
Rend. Istit. Mat. Univ. Trieste
Volume 45 (2013), 23–45

A Lewy-Stampacchia estimate for

variational inequalities in the
Heisenberg group
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Abstract. We consider an obstacle problem in the Heisenberg group
framework, and we prove that the operator on the obstacle bounds point-
wise the operator on the solution. More explicitly, if ū minimizes the
functional Z

⌦
|rHnu|

2

among the functions with prescribed Dirichlet boundary condition that
stay below a smooth obstacle  , then

0  �Hn ū 
⇣
�Hn 

⌘+
.

Moreover, we discuss how it could be possible to generalize the previ-
ous bound to a quasilinear setting once some regularity issues for the
equation

divHn

⇣
|rHnu|

p�2
rHnu

⌘
= f

are satisfied.
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1. Introduction

In this paper, we extend the so called Dual Estimate of [11] to the obstacle
problem for the Kohn-Laplacian operator in the Heisenberg group.

The notation we use is the standard one: for n � 1, we consider R2n+1
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endowed with the group law
�
x(1), y(1), t(1)

�
�

�
x(2), y(2), t(2)

�

:=
⇣
x(1) + x(2), y(1) + y(2), t(1) + t(2) + 2(x(2)

· y(1)
� x(1)

· y(2))
⌘
,

for any (x(1), y(1), t(1)), (x(2), y(2), t(2)) 2 Rn
⇥ Rn

⇥ R, where the “·” is the
standard Euclidean scalar product.

Then, we denote by Hn the n-dimensional Heisenberg group, i.e., R2n+1

endowed with this group law.
The coordinates are usually written as (x, y, t) 2 Rn

⇥ Rn
⇥ R, and, as

customary, we introduce the left invariant vector fields (X, Y ) induced by the
group law

Xj :=
@

@xj
+ 2yj

@

@t
and Yj :=

@

@yj
� 2xj

@

@t
,

for j = 1, . . . , n, and the horizontal gradient rHn := (X, Y ). The main issue of
the Heisenberg group is that X and Y do not commute, that is

[X, Y ] = �4
@

@t
6= 0.

We are interested in studying the obstacle problem in this framework. For this,
we consider a smooth function  : Hn

! R, which will be our obstacle (more
precisely,  is supposed to have continuous derivatives of second order in X
and Y ).

Fixed a bounded open set ⌦ with smooth boundary, and p 2 (1,+1), we
consider the space W 1,p

Hn (⌦) to be the set of all functions u in Lp(⌦) whose
distributional horizontal derivatives Xju and Yju belong to Lp(⌦), for j =
1, . . . , n.

Such space is naturally endowed with the norm

kukW 1,p
Hn (⌦) := kukLp(⌦) +

nX

j=1

⇣
kXjukLp(⌦) + kYjukLp(⌦)

⌘
.

We call W 1,p
Hn,0(⌦) the closure of C10 (⌦) with respect to this norm.

We fix a smooth domain ⌦? c ⌦, u? 2 W 1,2
Hn (⌦?)\L1(⌦?) and we introduce

the space

K :=
�
u 2 W 1,2

Hn (⌦) s.t. u   , and u� u? 2 W 1,2
Hn,0(⌦)

 
. (1)

Loosely speaking, K is the space of all the functions having prescribed Dirichlet
boundary datum equal to u? along @⌦ and that stay below the obstacle  .

We deal with the variational problem

inf
u2K

F(u;⌦), where F(u;⌦) :=
Z

⌦
|rHnu|

2. (2)
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By direct methods, it is seen that such infimum is attained (see, e.g., the
compactness result in [18, 5] or references therein) and so we consider a mini-
mizer ū. It is worth pointing out that such minimizer may be written in terms
of a variational inequality, namely

Z

⌦
rHn ū ·rHn(v � ū) � 0, (3)

for any v 2 W 1,2
Hn (⌦) with v   , and v � ū 2 W 1,2

Hn,0(⌦). These kind of
variational inequalities1 are now receiving a considerable attention (see, e.g., [6]
and references therein).

Our main result is:

Theorem 1.1. Let ū and  as above then

0  �Hn ū 
⇣
�Hn 

⌘+
(4)

in the sense of distributions. As usual, the superscript “+” denotes the positive
part of a function, i.e. f+(x) := max{f(x), 0}.

The result in Theorem 1.1 is quite intuitive: when ū does not touch the
obstacle, it is free to make the operator vanish. When it touches and sticks
to it, the operator computed in ū is driven by the positive part of the same
operator computed in the obstacle – and on these touching points the obstacle
has to bend in a somewhat convex fashion, which justifies the first inequality
in (4) and superscript “+” in the right hand side of (4).

Figure 1, in which the thick curve represents the touching between ū and
the obstacle, tries to describe this phenomena. On the other hand, the set in
which ū touches the obstacle may be very wild, so the actual proof of Theo-
rem 1.1 needs to be more technical than this.

In fact, the first inequality of (4) is quite obvious since it follows, for in-
stance, by taking v := ū � ' in (3), with an arbitrary ' 2 C10 (⌦, [0,+1))),
so the core of (4) lies on the second inequality: nevertheless, we think it is
useful to write (4) in this way to emphasize a control from both the sides of
the operator applied to the solution.

We remark that the right hand side of (4) is always finite (due to the
regularity of the obstacle). Hence, (4) is an L1-bound and may be seen as a
regularity result for the solution of the obstacle problem.

In the Euclidean setting, the analogue of (4) was first obtained in [11] for
the Laplacian case, and it is therefore often referred to with the name of Lewy-
Stampacchia Estimate. It is also called Dual Estimate, for it is, in a sense,
obtained by the duality expressed by the variational inequality (3).

1The proof of (3) is standard. See however the footnote on page 27 for a general argument.
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Figure 1: Touching the obstacle

After [11], estimates of these type became very popular and underwent
many important extensions and strengthenings: see, among the others, [15, 9,
8, 1, 14].

The paper is organized as follows. First, in § 2, we discuss some possible
extensions of Theorem 1.1 to the quasilinear case, once a more comprehensive
regularity theory will become available. This will lead to a somewhat more
general form of Theorem 1.1, namely Theorem 2.2 below (which will introduce
an auxiliary parameter " � 0). Then, in § 3, we prove Theorem 2.2 when " > 0.
The proof when " = 0 is contained in § 4–5 and it is based on a limit argument,
i.e., we consider the problem with " > 0, we use Theorem 2.2 in such a case,
and then we pass "& 0. The paper ends with an Appendix that collects some
ancillary results needed in § 4.

2. Possible extension to the quasilinear case (waiting for
a more exhaustive regularity theory)

Now we try to give some ideas of how Theorem 1.1 could be generalized to
the quasilinear setting. In particular, we prove that for a suitable set of expo-
nents P( , ⌦) (see Definition 2.1 and Theorem 2.2) an analogue of Theorem 1.1
holds for the Heisenberg group version of the p-Laplace operator2.

2We inform the reader that our result in Theorem 2.2 is far from being exhaustive in the
quasilinear case, since, in principle, we are only able to prove explicitly that 2 2 P( , ⌦). The
primary source of di�culties to decide whether p 2 P( , ⌦) is the absence of a satisfactory
Hölder regularity theory for the horizontal gradient for solutions of quasilinear equations in
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The notation we use is the following. Given p 2 (1,+1), a smooth do-
main ⌦? c ⌦, u? 2 W 1,p

Hn (⌦?) \ L1(⌦?) and " � 0, we consider the minimiza-
tion problem

inf
u2Kp

F"(u;⌦), where F"(u;⌦) :=
Z

⌦
("+ |rHnu|

2)p/2, (5)

and
Kp :=

�
u 2W 1,p

Hn (⌦) s.t. u   , and u� u? 2W 1,p
Hn,0(⌦)

 
. (6)

By comparing (1) and (6), we observe that Kp reduces to K when p = 2.
Hence, the minimization problem in (5) reduces to the one in (2) when p = 2
and " = 0.

We notice that ū" is a solution of the variational inequality3

Z

⌦
("+ |rHn ū"|

2)(p�2)/2
rHn ū" ·rHn(v � ū") � 0, (7)

for any v 2 W 1,p
Hn (⌦) with v   , and v � ū" 2 W 1,p

Hn,0(⌦). Now, we introduce
the set of p’s for which our main result holds. The definition we give is slightly
technical, but, roughly speaking, consists in taking the set of all the p’s for

the Heisenberg group. Namely, if one knew that for a given p bounded solutions of divHn (("+
|rHnu|

2)(p/2)�1
rHnu) = f , with f bounded, have Hölder continuous horizontal gradient,

with interior estimates (this would be the Heisenberg counterpart of classical regularity results
for the Euclidean case, see, e.g., Theorem 1 in [17]) then p 2 P( , ⌦). As far as we know,
such a theory has not been developed yet, not even for minimal solutions (see, however, [3,
12, 13, 19] where good C1,↵ estimates are proved for the case of homogeneous equations). On
the other hand, we think it is worth pointing out how Theorem 1.1 could be generalized in
the generality allowed by the set P( , ⌦), since once the regularity theory becomes available,
our result would be valid in general – and also because the setting we use is somewhat more
general and weaker than the regularity theory itself.

We stress that the quasilinear case in the Heisenberg group is more problematic than
expected at a first glance, and many basic fundamental questions are still open (see, e.g., [7],
[12], [13] and [19]).

3Formula (7) may be easily obtained this way. Fixed v 2 W 1,p
Hn (⌦) with v   , and v�ū" 2

W 1,p
Hn,0(⌦), for any t � 0, let u(t) := ū" + t(v � ū"). Notice that

u(t) := (1� t)ū" + tv  (1� t) + t   ,

hence u(t)
2 Kp. So, by the minimality of ū", we have F"(u(0); ⌦) = F"(ū"; ⌦)  F"(u(t); ⌦)

for any t � 0. Consequently,

0  lim
t&0

F"(u(t); ⌦)�F"(u(0); ⌦)

t

=

Z

⌦
("+ |rHn ū"|

2)(p�2)/2
rHn ū" ·rHn (v � ū"),

that is (7). Once again, (7) reduces to (3) when p = 2 (and in this case " does not play any
role).
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which a pointwise bound for the operator of a sequence of minimal solutions is
stable under uniform limits.

Definition 2.1. Let p 2 (1,+1). We say that p 2 P( , ⌦) if the following
property holds true: For any " > 0, any v 2 W 1,p

Hn (⌦), any M > 0, any
sequence Fk = Fk(r, ⇠) 2 C([�M,M ]⇥ ⌦), with Fk(·, ⇠) 2 C1([�M,M ]) and

0  @rFk 

⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
, (8)

if uk : ⌦! [�M,M ] is a sequence of minimizers of the functional
Z

⌦

1
p
("+ |rHnu(⇠)|2)p/2 + Fk(u(⇠), ⇠) d⇠ (9)

over the functions u 2 W 1,p
Hn (⌦), u � v 2 W 1,p

Hn,0(⌦), with the property that uk

converges to some u1 uniformly in ⌦, we have that

0  divHn

⇣
("+ |rHnu1|

2)(p/2)�1
rHnu1

⌘



⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+ (10)

in the sense of distributions.

As remarked in Lemma 5.7 at the end of this paper, we always have that

2 2 P( , ⌦). (11)

We think that it is an interesting open problem to decide whether or not other
values of p belong to P( , ⌦), in general, or at least when the right hand side
of (10) is close to zero (e.g., when the obstacle is almost flat).

With this notation, the following result holds true:

Theorem 2.2. If p 2 P( , ⌦) then

0  divHn

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘



⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+ (12)

in the sense of distributions.

Notice that Theorem 1.1 is a particular case of Theorem 2.2 when p = 2,
thanks to (11). Therefore, in the sequel, we will prove Theorem 2.2 and so
Theorem 1.1 will follow as a consequence.

We point out that the arguments that we present are step-free, i.e. they do
not directly depend on the stratification step of Hn apart from the definition
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of the homogeneous dimension. More precisely, since our arguments are based
only on the intrinsic gradient concept rHn and the homogeneous dimension
of Hn, we can restate Theorems 1.1 and 2.2 in any nilpotent stratified Lie
groups of any step G simply changing divHn and rHn with divG and rG. Here
divG and rG are respectively the intrinsic divergence and the intrinsic gradient
in G (see [18]). So here we work in Hn only for the sake of notational simplicity.

3. Proof of Theorem 2.2 when " > 0

We prove (12) in the simpler case " > 0 (the case " = 0 will be dealt with
in § 5). The technique used in this proof is a variation of a classical penalized
test function method (see, e.g., [15, 9, 8, 1, 14] and references therein), and
several steps of this proof are inspired by some estimates obtained by [4] in the
Euclidean case.

First of all, we set

µ := �1 + min
�

inf
⌦
 , inf

⌦
u?

 
2 R

and we observe that
ū" � µ (13)

a.e. in ⌦. Indeed, let w := max{ū", µ}. Since  and u? are below µ in ⌦, we
have that w 2 K, thus

0  F"(w;⌦)� F"(ū";⌦) = �

Z

⌦\{ū"<µ}
("+ |rHn ū"|

2)p/2
 0,

and, from this, (13) plainly follows.
Now, let ⌘ 2 (0, 1), to be taken arbitrarily small in the sequel. Let also

h :=
⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
. (14)

Notice that
khkL1(⌦) < +1, (15)

because " > 0. For any t 2 R, we consider the truncation function

H⌘(t) :=

8
><

>:

0 if t  0,
t/⌘ if 0 < t < ⌘,
1 if t � ⌘.

Now, we take u⌘ to be a weak solution of
(

divHn

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
= h ·

�
1�H⌘( � u⌘)

�
in ⌦,

u⌘ = ū" on @⌦.
(16)
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where, as usual, the boundary datum is attained in the trace sense: such a
function u⌘ may be obtained by the direct method in the calculus of variations,
by minimizing the functional

Z

⌦

1
p
("+ |rHnu(⇠)|2)p/2 + F⌘(u(⇠), ⇠) d⇠

over u 2W 1,p
Hn (⌦), u� ū" 2W 1,p

Hn,0(⌦), where

F⌘(r, ⇠) :=
Z r

0
h(⇠) ·

�
1�H⌘( (⇠)� �)

�
d�.

Now, we claim that
u⌘   a.e. in ⌦. (17)

To establish this, we use the test function (u⌘ �  )+ in (16). Since, on @⌦, we
have (u⌘ �  )+ = (ū" �  )+ = 0, we obtain that

�

Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(u⌘ �  )+

=
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
(u⌘ �  )+ =

Z

⌦
h · (u⌘ �  )+.

Consequently, by (14),
Z

⌦

h⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘

�

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘i
·rHn(u⌘ �  )+

=
Z

⌦

h
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘
� h

i
· (u⌘ �  )+

 0.

By the strict monotonicity of the operator (i.e., by the strict convexity of the
function R2n

3 ⇣ 7! (" + |⇣|2)p/2), it follows that (u⌘ �  )+ vanishes almost
everywhere in ⌦, proving (17).

Now, we claim that
ū" � u⌘ a.e. in ⌦. (18)

To verify this, we consider the test function

⌧ := ū" + (u⌘ � ū")+.

We notice that

⌧ =

(
ū" in {u⌘  ū"},

u⌘ in {u⌘ > ū"},
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hence ⌧   , due to (17). Furthermore, on @⌦, we have that ⌧ = ū", due
to the boundary datum in (16). Therefore the obstacle problem variational
inequality (3) gives that

0 
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(⌧ � ū")

=
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(u⌘ � ū")+.

(19)

On the other hand, from (16),
Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(u⌘ � ū")+

= �
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
· (u⌘ � ū")+  0.

(20)

By (19) and (20), we obtain that
Z

⌦

h⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘

�

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘i
·rHn(u⌘ � ū")+  0.

This and the strict monotonicity of the operator implies that (u⌘�ū")+ vanishes
almost everywhere in ⌦, hence proving (18).

Now, we claim that
ū"  u⌘ + ⌘ in ⌦. (21)

To do this, we set
✓ := ū" � (ū" � u⌘ � ⌘)+.

Notice that ✓  ū"   , and also that, on @⌦, ✓ = ū". As a consequence, (3)
gives that

0 
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(✓ � ū")

= �
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(ū" � u⌘ � ⌘)+.

(22)

On the other hand, (ū" � u⌘ � ⌘)+ = 0 on @⌦, and

{ū" � u⌘ � ⌘ > 0} ✓ { � u⌘ > ⌘}

✓

�
1�H⌘( � u⌘) = 0

 
,
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and therefore, by (16),
Z

⌦

⇣
("+ |rHn(u⌘ + ⌘)|2)(p/2)�1

rHn(u⌘ + ⌘)
⌘

·rHn(ū" � u⌘ � ⌘)+

=
Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(ū" � u⌘ � ⌘)+

=�
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
· (ū" � u⌘ � ⌘)+ = 0.

(23)

Then, (22) and (23) yield that
Z

⌦

h⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘

�

⇣
("+ |rHn(u⌘ + ⌘)|2)(p/2)�1

rHn(u⌘ + ⌘)
⌘i

·rHn(ū" � u⌘ � ⌘)+

 0.

Thus, in this case, the strict monotonicity of the operator implies that (ū" �

u⌘ � ⌘)+ vanishes almost everywhere in ⌦, and so (21) is established.
In particular, by (17), (21) and (13),

ku⌘kL1(⌦)  2 + k kL1(⌦) + ku?kL1(⌦). (24)

Moreover, by (18) and (21), we have that

u⌘ converges uniformly in ⌦ to ū" (25)

as ⌘ & 0.
Furthermore

0  @rF⌘(r, ⇠)  h(⇠) =
⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+

hence (12) follows4 from (25) and the fact that p 2 P( , ⌦) (recall (10) in
Definition 2.1).

4. Estimating the Lp-distance between rHnū0 and rHnū"

The purpose of this section is to consider the solution ū" of the "-problem
and the solution ū0 of the problem with " = 0, and to bound the Lp-norm of
|rHn ū0�rHn ū"|. Such estimate is quite technical and it is di↵erent according
to the cases p 2 (1, 2] and p 2 [2,+1): see the forthcoming Propositions 4.1
and 4.2.

4It is worth pointing out that this is the only place in the paper where we use the condition
that p 2 P( , ⌦). In particular, all the estimates in § 4 are valid for all p 2 (1, +1).
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As a matter of fact, we think that the estimates proved in Propositions 4.1
and 4.2 are of independent interest, since they also allow to get around the
more di�cult (and in general not available in the Heisenberg group) Hölder-
type estimates.

We recall the standard notation of balls in the Heisenberg group (in fact,
we deal with the so called Folland-Korány balls, but the Carnot-Carathéodory
balls would be good for our purposes too). For all ⇠ := (z, t) 2 R2n

⇥ R, we
define

k⇠kHn := 4
p

|z|4 + t2.

Then, for any r > 0, we set

Br :=
�
⇠ 2 R2n+1 s.t. k⇠kHn < r

 
.

We denote by L the (2n + 1)-dimensional Lebesgue measure, and we observe
that L(Br) equals, up to a multiplicative constant rQ, where Q := 2(n + 1)
is the homogeneous dimension of Hn. Also, for all g 2 L1(Br), we define the
average of g in Br as

(g)r :=
1

L(Br)

Z

Br

g.

In what follows, we focus on Lp-estimates around a fixed point, say ⇠?, of ⌦.
Without loss of generality, we take ⇠? to be the origin, and we fix R 2 (0, 1) so
small that BR b ⌦.

Then, we denote by ū0 : ⌦ ! R the minimizer of problem (2) with " = 0.
Then, for a fixed " > 0, we take ū" : BR ! R to be the minimizer of F"(u;BR)
among all the functions u 2 W 1,p

Hn (BR), u   , and u � ū0 2 W 1,p
Hn,0(BR). We

can then extend ū" also on ⌦ \ BR by setting it equal to ū0 in such a set. By
construction

Z

BR

|rHn ū0|
p = F0(ū0;⌦)�

Z

⌦\BR

|rHn ū0|
p

 F0(ū";⌦)�
Z

⌦\BR

|rHn ū0|
p =

Z

BR

|rHn ū"|
p

(26)

and
Z

BR

("+ |rHn ū"|
2)p/2 = F"(ū";BR)

 F"(ū0;BR) =
Z

BR

("+ |rHn ū0|
2)p/2.

(27)

Proposition 4.1. Assume that

p 2 (1, 2]. (28)
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Then, there exists C > 0, only depending on n and p, such that
Z

BR

|rHn ū0 �rHn ū"|

p
 C

�
1 + (|rHn ū0|

p)R

�1�(p/2)
"(p/2)2RQ. (29)

Proof. The technique for this proof is inspired by the one of Lemma 2.3 of [16],
where a similar result was obtained in the quasilinear Euclidean case (however,
our proof is self-contained). We have

|rHn ū" �rHn ū0|

2


�
|rHn ū"| + |rHn ū0|

�2

 C
�
|rHn ū"|

2 + |rHn ū0|

2
�
.

(30)

Here, C is a positive constant, which is free to be di↵erent from line to line.
By (28), (27) and (30), we obtain

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū" �rHn ū0|

2

C

Z

BR

|rHn ū"|

2 + |rHn ū0|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

=C

✓Z

BR

|rHn ū"|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

+
Z

BR

|rHn ū0|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

◆

C

✓Z

BR

|rHn ū"|

2

(" + |rHn ū"|

2)1�(p/2)
+

Z

BR

|rHn ū0|

2

(" + |rHn ū0|

2)1�(p/2)

◆

C

✓Z

BR

(" + |rHn ū"|

2)p/2 +
Z

BR

(" + |rHn ū0|

2)p/2

◆

C

Z

BR

(" + |rHn ū0|

2)p/2.

(31)

Thus, (31) and Lemma 5.4, applied here with a := rHn ū0 and b := rHn ū",
yield that

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)p/2

 C

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū" �rHn ū0|

2+

+ C

Z

BR

(" + |rHn ū0|

2)(p/2)

 C

Z

BR

(" + |rHn ū0|

2)(p/2).

(32)
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Now, from (26),
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)



Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

|rHn ū"|

p



Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

|rHn ū0|

p.

(33)

Moreover, using (28) and some elementary calculus, we see that

|(1 + ⌧)p/2
� ⌧p/2

|  C

for any ⌧ � 0. Therefore, taking ⌧ := ✓/", we obtain that

|(" + ✓)p/2
� ✓p/2

|  C"p/2 (34)

for any ✓ � 0. Thus, using (33) and (34) with ✓ := |rHn ū0|

2, we conclude that
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)
 C"p/2RQ. (35)

Now, we estimate the left hand side of (35) from below. For this scope, we
define

h := trHn ū0 + (1� t)rHn ū",

J := p

Z

BR

(" + |rHn ū"|

2)(p/2)�1
rHn ū" · (rHn ū0 �rHn ū")

and J̃ := p

Z

BR

h Z 1

0
(1� t)

d

dt

⇣
(" + |h|

2)(p/2)�1h · (rHn ū0 �rHn ū")
⌘

dt
i
.

We observe that the variational inequality in (3) for ū" gives that

J � 0. (36)

Also, using the Fundamental Theorem of Calculus, we obtain
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)

=
Z

BR

h Z 1

0

d

dt
(" + |trHn ū0 + (1� t)rHn ū"|

2)(p/2) dt
i

= p

Z

BR

h Z 1

0
(" + |trHn ū0 + (1� t)rHn ū"|

2)(p/2)�1

⇥ (trHn ū0 + (1� t)rHn ū") · (rHn ū0 �rHn ū") dt
i

= p

Z

BR

h Z 1

0
(" + |h|

2)(p/2)�1h · (rHn ū0 �rHn ū") dt
i
.
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Integrating by parts the latter integral in t (by writing dt = d
dt (t� 1) dt), and

exploiting (36), we obtain
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)

= J + J̃ � J̃ .

(37)

Making use of Lemma 5.3 – applied here with a := rHn ū0 and b := rHn ū" –
we have that

J̃ �
1
C

Z

BR

h Z 1

0
(1�t)("+|trHn ū0+(1�t)rHn ū"|

2)(p/2)�1
|rHn ū0�rHn ū"|

2 dt
i
.

From this and Lemma 5.5 – applied here with  := 1 and  (x) := x1�(p/2),
which is nondecreasing, thanks to (28) – we deduce that

J̃ �
1
C

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū0 �rHn ū"|

2. (38)

In view of (35), (37) and (38), we conclude that
Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū0 �rHn ū"|

2
 C"p/2RQ. (39)

Then, (29) follows from (32), (39) and Lemma 5.6, applied here with f :=
rHn ū0 and g := rHn ū".

In the degenerate case p 2 [2,+1) the estimate obtained in Proposition 4.1
for the singular case p 2 (1, 2] needs to be modified according to the following
result:

Proposition 4.2. Suppose that

p 2 [2,+1). (40)

Then, there exists C > 0, only depending on n and p, such that
Z

BR

|rHn ū0 �rHn ū"|

p
 C

�
1 + (|rHn ū0|

p)R

�1�(1/p)
"RQ.

Proof. The variational inequalities (3) for ū0 and ū" imply that
Z

BR

|rHn ū0|

p�2
rHn ū0 · (rHn ū" �rHn ū0) � 0

and
Z

BR

(" + |rHn ū"|

2)(p/2)�1
rHn ū" · (rHn ū0 �rHn ū") � 0.
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Consequently,

Z

BR

⇣
|rHn ū0|

p�2
rHn ū0�("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·(rHn ū0�rHn ū")  0.

Using this and (46) of Lemma 5.1, applied here with A := rHn ū0 and B :=
rHn ū", we obtain

Z

BR

|rHn ū0 �rHn ū"|

p

 C

Z

BR

⇣
|rHn ū0|

p�2
rHn ū0 � |rHn ū"|

p�2
rHn ū"

⌘
· (rHn ū0 �rHn ū")

 C

Z

BR

⇣
("+|rHn ū"|

2)(p/2)�1
rHn ū"�|rHn ū"|

p�2
rHn ū"

⌘
·(rHn ū0�rHn ū").

This and Corollary 5.2, applied here with a := rHn ū", give

Z

BR

|rHn ū0 �rHn ū"|

p

 C

Z

BR

⇣
(" + |rHn ū"|

2)(p/2)�1
� |rHn ū"|

p�2
⌘

|rHn ū"| |rHn ū0 �rHn ū"|

 C"

Z

BR

(" + |rHn ū"|

2)(p�2)/2
�
|rHn ū0| + |rHn ū"|

�
.

Therefore, recalling (40), noticing that

p� 2
p

+
1
p

+
1
p

= 1

and using the Generalized Hölder Inequality with the three exponents p/(p�2),
p and p, we obtain

Z

BR

|rHn ū0 �rHn ū"|

p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�2)/p ✓Z

BR

�
|rHn ū0|

p + |rHn ū"|

p
�◆1/p

RQ/p.



38 A.PINAMONTI AND E.VALDINOCI

Then, by the minimal property of ū0 in (26),
Z

BR

|rHn ū0 �rHn ū"|

p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�2)/p ✓Z

BR

|rHn ū"|

p

◆1/p

RQ/p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�1)/p

RQ/p

 C"

✓
RQ +

Z

BR

|rHn ū"|

p

◆(p�1)/p

RQ/p

 C"

✓
RQ +

Z

BR

|rHn ū0|

p

◆(p�1)/p

RQ/p,

from which the desired result follows.

Corollary 4.3. For all p 2 (1,+1), we have that

lim
"&0

krHn ū" �rHn ū0kLp(BR) = 0. (41)

Also, there exist a subsequence of "’s and a function G 2 Lp(BR) such that

|rHn ū"(x)|  G(x) (42)

for almost every x 2 BR.
Furthermore, if we set

�" := (" + |rHn ū"|

2)(p/2)�1
rHn ū", (43)

then there exist a subsequence of "’s and a function G? 2 L1(BR) such that

|�"(x)|  G?(x) (44)

for almost every x 2 BR.

Proof. We obtain (41) from Propositions 4.1 and 4.2, according to whether p 2
(1, 2) or p 2 [2,+1).

From (41), one deduces (42) (see, e.g., Theorem 4.9(b) in [2]).
Now, we define G? := 2(p/2)(G + Gp�1). We observe that G? 2 L1(BR),

since G 2 Lp(BR) ✓ L1(BR) and Gp�1
2 Lp/(p�1)(BR) ✓ L1(BR) . So, in

order to obtain the desired result, we have only to show that the inequality
in (44) holds true.
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For this, we notice that, if p 2 (1, 2),

|�"| =
|rHn ū"|

("+ |rHn ū"|
2)1�(p/2)

=
|rHn ū"|

p�1
|rHn ū"|

2�p

("+ |rHn ū"|
2)1�(p/2)



|rHn ū"|
p�1("+ |rHn ū"|

2)(2�p)/2

("+ |rHn ū"|
2)1�(p/2)

= |rHn ū"|
p�1

 Gp�1,

which implies (44) in this case.
On the other hand, if p 2 [2,+1),

|�"|  2(p/2)�1
�
"(p/2)�1 + |rHn ū"|

p�2
�
|rHn ū"|

 2(p/2)�1(1 + Gp�2)G,

which implies (44) in this case too.

5. Proof of Theorem 2.2 when " = 0

By Theorem 2.2 (for " > 0, which has been proved in § 3), we know that, for
a sequence "& 0,

0 
Z

BR

�" ·r' 

Z

BR

⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
', (45)

for any ' 2 C10 (BR, [0,+1)), as long as BR ⇢ ⌦, where �" is as in (43).
By possibly taking subsequences, in the light of (41) and (44), we have that

lim
"&0

�" = |rHn ū0|
p�2
rHn ū0

almost everywhere in BR, and that �" is equidominated in L1(BR). Con-
sequently, we can pass to the limit in (45) via the Dominated Convergence
Theorem and obtain (12) for ū0. This completes the proof of Theorem 2.2 also
when " = 0.

Appendix

In this appendix, we collect some technical and well known estimates of general
interest that will be used in the proofs of the main results of this paper.

We start with some classical estimates (see, e.g. Lemma 3 in [10] and
references therein), which turns out to be quite useful to deal with nonlinear
operators of degenerate type:
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Lemma 5.1. Let M 2 N, M � 1, and p 2 [2,+1). Then, there exists C > 1,
only depending on M and p, such that, for any A, B 2 RM ,

|A�B|

p
 C

⇣
|A|

p�2A� |B|

p�2B
⌘

· (A�B) (46)

and ���|A|

p�2A� |B|

p�2B
���  C|A�B|

⇣
|A|

p�2 + |B|

p�2
⌘
. (47)

Corollary 5.2. Let N 2 N and and p 2 [2,+1). Then, there exists C > 1,
only depending on N and p, such that for any " > 0 and any a 2 RN

�
(" + |a|

2)(p/2)�1
� |a|

p�2
�

|a|  C"(" + |a|

2)(p�2)/2.

Proof. We let A := (a, ") and B := (a, 0) 2 RN+1 and we exploit (47). We
obtain

2C"(" + |a|

2)(p�2)/2

� C"
⇣
(" + |a|

2)(p�2)/2 + |a|

p�2
⌘

= C|A�B|

⇣
|A|

p�2 + |B|

p�2
⌘

�

���|A|

p�2A� |B|

p�2B
���

=
���(" + |a|

2)(p�2)/2(a, ")� |a|

p�2(a, 0)
���

=
���
⇣�

(" + |a|

2)(p�2)/2
� |a|

p�2
�
a, (" + |a|

2)(p�2)/2"
⌘���

�

�
(" + |a|

2)(p�2)/2
� |a|

p�2
�

|a|,

as desired.

In the subsequent Lemmata 5.3 and 5.4, we collect some simple, but inter-
esting, estimates that are used in Proposition 4.1:

Lemma 5.3. Let N 2 N, N � 1, t 2 [0, 1], " > 0, and a, b 2 RN . Let h(t) :=
ta + (1� t)b. Then, there exists C > 1, only depending on N and p, such that

d

dt

⇣
(" + |h|

2)(p/2)�1h · (a� b)
⌘
�

1
C

(" + |ta + (1� t)b|2)(p/2)�1
|a� b|2.
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Proof. We have

d

dt

⇣
(" + |h|

2)(p/2)�1h · (a� b)
⌘

=
d

dt

⇣
(" + |h|

2)(p/2)�1h
⌘

· (a� b)

= (" + |h|

2)(p/2)�2
�
" + (p� 1)|h|

2
�dh

dt
· (a� b)

�

1
C

(" + |h|

2)(p/2)�1
|a� b|2

=
1
C

(" + |ta + (1� t)b|2)(p/2)�1
|a� b|2,

as desired.

Lemma 5.4. Let
p 2 (1, 2]. (48)

Let N 2 N, N � 1, " > 0, and a, b 2 RN . Then, there exists C > 1, only
depending on N and p, such that

(" + |a|2 + |b|2)p/2
 C

h
(" + |a|2 + |b|2)(p/2)�1

|b� a|2 + (" + |a|2)(p/2)
i
.

Proof. We have

|b|2 = |b� a + a|2 
�
|b� a| + |a|

�2
 C

�
|b� a|2 + |a|2

�

and so

(" + |a|2 + |b|2)p/2

= (" + |a|2 + |b|2)(p/2)�1(" + |a|2 + |b|2)
 C(" + |a|2 + |b|2)(p/2)�1(" + |a|2 + |b� a|2)
= C(" + |a|2 + |b|2)(p/2)�1

|b� a|2 + C(" + |a|2 + |b|2)(p/2)�1(" + |a|2).

Therefore, by (48),

(" + |a|2 + |b|2)p/2

 C(" + |a|2 + |b|2)(p/2)�1
|b� a|2 + C(" + |a|2)(p/2),

that is the desired claim.

The following result deals with some technical estimates on monotone inte-
grands.

Lemma 5.5. Let N 2 N, N � 1. Let  2 {0, 1}. Let ", "0 > 0. Let a, b 2 RN .
Let  : [", +1)! ["0,+1) be a measurable and nondecreasing function. Then

Z 1

0

(1� t)

 (" + |ta + (1� t)b|2)
dt �

1
2 (" + |a|2 + |b|2)

. (49)
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Proof. If |a|  |b|, for any t 2 [0, 1],

|ta + (1� t)b|2  t2|a|

2 + (1� t)2|b|2 + 2t(1� t)|a||b|

 t2|b|2 + (1 + t2 � 2t)|b|2 + 2t(1� t)|b|2 = |b|2.

On the other hand, if |a| � |b|, for any t 2 [0, 1],

|ta + (1� t)b|2  t2|a|

2 + (1� t)2|b|2 + 2t(1� t)|a||b|

 t2|a|

2 + (1 + t2 � 2t)|a|

2 + 2t(1� t)|a|

2 = |a|

2.

In any case,
"+ |ta + (1� t)b|2  "+ |a|

2 + |b|2

and the claim follows from the monotonicity of  .

The next is a useful Hölder/Lp type estimate, that is exploited in Proposi-
tion 4.1.

Lemma 5.6. Let N 2 N, N � 1. Let f , g 2 Lp(BR, RN ). Suppose that

p 2 (1, 2]. (50)

Then
Z

BR

|f � g|

p



✓Z

BR

("+ |f |

2 + |g|

2)(p/2)�1
|f � g|

2

◆p/2

⇥

✓Z

BR

("+ |f |

2 + |g|

2)p/2

◆(2�p)/2

.

Proof. We observe that

|f � g|

p

=
h
("+ |f |

2 + |g|

2)(p/2)�1
|f � g|

2
ip/2h

("+ |f |

2 + |g|

2)p/2
i(2�p)/2

,

and so the desired result follows from the Hölder Inequality with exponents 2/p
and 2/(2� p), which can be used here due to (50).

To end this paper, we remark that Definition 2.1 is always nonvoid (inde-
pendently of  and ⌦), in the sense that

Lemma 5.7. 2 2 P( ,⌦).
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Proof. The functional in (9) when p = 2 boils down to
Z

⌦

1
2

|rHnu(⇠)|2 + Fk(u(⇠), ⇠) d⇠, (51)

up to an additive constant that does not play any role in the minimization.
Hence, if uk minimizes this functional, we have that

�

Z

⌦
rHnuk(⇠) ·rHn'(⇠) d⇠ =

Z

⌦
@rFk(uk(⇠), ⇠)'(⇠) d⇠

for any ' 2 C10 (⌦).
Accordingly, if also uk approaches some u1 uniformly in ⌦, it follows that

Z

⌦
u1�Hn' = lim

k!+1

Z

⌦
uk�Hn'

= lim
k!+1

�

Z

⌦
rHnuk ·rHn' = lim

k!+1

Z

⌦
@rFk(uk, ⇠)'

(52)

for any ' 2 C10 (⌦).

Also, from (8),
0  @rFk  (�Hn )+

and so (52) gives that

0 
Z

⌦
u1�Hn' 

Z

⌦
(�Hn )+ ' (53)

for any ' 2 C10 (⌦, [0,+1)).

On the other hand, since uk is a minimizer for (51), we have that

sup
k2N

krHnukkL2(⌦) < +1

and so, up to a subsequence, we may suppose thatrHnuk converges to some ⌫ 2
L2(⌦) weakly in L2(⌦). It follows from the uniform convergence of uk that

�

Z

⌦
⌫ ·rHn' = � lim

k!+1

Z

⌦
rHnuk ·rHn'

= lim
k!+1

Z

⌦
uk �Hn' =

Z

⌦
u1�Hn'

for any ' 2 C10 (⌦). That is, rHnu1 = ⌫ in the sense of distributions, and so
as a function. In particular, rHnu1 2 L2(⌦), and therefore (53) yields that

0 
Z

⌦
rHnu1 ·rHn' 

Z

⌦
(�Hn )+ ',

for any ' 2 C10 (⌦, [0,+1)). This shows that u1 satisfies (10) in the distribu-
tional sense.
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