vortexes and depin them long before the unpinning
condition in the crust is met (Adams et al., 1985; Haskell et al., 2012a). The conclusion
is thus that vortexes in the core can essentially be considered free. In this region
the scattering of electrons off magnetised vortex cores is mainly responsible for the
drag forces and for the short relaxation timescale τc ∼ 1− 10 s (Alpar et al., 1984c;
Andersson et al., 2006): this means that we can consider the normal and the superfluid
components in the core as coupled with a lag of order |Ω̇|τc .

In the time between glitches, the depinning region becomes larger, involving also
the crust: in the inner crust the excess vorticity is repinned and creates a thin vortex
sheet that moves toward the peak: this sheet is pushed outward by the increasing
Magnus force and it stores angular momentum. When the peak is reached, there is no
more pinning interaction that can block the excess vorticity: this vorticity is suddenly



70 Chapter 5. The “snowplow” model

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 1.0 MΟ•  ;  SLy

Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 1.0 MΟ•  ;  GM1

Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 1.4 MΟ•  ;  SLy

Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 1.4 MΟ•  ;  GM1
Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 2.0 MΟ•  ;  SLy

Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

0

2.0⋅10-3

4.0⋅10-3

6.0⋅10-3

8.0⋅10-3

1.0⋅10-2

1.2⋅10-2

1.4⋅10-2

0 2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

M = 2.0 MΟ•  ;  GM1

Δ
Ω

cr
 [

ra
d/

s]

x [cm]

  β1
  β3

Figure 5.5: Plot of the critical lag ∆Ωcr(x) for different stellar models, with varying mass and
equations of state. The pinning profiles used are plotted in fig. 5.1 and we consider both the
case β = 1 and the case β = 3. Note that in both cases (β = 1 and β = 3) the maximum
amplitude of the pinning force is the same, so the difference in the maximum lag for the two
cases is now entirely due to the different position in density of the maximum in the pinning
force profile.
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released and reaches the outer crust. At this moment the angular momentum stored
by vortexes is transferred to the normal component of the star, and this causes the
glitch.

It is straightforward now to evaluate the time interval between two glitches; this
is given by the time needed to create a lag ∆Ωcrmax:

∆tgl =
∆Ωcrmax

|Ω̇|
(5.9)

where Ω̇ is the deceleration of the normal component referred to the pre-glitch steady-
state condition.

The above arguments indicates that, immediately before a glitch, a lag of ∆Ωcrmax
will have been created for x = xmax. This means that we can use eq. (5.1) to express
the number of vortexes stored at the peak in the sheet just before a glitch:

Nv =
2π
κ

x2
max∆Ωcrmax. (5.10)

Due to the particular shape of the critical lag in fig. 5.5, we can assume that in this
moment the excess vorticity in the region x > xmax has been entirely removed by
the Magnus force, and therefore the Nv vortexes are the only ones responsible for
the transfer of angular momentum to the normal component of the star. To evaluate
the angular momentum transfer we start from the definition d L = Ωs(x) dIs. As we
are interested in the angular momentum stored by Nv vortexes at the peak of the
pinning potential, we use the relation in eq. (5.10) and perform the integration on the
cylindrical region xmax < x < Rc to obtain the requested quantity (the integration on
the coordinate x stops at Rc due to the fact that in the outer crust there is no superfluid
component):

∆Lgl = 2κNv

∫ Rc

xmax

x d x

∫ `(x)

0

ρs(
p

x2 + z2) dz. (5.11)

Following the arguments above, at the moment of a glitch only a fraction of the
core superfluidity is coupled to the normal component of the star: in fact, the rise
time of a glitch (τgl) is very short and only the instantaneously depinned fraction of
vorticity in the core can respond to the variation of the angular velocity of the crust.
We introduce the parameter Ygl to encode this fractional quantity. In fact the best
observational upper limit is of τgl < 40s for the Vela 2000 glitch (Dodson et al., 2002),
while an interesting lower limit of τgl > 10−4 ms can be set by the non–detection
of gravitational waves from the Vela 2006 glitch (Warszawski and Melatos, 2012a).
Theoretical estimates suggest that τgl ≈ 1− 10 s (Haskell et al., 2012c).

In the pre–glitch steady–state condition, due to the long timescales involved, we
can assume Y∞ = 1; but during a glitch this quantity cannot be calculated with the
snowplow model as it depends on the detailed short–time dynamics of the vortexes,
and must thus be determined with other approaches. As this is beyond the scope of
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the current work, the quantity Ygl is taken as a parameter of this model, and must be
inferred from the observational data as shown in the next section.

The value Ygl is needed for the evaluation of ∆Ωgl, the jump in angular velocity of
the normal component of the star due to a glitch. This corresponds to the ratio between
the angular momentum transfer ∆Lgl and the effective moment of inertia Ieff of the
coupled fraction of matter during the glitch. One thus has that Ieff = (1−Q)Itot+QYgl Itot
and the requested quantity is therefore:

∆Ωgl =
∆Lgl

Itot

�

1−Q
�

1− Ygl

�� . (5.12)

A further parameter of the glitch that can be calculated is the relative acceleration
of the crust. As illustrated in Pizzochero (2011) the desired relation follows from
variation at the glitch of the Euler equation for the normal component and angular
momentum conservation:

∆Ω̇gl

Ω̇∞
=

Q(1− Ygl)

1−Q(1− Ygl)
. (5.13)

5.3 Results and observations

In this section we test the model proposed here against observations. As the model
has been developed for giant glitches we shall compare our results to observations
of giant glitches in the Vela pulsar. The Vela (PSR B0833-45 or PSR J0835-4510)
has a spin frequency ν ≈ 11.19 Hz and spin-down rate ν̇ ≈ −1.55 × 10−11 Hz
s−1; from relation in eq. (5.9) this value correspond to a maximum critical lag of
∆Ωcrmax = 8.6× 10−3 rad s−1, where we have considered that the average time be-
tween glitches for this pulsar is 2.8 years. The glitch is usually described in terms of
permanent steps in the frequency and frequency derivative and a series of transient
terms that decay exponentially. It is well known that at least three transient terms are
required, with decay timescales that range from months to hours (Flanagan, 1996).
Recent observations of the 2000 and 2004 glitch have shown that an additional term is
required on short timescales, with a decay time of approximately a minute. Given that
the detection in 2004 was only barely above the noise we shall refer to the January
2000 glitch. In this case the jump in angular velocity was of ∆Ωgl = 2.2× 10−4 rad/s
(Dodson et al., 2002, 2007). This is a fairly typical value for giant glitches in the
Vela, and we take it as our reference value. The relative step in frequency derivative
corresponding to the transient term with the shortest decay timescale (1 minute)
for this glitch is ∆Ω̇gl/Ω̇∞ ≈ 18± 6 (1σ error), and we assume that this is a good
approximation to the instantaneous step in frequency derivative at the time of the
glitch.

As explained in the previous section, the model has two free parameters that are
the maximum value of the pinning force value fPM and Ygl: this means that, once a
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Table 5.1: This table gives the fitting parameters fPM (maximum of the pinning force per unit
length) and Ygl (fraction of coupled vorticity at the glitch) for all the considered configurations.
xmax is the position (cylindrical radius) of the maximum critical lag. These values refer to a
constant proton fraction xp(ρ) = 0.05 (the corresponding fraction of moment of inertia due
to the superfluid component of the star is Q = 0.95). Unphysical (negative) values for Ygl
are not reported (see text for details). Since the angular momentum transferred to the crust
during a glitch is strongly dependant on the ratio xmax/Ric (see section 5.3), this quantity is
also reported in table.

β = 1 β = 3

EoS M xmax xmax/Ric fPM/1015 Ygl xmax xmax/Ric fPM/1015 Ygl

(M�) (km) (dyn cm−1) (km) (dyncm−1)

SLy 1.0 10.530 0.938 1.562 0.203 10.724 0.955 0.697 0.027
1.1 10.654 0.945 1.581 0.148 10.829 0.960 0.704 0.009
1.2 10.753 0.951 1.595 0.106 10.910 0.965 0.709 –
1.3 10.827 0.956 1.606 0.074 10.968 0.968 0.713 –
1.4 10.875 0.961 1.613 0.048 11.001 0.972 0.715 –
1.5 10.897 0.965 1.616 0.027 11.010 0.975 0.716 –
1.6 10.889 0.969 1.615 0.011 10.990 0.977 0.715 –
1.7 10.847 0.972 1.609 – 10.937 0.980 0.711 –
1.8 10.759 0.975 1.596 – 10.838 0.982 0.705 –
1.9 10.600 0.979 1.572 – 10.667 0.985 0.694 –
2.0 10.279 0.982 1.525 – 10.332 0.987 0.672 –

GM1 1.0 12.129 0.932 1.798 0.493 12.447 0.956 0.809 0.078
1.1 12.315 0.939 1.825 0.389 12.604 0.961 0.819 0.051
1.2 12.473 0.945 1.849 0.307 12.737 0.965 0.827 0.031
1.3 12.604 0.950 1.868 0.242 12.844 0.968 0.834 0.015
1.4 12.710 0.955 1.884 0.190 12.929 0.971 0.840 0.003
1.5 12.792 0.959 1.896 0.148 12.992 0.974 0.844 –
1.6 12.852 0.962 1.905 0.113 13.034 0.976 0.847 –
1.7 12.890 0.966 1.910 0.083 13.055 0.978 0.848 –
1.8 12.901 0.969 1.912 0.060 13.052 0.980 0.848 –
1.9 12.885 0.972 1.910 0.040 13.022 0.982 0.846 –
2.0 12.836 0.974 1.902 0.023 12.960 0.984 0.842 –
2.1 12.744 0.977 1.889 0.007 12.854 0.985 0.835 –
2.2 12.586 0.980 1.865 – 12.683 0.987 0.824 –
2.3 12.287 0.982 1.821 – 12.367 0.989 0.803 –
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Table 5.2: The fitting parameters given here (defined in table 5.1) refer to the proton fraction
xp(ρ) proposed by Zuo et al. (2004), obtained with two–body forces.

β = 1 β = 3

EoS M xmax xmax/Ric fPM/1015 Ygl xmax xmax/Ric fPM/1015 Ygl

(M�) (km) (dyn cm−1) (km) (dyncm−1)

SLy 1.0 10.530 0.938 1.618 0.212 10.724 0.955 0.727 0.029
1.1 10.654 0.945 1.637 0.152 10.829 0.960 0.735 0.007
1.2 10.753 0.951 1.652 0.105 10.910 0.965 0.740 –
1.3 10.827 0.956 1.663 0.067 10.968 0.968 0.744 –
1.4 10.875 0.961 1.671 0.036 11.001 0.972 0.746 –
1.5 10.897 0.965 1.674 0.010 11.010 0.975 0.747 –
1.6 10.889 0.969 1.673 – 10.990 0.977 0.745 –
1.7 10.847 0.972 1.666 – 10.937 0.980 0.742 –
1.8 10.759 0.975 1.653 – 10.837 0.982 0.735 –
1.9 10.600 0.979 1.628 – 10.666 0.985 0.723 –
2.0 10.279 0.982 1.579 – 10.332 0.987 0.701 –

GM1 1.0 12.129 0.932 1.861 0.522 12.446 0.956 0.843 0.099
1.1 12.315 0.939 1.890 0.415 12.605 0.961 0.854 0.070
1.2 12.473 0.945 1.914 0.330 12.736 0.965 0.863 0.048
1.3 12.604 0.950 1.934 0.262 12.844 0.968 0.870 0.029
1.4 12.710 0.955 1.951 0.207 12.929 0.971 0.876 0.014
1.5 12.792 0.959 1.963 0.162 12.992 0.974 0.880 0.002
1.6 12.852 0.962 1.972 0.124 13.034 0.976 0.883 –
1.7 12.888 0.966 1.978 0.092 13.055 0.978 0.884 –
1.8 12.900 0.969 1.980 0.064 13.052 0.980 0.884 –
1.9 12.885 0.972 1.977 0.039 13.022 0.982 0.882 –
2.0 12.836 0.974 1.970 0.018 12.960 0.984 0.878 –
2.1 12.744 0.977 1.956 – 12.854 0.985 0.871 –
2.2 12.586 0.980 1.931 – 12.683 0.987 0.859 –
2.3 12.286 0.982 1.885 – 12.367 0.989 0.838 –

star has been fixed (by choosing the EoS, the mass M , and the superfluid fraction
relation) we can use two observational quantities to constrain the parameters of the
model and compare further observables to the quantities predicted by calculations. In
particular, for each fixed star, we rescale the maximum of the pinning force in order to
produce the maximum critical lag ∆Ωcrmax required to reproduce the average waiting
time between glitches in the Vela. This allows us to calculate directly and univocally
the angular momentum ∆Lgl from eq. (5.11). As we want to reproduce a glitch of
amplitude ∆Ωgl = 2.2× 10−4 rad/s, eq. (5.12) can be rewritten in the following form:

Ygl =
1
Q

�

∆Lgl

Itot∆Ωgl
+Q− 1

�

, (5.14)

and therefore can be used to fix the coupled fraction of matter during the glitch.
Tables 5.1 to 5.3 give the fitting parameters for all the configurations tested. We can
see that the value of the maximum pinning force fPM does not change significantly
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Table 5.3: This table is analogous to tables 5.1 and 5.2: here the proton fraction used is that
calculated by Zuo et al. (2004) with three–body forces.

β = 1 β = 3

EoS M xmax xmax/Ric fPM/1015 Ygl xmax xmax/Ric fPM/1015 Ygl

(M�) (km) (dyn cm−1) (km) (dyncm−1)

SLy 1.0 10.530 0.938 1.619 0.197 10.724 0.955 0.728 0.011
1.1 10.654 0.945 1.638 0.133 10.829 0.960 0.735 –
1.2 10.753 0.951 1.653 0.080 10.910 0.965 0.740 –
1.3 10.827 0.956 1.664 0.036 10.968 0.968 0.744 –
1.4 10.875 0.961 1.672 – 11.001 0.972 0.746 –
1.5 10.897 0.965 1.675 – 11.010 0.975 0.747 –
1.6 10.889 0.969 1.674 – 10.990 0.977 0.746 –
1.7 10.847 0.972 1.667 – 10.937 0.980 0.742 –
1.8 10.759 0.975 1.654 – 10.837 0.982 0.735 –
1.9 10.600 0.979 1.629 – 10.666 0.985 0.724 –
2.0 10.279 0.982 1.580 – 10.332 0.987 0.701 –

GM1 1.0 12.129 0.932 1.862 0.521 12.446 0.956 0.843 0.095
1.1 12.315 0.939 1.891 0.413 12.605 0.961 0.854 0.065
1.2 12.473 0.945 1.915 0.326 12.736 0.965 0.863 0.042
1.3 12.604 0.950 1.935 0.257 12.844 0.968 0.870 0.022
1.4 12.710 0.955 1.952 0.200 12.929 0.971 0.876 0.006
1.5 12.792 0.959 1.964 0.153 12.992 0.974 0.880 –
1.6 12.852 0.962 1.973 0.112 13.034 0.976 0.883 –
1.7 12.888 0.966 1.979 0.077 13.055 0.978 0.885 –
1.8 12.900 0.969 1.981 0.046 13.052 0.980 0.884 –
1.9 12.885 0.972 1.978 0.017 13.022 0.982 0.882 –
2.0 12.836 0.974 1.971 – 12.960 0.984 0.878 –
2.1 12.744 0.977 1.957 – 12.854 0.985 0.871 –
2.2 12.586 0.980 1.932 – 12.683 0.987 0.859 –
2.3 12.286 0.982 1.886 – 12.367 0.989 0.838 –

with the total mass of the star. In these tables negative values of Ygl are not given as
they would not be physically acceptable: a negative value would mean that there is
not enough angular momentum to produce the required jump in angular velocity, even
if we consider the core vorticity completely decoupled from the normal component of
the star at the time of the glitch.

The remaining tables, numbered 5.4, 5.5 and 5.6, show the physical quantities
that the “snowplow” model permits to evaluate. These are of course the angular
momentum ∆Lgl transferred to the crust during the glitch and the relative step in
frequency derivative. We can see that the order of magnitude for∆Lgl is 1040 erg s, that
is compatible with the upper limits on the glitch energy obtained from observations
of the power wind nebula surrounding Vela (Helfand et al., 2001) and with the
results found in Pizzochero (2011), where the same model is applied analytically
with a polytropic EoS in Newtonian gravity. From these tables one can see that, for
a particular choice of EoS and proton fraction, the angular momentum ∆Lgl stored
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Table 5.4: This table shows, for the considered configurations, the physical quantities that
the “snowplow” model permits to evaluate: the number Nv of vortexes stored at the peak in
critical lag just before the glitch, the angular momentum transferred to the crust ∆Lgl, and
the step in frequency derivative on short timescales ∆Ω̇gl/Ω̇∞. Like table 5.1 (that gives the
fitting parameters used), this one refers to a constant proton fraction that gives Q = 0.95.

β = 1 β = 3

EoS M R Nv ∆Lgl ∆Ω̇gl/Ω̇∞ Nv ∆Lgl ∆Ω̇gl/Ω̇∞
(M�) (km) (1013) (1040 erg s) (1013) (1040 erg s)

SLy 1.0 11.855 3.041 3.889 3.124 3.154 1.216 12.184
1.1 11.830 3.113 3.425 4.242 3.216 1.059 15.950
1.2 11.797 3.171 2.996 5.622 3.265 0.919 –
1.3 11.758 3.215 2.601 7.331 3.299 0.792 –
1.4 11.705 3.244 2.235 9.476 3.319 0.677 –
1.5 11.635 3.257 1.903 12.166 3.325 0.570 –
1.6 11.545 3.252 1.595 15.629 3.313 0.477 –
1.7 11.422 3.227 1.304 – 3.280 0.387 –
1.8 11.260 3.175 1.033 – 3.221 0.304 –
1.9 11.025 3.082 0.771 – 3.121 0.226 –
2.0 10.620 2.898 0.498 – 2.928 0.147 –

GM1 1.0 13.940 4.034 11.480 0.931 4.249 2.741 7.086
1.1 13.943 4.159 10.433 1.384 4.357 2.456 9.128
1.2 13.940 4.267 9.429 1.927 4.449 2.180 11.657
1.3 13.930 4.357 8.481 2.570 4.524 1.958 14.462
1.4 13.913 4.430 7.599 3.330 4.584 1.743 17.882
1.5 13.885 4.488 6.764 4.242 4.629 1.542 –
1.6 13.845 4.530 5.977 5.344 4.660 1.355 –
1.7 13.788 4.557 5.198 6.744 4.674 1.184 –
1.8 13.715 4.565 4.543 8.336 4.672 1.020 –
1.9 13.620 4.553 3.895 10.385 4.651 0.869 –
2.0 13.495 4.519 3.284 12.999 4.606 0.727 –
2.1 13.330 4.455 2.688 16.541 4.532 0.593 –
2.2 13.095 4.345 2.104 – 4.411 0.460 –
2.3 12.713 4.140 1.481 – 4.195 0.327 –

by vortexes decreases with the total mass of the star. This behaviour can be easily
explained, as shown by Pizzochero (2011), in terms of the quantity xmax/Ric shown in
the tables: ∆Lgl is obviously related to the number Nv of vortexes stored at the peak
(in tables 5.4 to 5.6; see also eq. (5.11)) – that however doesn’t change significantly
with the mass – but it depends strongly on the ratio xmax/Ric which increases at higher
masses. In Pizzochero (2011) (fig. 4) it is clearly shown that the angular momentum
stored by the vortexes at the peak decreases rapidly moving the position of the peak
towards the outer crust. The quantity ∆Lgl also depends on the equation of state
used (a stiffer EoS produces higher values of ∆Lgl) and on the pinning profile: the
β = 3 condition, when other variables are fixed, gives lower values for the angular
momentum, accordingly to the fact that the relative position of the peak with respect
to the inner crust radius is higher.
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Table 5.5: The quantities ∆Lgl and ∆Ω̇gl/Ω̇∞ here reported follows from calculation based
on the proton fraction proposed by Zuo et al. (2004) with two–body interactions. The corre-
sponding fitting parameters are shown in table 5.2. Q = Is/Itot is the global superfluid fraction
of moment of inertia.

β = 1 β = 3

EoS M R Q Nv ∆Lgl ∆Ω̇gl/Ω̇∞ Nv ∆Lgl ∆Ω̇gl/Ω̇∞
(M�) (km) (1013) (1040 erg s) (1013) (1040 erg s)

SLy 1.0 11.855 0.948 3.041 4.048 2.962 3.154 1.272 11.609
1.1 11.830 0.945 3.113 3.565 4.036 3.216 1.108 15.210
1.2 11.797 0.942 3.171 3.119 5.362 3.265 0.961 –
1.3 11.758 0.938 3.215 2.708 7.005 3.299 0.828 –
1.4 11.705 0.934 3.244 2.327 9.065 3.319 0.708 –
1.5 11.635 0.930 3.257 1.981 11.650 3.325 0.596 –
1.6 11.545 0.925 3.252 1.660 – 3.313 0.499 –
1.7 11.422 0.920 3.227 1.357 – 3.280 0.405 –
1.8 11.260 0.913 3.175 1.076 – 3.221 0.321 –
1.9 11.025 0.905 3.082 0.803 – 3.120 0.239 –
2.0 10.620 0.890 2.898 0.518 – 2.928 0.153 –

GM1 1.0 13.940 0.966 4.034 11.939 0.856 4.248 2.874 6.713
1.1 13.943 0.964 4.159 10.850 1.292 4.357 2.559 8.719
1.2 13.940 0.962 4.267 9.805 1.814 4.448 2.303 10.982
1.3 13.930 0.961 4.357 8.820 2.433 4.524 2.047 13.792
1.4 13.913 0.959 4.430 7.903 3.164 4.584 1.822 17.063
1.5 13.885 0.956 4.488 7.034 4.041 4.629 1.612 20.994
1.6 13.845 0.954 4.530 6.216 5.101 4.660 1.416 –
1.7 13.788 0.952 4.556 5.463 6.367 4.674 1.237 –
1.8 13.715 0.949 4.564 4.743 7.943 4.672 1.066 –
1.9 13.620 0.946 4.553 4.051 9.948 4.651 0.909 –
2.0 13.495 0.942 4.519 3.415 12.463 4.606 0.760 –
2.1 13.330 0.938 4.455 2.796 – 4.532 0.620 –
2.2 13.095 0.933 4.345 2.188 – 4.411 0.481 –
2.3 12.713 0.925 4.140 1.552 – 4.195 0.342 –

The “snowplow” model permits to calculate also the step in spin–down rate im-
mediately after a glitch, and this quantity is given in our tables as ∆Ω̇gl/Ω̇∞. It has
been calculated only for acceptable values of Ygl, and must be compared with the
reference value of∆Ω̇gl/Ω̇∞ = 18±6, taken from the Vela 2000 glitch (Gandolfi et al.,
2008). These values suggest that the β = 3 configurations are preferred and this can
be considered in reasonable agreement with the microscopic results found by Gandolfi
et al. (2008): they find that a realistic suppression factor for the pairing gap ∆(ρ) is
β ≈ 1.5 but, crucially, also that the maximum for ∆(ρ) is shifted at lower densities.
This leads to a profile close to what we obtain for β = 3 in our model.

Finally let us remark that the results in tables 5.4 to 5.6, for the (microscopically
favoured) case β = 3, seem to indicate that a stiffer equation of state (GM1) is preferred
as is a lower mass (possibly in the region of 1.4M�) for the Vela pulsar. Naturally
such a quantitative conclusion is difficult to make on the basis of one observation and
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Table 5.6: The proton fraction used for this table is the three–body forces model of Zuo et al.
(2004). The corresponding fitting parameters are shown in table 5.3.

β = 1 β = 3

EoS M R Q Nv ∆Lgl ∆Ω̇gl/Ω̇∞ Nv ∆Lgl ∆Ω̇gl/Ω̇∞
(M�) (km) (1013) (1040 erg s) (1013) (1040 erg s)

SLy 1.0 11.855 0.931 3.041 4.049 2.960 3.154 1.272 11.607
1.1 11.830 0.924 3.113 3.567 4.034 3.216 1.108 –
1.2 11.797 0.916 3.171 3.120 5.360 3.265 0.961 –
1.3 11.758 0.908 3.215 2.708 7.002 3.299 0.828 –
1.4 11.705 0.899 3.244 2.328 – 3.319 0.708 –
1.5 11.635 0.888 3.257 1.981 – 3.325 0.597 –
1.6 11.545 0.876 3.252 1.661 – 3.313 0.499 –
1.7 11.422 0.862 3.227 1.358 – 3.280 0.405 –
1.8 11.260 0.844 3.175 1.076 – 3.221 0.321 –
1.9 11.025 0.820 3.082 0.803 – 3.120 0.239 –
2.0 10.620 0.779 2.898 0.518 – 2.928 0.153 –

GM1 1.0 13.940 0.962 4.034 11.944 0.856 4.248 2.874 6.712
1.1 13.943 0.959 4.159 10.854 1.292 4.357 2.559 8.718
1.2 13.940 0.957 4.267 9.809 1.813 4.448 2.303 10.981
1.3 13.930 0.953 4.357 8.824 2.432 4.524 2.047 13.791
1.4 13.913 0.950 4.430 7.906 3.163 4.584 1.822 17.061
1.5 13.885 0.946 4.488 7.037 4.039 4.629 1.612 –
1.6 13.845 0.942 4.530 6.218 5.099 4.660 1.416 –
1.7 13.788 0.937 4.556 5.465 6.365 4.674 1.237 –
1.8 13.715 0.931 4.564 4.744 7.939 4.672 1.066 –
1.9 13.620 0.925 4.553 4.052 9.944 4.651 0.909 –
2.0 13.495 0.917 4.519 3.416 – 4.606 0.760 –
2.1 13.330 0.907 4.455 2.797 – 4.532 0.620 –
2.2 13.095 0.894 4.345 2.188 – 4.411 0.481 –
2.3 12.713 0.873 4.140 1.553 – 4.195 0.342 –

it would be highly desirable to have information on the short-timescale post-glitch
behaviour not only of other Vela giant glitches, but also of other glitching pulsars.
Note that short term components of the relaxation have not been measured for other
giant glitchers, however the “snowplow” model can be used to predict waiting times,
obtaining results which are consistent with observations (Haskell et al., 2012c).

5.4 Conclusions

In this chapter we have extended the “snowplow” model for giant pulsar glitches of
Pizzochero (2011) to incorporate relativistic background stellar models and realistic
equations of state. In particular we have tested the model for the SLy and GM1
equations of state. Unfortunately these equations of state do not include information
on beta equilibrium, so we use the proton fractions calculated by Zuo et al. (2004). It
would of course be highly desirable to use proton fractions that are consistent with
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the individual equations of state in future work, in order to set stringent constraints.
Furthermore we have used, for the first time, the realistic profiles for the pinning forces
per unit length calculated in chapter 3, in order to evaluate the amount of angular
momentum that can be transferred to the crust during a glitch.

The model contains three free parameters, the mass of the star M , the fraction of
superfluid that is coupled to the crust during a glitch Ygl, and the maximum amplitude
of the pinning force, fPM. Note in fact that while the location of the maximum is
precisely determined by the microphysical calculations of chapter 3, the actual value
of the maximum can vary by factors of order unity or more as it depends on the
poorly constrained value of the vortex tension. We thus treat it as a normalization and
determine its value by requiring that the waiting time between glitches is of 2.8 years,
as is approximately the case for Vela glitches. We then fit the size of the glitch to an
average Vela glitch to obtain the value of Ygl. In particular we take the value of the
Vela 2000 glitch, ∆Ω= 2.2× 10−4 rad/s (Dodson et al., 2002).

Having determined the free parameters in our model, except for the mass of the
NS which is free, we compare our results to the post glitch step in frequency derivative.
Unfortunately the changes in ν̇ on short time scales after a glitch are observationally
challenging to detect and it has been possible to fit for transient steps in frequency
and frequency derivative on timescales of minutes after a glitch only for the Vela 2000
and 2004 glitch (Dodson et al., 2002, 2007). Given that the detection is only barely
above the noise for the 2004 glitch (Dodson et al., 2007) we fit to the values obtained
for the 2000 glitch, which we assume to be a good approximation of the instantaneous
post glitch behaviour. This justifies our choice of also fitting to the value of the jump
in frequency of the Vela 2000 glitch.

The comparison of the model to the observational constraints first of all highlights
that the general results of the analytic model of Pizzochero (2011) remain valid even
in our more physically realistic approach and the results are in general consistent for
both equations of state for a reasonable range of neutron star masses. The glitch model
presented here thus appears robust and compatible with the observations of giant
glitches in the Vela and is, as shown in Haskell et al. (2012c), compatible with the
average waiting time between giant glitches in other pulsars. This further reinforces
the hypothesis that giant glitches are approximately periodic phenomena that occur
close to the maximum lag that the pinning force can support in the crust, while
smaller glitches may be triggered by random events such as crust quakes (Ruderman,
1976; Ruderman et al., 1998) or vortex avalanches (Warszawski and Melatos, 2008;
Melatos and Warszawski, 2009; Warszawski and Melatos, 2011, 2012a). Furthermore
our results favour lower masses for the Vela pulsar (smaller than 1.5 M�) and stiffer
equations of state. Note however that such a quantitative conclusion is difficult to draw
as not only are we comparing to a single observation but dynamical simulations have
also shown that superfluid mutual friction will contribute significantly to the short
term post-glitch spindown as may friction at the crust/core interface (these aspects
will be discussed in chapters 8 and 9).





CHAPTER 6

Investigating superconductivity
with the snowplow model

The high density interior of a neutron star is expected to contain superconducting
protons and superfluid neutrons. Theoretical estimates suggest that the protons could
form a type II superconductor in which the stellar magnetic field is carried by flux tubes.
The strong interaction between the flux tubes and the neutron rotational vortexes
leads, in this case, to strong pinning, i.e. vortex motion could be impeded. This has
important implications especially for pulsar glitch models as it would lead to a large
part of the vorticity of the star being decoupled from the “normal” component, to
which the electromagnetic emission is locked.

In the chapter 4 we have seen that the this pinning interaction seems very low and
therefore negligible. In this regard, in the previous chapter the snowplow model has
been developed and applied without considering any kind of pinning force in the core
of the neutron star. Anyway, we can explore the consequences of strong pinning in the
core on the “snowplow” model, making use of same realistic equations of state and
relativistic background models (as done in the previous chapter) for the neutron star.
We find that in general a large fraction of pinned vorticity in the core is not compatible
with observations of giant glitches in the Vela pulsar. The conclusion is thus that either
most of the core is in a type I superconducting state or that the interaction between
vortexes and flux tubes is weaker than previously assumed (in agreement with the
results of chapter 4).

6.1 Introduction

Neutron stars allow us to probe the state of matter in some of the most extreme
conditions in the universe. Not only can the density in the interior of these very
compact objects exceed nuclear saturation density, but NSs also host some of the
strongest magnetic fields in nature, with intensities of up to ≈ 1015 G for magnetars.
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Not surprisingly, modelling such complex objects requires the use of some poorly
understood physics.

In particular the star will rapidly cool below the critical temperature for the
neutrons to be superfluid and the protons to be superconducting. The protons of
the outer core are predicted to form a type II superconductor (Migdal, 1959; Baym
et al., 1969), in which the magnetic flux is confined to flux tubes, inside which the
magnetic field strength is of the order of the lower critical field for superconductivity,
Bc ≈ 1015 G. However, above a critical density of approximately ρc ≈ 3× 1014 g/cm3,
one expects a transition to type I superconductivity, in which the formation of fluxtubes
is no longer favourable but rather the magnetic field is contained in regions of normal
protons (Sedrakian, 2005). Given that the critical density for this transition is easily
reached in NS interiors it is possible that a sizeable portion of the star may in fact be in
a type I superconducting state (Jones, 2006): this is the case that has been discussed
in chapter 5, where the pinning phenomena was only considered in the inner crust of
the neutron star.

An important issue to address is, however, whether vortexes will only pin to the
crustal lattice or whether they are pinned to flux tubes if the outer core is in a type II
superconducting state (Link, 2003), thus effectively decoupling a large fraction of the
stellar moment of inertia from the crust. Furthermore if vortexes are pinned in the
core this is likely to lead to the onset of turbulence and may play an important role in
pulsar ’timing noise’ (Link, 2012a). The interaction between flux tubes and vortexes
can also have a strong impact on the gravitational wave driven r-mode instability (Ho
et al., 2011; Haskell et al., 2012a) and on NS precession (Link, 2003).

Here we investigate the effect of vortex pinning in the core on the “snowplow”
glitch model by considering a fraction of the core vorticity blocked. We implement the
model with realistic equations of state and relativistic stellar models, as in chapter 5,
and show that, in general, one cannot fit the size and postglitch jumps in frequency
derivative of Vela giant glitches if a large portion of the core vortexes are pinned. This
points towards the fact that most of the core could in fact be in a type I superconducting
state, or that the vortex/flux tube interaction is weaker than previously assumed, as
showed in chapter 4 and as some microphysical estimates suggest (Babaev, 2009).

Furthermore Glampedakis and Andersson (2011) recently showed that vortex
pinning in the core is likely to be a short lived phenomenon that may only be relevant
in a short period of a NS’s life and in magnetars, and in their hydrodynamical model
of giant pulsar glitches Haskell et al. (2012c) also find that vortex pinning in the core
is inconsistent with the observed post-glitch relaxation timescales in the Vela.

6.2 The model

The starting point of our investigation will be the “snowplow” model for glitches of
Pizzochero (2011), which we have explored int he previous chapter and which we
briefly review here. We take the NS to be a two component system, where one of the
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components, the so-called “normal” component, is given by the crust and all charged
components tightly coupled to it by the magnetic field. The other, the “superfluid”,
is given by the superfluid neutrons in the core and crust. The superfluid rotates by
forming an array of quantized vortexes which carry the circulation and mediate an
interaction between the two components known as Mutual Friction, which in the core
can couple the two fluids on timescales of seconds (Andersson et al., 2006). Vortexes
can, however, also be pinned to ions in the crust or flux-tubes in the core (Anderson and
Itoh, 1975; Alpar, 1977; Pines et al., 1980; Alpar et al., 1981; Anderson et al., 1982;
Ruderman et al., 1998; Link, 2003). As a consequence vortex motion is impeded and
the superfluid cannot spin-down, effectively decoupling it from the normal component
which is spinning down due to electromagnetic emission. If a lag builds up between
the superfluid and the normal component this will, however, give rise to a Magnus
force acting on the vortexes, which takes the form fm = κρsΩ̂× (vv − vs), where fm is
the force per unit length, κ = 1.99× 10−3 cm2/s is the quantum of circulation, ρs is
the superfluid density, Ω̂ is the unit vector pointing along the rotation axis, vv is the
velocity of the vortex lines and vs is the velocity of the superfluid. We assume that
the neutrons are superfluid throughout the star and take ρs = (1− xp)ρ, with xp the
proton fraction calculated by Zuo et al. (2004). Once the Magnus force integrated
over a vortex exceeds the pinning force, the vortex will unpin and be free to move out.

We follow the procedure of chapter 5 and integrate the relativistic equations of
stellar structure for two realistic equations of state, SLy (Douchin and Haensel, 2001)
and GM1 (Glendenning and Moszkowski, 1991). We assume straight vortexes that
cross through the core (Zhou et al., 2004) and for the pinning force per unit length
fp we use the realistic estimates of chapter 3 with the profile of fig. 5.1. Balancing
the pinning force to the Magnus force and integrating over the vortex length allows
us to calculate the lag at which the vortexes will unpin in different regions. The
normalization of fp is chosen in such a way as to give an inter-glitch waiting time
Tg = ∆Ωmax/|Ω̇| of approximately 2.8yr for the Vela pulsar, where ∆Ωmax is the
maximum of the critical unpinning lag.

If there is no pinning in the core vortexes will unpin and move out toward the crust,
where they encounter a steeply increasing pinning potential and repin. This leads
to the creation of a thin vortex sheet that moves towards the peak of the potential,
the so-called “snowplow” effect. Once the maximum of the critical lag has been
reached the vortexes can no longer be held in place and the excess vorticity is released
catastrophically, exchanging angular momentum with the normal component and
giving rise to a glitch (Pizzochero, 2011). We assume that this is the mechanism that
gives rise to giant glitches, i.e. glitches with steps in the spin rate ∆Ωgl ≈ 10−4 rad/s
that are observed in the Vela and other pulsars (Espinoza et al., 2011). Smaller glitches
are likely to be triggered by crust quakes or random vortex avalanches (Warszawski
and Melatos, 2008; Melatos and Warszawski, 2009; Warszawski and Melatos, 2011).

We can easily calculate the number of vortexes in the vortex sheet once it has
reached the peak of the potential as Nv =

2π
κ r2

max∆Ωmax, where rmax is the cylindrical
radius at which the maximum of the critical lag is located and ∆Ωmax the value of
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said maximum. The angular momentum exchanged as the vortexes move out and
annihilate is then given by:

∆Lgl = 2κQNv

∫ Rc

rmax

xd x

∫ l(x)/2

0

ρ(
p

x2 + z2)dz (6.1)

where Q = Is/Itot is the superfluid fraction of the moment of inertia, Rc is the radius
of the inner crust where the vortexes annihilate (taken at neutron drip density), l(x)
is the length of a vortex at a given cylindrical radius x and ρ is the density. The glitch
observables can then be derived as

∆Ωgl =∆L/Itot[1−Q(1− Ygl)] (6.2)

and
∆Ω̇gl/Ω̇∞ = [Q(1− Ygl)]/[1−Q(1− Ygl)], (6.3)

where ∆Ωgl is the step in angular velocity due to the glitch and ∆Ω̇gl/Ω̇∞ is the
instantaneous step in the spin-down rate immediately after the glitch, relative to the
steady state pre-glitch spindown rate Ω̇∞. We have also introduced the parameter
Ygl which represents the fraction of superfluid moment of inertia which is coupled
to the crust during the glitch. Given that the rise time τr is very short (less than a
minute (Dodson et al., 2002)) it is likely that only a small fraction of the core will
be coupled to the crust on this short timescale, with the rest of the star recoupling
gradually on longer timescales and giving rise to the observed exponential post-glitch
relaxation (see Haskell et al. (2012c) for a detailed discussion of this issue). The best
observational upper limits on the rise time are τr < 40s (Dodson et al., 2002) from
the Vela 2000 glitch, while an interesting lower limit of τ > 10−4 ms can be derived
from the non detection of a GW signal from the Vela 2006 glitch (Warszawski and
Melatos, 2012a). Theoretical estimates, on the other hand, give τr ≈ 1−10 s (Haskell
et al., 2012a), which thus easily allow for the angular momentum in eq. (6.1) to be
exchanged during the short rise times observed in radio pulsars.

Let us now consider the motion of a vortex if the NS core is a type II superconduc-
tor. As a vortex approaches a flux tube its magnetic energy will increase if they are
alligned or decrease if they are antialigned reasulting in an energy per intersection of
approximately Ep ≈ 5 MeV (Ruderman et al., 1998). Note that we have neglected the
contribution associated with the reduction of the condensation energy cost if a vortex
and a flux tube overlap. This leads to an energy cost per interesection slightly smaller
than that estimated above (of the order Ep ≈ 0.1− 1 MeV) (Ruderman et al., 1998;
Sidery and Alpar, 2009). Vortex motion is thus impeded by the flux tubes, that provide
an effective pinning barrier unless the vortexes have enough energy to cut through
them. The corresponing pinning force per unit length of a vortex has been estimated
to be fp ≈ 3× 1015B1/2

12 dyn cm−1 (Link, 2003), and is balanced by the Magnus force

for a critical relative velocity of wc ≈ 5× 103B1/2
12 cm s−1. This leads to a critical lag

(at a radius of 10 km) ∆Ωc ≈ 5× 10−3B1/2
12 rad/s, where we have assumed an average
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density for the core of ρ = 3× 1014 g cm−3. Given the large value of the critical lag,
comparable to what could be built up in-between Vela glitches, a substantial part of
the vorticity in the core could be pinned.

To account for this effect we shall assume that a fraction of the vorticity in the
core is pinned and does not contribute to the angular momentum stored in the vortex
sheet. This is equivalent to assuming that all the vorticity within a radius Rv = ηRb is
frozen, with Rb the radius of the base of the crust and η a free parameter. We thus
define a fraction of pinned vorticity in the core as ξ= R2

v/r
2
max. The total number of

vortexes in the vortex sheet before the glitch scales accordingly:

Nv = (1− ξ)
2π
κ

r2
max∆Ωmax (6.4)

By using eq. (6.4) in eq. (6.1) we can obtain the angular momentum exchanged during
the glitch and by fitting the size of a glitch, ∆Ωgl, we can derive the coupled fraction
of superfluid

Ygl =
1

Q(1− ξ)

�

∆L
∆Ωgl Itot

+Q− 1

�

. (6.5)

The instantaneous step in the frequency derivative then follows from

∆Ω̇gl

Ω̇∞
=

Q(1− ξ)(1− Ygl)

1−Q[1− (1− ξ)Ygl]
(6.6)

6.3 Results

In order to compare our results with observations we consider the case of the Vela
pulsar. The Vela (PSR B0833-45 or PSR J0835-4510) has a spin frequency ν≈ 11.19Hz
and spin-down rate ν̇ ≈ −1.55× 10−11 Hz s−1. Giant glitches are observed roughly
every thousand days and have relative frequency jumps of the order ∆Ω/Ω ≈ 10−6.
The spin-up is instantaneous to the accuracy of the data, with upper limits of 40 s for
the rise time obtained from the 2000 glitch (Dodson et al., 2002) and of 30 s for the
2004 glitch, although this limit was less significant (Dodson et al., 2007)). The glitch is
usually fitted to a model consisting of permanent steps in the frequency and frequency
derivative and a series of transient terms. It is well known that to fit the data at least
three are required, with decay timescales that range from months to hours (Flanagan,
1996). Recent observations of the 2000 and 2004 glitch have shown that an additional
term is required on short timescales, with a decay time of approximately a minute.
Given that the Vela 2000 glitch provides the most robust observational results, we
shall compare the expression in eq. (6.6) to the step in frequency derivative associated
with the short timescale (1 minute) after the Vela 2000 glitch, which we assume is a
reasonable approximation to the instantaneous post-glitch step in the spin down rate.
The parameter Ygl is obtained from eq. (6.5) by fitting to the Vela 2000 glitch size of
∆Ω/Ω= 2.2× 10−6 (Dodson et al., 2002).
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Figure 6.1: We plot the value of the fractional step in frequency derivative ∆Ω̇/Ω̇ for varying
values of the fraction of pinned vorticity in the core, ξ for SLy and GM1. The parameter β
encodes in-medium polarization effects, as described in the text. For xp we use the results of
Zuo et al. (2004), both those obtained with two-body interactions (case a) and with three-body
forces (case b). The end of the curves in these two cases corresponds to the point after which we
can no longer find a reasonable physical solution. The horizontal line represents the measured
value for the Vela 2000 glitch, and the thin lines are respectively 1σ and 2σ deviations. It is
clear that in general both EOSs and models for the proton fraction are compatible with free
vorticity in the core. As we increase the pinned fraction however it becomes increasingly more
difficult to fit the data, and for ξ > 0.5 no solution can be found at the 1σ level.

In fig. 6.1 we show the results for varying values of ξ, for both SLy and GM1. The
parameter β encodes the reduction of the pairing gap due to polarization effects in
the neutron medium. Recent calculations suggest that polarization reduces the gap
and shifts the maximum to lower densities (Gandolfi et al., 2009), an effect which
in our setting corresponds to the value β ≈ 3, while β = 1 corresponds to a bare
particle approximation. The horizontal lines show the region that is allowed by the
measurements of the step in frequency derivative of the Vela 2000 glitch. It is obvious
that most equations of state and proton fractions can match this value if all vorticity in
the core is free, as was also found in the previous chapter and by Haskell et al. (2012c),
although we note that for the more realistic case of β = 3 and three body cases
included in the calculation of xp, the stiffer equation of state is clearly favored. We
now compare this to the case in which part of the core is in a type II superconducting
state and part of the vorticity is pinned. As we can see from fig. 6.1, as the parameter
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ξ increases it becomes increasingly harder to fit the observed values of ∆Ω̇ and in
most cases this is only possible for a very restricted interval of masses. In general
one cannot obtain a physically reasonable fit if more than half of the vorticity in the
core is pinned. This points to the conclusion that the vortex/flux tube interaction is
weaker than previously assumed and that most of the vorticity in the core is, in fact,
free. This conclusion is compatible with that of Haskell et al. (2012c), who found that
a weak coupling between the superfluid and normal component in the core (as would
be the case if most of the vortexes in the core are pinned) does not allow to fit the
shorter post-glitch relaxation timescales of the Vela. Note that the conclusions of this
Letter and those of Haskell et al. (2012c) are derived in different methods (in this
case calculating the exchange of angular momentum in a static model, in the case of
Haskell et al. (2012c) by fitting the post-glitch relaxation with a dynamical multifluid
model) and are thus independent, save for the use of the pinning forces calculated in
Grill (2011); Grill and Pizzochero (2012).

6.4 Conclusions

In this chapter we have extended the “snowplow” model Pizzochero (2011) discussed
in the previous chapter, to account for the possibility that part of the vorticity in the
core may be pinned due to the interaction between vortexes and flux tubes. We fit
the step in frequency and in frequency derivative of the Vela 2000 glitch to obtain
constraints on the pinned fraction of vortexes in the core and in general find that both
quantities cannot be fitted for reasonable physical parameters if the pinned fraction is
larger than 50%. Although we do not deal with the microphysical details of the vortex
dynamics in the core, our conclusions are quite general. The only quantity that is
needed to evaluate the angular momentum that is exchanged during a glitch is, in fact,
the number of vortexes that are stored close to the peak of the pinning potential in the
crust. As long as the excess vorticity of the core can be transferred to the equatorial
strong pinning region in-between glitches the details of the vortex motion are not
influential.

The general conclusion is that either most of the core is in a type I superconducting
state (and the vortex pinning is negligible (Sedrakian, 2005)), or that the vortex/flux
tube interaction is weaker than previously thought. This is the same conclusion that
Haskell et al. (2012c) come to after fitting the post-glitch short-term relaxation of Vela
glitches with a hydrodynamical model. If such an conclusion is confirmed it would
have serious implications also for NS precession (Link, 2003) and for GW emission
(Haskell et al., 2008; Lander et al., 2012; Ho et al., 2011; Haskell et al., 2012a). Note
that on a microphysical level it is very likely that the interaction between vortexes and
flux tubes is weaker than the previous estimates presented here. These estimates are
upper limits on the strength of the pinning force, as they do not account for the finite
rigidity of vortexes, which could lead to a reduction of a factor 100-1000, as theoretical
estimates in chapter 4 also confirm. Furthermore recent calculations (Babaev, 2009)
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suggest that in the presence of strong entrainment or gapped Σ− hyperons in the
crust the interaction between flux tubes and vortexes will be significantly weaker, and
even in the presence of pinning the superfluid may be coupled to the crust on short
timescales (Sidery and Alpar, 2009).



CHAPTER 7
Measuring neutron star masses

with pulsar glitches

In this chapter we want to extend the snowplow model described previously in order
to overcome its limitations. The paradigm proposed till now use the two component
approach together with a realistic macroscopic scenario (spherical geometry, density
profile from TOV equilibrium with realistic EOSs, density-dependent pinning and
Magnus forces) and with the assumption (microscopically better justified) of contin-
uous vortexes across the core and the crust. The strength of this perspective is its
simplicity, with at the same time the ability of identify a storing mechanism for the
angular momentum of neutron vortexes that it suddenly released to the crust at the
glitch. The angular momentum reservoir is created by the existence of clear peak in
the critical lag profile, obtained by equating the pinning force acting on a vortex with
the Magnus force that tends to push it outward. The plots of fig. 5.5 clearly show this
peak: the strong pinning barrier in the crust and the flat profile in the core (conse-
quence of the assumption of continuous vortexes) suggest the snowplow mechanism.
In the time between two glitches the actual lags builds up and the depinning region
becomes larger, pushing a thin vortex sheet (that actually store the angular momentum
exchanged during the glitch) toward the maximum of the critical lag. When this
maximum is reached we have a glitch because there is no more strong pinning region
that can stop the vortexes from reaching the crust: the vortexes in the thin sheet unpin
simultaneously and a vortex avalanche starts down the peak. The glitch event relaxes
the two components of the star, reducing the lag and allowing the vorticity in the core
to be repinned: this is important because in this way the process can repeat itself.

Following this approach it’s possible to calculate the number of vortexes stored
and their angular momentum (see eq. (5.11)) and consequently the jump size ∆Ωgl of
the glitch. The model relay on two free parameters: the maximum value pinning force
fPM and the fraction of vorticity coupled to the normal crust during the glitch, Ygl. In
chapter 5 we proceeded by fixing the value of fPM in order to reproduce the average
waiting time between glitches observed for the Vela pulsar, while the recorded jump

89
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in Ω̇ was used to infer the value of Ygl (referred to the Vela 2000 glitch, see (Dodson
et al., 2002)).

The snowplow model is a consistent mechanism for vortex accumulation and
thence a realistic description of the angular momentum reservoir, which is needed to
explain the glitch phenomenon. However, it is not a plausible description of the actual
trigger mechanism, since it predicts a constant period between glitches and therefore
it cannot reproduce the wide distribution of intervals between glitches observed in
reality. Moreover, the statistical studies of Melatos and Warszawski (2009) indicate that
the distribution of glitch sizes and times are compatible with the behavior of critical
systems and that several glitch triggers appear as possible (vortex knock–on, acoustic
waves, etc). Therefore, in this revised version of the snowplow model proposed here,
we leave the trigger as a unknown mechanism, whose origin and timing properties
are still to be determined. We use the snowplow scenario of vortex accumulation in
an outward moving sheet to evaluate the angular momentum stored in the crust as a
function of the time passed from the previous glitch. This yields the maximum value of
a glitch if all the excess vorticity removed from the core and accumulated at the sheet
was released at that time and its angular momentum was transferred instantaneously
to the crust.

The main feature of the snowplow model that remains valid here is the vortex
sheet, namely a thin cylindrical shell of more–than–average vortex density, dynamically
out of equilibrium and moving outwards against the pinning potential, driven by the
increasing lag associated to the crust secular spin-down. On one hand, it provides for
the first time a realistic mechanism to store the angular momentum which is necessary
to justify the occurrence of a glitch. On the other hand, the presence of the vortex
sheet may be crucial in the trigger mechanism; indeed, triggering the catastrophic and
simultaneous unpinning of the accumulated excess vorticity appears simpler when
this is concentrated in a thin cylindrical shell, rather than being diffused all across the
crust.

7.1 The entrainment in the snowplow paradigm

In chapter 5 we used a simple profile for the pinning force per unit length that was
scaled in order to obtain the corrected waiting time. Here we leave the trigger as
an unknown mechanism that cause a glitch at a arbitrary time t after the previous
one: there is no prescription to perform a fitting on the pinning force and therefore
we will use here the realistic profiles obtained in chapter 3 for the configuration
L = 5000,β = 3, that is microscopically favoured (see also considerations in chapter 5
and (Gandolfi et al., 2008)). The values used are reported in fig. 3.11 and in table 3.3.

An important aspect that was neglected in the original model is superfluid en-
trainment. As showed by Andersson et al. (2012) the presence of this non–dissipative
coupling between the neutron fluid and the proton one can’t be neglected and it is
important to explain observational data. The effect of entrainment can be represented
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Figure 7.1: Plot of the entrainment effective neutron mass m∗n/mn as a function of the barion
density nb (Chamel, 2006). These values will be used here and in the following to model the
entrainment effect in a neutron star crust.

by a neutron effective mass, m∗n(ρ), and we introduce it in the snowplow model in the
standard way, by reducing locally the neutron-proton velocity lag for pinned vorticity.
We will use for m∗n(ρ) the recent values calculated by Chamel (2012) for the crust of
neutron stars. The values of m∗n are given by the author as a function of the barion
density nb (see fig. 7.1 for a plot of the ratio m∗n/mn versus nb). The barion density
can be related to the density ρ following the considerations suggested by Haensel
and Potekhin (2004) for a thermodynamically consistent EOS that lead to the this
equation:

nb(r) =
1

mn

�

ρ(r) +
P(r)
c2

�

eΦ(r)−Φ(R) (7.1)

where Φ(r) =
p

1− 2GM/(Rc2). As done in previous chapters, we obtain a realistic
star by integrating the TOV equations with SLy and GM1 as equations of state, than
the eq. (7.1) lets us assign a value to the effective neutron mass m∗n for every radius r.

The range of density covered by Chamel (2012) is the typical one of the inner crust
of a neutron star. Recent calculations by the same author (Chamel, 2006) suggest that
the proton effective mass is slightly lower than the bare mass in the core but can be
larger in the crust. This means that the entrainment parameters will vanish close to
the base of the crust (Carter et al., 2006): we can therefore consider the m∗n = mn in
the core of the star.
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In a simple global two fluid model, the entrainment affects the dynamics with a
nondissipative coupling between the fluids that can be modeled with the following
equations (see also Andersson et al. (2012)):

(Ip − εn In)Ω̇p + εn InΩ̇n = −aΩ3
p −Ψ(r) (7.2)

(In − εn In)Ω̇n + εn InΩ̇p = Ψ(r) (7.3)

where Ψ encodes pinning, drag forces and eventually other dissipative interactions.
It’s clear from these equations that a fraction of the neutron component behaves as the
proton one; the coefficient of this coupling is εn that is strictly related to the effective
neutron mass:

εn = 1−Ým∗n (7.4)

where Ým∗n =
m∗n
mn

. In case of perfect pinning, the left side of eq. (7.3) vanishes (it’s easy
to verify that in case εp = 0 the standard condition used in the snowplow model is
reproduced, see chapter 5). This means that even if the vortexes are pinned to the
crust, the macroscopic angular velocity of the neutron fluid decrease as a consequence
of the coupling with the protons. This is the main effect of the entrainment:

Ω̇n = −
εn

1− εn
Ω̇p (7.5)

From this equation it’s possible to calculate the actual lag developed in the star interiors
for a time t after a glitch: we call ω the raw lag expressed as ω = |Ω̇p|t and correct it
to take into account the entrainment:

∆Ω(t) = (Ω̇n − Ω̇p)t =
�

−
εn

1− εn
− 1

�

Ω̇p t =
ω

Ým∗n
(7.6)

As described before, we consider an unspecified trigger for the glitch that happens
at a time t after the previous one. At this time, the lag ∆Ω(t) built by the star has
depinned the inner region of the star, before the vortex sheet that is placed at the
position x∗(t), as explained by the fig. 7.2. In order to estimate the glitch size, we
consider that the angular momentum transferred to the crust is that of the shaded
region in the plot: this represent the excess of vorticity after the vortex sheet that is
completely removed by the catastrophic avalanche. From eq. (2.21) eq. (2.22) we can
express this quantity in the following way:

∆Lgl(t) =

∫

min(ω(t)/Ým∗n,∆Ωcr) x2ρn(x , z) dV (7.7)

where the integration must be done in the cylindrical region outside the vortex sheet
position x∗. With the usual cylindrical coordinates this becomes

∆Lgl(t) = 2π

∫ Ric

x∗
x3 d x

∫ `(x)

0

min(|Ω̇p|t,Ým∗n(x , z)∆Ωcr(x))
ρn(x , z)
Ým∗n(x , z)

dz. (7.8)
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Figure 7.2: This plot shows the critical lag profile of a 1.4M� GM1 star, as a function of the
cylindrical radius x . The shaded region indicates the vorticity involved in the calculation of the
angular momentum ∆Lgl(t) transferred to the crust at the glitch (t represent the interglitch
time).

Now it’s easy to calculate the jump in angular velocity at the glitch, as in chapter 5:
∆Ωgl(t) =∆Lgl(t)/Ieff, where again the effective momentum of inertia used is

Ieff = (1−Q)Itot +QYgl Itot. (7.9)

This approach leaves us with only one free parameter: after choosing the EOS and the
mass of the neutron star, the remaining free quantity is the coupled vorticity Ygl.

The result of this revised snowplow model is a function ∆Ωgl(t) representing the
maximum possible glitch size as a function of the time passed since the previous
glitch. All actual glitches must lie below this curve, since vortex avalanches are
rarely maximal, as discussed by Espinoza et al. (2011). The vorticity accumulated at
the sheet is released simultaneously by the trigger and initiates a global avalanche
while the vortex sheet is disrupted, but the avalanche itself may develop in different
ways. The snowplow model only provides an upper bound for the glitch size, while
the triggering and the dynamics of vortex avalanches are probably better studied by
statistical methods suitable for critical systems.

In the fig. 7.3 is plotted the curves ∆Ωgl(t) for different choices of the free param-
eter Ygl. We choose to plot the quantity against the raw lag ω = |Ω̇p|t, instead the
simple interval t between glitches, in order to easily compare the results obtained for
a star with the ones obtained for a neutron star with different slowdown. As explained
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Figure 7.3: Plot of the curves ∆Ωgl(t) obtained with different values of the parameter Ygl.
All these results are referred to the same 1.3M� GM1 star. The dots represent the observed
glitches of the Vela pulsar.

before, this is not the actual lag developed, due to the presence of the entrainment. In
this plot we report, together with the calculated curves, also the observational data of
the Vela Pulsar B0833–45: every point represents a recorded glitch, with its jump size
in ordinate and the interglitch time multiplied by |Ω̇p| on the x axis (for this pulsar the
average slowdown is Ω̇p = −9.84324× 10−11 rad/s2, see Manchester et al. (2005)).
To obtain these curves, we have fixed the mass of the star to be M = 1.3 M�. An
analogous approach has been used to test the effect of the parameter M : in fig. 7.4 we
change the value of the mass of the star, keeping fixed the fraction of coupled vorticity
Ygl = 0.10.

From the plots it’s clear that both parameters control the value of the jump size
for a given waiting time. Increasing the fraction of coupled vorticity lowers the curve
in the plot discussed previously, i.e. reduce ∆Ωgl consistently for every time t. The
effect of the mass is pretty much the same: a massive star will show smaller glitches
for every waiting time considered, due to the fact that the shape of the curve remains
nearly the same.
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7.2 Fitting of NS masses with the snowplow model

The considerations exposed in the previous section can be used now to infer the
mass of a neutron star in the following way. For this purpose we consider the 15
youngest neutron stars among the set of the frequent glitchers (we define with this
term the pulsars with at least 5 observed glitches) detailed in table 7.2. These pulsars
are the first 15 rows of the table (the column τ reports the age of the pulsar). As
explained before, we use a fixed pinning profile obtained from the realistic mesoscopic
calculations done in chapter 3 (L = 5000 Rws, β = 3), and therefore, once we have
fixed the equation of state, we have only two free parameters, namely the mass M
and the fraction of coupled vorticity Ygl. For the EoS we will adopt, as usually, the
stiff GM1 or the softer SLy. From the results in chapter 2 we can see that the first one
admits a larger maximum mass Mmax = 2.36 M�, while for the other Mmax = 2.05M�.

For each of the 15 younger glitchers, we can plot the observed ∆Ωi vs ωi = |Ω̇|τi ,
where τi is the time elapsed from the previous glitch, as well as the curve ∆Ωgl(ω).
As explained, the observed glitches cannot lie above the theoretical upper limit repre-
sented by the curve; then we proceed as follows to remove the degeneracy related to
the two free parameters:

1. we set the mass of Vela at some value MVela; then we vary Ygl until the calculated
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curve ∆Ωgl(ω) is tangent to the largest observed glitch in Vela.

2. we fix Ygl at the value found for Vela; then, for each of the other 14 objects, we
vary the mass M until the curve is tangent to the largest observed glitch in each
object.

The procedure is shown in fig. 7.5 and fig. 7.6 where we have used SLy as EOS;
and in fig. 7.7 and fig. 7.8 for the stiffer equation of state GM1. In both cases we
have set the mass of Vela to be MVela = 1.3M�, and the mass fitting was made with a
discrete step of 0.01 M�. In the figures we also plot the position of the vortex sheet,
X (t) (scale on the right ordinate axis), as a function of the lag; two gray horizontal
lines indicate the inner and outer radius of the inner crust. Repeating this for all the
15 glitchers and testing both EOSs, we find that:

• most glitchers can be fitted with a mass smaller than Mmax. The only exceptions
are B1758 and B1737, for which all the observed glitches are well below the
curve ∆Ωgl(ω) corresponding to Mmax;

• in the stronger glitchers, the events are triggered when the vortex sheet is
completely immersed in the crust (curve X (t) between the two horizontal lines);
in the weaker objects, the glitches are triggered when the vortex sheet is mostly
immersed in the core, with only the vortex extremities pinned in the crust.
Due to the strong entrainment and the realistic values for the pinning force we
can conclude that these glitches are always triggered well before reaching the
maximum of the pinning potential.

The inferred values of the masses of the considered pulsars are summarized in
table 7.1. Since we are fitting the maximal glitches, which are absolute lower limits,
the masses we obtain are absolute upper limits: any future larger glitch can only
reduce the value obtained here. We have chosen initially to set the mass for Vela at
MVela = 1.3M�. Nevertheless, we have also tested the model by fixing MVela = 1.2M�:
we have observed that this produce a coherent shift by 0.1 M� on all the other calculated
masses, and therefore the considerations exposed in the next section remain valid:
here we will discuss these results in connection with the other observable quantities
of the pulsars (see table 7.2). The results presented here are obtained with Ygl = 0.02
for SLy and Ygl = 0.10 for the GM1 equation of state, values that are reasonable and
in perfect agreement with the results of chapter 5.

We want to highlight here the role of the entrainment in the model. In fig. 7.9 we
see the curve∆Ωgl(t) in two cases: with the entrainment and without the entrainment.
The result is immediately clear: in the configuration without the entrainment there is
no chance of fitting all the observational data, because the curve in the plot is “too
short”. Changing the free parameters of the model, M and Ygl would not help much,
because they only shift vertically the curve. The value of ωend where the curve stops
is of course strictly related to the value of the peak of the critical unpinning lag of the
star: when the built lag reaches the peak of the critical lag, the star must exhibit its
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Figure 7.5: These plots show the results of the fitting procedure (with SLy EoS) for the
frequent glitchers taken into account (first 8 pulsars, continues in fig. 7.6). For each case we
plot the calculated profile ∆Ωgl(t) together with the observed values (with dots, see table 2.2
for details). The square corresponds to the average value of the measured glitches. We plot
also the position x∗(ω) of the depinnig front at the moment of the glitch (to be read on the
right y axis). The green horizontal line corresponds to the maximum observed ∆Ωgl, while
the other two dotted horizontal lines indicates the inner crust region of the star (on the right
y axis).
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Figure 7.6: These plots complete the results of fig. 7.5 and therefore they are referred to the
SLy equation of state. See fig. 7.5 for details.
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Figure 7.7: These plots show the results of the fitting procedure (with GM1 EoS) for the
frequent glitchers taken into account (first 8 pulsars, continues in fig. 7.8). For each case we
plot the calculated profile ∆Ωgl(t) together with the observed values (with dots, see table 2.2
for details). The square corresponds to the average value of the measured glitches. We plot
also the position x∗(ω) of the depinnig front at the moment of the glitch (to be read on the
right y axis). The green horizontal line corresponds to the maximum observed ∆Ωgl, while
the other two dotted horizontal lines indicates the inner crust region of the star (on the right
y axis).
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Figure 7.8: These plots complete the results of fig. 7.7 and therefore they are referred to the
GM1 equation of state. See fig. 7.7 for details.
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Table 7.1: This table summarizes the results of the fitting procedure for both SLy and GM1
(see figs. 7.5 to 7.8 for graphical representation). For each pulsar, the reported mass M is the
value of this parameter which fits better the observational data.

Pulsar name SLy mass GM1 mass
[M�] [M�]

J0205+6449 1.12 1.05
J0537-6910 1.22 1.20
J0631+1036 2.04 2.33
B0833-45 1.30 1.30
B1046-58 1.52 1.61
J1105-6107 1.76 1.91
B1338-62 1.81 1.96
J1413-6141 1.94 2.10
J1420-6048 1.39 1.38
B1737-30 2.04 2.36
B1757-24 1.37 1.42
B1758-23 2.04 2.36
B1800-21 1.32 1.29
B1823-13 1.39 1.39
J2229+6114 1.49 1.51

maximum glitch. As explained before, the rate at which this lag is built is controlled
by the parameter 1/Ým∗n: the entrainment slows down the entire process, allowing to
encompass observational data related to glitches with big waiting time, as in fig. 7.9.
This is another important argument in support of the need to include the entrainment
in our models: as explained by fig. 7.1, the entrainment is not a small correction to
the behavior of the neutron stars, but it is a crucial aspect both for the microscopic
and macroscopic points of view.

7.3 A new analysis of the observational data

Existing statistical studies of glitching pulsars as presented by astronomers try to
classify them in different classes, related to particular features of the jump parameters:
for example, the slow glitchers of Zuo et al. (2004) interpreted as manifestation of
two-state magnetospheric switching, or the large glitchers of Espinoza et al. (2011)
interpreted as manifestation of large, global avalanches of previously pinned superfluid
vortexes, namely the superfluid-glitch paradigm of Anderson and Itoh. The snowplow
model, as described before, is a quantitative and realistic implementation of this
approach, focused on the large glitchers, and therefore it can explain these events.
However, if the large glitches can be explained in terms of superfluid–glitches, the
question remains of why only certain pulsars behave in such a way and, conversely,
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Figure 7.9: This plots shows the effect of the entrainment. The two curves are obtained with
the same parameters (GM1, M = 1.05 and Ygl = 0.10) except for the fact that εn = 0 in one
case. We can see that without the entrainment is not possible to fit all the measured values
even if we change the mass M or the fraction of coupled vorticity Ygl.

of what is the effect of vortex avalanches in the other (non-large) glitchers. In order
to answer this, firstly we need to analyze the existing data in a new way, which can
reveal gradually changing features among different glitchers rather than focus on their
differences. Then we will merge this analysis with the fitted masses obtained in the
previous section, to see if this parameter plays an important role in the dynamics of a
glitch and affect the observed quantities.

For statistical significance, we only consider the 25 pulsars for which at least five
glitches have been observed. In table table 7.2 we have reported these NS with all
the quantities relevant for this analysis: rotational parameters (pulsation, Ω, and spin-
down, |Ω̇|), observational parameters (number of glitches, Ngl, and observational time
between the first and last glitch observed, Tobs = tlast− tfirst) and glitching parameters
(size of largest observed glitch, ∆Ωglmax

, average glitch size, 〈∆Ωgl〉, and average
waiting-time between glitches, 〈tgl〉= Tobs/(Ngl − 1)).

For the moment we do not include Crab, whose anomalous behavior may be
correlated to its very young age. In order to better identify and understand the
behavior of these NS, we subdivide the remaining 24 objects in two groups:

• frequent glitchers: we identify with this term the 17 stars with 5 ≤ Ngl ≤ 7. In
the following plot, these NS are marked by triangles.
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Figure 7.10: For each pulsar of table 7.2 we plot here the number of recorded glitches Ngl

versus the spin–down |Ω̇|. The convention for colors and symbols (valid also for the following
plots) is detailed in the text.

• very frequent glitches: the other 7 glitchers with Ngl ≥ 12, identified by squares
in plots.

In fig. 7.10 we show Ngl plotted versus |Ω̇|, using this convention for the symbols.
We further indicate by empty circle the group of single glitchers, namely those 5
frequent objects which in the observation time have shown a single glitch orders
of magnitude larger than the Ngl − 1 remaining ones. For later discussion, we also
use a color code: gray for the older glitchers (defined here by their slow spin-down
|Ω̇|< 10−12 rad/s2), orange for the large glitchers of Espinoza et al. (2011), and blue
for the remaining objects. Consistently, we may call younger glitchers those with large
spin-down |Ω̇| > 10−12 rad/s2. In the following, we will treat the 5 single glitchers
as a class by its own; therefore, only the 19 remaining non-single glitchers will be
classified as older (4) and younger (15) objects: this last group is the one used in the
previous section for the mass fitting.

7.3.1 The strength of a glitcher

An important aspect of a NS for this analysis is its strength. With this concept we want
to characterize the star with the size of its glitches. For this purpose, a choice can be
taking into account the size of its largest (maximal) glitch, although limited by the
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Figure 7.11: Maximal glitch jump ∆Ωglmax
versus the spin–down parameter |Ω̇| for pulsars in

table 7.2.

low event statistics (obviously, less so for the very–frequent glitchers): ∆Ωglmax
is of

course an absolute lower limit for each pulsar, which can only be raised by future
observations. The plot in fig. 7.11 shows this quantities plotted against the slow-down
|Ω̇| of the star. The plot reveals some interesting facts:

• the sizes of the maximal glitches extend for five orders of magnitude, with
∆Ωglmax

in the range (3× 10−9÷3× 10−4) rad/s. All the older glitchers have
small strengths, with ∆Ωglmax

≤ 10−6 rad/s, while the younger objects have
significantly larger strengths, with ∆Ωglmax

≥ 10−5 rad/s. The single glitchers,
whose only large glitch is also the maximal one, all have ∆Ωglmax

> 10−6 rad/s;

• the 9 large glitchers of Espinoza et al. (2011) (2 of which are single glitchers),
all with ∆Ωglmax

> 10−4 rad/s, do not seem to stand out as a special class: there
are several other pulsars with similar or larger strengths (5 objects, 3 of which
are single glitchers);

• if we exclude the (weak) older glitchers and we only consider the (stronger)
younger and single glitchers, we see that their strengths span the range
3× 10−6 rad/s÷3× 10−4 rad/s with continuity, without indication of subdivision
in distinct classes;
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Figure 7.12: Average glitch jump 〈∆Ωgl〉 versus the spin–down parameter |Ω̇| for pulsars in
table 7.2.

• there is no evident correlation between ∆Ωglmax
and |Ω̇|. There are pulsars

with very different spin-downs showing similar glitch strength, while pulsars
with comparable spin-downs can glitch differently (see in particular the two
very-frequent glitchers at |Ω̇|= 8× 10−12 rad/s2).

The choice of taking ∆Ωglmax
to characterize the strength of a glitcher is not ob-

viously the single one. We can consider for this purpose also the average jump size
of the neutron star, 〈∆Ωgl〉, calculated with the Ngl recorder events. Of course this
quantity is affected by an error (e.g., the standard deviation σ∆Ωgl

, that quantifies the
dispersion of the glitch values around their mean) that can be also quite large: this
fact indicates that 〈∆Ωgl〉 is probably a poorer indicator of a glitcher strength than
its maximal value, which is an absolute lower limit. Anyway the fig. 7.12 shows the
relation between 〈∆Ωgl〉 and |Ω̇| revealing other interesting properties (here, for the
single glitchers, the average is calculated omitting the single large glitch, and thus it
refers only to the Ngl − 1 remaining tiny glitches):

• the single glitchers have very small average strengths, comparable to those of
the older glitchers, namely 〈∆Ωgl〉 < 5× 10−7 rad/s. Conversely, the younger
glitchers have much larger average strengths, with 〈∆Ωgl〉 in the range
(2× 10−6÷2× 10−4) rad/s
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• in the single glitchers, the size of the maximal glitch is more than two orders of
magnitude larger than the average size of the remaining tiny events.

These considerations leads to a remarkable interpretation of the single–glitchers class:
the single large event and the remaining small ones appear as a manifestation of two
quite different phenomena, quantitatively if not qualitatively. Since three of the five
single glitchers are also large glitchers (here defined only by ∆Ωglmax

> 10−4 rad/s,
with no conditions on the spin-down jump), we naturally interpret the single events as
superfluid glitches, namely large, global avalanches of superfluid vortexes. Then, the
tiny events must represent much weaker phenomena, which may be explained with
several plausible, not mutually–excluding, sometimes interrelated scenarios: failed or
localized vortex avalanches, seismic activity, fluid or magnetic instabilities, etc.

We can now characterize the three classes by their glitch activity: on one side
we found the younger glitchers, that are pulsars which frequently display superfluid–
glitches, although tiny events can also take place. With opposite behavior there are
the older glitchers which have not shown any superfluid–glitch in the observation
time, displaying (so far) only tiny events. Single glitchers bridge these two classes,
showing a single superfluid–glitch in the observation time. The different glitching
behavior must be somehow related to the different spin-down, but not only (e.g.,
the two very-frequent glitchers at |Ω̇| = 8× 10−12 rad/s2). Since we want to study
superfluid–glitches, from now on we concentrate on the 15 younger objects, that are
the same object considered in the previous section about the mass–fitting procedure
with the snowplow model.

7.3.2 Waiting–times and frequency of events

Another interesting parameter of the glitching activity is the average waiting–time
between two consecutive events, 〈tgl〉. In fig. 7.13 we show 〈tgl〉 vs |Ω̇| for the 15
younger glitchers; we also indicate lines of constant ω, where, as before, ω = |Ω̇| 〈tgl〉
is the average raw lag built by the star between glitches (without considering the
entrainment). We notice immediately the remarkable correlation ω∼ 0.01 rad/s for
the large glitchers of Espinoza et al. (2011), as well as other possible correlations for
objects with ω ∼ 10−3 rad/s and ω ∼ 10−4 rad/s. The snowplow paradigm clearly
suggests that the average lag between glitches is the correct variable when comparing
the timing properties of different glitchers, since it corrects for their differences in spin–
down: pulsars with larger spin–down reach the same lag in shorter times. Physically,
ω represents the average slow–down of the observable crust before critical conditions
are reached and a new glitch is triggered. With these considerations it’s possible
to compare directly the glitching parameters of different pulsars. Each glitcher is
characterized by the size of its glitches,∆Ωgl i , and by their time of occurrence, Ti (with
i = 1, .., Ngl); the time intervals between glitches are then obtained as t i = Ti − Ti−1
and the corresponding critical lags are defined asωi = |Ω̇|t i (with i = 2, .., Ngl); thence
ω is the average value of the critical lag. In fig. 7.14 we show ∆Ωgl i vs ωi for the
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Figure 7.13: Average waiting time 〈tgl〉 between two consecutive glitches versus the spin–down
parameter |Ω̇| for pulsars in table 7.2.
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very–frequent glitchers, which are statistically more relevant. We notice the following
features:

• B0833–45 (Vela) and J0537–6910, both classified as large glitchers by Espinoza
et al. (2011), have a similar activity with large glitches (∆Ωgl i ∼ 10−4 rad/s)
occurring at large critical lags (ωi ∼ 10−2 rad/s). The distribution of glitches is
relatively narrow, both in size and critical lag, with only a few events significantly
smaller in size than the rest.

• B1338–62 presents maximal glitches only a factor 2-3 smaller than those in the
previous pulsars; however its glitching activity occurs at much smaller critical
lags (ωi ∼ 10−3 rad/s), and the glitch sizes are distributed over more than
two orders of magnitudes. Notice that its two maximal glitches, a factor two
larger than the two next-to-maximal events, happened only after 18 years of
observation: namely large events are not frequent.

• J0631+1036 and B1758–23 are similar, with critical lags of order 10−4 rad/s
and glitch sizes distributed over four orders of magnitude, with large events
rare as compared to smaller ones. While J0631+1036 presents maximal glitches
only 30% smaller than those in B1338–62, the pulsar B1758–23 has not yet
undergone similar large events, possibly due to its spin-down smaller by a factor
of two, with a consequent slower evolution, and to the rarity of large events for
these glitchers.

• B1737–30 has the same spin-down as J0631+1036, but its maximal glitch is
about a factor of two smaller; moreover, its glitching activity occurs over a wider
range of critical lags (extending down to 10−5 rad/s), and the glitch distribution
is even more dominated by very small events.

• B1822–09 is the only older object among the very-frequent glitchers. Its glitches
are always smaller than 10−6 rad/s, comparable to the small events of the
previous younger objects.

7.3.3 The role of the critical lag

Altogether, there is indication of a (so far unnoticed) correlation between strength of
the glitcher and critical lag at which its glitches are triggered; moreover, the distribution
of glitch sizes changes with strength as well: the weaker the glitcher the more scattered
its glitch sizes, with small events gradually outnumbering large ones. To make this
statement more quantitative, we can characterize the glitchers by the average values
of their parameters; in fig. 7.15 we show ∆Ωglmax

and 〈∆Ωgl〉 vs ω for each of the 15
younger glitchers, and the numerical values are given in table 7.2. The dispersion
(standard deviation) of the glitch sizes around their average values are also indicated,
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deviation) versus the lag ω= 〈|Ω̇|τi〉 for pulsars in table 7.2.

as error bars; a different color is used to distinguish between frequent and very–
frequent glitchers. We observe the following features, which are the main results of
the present analysis:

• considering the maximal lag of the very–frequent glitchers, we see a net corre-
lation between ∆Ωglmax

vs ω, as expected from the previous discussion. Only
object [12] is below the value expected from object [3] but, as seen before, this
can be explained by the rarity of large events in this group of pulsars and the
slow evolution of B1758–23, namely as an observational selection effect.

• considering the maximal lag of the frequent glitchers, we see that the previous
correlation is confirmed and extended to a much larger range of values. Only
objects [8],[6],[9] and [15] are below the value expected from interpolation
of the other objects, but this can be explained by the low statistics of frequent
glitchers. The crucial fact is that the maximal glitch is only an observational
lower limit that can only be raised in the future, so that values of ∆Ωglmax

below
the interpolating line are acceptable when testing the correlation, while values
above the line would spoil it.

• considering the average lag, a correlation between 〈∆Ωgl〉 vs ω is still present,
but less stringent than before, particularly for the stronger glitchers. The fact is
that average values are associated to large error bars, while maximal values are
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absolute lower limits and thence they are better indicators of the strength of a
glitcher.

Average values, however, are useful to illustrate the difference in the distribution
of glitch sizes discussed previously; in fig. 7.16 we show ξ vs ω, where

ξ= (∆Ωglmax
− 〈∆Ωgl〉)/ 〈∆Ωgl〉 . (7.10)

The weak and intermediate strength glitchers have ξ � 1, while strong glitchers
correspond to ξ∼ 1, thus quantifying the difference in distribution between small and
large events observed in fig. 7.14. The anomaly of objects [12] and [8] reflects the
small value of their maximal events, discussed before.

Finally, in fig. 7.17 we show the total observational lag ωobs = |Ω̇|Tobs vs |Ω̇| for
each of the 24 glitchers of table 7.2. In the older objects,ωobs has not yet even reached
the minimal critical value associated to the weakest glitchers. During the observation
time, they simply had no time to reach the critical conditions for triggering a global
superfluid–glitch. The ωobs of single glitchers is smaller than 10−2 rad/s, so that they
are strong glitchers which did non have enough time to undergo a second large glitch.
Therefore, the behavior of older and single glitchers is consistent with that of the
younger objects, the difference being related to observational selection effects.

In conclusion, our analysis of observations has revealed an unknown strong cor-
relation between the strength of a glitcher, as measured by its maximal event, and
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the average critical lag at which its glitches are triggered. Actually, the critical lag
is a better indicator of the strength than the maximal glitch size, since it seems less
affected by statistical effects. We thus see that observationally there is a unified way
to describe all the glitchers with Ngl = 5, in terms of the average lag between glitches.
Theoretically, this suggests the presence of a common mechanism: superfluid-glitches
are a natural candidate. Moreover, the distribution of strengths could be related to
physical differences among the glitchers: mass is the natural candidate, since less
massive stars have thicker inner crusts with larger moments of inertia and thus are
able to store more angular momentum.

7.4 Observational data and the snowplow model

The considerations above indicate that the average lag ω it’s an important parameter
that controls the glitching behavior of a neutron star. The natural conclusion of this
analysis is then linking this observative quantity to the mass that we have inferred
in section 7.2 with the snowplow model and the fitting procedure described. This
is shown in fig. 7.18 for SLy and in fig. 7.19 for GM1, where the mass M is plotted
against the lag ω. We observe the following general features:

• the very–frequent glitchers show a strong correlation between M and ω; as the
average lag spans the range (10−4÷10−2) rad/s, the mass varies between∼ 1 M�
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and Mmax. Only objects [10] and [12] are not fitted even by the maximum mass
allowed by the EoS (in the plots, they are marked at Mmax); we already discussed
the case of B1758, in terms of observational selection effects (slow evolution
and rarity of large events in weaker glitchers). Similar arguments may apply to
B1737, which is the weakest in our sample of 15 objects; a future glitch twice
the size of the existing maximal event would be consistent with the trend in
fig. 7.15, and would be fitted by a mass M ∼ Mmax

• the frequent glitchers confirm the correlation and extends it to intermediate
values, showing a theoretical distribution of masses that could be checked against
observations. Objects [8],[6],[9] and [15] are above the trend expected from
interpolation, corresponding to their behavior in fig. 7.15 and related to the low
statistics; conversely, no object is below the expected trend. This is consistent
with the fact that the masses determined here are upper limits: any larger event
observed in the future for a glitcher can only lower its mass value

• the previous results are quite robust. As seen in figs. 7.18 and 7.19, they do
not depend strongly on the choice of the still unknown EoS for dense matter.
Moreover, we checked that changing the pinning force profile within its theoret-
ical error bars, or decreasing the strong entrainment of Chamel (2012) by up to
a factor two can be absorbed by a small change in the parameter Ygl, leaving
the mass profile basically unchanged. It is also worth remarking that with no
entrainment it is not possible to fit consistently all the glitchers, as covered
deeply before

• the choice MVela = 1.3 M� allows all the glitchers to lie in the mass range
M > 1M�. We checked, however, that changing the value for Vela by δM simply
shifts all the other masses by about the same amount

In conclusion, assuming the snowplow mechanism we are able to give a unified
explanation of the glitch phenomenon, by showing quantitatively that strong glitchers
correspond to low-mass neutron stars and weak objects to more massive stars; the
behavior of older and single glitchers is also accounted for in the present scenario, in
terms of observational selection effects. The correlation between mass and glitching
strength found in the snowplow model suggests some further qualitative remarks, that
are consistent with the observed phenomenology. Indeed, low-mass neutron stars have
much thicker inner crusts than high-mass objects (up to a factor of four between 1 M�
and Mmax). Thence one expects that crust fractures (starquakes), generated either by
the spin–down of the normal rigid crust or by the strain exerted on the nuclear lattice
by the sheet of accumulated vorticity, are induced much more easily in high-mass
than in low-mass pulsars. We may thus speculate that such starquakes can also trigger
vortex avalanches, by destabilizing the vortex sheet (e.g., unpinning large portions of
it); this would naturally explain the fact that glitches in strong (low-mass) objects are
triggered at critical lags that are much larger than those observed in weak (high-mass)
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Figure 7.18: We plot here the inferred mass M (with SLy, obtained with the fitting procedure
described) of the frequent glitchers versus the average lag ω.
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glitchers. Moreover, the difference in critical lags implies that glitches are triggered
when the vortex sheet is located in different positions with respect to the core–crust
interface, as noticed before. Again we may speculate that avalanches triggered in a
strong sheet closer to the equator are more likely to propagate without losing their
momentum, thus explaining the fact that in strong glitchers most events are large and
comparable; conversely, avalanches triggered in a weak sheet further away from the
equator are easily damped, which could account for the rarity of large events observed
in weak glitchers.
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Table 7.2: Observational values for the pulsars considered in this chapter. We report the rotational parameters Ω and Ω̇ together with the
number of glitches Ngl, the average waiting time 〈tgl〉 (and its standard deviation), the maximal jump size ∆Ωglmax

and the corresponding
mean value (and associated error). We report also the whole observational time Tobs and the age of the pulsar τ (see appendix A). Data are
taken from http://www.atnf.csiro.au/research/pulsar/psrcat/ (Manchester et al., 2005) and http://www.jb.man.ac.uk/
pulsar/glitches.html (Espinoza et al., 2011)

Pulsar Ngl Ω Ω̇ τ 〈tgl〉 σtgl
ω σω ∆Ωglmax

〈∆Ωgl〉 σ∆Ωgl
Tobs

[rad/s] [rad/s2] [years] [days] [days] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [days]
10−11 103 10−4 10−4 10−5 10−5 10−5

[1] J0205+6449 5 95.611 −28.193 5 815 723.6 198.58 176.26 36.332 17.199 13.805 3261
[2] J0537-6910 23 389.722 −125.161 5 121 57.8 131.00 62.48 26.540 11.207 5.932 2665
[3] J0631+1036 15 21.832 −0.794 44 394 309.4 2.70 2.12 7.161 0.742 1.936 5519
[4] B0833-45 17 70.338 −9.846 11 946 444.6 80.44 37.82 21.704 13.098 6.032 15 129
[5] B1046-58 6 50.806 −3.957 20 1110 672.7 37.96 23.00 15.461 7.364 6.435 5551
[6] J1105-6107 5 99.429 −2.490 63 1218 1129.8 26.20 24.31 9.661 4.436 4.308 4871
[7] B1338-62 23 32.498 −4.254 12 323 153.8 11.86 5.65 10.004 2.374 2.912 7099
[8] J1413-6141 7 21.998 −2.568 14 499 361.3 11.08 8.02 5.301 1.806 1.799 2996
[9] J1420-6048 5 92.156 −11.241 13 953 140.9 92.51 13.69 18.606 12.383 3.363 3810
[10] B1737-30 33 10.353 −0.795 21 280 264.4 1.92 1.82 2.762 0.274 0.613 8945
[11] B1757-24 5 50.296 −5.150 15 1296 243.6 57.67 10.84 18.890 10.169 6.669 5185
[12] B1758-23 12 15.110 −0.410 58 841 516.3 2.98 1.83 0.977 0.331 0.334 9251
[13] B1800-21 5 47.006 −4.725 16 1883 821.8 76.85 33.55 22.530 15.031 7.874 7530
[14] B1823-13 5 61.911 −4.590 21 1808 1634.5 71.69 64.83 22.170 11.534 9.558 7230
[15] J2229+6114 6 121.712 −18.454 10 661 241.7 105.31 38.54 14.873 5.992 6.058 3303
[16] B0355+54 6 40.178 −0.113 564 1425 1909.4 1.39 1.86 17.542 0.010 7.161 7127
[17] J0729-1448 5 24.967 −1.124 35 669 946.3 6.50 9.19 16.668 0.061 7.454 2677
[18] B0740-28 7 37.677 −0.380 157 1233 1075.8 4.05 3.53 0.347 0.008 0.131 7395
[19] B1642-03 7 16.207 −0.007 3451 1779 538.0 0.11 0.03 0.004 0.003 0.001 10 675
[20] J1814-1744 7 1.580 −0.030 85 709 321.2 0.18 0.08 0.005 0.002 0.001 4255
[21] B1822-09 12 8.171 −0.056 232 409 303.1 0.20 0.15 0.099 0.016 0.027 4500
[22] B1900+06 6 9.329 −0.011 1385 1357 885.1 0.13 0.08 < 10−8 < 10−8 < 10−9 6786
[23] B1951+32 6 158.942 −2.350 107 672 311.3 13.65 6.32 23.841 0.040 9.733 3361
[24] B2224+65 5 9.206 −0.013 1120 2799 3487.0 0.32 0.39 1.571 0.000 0.703 11 194

http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.jb.man.ac.uk/pulsar/glitches.html
http://www.jb.man.ac.uk/pulsar/glitches.html
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CHAPTER 8
The hydrodynamical model

The static “snowplow” model presented in the previous chapters relies on a small
set of realistic assumptions and therefore provides a precise insight on the storing
mechanism of angular momentum that is responsible of a glitch. This phenomenon is
well described not only on the qualitative point of view, but also quantitatively: in fact,
using the pinning force calculated in chapter 3, we can make predictions about the
typical observables of a glitch, namely the jump size ∆Ωgl and the average waiting
time tgl. We found that the paradigm explains well the giant glitches of a Vela–like
low–mass pulsar, and also the small ones of a big NS, if we include the entrainment
effects in our description, as done in chapter 7. Conversely, this approach cannot
provide any indication about the timescales of the event, such as the rise interval of the
jump and the recovery phase. In this chapter we want to overcome this limitation and
we present the required formalism to construct a dynamical model of a glitch, that can
follow its whole evolution. A such kind of model will be implemented realistically in
the following chapter and the predictions obtained will be compared to the observative
data currently available. Having a good dynamical simulation of a glitch will be more
and more important in the near future because the next generations of radio telescopes
are expected to provide a more precise description of the phenomenon that must be
compared to the theoretical estimate.

8.1 Introduction

The snowplow model of chapter 5 describes qualitatively how a glitch happens. Es-
sentially, in the time between two events, the superfluid component of the star is
decoupled from the charged one (protons and normal matter) and the excess of vor-
ticity (which carries angular momentum) is stored as a sheet in the inner crust, thanks
to the typical profile of the critical lag. The reason for this decoupling is addressed
to the pinning force that acts in the inner crust of the star. Just before the glitch, the
pinning barrier is no longer strong enough to prevent the vortexes from reaching the
crust: this collective motion produce the jump in angular velocity. In other words, this
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phenomenon can be seen as a fast recoupling of the two component of the star that
transfers angular momentum from the superfluid part to the normal one. Currently it’s
unclear which is the right timescale of this recoupling, even if we know that it is almost
instantaneous: the observational data provide an upper bound for the rise time of 40 s
(for the Vela pulsar, see Dodson et al. (2002, 2007)). The data indicate also a recovery
phase after the jump, in which the rotational velocity decrease with a slope greater
than the steady–state spindown; at the end of this phase the regular electromagnetic
spindown continues but the star has gained a net step in velocity compared to the
pre–glitch condition. This behaviour can be easily modeled with the two component
approach that is a simple way to describe the recovery after the glitch. In this picture,
the two dynamical variables are the angular velocities of the components: Ωc for the
charged one and Ωs for the superfluid. The differential equations can be written as:

IcΩ̇c = −α−
Ic(Ωc −Ωs)

τc
(8.1)

IsΩ̇s =
Ic(Ωc −Ωs)

τc
, (8.2)

where, of course, Ic and Is are the respective moment of inertia. The term α encodes
the electromagnetic spin–down, while τc is the timescale of the recovery recoupling.
This approach provides the following solution (more details in appendix B):

Ωc(t)−Ω0(t) =∆Ωgl

�

Qe−t/τ + 1−Q
�

. (8.3)

in which the glitch happens at t = 0 (Ω0(t) is the electromagnetic spindown): the
instantaneous jump is∆Ωgl and then for t → +∞we have that Ωc−Ω0 =∆Ωgl(1−Q).
This means that its possible to fit the recovery behavior by changing these parameters:
this framework, in fact, has been the starting point of many seminal works about
pulsar glitches.

It’s important to note that the quantity ∆Ωgl is an input parameter of the model:
there is no way, in this picture, to obtain theoretically an order of magnitude for the
jump size and the raise timescale. In order to follow the whole evolution we must
slightly improve the approach: we cannot consider anymore the superfluid component
described only by a single “rigid–body” rotational velocity. In fact the glitch is due to
the motion of vortexes inside the star and this mean that we have to follow in some
way this phenomenon. We will use the hydrodynamic formalism for NS developed
by Prix (2004) and Andersson and Comer (2006): every component of the star is
modeled as a fluid and thus we will not follow the dynamics of vortexes, but rather
the evolution of the differential rotational velocities ΩX (x). Anyway, vortexes keep on
playing an important role because they are responsible for the interaction between
the components that will be encoded in the pinning and mutual friction terms.
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8.2 The multifluids formalism and neutron stars

We briefly review here the application of the multifluid formalism to the neutron stars,
as proposed by Prix (2004) and Andersson and Comer (2006). A full derivation of the
formalism and of the equations of motion is detailed in appendix C.

The general lagrangian considered here, which describes the Newtonian hydrody-
namics, can be written in the following form:

L(nX , ni
X ) =

∑

X

mX
gi jn

i
X n j

X

2nX
− E(ρ), (8.4)

where gi j is the metric tensor (flat in our case, gi j = δi j) and the subscript X refer
to each component included in the model. This means that nX indicates the particle
density of a component, while ni

X is defined as a vector component of the flux of
particles, i.e.: ni

X = nX v i
X . In this picture, E(ρ) is the internal energy of the system. If

we want our description to be invariant under a Galileian boost, the term E must be
in the following form, as shown by Prix (2004):

E(nX , ni
X ) = E(nX ,∆i

X Y ) (8.5)

where ∆i
X Y is the relative velocity between the fluids, i.e. ∆i

X Y = v i
X − v i

Y =
ni

X
nX
− ni

Y
nY

The requirement of isotropy constrains again the form of E to be E = E(nX ,∆2
X Y )

which leads to the following total differential for the internal energy:

dE =
∑

X

µX dnX +
1
2

∑

X ,Y

αX Y d∆2
X Y , (8.6)

where µX is the chemical potential for the X constituent.
The lagrangian in eq. (8.4) permits also to define the momentum variables: if we

differentiate L, which is a function of nX and ni
X , we find that

dL=
∑

X

�

∂L
∂ nX

dnX +
∑

i

∂L
∂ ni

X

dni
X

�

=
∑

X

�

p0
X dnX +

∑

i

pi
X dni

X

�

. (8.7)

As a consequence, if we consider also the expression for the term E , the momenta are:

pX
i = mX gi j v

j
X −

∑

Y

2αX Y

nX
∆

j
X Y (8.8)

−pX
0 = µ

X −mX
v2

X

2
+ v i

X pX
i (8.9)

Of course, for the properties of the internal energy E , the term αX Y is a symmetric
matrix that is also called the entrainment matrix, because it encodes the non dissipative
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interactions between the fluids. The expression above shows that in general the
momenta are not aligned with the respective velocities, and this is the entrainment
effect; it can be null only if the matrix αX Y is null, or if all constituents move together
(∆i

X Y = 0). The eq. (2.17), that is strictly linked to the irrotational property of a
superfluid, must be changed therefore to take into account also the entrainment:
the velocity–circulation is generally not conserved, contrary to the conservation of
momentum–circulation. The correct equation, which always holds, is

∮

p · dl= κmnN(x). (8.10)

Following the considerations exposed in appendix C it’s possible to derive the
equation of motion for this system:

f X
i = nX (∂t + v j

x∇ j)p
X
i + nX∇i(Φ+µ

X )−
∑

Y

2αX Y∆
j
X Y∇i v

X
j (8.11)

where Φ is the gravitational potential and the force f X
i on the left side encodes all

other interactions, including dissipative terms (like the mutual friction between the
components) and all external forces.

The picture just presented can be easily adapted to the case of a neutron star,
with the following consideration. In a NS core, we can identify four fluids: neutrons,
protons, electrons and entropy. In this model p, e, s are considered comovent and are
identified by the label c, while n identify the neutrons. To make the model consistent,
we must impose charge conservation which implies Γe = Γp (where ΓX is the particle
creation rate) and local charge neutrality that can be written as ne = np. Another
constraint required is baryon conservation Γn + Γp = 0 and mass conservation:

m≡ mn = mp +me (8.12)

This means that we can write the density of the two fluids as ρn = mnn and ρc = mnp.
Moreover, the internal energy of the system is

dE = T ds+µndnn +µ
edne +µ

pdnp +α
endw2

en +α
pndw2

pn +α
sndw2

sn (8.13)

= T ds+µndnn +µ
edne +µ

pdnp +αdw2 (8.14)

where we have used the fact that exists only one independent relative velocity

wi ≡ v i
c − v i

n = wi
en = wi

pn = wi
sn (8.15)

and therefore we can define the total entrainment consequently α≡ αen +αpn +αsn.
The equations of motion become simpler if we absorb the gravitational term in the

extended forces f̃ X
i = f X

i +ρX∇iΦ which satisfy the relation f̃ n
i + f̃ c

i = 0. We can refer
to this force as the mutual friction ( f mut ≡ f̃ n) because it encodes all the interactions
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between the two components, except the entrainment that has been treated separately.
The eq. (8.11) is therefore rewritten as the system

f mut
i

ρn
=
�

∂t + v j
n∇ j

� �

vn
i + εnwi

�

+∇iµ̃n + εnw j∇i v
j
n (8.16)

− f mut
i

ρp
=
�

∂t + v j
p∇ j

�

�

vp
i + εpwi

�

+∇iµ̃p + εpw j∇i v
j
p (8.17)

where we have replaced the constituent index c with p for consistency with other works
about this subject; in other words we will consider two fluid, namely the superfluid
neutrons n and the “protons” p with which we indicate all other comoving constituents.
In the previous system we have also used the following definitions:

εX =
2α
ρX

µ̃X =
µX

m
(8.18)

From now on, the entrainment will be encoded in the model with the terms εX , as
done also in chapter 7; moreover, this parameter is linked to the effective mass in
the usual way: εX = 1−m∗X/mX . The equation below clearly indicate the consistency
relation that will be useful in the following:

εnρn = εpρp. (8.19)

Defining the proton fraction xp as xp = ρp/(ρp +ρn), the following equations hold:

εp =
εnρn

ρp
=
εn(1− xp)

xp
(8.20)

εn + εp = εn

�

1+
1− xp

xp

�

=
εp

1− xp
(8.21)

8.3 Mutual friction and equations of motion

The equations presented in the previous section contain a fundamental term for our
model, the mutual friction. We must now understand how we can encode the dissipative
interaction between the two constituents of the star, the neutrons (superfluid) and the
protons (all other charged comoving components). To accomplish this task, we can
consider that this is not the only force that acts on a superfluid vortex: as presented in
section 2.3, the Magnus force pushes the vortexes in the radial (cylindrical) direction.
This is an hydrodynamic lift that is adaptive: in other words it arises when a drag effect
acts on a vortex, i.e. fM + fd = 0 (this condition is valid in our assumption of a massless
vortex). In this work we will consider drag forces fd of the form fd = γ(vL − vp),
where vL is the velocity of the vortex line. Starting from this point we can follow
some consideration about the dynamics of vortexes to derive in another, but simpler,
way the equations of motion presented previously, equations that will be used in the
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following (see also Antonelli (2014)). The final result will not contains any reference
to the vortexes, but it will use the angular velocities of the constituent Ωn and Ωp as
dynamic variables: this last variable is the principal observable parameter of a glitch
and therefore it will be easy for us to compare the results with real data.

As explained in the previous section, the entrainment effect reflects in the fact that
the momentum vector and the respective velocity are not aligned, i.e. vn 6= pn/mn.
For future convenience we can define the new variable vv as vv ≡ pn/mn; this means
that the relation between all these quantities is (see also section 2.4)

pn = mnvv = mn(vn + εn(vp − vn)) vn =
pn/mn − εnvp

1− εn
(8.22)

Moreover, it’s easy to verify that the circulation relation in eq. (8.10) can be written in
local form as:

1
x
∂

∂ x

�

x2Ωv

�

= κn(x) (8.23)

where of course Ωv is defined as Ωv = vθv /x .
The condition explained before that involves the Magnus force and the drag one,

can be expanded with these relations in the following way:

fM + fd = 0

κρnez × (vL − vn) = η(vL − vp)

κρnez ×
�

vθL eθ + v x
L ex −

pn/mn − εnvp

1− εn
eθ

�

= γ
�

vθL eθ + v x
L ex − vpeθ

�

(8.24)

where we have used the fact that the azimuthal symmetry for the superfluid makes vn
and vp to be directed as eθ ; as done also in the static models of the part II, here we
work in cylindrical coordinate system, where x indicates the cylindrical radius. We
can separate the vector components of the forces and we have:







−ρnvθL +
ρn

1− εn
pn/mn −

ρnεn

1− εn
vp =

γ

κ
v x

L (ex)

ρnv x
L =

γ

κ
vθL −

γ

κ
vp (eθ )

(8.25)

The quantities ρX and εX that appear in these equations depend generally on the
spherical radius, or anyway on coordinates x and z. In order to preserve the cylindrical
symmetry of the system, we integrate the relations above over the vortex length: this
will let us remove the dependency on z, making the final equations tractable with
numerical computational methods. Therefore we obtain







−AvθL + B
pn

mn
− C vp = Dv x

L

Av x
L = DvθL − Dvp

=⇒







vθL =
R2 − C/A
R2 + 1

vp +
1

R2 + 1
B
A

vv

v x
L = eB(vv − vp)

(8.26)
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where the following definitions hold

A=

∫

ρndz B =

∫

ρn

1− εn
dz C =

∫

ρnεn

1− εn
dz

D =

∫

γ

k
dz R= D/A eB = R

R2 + 1
B
A

(8.27)

The results just found indicate how a vortex moves under the action of the Magnus
and drag forces, because give the velocity vL of the vortex line as a function of the
drag parameters R and eB. The condition of a vortex pinned to the crustal lattice can
be thought as a vortex subjected to a infinite dynamic drag force that therefore acts
as a static friction; in other words when γ→ +∞, which implies that D→ +∞, we
find that the vortex line is comovent with the proton fluid because vθL = vp and has
null component in the radial direction, v x

L = 0. This is precisely what we expect in the
“perfect” pinning condition.

We can now consider the continuity equation for the number of vortexes N(x)
inside a circle of radius x . This equation can be written, in integral form, as:

d
d t

N(x) = −
∫

Σ

nvL · dS= −
∮

nv x
L dl (8.28)

where n represent the vortexes surface density. For the circulation property of a
superfluid (see eq. (8.10)) the above relation becomes

d
d t

N(x) =
d
d t

�

1
κ

2πx pn

mn

�

=
2π
κ

xΩ̇v = −nv x
L 2πx (8.29)

Now, using eqs. (8.23) and (8.26) we obtain:

Ω̇v = −
1
x
∂

∂ x

�

x2Ωv

�

eB(Ωv −Ωp) = −
�

2Ωv + x
∂

∂ x
Ωv

�

eB(Ωv −Ωp) (8.30)

The second equation of motion, needed to complete the system, can be found by
considering the conservation on angular momentum. This let us to directly encode
also the electromagnetic spin–down (with the variable Text) which is an important
aspect of the rotational properties of neutron stars, and which is not explicitly inserted
in eq. (8.16):

d
d t

L= −Text (8.31)

Thanks to the consistency relation eq. (8.19) between the entrainment coefficients,
and for the definition of vv , the infinitesimal angular momentum can be expressed in
the following way:

dl= x× (ρpvp +ρnvn)dV

= x×
�

ρp(vp + εp(vn − vp)) +ρn(vn + εn(vp − vn))
�

dV

= x2
��

ρp(Ωp + εp(Ωn −Ωp))
�

+ρnΩv

	

dVez

(8.32)
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Putting all the pieces together, we can write now the final system in local form:

�

(ρp − εpρp)Ω̇p + εnρnΩ̇n = −text(r)−Ψ(r)
(ρn − εnρn)Ω̇n + εpρpΩ̇p = Ψ(r)

(8.33)

where Ψ(r) is the mutual friction term and therefore it’s defined with the eq. (8.30)
as Ψ(r) = ρnΩ̇v . The factor text(r) encodes the spin–down torque due to the electro-
magnetic emission of the star. We want to adapt here the dipole model of appendix B
and therefore we impose that text(r) = βρp(r)Ω3

p. The first equation of the system,
taken in absence of entrainment and mutual friction, can be integrated with the factor
∫

x2 dV to obtain:
IpΩ̇p = −β IpΩ

3
p (8.34)

Comparing this equations with the one obtained with the standard magnetic dipole
one can find that

text(r) = βρp(r)Ω
3
p =

1
Ip

R6B2
mag

6c3
ρp(r)Ω

3
p. (8.35)

Considering the local relation εnρn = εpρp, we can solve the initial system for Ω̇p and
Ω̇n:















Ω̇p = −
Ψ(r) + (1− εn)text(r)
(1− εn − εp)ρp

Ω̇n = +
Ψ(r) + εp text(r)

(1− εn − εp)ρn

(8.36)

In our simulations we will not consider the differential rotation of the proton fluid;
instead we will consider the “protons” (i.e. all the charged components) as a rigid
body. This assumption is justified by the short timescale (less than few seconds) on
which the ions in the crust are anchored by the superconductive protons in the core:
as we want to follow the dynamics of the neutron star with time steps grater than
this coupling, our model remains consistent and can produce realistic results. We
therefore integrate the first equation of the system, multiplying both terms by the
factor ρp x2 dV :

Ω̇p = −
1
Ip

∫

Ψ(x , z)
1− εn − εp

x2 dV +AΩ3
p (8.37)

where

A= −
R6B2

mag

6c3 I2
p

∫

1− εn

1− εn − εp
ρp x2 dV (8.38)

The dynamical equation for the neutron superfluid must be kept in local form, in
order to follow the movement of the vorticity and therefore the exchange of angular
momentum between the two fluids. As done before, in order to guarantee that the
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angular velocityΩn depends only on the cylindrical radius x and not on the coordinate z,
we perform a weighted average over the vortex length for the entrainment coefficients:

εX (x) =

∫

εXρX dz
∫

ρX dz
(8.39)

In order to simplify the notation, we define also the following quantities:

H(x) = 1
1− εn − εp

(8.40)

F(x) =
εn

1− εn − εp
(8.41)

B(x) = eB(1− εn) (8.42)

Q(x) = 1
x
∂

∂ x

�

x2
�

Ωn + εn

�

Ωp −Ωn

���

B(x)
�

Ωp −Ωn

�

H(x) (8.43)

We can now write the final system of equations that we will use in the following
simulations:











Ω̇p = −
2π
Ip

∫ R

0

Q(x)x3

�

∫ +`(x)

−`(x)
ρn dz

�

d x +AΩ3
p

Ω̇n(x) =Q(x) + βF(x)Ω3
p

(8.44)

In case of null entrainment, εn = εp = 0 and eB = B =R/(1+R2) because B = A
in eq. (8.27). Moreover F = 0 and H = 1: the dynamics simplifies in Ω̇n(x) =Q(x)
and Ω̇p = −

�∫

Q(x)x2dV
�

/Ip − βΩ3
p.

8.4 Physical inputs of the model

As our goal is to apply the model just described to simulate a glitch in realistic condi-
tions, we must implement the equations using reasonable physical inputs and define
the validity range of all the parameters. The starting point is of course a neutron
star density profile obtained by integrating the TOV equations (see eq. (2.11)) with
an equation of state. As done in the previous chapters we will use GM1 and SLy as
EoS: by changing the boundary condition of the integration, this approach let us to
construct a star with specified mass M (and consequently a defined radius R) of which
we know the density profile ρ(r), as detailed in section 2.2.2. In a fully consistent
model, the proton fraction xp(r) = ρp(r)/ρ(r) and the entrainment coefficients could
be obtained directly from the equation of state, because this quantity is a microphysical
property of matter. unfortunately, this information is not provided with many of the
EoS that can be found in literature (and with the EoS used in this work), so we will
consider the simplified case in which the proton fraction is constant and therefore



128 Chapter 8. The hydrodynamical model

doesn’t depend on the radius r. We introduce the variable Q defined as Q = In/Itot:
this approach leads to xp = 1−Q and therefore ρn(r) =Qρ(r) and ρp = (1−Q)ρ(r).
As discussed in section 5.2, the results of Zuo et al. (2004) about the proton fraction
indicate that Q lies in the range (0.85÷0.95) .

Also the entrainment coefficients are not provided with the EoSs; however, they
have been calculated recently using different models for the core and the crust of a NS.
In particular, Chamel (2012) applied the band theory approach to estimate the values
of the neutron effective mass m∗n for the typical density range of the inner crust. In the
following we will use these values, as we have done in chapter 7 (see fig. 7.1 for a plot
of the effective mass versus the barion density, which can be expressed as a function of
the radius r with eq. (7.1)). It’s important to note that the entrainment is a substantial
effect, as indicated by the ratio m∗n/mn ≈ 10, and not only a small correction: as
suggested by the static snowplow model, the vorticity is stored and released in the
crust and therefore this is the part of the star that plays the most important role. In
other words the presence of the entrainment must be carefully considered because it
can affect significantly the dynamics of the system. Regarding the core, Chamel (2006)
suggests that the proton effective mass is slightly lower than the bare mass in the
core while we have seen that it’s larger in the crust. This means that the entrainment
parameters will vanish close to the base of the crust and therefore we will consider the
m∗n = mn in the core. The effective mass is related to the εn coefficient by the equation
εn = 1−m∗n/mn; moreover εp = εnρn/ρp, as discussed previously.

8.4.1 Pinning interaction and critical lag

As pointed out in part II, one of the fundamental ingredients of the snowplow model
is the existence of the pinning interaction between the crustal lattice and the neutron
vortexes. The model has been developed starting from the ideas of the seminal works
by Alpar et al. (1981) and Anderson et al. (1982), where the authors suggested that this
kind of interaction can be responsible of a storing mechanism for the superfluid angular
momentum; the glitch is therefore a sudden exchange of this angular momentum from
the superfluid component to the normal one.

In chapter 3 we have presented a mesoscopic approach that has allowed us to
move from the pinning force per single interaction to the pinning force per unit length:
as we are considering glitch models, the interaction per unit length plays a crucial
role because it links the microphysics of the vortex–nucleus system to the macroscopic
point of view required to understand global dynamics. Moreover, our results indicate
that the correct order of magnitude for this last quantity should be 1015 dyn/cm, two
order of magnitude lower that the forces previously considered. Then, in chapter 5,
we have calculated the critical unpinning lag profile ∆Ωcr(x), obtained by equating
the pinning interaction and the Magnus force (after integration on the vortex length):
the fig. 5.5 shows some examples of ∆Ωcr(x) for different configurations. The shape
of this profile, which presents an evident peak located in the crustal region of the star,
suggests the storing mechanism for the angular momentum: vortexes are depleted
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in the central region of the star (where ∆Ωcr is low) and packed in a thin sheet just
before the peak; when the actual lag overcomes the critical value ∆Ωcrmax also the
last barrier is depinned and the recoupling is sudden.

Given its importance, we need to include the pinning also in our hydrodynamical
simulations. As pointed out previously, we can think of pinning as a static friction,
whereas drag is a dynamical one. If we consider the parameter γ in eq. (8.27) and
take γ→ +∞, we obtain B = 0. This means that the pinning condition can be easily
modeled by taking Q(x) = 0 in the stellar regions where vortexes are anchored to the
lattice. Of course we discriminate between the two opposite configurations with the
critical lag profile: this means that generally when the actual lag ∆Ω(x) is less than
∆Ωcr(x) we are in the pinned condition, while the unpinned condition is given by the
relation ∆Ω(x)≥∆Ωcr(x). A different prescription will be used when a glitch starts,
as we will discuss later. The term Q(x) in the differential equations must be corrected
in the following way:

Q(x) =







0 pinned
1
x
∂

∂ x

�

x2
�

Ωn + εn

�

Ωp −Ωn

���

B(x)
�

Ωp −Ωn

�

H(x) unpinned
(8.45)

The critical lag ∆Ωcr(x) is calculated using the same equations of chapter 5 and with
the same hypothesis: we consider that the vortexes are straight and thread the whole
star, and, for the results of chapter 4, we neglect any kind of pinning interaction in the
core. The pinning profile used is the L = 5000,β = 3 case of fig. 3.11.

Generally we will start our simulations with corotating components, which means
that Ωn(x) = Ωp for every cylindrical radius x . This condition resembles the ideal
situation of the star after a glitch that has completely recoupled the two fluids; moreover
in this way we can follow the entire build up of the lag and evaluate the interglitch
time. In the initial condition, of course, vortexes are pinned everywhere; while ∆Ω(x)
increase (this is due to the fact that Q(x) = 0 andΩp is subjected to the electromagnetic
torque) the inner region of the star switch to the unpinned condition because the lag
excesses the critical values and therefore the components recouple thanks to the term
Q(x) 6= 0. These considerations can be useful to understand qualitatively the role of
the entrainment. If εp = εn = 0, it follows that F(x) = 0 and H(x) = 1 everywhere
and therefore the pinned case is equivalent to Ω̇n = 0. In other words the external
torque affects only the proton fluid. This is not true when the entrainment is not
null: in this situation, even if Q(x) = 0 (pinned condition), Ωn decreases because
the external spindown acts partially also on the neutron fluid. This is the same effect
discussed in section 7.1 and the obvious consequence is that the time needed to build
up a certain lag is greater than the null entrainment case.

Initially we will not consider any kind of repinning and therefore an unpinned
region remains so until the end of the glitch/simulation. We will discuss later for
alternative approaches about this aspect.
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8.4.2 Drag coefficients

As showed by eq. (8.44), all the physical information about the nature of the mutual
friction is encoded in the parameter B that must be discussed carefully. The expressions
in eq. (8.27) indicate that this quantity is a function of the dimensionless term R,
which, in turn, is related to the usual drag parameter γ used in other works about this
subject:

B = R
1+R2

, R=
γ

kρn
. (8.46)

It’s clear from this expression that in principle, the parameter B, that is relevant
for us, depends on the position inside the star. As discussed previously, we remove
the dependency on the coordinate z by performing an average over that direction
(following the vortex–line), but anyway we must handle the dependency on the
cylindrical radius because the mutual friction is due to different physical phenomena
for each region of the star. Therefore we need to identify a realistic validity range for
the value of B in the core and in the inner crust of the star, and also to understand
what happens during a glitch. As we will cover deeply in the next chapter, the
interplay of these different parameter plays a fundamental role in the dynamics of
a glitch, determining the rise time of the event and also the recovery phase: in fact,
comparing the system in eq. (8.44) with the dynamical equations of the simple global
two component description in eq. (8.1), it’s easy to understand that in our model the
timescale τ of the evolution is linked to B as:

τ≈
1− εn

2ΩnB
(8.47)

NS Core

In the core of a neutron star, the interaction between the two fluids is due to the
scattering of electrons (which are part of the proton fluid) off the neutron superfluid
vortexes. From the results of Andersson et al. (2006), this effect couples the compo-
nents with a very short timescale (≈ 10 rotational periods, that for the Vela pulsar
means less that a second). The authors suggest the following expression for the drag
coefficient Bc (the subscript c indicate that this equation is valid in the core region):

Bc = 4× 10−4

�m∗p
mp
− 1

�2�mp

m∗p

�1/2
� xp

0.05

�7/6
ρ14

1/6 (8.48)

where ρ14 is the total density expressed in units of 1014 g cm−3, xp is the proton
fraction (that we consider as a constant) and m∗p is the proton effective mass that is
estimated to be in the range m∗p/mp ≈ 0.5÷0.7. The above expression is valid in the
case of a superconductor of type I, but anyway, as pointed out by Sidery and Alpar
(2009), the possibility that a fraction of the core is in type II superconducting state
must also be discussed, as this aspect is still unclear. In this case the coupling timescale
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between the two components could be even smaller for the vortex–fluxtube dissipative
interaction, even if the presence of a pinning effect can significantly change this picture
because it decouples the two fluid. The results of chapter 4 suggest that the pinning
force per unit length is small if compared to the crustal pinning and therefore we
can neglect this aspect. In this work we will not consider the possibility of a type II
superconducting state, even if this is an interesting issue, and, following the same
prescription used by Haskell et al. (2012c), we will adopt the eq. (8.48) to estimate
a realistic range for the drag parameter Bc. Equation (8.48) depends weakly on the
density, which furthermore doesn’t change rapidly in the core of a neutron star: we
can therefore remove this dependency and consider Bc ≈ 1× 10−4 as a constant for
the whole region. Our simulations will use values for this parameter in the range
10−5÷5× 10−4.

Inner crust

In the inner crust, two different physical processes can be responsible of a mutual
friction between the components, each one with a particular coupling timescale. As
pointed out by Jones (1992), the vortexes can interact with the sound waves in
the lattice: this effect dominates the dissipation when the relative velocity between
the vortex line and the lattice is small (vL ≤ 102 cm s−1). The calculation of the
drag coefficient for this process is highly uncertain because it involves a mesoscopic
averaging procedure over the vortex length (similar to the approach used in chapters 3
and 4): this lead to a reduction factor of the order of ≈ 10−4. Haskell et al. (2012c)
used, for the glitch simulations, a constant parameter Bp ≈ 10−10 to indicate the
coupling due to the lattice phonon oscillations in the inner crust of the star. When the
relative velocity between a vortex and a lattice is high, another kind of dissipation
could arise. In this case, for the excitation of Kelvin waves in the vortex, it interacts
with the lattice with much shorter timescale respect to the typical one involved in the
phononic mutual friction. The results of Epstein and Baym (1992) suggest a value of
Bk ≈ 10−3 for the strong drag parameter related to the Kelvin excitations.

To model the dependency of the effective drag on the relative velocity, we construct
a profile Bcrust that is a function of the local actual lag ω. We want also to explore the
effect of a strong viscous drag which entangle and block the vortex (it’s therefore a
pinning–like effect) when the relative velocity with respect to the normal component
falls below a threshold. In other words we consider a very high value of the drag
parameter in order to encode this effect. Thanks to the relation between B and R, i.e.
B = R/(1+R2) we can operate in the regime R > 1 and consider a parameter γv
such that the corresponding B value equals Bp. The net effect on the dynamical model
is therefore the same of a phononic drag, but this approach makes easy to construct a
transition function between γv and γk (which correspond to Bk) as a function of the
local lag ω(x). In this work we consider

Rcrust(x) =
γv

κ 〈ρn(x)〉
exp

§

ln (γk/γv)
1+ exp [−q(ω(x)−η |∆Ωcr(x))|]

ª

(8.49)
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Figure 8.1: In this figure we plot the dependency of the crustal drag parameter Bcrust over
the lag ω between the two components of the star. For this plot we used eq. (8.49) with
γk = 1014 g cm−1 s−1, γv = 1021 g cm−1 s−1 and 〈ρ〉 = 5× 1013 g cm−3. The parameter η is
fixed here to be η= 0.3.

where

q =
1
S

ln [ln(γv/γk)− 1] (8.50)

and 〈ρn〉 is the average of the neutron fluid density over the vortex length. This
expression let us to introduce a smooth transition between the two values of the
γ parameter which are different for several order of magnitude. The width of the
transition region is S and we fix this value to be 10−4 rad/s, while the transition value
is defined as a fraction η of the local critical lag ∆Ωcr(x) and in the following chapter
we will test also the effect of the parameter η in glitch simulations. From eq. (8.49) we
can easily obtain the resulting Bcrust: the fig. 8.1 shows an example of the dependency
of Bcrust over the lag ω between the two components of the neutron star.

The considerations detailed here define the values of the drag parameter for each
region of the star. As our model works in cylindrical symmetry, and thanks to the fact
that only in the equatorial region the vortexes are full immersed in the crust, we can
consider B(x) = Bcrust(x) for x > Rcore. In the region x < Rcore, the vortexes thread
the core but are also partially immersed in the crust of the star at their extremities;
therefore we need to perform an average procedure. Following the expressions in
eq. (8.27), we average Rcrust and the corresponding value Rc for the core over the
vortex length; then we can calculate with eq. (8.46) the final effective drag B(x) that
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we use in the simulation (see eq. (8.44)).

8.4.3 Triggering a glitch and post–glitch phase

The snowplow model of chapter 5 naturally identifies a trigger mechanism for the
glitch: when the actual lag reaches the maximum value of the critical lag profile
∆Ωcrmax, all pinning barriers are broken and the vortexes can reach the crust to which
they transfer their angular momentum. This approach leads of course to a precisely
defined interglitch time, that is the interval required to build up a lag of ∆Ωcrmax. In
chapter 7 this limitation has been overcome with the adoption of a variable trigger, in
other words a glitch can happen after a certain time t∗ (or equivalently after a actual
lag ω∗) from the previous event. Even if there are many models, the physical nature
of this trigger is still unclear, and it’s beyond the scope of this work to investigate
about these aspects. Anyway, triggering a glitch at different lags let us to study the
evolution and the resulting observables when the angular momentum available for
the glitch changes: for this hydrodynamic model therefore we will adopt the same
prescription, also to compare the results with the ones of chapter 7. Of course, the
quantity ϕ = ω∗/∆Ωcrmax that parameterize the trigger can vary in the range 0÷1,
because ∆Ωcrmax represent the maximum lag that can be built up by the star.

When the lag reaches the value ϕ∆Ωcrmax, a glitch is triggered by considering
unpinned all the vortexes in the crust (the part of the crust where the critical lag is
below the threshold and the whole core are likely to be already depinned) and we
change the drag profile in order to let the two components begin to recouple fast. This
effect is achieved only acting on the value Rcrust(x) of eq. (8.49): we only lower the
threshold which determines the shifting between the kelvonic drag and the viscous
one, in other words the parameter η is replaced with a new smaller value ηg . The
change η→ ηg implies that the crust now evolves under the effect of a kelvonic drag
Bcrust ≈ Bk ≈ 10−3 which is associated to a timescale small enough to produce the rise
of the glitch. As explained in the previous section, the recoupling reduces the lagω(x):
when its value reaches the threshold ηg∆Ωcr(x), Bcrust ≈ Bp ≈ 10−10 which means
that the vortexes are entangled and their motion is now decoupled from the crust, as
expected when the vortexes are pinned. In other words our approach permits us to
implement in a simple way the repinning phenomenon after the glitch: the timescales
now are so long that we can consider the vorticity attached to the lattice and therefore
the star is ready to build up the lag required for another glitch.





CHAPTER 9
Results of the dynamical

simulations

The model detailed in chapter 8 has been implemented in a full consistent computer
code that can solve the system of differential equations under different physical
condition. One important aspect of the code is in fact the possibility of changing
easily the inputs of the simulations, allowing us to investigate the influence of a single
parameter on the resulting glitch. We have therefore explored the dependency of the
observable data of this phenomenon with respect to the various drag parameters (in
order to better understand the rise time and the recovery phase) and to the proton
fraction of the star. Moreover we have tested different pinning/repinning conditions,
together with a parameterized trigger mechanism based on the same prescription
adopted in chapter 7, in order to reproduce the same results with a dynamical approach.

All the simulations has been built with realistic physical background, starting
from the density profile of the star: the first step is always the integration of the
TOV equations (see eq. (2.11)) with a valid EoS. As the density in the crust of a
neutron star changes very rapidly (see fig. 2.5), we need to construct a fairly dense
spatial grid (with steps d x ≈ 102 cm of the cylindrical radius, in order to maintain
the computations feasible). Furthermore the typical timestep suggested by the values
of the drag parameters is very small if compared to the interval required to build
up the lag that stores the angular momentum. Taking the Vela Pulsar as example,
this interval is ≈ 2.8 yr: this means that use must follow the evolution for about
3 year with a timestep of the order of ≈ 10 s (estimated with Bc = 5× 10−4). All
these considerations indicate that we are facing a really challenging task from the
computational point of view: we have therefore developed a highly parallelized and
optimized code that runs in reasonable time and still allows to easily test different
physical inputs.

The diagram in fig. 9.1 illustrate the scheme of execution of a simulation. Before the
true evolution code, in the startup block all the physical inputs are correctly evaluated:
we prepare the star (obtained by TOV integration) and setup the spatial grids with
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Figure 9.1: This diagram represents the execution flow implemented in the computer code
which simulates the glitch following the hydrodynamical model described in the previous
chapter.
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precalculated static values, like pinning forces, critical unpinning lag, entrainment
coefficients and the effective drag profile for the pre–glitch phase. Generally we begin
with corotating components, which means that Ωi ≡ Ωn(x) = Ωp for every cylindrical
radius x . After these steps we star integrating the differential equations of eq. (8.44):
we use the Runge–Kutta 4th order method with a timestep ∆t to calculate how our
dynamical variables change over time. As described in the previous chapter, we need
to consider a set of values for the neutron angular velocity (the star must develop
differential rotation in order to produce a glitch), i.e. Ωni

= Ωn(x i), where the x i
points are spaced on the grid by an amount d x ≈ 102 cm. On the contrary, for the
charged fluid, we perform an integration at every timestep, in order to consider the
component as rigidly rotating and to obtain an observable quantity. The timestep ∆t
must be chosen accordingly to the timescale τ given by the drag forces (following the
eq. (8.47)) otherwise the numerical computational error is not controlled.

The pre–glitch phase ends when the glitch conditions (i.e the trigger conditions)
are met. Then the event is fired by depinning the part of the crust that is still blocked
and by switching to the kelvonic drag: this is obtained by simply substituting the
parameter η in eq. (8.49) with a lower value ηg , as explained in section 8.4.2.

9.1 Qualitative analysis of a simulation

We propose the results of simple simulation in order to analyze qualitatively how a
glitch is reproduced by our model. In this run we neglect for a moment the entrainment
(we will discuss later about the consequences of this effect) and we trigger a glitch only
when the actual lag ω reaches the peak of the critical lag profile ∆Ωcrmax. As initial
condition, we take the two fluids as comovent at the typical rotational velocity of the
Vela pulsar, i.e. Ωi = Ωp = Ωn(x) = 70 rad/s. Moreover we fix the drag coefficient
in the core as Bc = 10−4 and we set Bk = 10−3 (the star used is obtained with GM1
as EoS and it has mass of 1.3M�). The result of the entire simulation is plotted in
fig. 9.2; in this figure we have reported only the temporal evolution of the angular
velocity Ωp(t) of the charged component. The values are shifted by the quantities t0
and Ω0 which represent here the time at the beginning of the glitch and the respective
angular velocity. We can see that the event happens after ≈ 3 yr from the beginning of
the simulation.

In the interval before the glitch, the angular velocity decreases regularly for the
effect of the electromagnetic torque (the magnetic field value is taken here to be
Bmag = 3× 1012 G). Consequently the lag between the two components increases
because, on the contrary, the neutron fluid is decoupled from the magnetic field. This
is especially true for the inner crust region of the star where the critical lag reaches
its maximum. Here the vortexes are pinned and they remain in this condition until
the triggering of the glitch, thus when the lag overcome the threshold. The inner part
of the star instead is involved in a progressive depinning process: starting from the
inside and following the steep profile of the ∆Ωcr(x) function, cylindrical shells of the
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Figure 9.2: This plot shows how the rotational velocity of the crust (proton component)
changes with time in the whole simulation. Points are shifted in order to place the beginning
of the glitch at the origin. In the inset the first 90 seconds of the glitch are reported in detail.

neutron component fall in the unpinned condition and therefore begin to recouple
with the charged fluid. The fig. 9.3 shows the typical situation of the star (outer core
and crust) at a given time between two glitches. The shaded region indicates the part
where the vorticity is still pinned to the lattice, and therefore Q(x) = 0 here (i.e. no
drag force acts here).

Where vortexes are not attached to the crust, the drag coefficients drive the
evolution with the timescale given by eq. (8.47). From this expression we can easily
find the equilibrium lag, that is

∆Ω= −Ω̇τ= −
Ω̇(1− εn)

2ΩB
(9.1)

This condition is reached rapidly in the core, due to the fact that in this region the
drag coefficient that acts between the two fluid is quite strong (Bc ≈ 10−4) . On
the other hand, in the inner crust a partial fast recoupling (where the lag decreases
consistently due to the effect of Bk) is followed by a transition to a phononic drag, for
the expression eq. (8.49) used to model the effective mutual friction. This explain
the fact that in fig. 9.3 the profile of the actual lag doesn’t go to zero in the crust:
the timescale associated with Bp is too long and the glitch happens before that the
equilibrium condition can be reached.
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Figure 9.3: This plot shows the typical situation at a given time between two glitches. In
particular we report the lag between the two components and the critical lag profile. The
shaded region represents the part of the star in which vortexes are pinned (decoupled), while
in the other parts the components are coupled thanks to the effect of the mutual friction.

The plot in fig. 9.4 (left part) shows how the vorticity in different zones of the
star are depinned at different time. We plot, together with the value of Ωp, also the
values of Ωn at some fixed cylindrical radius. Of course the profile of the critical lag
makes it responsible of the fact that at smaller radii the depinning occurs earlier than
in the external positions. This kind of plot is also useful to visualize the effect of the
entrainment during the build up of the lag. The left part of the figure is referred to the
simulation described until now, conducted without any form of entrainment. It’s easy
to see that where the vorticity is still pinned to the lattice, the corresponding value of
the neutron angular velocity Ωn doesn’t change. This is not true when the coefficient
εn and εp are not null. The right part of fig. 9.4 refers to a simulation in which all the
parameters are the same, except for the entrainment that we take into account. Even
in the pinned condition (i.e. before the rapid change of slope) Ω̇n 6= 0 because the
electromagnetic spindown partially acts also on the superfluid component (the effect
is more consistent in the crust; in the core, on the other hand, we take ε = 0). This
clarifies again the fact that the total time required by the star to build up a fixed lag is
bigger when the entrainment plays a role.

When the trigger condition is met (generally when the actual lag at the peak
reaches a threshold, for this simulation we take the peak ∆Ωcrmax itself as threshold),
the glitch is fired by depinning all the vorticity in the crust and by switching the drag
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Figure 9.4: In this figure we show the effect of the entrainment in the model. We plot how Ωp
and Ωn (for different cylindrical radii) evolve with time. In the left part (without entrainment)
we can see that the Ωn remains constant until the depinnig occurs and this quantity changes
rapidly. This effect happens earlier in the core than in the crust due to the shape of the critical
lag. In the right part the same quantities are plotted when the entrainment is included in the
model. The considerations above remain valid, but here it’s important to note that also in the
pinned case, Ω̇n is not null, thanks to the presence of the entrainment.

coefficient here to the value Bk (i.e. to strong kelvonic mutual friction), thanks to the
substitution η→ ηg . This means that a bulk of superfluidity stars recoupling at the
same time, and with a very fast timescale. The values of Q(x) is strongly affected
and the integral in eq. (8.44) produces a fast positive variation of Ωp, because Ω̇n > 0
(the recoupling is so strong that it overcomes the electromagnetic torque). This is the
“rise” phase of the glitch (dominated by the strongest among the drag parameter, i.e.
Bk) that corresponds to the first ≈ 5s in the left plot of fig. 9.5. In the same plot we
can see that Ωn decreases in the crust and this reduces the lag, bringing the system
towards the condition of equilibrium.

Looking at the profileΩp(t), it’s noteworthy that the rise of the glitch is immediately
followed by a short term recovery that happens with a timescale of ≈ 50s: after
reaching the maximum∆Ωgl = Ωp(tmax)−Ωp(0) (in this simulation∆Ωgl = 10−4 rad/s;
here and in the following we consider with t = 0 the beginning of the glitch), the
derivative Ω̇p changes sign and therefore the proton angular velocity is reduced, until
the “recovery” effect ends. This behavior is explained if we look at the critical lag in
the core region. In fact, due to the rapid spin–up of the whole star and the low values
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Figure 9.5: The left plot shows the first 100s after the beginning of a glitch. We can see the
initial rise phase (due to the effect of Bk; it ends when ∆Ωp reaches its maximum) and the
recovery phase in which Ω̇p < 0 with absolute value granter than the pre–glitch one. In the
right figure we plot the critical lag profile and the actual lag at the end of the rise. We can see
that in the core the lag has changed its sign: this explains the recovery effect due to the core
drag Bc (see eq. (8.44)).

of ∆Ωcr here, the actual lag Ωn −Ωp changes its sign in eq. (8.44), as we can see in
fig. 9.5 (right plot, shaded region), referred to a time t = 5 s after the beginning of
the glitch. The flat profile of ∆Ωcr for x < Rcore indicates that the effect is consistent
because the whole region is involved at the same time, even if the actual lag is small.

As shown, this phase is dominated by the recoupling of the core (subsequent of
the rapid spin–up) and therefore the coupling parameter is Bc which is associated
to a timescale one order of magnitude larger than the one imposed by Bk. The
interplay of these two parameters strongly affects the dynamics of the phenomenon:
the kelvonic drag takes part firstly and defines mainly the maximum jump ∆Ωgl of
the glitch (and how long does it take to reach this value), while the mutual friction
in the core of the neutron star fixes how fast Ωp(t) reaches its final value. This value
is also dependent on the value of the parameter ηg which defines when the repinnig
condition is reached. The dependency of the resulting Ωp(t) on these parameters will
be explored quantitatively in the next section.



142 Chapter 9. Results of the dynamical simulations

9.2 Parameter study

In the previous section we have seen, from a qualitative point of view, that the time
evolution of a glitch is controlled by some parameters of our model. Here we want to
explore deeply this aspect, giving some quantitative results obtained with simulations
conducted with different conditions. In order to simplify the following discussion, we
define now some relevant quantities. Unless otherwise specified, we consider the glitch
occurring at time t = 0 (time when the trigger is fired), and the corresponding angular
velocity of the charged component is Ω0. The variable tgl represents the time passed
from the beginning of the simulation to the glitch itself (at the initial condition the
two fluids are comovent), and corresponds roughly to the interglitch time. Generally
we plot the quantity ∆Ωp(t) = (Ωp(t)−Ω0), which evolves with time and represent
the principal observable quantity of the event. The maximum absolute value reached
by ∆Ωp(t) is the actual jump size that we identify with the term ∆Ωgl; moreover this
condition is reached after a time tmax (the risetime) from the beginning.

In all the simulations we take into account also the entrainment effect: this
means that the coefficients εp and εn are not zero (the profile used is the one plotted
in fig. 7.1, see eq. (8.39) for the averaging procedure over the vortex length). As
discussed previously, with the entrainment the time required to build up a fixed lag
is larger by a factor of the order of εn, i.e. ≈ 10. We have verified that our model
behaves as expected about this aspect: we have done two identical simulations except
for the εX coefficients. The glitch is always triggered when the actual lag reaches the
same fraction ϕ = 0.3 of the critical lag: in one case we find tgl = 2.4× 107 s, while
we obtain tgl = 1.9× 108 s when the entrainment is switched on (the other parameters
used here are: GM1 EoS, M = 1.3M�, Q = 0.95, Bmag = 3.1× 1012 G, Bc = 10−4 and
Bk = 10−3).

The entrainment affects significantly also the risetime of the glitch. In fact, from
the eq. (8.47), we know that the timescale of the evolution is controlled, of course, by
the mutual friction (with the B parameter), but it depends also on the εn coefficient,
which corrects the final values. This is especially true for the crust region because here
εn ≈ −10 (as discussed previously, we take the entrainment null in the core): in other
words, this slows down the effect of Bk which acts here. In particular the value of
tmax increases when the entrainment is switched on by a factor ≈Ým∗n. Referring to the
simulation described in the previous section (where εX = 0), we can see that a kelvonic
drag Bk = 10−3 produces a risetime tmax ≈ τ = 7 s; this result is in agreement with
the analysis of Dodson et al. (2002, 2007) in which an upper limit for this quantity
(al least for the Vela pulsar) is set to 40s. In order to satisfy this constraint with the
entrainment, we have to increase the value of the parameter Bk of roughly one order
of magnitude, because 1− εn ≈ 10. This is the first parameter that we study here,
letting it vary in the range 5× 10−3÷5× 10−2, for the reasons discussed. We have
taken a 1.3 M� GM1 star, with Q = 0.95; the pinning profile is the L = 5000,β = 3
calculated in chapter 3 and we have used the prescription for the drag coefficient of
section 8.4.2 (η = 0.6,ηg = 0.2), keeping Bc fixed at 10−4 for all runs while changing
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Figure 9.6: In this figure we plot the effect of the kelvonic drag parameter Bk over ∆Ωp(t).
We explore the range 5× 10−3÷5× 10−2 and in the right part we plot the value of Bk and the
corresponding maximal glitch size ∆Ωgl. The filled dot indicates the best benchmark for this
parameter: this value will be used also in the following simulations.

Bk; the glitch is trigger when the lag ω= |Ω̇|t reaches the typical value for the Vela
pulsar, i.e. 8.04× 10−3 rad/s. The results of these simulations are showed in fig. 9.6.
In the left part we plot how the rotational velocity of the crust changes in the first
60 seconds after the glitch, while in the right part the maximum jump size ∆Ωgl is
plotted against the corresponding Bk value. As expected, increasing Bk result in a
reduction of the rise time tmax. This means that the angular momentum stored by the
superfluid is released to the crust in a shorter time and therefore the peak reached
by the proton rotational velocity, i.e. ∆Ωgl, is bigger because a smaller fraction of
the core superfluid has begun to recouple. In the range of Bk tested, we obtain the
maximum jump of ≈ 4× 10−4 rad/s when Bk = 5× 10−2, and the corresponding rise
time observed is less than 10 seconds, well below the constraint of 40 s. A high value
of the kelvonic drag parameter is correlated to a more evident recovery effect: an
initially larger glitch rapidly relaxes to a lower spin rate than that of a glitch involving
a weaker drag parameter in which the timescales of Bk and Bc partially overlap.

In fig. 9.7 we keep Bk = 10−2 fixed and we change the drag parameter Bc for the
core region in the range 10−5÷5× 10−4 (all other parameter are the same used in
fig. 9.6). The dependency of the glitch size to this parameter is inverted with respect
to the kelvonic mutual friction: increasing Bc results in a smaller jump because the
angular momentum transfer is suppressed by the strong recovery, as shown by the
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Figure 9.7: In this figure we plot the effect of the core drag parameter Bc over ∆Ωp(t). We
explore the range 1× 10−5÷5× 10−4 and in the right part we plot the value of Bc and the
corresponding maximal glitch size ∆Ωgl with circles and ∆Ω60 with squares. This last quantity
corresponds to the jump size extracted after 60 s form the beginning of the glitch and will be
used later. The filled dots indicate the best benchmark for this parameter: this value will be
used also in the following simulations.

right plot of the figure. Nevertheless we can see that the main effect of Bc regards the
post–jump behavior in particular it determines how fast the rotational velocity of the
crust reaches its “final” value, as we can see in the plot (in this context, with the term
“final” value we identify the residual jump ∆Ωp measured when the stellar regions are
fully relaxed (see eq. (9.1)) or fully repinned).

In the two sets of simulations covered until now, we have only acted on the drag
parameters Bc and Bk. As explained, these values control the timescales of the different
phases of a glitch, but it’s clear from the derivation of the chapter 8 that they don’t
affect the total angular momentum stored by the superfluid neutron vortexes before
the glitch and released after to the charged component. In other words this means that
the jump ∆Ωp observed when the crust and the core are fully relaxed (i.e when Bc
and Bk have done their jobs) is the same for all runs, as we can see in the previously
discussed plots. With the global two component model, covered at the beginning of
chapter 8 and in appendix B, we can see that this aspect is controlled, as expected,
by the parameter Q, that is the ratio between the moment of inertia of the superfluid
constituent and the total moment of inertia of the star(see eq. (B.10)). We want now
to test if our dynamical model shows the same behavior, i.e. the final jump is bigger
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Figure 9.8: This plot shows the dependency of the glitch size on the neutron fraction value
Q. This parameter affects the quantity ∆Ωgl but also the residual jump size at the end of the
recovery, as we can see in the small figure.

when we increase the proton fraction. The plot in fig. 9.8 reports the dependency
of the residual jump with respect to the ratio Q = In/Itot (see appendix B for details
about the relation between the healing parameter of the global two component model
and the proton fraction of the star).

In the runs reported in this section we have kept fixed ηg = 0.2. Of course this
parameter affects the recovery phase of the glitch: when the lag falls below the
threshold defined by ηg the vortexes behave like they are repinned to the lattice and
the motion of the two components is therefore completely decoupled. This means that
∆Ωp doesn’t change anymore (the effect given by the secular slowdown is too small to
be visible on the timescales considered here), as we can see in fig. 9.9. In this plot we
change the value of ηg while the other parameters are fixed at their best benchmarks
used also previously (Bk = 10−2, Bc = 10−4, Q = 0.95, with GM1 as equation of state
and M = 1.3M�). As expected, the flat curve condition is reached before when ηg is
increased. For ηg = 0.2 we can see that the vortexes are repinned after ≈ 60s.

In the following we will use this value, ηg = 0.2, for the simulations. This choice
is reasonable if we take into account the observative data of the Vela glitches. Dodson
et al. (2002, 2007) provide a fit of the residuals for two giant glitches of this pulsar,
namely the event in 2000 and the one in 2004, giving also an estimate for a very short
(of the order of a minute) timescale term of the evolution (no timing analysis hasn’t
been yet published for the following glitches of Vela). We plot these two fits in fig. 9.10,
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Figure 9.9: In this figure we change the value of the parameter ηg (see section 8.4.2 for
details) and we plot the curves ∆Ωp(t) for the first 150 s form the beginning of the glitch. In
the right part we plot the value of ηg and the corresponding value of ∆Ω60 (glitch size after
60 s). The dot highlighted corresponds to the value of ηg that we take as benchmark for the
next simulations.

together with the output of our simulation with ηg = 0.2 (as done before, Bk = 10−2,
Bc = 10−4, Q = 0.95, with GM1 as equation of state and M = 1.3M�). In this figure
we report the residuals, i.e. the change in rotational frequency after removing also
the pre–glitch spin–down. The two events seem to be very different in the first two
minutes from the beginning: in the 2000 glitch the change in ν is less than 0.1% while
the situation is different for the other glitch, as we can see in fig. 9.10 (but we should
take into account that the 2004 fit is less significant due to the quality of data (Dodson
et al., 2007)). Anyway it’s important to underline the fact that observational data
don’t show any risetime (Ω̇p is always negative) and the glitch is therefore considered
as an “instantaneous” step: the upper limit for this phase is 40 s. In other words there
is an unobserved window of ∼ 1 min in which ∆Ωp(t) reaches its maximum and it’s
already decreasing when we begin to record data. For this reason we are interested in
the quantity ∆Ω60 which is the jump size extracted after 60 s from the beginning of
the glitch, i.e. ∆Ω60 = Ωp(t = 60s)−Ω0. In this perspective, the choice ηg = 0.2 is
reasonable as it allow us to simulate an intermediate glitch between the two events of
Vela considered, and to fit well the 2000 one if we shift the curve (we consider the
glitch as starting at t = −60s, see the fig. 9.10).
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Figure 9.10: In this figure we calculate the residuals of our simulation (see text for details)
and we compare the curve with those obtained from the observational data for two events of
the Vela pulsar (Dodson et al., 2002, 2007). The “shifted” curve is the same of the first one, but
shifted as if the glitch happens at t = −60 s. As we are focusing on the recovery timescale, we
have slightly scaled vertically the curves so that the glitch has decayed ot the same frequency
after 1000s.

9.3 Fit of the NS masses

One of the more interesting results of the snowplow model, discussed in chapters 5
and 7, is the possibility to infer the mass of a neutron star from the average glitch size
recorded by the observations, and correlate this information with the typical waiting
time of the particular object. The static model predicts in fact that a more massive
star exhibits smaller glitches when compared to a neutron star of lower mass. This
effect is explained by considering that an increasing the mass means also thinning the
inner crust which can store less angular momentum to be transferred to the charged
component during the glitch (see also the discussion at the end of chapter 5). This
behavior is reproduced also by our dynamical model, as we can see in fig. 9.11. All
the curves in the plot are referred to simulations conducted with the same parameters,
except for the total mass M of the star that we let vary in the range (1.2÷2.2)M�
(here we have used GM1 as EoS, Bc = 10−4, Bk = 10−2, η= 0.6 and ηg = 0.2). The
temporal evolution of the glitch is quite the same in all cases, and the curves are very
similar, even if they are shifted: as we can see quantity ∆Ωgl spans about one order of
magnitude when the mass is changed in the range considered.
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Figure 9.11: This figure shows the effect of the mass on the glitch. We simulate different
glitches when all the parameters are kept fixed at their best benchmarks except for the mass
M of the star. We can see that a lower mass star is associated to a bigger glitch, as expected
from the results of the snowplow model of chapters 5 and 7. On the right part we plot the
value of M and the corresponding ∆Ω60 (glitch size after 60 s).

In the snowplow model, a similar effect on ∆Ωgl is played also by the parameter
Ygl, as discussed in section 7.2. This quantity encodes, in the static model, the fraction
of superfluid matter coupled to the normal one at the glitch: this means that somehow
Ygl determines also the jump size, because in the limiting case of Ygl = 0 all the angular
momentum stored is transferred uniquely to the crust, producing the maximal glitch.
The inverse dependency of these two quantities is plotted in fig. 7.3. The degeneracy
of M and Ygl over the glitch size has been removed in the snowplow model by fixing
the parameter Ygl in order to obtain a mass for the Vela pulsar of 1.3M�. Then we
have used the same value of Ygl to infer the mass of all other frequent glitchers: the
calculated masses are reported in table 7.1. Moreover we have discussed about the
relationship, showed by the observational data, that involves ∆Ωgl and the average
lag ω = |Ω̇p| 〈tgl〉 built by the star in the time between two consecutive events (see
fig. 7.15).

Now we want to test if these results are also compatible with the dynamical model
proposed here. We consider the six most frequent glitchers of table 2.2 and, for each
case, we construct the respective star that will be used in the simulation: we use
GM1 as EoS and for the mass M we take initially the total mass obtained by the
fitting procedure of the snowplow model. Then we start the simulation detailed in



9.3. Fit of the NS masses 149

0

5.0⋅10-5

1.0⋅10-4

1.5⋅10-4

2.0⋅10-4

2.5⋅10-4

3.0⋅10-4

3.5⋅10-4

4.0⋅10-4

 0  10  20  30  40  50  60  70  80

Δ
Ω

p 
[r

ad
/s

]

t [s]

(1)
(2)
(3)
(4)
(5)
(6)

 0  0.002 0.004 0.006 0.008  0.01  0.012

ω* [rad/s]

(1)

(2)(3) (4) (5) (6)

Figure 9.12: In this plot we change the value of the triggering parameter ω∗, i.e. the lag built
by the two components at which the glitch is triggered when reached. All other parameters
are kept fixed. This plot is analogous to those obtained with the snowplow model in chapter 7.
On the right part we plot the value of ω∗ and the corresponding ∆Ω60 (glitch size after 60 s).

this chapter, and we use the prescription of section 8.4.3 to fire a glitch. This means
that we start a glitch when the raw lag ω build by the star reaches the critical value
ω∗ which corresponds to the observational average lag for this particular pulsar (in
fig. 9.12 we show the glitches obtained by changing the value of the triggering lag,
while all other parameters are kept fixed; we can see that qualitatively the relationship
between ∆Ωgl and ω is in agreement with the behavior studied with the snowplow
model, e.g. see figs. 7.3 and 7.4). The ultimate goal is to compare the jump size that
comes from the simulation with the observational value of the extremal event.

In the dynamical approach, the parameter Ygl doesn’t exists, but its role is player
here by the drag coefficients Bk and Bc because they controls the timescale, and
therefore also the amount, of the coupling between the superfluid and the normal
component of the star. In other words, the jump size is not affected only by the total
mass, but it is also affected by these parameters, as Ygl does in the static model. As
discussed previously, the figs. 9.6 and 9.7 show quantitatively these effects. Moreover
we have another source of degeneracy which comes from the parameter η of the
effective drag in the crust before the glitch (η represent the fraction of the critical lag
at which we have the transition to the viscous drag; see section 8.4.2). In fig. 9.13 we
reports the results of the simulations performed by changing only the value of η, while
keeping fixed all other parameters. We can see that the resulting effect is opposed
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Figure 9.13: With this figure we analyze the effect of the last parameter of the model, η,
which control the transition from the kelvonic drag to the viscous one in the crust. As expected
a higher value of η produces a bigger glitch, as shown by the right part where η is plotted
against ∆Ω60.

to the one obtained by changing the mass of the star: by increasing η we increase
the amount of angular momentum stored by the superfluid in vortexes between two
glitches and ready to be transferred suddenly to the crust (on the other hand, the glitch
size has an inverse dependency on the mass M , as showed before; this degeneracy is
similar to the one discussed in the snowplow model of chapter 7 between M and Ygl).

Based on the results in figs. 9.6 and 9.7 we decide to fix the kelvonic drag parameter
to be Bk = 10−2, and for the core coefficient we take Bc = 10−4 as this is the best
benchmark (see eq. (8.48)). This reasonable choice, together with ηg = 0.2 guarantees
that the rise time of the glitches remains below the constraint of ∼ 40–60s, while
the recovery timescale is in agreement with the observable data for the Vela pulsar
(Dodson et al., 2002, 2007). In order to fix the value for η we adopt precisely the
same strategy proposed for the static model approach: we consider initially the Vela
pulsar B0833–45 and we change η until we can reproduce (with the choice of the
other parameters detailed above) the maximum glitch size recorded by observations
(η= 0.6). With the procedure described now, all of the free parameters of the model
are fixed, except for the mass M and the lag ω = |Ω̇|t at the glitch. Of course ω comes
from the observational data (table 2.2, reported also in table 9.1), while for M we
follow the same approach used in chapter 7. As explained before, we are focused
on the quantity ∆Ω60 (jump size after 60 s from the beginning of the glitch) that we
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Figure 9.14: In this figure we plot the ∆Ωp(t) curves of our best fits for the six pulsars
considered (for GM1; the corresponding plot for SLy is very similar). The triangles indicate
the observational values that we fit with the procedure described (see also table 9.1).

compare with the maximum observed ∆Ωgl for each particular star: for every pulsar
we slightly change the mass M until ∆Ω60 matches the biggest glitch.

The inferred masses obtained with this approach are reported in table 9.1. The
procedure has been applied also for the SLy equation of state, with the same choices
for the pinning profile (L = 5000, β = 3 of chapter 3), neutron fraction (Q = 0.95)
and drag forces: Bc = 10−4, Bk = 10−2,ηg = 0.2. On the contrary, the parameter η
has been fixed in order to reproduce ∆Ωglmax

= 2.17× 10−4 rad/s, which is the Vela
maximum glitch size, with a 1.3M� star; the simulations indicate η= 0.9.

In figs. 9.15 and 9.16 and table 9.1 we give the results for GM1 and SLy together
with the ones obtained with the snowplow model in chapter 7, for a comparison. The
fig. 9.14 summarizes the simulations that are our best fits for the pulsar considered
with GM1 as equation of state. The triangles represent the observational values taken
as a reference for each star, positioned at 60 s as we extract the quantity ∆Ω60 from
the calculated curves.

In fig. 9.17 we replot the time evolution of our best fits of table 9.1 and fig. 9.14
(these are the simulations from which we extract the ∆Ω60 value to be compared
with the observational data), for GM1 EoS. As done before, we plot, for each pulsar,
the curve ∆Ωp(t) = Ωp(t)−Ωp(0), and also the equivalent quantity ∆Ωn(t) for the
neutron component. This quantity is obtained as ∆Ωn(t) = 〈Ωn(t)〉 −Ωp(0), where
〈Ωn〉 is a weighted average of the angular velocity of neutrons. In our model we have
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Table 9.1: This table summarizes the results of the fitting procedure for both SLy and GM1.
For each pulsar, the reported mass M is the value of this parameter which fits better the
observational data, comparing the result with the one obtained in chapter 7 with the snowplow
model. We report also the average lag ω = |Ω̇| 〈tgl〉 (see table 7.2) of the particular pulsar
used to trigger the glitch in the simulations and the maximum observed glitch size taken as
reference to infer the mass of the pulsar.

Pulsar name ω ∆Ωglmax
SLy GM1

[rad/s] [rad/s] Snowplow Dyn. model Snowplow Dyn. model
10−4 10−5 [M�] [M�] [M�] [M�]

J0537-6910 131.00 26.54 1.22 1.20 1.20 1.20
J0631+1036 2.70 7.16 2.04 1.80 2.33 1.85
B0833-45 80.44 21.70 1.30 1.30 1.30 1.30
B1046-58 37.96 15.46 1.52 1.45 1.61 1.45
B1338-62 11.86 10.00 1.81 1.70 1.96 1.75
B1737-30 1.92 2.76 > 2.04 2.00 > 2.36 2.30
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Figure 9.15: We plot here the inferred mass M (with SLy, obtained with the fitting procedure
described) of the considered glitchers versus the average lag ω.
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Figure 9.16: We plot here the inferred mass M (with GM1, obtained with the fitting procedure
described) of the considered glitchers versus the average lag ω.

considered Ωn as a function of the cylindrical radius, and therefore we must define a
mean quantity to compare it with the angular velocity of the crust (proton fluid). The
natural way to accomplish this task is to take into account the total angular momentum
Ln stored by the superfluid and therefore we define

〈Ωn(t)〉=
Ln

In
=

4π
In

∫ Ric

0

x3Ωn(x , t)

�

∫ `(x)/2

0

ρn(x , z) dz

�

d x (9.2)

where Ric is the radius of the inner/outer crust interface and `(x) = 2
q

R2
ic − x2 is the

length of a vortex for which x is its distance from the rotational axis. Thanks to the
definition in eq. (9.2) we obtain the “equivalent” global two component model and
the plots in fig. 9.17 show an interesting point. The simulations in which the proton
fluid velocity temporarily overcomes the neutron one, are also the ones that show
a marked overshoot phase and therefore an evident recovery effect, indicating that
these two aspects are strictly linked, as expected. This behavior is present in the first
three plots of the figure, but not in the last three glitches where the rise phase is not
strong enough to accelerate the proton component to a velocity bigger than 〈Ωn〉 and
therefore there is no velocity inversion. This behavior seems again to be controlled by
the lagω built by the star between glitches (as also showed by fig. 9.12) and therefore,
for our analysis, by the mass of the pulsar: this suggests that the shape of the ∆Ωp(t)
profile could be another indicator of the parameter M .
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Figure 9.17: For each of the pulsar that we take into account, we plot here the time evolution
of the simulation which fits better the observational data (for GM1; the corresponding plots
for SLy are very similar). We plot the ∆Ωp(t) curve and also ∆Ωn(t), calculated from the
weighted average of the rotational velocity of the neutron fluid, as described in eq. (9.2).

9.4 Conclusions

The results are in good agreement with those obtained with the snowplow model
and thus the same considerations done at the end of chapter 7 are valid. We have
found the same dependency between the mass of the pulsar and the glitching strength
(fig. 9.11); moreover the strong correlation between M and ω of figs. 7.18 and 7.19
is recorded also with the dynamical model described here, as we can clearly see in
figs. 9.15 and 9.16. This fact indicates that also this approach (like the static one)
provides a unique explanation for both the small and the large glitchers, covering the
range spanned by the observational data. As a consequence, the correlation between
mass and lag can be understood by the same qualitative considerations reported in
section 7.4. It’s noteworthy the fact that with the dynamical approach all the NSs
considered are fitted well, also the object B1737–30: the snowplow model in this case
predicts a mass above the maximum allowed Mmax for both the EoSs considered (in
other words, the static model predicts jumps significantly larger than those observed).
On the contrary, with the approach presented in this chapter, the glitching behavior of
this star is explained consistently in the same way as for the other pulsars (in fact the
inferred mass is slightly below the Mmax limit, see table 9.1): this confirms the validity
of this model in encompassing both large and non–large glitchers. Moreover we must
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point out that both models (static and dynamic) provide an upper bound for the mass
of a NS, as they fit its maximum glitch: therefore it’s always possible that in the future
a new larger event lowers the inferred mass. This is especially true for B1737–30 as it
spins down slower than the other stars and maybe we have not yet observed it long
enough: with a slightly larger glitch and therefore a slightly lower mass required in
the simulations, the data would show globally an even better correlation between M
and ω.

While the results presented here are in agreement with the snowplow model, this
dynamical model has many advantages over the static approach, because it allows
us to study the full temporal evolution of the interglitch phase and also the rise and
recovery of the jump. Moreover we have shown that it’s easy to take into account
all the required microphysical inputs, like pinning forces and drag interactions, and
therefore building a more realistic model. In this work we have focused on the short
term recovery which is due to the fast recoupling of the components of the star: in
fig. 9.10 we have compared our results with the observed glitches of the Vela pulsar
(2000 and 2004). Our simulation shows an intermediate behavior between the two
curves taken as reference that are quite different in the first two minutes. In looking
at these data we must always take into account that the upper limit for the rise of a
glitch is of ∼ 60 s. This indicates that the observational data available at the moment
lack of very important information about, at least, the first minute of a glitch, which
is a complex phase as it contains the rise, the true maximum ∆Ωgl reached and also
a fast recovery. For this reason generally we have chosen to fit the observed ∆Ωgl
values with the jump size extracted after 60 s, for a more realistic comparison. We
have also shown that by shifting our simulation by 60 s we can fit well the Vela 2000
curve (which is of better quality). It’s clear now that having a precise observation of
the first seconds of a glitch is really important as it would give great hints on the drag
coefficients and therefore on the whole process.

Even if we have dealt with the fast recovery, of course the longer timescales
suggested by the observational data can be explained by introducing other drag
parameters to encode the fact that different zones of the star recouple at different
times. The understanding of these aspects it’s a very interesting task that we will tackle
in a future work.





Conclusions and future directions

In this thesis we have faced the problem of pulsar glitches from different perspectives.
This approach has been suggested by the fact that a glitch is an evident macroscopic
phenomenon that is due to microscopical properties of matter at extreme densities,
like superfluidity, pinning, entrainment and drag forces. All these points of view are in
agreement and merge together to provide advances in our understanding of glitches.

We have focused on the mesoscopic evaluation of the pinning force per unit length,
both in the inner crust of a neutron star (chapter 3, where we find f ∼ 1015 dyn/cm)
and in the core (chapter 4, where the pinning interaction is very weak and negligible
for our scopes, in agreement with the indications from chapter 6). Thanks to the
pinning profiles obtained, we have successfully explained, with the static snowplow
model and with dynamical simulations, the observational parameters of the frequent
glitchers. Anyway, some aspects about the evaluation of the pinning interaction, that
we have not taken into account here, can be addressed in a future work. For example
we have considered the case of straight vortexes that cross the star. Although this is the
natural starting point for such a calculation, in a realistic neutron star the vortex array
may form a turbulent tangle, leading not only to an increased reservoir of angular
momentum, but also to a modified response of the star to a glitch. Furthermore the
crust of a neutron star may not form a BCC lattice but may exhibit a much more
inhomogeneous structure or exhibit several kinds of “pasta” phases at the crust/core
interface, altering the geometry of the nuclear clusters. We intend to explore the
consequences of these effects on vortex pinning in future works.

Also in the snowplow–based calculations (chapters 5 to 7) and hydrodynamical
simulations (chapters 8 and 9) we have assumed straight vortexes that cross the core
of the neutron star. Although the assumption of vortexes that pass through the star
appears to be justified by microphysical estimates, that do not predict an interface
of normal matter between the crust and core superfluid, turbulence, which is a well
known phenomenon from laboratory superfluids, may play an important role in pulsar
glitches because it could couple the superfluid and the normal component on inter-
glitch timescales that we have not considered here. The inclusion of turbulence in a
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hydrodynamical glitch simulations is, however, a complex matter as not only is the
nature of the turbulence not known but also the definition of pinning force per unit
length must be revisited in the presence of a turbulent tangle. Such a fundamental
issue should clearly be the focus of a future work.

An important point that we want to underline here is that both the snowplow model
with entrainment and the dynamical simulation code can fit well the observational
data and provide a unified description of small and large glitchers. Moreover we have
estimated the masses, and the results from the two approaches are in good agreement,
as they suggest the same mass/glitching–strength/lag dependency. Anyway the multi–
fluid model provides much more information about a glitch, as it reproduces the whole
evolution of the event: we can follow the interglitch time (where the lag between the
components is built), trigger a glitch and analyze the rise phase and also the recovery;
all has been done with the most recent benchmarks about the physical inputs like
EoS, entrainment and drag coefficients. It has been shown that the evolution of a
glitch is strictly dependent on the mutual friction interaction, in particular the rise
and consequently also the maximum step in frequency reached. Unfortunately, by the
moment, the observational data provide only an upper bound for this crucial phase,
but in the near future we hope that the next generation radio telescopes will be able
to record directly the rise of a glitch and therefore put important constraints for the
model.

In this work we have focused only on the short term recovery of a glitch; anyway
the code can be easily modified to introduce a more precise drag force profile, following
the idea that different zones of the star recouple at different times. This approach
would allow to reproduce the long timescales suggested by the fit of the pulsations
and therefore it’s a very interesting task.

Moreover, in this thesis we have proposed deterministic models, even if a glitch
is self–organized critical event, as suggested by the observational distributions. We
have not treated the nature of the trigger, which is still an unknown aspect of the
problem, but it would be very interesting if we can encode it in our simulations and
also merge the hydrodynamical equations together with a statistical approach (like
cellular automaton), in order to reproduce the distribution of glitch sizes and waiting
times.
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APPENDIX A
Rotational properties of neutron

stars

The first pulsar was observed in 1967, as a astronomical source of pulsating electromag-
netic waves. Their name derives indeed from the characteristic radiation registered by
our telescopes. Some emit in low frequency region (< 400MHz), while others in the
visible or even in X or γ band; anyway, for all of them, the radiation is recorded as
pulses, with a very short period (< 10 s).

The pulsation period is directly equivalent to the rotational period of the star, as
it’s clear from the fig. A.2: as a part of the emitted radiation is focused into a beam
outgoing from the magnetic poles, a far detector will record a peak at the moment
in which the beam intercepts, due to the rotation, the line of sight. Of course this is
possible if the axis of the magnetic field is not coincident with the rotational axis of
the star. The described phenomenon allows consequently to perform an extremely
precise measurement of the rotational period, so precise that it’s possible to record a
relative change of 10−6 in the rotational speed, as happens in glitches.

The average period of the pulsation of all the observed pulsar is around 1.6ms. This
is consistent, as order of magnitude, with that obtained with a simple consideration
about the forces acting on the star: to ensure that the object is not destroyed under
the effect of centrifugal force, this cannot exceed, in module, the gravitational one
and therefore

GM
R2
= Rω2

max =⇒ Tmin =
2π
ωmax

= 2π

√

√ R3

GM
∼

1
p

Gρ
. (A.1)

This simple calculation allows us to understand that neutron stars, due to their very
high density, are the only rotating objects that can have a period so small: if we use in
eq. (A.1) the values of M = 1M� and R= 10 km we obtain a period Tmin = 0.5 ms, in
agreement with the observed mean value (the Vela pulsar, the most studied one, has a
angular velocity of Ω' 70.6 rad/s).

161



162 Appendix A. Rotational properties of neutron stars

 0  1  2  3  4  5  6  7  8

In
te

ns
is

ty

t [s]

Figure A.1: Radiation intensity profile measured by a radio telescope (410 MHz) while ob-
serving the pulsar PSR 0329+54. We can see the pulsation pattern of this kind of source

Figure A.2: Representation of the magnetic
field of a pulsar with the radiation beam
associated. When the axis of the field is not
coincident with the rotational axis we can
see the pulsations if we are on the line of
sight with the star.
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The glitches, however, are not the only mechanism for varying the speed of rota-
tion of neutron stars: these in fact slow down gradually, then their period increases
(Ω̇≈ −10−10 rad/s2). This is simply due to the fact that these stars, emitting radiation,
lose energy and, given that they do not have thermonuclear reactions inside, this
energy loss is manifested in the decrease of the kinetic energy of rotation. The model
of magnetic dipole, shown below, clarifies the extent of this slowdown.

A.1 Magnetic dipole model

In this model the neutron star is treated as a magnetic dipole m inclined with an
angle α with respect to the axis of rotation. If m= |m|, then the field strength at the
magnetic pole is Bmag =

2m
R

3
, while the power of the electromagnetic emission is

P = −
dE
d t
=

2
3c3
|m̈|2. (A.2)

Projecting the vector m on orthonormal basis with the e3 versor oriented as the axis
of rotation we obtain

m=
BmagR3

2
[(sinα)(sinωt)e1 + (sinα)(cosωt)e2 + (cosα)e3] (A.3)

m̈= −
BmagR3ω2 sinα

2
[(sinωt)e1 + (cosωt)e2] (A.4)

|m̈|2 =
B2

magR6ω4 sin2α

4
, (A.5)

whereω is the rotational angular velocity of the star. Substituting this result in eq. (A.2)
we have

P =
1

6c3
B2

magR6ω4 sin2α. (A.6)

The rotational kinetic energy of the star can be written as E = 1
2 Iω2 (where I is the

total momentum of inertia) and therefore its time derivative is Ė = Iωω̇: we can
equate this expression with eq. (A.6), in order to obtain the relation for the variation
of the angular velocity

ω̇= −
2B2

magR6ω3 sin2α

3c3 I
. (A.7)

If we use in this equation the observative data of the Crab pulsar, i.e. ω= 190rad/s,
ω̇ = −9.7× 10−9 rad/s2, R = 12km e I = 1.4× 1045 g cm2, we found for the magnetic
field Bmag the value of 5.2× 1012 G. Therefore we can see that neutron stars are
characterized by a very strong magnetic field, that is a consequence of the entrapment
of the flux line during the compression phase from the protostar condition.
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The relation expressed in eq. (A.7) for ω̇ doesn’t take into account the fact that
the NS can loss energy by gravitational radiation emission. To correct this approach
we can use the following generic expression:

Ė = −αωn+1 =⇒ ω̇= −βωn. (A.8)

With some algebraic manipulations we can estimate the age of a neutron star. If we
evaluate the expression above “now” (indicated with the subscript 0) we get the value
of β as β = − ω̇0

ωn
0

and with the definition T ≡ −ω0
ω̇0

we obtain

ω̇= −
ωn−1

Tωn−1
0

. (A.9)

The last equation can be integrated to calculate finally the age τ of the star:
∫ ω0

ωτ

dω
ωn−1

= −
∫ τ

0

1

Tωn−1
0

d t =⇒ τ=
T

n− 1

�

1−
�

ω0

ωτ

�n−1
�

. (A.10)

In the approximation ωτ�ω0, we find

τ∼
T

n− 1
. (A.11)

All these results can be used to add information in the P Ṗ diagram (fig. A.3).
Each dot of the figure represent one NS (all the known pulsars are reported): on the
x–axis we find the rotational period P of the star, while in ordinate there is its the
time derivative Ṗ. Thanks to the eq. (A.7) we can draw line of constant magnetic
fields B, age τ and electromagnetic emission dE/d t. From the diagram we can see
that the pulsars tend to fall into two main groups. There is a large group of “normal”
pulsars, which are losing energy relatively quickly and spin relatively slowly; there
is also a large group of pulsars that are spinning very rapidly and losing energy very
slowly: these are the millisecond pulsars formed in binary systems. In this work we
have taken into account mainly the very frequent glitchers that are highlighted with a
square in the plot.
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APPENDIX B
Global two–components model

As a neutron star is made of a superfluid component and “normal” one, we can
develop a simple empirical model that describes qualitatively the post–glitch behavior
of the star. The superfluid component has the features described in section 2.3; the
“normal” part instead consists of the outer crust, with nuclei arranged in lattice (in
the inner crust) together with all the charged matter, coupled to the crust due to the
electromagnetic field. The interaction between these two components is given by the
following expressions

IcΩ̇c = −α−
Ic(Ωc −Ωs)

τc
(B.1)

IsΩ̇s =
Ic(Ωc −Ωs)

τc
, (B.2)

where the quantities with the subscript s refer to the superfluid, while those with c
to the crust, i.e. the normal component. The parameter α is the slowdown (here
considered constant) due to the emission of electromagnetic radiation, while τc is
the time scale of the coupling between the two components, which is also taken as
constant. These two equations guarantee the conservation of angular momentum,
verifiable by adding one to the other. By solving the differential equations we obtain

I ≡ Ic + Is (B.3)

τ≡
τc Is

I
(B.4)

Ωc =
α

I
t +

Is

I
Ω1e−t/τ +Ω2 (B.5)

Ωs = Ωc −Ω1e−t/τ +
ατ

Ic
(B.6)

where Ω1 and Ω2 are integration constants. If we rewrite these two quantities as
Ω1 =

∆ΩglQI
Is

e Ω2 = Ω0 +∆Ωgl(1−Q), and we take t = 0 as the time coordinate of
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the glitch, we can rewrite the equation that gives the angular velocity of the charged
component over time in the following way:

Ωc(t) = Ω0(t) +∆Ωgl

�

Qe−t/τ + 1−Q
�

. (B.7)

The term Ω0(t) represents the variation of the angular velocity (slow down due to the
electromagnetic torque) that is recorded in the absence of a glitch (see fig. B.1 for a
graphical representation). ∆Ωgl is precisely the height of the jump in speed made by
the crust. The last two parameters, τ and Q, influence the post–glitch behavior and
are related to the first and second order derivatives of Ωc . More precisely, we have:

Q = −τ
∆Ω̇c

∆Ωgl

�

�

�

�

t=0

τ= −
∆Ω̇c

∆Ω̈c

�

�

�

�

t=0
(B.8)

Following the starquake model by Ruderman (1969) and Baym et al. (1969) it’s possible
to connect the healing parameter Q with structural properties of the neutron star. In
particular the authors assume that a starquake, responsible of the glitch, results also
in changes∆Is and∆Ic on the moment of inertia of the two components. By imposing
that the angular momentum of each component is separately conserved, i.e.

∆Ic

Ic
= −
∆Ωc

Ωc

∆Is

Is
= −
∆Ωs

Ωs
, (B.9)

and differentiating B.1 we can find that

Q =
Is

I

�

1−
∆Is

Is

Ic

∆Ic

Ωs

Ωc

�

. (B.10)

In the typical case where Ωs −Ωc << Ωc , the relation can be simplified as:

Q ≈ Is/I . (B.11)

This indicate that the ratio between the two components determines the “residual”
jump at the end of the recovery.
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Figure B.1: Schematic representation of a glitch. Ω0(t) is the pre–glitch slow down of the
crust, and∆Ωgl is the jump size. Q is the healing parameter used in the global two components
model to fit the post–glitch behavior.





APPENDIX C
Derivation of the multifluids

formalism

C.1 Introduction

We want here to obtain the multifluids dynamic equations from a variational principle.
As usual, the starting point is the analysis of an action on which applying the variational
methods. Let I be the action that depends on the lagrangian L in the following way:

I =
∫

L dV d t (C.1)

We introduce the two variables n and n where the first is the particle density of the
fluid and the latter is defined as

n= nv (C.2)

and represent the current density. Typically the lagrangian L will be a function of
these variables, i.e. L = L(n, nv). Writing the total differential of L we can define the
dynamical quantities p0 (energy) and p:

dL= ∂L
∂ n

dn+
∂L
∂ n

dn= p0dn+ pdn (C.3)

This idea can be used to describe a perfect barothropic fluid. In this case we know the
total lagrangian, ie

L= 1
2
ρv2 − E(ρ) (C.4)

where E(ρ) is the internal energy which define also the pressure:

dE = µ̃dρ P + E = ρµ̃ (C.5)

If we apply the variational principle on this lagrangian, we find

δL= ρv ·δv+ (v2/2− µ̃)δρ (C.6)
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This means that the equations of motion are ρv = 0 and µ̃ = v2/2. We cannot
reproduce the Eulerian hydrodynamics in this way because the variational principle
is over–constrained. The variational principle must be reformulated based on the
concept of “flow lines”. For each fluid particle, we can identify the initial position a and
then the position x= x(a, t). The “Lin condition” is the requirement of conservation
of the particle identity, i.e. ∂ta+ v · ∇a = 0. Following this approach one can write
the velocity v as v = ∂tx(a, t) and the density as ρ(x, t) = ρ0(a)/det(J i

j ), where

J i
j = ∂ x i/∂ a j .

The same results can be obtained by imposing that the variation of the “eulerian”
quantities is induced by variation (ξ,τ) of the underlining flow line.

δρ = −∇(ρξ) δv= ∂tξ+ (v · ∇)ξ− (ξ · ∇)v (C.7)

Sustituting these expressions in the action I and calculating the variation, one can
find that

δI = −
∫

ξ [ρ(∂t + v · ∇)v+ρ∇µ̃+ v [∂tρ +∇(ρv)]] dV d t (C.8)

The conservation of mass states that ∂tρ +∇(ρv) = 0 and so the final equation is

(∂t + v · ∇)v+
1
ρ
∇P = 0 (C.9)

where we have defined ∇P = ρ∇µ̃. This equation is obtained from the quantity ξ
that have three degrees of freedom and is linked to conservation of linear momentum.
The variation based on the time shift τ would give the conservation of energy.

C.2 Multi–fluids systems: equations of motion

Form this point we identify with the subscript X the constituent indices, and with
the superscripts i ∈ [1,2,3] the single vector component of a quantity. If we apply a
variation (ξX ,τX ) on the constituent X , we found

δnX = −∇(nxξX ) + nx · ∇τX −τX∂t nX (C.10)

δnX = nX∂tξX + (nX · ∇)ξX − (ξX · ∇)nX − nX (∇ · ξX )− ∂t(nXτX ) (C.11)

which leads to

δL=
∑

X

�

gX − fXξX

�

+ ∂tR+∇ ·R (C.12)

fX ≡ nX (∂tp
X −∇pX

0 )− nX × (∇× pX ) + pX ΓX (C.13)

gX ≡ vX · (fX − pX ΓX )− pX
0 ΓX (C.14)
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The last two terms in the first equation vanish in the action integration by appropriate
boundary condition (ξ= 0 and τ= 0 at the edges of the integration volume) so the
action variation is

δI =
∑

X

∫

�

gXτX − fX · ξX

�

dV d t (C.15)

In these equation ΓX is the particle creation rate for the constituent X and must be
∑

X mX ΓX = 0.
The equations of motion are obtained from the assumption that a common variation

for all constituent ξX = ξ and τX = τ leads to a action variation that can be written as

δI =
∫

�

gextτ− fext · ξ
�

dV d t (C.16)

The consequences are the following equations of motion:
∑

X

fX = fext

∑

X

gX = gext (C.17)

C.3 Conservation laws

C.3.1 Conservation of mass

If ρ =
∑

X ρX =
∑

X mX nX and ρi =
∑

X ni
X we can calculate the total mass as

M =

∫

V
ρ dV (C.18)

and, for the Stoke’s theorem, ∂tρ +∇iρ
i
X = 0. Back to the constituent we have

∂t nX +∇in
i
X = ΓX

∑

X

mX ΓX = 0 (C.19)

C.3.2 Conservation of linear momentum

We can rewrite the eq. (C.13) as

f X
i = ∂t(nX pX

i ) +∇ j(n
j
X pX

i )− (nX∇i p
X
0 + n j

X∇i p
X
j ) (C.20)

where we have used the relation in eq. (C.19) to rewrite the term ΓX as ∂t nX +∇in
i
X

and the vector identity A× (∇×B) =∇B(A ·B)− (A ·∇) ·B which leads to the equation
(nX × (∇× pX ))i = n j

X∇i p
X
j − n j

X∇ j p
X
i . Now we define the generalized pressure Ψ as

Ψ = L−
∑

X

(nX pX
0 + ni

X pX
i ) (C.21)
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It’s easy to find, starting from the definition in eq. (C.3), that

dΨ = −
∑

X

(nX dp0 + ni
X dpX

i ) (C.22)

If we calculate the sum of the eq. (C.20) for all the constituents we have the following
relation

f i
ext =

∑

X

f i
x = ∂tπ

i +∇ j(
∑

X

n j
X pX

i )−∇
iΨ (C.23)

where we use the notation πi to indicate the linear momentum density, ie

πi =
∑

X

piX
i =

∑

X

nX pX
i . (C.24)

As result we can write the conservation law for linear momentum

f i
ext = ∂tπi +∇ j T

j
i (C.25)

T j
i =

∑

X

(n j
X pX

i ) +Ψδ
j
i (C.26)

The energy conservation law can be obtained in a similar way, starting from the
eq. (C.14):

gX = ni
X∂t p

X
i − ni

X∇i p
X
0 − (∂t nX +∇in

i)pX
0 (C.27)

= ∂t(n
i
X pX

i )−∇i(n
i
X pX

0 )− (p
X
0 ∂t nX + pX

i ∂t n
i
X ) (C.28)

= ∂t(n
i
X pX

i )−∇i(n
i
X pX

0 )− ∂tL (C.29)

The result is that we can write the following equation that express the energy conser-
vation law:

gext =
∑

X

g x = ∂tH+∇iQ
i (C.30)

where Qi = −pX
0 ni

X and H represent the hamiltonian of the system

H =
∑

X

ni
X pX

i −L (C.31)

C.4 Application to neutron stars

In order to describe a neutron star core, we want to find the class of lagrangian density
L which describe Newtonian hydrodynamics. We postulate that

L(nX , ni
X ) =

∑

X

mX
gi jn

i
X n j

X

2nX
− E (C.32)
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where gi j is the metric tensor (flat in our case, gi j = δi j), and E is the internal energy
of the system. This implies that

−pX
0 =

1
2

mX gi j v
i
X v j

X +
∂ E
∂ nX

(C.33)

pX
i = mX gi j v

j
X −

∂ E
∂ ni

X

(C.34)

If we want our description to be invariant under a Galileian boost, the term E must be
in the following form, as shown in (Prix, 2004):

E(nX , ni
X ) = E(nX ,∆i

X Y ) (C.35)

where ∆i
X Y is the relative velocity between the fluids, i.e.

∆i
X Y = v i

X − v i
Y =

ni
X

nX
−

ni
Y

nY
(C.36)

The requirement of isotropy constrains again the form of E to be

E = E(nX ,∆2
X Y ) (C.37)

The total differential of the energy function will be

dE =
∑

X

µX dnX +
1
2

∑

X ,Y

αX Y d∆2
X Y (C.38)

This means that the linear momentum and energy density of the components are
coupled by the term αX Y which encodes the entrainment effect.

pX
i = mX gi j v

j
X −

∑

Y

2αX Y

nX
∆X Y (C.39)

−pX
0 = µ

X −mX
v2

X

2
+ v i

X pX
i (C.40)

From the definition of the generalized pressure Ψ, it follows that

E +Ψ =
∑

X

nxµ
X ⇒ dΨ =

∑

X

nX dµX −
1
2

∑

X ,Y

αX Y d∆2
X Y (C.41)

It’s easy now, from the relation in eq. (C.23), to write the equation of motion in this
way

f X
i = nX (∂t + v j

x∇ j)p
X
i + nX∇iµ

X −
∑

Y

2αX Y∆
j
X Y∇i v

X
j (C.42)
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Entropy

Entropy can be included easily in this formulation if we consider it as a constituent of
the system. The corresponding density is ns = s and its current is ns = svs. Of course
entropy is massless (ms = 0) and we have that µs = T . The internal energy becomes

dE = T ds+
∑

X 6=s

µX dnX +
1
2

∑

X ,Y

αX Y d∆2
X Y (C.43)

and the momenta are

Θ0 = ps
0 = −T − v i

sΘi (C.44)

Θi = ps
i = −

∑

Y

2αsY

s
∆i

sY (C.45)

We can see that, even if entropy has no mass, it has a linear momentum associated due
to the entrainment effect with other fluid constituent. The corresponding equations of
motion are:

f s
i = s(∂t + v j

x∇ j)Θi + s∇i T −
∑

Y

2αsY∆
j
sY∇i v

s
j (C.46)

gs = v i
s f s

i + (T + v i
sΘi)Γs (C.47)
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