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Sulfur is an essential element for plant growth which availability affects both 

quantitative and qualitative traits of crop yield. Our aim was to generate specific bioassays 

based on the use of “sentinel plants” to quickly determine sulfate bioavailability and/or crop 

nutritional status which may represent a reliable and efficient strategy to obtain valuable, 

timely and low-cost information about changes in sulfate availabilities and nutritional 

requirements in a crop system.  

The characterization of two Arabidopsis gene-trap lines (FLAG and 718 lines) allowed 

the identification of two portions (440 and 1331-bp respectively) of the intergenic region 

(between At1g12030 and At1g12040), controlling as a bidirectional promoter the expression 

of both At1g12030 and GUS under sulfur limitation. Thus, these lines are able to provide 

information about the sulfur nutritional status of the plant and/or the sulfate concentration in 

the growing medium. For this purpose, the two lines were grown in agar plates under a 

continuous sulfate gradient ranging from 0 to 150 µM in order to describe the growth of both 

roots and shoots as a function of sulfate external concentration and to determine the critical 

concentration of sulfate (i.e. the minimum concentration of sulfate necessary to achieve 

maximum biomass) in the growing medium. The main results indicate that the pilot lines are 

able to correctly indicate the critical concentration of sulfate in the external medium also in 

the presence of interfering metal ions (such as cadmium) able to increase the plant metabolic 

demand for sulfur. Others experiments were done to better characterize the pilot bioindicators. 

Firstly, experiments were conducted in order to evaluate if the lines sense the lack of sulfate 

in the growth medium or indicates an alteration of the S nutritional status in the plant. For this 

purpose the response of the lines was analyzed growing the plants in the presence of cysteine 

or glutathione as sole sulfur source. The presence of cysteine as sole sulfur source in the agar 

medium did not produce any GUS activity in both shoots and roots, differently from 

glutathione which instead induced GUS activity only in the shoots. The results indicate that 

the promoters of the Arabidopsis pilot bioindicators sense the metabolic effect produced by 

sulfur starvation and not the presence/absence of sulfate in the growing medium. Moreover, 

GUS expression was studied in lines grown in hydroponic media containing different sulfate 

concentrations. Interestingly, both lines showed GUS expression when grown in agar media in 

sulfur starved conditions, whereas in hydroponics, a significant GUS expression was 

detectable only in the FLAG line, for sulfate concentrations ≤ 5 µM. To better analyze this 

effect we tested the effect of sucrose, only present in agar media, on GUS expression and 

results show that expression level of GUS is influenced not only by sulfur but also by the 

presence of sucrose in the external medium. Finally, we tested the bidirectional promoter-
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function of the 440-bp intergenic region shared by the divergent genes At1g12030 and GUS 

using GUS reporter gene in both orientations in stably transformed transgenic Arabidopsis. 

The sulfur responsive functional nature of the bidirectional promoter was evaluated in 

independent transgenic Arabidopsis lines. The 440-bp bidirectional promoter in both 

orientations shows GUS expression under sulfur limitation which was detected in the leaves 

and the root tissues indicating that 440-bp fragment is able to modulate the expression of GUS 

in two orientations under sulfur starvation. Then, to confirm the response of 440-bp promoters 

to sense the metabolic effect produced by sulfur starvation, transgenic Arabidopsis plants 

were grown in complete agar medium in the presence of cadmium. Results of this experiment 

showed that also Cd was able to induce a strong GUS activity in both leaves (vascular tissues) 

and root tips.      

In conclusion, we identified putative bidirectional promoters involved in modulating 

the expression of GUS reporter gene in response to sulfur deficient conditions and suitable for 

developing specific bioindicators to monitor plant S nutritional status.  
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MONITORING PLANT NUTRITIONAL STATUS 

Mineral nutrient availability is one of the most important factors determining yield in 

agriculture. Conventional farming requires a continuous and large supply of fertilisers to the 

soil in order to replace the nutrients removed with plant harvest. In the predicted scenario of a 

rising demand for food and energy for the expected world population of about 9 billion in 

2050 (Godfray et al. 2010) a dramatic increase in the use of fertilisers in the crop systems is 

foreseen. Since fertiliser production and distribution have a high demand for energy, in the 

last decade the price of fertilisers, although fluctuating, have been burgeoning and it is highly 

improbable that this trend will change in the next few years 

(http://faostat3.fao.org/home/index.html).  

 Only a fraction of the nutrient provided to the soil as fertiliser is taken up from the crops. 

This fraction, expressed as a percentage, is defined as the crop Apparent Recovery (AR; 

Craswell and Godwin 1984): 

AR = 100 (NF –NnF)/F 

where NF and NnF are the total amount of the nutrient absorbed by the crop, if fertilised or not, 

respectively, and F is the amount of the nutrient added to the soil with the fertiliser. For the 

main crops quite low average values of AR are reported: about 35% for N (Raun and Johnson 

1999), 10-30% for P (Malhi et al. 2002) and seldom higher than 50% for K (Rengel and 

Damon 2008). The low capacity of crops in removing the nutritional elements added to the 

soil has significant environmental implications and reflects limits in the management of the 

fertilisation practices, the existence of constraints due to both chemical-physical and 

microbiological soil properties and plant intrinsic biological limits. AR does not consider yield 

traits. On the contrary, the Agronomic Efficiency (AE) of the fertiliser, defined by the ratio 

dY/dF, where dY is the infinitesimal yield (Y) and dF is the infinitesimal increase in the 

amount of the nutrient in the soil (F) due to the fertiliser application, considers such traits. AE 

can in turn be expressed considering two components: the crop Removal Efficiency (RE), 

defined as the ratio dNF/dF, where dNF is the infinitesimal incremental amount of the nutrient 

taken up by plant after the fertilisation, and the Physiologic Efficiency (PE), defined as the 

ratio dY/dNF: 

AE = RE x PE = dNF/dF x dY/dNF = dY/dF 
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 In the field, both RE and PE, and then AE, depend on the interaction between genetic and 

environmental factors. In other chapters of this book the molecular and genetic aspects 

determining AE for some essential elements are extensively reviewed. Here, in a perspective 

of precision farming (Pierce and Nowak 1999), some strategies to improve AE by optimising 

dNF throughout the use of plant-based sensor systems are presented and discussed. 

 

Fertiliser best management practices 

Definitions 

In order to limit the intrinsic risks of diffuse pollution due to intensive agriculture, both local 

and supranational authorities are committed to the fine tuning of methods or techniques found 

to be the most effective and practical means in achieving yield objective optimisation and 

preventing contaminations of soils, water resources and air. As a whole, these recommended 

measures are defined as agronomic Best Management Practices (BMPs) and include: the 

choice of variety, planting date, row spacing, seeding rates, integrated pest management, weed 

control, disease control, and nutrient management. Focusing on the input into the field of 

inorganic nutrients, BMPs are considered the management practices that foster the effective 

and responsible use of fertiliser matching nutrients supply with crop requirements and 

minimise their losses from the fields.  

 

Toward a fertiliser precision management 

Fertiliser BMPs include the identification of the: a) the right product by matching the 

fertiliser characteristics to the crop site specific needs and soil properties; b) the right time by 

synchronising the presence of the nutrient with the moment of crop maximum demand and 

uptake capacity; c) the best rate by matching the amount of fertiliser input to crop needs in 

order to avoid over-input leading to nutrient leaching and other losses to the environment, as 

well as starvation conditions; d) the right place by making sure the presence of the nutrients 

where plants can efficiently take up them.  

 Although in a field a relatively high spatial variability in the crop requirements of a 

specific nutrient could exist, fertilisers are uniformly applied, to avoid yield gaps and 
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considering the less fertile portion of soil, where the crops have the maximum demand. The 

amounts of nutrient provided in excess with the fertiliser can be absorbed by the crops without 

resulting in any benefit in term of yield or leached towards the underground water becoming a 

concern for the quality of the environment. 

 If spatial and temporal information about crop needs of nutrients were available site- and 

time-specific inputs of the nutrient could be planned, resulting in a precision fertilisation 

approach, and in a win-win option to increase fertiliser nutrient efficiency and to improve the 

economic and environmental sustainability of the crop systems. In other words, the 

optimisation of dNF term, in the equation defining AE, requires detailed information for 

decision support systems, allowing farmers to adopt the minimal nutrient input for maximal 

return, according to a Fertiliser Best Management Practices (FBMPs) approach.  

 

Evaluating plant nutritional status 

Soil and leaf analyses 

Within a field the spatial variability of the soil chemical-physical and biological 

characteristics, including the amount of bioavailable forms of the mineral nutrients essential 

for crops, can be pronounced. Mapping this variability and plant nutritional status at high 

temporal and spatial resolution represents the first step towards the setup of site-specific 

FBMPs. In the last years, several sensor-based techniques to assess parameters indicative of 

the nutritional status of soil-plant systems have been proposed to replace, or support 

traditionally used physical measures and chemical analysis. Results on soil properties 

obtained from electromagnetic induction sensors along with those derived from the use of 

ground conductivity meters and radiometers analysing canopy reflectance, appear to provide 

data which can be used to target N-fertilisation to specific field conditions (Adamchuk et al. 

2011). However, soil and plant chemical analyses are still widely used in developing methods 

for the evaluation of the nutritional status of the crops. In particular, the evaluation of 

elemental concentrations in plant tissues can be helpful in diagnosing nutrient deficiency. This 

strategy is currently used to assess nutrient availability and guide fertility programmes for 

many fruit tree crops. Nevertheless, the usefulness of this approach in order to develop 

FBMPs for herbaceous crops is rather debatable, since the concentration of a specific element 

may change among the leaves of a single plant, and may also change over time within a single 
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leaf (Barker and Pilbeam 2007). Thus, plant sampling, in term of timing and tissues to choose, 

is the most critical step (Kalra 1998). Moreover, elemental analysis detects only severe and 

long-term deficiency since a plant’s initial response to nutrient limitation is to activate 

mechanisms aimed at maintaining the ionic homeostasis of their cells (Schatchtman and Shin 

2007; Gojon et al. 2009). Finally, conferring a diagnostic value to the concentration of a 

single element could be misleading since complex cross-talk connections between the 

regulatory mechanisms controlling the ionic homeostasis in plants exist (Rouached et al. 

2010). 

 The reduction in sulphur dioxide emissions in Europe over last decades and changes in 

fertilizer practices have resulted in a widespread increase in the occurrence of sulfur 

deficiency in agricultural crops (McGrath et al. 1996). Sulfur deficiency is considered as a 

problem for agriculture resulting in decreased crop quality parameters and yield (McGrath et 

al. 1996). Appropriate applications of fertilizer can remedy deficiencies; however, there 

remain considerable uncertainties concerning timing and type of S-application, which in turn 

influence the persistence of S in the soil and the availability to the plant (Hawkesford 2000). 

Thus, it is necessary to develop an adequate system of diagnosis for S deficiency (Blake-Kalff 

et al. 2000) using soil and plant analysis as possible tools (Scherer HW 2001).  The amount 

of sulfate present in the soil solution can be evaluated by different soil-testing methods but it 

gives information not always correlated to plant yield and the actual needs of the crop (Zhao 

et al. 1999). Moreover, the concentration of the S available to the plant present in the soil is 

characterized by seasonal variations (Hawkesford 2000) and thus soil-testing methods do not 

provide the actual bioavailability of the nutrient.  Therefore, more knowledge is required in 

order to define the best diagnostic indicators for S deficiency. Plant analysis is preferred 

because S status in plant tissue may better reflect the amount of S available at the time of 

sampling. However, doubts about the time of sampling and, first of all, about which parameter 

are better remaining (Blake-Kalff et al. 2000). The concentration in the tissues of total sulfur, 

sulfate or glutathione, as well as the percentage of sulfate with respect to the total sulfur or the 

value of the N:S ratio are the parameters measured and considered as relevant indicators for S 

deficiency (Blake-Kalff et al. 2000; Scherer HW 2001). However, the different growth stages, 

the different parts of the plant sampled, the analytical methods used and how the analyses are 

carried out cause considerable variations of the critical values proposed for these indicators 

(Blake-Kalff et al. 2000). It has been suggested that in wheat and oilseed rape the best 

diagnosing of S deficiency in order to prevent yield losses is the evaluation of the ratio 
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malate: sulfate peak area ratio from ion chromatography. At early growth stages, a value of 

the ratio greater than 1 indicates S deficiency (Blake-Kalff et al. 2000). 

 

Nutrient-critical concentration and dilution curve 

The critical concentration of a nutrient (nc) stands for the concentration of the nutrient in the 

shoots above which, in the absence of other growth limiting factors, the plant is sufficiently 

supplied with the nutrient to achieve its maximum potential yield. In other words, when the nc 

is achieved and maintained, further supplies of the nutrient will not influence the growth of 

the plants and, in the absence of any sort of demand-driven negative-regulation of its uptake, 

it could be uselessly accumulated in the plant tissues. For some nutrients it is possible to 

define the so-called toxicological value, which indicates the concentration above which 

further nutrient accumulation induces damage on cell metabolism and structure. All the 

concentrations of the nutrient between its critical and toxicological values define the so-called 

luxury range (Annex. 1), which depends on the chemical properties of the element and on its 

biochemical roles. The fine-tuning of the application of fertiliser to maintain the concentration 

of the mineral nutrients in the plant tissues as close as possible to their critical values 

represents a FBMP approach. 

 The critical concentration of a nutrient is not a constant value since it depends on genotype, 

environmental conditions, and the developmental stage of the plants (Lemaire and Gastal 

2009; Greenwood et al. 1986). For instance, in the above-ground tissue of cereals the value of 

nc (as % on the DW basis) changes during the plant developmental stages according to the 

dilution function: 

nc = a W-b 

where W is the maximum above-ground biomass in a specific stage of the plant cycle, a 

represents the concentration of nc in the shoot when the crop mass is 1 Mg DM ha–1, and b 

represents the dilution coefficient.  

 The dilution curve of a specific cultivar is obtained by plotting the nc values, at a given 

developmental stage and field situation determined by a set a fertilisation experiments versus 

the accumulated plant shoot biomass (Annex. 2). Once the dilution curve for a specific 

nutrient is known, it is possible to evaluate the nutritional status of the crop by evaluating its 
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nutritional index (NI) defined as the ratio between the actual nutrient concentration in the 

shoots and the corresponding value of nc. Indeed, if NI is lower than 1 the crop is in a 

suboptimal nutritional status for a given nutrient and needs to be fertilised; if the NI is higher 

than 1 the crop is in the luxury range. 

 The actual feasibility of such an approach for a sustainable management of N fertilisation 

is conditioned by the limited availability of easy and low cost methods to rapidly estimate the 

value of W in the field and, mainly by the actual concentrations of the nutrient in the shoots 

over a representational cropping area. The value of W can be extrapolated by the crop leaf 

area index (LAI) currently evaluated through remote sensing approaches (Zheng and Moskal 

2009). The evaluation of the actual concentration of the nutrient, without adopting the 

traditional chemical analyses, is the most difficult challenge to overcome.  

 Since nitrogen is the nutritional element that most often affects crop production and the 

current world use of N fertilisers is approximately 90 million metric tons (with an estimated 

cost of about $50 billion), it is reasonable that several research efforts have been focused on 

the fine tuning of non-invasive methods for the determination of N levels in shoots throughout 

the entire growth cycle of crops as a guide to N-FBMPs (for an exhaustive review see 

Samborsky et al. 2009). Assuming nitrogen as an example, in the next paragraph we briefly 

summarize the advances on the non-destructive approaches developed or under investigation 

for monitoring the nutritional status of a crop.  

 

Non-destructive monitoring of crop nutritional status: the example of nitrogen 

Nitrogen availability affects chlorophyll content in leaves (Schlemmer et al. 2005) and as a 

consequence the level of this pigment is considered a good indicator of the nitrogen 

nutritional status of a crop (Samborski et al. 2009 and references therein). Instruments 

analysing the spectral properties of leaf tissue to estimate their chlorophyll content (optical 

chlorophyll meters) have been developed to evaluate the need for agricultural N applications. 

Due to the pigment’s light absorption properties (in the visible wavelength range), the higher 

the chlorophyll content, the higher the reflectance of the leaf (in the 525-680 nm range) and 

consequently, the higher the amount of red light absorbed. Combining light absorbance 

measures at 660 nm and near-infrared (NIR) light transmittance at 940 nm, which in turn 

depend on leaf moisture content and thickness, a good estimation of chlorophyll per unit area 
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has been obtained in the major crop leaves. It has been proved that the chlorophyll meter can 

detect the early signs of N stress not yet detectable by visual analysis using a leaf colour chart 

(Debaeke et al. 2006).  

 Recently, it has been proposed a hand-held instrument (Dualex®), exploiting chlorophyll as 

an internal sensor of photons, enables the user to contemporaneously assess the level of both 

photosynthetic pigments in the mesophyll and flavonoids in the epidermis of the leaf. Briefly, 

comparing the amount of chlorophyll fluorescence emitted under UV excitation (λ 380) with 

that emitted under visible light (λ 660) whether absorbed or not, the instrument is able to 

evaluate the level of flavonoids absorbing in the UV range. Contemporaneously, by 

comparison of the light transmittance at λ 720, in the range of chlorophyll absorption, and at λ 

840, in the range influenced by leaf structural properties but not by chlorophyll, a reliable 

evaluation of the levels of the photosynthetic active pigment is obtained. Dualex® thus allows 

measurement of a Nitrogen Balance Index (NBI®), which indicates the ratios of both 

chlorophyll and flavonoids units and as a result is related to leaf N content (Cartelat et al. 

2005) since leaf flavonoids can be considered an indicator of N availability. Indeed, in N-

starved plants the concentration of carbon-based secondary metabolites increase (Hamilton et 

al. 2001) and in particular, due to the enhanced expression of specific transcription factors 

involved in controlling their biosynthetic pathway, those of anthocyanin and flavonols (Lea et 

al. 2007). Several experimental evaluations suggest that in the case of wheat and corn 

Dualex® seems to furnish more reliable information about the N status of the plants with 

respect to other hand-held optical systems (Tremblay et al. 2012). 

 Since leaf N status influences the quantum yield of PSII electron transport and then the 

chlorophyll fluorescence parameters (Lu and Zhang 2000), canopy fluorescence quenching 

analyses could be considered suitable for sensing crop N status (Tremblay et al. 2012). In 

particular, the recent introduction of a hand-held fluorimeter (Multiplex®) equipped with 

LEDs generating four wavelengths (λ375, λ450, λ530, λ630) and detectors monitoring 

fluorescence at three wavelengths (λ447 or λ590 if the excitation at λ450 is used or not, 

respectively, λ665 and λ735) seems to be quite promising for the in-season assessment of crop N 

status (Trembleay et al. 2012 and references therein). Combining different excitation and 

emission bands the instrument provides independent parameters related to chlorophyll, 

flavonoids and N content of the plants (Tremblay et al. 2012).  
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 The devices described above determine optical parameters for individual leaves or, in the 

case of Multiplex®, at a typical distance of a few centimeters thus monitoring circular canopy 

surfaces of not more than 10 cm in diameter. Consequently, they are not particularly suitable 

in evaluating the N status of a crop at field scale. Sensors, analysing canopy reflectance 

properties and thus its N status and needs are also available (Erdle et al. 2011). They are 

classified as passive (Yara N-Sensor®/Field Scan and FiledSpec® Portable Spectroradiometer) 

or active (GreenSeeker® and Crop CircleTM) non-contact sensors depending on the sunlight 

reflected by the canopy or on their own specific light sources in the visible (650 or 590 nm) 

and NIR (770 or 880 nm) range, respectively. Spectral data collected by these devices allow 

the calculation of the so-called normalised differences vegetation index (NDVI) according to 

the formula: 

NDVI = (NIR – Vis)/(NIR + Vis) 

where NIR and Vis stand for the spectral reflectance measurements acquired in the NIR or 

visible (red) regions, respectively. The NDVI value is about 0.5 when the vegetation 

chlorophyll content and thus, in the absence of any other stress factors, plant N status is 

optimal; conversely in sub-optimal conditions the value of NDVI is much lower.  

 Several examples of the use of these portable proximal sensors (which can also be mounted 

on tractors) in the fine-tuning of variable-rate technology for site-specific N fertilisation exist 

(Solari et al. 2008; Diacono et al. 2013). The possibilities to easily and efficiently translate the 

information on N crop status, obtained by the hand-held or proxy sensor approaches described 

as above, in site- and time-specific recommendations for FBMPs can be invalidated by a 

plethora of biotic and/or biotic stressors, including a non-optimal availability of nutrients 

other than N, which influence the chlorophyll content of the leaves. Therefore, the parameters 

and the vegetation index obtained are usually validated by setting up standardisation 

procedures providing for plots of the same cultivar in the same environment at different N 

availability. In this way genetic, environmental and agronomical factors can be eliminated as 

potential sources of error and making the data obtained by the sensor-based approaches more 

reliable (Samborski et al. 2009; Diacono et al. 2013).  

 Hyperspectral radiometers providing contemporaneous reflectance measurements over a 

relatively narrow wavebands (<10 nm), should make it possible to identify specific regions of 

the spectrum which could be used to develop new indices, highly sensitive to plant N status 

and unaffected by other exogenous factors (Hansen and Schjoerring 2003). Indeed, an 

12 
 



increasing number of studies suggest that field as well as airborne or spaceborne hyperspectral 

canopy radiometric data can be useful for estimating plant nitrogen concentration in cultivated 

or natural environments (Ollinger et al. 2008, Stroppiana et al. 2009), although recently some 

criticisms about the remote sensing of leaf tissue constituents by hyperspectral data have been 

raised (Knyazikhin et al. 2013). 

 Leaf chlorophyll concentration is also an indirect diagnostic symptom for N status of the 

crop. However, it is important to take into account that reduced chlorophyll biosynthesis is a 

relatively late response to N starvation which only becomes evident after the plant has 

initiated other molecular and physiological responses for maintaining N homeostasis 

(Schatchtman and Shin 2007; Gojon et al. 2009).  

 Unfortunately, non-destructive reliable monitoring approaches comparable with those 

above described for N have not been developed for the other mineral nutrients whose 

availability affects crop yield (in particular P, K and S). Thus, for these nutrients the chance to 

adopt FBMPs is limited to the classic chemical evaluation of plant tissues and soils.  

 

Plant bioindicator for nutritional status 

Bioindication and biomonitoring 

The development of quick and inexpensive methods to determine changes in nutrient 

bioavailability is required in order to monitor soil nutrient dynamics for better fertiliser 

management for a variety of crops in different environmental conditions. Developing 

bioassays based on the use of specific plant sentinels or biondicators, may represent a reliable 

and efficient strategy to obtain quick, accurate and low-cost information about nutrient 

availability changes in a given crop system. Thus, the use of these modern biotechnologies 

could allow the non-destructive analysis of plants under field conditions. Development of 

these kinds of tools represents a new and challenging area of research.  

 Plants respond to nutrient supply or shortage through a complex of physiological, 

morphological, and developmental responses, which are under the control of several gene 

pathways. Microarray technology is a convenient tool for rapid analysis of plant gene 

expression patterns under a variety of environmental and nutritional conditions. Genome-wide 

microarray analyses showed extensive changes in the expression of several genes involved in 
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primary and secondary metabolism, nutrient transport, protein synthesis, regulation of gene 

expression and cellular growth processes (Maruyama-Nakashita et al. 2003; Wang et al. 2003; 

Bi et al. 2007; Li et al. 2010; Kant et al. 2010; Ma et al. 2012). Such studies not only 

improved our general understanding on plant responses to nutrient availability but also 

provided a reliable data from which to develop new molecular strategies for real-time 

monitoring of plant nutritional status. 

 Recently, Yang et al. (2011) used multiple whole genome microarray experiments to 

identify gene expression biomarkers capable of assessing plant responses under limiting and 

sufficient nitrogen conditions. Using logistic regression statistical approaches, they identified 

a common set of genes in maize whose expression profiles quantitatively assessed the extent 

of plant stress under different nitrogen conditions. Interestingly, such a biomarker gene set is 

independent of maize genotype, tissue type, developmental stage, and environment (including 

plants grown under controlled conditions and in the field), and thus has the potential to be 

used as an agronomic tool for real-time monitoring and to optimise nitrogen fertiliser usage. 

 

The gene fusion concept enables to define a new class of transgenic bioindicators 

The existence of gene pools, which specifically respond to the nutritional status of the plant, 

has introduced a new class of bioindicators, based on the concept of gene fusion (Annex. 3). 

A generic nutrient-responsive gene is formally considered as consisting of two parts: the 

promoter or controller that senses the nutritional status of the plant and directs the synthesis of 

a new product from the second component, the responder. By replacing the original sequence 

of the responder gene with a new and easily studied gene, called a reporter gene, it should be 

possible to obtain valuable information about the activity of the promoter. Such a molecular 

manipulation should provide information about the nutritional status of the plant by simply 

measuring the activity of the reporter protein. 

 Plant biologists to study how a particular gene is controlled when measurement of the gene 

product is too difficult have extensively used the gene fusion concept. The elective tool used 

in this type of studies is the GUS gene fusion system, which uses uidA from E. coli as a 

reporter gene. This gene encodes a β-glucuronidase able to hydrolyse a wide range of β-D-

glucuronide substrates producing coloured or other compounds in amounts proportional to 

enzyme activity (Jefferson 1989). Assays for testing the activity of GUS in genetically 
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modified plants are carried out on plant material or plant extracts under laboratory conditions. 

A variety of glucuronides is commercially available and can be used for fluorometric, 

spectrophotometric, luminometric and histochemical GUS analyses, qualitative as well as 

quantitative (Gallagher 1992). 

 Unfortunately, reporter systems based on the activity of β-glucuronidase (GUS) have 

severe intrinsic limitations that preclude their application under field conditions since they 

require the enzyme (GUS) and its substrate be brought together to produce the hydrolytic 

products necessary for the analysis. Likewise, luciferin–luciferase imaging systems have been 

used in plants, but their application in the field is hampered by the low level of light emission 

and the need for sensitive photon-counting cameras to detect signal (de Ruijter et al. 2003). 

Thus, new tools to perform non-destructive analysis are essential to develop specific sentinel 

plants to be directly used under field conditions. 

 In a pioneering paper, Jefferson (1993) listed some criteria useful to develop new reporter 

systems suitable for agricultural molecular biology. Some of the key criteria, such an in vivo 

reporter system are that it should be: i) non-destructive; ii) non-disruptive to avoid 

physiological alteration of crop performance; iii) useful and functional in most crop species; 

iv) inexpensive and capable of being used everywhere; v) simply to detect with little or no 

instrumentation; vi) easy to use under field conditions. 

 Naturally fluorescent proteins could offer a valuable alternative to the use of GUS reporter 

systems since, in contrast to GUS, the detection of their expression does not require the 

addition of a substrate. Green fluorescent protein (GFP), a spontaneously fluorescent protein, 

was initially isolated from the luminescent marine jellyfish (Aequorea victoria). GFP emits a 

highly and stable bright green fluorescence after absorbing blue light (Tsien 1998). The wild 

type Aequorea protein has a major excitation peak at 395 nm which is about three times 

higher in amplitude than a minor peak at 475 nm. In normal solution, excitation at 395 nm 

gives emissions peaking at 508 nm, whereas excitation at 475 nm gives a maximum at 503 nm 

(Heim et al. 1994). Since its discovery GFP from Aequorea victoria has become a frequently 

used tool in plant biology. The first studies on transgenic plants expressing wild type GFP 

proved the usefulness of this protein as an in vivo and real-time visible marker and 

encouraged researchers to modify it in order to obtain new variants that could be more 

effectively synthesised in plant cells and macroscopically detectable at the whole plant level 

(Stewart 2001). One of these modified versions of GFP is the mGFP5er variant that produces 
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a stable protein targeted to the endoplasmic reticulum as the result of the addition of a N-

terminal Arabidopsis basic chitinase fusion and a C-terminal HDEL fusion (Haseloff et al. 

1997). The coding sequence contains three mutations that enhance the folding of mGFP5er at 

higher temperatures and allows excitation of the protein using either ultraviolet (395 nm) or 

blue (473 nm) light (Siemering et al. 1996). In addition, new fluorescence colours have been 

created through mutagenesis of the natural protein giving longer excitation and emission 

wavelengths and to enhance the fluorescence brightness. The new colours range from blue 

and cyan (EBFP and ECFP) to yellow (EYFP); such new proteins have excitation/emission 

peaks at 383/474, 434/472 and 514/527 nm, respectively (Spiess et al. 2005; Mena et al. 

2006). 

 Fluorescent proteins have been largely used as visual genetic labels at the whole plant, 

tissue and cell levels, since they offer a fast and easy-to-use non-destructive tool with which 

the efficiency and timing of gene expression can be evaluated. Detection and quantification of 

fluorescence at the whole-plant level normally requires the use of complex and expensive 

laboratory instruments (scanning laser and fluorescence imaging systems). Portable 

instruments, such as fibre optic probe fluorometers, have recently been designed to assess 

GFP fluorescence under field conditions (Harper and Stewart 2000; Millwood et al. 2003). 

However, because biondicators need to be disseminated over a wide area, a successful field 

application of these plants also requires a cost-effective remote monitoring system providing 

real-time information about the nutritional status of a whole crop system. Recently Adams et 

al. (2011) proposed an alternative method for crop monitoring in which sentinel plants and 

sensing units are deployed in tandem at specific locations. Ideally, such a system integrates 

biological and sensory technologies with communication technologies to provide a practical 

field-deployable telemetry system. 

 The gene fusion concept could be used to measure complex phenomena, even in the 

absence of mechanistic knowledge of how that phenomenon works (Jefferson 1993). This 

technology is completely general and could be exploited to develop transgenic bioindicators 

providing signals whose intensity is proportional to the concentration of a given analyte in 

growing environment (i.e. mineral nutrients, pollutants, water, etc.) or to the intensity of a 

biotic or abiotic stress that plants could experience during their growth. Potential targeted 

traits to be monitored are only limited by the availability of specific promoters (or controllers) 

driving the reporter expression under a specific condition. 
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 Recently these technologies have been applied in plants to develop model transgenic 

bioindicators of the nutritional status to be used for laboratory purposes. To date, reporter 

gene activity has been used to assess the phosphate, sulfate and magnesium status in 

Arabidopsis and also to detect the level of nickel in the growing medium (Hammond et al. 

2003; Krizek et al. 2003; Maruyama-Nakashita et al. 2006; Kamiya et al. 2012). In all these 

studies GUS, GFP and LUC have been successfully used as reporter genes to indicate 

nutritional status under the control of promoter sequences indirectly identified by microarray 

analyses. 

 Hammond and co-workers (2003) first proposed the creation of an Arabidopsis transgenic 

bioindicator, able to monitor plant phosphorous status. They fused GUS with the promoter of 

the phosphate starvation responsive gene SQD1 (a gene involved in the synthesis of 

sulfolipids), obtaining an Arabidopsis transgenic line in which GUS activity increased 

following P starvation. Interestingly, the reporter responses to P withdrawal were much more 

rapid and quantitative than phenotypic observations, showing this approach is particularly 

suitable for developing efficient systems for monitoring plant P status. More recently Kamiya 

et al. (2012) used a similar approach to establishe a novel monitoring system for magnesium 

in plants. In particular they obtained an Arabidopsis transgenic line that expressed luciferase 

(LUC) under the control of the Mg deficiency-inducible CAX3 promoter. The transgenic lines 

showed a clear response under low Mg conditions and the degree of luminescence reflected 

the accumulation of endogenous CAX3 mRNA. However, CAX3 induction does not seem to 

be specific to low Mg, since the levels of other ions (Ca2+ and Na+) or P starvation may 

influence transcription (Shigaki and Hirschi 2000). 

 Notwithstanding some limitations Arabidopsis ‘smart’ plants could also be used as tools in 

basic research aimed at isolating novel mutants disrupted in nutrient homeostasis or 

identifying plants with enhanced nutrient use efficiency. For instance, the key transcription 

factor, SLIM1, regulating the sulfur assimilatory pathway has recently been identified by 

screening Arabidopsis mutants carrying a fluorescent reporter gene under the control of the 

sulfur limitation-responsive promoter of the SULTR1;2 sulfate transporter (Maruyama-

Nakashita et al. 2006). Using this approach it is possible to identify all the potential genes 

involved in controlling the expression of SULTR1;2 under sulfur shortage, since in this 

condition the relative mutants will display altered fluorescence emissions as compared to the 

wild type bioindicator. 
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Strategies to enhance the specificity of bioindicators 

In the future, the use of smart plant technology in crops would provide rapid bioassay 

methods to obtain valuable information about nutrient availability in the soil solution and/or 

the nutritional status of the plants allowing efficient temporal and special application of 

fertilisers and the development of decision-making systems for precision farming. To date the 

exploitation of these technologies is limited, not only by the lack of telemetry systems suitable 

for plant monitoring across a large area, but also by the lack of precise information to design a 

transformation-cassette that would enable the nutrient-specific control of reporter activity. 

Thus, the choice of a core promoter to confer specific transgene expression, represent the 

major challenge we have to face in order to develop the next generation of bioindicators. 

 A typical plant promoter consists of CAAT and TATA boxes for recognition of DNA-

dependent RNA polymerase, several-tens of bp upstream of the transcription initiation site 

(Yoshida and Shinmyo 2000). Specific DNA sequences, called cis-elements, generally 

upstream of the core promoter, drive the cell- or organ-specific expression of the downstream 

gene under certain environmental conditions. Specific factors, called trans-factors (or 

transcription factors), bind to the cis-elements affecting RNA polymerase activity. Generally, 

multiple-cis-elements and trans-factors work together to induce the full regulation of gene 

expression, since gene expression is generally under the control of several factors (Yoshida 

and Shinmyo 2000; Venter 2007). 

 In recent years, a wide range of different promoters have been characterised and 

extensively used for regulating the expression of transgenes in plant cells (Venter 2007). In 

several cases, the cis-elements that are necessary for transcriptional regulation and the trans-

factors that interact with these elements have been identified. From these studies has emerged 

a complex picture in which DNA sequence cis-elements that are important for regulation are 

scattered over thousands of base pairs, and these elements interact with trans-factors that can 

be either ubiquitous or highly restricted in their distribution. In this way diverse expression 

patterns may be achieved through combinations of a limited number of regulatory elements 

and trans-acting factors. The knowledge of these combinatorial mechanisms should allow the 

generation different transcription patterns by ‘cut and pasting’ the components in different 

ways. 

 Analysis of the cauliflower mosaic virus (CaMV) 35S promoter has contributed to the 

understanding of transcriptional regulatory mechanisms and has allowed the design of 
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inducible transgene expression cassettes. The -343 to -46 upstream region relative to the site 

of initiation of transcription (+1) of the promoter is responsible for the strength of 

transcription. Two regions, -343 to -208 and -208 to -90, are responsible for transcriptional 

activation, and the -90 to -46 region plays an accessory role by further increasing the 

transcriptional activity (Odell et al. 1985; Fang et al. 1989). Artificial promoters are generally 

constructed by a combinatorial design of different promoter elements, with the minimal core 

DNA fragment (-46 to +8 bp) of the CaMV 35S promoter as the main component (Annex. 4). 

The core-promoter region contains a TATA-box necessary for recruiting RNA polymerase II 

and the orchestrated assembly of general transcription factors to form the pre-initiation 

complex (Novina and Roy 1996). The CaMV 35S core-promoter is ideal for transcription 

initiation and has been used in several synthetic plant promoters in which combinatorial 

engineering of cis-element have been introduced upstream of the core-promoter sequence. 

 The use of synthetic promoters allowing for targeted inducibility of a reporter gene is of 

considerable interest to develop engineering strategies aimed at creating plant bioindicators 

for real-time monitoring of nutritional status. For these purposes promoter sequence domains 

or cis-elements conferring nutrient- and organ-specificity should be combined in order to 

target the reporter expression in organs (shoot and leaves) in which signals should be easily 

detectable. 

 Many different plant promoters have been described as able to restrict gene expression to 

particular cells, tissues or organs. The GaMYB2 promoter is cotton fibre- and Arabidopsis 

trichome-specific, and can drive gene expression specifically in glandular cells (head cells) of 

glandular trichomes in transgenic tobacco (Shangguan et al. 2008). Some cis-elements 

regulating tissue-specific gene expression have also been identified. For instance, mesophyll 

expression module 1 (Mem1), a 41 bp fragment of the ppcA1 promoter, directs mesophyll-

specific expression. The tetranucleotide sequence, CACT has been identified as a key 

component of Mem1 by evolutionary and functional studies (Gowik et al. 2004). More 

recently, Ye et al. (2012) identified a rice green tissue-specific expression gene, DX1, and 

described two novel tissue-specific cis-elements (GSE1 and GSE2) within the DX1 promoter. 

In particular, GSE1 acted as a positive regulator in all green tissues, whereas GSE2 acted as a 

positive regulator only in sheath and stem tissues. 

 Obviously, nutrient-specific cis-elements are equally as important for reporter expression 

as tissue-specific cis-elements. Nutrient-inducible plant promoters contain multiple cis-acting 
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elements, only some of which may specifically contribute to nutrient inducibility. A number 

of potential nutrient responsive cis-elements have recently been identified in the promoter of 

several nutrient responsive genes and have been indicated as key regulatory factors of gene 

expression under different nutritional conditions. 

 Sulfur-responsive elements (SUREs) have been identified in the promoter regions of the 

Arabidopsis NIT3 nitrilase and β-subunit β-conglycinin gene from soybean (Awazuhara et al. 

2002; Kutz et al. 2002), although no consensus sequences have been shown yet. However, an 

interesting study on Arabidopsis sulfate transporter SULTR1;1 promoter demonstrates that a 5 

bp sequence is essential to promote sulfur response of SULTR1;1 (Maruyama-Nakashita et al. 

2005). Such a sequence also appears in the promoter regions of many sulfur-responsive genes, 

suggesting its involvement in the transcriptional control of a gene set required for adaptation 

to sulfur-limiting conditions. Deletion analysis of the barley IDS2 (iron deficiency-specific 

clone no. 2) gene promoter allowed the identification of two cis-acting elements, iron-

deficiency-responsive element 1 and 2 (IDE1 and IDE2), which synergistically induced iron-

specific expression in tobacco roots. Finally, comparative analyses of several nitrite reductase 

gene promoters from various higher plants have recently allowed identification of a conserved 

sequence motif as nitrate-responsive cis-element (Konishi and Yanagisawa 2010). 

 

What do biondicators sense? A key problem 

Modification of promoter architecture necessary for manipulating gene reporter activity 

requires accurate studies of the regulatory network involved in controlling gene expression 

under different nutritional conditions. Unfortunately, for the most part, these aspects are still 

largely unknown preventing the optimal design of a synthetic nutrient-inducible promoter, 

particularly in cases where a mineral nutrient undergoes complex assimilatory metabolisms 

(i.e. nitrate or sulfate) or interacts with other nutrients. In all these cases the specific question 

to be answered is: what do synthetic nutrient-specific promoters sense? 

 For example, the transcriptional regulatory mechanisms involved in sulfate uptake and 

assimilation reasonably result from direct sensing of the plant nutritional status rather than 

from the composition of the external soil solution (Lappartient and Touraine 1997; 

Lappartient et al. 1999). This control involves an inter-organ signaling mechanism in which 

key intermediates of the sulfate assimilatory pathway may act as negative or positive signals 
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in modulating the expression of the sulfur-responsive genes. Adequate levels of sulfur 

compounds would repress gene expression through a negative feedback loop preventing 

excessive sulfate uptake and reduction; vice versa a contraction of the intermediates along the 

assimilatory pathway would unrepress gene transcription allowing sulfate to enter the 

pathway. A second regulatory loop, involving OAS as a key intermediate, would act in 

promoting gene unrepression when nitrogen and carbon supply exceeds sulfur availability 

within the cells (Hawkesford 2000). In this context the need to dissect the molecular 

mechanisms involved in the nutritional signal perception and transduction is evident since, in 

several cases, the relationships existing between gene expression and the levels of the signal-

intermediates are not always clear. Further research is needed to associate single gene 

expressions to a specific nutritional signal or sulfur-nutritional status. 

 Genome-wide expression analyses have revealed that nitrate supply induces changes in the 

expression of several genes, not only those involved in nitrate reduction and assimilation. 

Such behaviour is likely both due to the direct effects of nitrate itself and indirect effects 

caused by changes in nitrogen metabolite content or nitrogen nutritional status. In fact, nitrate 

is thought to act as a signal molecule influencing the expression of a number of genes, since 

their expression is rapidly induced by nitrate even in mutants severely compromised for 

nitrate reductase activity (Wang et al. 2004). In addition, it has been shown that nitrate-

inducible expression NADH/nitrate reductase mRNA in maize roots, scutella and leaves also 

occurs in the presence of inhibitors of protein synthesis, suggesting that the signal 

transduction system mediating this response is constitutively expressed in plant cells, 

independently of the presence or the absence of nitrate in the growing medium (Price et al. 

2004). Results of these studies clearly shows that dissection analyses of the signal 

transduction pathways controlling gene expression under different nitrogen supply should 

provide important information to define smart plants able to sense the cellular level of nitrite 

or the general nitrogen nutritional status of a crop system. 

 

FUNCTION OF SULFUR IN PLANTS 

Sulfur is an essential macronutrient required for the growth and physiology of plants. 

Sulfur is required for the synthesis of S-amino acids like cysteine (Cys) and methionine (Met), 

oligopeptides like glutathione (GSH) and phytochelatins (PC), vitamins and cofactors 

(thiamine, biotin, coenzyme A, S-adenosyl-Met), protein iron-sulfur clusters, in membrane 
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sulfolipids and in some secondary metabolites like glucosinolates, allyl cysteine, alliins and 

choline-O-sulfate (Maruyama-Nakashita et al. 2003; Saito 2004; Davidian and Kopriva 2010; 

Takahashi et al. 2011).  

During the different developmental stages and under particular environmental 

conditions the sulfur demands can change (Yoshimoto et al. 2003; Buchner et al. 2004a) and 

plants response to this by tightly modulating sulfur uptake, assimilation and distribution 

through the plant.  

 

SULFATE UPTAKE AND TRANSPORT 

Sulfate (SO4
2-) is the main form of sulfur present in the soil solution and the major 

source of sulfur for plants. In addition to the inorganic sulfate uptake from soil, plants are also 

able to absorb, by the foliage through the stomata, atmospheric sulfur gases (sulfur dioxide 

and hydrogen sulfide).  In air polluted regions this way represents a significant source of the 

total amount of sulfur that plant needs (Van Der Kooij et al. 1997; Leustek et al. 2000; 

Buchner et al. 2004b).  

Uptake from the soil, cellular compartmentalization and long distance translocation of 

the anion are mediated by several transmembrane transport systems. Once taken up by root, 

sulfate is distributed by xylem to mature leaves and in turn by the phloem to the younger 

ones. Inside the cells, sulfate moves toward the plastids, the major sites of its assimilatory 

reductive pathway, or is compartmentalized into the vacuole (Hawkesford 2003; Saito 2004; 

Hawkesford and De Kok 2006). 

From the soil, sulfate is taken up into the root cells through specific transporters 

located on the plasma membrane of the roots cells allowing the entrance of the anion in the 

symplastic system. The influx of sulfate is a thermodynamically actively transport. Indeed, it 

take place against its electrochemical potential gradient existing across the plasma membrane 

by the activity of a proton/sulfate cotransport system adopting a 3H+:1SO4
2- stoichiometry in 

turn energized by the H+ transmembrane electrochemical gradient generated by the activity of 

the pasmalemma H+-ATPase (Hawkesford 2003; Saito 2004; Takahashi et al. 2011). 

In different tissues, several membranes transporters are involved in the systemic 

sulfate distribution throughout the plant body. On the basis of the sequence similarity and 

function, five functional subgroups of sulfate transporters have been described in A. thaliana, 
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as well as in other plant species (Smith at al. 1997; Hawkesford 2003; Buchner at al. 2004a; 

Saito 2004; Kopriva 2006).   

In Arabidopsis the first group include the high-affinity sulfate transporters 

AtSULTR1;1 and AtSULTR1;2 genes. These elements are predominantly expressed at root 

level and are responsible for the primary uptake of the anion from the soil solution. Both 

transporters are expressed in root hairs other than root epidermal and cortex cells. Moreover, 

AtSULTR1;1 and AtSULTR1;2 are specifically expressed also in leaf hydathodes and 

AtSULTR1;2  also in the stomata guard cells suggesting their additional functions within the 

plant (Shibagaki et al. 2002; Hawkesford 2003). Both AtSULTR1;1 and AtSULTR1;2 are 

transcriptionally regulated in a promoter dependent manner in response to availability of 

sulfate in the growth medium (Hawkesford 2003; Hawkesford and De Kok. 2006) allowing  

the uptake of the anion into roots especially under sulfur-limiting conditions (Yoshimoto et al. 

2007; Barberon et al. 2008). Moreover, the transcription of both AtSULTR1;1 and 

AtSULTR1;2 by sulfur limitation is dependent on the supply of carbon and nitrogen 

(Maruyama-Nakashita et al. 2004) and is modulated by the cellular concentration of 

metabolites belonging to the  sulfur assimilatory pathways (Rouached et al. 2008).  A third 

member in this first group of sulfate transporters is AtSULTR1;3, a phloem-localized sulfate 

transporter which mediate the control of long-distance transport of the anion between source 

and sink organs (Yoshimoto et al. 2003).  

The elements belonging to the subgroup 2 of the Arabidopsis sulfate transporter family 

AtSULTR2;1 and AtSULTR2;2, are characterized by a low affinity for the sulfate (Takahashi 

et al. 2000) and are expressed  in the vascular tissues of roots (AtSULTR2;1 and AtSULTR2;2) 

and leaves (AtSULTR2;1), in siliques (Hawkesford 2003; Awazahara et al. 2005) where 

mediates the movement of sulfate into developing seeds. Therefore, it is suggested that the 

elements of the group 2 are mainly involved in the systemic allocation of the nutrient in the 

plant. Similarly to the sulfate high affinity transporters, the expression of SULTR2;1 resulted 

to be  transcriptionally regulated by the cellular availability of sulfur; in detail, it  results 

induced under sulfur starved condition  

The group 3 belong leaf tissues-localized transporters, including isoforms of unknown 

function. This large amount of the elements of this group would suggest some redundancy or 

indicate a great variety of expression pattern related to different sulfur availability during 

plant growth (Hawkesford 2003; Kopriva 2006). Elements of group 3 may participate in 

heterodimer association. In particular, it has been suggested that SULTR3;5 can function as a 
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heterodimers with SULTR2;1, as indicated facilitating the apoplastic transport of sulfate to 

the xylem parenchyma cells, especially under sulfur limiting conditions, increasing  the rate of 

sulfate translocation from root to shoot by xylem (Kataoka et al. 2004a). Recently, by 

AtSULT3;1-GFP localization it has been demonstrated that AtSULTR3;1 is localized in the 

chloroplast membrane mediating the supply of sulfate to its reductive assimilation pathways 

(Cao et al. 2013).  Interesting in plant under drought stress a correlation between the 

expression of this gene, the synthesis of cysteine and ABA has been reported (Cao et al. 

2014).  

The group 4 of sulfate transporter family mainly includes, tonoplast localized 

transporters (AtSULTR4;1 and AtSULTR4;1) mediating the efflux of the anion from the 

vacuole into the cytosol. The expression of both AtSULTR4;1 and AtSULTR4;1 is responsive 

to sulfate starvation, although the effect is more evident for the former than the latter 

(Kataoka et al. 2004b; Davidian and Kopriva 2010). Both transporters play a key role in 

ameliorating internal distribution of sulfate in the cell and in increasing the sulfate transported 

to the xylem (Kataoka et al. 2004b). Interestingly, the expression of both vacuolar 

AtSULTR4;1 and AtSULTR4;2 genes is significantly enhanced in leaves by drought and salt 

stress (Gallardo et al. 2014). Moreover, both the genes fall in QTL regions for tolerance to 

both stresses (Juenger et al. 2005; Mckay et al. 2008).  

  Finally, the group 5 sulfate transporter contains short sequences, with unknown 

function, presenting a low level of similarity with the rest of sulfate transporters members and 

with missing portions at the N and C terminal ends of the amino-acid (Hawkesford 2003; 

Kopriva 2006; Hawkesford and De Kok. 2006). Some years ago, SULTR5;2 was suggested 

also to function as molybdate transporter and since the absence of sulfate transport activity, it 

is renamed MOT1 (molybdenum transporter 1) (Tomatsu et al. 2007; Baxter et al. 2008).   

 

SULFATE ASSIMILATION IN PLANTS 

Plant sulfate assimilation, the metabolic pathways by which the inorganic sulfur form 

is converted by successive enzymatic steps in organic sulfur-containing compounds, (Saito 

2004; Kopriva 2006) play an important function in the environmental sulfur cycle. 

The cellular sulfate is assimilated by two metabolic pathways. The former is the 

reductive assimilation where once taken up from the soil is incorporated into adenosine-5′-

phosphosulfate (APS), then reduced to sulfite (SO3
2-) and sulfide (S2-) in order to be 
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incorporated in the carbon skeletons of amino acid producing cysteine or homocysteine 

(Kopriva 2006).  

For the assimilation in cysteine (Annex 5a) sulfate need to be transported into the 

plastids and activated  through the adenylation reaction catalyzed by the enzyme ATP 

sulfurylase (ATPS) producing adenosine 5’-phosphosulfate (Saito 2004; Kopriva and 

Koprivova 2004; Kopriva 2006; Takahashi et al. 2011). Adenosine 5’-phosphosulfate is 

reduced by sulfite (SO3
2-) by the enzyme APS-reductase using electrons derived from GSH. 

In turn, SO3
2- is reduced to sulfide (S2-) in a reaction catalyzed by the enzyme sulfite reductase 

(SiR) using six electrons derived from the reduced form of ferredoxin. Sulfide, a toxic 

molecule for the cells, is promptly incorporated by the activity of the enzyme O-acetylserine 

(thiol) lyase (OASTL) in the amino acid skeleton of O-acetyl serine (OAS) synthetizing 

cysteine. In turn OAS derives from the acetylation of serine with acetyl-Coenzyme A by the 

catalysis of the enzyme serine acetyltransferase (SAT). 

Although cysteine (Cys) is the key metabolite in the synthesis of sulfur-containing 

compounds in plants, the major pool of non protein sulfur is the Cys-containing peptide GSH 

(Hell and Wirtz 2011). GSH plays a crucial role in plants such as cellular defense, redox 

status, signal transduction and detoxification (Noctor et al. 2012). Moreover, GSH forms 

conjugates, by the activity of GSH S-transferases, with electrophilic compounds such as 

heavy metal ions, secondary metabolites or xenobiotics via sulfhydryl group (Edwards and 

Dixon 2005; Cummins et al. 2011). The biosynthetic pathway of the tripeptide γ-

glutamylcysteinylglycine (reduced form) GSH from cysteine involves two ATP-dependent 

reactions (Annex. 5a) catalyzed by two different enzymes. Firstly, the dipeptide γ-

glutamylcysteine (γ-EC; γ-Glu-Cys) is synthetized by the enzyme γ-glutamylcysteine 

synthetase (γ-ECS) forming of a peptide bond between the amino group of cysteine and the 

glutamate. Secondly, the activity of the enzyme named glutathione synthetase (GS) allows the 

addition of a glycine at the C-terminal end of the γ-EC to produce GSH takes place. Both the 

enzymes have been found in the chloroplasts and cytosol (Noctor and Foyer 1998; Saito 2004; 

Takahashi et al. 2011).  

The non reductive sulfate assimilation (Annex. 5b) take place in the cytosol. After that 

SO4
2- is adenylated by the activity of the cytosolic ATP sulfuryalase (ATPS), APS is 

phosphorylated by the enzyme APS kinase (APK) to form 3'-phosphoadenosine 5’-

phosphosulfate (PAPS). This latter metabolite is used for sulfation reactions catalyzed by 

sulfotransferases (SOT) enzymes producing a variety of sulfonate organic compounds as 
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glucosinolates, flavonoids and jasmonates ( Saito 2004; Kopriva and Koprivova 2004; 

Mugford et al. 2009; Takahashi et al. 2011; Ravilious and Jez 2012). 

 

REGULATION OF SULFATE ASSIMILATION IN ARABIDOPSIS 

Plant demand of reduced sulfur-containing compounds (i.e., Cys, γ-EC, and GSH) 

permits a high regulation of sulfate uptake and assimilation pathway (Leustek et al. 2000; 

Lappartient and Touraine 1996; Kopriva and Rennenberg 2004; Kopriva 2006; Takahashi et 

al. 2011).  

The activities of the high affinity SULTR proteins and the enzyme APR are key points 

in controlling the sulfate reductive assimilation pathway in Arabidopsis. Both SULTRs and 

APR are regulated at transcriptional level as a function of availability of sulfate in the growth 

medium as well as the entity of the flux of the anion in the reductive pathway (Vauclare et al. 

2002; Kopriva and Rennenberg 2004; Yochimoto et al. 2007; Scheerer et al. 2009).  

Moreover, sulfate metabolism is also controlled at the level of the sulfite reductase 

(SiR) and of the mitochondrial SAT3 enzymes. The former enzyme controls the entire flow 

along the pathway. The latter provides adequate amount of amino acid carbon skeleton in 

order to efficiently incorporate the sulfide produced by SiR. The defective activity of both 

these enzymes causes severe growth and development limitation to the plant (Haas et al. 

2008; Khan et al. 2010).   

 The transcriptional regulatory mechanisms modulating the uptake of sulfate and its 

assimilation is reasonably triggered by direct sensing of the sulfur nutritional status of the 

plant rather than from the concentration itself of sulfate in the external soil solution 

(Lappartient and Touraine 1997; Lappartient et al. 1999). The control involves an inter-organ 

signalling mechanism in which key intermediates of the sulfate assimilatory pathway may act 

as negative or positive signals in modulating the expression of sulfur-responsive promoters. 

Adequate levels of sulphur compounds would repress gene transcription of these genes 

through a negative feedback loop preventing excessive sulfate uptake and reduction. Vice 

versa a contraction in the cellular concentration of these intermediates of the assimilatory 

pathway would de-repress the transcription of the genes. The drawn picture defines a demand-

driven model for the regulation of sulfate uptake and metabolism in plants (Lappartient and 

Touraine 1996). 
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 Sulfate assimilation is regulated by Cys itself or some its metabolites upstream and 

downstream the pathways (Vidmar et al. 2000; Vauclare et al. 2002; Hopkins et al. 2005; 

Rouached et al. 2008; Takahashi et al. 2011). Firstly, it is largely reported that in Arabidopsis 

GSH acts as a negative modulator of the expression of the genes codifying for SULTR1:1, 

APR and γ-ECS. (Lappartient et al. 1999; Leustek et al. 2000; Vauclare et al. 2002; Hothorn 

et al. 2006)  (Annex. 6). Secondly, the amino acid O-acetylserine (OAS) is considered as a 

positive modulator of the sulfate assimilatory pathway (Annex. 6). The existence of this 

regulation is suggested by analyzing the effects of exogenous OAS supply to the plant. 

Indeed, in the presence of sulfate when plant tissue are fed with OAS, the induction of 

numerous genes is observed; in particular SULTRs but also enzymes of sulfate reduction such 

as ATP sulfurylase and  APR and many other including gene encoding enzymes of the 

breakdown of glucosinolate (Hell and Wirtz 2011 and therein references). OAS would act in 

promoting gene de-repression when nitrogen and carbon supply exceeds sulfur availability 

within the cells (Hawkesford 2000).  

 

SULFUR METABOLISM UNDER SULFUR DEFICIENCY 

As above described, sulfate transport and assimilation are regulated by mechanisms 

that involve specific or general intrinsic signals. The identification of the regulatory 

components of sulfate transport and assimilation is in progress (Schachtman and Shin 2007; 

Takahashi et al. 2011).    

In 5’-promoter region of the gene AtSULTR1;1 that in Arabidopsis codifies for a high 

affinity sulfate tranporter, a 16-bp sulfur-responsive element (SURE) containing a 5-bp core 

sequence (GAGAC) was identified (Maruyama-Nakashita et al. 2005). SURE was not present 

in the promoter region of the AtSULTR1;2 gene. The responsive element is present also in the 

promoter region of the sulfur-responsive genes SULTR2;1, SULTR4;2, APR3 and NADPH 

oxidoreductase (Maruyama-Nakashita et al. 2005).  

Recently, the protein SLIM1 was identified as a transcriptional regulator of sulfate 

uptake, sulfur assimilatory metabolism and glucosinolates degradation in response to sulfate 

limitation. SLIM1 belongs to a group of ethylene insensitive3-like /EIL family transcription 

factor (Annex. 6). The function of SLIM1, differently from the other elements of the group, 

seems to be specific to sulfur response (Maruyama-Nakashita et al. 2006). Moreover, it has 
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been demonstrated that under sulfur starvation, SLIM1 controls the up-regulation of 

SULTR1;2 but not of SULTR1;1 suggesting the independence between this transcriptional 

regulator SLIM1 and the SURE cis-element (Davidian and Kopriva 2010). 

Other components of the sulfur sensing and signaling system in plant are transcription 

factors belonging to the R2R3-type MYB family. In particular, MYB28, MYB29 and MYB76 

induced the synthesis of aliphatic methionine-derived glucosinolates (Gigolashvili et al. 2007a 

and Hirai et al. 2007), whereas MYB34, MYB51 and MYB122 induced the synthesis of 

indole tryptophan-derived glucosinolate (Celenza et al. 2005 and Gigolashvili et al. 2007b). 

MYB34 and its downstream enzymes were negatively controlled by SLIM1 in response to 

sulfur limitation (Maruyama-Nakashita, et al. 2006). In other words, it is suggested that under 

sulfur starvation the activation of SLIM1 down regulates the MYB expression thus reducing 

the synthesis of glucosinolates favoring its reductive assimilation (Takahashi et al. 2011; 

Annex 6). This hypothesis is still under investigation since the effect of SLIM1 on MYB28 

and MYB29 is unclear (Hirai et al. 2007). The R2R3-MYB transcription factors are also able 

to control genes of primary sulfate assimilation enzymes (ATPS, APK and APR genes) 

(Annex. 6) (Yatusevich et al. 2010).    

MicroRNAs (miRNAs) are involved in the regulation of S metabolism (Mallory and 

Vaucheret 2006). In particular, recent results suggest the involvement of miRNAs in the 

responses to nutrient deprivation (Schachtman and Shin 2007). In sulfur limitation conditions, 

SLIM1 induces an increase miR395 of the level of miR395 in both shoots and roots of A. 

thaliana plants (Kawashima et al. 2009). In phloem companion cells, miR395 targets 

SULTR2;1 (Annex. 6; Jones-Rhoades and Bartel 2004; Kawashima et al. 2009) leading to 

posttranscriptional degradations of its transcript. The suppression of SULTR2;1 in shoot 

contribute to limit the distribution of sulfur from older to younger leaves (Liang et al. 2010).      

 Cysteine is a negative modulator of the activity of the enzyme serine acetyltransferase 

(SAT) (Annex. 6). Moreover, cysteine synthesis is post-translationally regulated by a protein-

protein interaction at the level of the cysteine synthase complex (CSC). In plastid, cytosol and 

mitochondria the complex is stable if the concentration of sulfide (S2-) maintain the SAT 

subunities in their active conformation. Under sulfate limitation, the cellular level of sulfide 

(S2-) decline and OAS accumulates triggering the CSC to dissociate and in turn reducing the 

SAT activity to avoid OAS production. Therefore, the plant CSC functions as a determinant 

of cysteine biosynthesis, sensing the availability of sulfide. In turn, the accumulation of OAS 

due to CSC inactivation leds to the de-repression of genes encoding enzymes for sulfate 

uptake and reduction (Hawkesford and De Kok 2006; Writz and Hell 2006, 2007).   

28 
 



29 
 

Several studies identified the plant hormones cytokinin, auxin, and jasmonate as 

signaling components in response to sulfur deficiency (Schachtman and Shin 2007). When A. 

thaliana plants are grown under sulfur deficiency, the expression of the gene APR1 (APS 

reductase 1) is upregulated also by exogenous cytokinin supply (Ohkama et al. 2002). 

Maruyama-Nakashita and coworkers (2004) demonstrated that the exogenous application of 

cytokinin downregulates the expression of the high-affinity transporter SULTR1;2 which is 

upregulated by sulfur deprivation. The effect of cytokinin take place through the cytokinin 

response receptor (CRE1) (Schachtman and Shin 2007). 

Several auxin responsive genes are upregulated by sulfur starvation (Hirai et al. 2003; 

Nikiforova et al. 2003). The enzyme nitrilase catalyzes the conversion of indole-3-acetonitrile 

in indole-3-acetic acid (IAA). The expression of the gene codifying for this enzyme (NIT3 

nitrilase) is markedly increased in sulfur deficient plants (Kutz et al. 2002; Maruyama-

Nakashita et al. 2004). In A. thaliana, it has been suggested that the increased IAA production 

stimulates the differentiation of later roots thus improving plant capacity to absorb sulfate 

from the media (López-Bucio et al. 2003). 

Finally, jasmonate (JA) is also suggested as possible signaling component of plant 

response to sulfur deficiency. Indeed, under low sulfate conditions, genes of the JA 

biosynthesis pathway are upregulated by jasmonate (Hirai et al. 2003, Jost R et al. 2005). 

Moreover, both JA and methyl-JA application positively affect the activity of some sulfur 

assimilation enzymes (Jost R et al. 2005).  
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The general aim of this thesis was to develop plant bioindicators, exploiting the gene 

fusion concept, in which the expression of a reporter gene is under the control of a promoter 

sensing the sulfur nutritional status of the plants.  

The rational of the work envisages: 

a) The identification, by a gene-trap approach in Arabidopsis, and the characterization of 

sulfate responsive promoters; 

b) The identification of sulfur responsive and regulative elements (cis-acting elements) 

within the putative promoters; 

c) The exploitation of the regulative elements in generating recombinant promoters able 

to specifically control the expression of reporter genes as a quantitative function of the 

sulfur nutritional status of the plant. 
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PLANT MATERIAL 

  All Arabidopsis (Arabidopsis thaliana) plants used in this study were in the 

Landsberg erecta (Ler) or Wassilewskija (Ws) backgrounds. The ecotype Landsberg erecta 

(Ler) wild-type or belonging to the collection EXOTIC (generated by Exon Trapping Insert 

Consortium) mutant gene traps and the ecotype Wassilewskija (Ws) wild-type or T-DNA 

insertion mutant line obtained from Versailles’s T-DNA collection (National Institute for 

Agricultural Research (INRA) Versaille, France) were used for the experiments.  

 

PLANT GROWTH CONDITIONS 

Sterilization of seeds 

The seeds were firstly surface sterilized by Tween 20 (0.01%) for 20 min, washed with 

70% (v/v) ethanol for 2 min and rinsed with distilled water followed by immersion in an equal 

volume of sodium hypochlorite solution as sterilizing agent for 10 min. At the end of the 

treatment, seeds were then washed four times with sterile distilled water to be finally 

resuspended in 1 ml of sterile distilled water. 

 

Sowing, culture and treatments 

The sowing took place in three different mediums:  

• The first, plants were grown on sterile plates containing agar medium. 

The experimental plan used for the different tests is summarized below: 

o Analysis of  sulfur deficiency effect on the expression of the genes flanking the 

intergenic region 

Seeds of FLAG line and wild-type (ecotype Ws) were planted on 0.8% (w/v) agar 

medium containing 1% (w/v) sucrose at two concentrations of sulfate, +S (1500 µM) 

and -S (0 µM), for 14 days. Concentrations of sulfate were adjusted by replacing this 

ion with equal moles of chloride to maintain the same concentration of magnesium 

(Annex. 7).  
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o Selection and propagation of transformant lines 

 

 

 

Seeds of transgenic plant lines (ecotype Ler) were sown directly on suitable medium: 

25 ml of 0.8% (w/v) agar medium containing 1% (w/v) sucrose and half-strength MS 

salts (Murashige and Skoog 1962) supplemented with 50 µg ml-1 kanamycin.  

Transformants T1 kanamycin resistant seedlings were transferred into plastic pots (5   

cm diameter) with soil (Tercom plus) and were grown to maturity producing the T2 

seeds. The vernalised T2 seeds of the transformed T1 lines were sown on soil wet 

with water in array of 42 individual pots placed on solid plastic trays in the growth 

chamber. Upon inflorescence development, plants were covered to prevent the cross-

fertilization and in each pot was placed a plastic container for the collection of seeds 

and plastic tube inside this container to prevent touching neighboring plants 

(www.arasystem.com). At maturation, the progeny families (T3 seeds), from 

individual selfed T2 plants, were collected and chronologically coded according to 

the plant of origin. 

o Culture on agar medium with different sulfur sources: 

Seeds were planted on 1.25% (w/v) agar medium containing 1% (w/v) sucrose with 

two different concentrations of sulfate (+S: 1500 µM and -S: 0 µM).  For glutathione 

and cysteine treatments, -S agar medium solution was supplemented with 1.5 mM 

GSH and 1.5 mM Cys, and plants left grow vertically for 20 days. Concentrations of 

sulfate in culture solutions were adjusted by replacing this ion with equal moles of 

chloride to maintain the same concentration of magnesium (Annex. 7). 

o Culture on agar medium in the absence or presence of sucrose. 

Seeds were planted on 1.25% (w/v) agar medium containing or not 1% (w/v) of 

sucrose at two different concentrations of sulfate (+S: 1500 µM and –S: 0 µM) and 

plants left grow vertically for 20 days. Concentrations of sulfate in culture solutions 

were adjusted by replacing this ion with equal moles of chloride to maintain the same 

concentration of magnesium (Annex. 7).  

o Culture on agar medium with the presence of cadmium (Cd): 

The seeds of the transgenic lines were sown on complete 1.25% (w/v) agar media 

plates containing 1% (w/v) sucrose supplemented with cadmium (CdCl2) and the 

plates were placed vertically for 20 days.     

o Gradient plates  

To have increasing concentrations of sulfate in the medium, we used agar plates with 

gradient of sulfate concentrations. SO4
2--gradient plate termed SGAP (0–150 µM) 
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was prepared using 224 ml SO4
2--plus medium and 277.8 ml SO4

2--free medium. The 

agar medium was prepared using the basic nutrient solution (Annex. 7), 1% (w/v) 

sucrose, 1.25% agar to prevent roots penetrating the surface of the medium. For 

plates with Cd, it was in the form CdCl2. SO4
2--plus medium contains MgSO4

2- at a 

concentration of 150 µM. In the presence of Cd, SO4
2--plus and free medium 

contained CdCl2 at a concentration of 50 µM. For the preparation of SGAP (0-150 

µM), a square Petri dish (22.4 cm × 22.4 cm) was placed in an inclined position on a 

glass bar (Annex. 8a). At the left end of the dish, a SO4
2--free zone was about 2.4 cm 

which represent the limit of the melted SO4
2--plus medium poured into the bottom of 

the dish. After solidified, the dish was placed in a horizontal position then melted 

SO4
2--free medium was poured into the dish until it covered the solidified SO4

2--plus 

medium. Solidified SGAPs were used directly in experiment for sowing seeds 

(Watanabe et al. 2010). 

Arabidopsis FLAG seeds were sown on a SGAP in horizontal line (11.2 cm distant 

from the top of the plate) across the gradient (Annex. 8b) from the left to the right 

side of the plate respectively from the lowest to the highest sulfate concentration. 

Plates then were transferred to growth chambers and Arabidopsis seedlings were 

grown vertically for 14 days.  

• The second, in soil (Tercom plus) to grow plants for floral dip transformation or to 

produce seeds.  

For transformation, 10 plants (ecotype Ler) were grown in 7 cm square pots in soil 

(Tercom plus) until the flowering stage in the growth chamber. Plants were dipped 

when most inflorescences were about 1–10 cm tall (Clough and Bent 1998).   

• The third, Arabidopsis thaliana plants (ecotype Ler and Ws) were grown 

hydroponically under non sterile conditions.  

Firstly, seeds were germinated directly on top of modified plastic pipette tips filled 

with prewetted Grodan. The tips were then placed on plastic tray with direct contact 

with tap water. After 7 days, seedlings in plastic tips were positioned on floating rafts 

and transferred to 3-L plastic tanks (40 seedlings per tank) containing ½ Hoagland 

nutrient solutions (Annex. 9). Concentrations of sulfate in culture solutions were 

adjusted by replacing this ion with equal moles of chloride to maintain the same 

concentration of magnesium (Annex. 9). Nutrient solutions were renewed weekly and 

plants were grown for 14 d before the experiments. 
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In all cases, the seeds were vernalized at 4°C for 4 days to break dormancy, sowed, and then 

transferred in a growth chamber. Seedlings were grown under a 12-h photoperiod at 23±2 °C 

and 70% relative humidity. At the level of the plants, light intensity was 100 µmol m-2 s-1.   

 

DETERMINATION OF NON-PROTEIN THIOLS (NPT)  

Total non protein thiol (NPT) were extracted and determined by this methodology. 

Immediately after harvesting, shoot were frozen and then pulverized using mortar and pestle 

in liquid N2. NPT were extracted by grinding 200 mg of shoot powders in 600 µl of a mixture 

containing 1 M NaOH and 1 mg ml-1 NaBH4, and the homogenate was centrifuged for 5 min 

at 13000 g and 4°C. The last centrifugation was repeated with the resultant supernatant. The 

collected 400 µl of supernatant were neutralized by adding 66 µl of 37% HCl and then 

centrifuged again for 10 min at 13000 g and 4°C. Then, volumes of 200 µl of the supernatant 

were collected and mixed with 800 µl of 1M K-Pi buffer (pH 7.5) containing or not 0.6 mM 

Ellman’s reagent [(5,5’-dithiobis(2-nitrobenzoic acid); DTNB)] which react with thiols to 

form TNB quantified spectrophotometrically by measuring the samples’ absorbances at 412 

nm (Nocito et al. 2011). Thiol concentration was then determined by interpolating the 

obtained values in a calibration curve previously constructed by determining the level of total 

GSH. All results were expressed as nanomoles of GSH equivalents. 

 

DETERMINATION OF GLUTATHIONE (GSH)  

The total glutathione of a tissue is mainly represented by the reduced form (GSH), 

while the oxidized glutathione disulfide (GSSG) represents a minimum portion. Total GSH 

was measured according to Anderson (1985) by using an enzymatic assay that evaluates the 

rate of oxidation of GSH through the coupling of two separate reactions, a non-enzymatic and 

enzymatic. In the first GSH is oxidized by 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) to give 

GSSG with formation of 5-thio-2-nitrobenzoic acid (TNB); in the second reaction, catalyzed 

by the enzyme glutathione reductase, the GSSG is reduced to GSH with consumption of 

NADPH. The rate of oxidation of GSH was followed by evaluating the rate of formation of 

TNB at 412 nm. The assay was prepared in a stock buffer (pH = 7.5) containing 143 mM  

potassium  phosphate buffer (KPi) and Na2-EDTA 6.3 mM, a daily buffer, consisting of the 
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stock buffer to which was added NADPH (0.248 mg ml-1), DTNB 6 mM in stock buffer, and 

glutathione reductase (50 U ml-1) in stock buffer.  

Briefly, shoot samples of about 150 mg were homogenized in a mortar at 4°C in 400 

µl of 5-sulfosalicylic acid 5% (w/v) to remove the proteins. The homogenate was centrifuged 

at 14000 g for 30 min, and then recuperate 400 µl of supernatant for each sample. The 

reaction mixtures were prepared by adding 700 µl of daily buffer, 50 µl or 100 µl of sample, 

100 µl of DTNB and distilled H2O to reach a final volume of 1 ml and then kept at 30°C for 

2-3 min. The reaction was started by adding 10 µl of glutathione reductase.  

The formation of TNB was followed spectrophotometrically in a time interval of 3 

min. The concentration of total glutathione in the tested samples is determined from obtained 

calibration curve previously constructed using the method described with predetermined 

amounts of GSH.  

 

ANALYSIS OF GUS EXPRESSION  

The GUS reporter gene coding for the protein β-glucuronidase which catalyzes the 

cleavage of a great variety of β-glucuronic acid derivatives, which are commercially available 

as substrates for spectrophotometric, fluorometric and histochemical assays (Jefferson 1987). 

Histochemical assay was performed and β-glucuronidase activity was detected through 

staining with the acid 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-Gluc). The enzyme 

β-glucuronidase is able to cleave this molecule releasing a molecule of glucuronic acid and 

one molecule of 5-bromo-4-chloro indigo, that following an oxidative dimerization reaction 

form an insoluble and blue precipitate (5'-dibromo-4, 4'-dichloro-indigo). 

For the histochemical localization of GUS activity, at the end of the growth period the plants 

were incubated with 3 ml of  GUS staining solution composed as follows: 50 mM sodium 

phosphate (NaPi)  at pH 7.0, 0.5 mM fericyanate stock, 0.1% (v/v) Triton X100, X-Gluc (0.5 

mg ml-1) conveyed in dimethyl sulfoxide (DMSO). The plants were incubated overnight at 

37°C and in the absence of light. At the end of the incubation period, the observation of the 

organs under a binocular microscopy was preceded by discoloration of the tissues with 100% 

ethanol (v/v) to remove chlorophyll. 
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TOTAL RNA EXTRACTION AND QUANTIFICATION  

The total RNA extraction was conducted in TRIzol® reagent (LifeTechnologies), in 

accordance with the protocol reported by the manufacturer.  

Frozen samples were pulverized in liquid N2 within pre-cooled mortars. The powders (200 

mg) were transferred into sterile centrifuge tubes, added with 1 ml of TRIZOL®, mixed and 

kept at room temperature for 5 min. The samples were then added with 200 μl of chloroform 

and centrifuged at 12000 g for 15 min at 4°C. The upper aqueous phase (400 µl) was taken 

and mixed with 400 μl of 70% ethanol (v/v) to precipitate the total RNA. 700 µl of the sample 

were transferred to a Spin Catridge with a Collection Tube and centrifuged at 12000 g for 15 s 

at room temperature. Then, the flow-through was discarded, 700 µl of Wash Buffer I was 

added to the Spin Catridge to be centrifuged at 12000 g for 15 s at room temperature. After 

transferring the Spin Cartidge to a new Collection Tube, 500 µl of Wash Buffer II with 

ethanol was added and centrifugation at 12000 g for 15 s at room temperature was done (step 

to repeat once). Centrifuge at 12000 g for 1 min at room temperature to dry the membrane 

then transfer the Spin Cartidge into a Recovery Tube where 30 µl of DEPC H2O was added. 

Finally, after incubation at room temperature for 1 min, centrifuge at 12000 g for 2 min at 

room temperature and stored at -20°C. The total RNA was quantified by using the Thermo 

Scientific NanoDrop 1000 Spectrophotometer measuring the concentration in ng/µl based on 

absorbance at 260 nm of 1µl nucleic acid sample. In order to verify the quality of the RNA, 

the same spectrophotometer measure the ratio of sample absorbance at 260 and 280 nm used 

to assess the purity of RNA (ratio 260/280 of ≈2.0 accepted as pure RNA) and the ratio of 

sample absorbance at 260 and 230 nm used as secondary measure of the purity of RNA (ratio 

260/280 in the range of 1.8-2.2 accepted as pure RNA).  

 

ISOLATION OF cDNA ENCODING GENES AT1G12030, GUS AND S16, AND 

EVALUATION OF GENE EXPRESSION  

Through the technique of RT-PCR (Reverse Transcriptase-PCR), cDNA coding for 

the genes flanking the intergenic region in the FLAG line, for GUS and S16 gene  were 

isolated. This procedure combines the reverse transcriptase reaction with a normal technique 

of DNA amplification, to synthesize specific cDNA molecules, using RNA as a template. To 

obtain the first-strand cDNA, it was used the protocol of SuperScript III first-strand synthesis 

system for RT-PCR (LifeTechnologies) according to the manufacturer's instructions. 
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Before the application of the mentioned protocol and in order to remove contaminating DNA 

from RNA preparation, it was used the protocol of Amplification grade DNase I 

(LifeTechnologies) according to the manufacturer's instructions. It was prepared a mixture 

containing 8 µl of RNA, 1 µl 10× DNase I buffer and 1 µl DNase I Amplification grade. After 

incubation for 15 min at room temperature, 1 µl of 25 mM EDTA solution was added to 

inactivate DNase I. Then, it was added a mixture containing 1 µl of 10 mM dNTPs mix and 1 

µl of Oligo dT(20), which was subsequently incubated at 65° C for 5 min for heat inactivation 

and kept on ice for at least 1 min. 

The RNA sample is now ready to be used directly in a reverse transcription reaction. The 

samples were then added 10 µl of cDNA synthesis mix containing 2 μl of 10x RT buffer, 4 μl 

of 25 mM MgCl2, 2 μl of 0.1 M DTT and 1 µl of RNaseOUT (Recombinant RNase Inhibitor). 

Subsequently was added to each sample 1 µl of SuperScript III RT (reverse transcriptase) to 

begin the reverse transcription reaction that occurred at a temperature of 50°C in a time of 50 

min before being terminated by bringing the samples to 85°C for 5 min in order to denature 

the enzyme. The mixture was cooled in ice for 2 min and centrifuged briefly; added then 1 µl 

of RNase H and then incubates at 37°C for 20 min.  

The subsequent cDNA amplification reactions were carried out by PCR on 2 μl aliquots of the 

diluted mixture with distilled H2O.  

The primer pairs used to amplify the sequences of AT1G12030 gene, GUS gene and of the 

gene S16 in the FLAG line were designed and are listed in the Annex 10a. Preparing reaction 

mixtures containing cDNA, the pair of primers specific for the sequence, each at a 

concentration of 10 µM, 2,5 mM dNTPs, 5 u/μl of GoTaq®
 DNA polymerase (Promega), the 

corresponding buffer 5x (GoTaq® Flexi Buffer), 2 mM MgCl2, 25 mM dNTPs and water to 

achieve a final reaction volume of 17 µl (Annex. 10b). To each sample were added two drops 

of mineral oil to prevent evaporation during the PCR cycles. The thermal profile used for each 

amplification reaction is given in Annex 10c. The PCR products were then visualized by 

electrophoresis on agarose gel. The primers, the reaction mixtures and the thermal profiles 

described above were used for the assessment of gene expression by semiquantitative RT-

PCR.  
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AMPLIFICATION OF FRAGMENTS OF INTEREST  

The fragments of interest were amplified by PCR from MIDI 718 vector containing 

the intergenic region 1331-bp fragment using primers designed on the fragments of interest 

(Annex. 11a).  

In the PCR reaction, 2 µl of DNA from a 1:1000 dilution of MIDI 718 vector was amplified 

using various primer pairs: 1331 for, 440 rev for the amplification of 440-bp with the 5’ 

sequence of each primer was extended 10-bp to generate an Xba I site (underlined) (Annex. 

11b.1). For the amplification of 1331-bp, we used 1331 for and 1331 rev with the 5’ sequence 

of each primer was extended 10-bp to generate a Hind III site (underlined) (Annex. 11b.2). 

Each sample was amplified in quintuplicate. The sequences of these primers, the reaction 

mixture and the thermal profile of the reaction are shown in Annex 11b, c and d.                                              

The products of the amplifications were loaded on agarose gel 1% (w/v) in adjacent lanes. 

The gel was prepared by dissolving a suitable amount of agarose in 1x TBE buffer [89 mM 

Tris, 89 mM H3BO3, 2 mM Na2-EDTA (pH = 8.2)] supplemented with ethidium bromide (5 

mg ml-1).  

The results of electrophoresis were visualized on a UV transilluminator. Image analysis 

allowed identifying products of interest which were eluted and then cloned into a vector.  

 

CLONING OF AMPLIFIED PRODUCTS  

The resulting fragments of interest were extracted and purified according to the 

protocol of DNA and gel band purification kit (Promega) by centrifugation from agarose gels 

in Tris borate (TBE) (Wizard® SV Gel and PCR Clean-Up System). We proceeded to DNA 

purification procedure by centrifugation. Starting with dissolving the gel slice in a 1.5 ml 

microcentrifuge tube by Adding 10 μl Membrane Binding Solution per 10 mg of gel slice, 

mixed with vortex and incubated at 50–65°C for 5 min. Then the dissolved gel mixture was 

transferred the Minicolumn assembly, incubated at room temperature for 1 minute and 

centrifuged at 16000 g for 1 min to bind the DNA which was then washed with 700 μl 

Membrane Wash Solution (ethanol added), centrifuged at 16000 g for 1 min and followed by 

another wash by adding 500 μl Membrane Wash Solution and a centrifugation at 16000 g for 

5 min. To allow the evaporation of any residual ethanol, a recentirifugation for 1 min was 

done to reach the elution by adding 20 µl of PCR water to the Minicolumn present in clean 

1.5 ml microcentrifuge tube and then Incubated at room temperature for 1 min and a final 
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centrifuge at 16000 g for 1 min. The purified fragments were ligated, according to the 

protocol Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen), into the plasmid vector pCR® 

Blunt II-TOPO®, which allows a high-efficiency ligation of the insert.  

The ligation reactions were conducted for 25 min at room temperature in a mixture 

consisting of 2 μl purified amplicon, 0,5 µl of the linearized pCR® Blunt II-TOPO® vector 

and 0,5 μl of salt solution (1.2 M NaCl, 0,06 M MgCl2).  

The TOPO® Cloning Reaction is transformed into chemically competent cells. The 

transformation reactions were conducted by adding 2 μl of TOPO® Cloning Reaction to 25 µl 

of One shot® TOP 10 chemically competent E. coli cells, which were then kept on ice for a 

period of 15 min. Then followed with heat-shock at 42°C for 30 seconds, and after the cells 

were immediately placed in ice. After adding 250 μl of LB medium, cells were then incubated 

at 37°C for 1 hour with continuous shaking. An aliquot of the processed (130 µl) 

transformation was finally transferred on plates of LB agar medium supplemented with 

kanamycin (50 µg ml-1), which were incubated at 37°C for 12 hours. pCR® Blunt II-TOPO® 

permit direct selection of recombinants via disruption of the expression of the lethal gene 

ccdB of E. coli, fused to the LacZα fragment and since the plasmid has the gene for resistance 

to the antibiotic kanamycin; so the only cells able to grow on medium with added antibiotic 

are, therefore, the transformed one and containing the blunt-end PCR product (insert).  

Positive colonies were picked and used to inoculate LB media with agar and were put 

in LB media containing 50 μg ml-1 kanamycin to incubate overnight at 37°C and then the 

liquid cultures were used for the extraction of the recombinant plasmid.  

The isolation of plasmid DNA from transformed cells was conducted according to the 

protocol of PureLink™ Quick Plasmid Miniprep Kit (Invitrogen). From 5 ml overnight liquid 

cultures were taken 2 ml which were subsequently centrifuged at 5000 g for 3 min to allow 

the precipitation of the bacterial cells. The pellets were then resuspended in 250 μl of 

resuspension buffer and added with 250 μl of lysis buffer, and then the cells were maintained 

at room temperature for a maximum time of 5 min. They were then added to 350 µl of a 

precipitation buffer and, after mixing, centrifugation at 12000 g for 10 min. The supernatant 

was loaded onto a Spin column. We proceeded to purification procedure using centrifugation 

and a wash tube containing the spin column was centrifuged at 12000 g for 1 min, a wash 

buffer was added followed by a centrifugation at 12000 g for 1 min. The plasmids were 

finally eluted by washing the column with 75 µl of preheated H2O and centrifuged at 12000 g 

for 2 min after incubation for 1 min at room temperature.  
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PLANT EXPRESSION VECTOR CONSTRUCTION  

To generate a binary vector containing the GUS gene fused to both constructs, two 

different fragments (444 and 1331-bp) were inserted into pBI101.3 (Annex. 12), an empty 

plant transformation cloning vector resistant to kanamycin (www.arabidopsis.org) containing 

GUS gene, leading to pBI101.3-440 and pBI101.3-1331.  

 

Plasmid construction with 35Smp 

To generate a reporter construct containing both fragments fused to the 35S minimal 

promoter, 35Smp sequence was first inserted upstream of the uidA reporter gene in pBI101.3 

vector. To obtain the desired sequence of 35Smp, we synthesized an oligonucleotides 

corresponding to its sequence with the 5’sequence of each oligonucleotide was extended 5-bp 

and the 3’sequence 1-bp to generate an Xba I and BamHI site (underlined) in Oligo1 and 

Oligo2. The sequences of these oligonucleotides are shown in Annex 13a. The annealing 

reaction mixture and the thermal profile of the reaction are shown in Annex 13b and c. 

Firstly, the plasmid pBI101.3 was digested with the two enzymes Xba I and BamHI, to 

introduce the 35Smp sequence. The restriction reactions were performed at 37°C for 240 min 

and then to 65°C for 15 min in mixtures containing 14 μl of plasmid DNA, 10 U of Xba I and 

BamHI (1 µl), 2 μl 10x buffer E, 2 µl BSA (1:10) and H2O up to a final volume of 20 µl. 

After the digestion, we proceeded to the ligation of 35Smp. The reactions of ligation were 

conducted at 22°C for 180 min in mixtures containing 3 μl of the digested plasmid DNA, 1 µl 

of the insert (1:20), 1 μl 10x ligase buffer, 3U T4ligase and H2O up to a final volume of 10 µl.   

The resultant plasmid pBI101.3-35Smp was used to transform E. coli competent cells; 

XL1-Blue strain as a host for propagation of the plasmid. The transformation reactions were 

conducted by adding 10 μl of the resultant plasmid to 200 µl of the competent E. coli cells, 

which were then kept on ice for a period of 30 min. Then followed with heat-shock at 42°C 

for 60 seconds, and after the cells were immediately placed in ice for 1 min. After adding 1 ml 

of LB medium and then cells were incubated at 37°C for 1 hour with continuous shaking. An 

aliquot of the processed (300 µl) transformation was finally transferred on plates of LB agar 

medium supplemented with kanamycin (50 µg ml-1), which were incubated at 37°C for 12 

hours. From some E. coli colonies found, colony PCR permitted to screen for plasmid inserts 
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(35Smp) if it is present or not. The sequences of the primers used, the reaction mixture and 

the thermal profile of the reaction are shown in Annex 14. 

Positive colonies were picked and used to inoculate LB with agar and were put in LB 

medium containing 50 μg ml-1 Kanamycin to incubate overnight at 37°C and then the liquid 

cultures were used for the extraction of the recombinant plasmid.  

The isolation of plasmid DNA from transformed cells was conducted according to the 

protocol of PureYield™ Plasmid Midiprep System (Promega). We proceeded to DNA 

purification procedure by centrifugation and 50 ml overnight liquid bacteria cultures were 

firstly centrifuged at 3500 g for 15 min to allow the precipitation of the bacterial cells. The 

pellets were then resuspended with 3 ml Cell Resuspension Solution and subsequently added 

with 3 ml of Cell Lysis Solution followed by a gentle mix and incubation for 2-3 min at room 

tempreature. They were then added 5 ml Neutralization Solution followed also by a gentle 

mix and incubation in upright position for 3 min.  After that, the lysate was loaded onto a 

Clearing column present into a new 50 ml disposable plastic tube, incubated for 2 min to 

collect cellular debris and centrifugation at 1500 g for 5 min. Then, the filtered lysate was 

poured onto a Binding column present into a new 50 ml disposable plastic tube which was 

centrifuged at 1500 g for 5 min. For wash step, Endotoxin Removal Wash solution was added 

followed by a centrifugation at 1500 g for 3 min. After discarding the flowthrowgh, 20 ml of 

Column Wash solution was added and followed by a centrifugation at 1500 g for 5 min. An 

additional centrifugation at 1500 g for 10 min to ensure the removal of ethanol present in 

Column Wash solution. The plasmids were finally eluted by washing the binding column with 

600 µl of preheated H2O and centrifugation at 2000 g for 5 min. The clone that showed an 

insert of the expected size was then sequenced. 

 

Plasmid construction with 440-bp 

To introduce the 440-bp fragment of interest in the pBI101.3-35Smp, a separated 

digestion of obtained plasmids with the enzyme XbaI was done. Concerning the digestion of 

the plasmid TOPO-440 bp, the reactions of restriction were conducted at 37°C for 60 min (3 

cycles) followed with a cycle of 65°C for 15 min in mixtures containing 20 μl of plasmid 

DNA, of  10 U XbaI , 3 μl 10x buffer D, 3 µl BSA (1:10) and H2O up to a final volume of 30 

µl. Concerning the digestion of the plasmid pBI101.3-35Smp, the reactions of restriction were 

conducted at 37°C for 60 min (16 cycles) followed with a cycle of 65°C for 15 min in 

mixtures containing 20 μl of plasmid DNA, 3 U of XbaI (0,3 µl), 3 μl 10x buffer D, 3 µl BSA 
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(1:10) and H2O up to a final volume of 30 µl. The resultant digested vector was redigested 

with 20 U XbaI (2 µl) at 37°C for 75 min followed with a cycle of 65°C for 15 min. The 

restriction fragments were, then, displayed by electrophoresis on agarose gel. pBI 101.3-

35Smp and 440-bp DNA bands was excised from gel and purified by centrifugation using 

Wizard® SV Gel and PCR Clean-Up System (Promega). We proceeded to DNA purification 

procedure by centrifugation. The volume of the eluted DNA was 15 µl and 20 µl PCR water 

respectively for 440-bp DNA fragment and for pBI 101.3-35Smp.  

After the digestion, the vector DNA pBI 101.3-35Smp was then dephosphorylated. 

The reactions of dephosphorylation were conducted at 37°C for 15 min followed with 74°C 

for 15 min in mixtures containing 15 μl of plasmid DNA, 2 μl 10x buffer D, 2 µl BSA (1:10), 

1 µl TSAP (Thermosensitive Alkaline Phosphatase) and H2O up to a final volume of 20 µl. 

After the dephosphorylation, we proceeded to the ligation of 440-bp DNA fragment. The 

reactions of ligation were conducted at 4°C overnight in mixtures containing 5 μl of the 

digested/dephosphorylated plasmid DNA, 3 µl (3/1 molar ratio of insert:vector) and 1 µl (1/1 

molar ratio of insert:vector) of the 440-bp DNA insert (1:10), 1 μl 10x ligase buffer, 3U T4 

DNA ligase and H2O up to a final volume of 10 µl.   

The resultant plasmid pBI101.3-35Smp-440 bp was used to transform E. coli 

competent cells; XL1-Blue strain as a host for propagation of the plasmid. After incubation 

overnight, E. coli colonies found in the two molar ratios of vector: insert were picked and 

used to inoculate LB with agar and were put in LB medium containing 50 μg ml-1 kanamycin 

to incubate overnight at 37°C and then the liquid cultures were used for the extraction of the 

plasmid (pBI101.3-35Smp-440 bp).The isolation of plasmid DNA from transformed cells was 

conducted according to the protocol of PureLink™ Quick Plasmid Miniprep Kit (Invitrogen).  

 

Plasmid construction with 1331-bp 

To introduce the 1331-bp fragment of interest in the pBI101.3-35Smp, a separated 

digestion of obtained plasmids with the enzyme Hind III was done. Concerning the digestion 

of the plasmid TOPO-1331 bp, the reactions of restriction were conducted at 37°C for 60 min 

(16 cycles) followed with a cycle of 65°C for 15 min in mixtures containing 20 μl of plasmid 

DNA, of 10 U Hind III (1µl), 3 μl 10x buffer E, 3 µl BSA (1:10) and H2O up to a final 

volume of 30 µl. The restriction fragments were, then, displayed by electrophoresis on 

agarose gel. 1331-bp DNA bands was excised from gel and purified by centrifugation using 

Wizard® SV Gel and PCR Clean-Up System (Promega). We proceeded to DNA purification 
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procedure by centrifugation and by adding 20 µl PCR water for the elution. Concerning the 

digestion of the plasmid pBI101.3-35Smp, the reactions of restriction were conducted at 37°C 

for 240 min followed with a cycle of 65°C for 15 min in mixtures containing 20 μl of plasmid 

DNA, 3 U of Hind III (1µl), 3 μl 10x buffer E, 3 µl BSA (1:10) and H2O up to a final volume 

of 30 µl. After the digestion, the vector DNA pBI101.3-35Smp was then dephosphorylated. 

The reactions of dephosphorylation were conducted at 37°C for 15 min followed with 74°C 

for 15 min in mixtures containing the 30 μl mixture of plasmid DNA digestion with 2 µl 

TSAP and without extra buffer. The dephosphorylated vector was, then, displayed by 

electrophoresis on agarose gel. Plasmid DNA band was excised from gel and purified by 

centrifugation using Wizard® SV Gel and PCR Clean-Up System (Promega). We proceeded 

to DNA purification procedure by centrifugation and by adding 20 µl PCR water for the 

elution. 

After the dephosphorylation, we proceeded to the ligation of 1331-bp DNA fragment. 

The reactions of ligation were conducted at 22°C for 4 hours and then 4°C overnight in 

mixtures containing 4 μl of the digested/dephosphorylated plasmid DNA, 4 µl (3/1 molar ratio 

of insert:vector) of the 1331-bp DNA insert (1:10), 1 μl 10x ligase buffer, 3U T4 DNA ligase 

(0.33 µl) and H2O up to a final volume of 10 µl.   

The resultant plasmid pBI101.3-35Smp-1331 bp was used to transform E. coli 

competent cells; XL1-Blue strain as a host for propagation of the plasmid. After incubation 

overnight, E. coli colonies found were picked and used to inoculate LB with agar and were 

put in LB medium containing 50 μg ml-1 Kanamycin to incubate overnight at 37°C and then 

the liquid cultures were used for the extraction of the plasmid (pBI101.3-35Smp-1331 bp). 

The isolation of plasmid DNA from transformed cells was conducted according to the 

protocol of PureLink™ Quick Plasmid Miniprep Kit (Invitrogen).  

 

CONFIRMATION OF THE PRESENCE AND THE DIRECTION OF INSERTS 

In order to verify the results relating to the presence of 440-bp insertion, this DNA 

fragment was then searches by digestion of the plasmids obtained with the enzyme XbaI. The 

digestion of the plasmid pBI101.3-35Smp-440  bp, the reactions of restriction were conducted 

at 37°C for 60 min (16 cycles) followed with a cycle of 65°C for 15 min in mixtures 

containing 10 μl of plasmid DNA, 3 U of XbaI (0.3µl), 2 μl 10x buffer D, 2 µl BSA (1:10) 

and H2O up to a final volume of 20 µl. The restriction fragments were, then, displayed by 

electrophoresis on agarose gel. In order to verify the direction of the 440-bp insert in the 
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vector, amplification reactions were conducted using 2 µl of DNA template (1:1000) present 

in different clones founds. The primer pairs used were 3 primers (Annex. 15). pBI for and 440 

rev in the first reaction mixture searching for 440-bp (+) (Annex. 15a) and pBI for and 1331 

for searching for 440-bp (-) (Annex. 15b). The sequences of these primers are shown in 

Annex 11b.1 and Annex 14a, the reaction mixtures and the thermal profiles of the reaction are 

shown in Annex. 14b and 14c1.  

In order to verify the direction of the 1331-bp insert in the vector, amplification 

reactions were conducted using 2 µl of DNA template (1:1000) present in different clones 

founds. The primer pairs used were 3 primers (Annex. 16). pBI for and 1331 rev in the first 

reaction mixture searching for 1331 bp (+) (Annex. 16a) and pBI for and 1331 for searching 

for 1331 bp (-) (Annex. 16b). The sequences of these primers are shown in Annex 11b.2 and 

Annex 14a, the reaction mixtures and the thermal profiles of the reaction are shown in Annex 

14b and 14c2. 

The amplified fragments were, then, displayed by electrophoresis on agarose gel and 

the clones that showed the presence of the insert (440-bp) with the expected size in the 

different orientations (+/-) were then subjected to sequencing.  

 

TRANSFORMATION OF ARABIDOPSIS THALIANA 

We proceeded stable transformation of Arabidopsis thaliana via Agrobacterium 

tumenfaciens-mediated transformation and transformed plants in the progeny were 

characterized.   

 

Electroporation of Agrobacterium tumefaciens  

In plant genetic engineering, Agrobacterium-mediated transformation is the most 

commonly used method. Electrocompetent Agrobacterium tumefaciens cells strain was used. 

On ice, these cells were thawed. For each DNA sample to be electroporated and present in a 

1.5 ml microfuge tube on ice, was added 20 µl of electrocompetent A.tumefaciens cells and 

mixed gently. After setting the MicroPulser system for the electroporation of A.tumefaciens, 

transfer the DNA-cell sample to the bottom of 0.1 cm chilled electroporation cuvette which 

then placed in the shocking chamber electrodes providing optimum electrotransformation 

efficiency of the cells using a voltage 2.2 kV and just one pulse. Remove the cuvette from the 
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chamber and transfer the cells to 2 ml tube containing 1 ml of LB. Tubes with cells were 

incubated 1 h at 30°C and shaking at 250 r.p.m.  

Then, plate the aliquots of the electroporated cells on LB agar plates carrying added 

kanamycin (50 µg ml-1) and gentamicin (50 µg ml-1) and incubate it for 48 h at 30°C. Each 

A.tumefaciens colonie found was put in 50 µl PCR water and conducted at 94°C for 4 min 

before making colony PCR to screen for inserts if it are present or not. The sequences of the 

primers used, the reaction mixture (Annex. 14a and b) and the thermal profile of the reaction 

are shown in Annex 14c1 (for 440-bp) and in Annex 14c2 (for 1331-bp). 

 

Selecting transformed Agrobacterium using PCR colony 

To screen for plasmid inserts directly from Agrobacterium colonies, amplification 

reactions were conducted using 2 µl of DNA template (1:1000) present in different clones 

founds. The primer pairs used were 3 primers (Annex. 15). pBI for and 440 rev in the first 

reaction mixture searching for 440-bp (+) (Annex. 15a) and pBI for and 1331 for searching 

for 440-bp (-) (Annex. 15b). The sequences of these primers are shown in Annex 11b.1 and 

Annex 14a, the reaction mixtures and the thermal profiles of the reaction are shown in Annex 

14b and 14c1.  

In order to verify the direction of the 1331-bp insert in the vector, amplification 

reactions were conducted using 2 µl of DNA template (1:1000) present in different clones 

founds. The primer pairs used were 3 primers (Annex. 16). pBI for and 1331 rev in the first 

reaction mixture searching for 1331-bp (+) (Annex 16a) and pBI for and 1331 for searching 

for 1331-bp (-) (Annex 16b). The sequences of these primers are shown in Annex 11b.2 and 

Annex 14a, the reaction mixtures and the thermal profiles of the reaction are shown in Annex 

14b and 14c2. 

The amplified fragments were, then, displayed by electrophoresis on agarose gel and 

the clones that showed the presence of the insert (440-bp and 1331-bp) with the expected size 

in the different orientations (+/-) were selected to transform Arabidopsis plant by floral 

dipping method.  
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Floral dip 

A.tumefaciens cells strain carrying the binary plasmids with the different inserts 

(pBI101.3-35Smp, pBI101.3-35Smp-440 bp and pBI101.3-35Smp-1331 bp) was used. 

Bacteria were grown to stationary phase at 28-30°C, 300 r.p.m in liquid culture media 

containing sterilized LB carrying added kanamycin (50 µg ml–1) and gentamycin (50 µg ml-1). 

Bacterial cultures were started from a 1:100 dilution of smaller overnight cultures from 10, 50 

and then 500 ml and grown for 18–24 h to a final OD600 of approximately 1 prior to use. Cells 

were harvested by centrifugation for 10 min at room temperature at 3500 g and then 

resuspended in infiltration medium. The floral dip inoculation medium contained 5% sucrose 

and 0.05% Silwet L-77 added just before inoculation (Clough and Bent 1998). 
The inoculation medium containing Agrobacterium cell suspension was added to a 

beaker where watered plants (the night before) were inverted into this suspension such that all 

flower buds were submerged. After 3-5 min, plants were then removed from the beaker, 

placed in a plastic tray in horizontal position and covered with plastic wrap to maintain 

humidity. Then, were left overnight in a low light and returned to the growth chamber the 

next day. Plants were grown for a further 3-5 weeks keeping plants from each pot together 

and separated from neighboring pots until T1 seeds were dry to be harvested and stored in 

microfuge tubes and kept at room temperature.   

 

Selection of transformant plants using an antibiotic marker 

The selection system used in Agrobacterium-mediated transformation is the antibiotic 

resistance since the presence in the T-DNA of the selectable marker “nptII” (neomycin 

phosphotransferase II) gene, which confers resistance to kanamycin antibiotic. Sterilized T1 

seeds were resuspended in sterile distilled water and plated on kanamycin selection plates at a 

density of approximately 2000 seeds per 150 mm plate, vernalised for 2 days, and then grown 

for 14-20 days in a growth chamber at 22°C under 12 h light. Selection plates contained ½ X 

MS medium, 0.8% agar and 50 µg ml-1 kanamycin. Transformants T1 surviving on 

kanamycin, were characterized as kanamycin resistant seedlings that produced green leaves 

and well developed roots. 
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Screening of transgenic plants  

We proceeded an important step for transgenic studies: the isolation of the 

homozygous T3 transgenic plants having a single copy of the transformed promoter (single T-

DNA insertion) identified genetically estimating the genotype of transgenic plant by 

segregation test of kanamycin resistance marker using the seeds progenies T3 obtained. 

Within the transgenic lines analyzed is therefore possible to detect the presence of individuals 

wild-type and transformant individuals heterozygous and homozygous for the T-DNA 

insertion.  

T3 seeds are germinated on half-strength MS medium containing 50 µg ml-1 of 

kanamycin and scored for KanR and KanS seedlings 20 days after germination. KanR seedling 

developed normally on this medium and remains green. KanS individuals cannot form true 

leaves with bleaching of cotyledons, and the seedlings finally die.  

 

QUANTITATIVE REAL-TIME RT-PCR FOR GRADIENT PLATES  

Total RNA extraction and quantification  

The total RNA extraction was conducted in TRIzol® reagent (LifeTechnologies), in 

accordance with the protocol reported by the manufacturer. Frozen shoot samples were 

pulverized in 1 ml of TRIZOL® within mortars for homogenization, were transferred into 

sterile centrifuge tubes, mixed and kept at room temperature for 5 min. The samples were then 

added with 200 μl of chloroform, shaked by hand for 15 s, incubated for 2-3 min at room 

temperature and then centrifuged at 12000 g for 15 min at 4°C. The upper aqueous phase (400 

µl) was taken and mixed with 0.5 ml of 100% isopropanol (v/v) to precipitate the total RNA.  

After incubation 10 min at room temperature, samples were centrifuged at 12000 g for 15 s at 

4°C. Then, the supernatant was discarded and 1 ml of 75% ethanol was added to the tube to 

wash the RNA-pellet. After brief vortex, the samples were centrifuged at 7500 g for 5 min at 

4°C.  Finally, the wash was discarded and the RNA-pellet was vacuum dried from the ethanol 

for 5-10 min to be resuspended with 30 µl of DEPC H2O. Finally, after incubation at 60°C for 

15 min, the total RNA was quantified by using the Thermo Scientific NanoDrop 1000 

Spectrophotometer measuring the concentration in ng µl-1 based on absorbance at 260 nm of 1 

µl nucleic acid sample. In order to verify the quality of the RNA, the same spectrophotometer 

measure the ratio of sample absorbance at 260 and 280 nm used to assess the purity of RNA.  
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Isolation of cDNA and evaluation of gene expression  

 To obtain the first-strand cDNA for use in Real-Time quantitative Reverse 

Transcription PCR (qRT-PCR), it was used the protocol of SuperScriptIII First-strand 

synthesis SuperMix for qRT-PCR (LifeTechnologies) according to the manufacturer's 

instructions. 

Before the application of the mentioned protocol and in order to remove contaminating DNA 

from RNA preparation, it was used the protocol of Amplification grade DNase I 

(LifeTechnologies) according to the manufacturer's instructions. It was prepared a mixture 

containing 4 µl of RNA, 0.5 µl 10× DNase I buffer and 0.5 µl DNase I Amplification grade. 

After incubation for 15 min at room temperature, 0.5 µl of 25 mM EDTA solution was added 

to inactivate DNase I. Then, it was incubated at 65°C for 5 min for heat inactivation. 

The RNA sample is now ready to be used directly in a reverse transcription reaction. 4 

µl of samples were then added to a master mix containing 5 µl of 2X RT reaction mix (oligo 

(dT)20, random hexamers, MgCl2, dNTPs) and 1 µl of RT enzyme mix (SuperScript III RT 

and RNaseOUT). Subsequently each sample was gently mixed and the reverse transcription 

reaction was occurred at 25°C for 10 min, then at a 50°C in a time of 50 min before being 

terminated by bringing the samples to 85°C for 5 min in order to denature the enzyme. The 

mixture was cooled in ice; added then 0.5 µl of RNase H and then incubates at 37°C for 20 

min.  

The subsequent cDNA amplification reactions were carried out by quantitative PCR 

(qPCR) using GoTaq qPCR Master mix reagent system (Promega).  

The primer pairs used to amplify the sequences of genes S16, GUS and AT1G12030 in the 

FLAG line were designed. The primer pairs used are listed in the Annex 17a. Analysis of 

transcript levels of each gene was achieved by quantitative PCR using an Applied Biosystems 

7300 Real-Time PCR System. Quadruplicate reactions were performed for each gene and 

sample using well-plates consisting of reaction mixtures containing 5 μl aliquots of the diluted 

cDNA template (20% of the reaction volume), the pair of primers specific for the sequence, 

each at a concentration 10 µM, GoTaq® qPCR Master mix (Promega), the CXR reference dye, 

and water to achieve a final reaction volume of 20 µl (Annex. 17b). A control reaction was 

done for each sample to confirm that there was no contaminating DNA in the original sample. 

The reaction plate was finally centrifuged at low speed for 1 min to keep the components 

together and remove bubbles. The quantitative PCR reaction conditions were given in Annex 
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17c. The cycle threshold values were determined for each sample during the quantitative PCR 

cycling reaction. Transcript levels of each gene were normalized to the S16 control gene. 

STATISTICAL ANALYSIS  

Statistical analysis was carried out using SigmaPlot for Windows version 12.0 (Systat 

Software, Inc.). Quantitative values are presented as mean ± standard error of the mean (SE). 

Significance values were adjusted for multiple comparisons using the Bonferroni correction. 

Statistical significance was at P < 0.05. 
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ARABIDOPSIS GENE TRAP LINES  

Gene trapping is a powerful strategy for gene discovery and functional genomics in 

plants by exploiting the insertion of the gene trap construct into an expressed gene. The 

detection of reporter gene expression allows the determination of the expression patterns of 

different genes (Springer 2000).  

In the framework of the EXOTIC (EXON Trapping Insert Consortium) project funded 

by the UE Fifth Program for Plant Biotechnology, Arabidopsis thaliana (ecotype Landsberg 

erecta) gene trap lines from the EXOTIC collection were generated by insertional 

mutagenesis exploiting the Zea mays Ac/Ds transposable elements system (Sundaresan et al. 

1995; Chin et al. 1999). In detail, the EXOTIC lines  carry a Dissociation (Ds) transposable 

element (Fig. 1) appropriately modified (DSG) containing a promoterless β-glucuronidase 

(GUS) reporter gene flanked by a triple splice acceptor and an intron, other than the 

Neomycin phosphotransferase (NPTII) gene, which confers resistance to kanamycin. The 

presence of the insertional DsG element in a gene interrupts its sequence, but 

contemporaneously allows its promoter, if activated, to control the expression of the GUS 

gene. This strategy allows the identification of genes and/or promoters responsive to the 

selective factor(s) adopted in the screening. 

In our lab, the EXOTIC lines were previously screened for GUS expression after 

having been grown in the absence or in the presence of sulfate, the main S source for plants, 

in the medium (Lancilli et al. 2008). This screening identified the EXOTIC line 718 that 

showed GUS expression in root apices and in shoots only when grown under sulfate 

starvation (Fig. 2). In this line insertion the DsG element is located in chromosome 1, in the 

intergenic region between the AT1G12030 and the AT1G12040 genes. The DsG element is 

inserted at 1331-bp and at 2509-bp from the start of the AT1G12030 and AT1G12040 genes, 

respectively (Fig. 3A).  

AT1G12030 is a gene with unknown function, encoding a putative protein probably 

expressed in the mitochondria, while AT1G12040 encodes the LRX1 (Leucine-Rich 

Repeat/EXTENSIN1) protein, expressed in the roots, where it is involved in root hair 

morphogenesis and elongation (Baumberger et al. 2001).   

The 1331-bp region resulted able to simultaneously control transcription in opposite 

directions of the GUS reporter and of the AT1G12030 genes under sulfur-deficiency 

conditions.  
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In order to identify, in the 1331-bp, the minimal region able to activate the 

transcription of the reporter gene under S starvation, we looked for the existence of other 

Arabidopsis mutant lines with insertions in this intergenic region. Among the different 

available Arabidopsis gene trap systems based on T-DNA transfer, a FLAG line (Versailles’s 

T-DNA collection) belonging to the Wassilevskija ecotype resulted interesting (Bechtold et 

al. 1993; Bouchez et al. 1993). In the FLAG line, the T-DNA insertion contains the 

promoterless GUS reporter gene, the NPTII gene and a bar gene conferring resistance to the 

herbicide bialaphos (Basta). This insertion is present in chromosome 1 and in the intergenic 

region between the AT1G12030 and the AT1G12040 genes, at 440-bp and at 3400-bp from the 

start of the AT1G12030 and AT1G12040 genes, respectively (Fig. 3B).  

 

Expression of the GUS reporter gene in the FLAG line 

When plants of the FLAG line were grown for 14 days in the presence of 0 μM sulfate 

in the nutrient solution (sulfur starvation condition: -S), expression of the GUS reporter gene 

was observed whereas the gene was not expressed when plant were grown in the presence of 

1500 µM sulfate (control: +S). The GUS positive signals were detectable in both roots and 

shoots of the S-starved plants. No coloration due to GUS activity was detectable in the tissues 

of sulfur-sufficient plants (+S) (Fig. 4).  

 

Effects of sulfur deficiency on the expression of the genes flanking the intergenic region 

in the FLAG line 

In order to understand the effects of sulfur starvation on the expression of the genes 

(AT1G12030 and GUS) flanking the intergenic region in the FLAG line, wild-type and mutant 

plants were grown in -S and +S condition for 14 days; at the end of this time period, total 

mRNAs were extracted from plants and the levels of the two mRNAs of interest were 

evaluated by semi-quantitative RT-PCR. As shown in Fig. 5, the mRNA of the GUS reporter 

gene was detectable at very low levels in plants of the FLAG line grown under adequate S 

availability (+S). Consistent with the histochemical observation described above (Fig. 4), the 

–S condition induced a marked accumulation of GUS mRNA in plant tissues.  

Different than reported for the Landsberg genetic background (Lancilli et al. 2008), 

the AT1G12030 gene resulted constitutively expressed in plants of the Wassilevskija ecotype 
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grown in control condition (+S). However, also in this ecotype, in plants experiencing S 

starvation a significant increase in the AT1G12030 mRNA level was observed in comparison 

to that detectable in control plants. The T-DNA insertion in the FLAG line negatively affected 

the expression of the AT1G12030 gene. Nevertheless, in these plants the S starvation 

condition markedly increased the expression of this gene. 

Densitometry analysis of each band (using ImageJ programme) indicated that the 

levels of AT1G12030 transcripts significantly increased compared to the controls (by about 

250% and 1600%) when wild-type and FLAG plants, respectively, were exposed to S 

starvation (Fig. 6). The same analysis showed that the GUS transcript levels in plants grown 

under S starvation were by about 12-fold increased with respect to control plants.  

Taken as a whole, these results suggest that 440-bp fragment might be sensitive to 

sulfur starvation and responsible for regulating the expression of the AT1G12030 and GUS 

genes. Since these two adjacent genes are located in a divergent orientation on the 

chromosome 1 of the FLAG Arabidopsis genome, it is possible to suppose that the 440-bp 

intergenic region might share a putative bidirectional promoter containing sulfur responsive 

cis-regulatory elements. 

Moreover, it is interesting to underlie that this group of experiments led to the 

identification of an A. thaliana line presenting differential GUS expression in S-deficient 

conditions in the aerial portions. In our opinion, this is a particularly interesting starting point 

for the development of a bioindicator of the plant sulfur nutritional status. 

 

Expression of GUS and AT1G12030 genes as a function of the plant sulfur nutritional 

status 

In order to establish whether the FLAG line might be considered as a bioindicator able 

to signal the actual plant sulfur nutritional status, activation of the GUS gene in these plants 

was related to their sulfate critical concentration (nc), i.e., the minimum concentration of 

sulfate necessary to achieve 95% of maximum biomass (Fageria 2014). The value of nc was 

evaluated by measuring the growth of both roots and shoots of plants grown vertically in agar 

plates (Fig. 7) under a continuous gradient (0-150 μM) of sulfate concentrations (SO4
2--

gradient agar plates: SGAPs).  

The stability of the continuous gradient of sulfate concentrations in the agarized 

medium was checked daily by measuring for 14 days the concentrations of the anion in 

progressive points of the agar medium in plates without plants. Figure 8A and 9A shows the 
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behaviors of plant shoot fresh weight (FW) and root length (Lr) increases, respectively, as a 

function of sulfate concentration in the medium. As expected, both functions are represented 

by a hyperbolic curve described by the following Michaelis-Menten equations: 

FW ൌ 
FW୫ୟ୶  ሾSOସଶିሿ
K½ ൅   ሾSOସଶିሿ

 

Lr ൌ  
Lr୫ୟ୶  ሾSOସଶିሿ
K½ ൅   ሾSOସଶିሿ

 

 

 

where FWmax and Lrmax are the function asymptotes and K½ is the concentration of sulfate in 

the medium corresponding to the half of the value of either FWmax or Lrmax. The double-

reciprocal plots of both functions describe linear functions (Fig. 8B and 9B) with R2 values of 

0.99 and 0.97 for shoot and root, respectively. The values of function asymptotes (FWmax and 

Lrmax), K½ and nc for both shoot and root growth are reported in Table 1. Considering a value 

equal to 95% of FWmax and Lrmax, the corresponding extrapolated value of critical sulfate 

concentration nc, resulted equal to 130.4 µM and 89.4 μM for shoot and root growth, 

respectively (Fig. 8A, 9A and Table 1).  

GSH was considered as the main cellular thiol whose concentration is tightly related to 

the internal plant sulfur status (Lappartient et al. 1999). We evaluated also, in the shoot of the 

FLAG line plants, the dependence of GSH concentration on sulfur availability in the SGAPs 

growth medium (Fig. 14). Although the experimental curve did not fit with a Michaelis-

Menten hyperbolic curve, it reached a maximum GSH value at about 120 μM external sulfate 

concentration, quite close to the nc value (130.4 μM) calculated considering the dependence 

of shoot biomass increase on sulfate availability (Table 1). 

The steady-state levels of GUS mRNA were evaluated by real-time PCR in shoots of 

the FLAG line plants obtained from SGAP experiments. The levels of GUS transcripts 

decreased progressively as the sulfate concentration in the medium increased (Fig. 12); the 

behavior of the function is well described by an exponential decay curve. From data of Figure 

12 it is also possible to establish that the lowest concentration of sulfate where the GUS 

reporter gene was not expressed was about 130 µM, very close to the nc value calculated for 

the shoot biomass increase. 
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A very similar behavior was obtained by analyzing, by means of SGAP experiments, 

the steady-state levels of AT1G12030 mRNA as a function of sulfate concentration in the 

medium (Fig. 13). Also in this case, the levels of AT1G12030 transcripts progressively 

decreased, according to an exponential decay function, as the concentration of sulfate in the 

medium increased. Similarly to what observed for the GUS gene, transcripts of the 

AT1G12030 gene resulted detectable only when the concentration of sulfate in the external 

medium was higher than 130 μM.  

This group of results suggests that the FLAG line plants are able to signal, also in 

quantitative terms, their sulfur nutritional status through the expression of both GUS and 

AT1G12030 genes. This is an important prerequisite in order to consider the FLAG line as a 

sulfur nutritional status biondicator, as well as the FLAG intergenic region (440-bp) as an 

interesting element in order to constitute a sulfur-sensitive pilot transgenic bioindicator plant. 

Nevertheless, it should be stressed out that the quantitative relationship between the 

plant nutritional status and the levels of GUS transcripts resulted detectable only by real-time 

PCR technique and not by the simpler histochemical assay. This implies that GUS is not the 

best reporter gene for easily and promptly disclosing the amount of sulfur that a plant needs. 

However, other reporter genes whose expression can be monitored and quantitatively 

evaluated with more ease and sensitiveness than the GUS gene are known. The possibility to 

substitute GUS into the FLAG line is presently under investigation.  

The 440-bp intergenic region conserves the same characteristics of sulfur sensitiveness 

previously described for the 1331-bp intergenic region of the 718 EXOTIC line (Lancilli et al. 

2008). Therefore, it seems probable that within this region regulative element/s, able to drive 

in a bidirectional way the expression of flanking genes when the plant sulfur nutritional status 

is below its optimum, is/are present. 

 

Cadmium exposure and additional sulfur needs  

Biotic and abiotic stresses increase the levels of cysteine-derived metabolic 

compounds inducing activation of the sulfate reductive assimilatory pathway (Rausch and 

Wachter 2005). This is particularly evident when plants are exposed to cadmium (Cd). 

Indeed, when it happens plants activate adaptive responses that ultimately lead to an increase 

in the demands of sulfate, sulfur containing compounds, and carbon skeletons (Lee and 

Luestek 1999; Nocito et al. 2002, 2007, 2008). In particular, under Cd stress are induced both 
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the activities that lead to the synthesis of the tripeptide glutathione (GSH) and those that 

consume it (Nocito et al. 2007). Indeed, GSH not only acts as an antioxidant in mitigating Cd-

induced oxidative stress, but also represents the key intermediate for the synthesis of 

phytochelatins (PCs) which are a class of cysteine-rich heavy metal-binding peptides involved 

in buffering cytosolic metal-ion concentration (Noctor et al. 2012). The large amount of PCs 

produced by Cd-stressed plants thus represents an additional sink for reduced sulfur that, by 

increasing the metabolic request for GSH, generates a typical demand-driven coordinated 

transcriptional regulation of genes involved in sulfate uptake, sulfate assimilation and GSH 

biosynthesis (Lancilli et al. 2014).  

On the basis of the above described considerations, one can assume that Cd exposure 

represents a suitable experimental tool to induce in the plant a higher internal requirement of 

sulfur. In other words, in the presence of Cd the optimal sulfur nutritional status is expected to 

be furnished to the plant by higher sulfate availability in the growth medium. With the aim to 

verify this hypothesis, the FLAG line plants were grown in a SGAP experiment (0-150 μM 

sulfate) in the presence of a constant concentration (50 μM) of Cd (as chloride salt) (Fig. 7B). 

The presence of 50 μM Cd induced a marked delay in plant growth (Figures 7A and 

7B), as well as evident shoot chlorosis. Detailed analysis of the effect of 50 μM Cd on shoot 

biomass showed that very similar growth values were observed at higher sulfate availability 

compared to experiments without Cd (Fig. 10A). Least square fittings (Fig. 10A) revealed that 

also in the presence of Cd the dependence of shoot biomass increase as a function of sulfate 

concentration in the medium and can be properly described by the hyperbolic Michaelis-

Menten equation. Double-reciprocal plot (Fig. 10B) allowed extrapolating the K½ for sulfate 

and FWmax values. As reported in Table 2, the values of both parameters were higher than 

those obtained in the Cd-free SAGP experiments. The value of sulfate nc in FLAG line plants 

grown in the presence of Cd resulted more than two-fold (268 μM) with respect to that of the 

same plants grown in the absence of Cd, whereas the length of primary roots was not 

significantly affected by the presence of the Cd. The dependence of Lrmax on sulfate 

concentration in the medium (Fig. 11A) can also be described according to a hyperbolic 

Michaelis-Menten function whose equation constants values (Lrmax and K½) were not 

significantly different than those calculated in the Cd-free growth condition (Table 1 and 2). 

Therefore, the value of sulfate nc (89.4 µM vs 94.55 µM) was not affected.  

Analysis of GSH concentration in shoots of the FLAG line plants grown in the 

presence of Cd (Fig. 14) indicated that even at the highest sulfate availability in the medium 
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the GSH concentration did not reach a maximum. This could explain the evident chlorosis 

observed (Fig. 7B), indicative of oxidative stress condition experienced by plants. This 

negative effect of Cd on GSH levels may be explained by the increased metabolic request for 

GSH in order to produce PCs (Nussbaum et al. 1988; Ruegsegger and Brunold 1992; Nocito 

et al. 2002) for metal detoxification. Under Cd stress the value of sulfate nc dramatically 

increased. 

In the presence of cadmium (Fig. 15), FLAG gene trap line respond to the sulfur 

nutritional status by activating GUS reporter gene and the presence of signal had a 

complementary pattern to the expression level in the aerial portion of plants throughout the 

gradient whereas it exhibited a gradual decreased root GUS activity until a concentration of ± 

90 µM which belong the optimum range in root above which lesser GUS activity was clearly 

induced just in shoot.   

In conclusion, the results described above indicate that the pilot lines are capable to 

correctly indicate the critical concentration of sulfate in the external medium also in the 

presence of interfering metal ions (such as cadmium) able to increase the plant metabolic 

demand for sulfur. 

 

Effects of cysteine or GSH on the response of Arabidopsis gene trap lines  

Whether the cellular contents of sulfate, cysteine and GSH are considered the primary 

signal for controlling sulfate uptake and metabolism or rather they act indirectly is not 

completely clear (Buchner et al. 2004a; Davidian and Kopriva 2010). This because very little 

is known about the molecular mechanisms involved in the perception and transduction of 

nutritional signals (Maruyama-Nakashita et al. 2005, 2006; Takahashi et al. 2011). 

Since, other than sulfate, cysteine and GSH are also absorbed by plant roots 

(Lappartient and Touraine 1996; Bolchi et al. 1999; Lappartient et al. 1999; Vauclare et al. 

2002; Rouached et al. 2008), the internal sulfur status of tissues and the consequent molecular 

and metabolic responses can be modified and thus studied by growing plants in the presence 

of these two metabolites as sole sulfur source. Indeed, it has been reported that cysteine and 

GSH induce down regulation of sulfur-responsive genes (Smith et al. 1997; Lappartient et al. 

1999; Vauclare et al. 2002; Maruyama-Nakashita et al. 2004). 
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With the aim to better characterize the signal(s) capable to trigger the sulfur starvation 

responses in both the 718 EXOTIC and the FLAG lines, plants were grown vertically for 14 

days on agarized S-starved medium (-S; 0 µM sulfate) or, alternatively, in the presence of 1.5 

mM cysteine (Cys) or 1.5 mM GSH as sole sulfur sources. The results obtained by staining 

the shoots with X-Gluc substrate showed that the presence of cysteine as sole sulfur source in 

the agar medium was capable to completely revert the induction of GUS expression in both 

lines. The effect was evident in both roots and shoots. In the presence of GSH in the medium, 

the GUS expression activity was completely absent in roots and was markedly reduced 

(although a weak signal could still be observed) in shoots, (Fig. 16). 

The results suggest that the internal sulfur status as represented by the thiol contents in 

both the 718 EXOTIC and the FLAG gene trap lines might control, through the activity of 

sulfur-sensitive elements present in both the 1331-bp and the 440-bp region, the expression of 

the GUS flanking gene. In other words, both the Arabidopsis lines appear capable to signal, 

through the expression of the GUS gene, the metabolic effects produced by sulfur starvation 

and not the presence/absence of sulfate in the growing medium (Fig. 16).  

The difference shown by cysteine and GSH treatments might be due to different causes, such 

as different root- to-shoot transport ability and/or metabolization of the two compounds, 

defects in long-distance root-to-shoot signalling of sulfur status, or defects in adjusting the 

shoot metabolism to the conditions of GSH as sole sulfur source encountered by the roots.  

In this framework, to understand the mechanism/s by which cysteine and GSH differently 

affect the response of gene trap bioindicators is the challenge for future investigations. 

 

Gene trap sulfur status bioindicators in controlled hydroponic culture.  

In order to exclude that the observed responses of the Arabidopsis 718 EXOTIC and 

FLAG lines to sulfur starvation do not depend on the low solute diffusion rate in the agarized 

growth substrate, plants were grown in hydroponic cultures with different (1-100 µM) sulfate 

concentrations. After 14 days, shoot growth, non-protein thiol (NPT) concentrations, and 

GUS activity were determined (Fig. 17). 

The shoot fresh weight of both the 718 and FLAG lines increased with the increase in 

sulfate concentration in the medium. The total biomass produced by the FLAG line 

(Wassilevskija ecotype) was markedly higher than that produced by the 718 line (Landsberg 

ecotype) (Fig. 17A). At the same sulfate availability in the medium, the concentrations of 

non-protein thiols (NPT) in the 718 line were significantly higher than in the FLAG line, 
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resulted probably for a dilution effect due to different plant sizes. Within the same line, NPT 

concentrations increased with sulfate concentration (up to 10 μM external sulfate). In both 

lines, when external sulfate concentrations increased from 10 μM to 100 μM, the NTP 

concentrations remained unchanged (Fig.17B).  

Table 3 shows the results of X-Gluc coloration assay performed on both the 718 and 

FLAG lines grown in the presence of different sulfate concentrations. Relevant GUS 

expression activity was detectable only in the FLAG line for sulfate concentrations <5 μM, 

when the NPT concentration was lower than the maximum reached at the two highest sulfate 

concentrations (10 and 100 μM). Unexpectedly, no GUS expression activity was detectable 

for the 718 line even at the lowest sulfate concentration tested (1 μM), corresponding to 

dramatically low NPT concentrations. 

It has been shown that presence of sucrose in the growth medium can significantly 

affect the expression of some sulfur-responsive genes. Expression of APS reductase, encoding 

the key enzyme of sulfate reduction, as well as of genes encoding the sulfate transporters 

SULTR1;1 and SULTR1;2, is stimulated by feeding sucrose and glucose to plants (Kopriva et 

al. 1999, 2002; Hesse et al. 2003; Lejay et al. 2003; Maruyama-Nakashita et al. 2004). 

Therefore, in this set of experiments conducted on plants grown in hydroponic culture, the 

lack of GUS expression in the 718 line, even when the tissue levels of NTPs were very low, 

might be due to the absence of sucrose (present in the agarized medium) in the hydroponic 

growth medium. 

In order to verify the possible role of sucrose in regulating GUS gene expression, 

plants of both the 718 and the  FLAG lines were grown for 20 days in agarized medium, in 

the presence (+S: 1500 µM) or in the absence (-S: 0 µM) of sulfur and in the presence or in 

the absence of sucrose (1% w/v). 

In conditions of sulfur deprivation (–S), absence of sucrose in the medium remarkably 

attenuated the expression of the GUS reporter gene in plants of the 718 line, whereas plants of 

the FLAG line showed evident expression of the GUS gene (Fig. 18). These results seem to 

suggest that GUS expression activity in the 718 line is regulated by a combined effect of 

sulfur deficiency and sucrose availability to the plant. This combined effect was absent or less 

evident in FLAG line plants. 

Under nitrogen and carbon skeletons excess, O-acetylserine (OAS), the substrate of 

cysteine synthase, is accumulated de-repressing the transcription of genes encoding sulfur 

assimilatory proteins (Hawkesford 2000; Hirai et al. 2003). On this basis, addition of sucrose 
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to the growth medium (either agarized medium or hydroponic solution), should activate these 

de-repressive mechanism acting on the expression of sulfur-sensitive genes.   

Gene transcription is positively (activation) or negatively (repression) regulated by 

transcriptional activators or repressors (Hanna-Rose and Hansen 1996; Wray et al. 2003). 

Therefore, the different behavior observed in the two 718 and FLAG mutant lines with higher 

expression of the reporter GUS gene under sulfur starvation in the case of the shorter fragment 

(440-bp of the FLAG line) than of the longer fragment (1331-bp of the 718 line), might be 

explained by assuming the presence of a repressor capable to bind to a DNA regulative 

sequence (cis-element) located in the 718 line between -441 and -1331 bp with reference to 

the AT1G12030 gene. This transcriptional repressor might prevent the transcription of sulfur 

assimilative genes in conditions of limited carbon skeleton availability, preventing the 

hazardous accumulation of toxic free sulfide (S2-). In the FLAG line, the repressor-binding 

domain should be absent, allowing expression of the GUS reporter gene even in the absence 

of the excess of carbon skeletons due to sucrose supply. Clarification of the mechanism 

underlying the regulatory effects of sucrose needs further studies. 

 

EVALUATION OF THE ACTIVITY OF PUTATIVE PROMOTERS IN GENE TRAP 

LINES 

The results described above allow to conclude that in the intergenic regions located in 

both the 718 and FLAG lines (1331-bp and 440-bp, respectively) are present sulfur-

responsive sequences capable to regulate the expression of flanking genes when plants are 

grown under sulfur deficiency. More thorough identification and characterization of such 

sequences might allow their exploitation as part of a synthetic promoter for constitution of 

transgenic bioindicators of the plant sulfur nutritional status.  

 

Sequences analysis of the FLAG line intergenic region (440-bp) 

Analysis of the 440-bp region of the FLAG gene trap line (using BioEdit programme), 

revealed the presence of the 5-bp core sequence GAGAC of the sulfur-responsive element 

(SURE) in position -101 referred to the 5’end of the AT1G12030 gene. The SURE element 

first identified in the promoter of the Arabidopsis gene SULTR1:1 (Fig. 19A) and encoding a 

high-affinity sulfate transporter, is sufficient to drive the expression of the gene in sulfur-

deprived condition (Maruyama-Nakashita et al. 2005).  
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The SURE core element is characteristic of many sulfur-responsive genes playing a 

key role in their induction (Maruyama-Nakashita et al. 2005). Nevertheless, it is not present in 

all genes that respond to sulfur deficiency, as well as it has been found in the promoter of 

genes not regulated by sulfur availability (Wawrzynska et al. 2010). For these reasons, the 

observed response in the gene trap lines could require other additional regulatory sequences.  

 

Sequence analysis of the 718 line intergenic region (1331-bp)  

The whole sequence of the 1331-bp intergenic region between AT1G12030 and the 

transposon insertion in the 718 EXOTIC gene trap line was analyzed. Other than the sulfur-

responsive cis-elements SURE, that also in this line was located at position -101 referred to 

the 5’ end of AT1G12030 gene, a conserved 20-bp UPE box motif was detected in the 

intergenic region between -683 bp and -703 bp with reference to the 5’end of the AT1G12030 

gene (Fig. 19B). This motif has been described as sufficient for the binding of the 

transcriptional factor SLIM1 (Sulfur LIMitation 1) that regulates the sulfur responses of some 

genes (Maruyama-Nakashita et al. 2006; Wawrzynska et al. 2010) and is reported to be 

present only in the promoter of some sulfur deficiency responsive genes (Wawrzynska et al. 

2010).  

 

ARABIDOPSIS TRANSFORMATION 

  In eukaryotic organisms promoters are not always located in the proximity of the gene 

transcription start sites (TSSs), but can be located in a position distant from the 5' upstream 

regions, or at the 3' downstream regions of genes (Xu et al. 2004; Kapranov et al. 2007). Thus 

the identified 1331- and 440-bp intergenic regions might not contain functional promoters of 

the GUS and AT1G12030 genes. This promoter can be located far away from the TSSs.  

Therefore, in order to verify whether the 1331- and 440-bp intergenic regions contain 

a putative sensitive promoter able to control and modulate the transcription of GUS gene in 

sulfur-deficiency conditions independent of their original position in the genome, A. thaliana 

plants (Landsberg ecotype) were engineered by transformation with a construct containing the 

intergenic regions upstream of the GUS gene. Moreover, using the same experimental 

approach, the actual capability of these intergenic regions to control in a bidirectional way the 

expression of divergent genes was tested. Two constructs for each fragment were generated. 
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The former construct contained the fragments in the orientation [1331 (+) and 440 (+)] found 

in the gene trap lines, whereas the other two constructs contained the same fragments in their 

inverse orientation [1331 (-) and 440 (-)]. In all constructs the GUS gene was fused to the 35S 

minimal promoter (35Smp) typically containing a TATA box and a transcription start site 

(Novina and Roy 1996). This minimal promoter is not capable to drive reporter gene 

expression when alone, but it can be activated by neighboring cis-acting regulatory elements 

(Springer 2000).  

 The constructs, named 1331(+)::35Smp:GUS, 1331(-)::35Smp:GUS, 440 

(+)::35Smp:GUS and 440 (-)::35Smp:GUS, are schematically depicted in Figure 20. These 

constructs were stably introduced into Arabidopsis thaliana by floral deep technique. As a 

control, transgenic plants containing only the GUS gene under the control of the 35S minimal 

promoter were also generated.  

Transgenic plants were screened looking for single locus homozygosis. Only T3 

transgenic both 440-bp (+) and 440 (-) homozygous lines were isolated and used for further 

analysis. Transgenic T3 440-bp (+ or -) plants were grown 20 days in the absence (-S) or in 

the presence of 1500 µM sulfate (+S) in the agar medium.  

As reported in Figure 21, growth in the absence of sulfate determined the expression 

of the GUS reporter gene in both 440 (+) and 440 (-) T3 transgenic plants, indicating that the 

intergenic region is capable to support the activity of the 35S minimal promoter in both 

orientations. The activities of the intergenic regions were evident in both roots and shoots. In 

the same growth condition (absence of sulfate), transgenic plants containing only the 35S 

minimal promoter without the intergenic region did not show any GUS signal (Fig. 21).  

The results obtained with transgenic plants indicates that: a) the putative 440-bp 

intergenic region functions as a bidirectional promoter which shares regulatory elements 

capable to regulate gene expression in opposite orientations under sulfur deficiency 

conditions; b) the putative 440-bp intergenic region acts as a sulfur-deficiency-induced 

promoter independent of its position in the genome. 

The bidirectional control of the simultaneous expression of two genes has been 

described in different organisms (Beck and Warren 1988; Keddie et al. 1994; Trinklein et al. 

2004) and also in Arabidopsis thaliana (Williams and Bowles 2004; Mitra et al. 2009; Wang 

et al. 2009; Kroumpetli et al. 2013; Banerjee et al. 2013). In the human genome, putative 

bidirectional promoters are defined as intergenic DNA sequences between the two 

transcription start sites (TSSs) of a bidirectional gene pair separated with not more than 1000 

base pairs (Adachi and Lieber 2002; Trinklein et al. 2004). In plants, Mitra and coworkers 
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(2009) reported also the existence of bidirectional promoters longer than 1000 bp. We here 

describe shorter sequences characterized by bidirectional capability to modulate the 

expression of flanking genes. We conclude that the 440-bp intergenic region is probably an 

enhancer, i.e. a cis-acting DNA sequence that increases gene transcription in a manner that is 

independent of the orientation and distance relative to the RNA start site (Blackwood and 

Kadonaga 1998; Williams and Bowles 2004).  

When 440-bp::35Smp:GUS transgenic plants were grown for 20 days in a complete 

agar medium (1500 μM sulfate) in the presence of 50 µM Cd, signals of GUS activity were 

found independent of the orientation of the 440-bp intergenic region (Fig. 22). Interestingly, 

the signals were exclusively located in the vascular tissue of the leaves and in root tips. This 

result confirms that the 440-bp intergenic region is capable to activate in a bidirectional way 

the expression of the gene flanking it in response to the sulfur nutritional status of the plant 

independently of its position in the plant genome. 
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In the present study, we carried out the initial characterization of two Arabidopsis 

bioindicators of sulfur nutritional status carrying GUS reporter gene under the control of 

sulfur responsive promoters.  

 

We identified, by gene-trap approach, two intergenic regions (1331-bp and 440-bp) 

modulating in a bidirectional way the expression of the flanking genes in response to S 

limitation.  

 

Plants in which the reporter gene GUS is under the control of these intergenic regions 

signal their sulfur nutritional status. Indeed:  

a) The addition of cysteine or GSH to plants growing under sulfate deprivation inhibits 

or downregulates the expression of the GUS gene;  

b) The exposure of plants to Cd, that generates an additional sink for reduced sulfur in 

the cells, induce the expression of the GUS gene, although in the external medium an 

adequate amount of sulfate exists. 

 

Transgenic Arabidopsis lines carrying the 440-bp DNA fragment in two orientations 

have been characterized in response to sulfur limitation conditions and have shown GUS 

activity in shoots and roots. These results confirm:  

a) The sufficiency and the ability of 440-bp fragment to drive the expression of GUS 

reporter gene in sulfur deficient conditions;  

b) That 440-bp fragment is able to modulate in bidirectional way the expression of GUS 

reporter gene under sulfur deficiency;  

c) That 440-bp fragment functions independently from his position in the genome.  

 

The 440-bp intergenic region is suggested as possible promoter to develop specific 

bioindicators useful to monitor plant sulfur nutritional status.  

 

The identified putative promoters are suitable for developing “sentinel plants” that will 

serve as sensors of sulfur deficiency to optimize agronomic practices allowing efficient 

temporal, spatial applications of S fertilizer and further the development of decision-making 

systems for precision farming to realize the growth potential of crop plants. It could be 

particularly important not only for areas of intensive agriculture but also for agriculture in 

developing countries where accessibility to fertilizers could be a problem.   

67 
 



68 
 

In addition to its role in monitoring plant S status, the transgenic plants generated in 

this study have the ability to serve as “smart plants” and be used as a powerful research 

laboratory tool to: 

a) Sense the Fe-S clusters which play a fundamental role in the electron transport chains 

of chloroplasts and mitochondria; 

b) Identify the impact of elevated CO2, sulfur gases such as H2S and SO2 on the response 

to sulfur deficiency;  

c) Identify plants with enhanced sulfate use efficiency;  

d) Support computer model predictions for the application of S fertilizers.  

 

Additionally, the fact that bidirectional promoters activate the expression of multiple 

genes might be an important tool for plant biotechnology offering an important approach for:  

a) The construction of selection expression vectors co-expressing two genes giving 

different traits on either side of the control region (Beck and Warren 1988);  

b) Generating protein products from two adjacent genes (Banerjee et al. 2013) as using 

two different reporter genes (GFP and GUS);  

c) Optimizing plant genetic engineering by reducing the number of introduced promoters 

to minimize gene silencing (Mitra et al. 2009).     
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Figure 1. Schematic representation of the interruption of the gene X by the DsG element. 
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DsG construct carrying the GUS reporter without promoter; Gene X whose expression is driven by pX promoter. 
The images are not representative of the real size between the elements of the constructs. 

70 
 



Figure 2. GUS reporter gene expression pattern in 718 line (from Lancilli et al., 2008). 
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Plants were grown for 2 weeks in complete (+S: 1500 µM) or sulfate deprived (-S: 0 µM) agar media. GUS 
expression was detected by histochemical assay. The images are representatives of one typical experiment 
repeated 10 times with similar results.  
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Figure 3. Schematic diagrams of the insertion element in 718 and FLAG lines. 

 

 

3A. 718 line: insertion in the intergenic region between the AT1G12030 and the AT1G12040 
genes. 
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3B. FLAG line: insertion in the intergenic region between the AT1G12030 and the 
AT1G12040 gene. 
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440 bp 3400 bp  

 

 

 

 

     Insertion element  

     β-glucuronidase (GUS) gene 

     Neomycin phosphotransferase (NPTII) gene  

     Intergenic region 

The images are not representative of the real size between the elements of the constructs. 
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Figure 4. GUS reporter gene expression pattern in wild-type and in FLAG line plants.  
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The plants were grown in complete (+S: 1500 µM) or without sulfur (-S: 0 µM) media. After 14 days, plants 
were vacuum infiltrated with X-Gluc staining solution and incubated overnight at 37°C. In order to allow the 
visualization of the blue product, chlorophyll was removed from leaves by stepwise replacement of the staining 
solution with ethanol. Plants were finally photographed under a binocular microscope. The images are 
representatives of one typical experiment repeated 10 times with similar results. 
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Figure 5. Sulfur deficiency effect on the expression of the genes flanking the intergenic 
region in the FLAG line. 
 

 

WT FLAG

+S ‐S +S ‐S

GUS

AT1G12030

S16

 

 

 

 

 

 

 

 

 

The photo shows the semi-quantitative RT-PCR analysis of the expression pattern of the GUS, AT1G12030 and 
of the reference gene S16 in wild-type plants (Wassilevskija) and FLAG mutant grown in the absence (-S: 0 µM) 
or presence (+S: 1500 µM) of sulfate for 14 days. The amplification products were visualized under UV light 
after electrophoretic separation on agarose gel 1% (w/v) in 1x TBE buffer supplemented with Ethidiumbromide 
5 mg ml-1. 
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Figure 6.  Relative expression of the GUS, AT1G12030 genes in A. thaliana wild-type and 
FLAG mutant grown for 14 d in the presence (+S) or in the absence (-S) of 1500 µM sulfate 
in the medium. 

 

 

 

AT1G12030

WT
+ S - S

R
el

at
iv

e 
ex

pr
es

si
on

0

2

4

6

8

10

12

14

16

AT1G12030

FLAG
+ S - S

R
el

at
iv

e 
ex

pr
es

si
on

0

2

4

6

8

10

12

14

16

GUS

FLAG
+ S - S

R
el

at
iv

e 
ex

pr
es

si
on

0

2

4

6

8

10

12

14

16

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative expression levels of each gene were referred to a calibrator set to the value 1, which was represented by 
the treatment with the lowest expression.  
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Figure 7. Gradient plates. 
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7B. SO4
2--gradient agar plates (SGAPs: 0-150 µM) added with 50 µM Cd.  
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FLAG line seeds were planted in a line as shown. The picture shows the seedlings 14 days after germination. 
Four SGAPs were prepared for each experiment. The images are representatives of one SGAP from one typical 
experiment repeated two times with similar results. 
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Figure 8A. Relationship between sulfate concentrations and shoot fresh weight.  
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At each point, the shoot fresh weight was measured in 14 representative plants from each plate. The data 
represent means ± SE of two experiments.  

 

 

Figure 8B. A Double-Reciprocal or Lineweaver-Burk Plot. 
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Slope is the value of the K1/2/FWmax ratio; x-intercept represents the value of -1/K1/2.  

77 
 



Figure 9A. Relationship between sulfate concentration and root length. 
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At each point, the root length was measured in 6 representative plants from each plate. The data represent means 
± SE of two experiments.  

 

Figure 9B. A Double-Reciprocal or Lineweaver-Burk Plot. 
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Slope is the value of the K1/2/FWmax ratio; x-intercept represents the value of -1/K1/2.  
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Table 1. Constants describing the relationship between sulfate concentration in the medium 
and shoot fresh weight or root length. 

 

 

      Parameters                         Shoot FW                                       Root length                      
___________________________________________________________________________ 
        FWmax                              0.0026415 g                                            - 

        Lrmax                                            -                                                  5.71 cm 

        K1/2                                    6.86 µM                                           4.70 µM 

        nc                                     130.40 µM                                         89.41 µM 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FWmax is the asymptote of the function   FW ሿൌ   FWౣ౗౮  ሾSOరమష

K½ା  ሾSOరమషሿ
 

 
Lrmax is the asymptote of the function    Lr ሿൌ   L୰ౣ౗౮  ሾSOరమష

K½ା  ሾSOరమషሿ
 

 
K½ represent the concentration of sulfate in the medium at which correspond the half value of either FWmax or 
Lrmax.  
FWmax, Lrmax and K½ were evaluated by the Lineweaver-Burk Plot. 
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Figure 10A. Relationship between sulfate concentration and shoot fresh weight in the absence 
or in the presence of 50 µM Cd.  
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SO4
2--gradient agar plates (black curve) and SO4

2--gradient agar plates added with 50 µM CdCl2 (red curve). At 
each point, the shoot fresh weight was measured in 14 representative plants from each plate. The data represent 
means ± SE of two experiments.  

 

Figure 10B. A Double-Reciprocal or Line weaver-Burk Plot.  
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Slope is the value of the K1/2/FWmax ratio; x-intercept represents the value of -1/K1/2.  
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Figure 11A. Relationship between sulfate concentration and root length in the absence or in 
the presence of 50 μM Cd.  
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SO4
2--gradient agar plates (black curve) and SO4

2--gradient agar plates added with 50 µM CdCl2 (red curve). At 
each point, the root length was measured in 6 representative plants from each plate. The data represent means ± 
SE of two experiments.  

 

Figure 11B. A Double-Reciprocal or Lineweaver-Burk Plot. 

1/[SO4
2- ] (μM-1)

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

1/
 R

oo
t l

en
gt

h 
(c

m
-1

)

0.00

0.05

0.10

0.15

0.20

0.25

‐1/K1/2

R2=0.97

‐1/K1/2

R2=0.99

                                                              

Slope is the value of the K1/2/FWmax ratio; x-intercept represents the value of -1/K1/2.  
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Table 2. Constants describing the relationship between sulfate concentrations in the medium 
added with 50 μM Cd and shoot fresh weight or root length. 

 

 

      Parameters                         Shoot FW                                       Root length                      
___________________________________________________________________________ 
        FWmax                              0.0026506 g                                             -  

        Lrmax                                        -                                                  6.11 cm 

        K1/2                                   14.10 µM                                           4.97 µM 

        nc                                     267.99 µM                                          94.55 µM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FWmax is the asymptote of the function   FW ሿൌ   FWౣ౗౮  ሾSOరమష

K½ା  ሾSOరమషሿ
 

 
Lrmax is the asymptote of the function    Lr ሿൌ   L୰ౣ౗౮  ሾSOరమష

K½ା  ሾSOరమషሿ
 

 
K½ represent the concentration of sulfate in the medium at which correspond the half value of either FWmax or 
Lrmax.  
FWmax, Lrmax and K½ were evaluated by the Lineweaver-Burk Plot. 
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Figure 12. Relative expression of GUS gene in shoot of plants grown at different sulfate 
concentrations in the presence or in the absence of 50 µM Cd. 
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Total RNA was extracted from shoots and the gene expression was assessed by Real Time PCR. SO4
2--gradient 

agar plates (black curve) and SO4
2--gradient agar plates added with 50 µM CdCl2 (red curve). The GUS levels 

were normalized using S16 as an internal standard. The data represent means ± SE of two experiments run in 
quadruplicate (n = 8).  

83 
 



Figure 13. Relative expression of ATG12030 gene in shoot of plants grown at different 
sulfate concentrations. 
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Total RNA was extracted from shoots and the gene expression was assessed by Real Time PCR. The 
AT1G12030 levels were normalized using S16 as an internal standard. The data represent means ± SE of two 
experiments run in quadruplicate (n = 8).  
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Figure 14. Relationship between sulfate concentration and the concentration of GSH in 
FLAG line shoots from plants grown in the presence or in the absence of 50 µM Cd. 
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SO4
2--gradient agar plates (black circle) and SO4

2--gradient agar plates added with 50 µM CdCl2 (red circle). The 
data represent means ± SE of two experiments run in duplicate (n = 4).  
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Figure 15. Activity of GUS in shoots and roots of FLAG line plants grown in the SO4
2--

gradient agar plates in the presence of 50 µM Cd. 
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SAGPs 0-150 mM SO4

2- added with 50 µM CdCl2. After 14 days, plants were vacuum infiltrated with X-Gluc 
staining solution and incubated overnight at 37°C. In order to allow the visualization of the blue product, 
chlorophyll was removed from leaves by stepwise replacement of the staining solution with ethanol. Plants were 
finally photographed. The image is representative of one typical experiment repeated two times with similar 
results. 
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Figure 16. Effect of different sources of sulfur on the expression of the GUS reporter in gene 
718 and FLAG line plants.  
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The plants were grown on agar medium in the presence of different sources of sulfur (-S: medium-S; Cys: 
medium-S supplemented with 1.5 mM; GSH: medium-S supplemented with 1.5 mM GSH; -S: medium-S). After 
14 days plants were vacuum infiltrated with staining solution containing X-Gluc and incubated overnight at 
37°C. In order to allow the visualization of the blue product, chlorophyll was removed from leaves by stepwise 
replacement of the staining solution with ethanol and then photographed under a binocular microscope. The 
images are representatives of one typical experiment repeated two times with similar results. 
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Figure 17. Effect of different sulfate concentrations on shoot fresh weight (A) and on shoot 
NPT levels (B) in 718 and FLAG lines.  
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Plants were grown for 2 weeks in hydroponic solutions at 1, 5, 10 and 100 µM sulfate. 718 line (black bars) and 
FLAG line (grey bars). NPT concentrations were determined by spectrophotometric assays. The data shown in 
the graphs are mean values ± SE obtained in two experiment performed in triplicate (n = 6). Different letters 
indicate significant differences (P < 0.05).  
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Table 3. The activity of the GUS reporter gene in 718 and FLAG lines after histochemical 
staining. 

 

 

                                  1 µM                  5 µM                   10 µM                   100 µM      
___________________________________________________________________________ 
        718 line                ND                     ND                       ND                        ND 

        FLAG line                  Χ                       Χ                         ND                        ND   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Plants were grown for 2 weeks in hydroponic solutions at 1, 5, 10 and 100 µM sulfate. After 14 days, plants 
were vacuum infiltrated with X-Gluc staining solution and incubated overnight at 37°C. In order to allow the 
visualization of the blue product, chlorophyll was removed from leaves by stepwise replacement of the staining 
solution with ethanol. Plants were finally photographed under a binocular microscope. (Χ, GUS activity; ND, not 
detectable). The images are representatives of one typical experiment repeated two times with similar results. 
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Figure 18. Effect of sucrose on the activity of the GUS reporter gene in 718 and FLAG lines  
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The plants were grown in complete (+S: 1500 µM) or without sulfur (-S: 0 µM) media in the presence or in the 
absence of sucrose (1% w/v). After 20 days, plants were vacuum infiltrated with X-Gluc staining solution and 
incubated overnight at 37°C. In order to allow the visualization of the blue product, chlorophyll was removed 
from leaves by stepwise replacement of the staining solution with ethanol. Plants were finally photographed 
under a binocular microscope. The images are representatives of one typical experiment repeated two times with 
similar results. 
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Figure 19. SURE and UPE box within the sequence between the start codon of AT1G12030 
and the insertion site of the element DSG in the FLAG and 718 lines. 
 

 

19A. FLAG line 

..TTTATGCCCTTTTCTTGATTTCTCATCTTCTCGGTGACTTGTGGGATATATATACACGAGTATTAATTATATTAGTGATATG
TTTTCATTATGTTGACA TTGACTTTTTGACGGAGTAAACGACAAAATGTAAAATATGACAACATGATGGTGAA
AAAGGATTAACGGCGTTTTGTGTAACGGAGAAACCCTAAATCCCGTTATTAATTACAGCTTTGGGATATGCTGGCGGAT
TAATTTTAGATTCTCAATTGTTACCACCATATTGTCCAGATCATTCACTTTTAAAAGGATTATATCAGAAAAATAAAATAAT
TAGGCATTTAGTGTTAGTCAATTAATTTTCTTTTAGATTCAGATTTTTAATAACACCTTTGTATATTTTATTTACTTCAAAAA
TTCTGATTAACGGACGCCAACATTTATTA

GAGACT

‐101 ‐105

GAGACT

 

 

 

19B. 718 line 

‐101 ‐105 ‐683 ‐703

TTTATGCCCTTTTCTTGATTTCTCATCTTCTCGGTGACTTGTGGGATATATATACACGAGTATTAATTATATTTAGTGATATG
TTTTCATTATGTTGACA TTGACTTTTTGACGAGTAAACACAAAATGTAAAATATGACAACATGATGGTGAAAA
AGGATTAACGGCGTTTTGTGTAACGGAGAAACCCTAAATCCCGTTAAATTAATTACAGCTTTGGGATATGCTGGCGGAT
TAATTTAGATTCTAATTGTTACCACCATATTGTCCAGATACATTCACTTTTAAAAGGATTATATCAGAAAAATAAAATAAT
AGGCATTTAGTGTTAGTCAATTAATTTTCATTTTTAGATTCAGATTTTTATAACACCTTGTATATTTTATTTACTTCAAAAAT
TCTGATTAACGGACGCCAACATTTATTAACTAACGTCCGTGACAAAGTATCCATAACCAGTTCCAGTTGGAGTAAAAAC
TAAAAAAGCTAGGCACGGTCACGTTACATAGTAGCGCGTGGACACACGTACCGGCAACAAGTTAAATTGTGGTTACCC
GTGGCAAGTTGTGGTCGGATCTTTCGTCTTGTTTTTTTTTTCACATCAGTAGATTTGCTGTACATTCTAAAATCTGATGC
GGAAACCAGAAGTAGTAGAGTAAACCAAACACGTCCAAGTTCAATGAATCTGAAATGCTGTCTAGATTCAATGTATCT
AAAGTTCTTGCAATTAGTAGTTGAATACATTAAACCTTGTACCGCTAATGGCTTCATCCGGATAGAAACTTATCTATTACA
CGTGACGGCACTAGTGTTTGGCTCTGTCTTAGTCATATAAAAAATCTCAAATTCTAACAAATTTCTAAAAAAACTCAAAA
TATTTGTCTACTAAACAAAAATCAAAATCACTACGTTTTCATGATTCTCGTGCATGTGGTTCTATATATAAGATATATCGGA
CTGGTCTGATCTTCTTAACTCTCAAAACCCAGTAGCTCCTCTAGGTTTGAAACTTCTCCTTTGGATTTAGACAGTGACGT
GTTTGAAACACTCTGATCACTAATCACATATATTGAATTTAGTTCTGAATTTTCTGCCACAAATCCACTAATTCCTTAACG
AAGAACTAACTAAATCATTGTAGAACTCTTAAACCTTATGTTGATCTGTTTGACTGACAATTGTGGGTGATTCTTGATTAT
GGATCGTTAAGTTCTTTTACAACTAGAGTGTCTGAAATTGATGAATAAGTGATCCATTTGATTTATTGTACCTACTATGAC
ATGATCGCTTATCTATTTCGAAG  

 

 

 

The arrow indicates the gene AT1G12030 (green) and the box (violet) indicate the DsG element. The SURE 
element is highlighted in red and the UPE box is highlighted in blue; the position of the SURE and UPE box are 
reported with respect to AT1G12030 gene. 
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Figure 20. Schematic diagram of the different chimeric promoter constructs. 35Smp, 35S 
core promoter.  
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          35Smp, 35S minimal promoter 

          β-glucuronidase (GUS) gene 

          Intergenic region 

The images are not representative of the real size between the elements of the constructs. 
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Figure 21. Activity of the GUS reporter gene in the homozygous transgenic plants carrying 
440 bp fragment.  
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Transgenic plants were grown in complete (+S: 1500 µM) or without sulfur (-S: 0 µM) media. After 20 days 
plants were vacuum infiltrated with X-Gluc staining solution and incubated overnight at 37°C. In order to allow 
the visualization of the blue product, chlorophyll was removed from leaves by stepwise replacement of the 
staining solution with ethanol. Plants were finally photographed under a binocular microscope. The images are 
representatives of one typical experiment repeated two times with similar results. 
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Figure 22. Activity of the GUS reporter gene in the homozygous transgenic plants carrying 
440-bp fragment in the presence of 50 µM Cd.  
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Transgenic plants were grown in complete medium in the presence of cadmium (Cd: 50 µM). After 20 days, 
plants were vacuum infiltrated with X-Gluc staining solution and incubated overnight at 37°C. In order to allow 
the visualization of the blue product, chlorophyll was removed from leaves by stepwise replacement of the 
staining solution with ethanol. Plants were finally photographed under a binocular microscope. The images are 
representatives of one typical experiment repeated two times with similar results. 
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Annex 1.  Relationship between the concentration of a nutrient in the shoot and the biomass 
relative yield. 

 

 

Annex 2. Dilution curve for a generic essential nutrient as defined by six nc values determined 
for six plant developmental stages. 
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Annex 3. Gene fusion is a DNA construction in which the coding sequence from one gene 
(reporter) is transcribed and/or translated under the direction of the controlling sequence of 
another gene (controller). (a) Gene structure. (b) Gene fusion. 

 

 

Annex 4. Schematic representation of a synthetic promoter useful for bioindication purposes.  
The core region of the CaMV 35S promoter is fused with a combinatorial engineering of cis-
elements (blue boxes) which, following the interaction with specific transcription factors, 
drives the reporter expression under particular conditions. 
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Annex 5. Reductive assimilatory sulfate pathway in plastid (a) and cytosol (b) of higher 
plants.  
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APS, adenosine 5-phosphosulfate; Cys, cysteine; γ-GluCys, γ-glutamylcysteine; GSH, glutathione; OAS, O-
acetylserine; SO3

2-, sulfite; S2-, sulfide; PAPS, 3-phosphoadenosine 5-phosphosulfate; R-OH, hydroxylated 
precursor. APK, APS kinase; APR, APS reductase; ATPS, ATP sulfurylase; γ -ECS, γ-glutamylcysteine 
synthetase; GSHS, glutathione synthetase; OAS-TL, OAS(thiol)lyase; SAT, serine acetyltransferase; SiR, sulfite 
reductase; SOT, sulfotransferase; SULTR, sulfate transporter. 
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Annex 6. Regulatory pathways and components controlling sulfate transport and metabolism.  
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Annex 7. Composition of the basic nutrient agar solution.  

 
Base medium  

component  concentration 
NH4NO3 (mM)  20.61  

CaCl2 (mM)  2.99  
KNO3 (mM)  18.79  

KH2PO4 (mM)  1.25  
H3BO3 (μM)  100  

Na2-EDTA (μM)  100  
MnCl2 (μM)  100  
ZnCl2 (μM)  29.91  

Fe2(CH4O6)3 (μM)  25  
CoCl2 (μM)  0.11  
CuCl2 (μM)  0.1  

(NH4)6Mo7O24 (μM) 1.03  
KI (μM)  5  

Sucrose (g l-1)  10  
Agar (g l-1)  8  

 

 

 

 

At the basic nutrient solution, MgSO4 and MgCl2 were added in different concentrations to obtain complete 
media (+S), deprived media (-S) according to the following scheme: 

 

 

 

 
Medium MgSO4 (μM) MgCl2 (μM) 

+S 1500 - 
-S - 1500 
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Annex 8. SO4
2--gradient agar plates (SGAPs). Sulfate concentration gradient at the medium 

surface of SGAPs (0–150 µM).  

 

[S042‐ ] µM
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2‐ ‐free medium
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SO4
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a

 

8a. Preparation of SGAPs. A square plastic dish is inclined on a glass bar, and SO4
2--plus medium is 

added. When the medium has solidified, the dish is placed horizontally. Then, SO4
2--free medium is 

poured into the dish from the left end, also covering the SO4
2--plus medium. A gradient of sulfate 

concentration is thus formed at the surface of the medium. The SGAPs contain 1.25% (w/v) agar to 
prevent the Arabidopsis roots penetrating the surface of the medium. 
 

[S042‐ ] µM

0 15 30 45 60 75 90 105 120 135 150

b

 

8b. Growing plants using SGAPs. SGAPs are set vertically and Arabidopsis FLAG line seeds are 
planted in a horizontal line from the left to the right side of the plate respectively from the lowest to 
the highest sulfate concentration. Root growth and shoot biomass are monitored for 14 days after 
germination. 
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Annex 9. Composition of the basic nutrient solution (Hoagland ½) used in the hydroponic 
culture at different concentrations of sulfate.  

 

 
Base medium  

component  concentration 
NH4H2PO4 (mM)  0.5  
Ca (NO3)2 (mM)  2  

KNO3 (mM)  3  
H3BO3 (μM)  46  
MnCl2 (μM)  9  
ZnSO4 (μM)  0.8  

Fe-EDTA (μM)  25  
CuSO4 (μM)  0.3  

(NH4)6 Mo7O24 (μM) 0.1  
 

 

At the basic nutrient solution, MgSO4 and MgCl2 were added in different concentrations to obtain different 
concentrations of sulfate, according to the following scheme: 

 

 
MgSO4 (μM) MgCl2 (μM) 

100 1400 
10 1490 
5 1495 
1 1499 
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Annex 10. cDNA identification of  AT1G12030, GUS and S16 genes. 

10a. List of primers used 

Oligo Sequence Length (bp) Tm (°C) Ta (°C)

UNK for TGTGGGAACACCTGAGGAGC 20 64 
60 

UNK rev TCACTGCCGTTGAAAGCCAC 20 62 

GUS for ATTACGGCAAAGTGTGGGTC 20 60 
58 

GUS rev CAGAAAAGCCGCCGACTTCG 20 64 

S16 for GGCGACTCAACCAGCTACTGA 21 66 
56 

S16 rev CGGTAACTCTTCTGGTAACGA 21 62 

 
UNK = primer for AT1G12030 
 
10b. Reaction mixtures 
 

Reagent µl 

Template DNA 8 

Primer for (10µM) 0.75 

Primer rev (10µM) 0.75 

dNTPs (2.5µM) 2  

GoTaq Flexi buffer 5x 5  

GoTaq Flexi (5u/μl) 0.13 

MgCl2 (25mM) 2  

H2O 6.37 

Total volume 17 µl

 
 
10c. Thermal profile of the reaction 
 
94°C for 2 min, 35 cycles of 94°C for 45 sec (AT1G12030 and GUS genes) and 24 cycles of 

94°C for 45 sec (S16) , 45 sec at a temperature variable in function of the primers, 72°C for 

30 sec (AT1G12030) or 45 sec (S16) or 1 min and 30 sec (GUS). The cycles were followed by 

a final elongation step at 72°C for 30 min. 
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Annex 11. Amplification of the fragments of interest (440 and 1331-bp fragments). 

11a. Strategy of amplification 

1331 for 440 rev 1331 rev

440bp

1331bp 

 

11b. Primers  

11b.1. Primers for amplifying 440-bp 

Oligo  
(with 
XbaI 
site) 

Sequence Length 
(bp) 

Tm  

(°C) 

Ta  

(°C) 

1331 
for 

GATGTCTAGATTTATGCCCTTTTCTTGATTTCT 23 60 60 

440 
rev 

TGCATCTAGATAATAAATGTTGGCGTCCGTTA 22 60 60 

 

bp for Xba I site 

11b.2. Primers for amplifying 1331-bp 

Oligo  
(with 

Hind III 
site) 

Sequence Length 
(bp) 

Tm 
(°C) 

Ta  

(°C) 

1331 
for 

GATGAAGCTTTTTATGCCCTTTTCTTGATTTCT 23 60 60 

1331 
rev 

TGCAAAGCTTCTTCGAAATGAATAAGCGATCA 23 60 60 

 

bp for HindIII site 
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11c. Reaction mixtures 

 

 

Reagent µl 

Template DNA (1:1000) 2 

Primer for (10µM) 0.75 

Primer rev (10µM) 0.75 

dNTPs (2,5µM) 3  

Pfu buffer 10x 2.5  

Pfu (3U/μl) 0.25 

H2O 15.75 

Total volume 23 µl 

 

 

 

11d. Thermal profile of the reaction 
 
 
 
94°C for 2 min, 35 cycles of 94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min and 30 sec . 

The cycles were followed by a final extension step at 72°C for 30 min. 
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Annex 12. pBI101 (12.2 kb). 

 

 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS)RB LB

Hind III
Sph I

Pst I
Sal I

Xba I
BamHI

Sma I

 

  

 Annex 13. 35Smp 

13a. Oligonucleotides of 35Smp 

Oligo Sequence 

Oligo1 CTAGAGCAAGACCCTTCCTCTATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTG 

Oligo2 GATCCAGCGTGTCCTCTCCAAATGAAATGAACTTCCTTATATAGAGGAAGGGTCTTGCT 

  

bp for Xba I site/ bp for BamHI site 

13b. Annealing reaction of oligonucleotides 

Reagent µl 

Oligo 1 (0.1µg/µl) 5 

Oligo 2 (0.1µg/µl) 5  

Total volume 10 µl

 

13c. Thermal profile of the reaction 
 

1 cycle of 70°C for 5 min followed by a cooling step at 22°C for 30 min. 
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Annex 14. Colony PCR. 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS)RB LB
35Smp

pBI for pBI rev

 

 

14a. List of primers used 

 

Oligo  Sequence  (bp) Tm (°C) Ta (°C) 

pBI  for GGCCGATTCATTAATGCAGC 20 60 56 

pBI rev AACGCTGATCAATTCCACAGT 21 60 56 

 

14b. Reaction mixtures 
 

Reagent µl 

Template DNA 2 

Primer for (10µM) 0.75 

Primer rev (10µM) 0.75 

dNTPs (2.5µM) 2  

GoTaq Flexi buffer 5x 5  

GoTaq Flexi (5u/μl) 0.13 

MgCl2 (25mM) 2  

H2O 12.37 

Total volume 25 µl 

 
 
 
14c1. Thermal profile of the reaction 
 
94°C for 2 min, 35 cycles of 94°C for 45 sec, 56°C for 45 sec, 72°C for 45 sec . The cycles 

were followed by a final extension step at 72°C for 30 min. 
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14c2. Thermal profile of the reaction 
 
94°C for 2 min, 35 cycles of 94°C for 45 sec, 56°C for 45 sec, 72°C for 2 min . The cycles 

were followed by a final extension step at 72°C for 30 min. 
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Annex 15. pBI 101.3-35Smp-440 bp. 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

440 bp

440 rev1331for

RB  
 

 

 

 

15a. 440-bp (+) 

1bp 440bp

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

440 bp

440 rev

RB

 
 

 

 

15b. 440-bp (-) 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

440 bp

1331for

440bp 1 bp

RB
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Annex 16. pBI 101.3-35Smp-1331 bp. 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

1331 bp

1331rev1331for

RB  
 

 

 

 

16a. 1331-bp (+) 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

1331 bp

1331rev

RB

1bp 1331bp  
 

 

 

16b. 1331-bp (-) 

 

NOS-Pro NOS-terNPTII (Kan R) NOS-ter β-Glucuronidase (GUS) LB
35Smp

pBI for

1331 bp

1331for

RB

1331bp 1bp  

  

 

 

 

 

 

 

 

110 
 



Annex 17. cDNA identification of AT1G12030, GUS and S16 genes. 

17a. List of primers used 

Oligo Sequence  Length  

(bp) 

UNK for GCAGGTCTCTGCAAGTCTCGAT 22 

UNK rev TCGACCGCCTGATCTCAAAG 20 

GUS for GAAACCCCAACCCGTGAAAT 21 

GUS rev CGAAACGCAGCACGATACG 19 

S16 for CGCCGATCGAGCTTTATCAG 21 

S16 rev CACCAGGACCACCAAACTTCTT 22 

 
UNK = primer for AT1G12030 
 
17b. Reaction mixtures 
 
 

 

Reagent µl 

Template DNA (1:100) 5 

Primer for (10µM) 0.4  

Primer rev (10µM) 0.4  

GoTaq qPCR Master mix 2x 10  

CXR reference Dye 0.2  

H2O 4  

Total volume 20 µl

 
 
 
 
17c. Thermal cycler profile  
 
50°C for 2 min, 95°C for 2 min, 45 cycles of 95°C for 15 sec and of  60°C for 60 sec. The 

cycles were followed by a final dissociation step of 95°C for 15 s, 60°C for 30 s and 95°C for 

15 s. 
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