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1 Introduction 

 1.1 Embryonic stem cells 

Embryogenesis is the first process at the early stage of an individual formation and development. 

The female ovum is fertilized by a spermatozoon, with the consequent formation of a zygote, a 

single diploid cell. It undergoes several mitotic divisions and cellular differentiation, arriving at the 

stage of morula, composed by sixteen cells. Then a fluid-filled cavity forms inside the morula, 

which becomes a blastocyst. Cells initiate to specialize and divide their competencies: the external 

layer is called trophoblast and do not contribute to the proper embryo, forming the fetal part of the 

placenta, umbilical cord and associated structures. Cells remaining inside the cavity form the inner 

cell mass which gives rise to the whole embryo tissues. Cells isolated and put in culture from the 

inner cell mass are pluripotent cells called embryonic stem (ES) cells. Mouse ES cells were derived 

for the first time in 1981 by Evans and Kaufman (Evans and Kaufman, 1981), whereas human ES 

cell lines were established in 1998 by Thomson (Thomson et al, 1998). They have self-renewal 

ability and capacity to differentiate in a variety of cellular populations belonging to the primary 

germ layers: ectoderm, endoderm and mesoderm. They have a high proliferation rate and can be 

kept in culture with unlimited capacity of expansion (Fig.1). 

 

 

 
Fig.1. Embryonic stem cells. ES cells derived from the inner cell mass of a blastocyst. When they are put in culture, 

they are able to differentiate into specialized cell types belonging to all three germ layers (from Understanding Stem 

Cells: An Overview of the Science and Issues from the National Academies). 

http://en.wikipedia.org/wiki/Zygote
http://en.wikipedia.org/wiki/Diploid
http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Morula
http://en.wikipedia.org/wiki/Germ_layer
http://en.wikipedia.org/wiki/Ectoderm
http://en.wikipedia.org/wiki/Endoderm
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ES cells can be used to study stemness, pluripotency and differentiation processes and to generate 

different cellular lineages (Cowan et al, 2004). Affected ES lines or genetically modified ES lines 

can be established in culture and injected into blastocysts to generate chimeric mice, fundamental 

for pathogenesis study (Bradley et al, 1984). Moreover, ES cells have been proposed as a 

therapeutic tool in regenerative medicine. Since cells have several critical issues such as genetically 

instability in culture, easiness to generate teratomas (tumors composed of tissue from the three germ 

layers) and risk of immune rejection upon transplantation in allogenic recipients (Swijnenburg et al, 

2008), the first report of human ES cells usage in the clinic is very recent (Schwartz et al, 2012). In 

this trial the authors treated macular degeneration observing no detrimental effects or rejection. This 

is a still debated point, since ES cells should be an immune-privileged population, usually not 

subjected to rejection due to a down-regulation of the host immune response (Fändrich et al, 2002). 

Finally, the use of human ES cells raises strong ethical questions since their collection leads to the 

destruction of the embryo preventing its further development, whereas once implanted in uterus it 

could produce a human being (Sugarman, 2008). 

 

 1.2 Induced pluripotent stem cells 

To overcome some of the raised issues, alternative lines of study have been developed to obtain 

pluripotent cells starting from adult differentiated cells.  

The somatic cell nuclear transfer (SCNT), for instance, uses the cytoplasm of an enucleated oocyte 

to de-differentiate the nucleus of a somatic cell. The result is the development of a blastocyst by 

which is possible the ES cells collection (Gurdon, 1962). Dolly the Sheep was the first successfully 

cloned mammal using this process (Wilmut et al, 1997). However, this technique is difficult to 

perform, has low efficiency and low probability to successfully obtain normal ES cells. Moreover, 

maternal mitochondria present in oocyte cytoplasm remain (Inoue et al, 2004) and, in a human 

setting, ethical questions are not resolved at all, since lots of oocytes from donor females are 

necessary to perform the technique (Fig.2). 

 

Recently, an alternative approach has been developed with the generation of induced pluripotent 

stem cells (iPSc). They are pluripotent stem cells derived from the reprogramming of somatic cells, 

described for the first time by Takahashi and Yamanaka (Takahashi and Yamanaka, 2006). They 

over-expressed in murine fibroblasts defined transcription factors specific for inducing and 

maintaining stemness characteristics. They found four genes sufficient for the reprogramming 

procedure: POU class 5 homeobox 1 (POU5F1) gene (Oct4), Sex determining region Y (SRY)-box 



7 

 

2 gene (Sox2), Kruppel-like factor 4 gene (Klf4) and v-myc myelocytomatosis viral oncogene 

homolog gene (c-Myc).  

 

Fig.2. Somatic cell nuclear transfer. ES cells can derive from a blastocyst generated in vitro. The nucleus from an 

adult cell (for example a skin cell) is inserted into an egg without the nucleus (from Understanding Stem Cells: An 

Overview of the Science and Issues from the National Academies). 

 

 

iPSc are similar to ES cells for morphology, stemness markers expression, self-renewal and in vitro 

and in vivo differentiation ability. Later on, human iPSc were also generated (Takahashi et al, 

2007). During time, the combination of employed transcriptional factors changed in various ways, 

diminishing or replacing involved genes. For instance, Sox2 can be substituted by Sox1; Klf4 by 

Klf2 and Klf5; c-Myc by N-Myc and L-Myc (Nakagawa et al, 2008, Nagamatsu et al, 2013). 

Furthermore, since over-expression of c-Myc could lead to tumorigenesis because of its role in cell 

cycle progression, apoptosis and cellular transformation, some groups tried to eliminate it from the 

reprogramming cocktail demonstrating that it can be dispensable (Okita et al, 2007, Wernig et al, 

2008). Other reprogramming factors were also tested, such as Lin-28 homolog A gene (Lin28) (Yu 

et al, 2007), Nanog homeobox gene (Nanog) (Park et al, 2008), Glis1 family zinc finger 1 (Glis) 

(Maekawa et al, 2011), BMI1 polycomb ring finger oncogene (Bmi1) (Moon et al, 2011), 

oestrogen-related receptor beta (Esrrb) (Zhang et al, 2008) and Wnt ligands (Wnt3, Wnt6, Wnt8a 

and Wnt10a) (Kim et al, 2010). Reprogramming with only two factors is also possible using Oct4 

and Klf4 (Shi et al, 2008) or Oct4 and Sox2 (Huangfu et al, 2008). Oct4 is found to be the 

indispensable factor for the reprogramming procedure (Kim et al, 2009).  

 

The first induction protocol used to generate iPSc employed a retroviral vector to deliver the
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selected genes. It was an integrating vector in which the majority of viral genes were replaced by 

the desired ones and the backbone was engineered to avoid the replication of the native virus and its 

spread to other cells without any control (Dull et al, 1998). Retroviral vectors show a preference for 

integrating in promoter and enhancer regions of transcriptionally active genes, so their integration 

can influence the expression of adjacent genes (Nienhuis et al, 2006). This situation is determined 

by the structure of the virus, in which its long-terminal repeats (LTRs) contain enhancers and 

promoters and a strong splice donor site. 

Therefore, other systems were developed, such as the engineering of a subclass of retroviral virus: 

lentivirus. They present several advantages over the retroviral system showing a safer integration 

profile (Montini et al, 2006). In particular, the self-inactivating (SIN) setting further improves the 

biosafety of these vectors, lowering the risk of adjacent genes activation by deleting transcriptional 

control elements of the LTRs and by the use of an independent weak-to-moderate internal promoter 

to guide transgenes expression (Zufferey et al, 1998). Then, the insertional mutagenesis safe issue 

was approached by developing vectors that can be excised from the host genome after the 

reprogramming activity, for example by placing loxP or Flp recognition target (FRT) sequences in 

the LTRs to guide the recombination activity mediated by Cre or Flp recombinase, respectively 

(Russ et al, 1996, Ludwig et al, 1996). 

To avoid completely integration-derived risks, other delivery methods were developed. Plasmids 

(Okita et al, 2008), adenoviral vectors (Stadtfeld et al, 2008) or non-integrating viral vectors, for 

example Sendai virus (Ban et al, 2011), carrying the reprogramming genes are unable to integrate in 

the host DNA and remain episomic with only a transient expression of the transgenes. Alternative 

strategies are represented by transposones, such as PiggyBac, that allow the translocation of 

reprogramming genes into the genome (Woltjen et al, 2009). 

Then, small molecules can replace one or two reprogramming factors, such as valproic acid (Shi et 

al, 2008), p53 and retinoblastoma inhibitors (Zhao et al, 2008) or ascorbic acid and a GSK3-β 

inhibitor (Bar-Nur et al, 2014). Finally, recombinant proteins (Zhou et al, 2009), synthetic mRNAs 

(Warren et al, 2010) and microRNAs (Anokye-Danso et al, 2011) were employed, developing 

systems that facilitate their translocation into the target cells. 

 

 1.3 Application of iPSc 

iPSc represent a promising tool for different applications (Fig.3). The most applied and successful 

use is represented by the in vitro disease modelling, since iPSc can be derived from accessible cells 

of patients and differentiated into the affected cellular type, giving the chance to observe their 

characteristics and molecular mechanisms. This procedure allows to avoid invasive procedures to 
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obtain the desired cell types and at the same time to study their development and differentiation 

stages. iPSc were generated from patients affected by amyotrophic lateral sclerosis (Dimos et al, 

2008), spinal muscular atrophy (Ebert et al, 2009), Parkinson’s disease (Soldner et al, 2009), 

cardiovascular diseases (Narsinh et al, 2011), Down syndrome (Park et al, 2008), polycystic kidney 

disease (Freedman et al, 2013), and many more. As a result, the more they recapitulate the diseased 

phenotype, the more efficiently they can be employed as a toxicity and drug screening platform 

(Guo et al, 2011, Matsa et al, 2011, Egawa et al, 2012). The international StemBANCC project was 

formed in 2012 to create and store iPS lines for drug screening (www.stembancc.org). 

Murine iPSc injected into blastocysts can also generate germline-competent chimera mice to 

perform in vivo study of diseases (Okita et al, 2007). 

Furthermore, iPSc represent a hope for the personalized medicine, in the regenerative medicine 

field. iPSc can be obtained from specific individuals and used after gene correction for cell 

replacement in an autologous setting. As proof of principle of the feasibility of the technique, 

various attempts were made in mice, such as treatment of sickle cell anemia (Hanna et al, 2007), 

Parkinson’s disease (Wernig et al, 2008), platelet deficiency (Takayama et al, 2010), diabetes 

(Alipio et al, 2010), and spinal cord injury (Tsuji et al, 2010). The first clinical trial using 

autologous iPSc started in Japan in 2013 for the treatment of age-related wet-macular degeneration 

(Cyranoski, 2013). 

 

 

 

Fig.3. Application of induced pluripotent stem cells. iPSc could be employed to create disease models, to screen 

effective and safe drugs and as a tool of regenerative medicine, to treat patients through cell transplantation therapy 

(from Yamanaka, 2009). 
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 1.4 Gene therapy  

Gene therapy consists in restoring the functionality of a defective gene. Ex vivo approaches have the 

advantage to select the target cells and if necessary expand or differentiate them and transplant them 

back, avoiding the exposure of the patient to the gene transfer vector. Hematopoietic stem cells 

(HSCs) are easily accessible and HSC transplant is a conventional technique, but it requires a 

human leukocyte antigen (HLA)-compatible donor. This need limits the number of patients that can 

benefit from transplantation and forces the use of mismatched donors, with the consequence of 

increasing the intensity of conditioning regiments and post-transplant immunosuppression in order 

to avoid graft rejection and graft versus host disease (GvHD). 

Autologous HSCs gene therapy represents an emerging therapeutic opportunity for several 

monogenic diseases of the blood, to circumvent problems linked to the requirement of compatible 

donors and to the side effects of conditioning, reducing the morbidity and mortality of the transplant 

procedure. Hurdles are related to the requirement of ex vivo culture of HSCs, which are particularly 

vulnerable to prolonged in vitro manipulation and to the gene transfer efficiency, which can 

decrease the long-term reconstitution potential of the infused cells. 

Various efforts have been made to identify the best vector to transfer a wild type (wt) gene in the 

appropriate cell type. Vector-related insertional mutagenic events and unregulated transgene 

expression can lead to oncogenesis, toxicity or elimination of the gene-modified cells. The design of 

low risk integrating systems that can achieve stable expression of corrective genes is fundamental. 

Homologous recombination is the best way to avoid insertional mutagenesis maintaining a stable 

and appropriate gene expression. The defective copy of the target gene is replaced by the correct 

one in the physiological position into the genome, due to a recombination procedure mediated by 

homologous flanking regions included up- and down-stream of the gene into the targeting system 

(Capecchi, 1989). The larger homology sequences are included in the vector, the best efficiency of 

homologous recombination is reached, even if it remains quite low. 

To reach the goal of site-specific gene correction, also other methods have been developed based on 

artificial nucleases, such as zinc finger nucleases (ZFN) (Sebastiano et al, 2011), transcription 

activator-like effector nucleases (TALEN) (Sakuma et al, 2013), and RNA-guided nucleases 

(CRISPR/Cas) (Horii et al, 2013). They provoke DNA double-strand breaks to a pre-selected 

genomic site and, providing a DNA template, the endogenous repair process seals the break 

including the exogenous sequence. The risks are the disruption or the editing of the original 

sequence with a non-homologous end joining and off-target breaks that can lead to structural 

genome rearrangements, in addition to the very low efficiency. For these reasons their use is still 

under investigation. Moreover, they can correct only small mutations into the genome, because of 



11 

 

their intrinsic characteristics, while in a lot of genetic diseases the problems reside in large deletion 

of the DNA sequence. Hence, bacterial artificial chromosomes (BAC) that have been used since 

1992 to carry large portions of DNA (Shizuya et al, 1992), presently represent the best tool to 

obtain homologous recombination in pluripotent cells (Howden et al, 2011). 

 

iPSc could be an alternative source of cells for production and gene correction of hematopoietic 

cells. iPSc have an easily accessible cell source, obtainable without invasive procedures and can be 

expanded indefinitely providing an unlimited supply of immunologically matched cells. They allow 

overcoming problems of primary cells gene targeting, in fact the feasibility to perform gene 

targeting is greater for their tolerance to homologous recombination. They are continuously 

proliferating and easily transfected and can be selected and expanded to obtain a homogeneous 

population in which 100% of the cells are genome edited. The proof of principle of the feasibility of 

the clinical application was provided by the successful treatment of sickle cell anemia in a mouse 

model by transplantation of gene-corrected iPSc (Hanna et al, 2007). 

One of the main issues is the need of a correct cellular differentiation into the desired cell type that 

must be efficient, reproducible and safe. 

 

 1.5 Development of the murine hematopoietic system 

  1.5.1 The hematopoietic system 

Hematopoiesis is the process by which all the different blood cellular populations are generated and 

continuously maintained. It is a hierarchical system at the top of which are rare stem cells (less than 

one out of 10
5
 bone marrow cells) preserving self-renewal ability and multipotent differentiation 

capacity (Orkin and Zon, 2008, Weissman and Shizuru, 2008). Through various cell divisions they 

give rise to multipotent progenitors, which have lost self-renewal ability, and then to oligopotent 

lineage committed progenitors increasingly restricted in a stepwise manner, which produce all 

terminally differentiated cells (Fig.4) (Spangrude et al, 1998).This classification was subsequently 

refined with newly identified intermediate populations and modifications in the branching scheme.  

The definition of HSCs is functional: they are endowed with the ability to reconstitute the entire 

blood system of a lethally irradiated recipient (long-term repopulating assay), thus showing in vivo 

their self-renewal and multipotency capacity (Coulombel, 2004). In vitro assays demonstrate the 

differentiation ability of the progenitors, but do not measure HSCs activity. To isolate these cells 

different strategies were developed, mostly based on cell surface marker cytofluorimetric analysis, 

even if different laboratories often use slightly different combination of markers for their definition 
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(Purton and Scadden, 2007). Hematopoiesis has been characterized in the mouse, which is 

considered as a model for human development (Tavian and Peault, 2005).  

 

 

Fig.4. The hierarchical model of hematopoiesis. HSC has a long-term capacity to self-renew and to differentiate into 

all the hematopoietic lineages. HSCs originate multipotent progenitors which in turn branch in two lineages: lymphoid 

and myeloid. Common myeloid progenitors (CMP) produce megakaryocyte-erythrocyte progenitors (MEP), which 

generate platelets and erythrocytes, and granulocyte-monocyte progenitors (GMP), which provide granulocytes and 

macrophages. CMP also produce myeloid-derived dendritic cells. Multipotent progenitors can also give rise to MEP in 

a direct way. B, T, NK cells and plasmacytoid dendritic cells are obtained from common lymphoid progenitors (CLP). 

DC, dendritic cell; EP, erythrocyte progenitor; GP, granulocyte progenitor; MacP, macrophage progenitor; MkP, 

megakaryocyte progenitor; NK, natural killer (adapted from Seita and Weissman, 2010). 

 

HSCs, as other stem cells, are negative for markers typical of the various differentiated lineage  

(Lin
-
) and express the markers Kit oncogene (c-Kit) and Stem cell antigen 1 (Sca1), defining the 

expression LKS. Going deeper in the classification, they lack the expression of CD34 (Osawa et al, 

1996) and CD135 (Flk2) (Adolfsson et al, 2001), while multipotent progenitors acquire expression 

of CD34 and multipotent progenitors further downstream in the hematopoietic tree express both 

markers (Yang et al, 2005). Of note, CD34 assumes differential expression according also to the age 

of mice, as it is expressed by HSCs in mice younger than 8 weeks (Matsuoka et al, 2001). To 

further identify HSCs there is also a combination of markers called signalling lymphocyte 

activation molecule (SLAM): CD150
+
, signaling lymphocytic activation molecule family member 1 

(Slamf1), natural killer cell receptor 2B4 (CD244
-
) and CD48

-
, (Kiel et al, 2005). Subsequently it 
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has been reported that CD150
+
 CD48

-
 signature is sufficient. At last, due to their common 

developmental origin, endothelial cells and HSCs co-express CD31, prominin-A (CD133), cadherin 

5, type 2 (VE-cadherin) (Taoudi et al, 2005), vascular endothelial growth factor (VEGF) receptor 

and Tie2 (Rafii et al, 2002). As for the surface markers that characterize HSCs during the 

embryonic development, integrin, alpha 2b (CD41) is a temporal restricted marker of nascent HSCs 

(Fig.5) (Robin et al, 2011). It is only re-expressed in some lineage-committed progenitors and 

megakaryocytes (Bertrand et al, 2005). Emerging HSCs do not express the pan-hematopoietic 

marker Protein tyrosine phosphatase, receptor type C (CD45), but it is acquired during time and 

characterizes all the adult hematopoietic cells (Mikkola et al, 2003, Medvinsky et al, 2011).  

 

At the onset of the hematopoietic system there are two proliferative waves: primitive and definitive. 

The first provides short-lived transitory populations of red blood cells to the developing embryo, to 

satisfy the short need of the embryonic growth when definitive specialized niches have not yet 

developed. The second wave, partially overlapping in time of origin, develops from permanent 

HSCs having the adult characteristics and being capable of long-term multilineage repopulation (de 

Bruijn et al, 2000, Dzierzak and Speck, 2008). 

 

  1.5.2 Primitive hematopoiesis 

Hematopoiesis develops in multiple sites of the embryo depending on its stage of development 

(Fig.5). During the first phase of gestation, cells of the embryo undergo an epithelial-to-

mesenchymal transition, giving rise to mesoderm and definitive endoderm. Then mesodermal 

precursors called hemangioblasts commit to blood cells. They are rare common progenitors of 

primitive erythrocytes and endothelial cells, identified by the fetal liver kinase 1 (Flk1) marker. 

They colonize the first hematopoietic organ, the yolk sac, which belongs to the associated structures 

of the embryo, deriving from trophoblast together with placenta and umbilical cord and it is formed 

of extra-embryonic endoderm and mesoderm (Kinder et al, 1999, Medvinsky et al, 2011). 

Hemangioblasts migrate there around day 7 after fertilization, in murine gestation, and produce the 

first primitive hematopoietic cells, which express low levels of CD41 and lack expression of CD43 

and CD45 which are expressed later during maturation (Moore and Metcalf, 1970, Moore et al, 

1994, Lessard et al, 2004). They are lineage-restricted and give rise to primitive erythroid 

precursors expressing embryonic globins and, once established the circulatory system, to 

myeloerythroid progenitors (Palis et al, 1999). 
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Fig.5. Hematopoietic sites. Representation of all hematopoietic sites in embryo at 11.5 days after fertilization 

(Medvinsky et al, 2011). 

 

  1.5.3 Definitive hematopoiesis 

Definitive HSCs, the only ones able to reconstitute an irradiated host, arise at day 10.5 from the 

aorta-gonad-mesonephros region (AGM) (Medvinsky and Dzierzak, 1996, Dzierzak and Speck 

2008). This embryonic organ originates at day 9.5 from the para-aortic splanchnopleura, located at 

the caudal portion of the embryo deriving from the combination of the lateral plate mesoderm with 

the adjacent endoderm layer. AGM comprises dorsal aorta, genital ridges and mesonephros 

(Medvinsky et al, 1993, Cumano et al, 1996). Hematopoietic cells are found on the ventral wall of 

the dorsal aorta where aortic endothelial cells convert into hematopoietic cells, and blood flow 

contributes to the signals necessary for their development (de Bruijn et al, 2002, North et al, 2009, 

Rybtsov et al, 2011). This endothelial-to-hematopoietic transition occurs from hemogenic 

endothelium giving rise to distinct clusters of hematopoietic cells (Antas et al, 2013).  

Long-term reconstituting cells from AGM express c-Kit, CD31 and CD34, with low levels of CD45 

and Mac-1 (CD11b) (Sanchez et al, 1996). Definitive HSCs expand upon the expression of sonic 

hedgehog (Shh), VEGF and bone morphogenetic protein 4 (BMP4), essential to regulate the 

generation of hematopoietic lineage, but not for the endothelial one (Damert et al, 2002, Hochman 

et al, 2006, Walmsley et al, 2008). At day 12.5 AGM diminishes the capacity to generate stem cells. 

At day 11 definitive HSCs are found in extra-embryonic arteries (de Brujin et al, 2000, Gordon-

Keylock et al, 2013). Also yolk sac has definitive hematopoietic stem/progenitors which can mature 

into adult HSCs, but, since the circulation is established in the meanwhile, it is possible that they 

are derived from the AGM and then migrate into the yolk sac: their real origin and their site of 

maturation remain elusive (Yoder et al, 1997, McGrath et al, 2003). Subsequently these cells 

migrate towards placenta around day 11, another hematopoietic site (Ottersbach and Dzierzak, 

2005). Placenta derives at day 8.5 from the fusion of the chorionic ectoderm with the allantois, 

mesodermal tissue that emerges at day 7.5 from the posterior end of the embryo (Rossant and Cross, 

2001). Then, HSCs move to fetal liver from day 11.5 through 14.5, and undergo a rapid and
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massive expansion losing the expression of CD41 marker (Takeuchi et al, 2002, Robin et al, 2011). 

The liver remains a hematopoietic site for up to two weeks after birth (Kamps and Cooper, 1982). 

At day 18 cells from fetal liver colonize the adult hematopoietic sites: bone marrow, spleen, thymus 

and lymph nodes, although bone marrow represents the primary niche of the stem cell compartment. 

The functional properties of HSCs (multilineage potential, self-renewal and engraftability) appear 

gradually during development and the surface markers used to identify them are not consistent with 

the embryonic ones (Cumano and Godin, 2007). 

 

Adult HSCs reside in the bone marrow medulla within an organized structure composed by 

different type of cells, which sustain the HSC characteristics. This niche is formed by an 

osteoblastic and a vascular part. The first is a specialized stromal microenvironment located near 

the endosteum and composed of osteoblasts, bone forming cells derived from mesenchymal stem 

cells, with the task to maintain HSCs quiescence and their correct number (Calvi et al, 2003, Zhang 

et al, 2003). The inactive state is maintained through numerous signaling pathways and adhesion 

molecules like the membrane bound Stem Cell Factor (mbSCF) on osteoblasts which connect to the 

c-Kit receptor on HSCs (Czechowicz et al, 2007, Thorén et al, 2008). HSCs emerge from the 

hemogenic endothelium and the early hematopoietic microenvironment is composed of endothelial 

cells. This association is maintained also into the adult bone marrow, since the niche is formed also 

by a vascular part with sinusoidal endothelial cells (Kiel et al, 2005, Medvinsky et al, 2011).  

 

  1.5.4 In vitro differentiation 

The idea of setting the correct culture conditions to obtain HSCs in vitro dates back three decades 

ago. The first attempts were made to generate cystic multilayered structures called embryoid bodies 

(EBs) that recapitulate the early embryo (Doetschman et al, 1985). Upon culturing ES cells in 

suspension, they aggregate in spheroid containing all the three primary germ layers and can be 

forced to differentiate to the hematopoietic lineage upon specific stimulation of the mesoderm at the 

expense of the other two layers. EBs can give rise to colony forming cells (CFC) containing c-Kit
+
, 

CD45
+
 and CD41

+
 cells by adding cytokines in various combinations such as stem cell factor 

(SCF), fms-related tyrosine kinase 3 ligand (Flt-3 ligand), interleukin 3 (IL-3), interleukin 6 (IL-6), 

granulocyte colony stimulating factor (G-CSF), and thrombopoietin (TPO) (Wiles and Keller, 

1991). BMP4 increased the clonogenic efficiency and the multilineage potential (Mitjavila-Garcia 

et al, 2002, Chadwick et al, 2003). Attempts of transplantation into irradiated hosts were done with 

the resulting cells and they contributed to both the myeloid and lymphoid lineages, even if without 
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being so fully differentiated to HSCs to home correctly to the bone marrow and give rise to long-

term engraftment (Burt et al, 2004). 

Another method to obtain hematopoietic lineages from pluripotent cells without the EBs step is the 

co-colture with different stromal cell lines, such as ST-1 (Tsai et al, 1986) or osteopetrotic 9 (OP9) 

(Nakano et al, 1994). The first is a fibroblastoid cell line which derived from a long-term liquid 

culture of human fetal liver cells and it was demonstrated to support hematopoiesis in vitro by 

producing macrophage colony stimulating factor (M-CSF) and IL-6 and, upon treatment with IL-1, 

also producing granulocyte-macrophage colony stimulating factor (GM-CSF) and G-CSF. The 

second line was established from bone marrow stromal cells of an osteopetrotic mouse, op/op 

mutant, which is deficient in M-CSF expression. These cells were chosen because high amount of 

M-CSF inhibits the differentiation to other hematopoietic lineages than myeloid (Choi et al, 2012). 

With this culture system Flk1
+
 cells can be obtained and then erythrocytes, B-lymphocytes, 

megakaryocytes, natural killer and dendritic cells in presence of erythropoietin (EPO) (Nakano et 

al, 1994), IL-7 and Flt3L (Cho et al, 1999; Vandekerckhove et al, 2011). To obtain T lymphocytes 

are necessary OP9 cells expressing delta-like ligand 1 (OP9-DL1), a ligand of Notch (Schmitt et al, 

2004). Other stromal cell lines were chosen among the ones which sustain hematopoiesis in vivo 

and modulate the hematopoietic lineage progression. For instance, supporting cells derived from the 

AGM maintain HSCs in culture (Kusadasi et al, 2002), fetal liver-derived stromal cells favour the 

generation of hematopoietic cells with increased homing capacity (Qiu et al, 2005) and primary 

endothelial cells promote the hematopoietic differentiation of pluripotent stem cells towards the 

hemogenic endothelium expressing pro-angiogenic factors and extracellular matrix components 

involved in specification and maintenance of hemato-endothelial identity (Rafii et al, 2013). 

However, despite all extensive efforts made, in vitro efficient differentiation of transplantable HSCs 

from pluripotent stem cells (ES or iPSc) is still a great challenge. The reason resides in both 

technical and knowledge deficiencies: we lack a complete understanding of the physiological 

pathways that regulates HSCs emergence and development, and we cannot reproduce completely 

the steps and the microenvironments involved in these processes. More likely is to obtain progenitor 

cells or primitive hematopoiesis, which emerge first, dominate the culture and may inhibit the 

development of definitive hematopoiesis. Multistep protocols more closely reproduce the in vivo 

developmental conditions, with culture conditions changing at particular time points.  

The only way described until now, in fact, provides strong manipulation of the cells by over-

expressing transcriptional factors. The first example is the use of homeobox transcription factor 4 

(Hoxb4), followed by its partner caudal type homeobox 4 (Cdx4), because of its implication in self-

renewal of definitive HSCs (Kyba et al, 2002, Wang et al, 2005). It was delivered by a retroviral 
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vector into ES derived EBs cultured on OP9 cells. The authors employed an inducible construct in 

order to avoid undesirable effects on hematopoietic differentiation upon the constitutive expression 

of the transgene. They obtained in vitro and in vivo hematopoiesis, including engraftment and 

multilineage differentiation in irradiated recipients. 

Alternative genes were also tested, such as LIM-homeobox transcription factor 2 (Lhx2) (Kitajima 

et al, 2011), or the combination of GATA binding protein 2 (Gata2), Growth Factor Independent 1B 

(Gfi1b), FBJ murine osteosarcoma viral oncogene homolog (cFos), and Ets variant 6 (Etv6) (Pereira 

et al, 2013) that induce hematopoietic cells through endothelial precursors. The next goal should be 

the transgene-free differentiation to avoid all related safety issues and afford a more physiological 

differentiation pathway, characteristics required for clinical applications. 

 

 1.6 Osteopetrosis disease 

Osteopetrosis is a severe inherited disorder leading to an increased bone mass caused by defects in 

the resorbing activity of osteoclasts. HSC transplantation is the only therapeutic option for this rare 

bone disorder. Few patients have access to a HLA-identical donor, therefore they could 

significantly benefit from the use of autologous corrected cells able to reconstitute the 

hematopoietic system. For this reason, the transplant of autologous gene-corrected iPSc 

differentiated into HSCs could be an alternative strategy.  

 

  1.6.1 Bone organization 

Bone is a highly specialized tissue forming the skeleton in association with cartilage. It is divided 

into an organic phase made mostly of type I collagen and an inorganic phase containing ions in the 

form of hydroxyapatite (Boskey, 1989). Throughout life, bones undergo a constant renewal through 

a coordinated balanced work of destruction and reconstruction, by osteoclast and osteoblast cells 

respectively, known as bone remodeling. This is a dynamic physiological process, which allows the 

maintenance of the bone architecture, quality and strength (Teitelbaum and Ross, 2003). 

Osteoclasts are giant fused multinucleated cells containing 3 to about 30 nuclei per cell. They have 

pleomorphic mitochondria, great number of vacuoles and lysosomes and well developed 

membranes of the Golgi apparatus. The region of attachment to the bone, the sealing zone, is made 

of F-actin cytoskeletal filaments disposed in a ring oriented perpendicular to the bone surface, 

forming podosomes or focal contacts. The part responsible for the resorption activity, which forms 

within this sealing zone in close contact with the bone matrix, is the ruffled border, a cell membrane 

with numerous interdigitations, which increase the surface area facing the space of resorption, the 

resorption lacuna (Fig.6) (Martin and Sims, 2005). 
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Fig.6. Osteoclast differentiation and structure. Schematic representation of osteoclast differentiation from HSCs, and 

its principal structures (modified from Pangrazio et al, 2011). 

 

Osteoclasts activity consists in proteolytic enzymes secretion and activation of a large number of 

vacuolar proton pumps that secrete HCl, resulting in the low pH required for dissolution of the 

mineralized matrix (Roodman et al, 1991). Lysosomal enzymes, such as tartrate-resistant acid 

phosphatase (TRAP) and β glucuronidase, or not-lysosomal enzymes, such as cysteine proteinase 

cathepsin K (CTSK) and metal-matrix proteinase 9 (MMP9) cut the organic phase (Drake et al, 

1996). They are active at low pH and carbonic anhydrase II (CAII) is the enzyme responsible to 

produce the protons that acidify the environment. It catalyzes the conversion of CO2 and H2O to 

H2CO3, which then dissociates into H
+
 and HCO3

-
 (Kenny, 1985). The H

+
 ions are carried to the 

resorption lacuna by the vacuolar H
+
 ATPase proton pump, while the HCO3

-
 ions are extruded via 

exchange with Cl
-
 ions, transported there by chloride channels ClC7, a pump that dissipates the 

membrane potential generated (Fig.6) (Schlesinger et al, 1997). Parathyroid hormone (PTH) and 

prostaglandin E2 (PGE2) increase the acid secretion, while calcitonin decreases it. Osteoclasts 

remove the degraded material through transcytosis and disrupt it through lysosomes (Suda et al, 

1992). 
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A complete cycle of remodeling in humans lasts four months, with 20-30 days for resorption and 

three months to bone formation. Osteoblasts are mononuclear cells responsible for bone 

reconstruction, have cuboidal shape with wide Golgi apparatus and endoplasmic reticulum, 

characteristics, indicating high levels of protein synthesis. They secrete type I collagen, osteocalcin, 

osteopontin, osteonectin and large amounts of calcium and phosphate. After the reconstruction 

activity, they die by apoptosis or differentiate into osteocytes (Manolagas, 2000). 

 

Osteoblasts originate from mesenchymal stem cells, which differentiate into osteoprogenitors, then 

into pre-osteoblasts and finally into osteoblasts (Ducy et al, 2000), while osteoclasts derive from 

myeloid precursors belonging to the hematopoietic lineage (Martin and Sims, 2005). Osteoclast 

differentiation is supported by bone marrow stromal cells, early cells of the osteoblastic lineage 

(Rodan and Martin, 1981). Osteoblasts express receptor activator of nuclear factor kappa-B (NF-

kB) ligand (RANKL) which bounds to the RANK receptor on the membrane of myeloid cells. This 

binding induces the expression of NF-kB and the production of M-CSF which stimulates the 

monocyte specification and is involved in the survival of mature osteoclasts by preventing apoptosis 

and increasing cell mobility (Fuller et al, 1993). Moreover, the axis RANKL-RANK is able to 

initiate the formation, fusion, activation and polarization, as well as resorbing activity of osteoclasts 

(Woo et al, 2000). RANKL is the necessary and sufficient factor for osteoclastogenesis induction. 

Osteoblasts secrete osteoprotegerin (OPG), a receptor decoy for RANKL, which acts as inhibitor of 

the osteoclasts fusion and differentiation (Fig.6) (Lacey et al, 1998). 

 

  1.6.2 Different forms of osteopetrosis 

Osteopetrosis is a heterogeneous group of rare genetic bone conditions of increased bone mass, 

which is caused by defects in the balanced activity of bone remodeling. They are genetically and 

phenotypically heterogeneous, presenting as autosomal dominant osteopetrosis (ADO), intermediate 

autosomal osteopetrosis (IAO) and autosomal recessive osteopetrosis (ARO). ADO, known as 

Albers-Schönberg disease, is usually the most benign form of adult-onset, characterized by the 

occurrence of multiple fractures and osteomyelitis, IAO presents with some bone abnormalities, 

visual and hearing impairment associated with mild anemia, and ARO, also called infantile 

malignant osteopetrosis, shows the most severe phenotype presenting soon after birth (Stark and 

Savarirayan, 2009). We have addressed our studies to the severe recessive form. 

 

ARO has an incidence of 1:250,000 in the general population, however has a considerably higher 

incidence in specific geographic regions (Fasth, 2009). It is a life-threatening disease caused by a 
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defect in the resorbing activity of osteoclasts, which results in defective bone resorption and excess 

of bone mineralization. The generalized increased bone density leads to decreased bone strength, 

with the risk of multiple fractures causing deformities and inflammation, because of their difficulty 

to heal. Patients show growth retardation, macrocephaly, eye protrusion, dental abnormalities with 

delayed tooth eruption, hypocalcemia and secondary hyperparathyroidism (da Silva Santos et al, 

2009). Bone sclerosis leads to neurological defects due to inappropriate cranial foramina formation. 

As a result, patients experience compression of nerves and spinal cord leading to progressive 

blindness and deafness, increased intracranial pressure and hydrocephalus (Steward, 2003). In 

addition, the lack of bone resorption causes progressive narrowing of the medullary cavity, resulting 

into anemia, thrombocytopenia and compensatory extramedullary hematopoiesis in spleen and liver, 

with consequent hepatosplenomegaly and recurrent infections usually in infancy (Gerritsen et al, 

1994). The onset of ARO is perinatal and without treatment the prognosis is severe (Villa et al, 

2009). 

Osteopetrotic patients can be distinguished in “osteoclast-rich” cases characterized by the presence 

of normal or increased number of multinucleated osteoclasts unable to resorb bone and “osteoclast-

poor” forms in which osteoclasts are absent (Villa et al, 2009). The “osteoclast- poor” forms are due 

to defects in differentiation of osteoclasts, as examples for mutations in RANK (Guerrini et al, 

2008) or in its ligand RANKL (Sobacchi et al, 2007). On the contrary, the “osteoclast-rich” forms 

are due to defect in the acidification of the resorption lacuna or in the formation of the ruffled 

border, disrupting indispensable elements for the osteoclasts functionality (Venta et al, 1991).  

 

  1.6.3 Genetics of ARO 

Genetic analysis of human ARO started in 2000 and a variety of mutations in seven different genes 

were found during years, describing approximately 80% of patients (Fig.7) (Villa et al, 2009). 

The most frequently mutated gene is TCIRG1 (T cell immune regulator 1), encoding for the a3 

subunit of the vacuolar-type proton transporting ATPase pump (V-ATPase) (Frattini et al, 2000). A 

variety of mutations have been reported, including deletions, insertions, nonsense, missense, and 

splice-site mutations, also in the 5' untranslated region (UTR) (Sobacchi et al, 2001, Pangrazio et al, 

2012). The V-ATPase pump is a multimeric protein composed by a V1 complex and a membrane-

spanning V0 domain. V1 subunit is involved in ATP hydrolysis, while the V0 part is responsible for 

proton pumping (Qin et al, 2012). TCIRG1 encodes for the a3 subunit, the major component of the 

V0 complex, one of the four tissue-specific a subunits, also called 116-kDa subunits. The a3 is 

highly expressed in late endosomes, lysosomes and in the plasma membrane during osteoclasts 

differentiation. In bone-resorbing osteoclasts, it is responsible for H
+
 production (Toyomura et al, 
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2003). V-ATPase interacts with actin during ruffled-border formation, probably with a bound 

mediated by a3 subunit (Lee et al, 1999).  

Another frequently mutated gene is CLCN7 (chloride channel 7) that encodes for the Cl
-
/H

+
 

exchanger Chloride Channel 7 (CLC7). The mutations are missense or nonsense and cause a wide 

spectrum of phenotypes, from severe to mild form. Primary neurological symptoms, like retinal 

degeneration and cerebral atrophy, can also appear (Graves et al, 2008). 

CLC7 is stabilized on the lysosomal membranes by CLC7-osteopetrosis-associated transmembrane 

protein 1 (OSTM1) complexes. OSTM1 is a type I transmembrane protein with ubiquitin binding 

activity (Leisle et al, 2011). Mutations in this gene prevent ruffled-border formation causing 

osteopetrosis “osteoclast-rich” (Chalhoub et al, 2003) and lysosomal pathology (Pressey et al, 

2010). This form of ARO is extremely severe because of the dramatic degeneration of central 

nervous system. Patients suffer from neurodegeneration, optic atrophy, microcephaly, cortical 

atrophy (Pangrazio et al, 2006).  

Another molecule, pleckstrin homology domain-containing family M member 1 (PLEKHM1) 

protein, localized on lysosomes is implicated in vesicular trafficking. Mutations cause protein loss 

of function provoking a mild form of osteopetrosis (Van Wesenbeeck et al, 2007). 

Mutations in sorting nexin-10 (SNX10) have been associated with an “osteoclast-rich” ARO that 

closely resembles the one caused by TCIRG1 mutations (Aker et al, 2012). In fact, PX domain of 

SNX10 interacts with the V1 subunit of V-ATPase (Chen et al, 2012). 

The last two genes identified as responsible for ARO are associated to “osteoclasts-poor” forms: 

tumor necrosis factor (TNF) ligand superfamily member 11 (TNFSF11), also known as RANKL, 

and TNF receptor superfamily member 11A (TNFRSF11A), known as RANK. They encode for the 

osteoclastogenic cytokine and its receptor, respectively (Nakagawa et al, 1998, Takayanagi 2012). 

 

 

 

Fig.7. Distribution of molecular defects in ARO patients. All the seven genes identified as responsible for ARO are 

represented with the percentages of patients affected (Sobacchi, personal communication). 
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Molecular diagnosis is fundamental for the classification and has important clinical implications for 

the treatment of the disease.  

 

  1.6.4 Treatment of osteopetrosis 

The only available treatment for osteopetrosis is HSC transplantation, a technique performed since 

the early 1980s, due to the hematopoietic origin of osteoclasts (Coccia et al, 1980). This approach 

has important limitations, discovered during years of clinical practice. Patients affected by ADO do 

not usually undergo to HSC transplantation because of the high risk of conditioning. Moreover, 

“osteoclast-poor” ARO due to RANKL mutations cannot be cured by HSC transplantation, as this 

protein is expressed by osteoblasts and stromal cells (Guerrini et al, 2008). For this disease, the 

treatment option tested in a preclinical study is the pharmacological administration of a synthetic 

form of the soluble cytokine RANKL (Lo Iacono et al, 2012). 

For the “osteoclasts-rich” osteopetrosis, transplantation leads to the prevention and reversion of 

symptoms such as osteosclerosis and extramedullary hematopoiesis if performed as early as 

possible before the onset of the clinical signs. Irreversible defects, such as progressive 

neurodegeneration typical of CLCN7 and OSTM1 osteopetrosis, or hearing and visual impairment 

due to intracranial nerve compression, can be prevented but not reversed once they have occurred 

(Steward, 2003). 

The success of transplantation depends on good engraftment of donor cells, which is strongly 

limited by the need for a compatible donor. In fact the main complications in the allogenic HSC 

transplantation are rejection and GvHD, occurring when donor T cells recognise and attack host 

cells. These severe complications depend on the degree of HLA mismatch, donor and recipient sex 

and age disparity, cell source and conditioning regimen intensity (Ferrara, 1995). A decade ago, 

using HLA-identical donors the success percentage was about 73%, while with HLA-related donors 

was about 43% (Driessen et al, 2003). During the years the technique has greatly improved. With 

HLA-identical donors the 5-year disease-free survival rate is now estimated at 88%, while with 

HLA-matched unrelated donors is at 80%. Nevertheless, this rate is evaluated only at 66% for 

patients transplanted with HLA-haploidentical donor. Moreover, engraftment complications are the 

most frequent cause of death and increase with the patient’s age, in fact patients treated after the age 

of 10 months frequently undergo to serious complications (Schulz, 2013). 

Severe complications were also frequently observed when alternative stem cell sources are used, 

such as T cell depleted HSCs from HLA-haploidentical donors or cord blood from unrelated donors 

(Schulz et al, 2002). Complications include rejection, delayed hematopoietic reconstitution, venous 

occlusive disease, pulmonary hypertension and hypercalcemic crisis (Steward et al, 2004).  
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The earlier the patients undergo HSC transplantation, the better is their outcome, with significant 

improvement in the quality of life. To this end, a different approach had been proposed in an 

osteopetrosis mouse model, in which HSC transplantation is performed directly into the uterus, the 

earliest time-point in which the administration of hematopoietic cells can prevent the clinical 

manifestation. This approach prevents the onset of rejection, GvHD and osteopetrotic disease before 

birth (Frattini et al, 2005, Tondelli et al, 2009). Therefore the same method should be taken into 

consideration also for patient’s treatment. A prenatal diagnosis of osteopetrosis could open the 

possibility to perform HSC transplantation before birth, as already reported for other genetic 

diseases (Wengler et al, 1996, Pirovano et al, 2004).  

 

  1.6.5 Osteopetrosis murine models 

Several murine models have been used to study the ARO disease, both spontaneous mutant mice 

and engineered knockout mouse models. They reproduce the osteoclast defects observed in human 

ARO, involving the same mutated genes. 

The ones which mimic the “osteoclasts-rich” osteopetrosis are the engineered complete knockout 

for Tcirg1 gene (Li et al, 1999), the spontaneous oc/oc model (osteosclerotic), carrying a deletion of 

the first three exons of Tcirg1 (Scimeca et al, 2000); the complete knockout of Clcn7
 
gene showing 

bone and neurological defects (Kornak et al, 2001); the spontaneous gl/gl (grey lethal) mutant 

carrying a mutation in Ostm1 gene showing severe osteopetrosis together with primary retinal and 

neuronal degeneration, as reported in patients (Chalhoub et al, 2003); and the rat ia/ia (incisor-

absent) model having a truncating mutation in Plekhm1 gene (Van Wesenbeeck et al, 2007). 

The mouse models recapitulating the “osteoclasts-poor” osteopetrosis are the complete knockout of 

RANKL (Kong et al, 1999), the engineered tles/tles (toothless) mouse bearing a point mutation in 

RANKL (Douni et al, 2012), and the complete knockout of RANK (Li et al, 2000), all well 

mimicking the corresponding form of osteopetrosis observed in human. 

 

In the present work, we have addressed our studies on the spontaneous oc/oc mouse model 

presenting severe growth retardation, thickened bones and reduced medullary cavity. Due to the 

lack of a3 protein, V-ATPase pump is present on endosomal compartment, but it is absent at the 

level of plasma membrane, causing a defect in the acidification of the resorption lacuna. Affected 

mice show severe osteopetrosis with typical radiologic and histological characteristics and die two 

to three weeks after birth (Fig.8) (Scimeca et al, 2000). The hematopoiesis is altered, with increased 

myelomonocytic differentiation in bone marrow, liver and spleen and blocked B-lymphoid 
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differentiation. As patients, they experience high susceptibility to infections, probably due to 

immunological alterations (Blin-Wakkach et al, 2004). 

 

 

 

Fig.8. Osteosclerotic bone in oc/oc mouse model. Radiographic images of a normal mouse (wt, on the left) and an 

osteosclerotic one (oc/oc, on the right) (Scimeca et al, 2000). 

  

The oc/oc mutant mouse represents a good model to a deeper understanding of the cellular basis of 

the ARO disease and as a tool to evaluate new therapeutic approaches to be applied in future to the 

human clinical setting. 
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2 Aim of the project 

 

ARO is a severe inherited disorder leading to an increased bone mass caused by defects in the 

resorbing activity of osteoclasts. Among the heterogeneous group of osteopetrosis, ARO shows the 

most severe phenotype, leading to death early in life if not treated. The mouse model oc/oc well 

recapitulates the disease features. HSC transplantation is the only treatment so far available to cure 

the disease, however its success is limited to the restricted number of available matched donors. 

Thus, the transplant of autologous corrected hematopoietic cells represents an attractive alternative 

therapeutic strategy to exploit. In particular, due to the limitations in performing gene correction of 

primary cells, the generation of iPSc from patients who do not have access to a HLA-identical 

donor could allow site-specific genetic correction by homologous recombination followed by 

differentiation towards hematopoietic progenitors and autologous transplantation. 

In the present thesis, I have exploited iPSc as a potential source of cells able to in vitro and in vivo 

differentiate into functional osteoclasts resorbing bone. To this end, I have performed the following 

strategy: (a) generation of iPSc from murine wt and oc/oc fibroblasts; (b) correction of oc/oc iPSc 

replacing the mutated gene through homologous recombination, by using a BAC engineered vector 

with a genomic region encompassing the entire Tcirg1 gene coding sequence and its flanking 

regulatory sequences; (c) set up a protocol for the differentiation of wt, uncorrected and corrected 

oc/oc iPSc into hematopoietic precursors; (d) further differentiation of obtained myeloid precursors 

into very specialized cells such as osteoclasts, demonstrating their rescued resorbing activity upon 

gene-correction. The process is aimed at generating transplantable hematopoietic cells, including 

osteoclast precursors, with the final goal of transplanting them in the ARO mouse model oc/oc to 

revert the phenotype, thus providing a proof of principle for an autologous cell therapy approach to 

treat ARO.  
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3 Methods 

 

 3.1 Reagents 

- DMEM: Dulbecco's Modified Eagle Medium (DMEM, Sigma-Aldrich), 20% fetal bovine serum 

(FBS, BioWithttaker), 100 U/ml penicillin and streptomycin (P/S, 10000 U/ml penicillin and 10000 

U/ml streptomycin, Lonza), 2 mM L-glutamine (200 mM in 0.85% NaCl solution, Lonza); 

- ES medium: Knock out Dulbecco's Modified Eagle Medium (KO-DMEM, Gibco), 20% 

embryonic stem cell fetal bovine serum (ES-FBS, Gibco), 100 U/ml P/S, 2 mM L-glutamine, -

mercaptoethanol (Gibco), 1X non-essential amino acids (100X, Gibco); 

- Freezing medium: 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich), 90% FBS; 

- MACS buffer: 0.5 % bovine serum albumine (BSA, Merck), 2 mM ethylenediaminetetraacetic acid 

(EDTA, Fluxa) in 1X phosphate buffered saline (PBS, EuroClone); 

- PBS FACS: 2 % FBS, 1 mM EDTA in 1X PBS;  

- Carnoy’s fixative: methanol (Merck):glacial acetic acid (Merck) 3:1; 

- TBST: 20 mM Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl, Fluxa) pH 7.4, 0.15 

M NaCl (Merck), 0.05 % Tween-20 (Sigma-Aldrich); 

- Washing buffer: 0.2% BSA, 0.05% Tween in 1X PBS; 

- Perm buffer: 5% FBS, 0.5% Triton (Sigma-Aldrich) in 1X PBS; 

- TLB solution: 1M Tris pH 8.3, 0.5 M EDTA, 20%SDS, 5M NaCl; 

- TE buffer: 10 mM Tris pH 8.0, 1 mM EDTA. 

 

 3.2 Procedures 

  3.2.1 Mice 

wt C57BL/6 CD45.1 mice, B6C3Fe a/a-Tcirg1oc/J CD45.2 (oc/oc) mice and non-obese diabetic-

scid IL2rγ(null) (NSG) mice were purchased from Charles River or Jackson Lab. oc/oc CD45.1 

mice were obtained after crossing of congenic CD45.1 with oc/oc animals. Animal care and 

experimental procedures were performed in accordance with ethical rules by the institutional review 

board. 

 

  3.2.2 Cells culture 

3.2.2.1 Mouse embryonic fibroblasts isolation 

Mouse embryonic fibroblasts (MEFs) were derived from wt C57BL/6 CD45.1 E13.5 embryos. 

They were collected in a 100-mm tissue culture dish containing PBS and sterilized with P/S diluted 

http://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
http://en.wikipedia.org/wiki/Tris
http://en.wikipedia.org/wiki/EDTA
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in PBS. Using sterile scissors, the placenta, heads and intra-abdominal organs were discarded. 

Remaining tissues were washed in PBS, minced with dissecting scissors and suspended in 0.5 ml 

Trypsin-EDTA (200 mg/L Versene (EDTA), 170000 U/L trypsin, Lonza) per embryo. The 

suspension was transferred into 50 ml conical tube and incubated in 37°C water bath for 10 

minutes. Cell aggregates were dissociated by vigorous pipetting. Trypsin-EDTA was inactivated 

with DMEM and the suspension was filtered using a 40 µm membrane filter. After a centrifugation 

at 1500 rpm for 5 minutes, pellet was resuspended in 1 ml DMEM per embryo and plated into 100-

mm tissue culture dishes containing 7 ml DMEM. Cells were incubated at 37°C, 5% CO2 until 

confluence. Next, they were transferred into 150-mm tissue culture dishes. After cells were 

trypsinized and centrifuged at 1200 rpm for 10 minutes, pellet was resuspended in 1 ml freezing 

medium per cryovial.  

 

   3.2.2.2 Feeder layer preparation 

MEFs were used as feeder cells for iPSc after they were inactivated by 10 μg/ml Mitomycin C 

(Sigma-Aldrich) for 3 hours. Tissue culture plates were prepared by coating them with gelatin 

solution 0.1% (Gelatin Type B from bovine skin, Sigma-Aldrich). Gelatin solution was obtained by 

adding 500 mg of gelatin to 500 ml of distilled water and sterilizing it by filtration using a 0.22 µm 

membrane filter. Gelatin solution was warmed before use, plated and immediately aspirated. Plates 

were left open to dry up completely. After 3 hours MEFs cells were washed twice with PBS and 

incubated with Trypsin-EDTA for 5 to 10 minutes, collected by gentle pipetting, centrifuged at 

1200 rpm for 10 minutes and seeded on gelatin-coated tissue culture plates (2500 cell/cm
2
). Plates 

were incubated overnight at 37 °C, 5% CO2 before plating iPSc.  

 

   3.2.2.3 Murine fibroblasts isolation 

oc/oc fibroblasts were obtained from tale biopsy. The latter was sterilized with P/S diluted in PBS 

and transferred into a plate where it was minced with dissecting scissors. They were collected with 

1.5 ml DMEM and plated in a 35-mm tissue culture dish. When fibroblasts grew, pieces were 

discarded and cells were cultured until 80% confluency. At this point they were transferred by 

Trypsin-EDTA into 100-mm tissue culture dish as described before (§3.2.2.1). 

 

  3.2.3 Transduction 

Cells were collected and counted. 2x10
5
 cells were plated into a 6-well plate and incubated for 6 

hours. Lentiviral vector carrying reprogramming genes (provided by Dr. Luigi Naldini’s group) was 

added to plate at 1 multiplicity of infection (MOI) with 4 ng/ml polybrene (Sigma-Aldrich). Cells 



28 

 

were incubated overnight. The following day the medium was replaced and after 48 hours cells 

were collected and seeded onto MEFs feeder layer. Murine cells were plated with ES medium 

supplemented with 10
3
 U/ml leukemia inhibitor factor (LIF, Millipore) added fresh every time. Half 

of the medium was changed every other day. 

 

  3.2.4 iPSc picking 

iPS-like colonies were detected 4 weeks later and individually picked. 50 µl Trypsin-EDTA was 

distributed in 96-well plate and a pipet tip set at 5 µl was wet with Trypsin-EDTA. Using this tip, 

colonies were picked from the fibroblast layer and transferred into plate. After 10 minutes, cells in 

the colonies were dissociated by pipetting up and down and cell suspension was transferred on 

MEFs feeder layer into 24-well plates with ES medium supplemented with LIF. Half of the medium 

was changed every other day. Then they were transferred into gelatin-coated 6-well plates with 

mitomycin-inactivated MEFs and then into 100-mm plates until the stabilization of the line. Cells 

were frozen as previously described with freezing medium (§3.2.2.1). 

 

  3.2.5 Lipofection 

2x10
5
 cells were plated into a gelatin-coated 6-well plate with mitomycin-inactivated MEFs in 2 ml 

ES medium without P/S but supplemented with LIF and were incubated for 4 hours. Two 1.5 ml 

microcentrifuge tubes were prepared with 100 µl Opti-MEM Reduced Serum Medium (Invitrogen) 

without P/S and serum. In one tube 2 µg plasmid DNA carrying Cre recombinase cDNA (Dr. Luigi 

Naldini’s group) was added, while in the other tube 6 µg Lipofectamine 2000 (Invitrogen) was 

added in a 1:3 ratio (pDNA:Lipofectamine 2000). Reagents were incubated 5 minutes at RT, then 

were mixed and incubated 20 minutes at RT. The suspension was added to cells. After an overnight 

incubation at 37°C and 5% CO2, medium was replaced with ES medium supplemented with LIF. 

After a week, iPSc were sub-cloned at a limiting dilution. To separate iPSc from feeder layer cells, 

they were trypsinized and left 10 minutes in a low attachment Petri dish with 8 ml ES medium. 

MEFs adhered more rapidly than iPSc and when medium was collected they remained into the 

Petri. Then cells were put in a 15 ml collection tube for 10 minutes and MEF, which were bigger, 

precipitated. 7 ml was transferred in a new tube and centrifuged at 1200 rpm for 10 minutes. Cells 

were plated at the limiting dilution of 0.3 cell per well into 5 gelatin-coated 96-well plates with 

mitomycin-inactivated MEFs with 50 µl ES medium supplemented with LIF. The following day 50 

µl ES medium supplemented with LIF was added and then medium was changed every other day. 

When colonies grew they were transferred into different plates according to the numbers of cells. 
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  3.2.6 Alkaline phosphatase staining 

iPSc were cultured into a gelatin-coated 6-well plate with mitomycin-inactivated MEFs. Medium 

was aspirated and cells were fixed with 4% paraformaldehyde (PFA, Sigma-Aldrich) for 2 minutes. 

Cells were washed with TBST. Reagents from Leucocyte Alkaline Phosphatase Kit (Sigma-

Aldrich) were mixed: Fast Red Violet (FRV) with Naphthol AS-BI phosphate solution and water in 

a 2:1:1 ratio (FRV:Naphthol:water). 1 ml obtained solution was added to cells and incubated into 

the dark for 15 minutes at RT. 1 ml TBST was added to wash cells and then was replaced with PBS. 

 

  3.2.7 Karyotype 

iPSc were cultured into a 100-mm tissue culture dish and incubated with 0.1 μg/ml colchicine 

(KaryoMAX colcemid solution, Life Technologies) for 2 hours at 37°C, 5% CO2. Cells were 

washed with 2 ml PBS and treated with 2 ml Trypsin-EDTA. Medium, PBS and Trypsin-EDTA 

were collected in a 15 ml conical tube, which was centrifuged at 1200 rpm for 10 minutes. 

Supernatant was discarded gently using a pipet tip set at 1000 µl and pellet was resuspended in the 

remaining volume. Then, 1 ml of a solution containing 75 mM KCl (Fluxa) pre-warmed at 37°C 

was added drop by drop. During 5 minutes and 30 seconds 7 ml KCl was added drop by drop and 

then cells were centrifuged at 1200 rpm for 10 minutes. Supernatant was discarded gently and 1 ml 

Carnoy’s fixative (prepared fresh every time and frozen at -20°C) was added drop by drop. Pellet 

was resuspended vigorously and 7 ml Carnoy’s fixative was added drop by drop. Cell suspension 

was stored for 45 minutes at -20°C and then centrifuged at 1200 rpm for 10 minutes. Supernatant 

was discarded gently and 8 ml fixative was added drop by drop. Cell suspension was stored for 30 

minutes at -20°C and then centrifuged at 1200 rpm for 10 minutes. Cells were washed twice with 

fixative and pellet was resuspended in an adequate volume of fixative. 20 μl suspension was 

dropped on a Histo-bound charged slide (Marienfeld) into 2 spots and slide was exposed to water 

vapor for 5 seconds. Slide was aged overnight at room temperature and the following day was 

mounted by using Vectashield mounting medium with 4,6-diamidino-2-phenylindone (DAPI) 

(Vector Laboratories) for G-banding. Slide was scored under an Olympus BX61 Research 

Microscope equipped with a cooled CCD camera. Images were captured and analysed with Applied 

Imaging Software CytoVision (CytoVision Master System with Karyotyping & FISH). 

 

  3.2.8 Immunofluorescence 

iPSc were cultured on MEFs cells plated onto 0.1% gelatin-coated round cover slides put in 24-well 

tissue culture plates until they reached the desired confluence. Then, cells were washed with PBS 

and fixed with 500 µl 4% PFA in PBS for 15 minutes into the dark. After 2 washes with 500 µl 
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washing buffer, cells were permeabilized and blocked with 500 µl perm buffer for 1 hour at RT. 

Then, cells were washed with 500 μl washing buffer and primary antibodies were added overnight 

at 4°C (or 1 hour at room temperature) at the described dilutions listed in Tab.1. The following day 

cells were washed 3 times with 500 µl washing buffer. Secondary antibodies at the concentration 

reported in Tab.1 were added for 1 hour at RT into the dark. Cells were washed four times with 500 

µl washing buffer. DAPI, 1:50000 diluted in water, was added for 5 minutes at RT into the dark. 

Cells were washed with water and air dried into the dark. Round cover slides were picked up and 

mounted on Histo-bound charged slides with 5 µl ProLong Gold antifade reagent (Life 

Technologies). After 30 minutes at RT into the dark, slides were stored at -20°C. Images were 

acquired by an Olympus FluoView1000 confocal microscope. 

 

Rabbit anti-Nanog Novus Biologicals 1:100 

Rabbit anti-Sox2 Abcam 1:200 
Rabbit anti-Oct4 Abcam 1:200 

Mouse anti-SSEA-1 Cell signalling 1:200 
Mouse anti-AFP R&D 1:50 

Rabbit anti-Brachyury Abcam 1:100 
Mouse anti-Nestin Abcam 1:100 

Goat anti-rabbit IgG (H
+
L) AlexaFluor488 conjugated Invitrogen 1:2000 

Goat anti-mouse IgG (H
+
L) AlexaFluor488 conjugated Invitrogen 1:2000 

 

Tab.1. Antibodies utilized for immunofluorescences. 

 

  3.2.9 In vitro differentiation assay 

Following the hanging drop method, EBs were formed plating 1500 cells in each 20 μl drop. After 2 

days EBs were collected and seeded on gelatin-coated coverslips in 24-well plates in ES medium 

without LIF. After 5 days of culture an immunofluorescence (§3.2.8) was performed on part of the 

cells using antibodies against Alphafetoprotein (AFP) and Brachyury. The remaining cells were 

treated with retinoic acid (Peprotech) to allow the differentiation towards ectoderm. After 19 day of 

culture an immunofluorescence was performed using an antibody against Nestin. The antibodies 

specifications are listed in Tab.1.  

 

  3.2.10 Teratoma formation assay 

iPSc were trypsinized, separated from MEFs by magnetic beads (§3.2.14), and counted. For 

injection 5x10
6
 cells were resuspended in 100 µl PBS and loaded into a syringe. Each NSG mouse 

received 2 subcutaneous injections over the flanks. After about 4 weeks tumors grew up and were 

dissected. Mice were sacrificed by carbon dioxide inhalation. Nodules were separated from other 

tissues and put in PBS. They were fixed with 4% PFA and then embedded in paraffine for 
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hematoxylin and eosin staining by Dr. Scanziani’s group (Pathology Department, University of 

Milan) (§3.2.27). 

 

  3.2.11 Gene Correction 

The BAC contig RP24-241G10 belonging to the RPCI-24 C57BL/6J mouse BAC library was 

purchased from Children's Hospital Oakland Research Institute (CHORI) and engineered by Gene 

Bridges for the insertion of a neomycin resistance cassette. It was inserted in 241G10 BAC in intron 

10 of Tcirg1 gene, surrounded by FRT sites. 2x10
5
 iPS cells were plated into a gelatin-coated 6-

well plate on a DR4 resistant MEFs (Applied StemCell) in 2 ml ES medium without P/S but 

supplemented with LIF and were incubated with 1 µg BAC overnight at 37°C, 5% CO2 in presence 

of Lipofectamine-2000. The following day 200µg/ml G418 neomycin (Sigma-Aldrich) was added 

to select the resistant clones. After about 9 days neomycin resistant colonies were successfully 

isolated and expanded. 

 

  3.2.12 Elimination of the BAC resistance cassette  

In order to excise neomycin resistance cassette, pCAG-Flpe plasmid (Addgene) was transfected 

overnight in the presence of Lipofectamine 2000. After a subcloning at a limiting dilution, clones 

were expanded in 2 different plates. In one G418 was added to identify the clones that had 

successfully lost the neomycin resistance cassette, while from the other plate the corresponding 

clones were isolated and further expanded.  

 

  3.2.13 FISH assay 

Fluorescence in situ hybridization (FISH) is a cytogenetic technique able to localize the presence of 

specific DNA sequences or chromosomes. Briefly, the sample was prepared as for karyotype assay 

and a specific probe tagged with a fluorophore was applied to chromosomes. On iPSc metaphases 

the entire BAC was used as a probe, 20 to 30 images were analysed for each clone. The assay was 

performed by Dr. Paolo Vezzoni’s group (Department of Human Genome, CNR). 

 

  3.2.14 iPSc purification from feeder cells 

In order to avoid possible MEFs contamination in PCR analysis, all clones were purified with anti-

SSEA-1 (stage-specific embryonic antigen-1) magnetic beads (Miltenyi Biotec) accordingly to kit 

instructions and passaged 3 times on gelatin-coated plates without feeder layer before collecting 

genomic DNA and RNA for analysis. In detail, cells were dissociated to single-cell suspension, 
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counted and centrifuged at 1500 rpm for 10 minutes. Cells were resuspended in 80 µl MACS buffer 

and 20 µl anti-SSEA-1 beads were added. Cells were mixed and incubated for 15 minutes at 4°C to 

allow specific binding. Cells were washed with 2 ml buffer, centrifuged at 1500 rpm for 10 minutes 

and resuspended in 500 µl buffer. MS column was placed in the magnetic field of a MACS 

Separator and rinsed with 500 µl buffer. Cells were applied onto the column and magnetically 

labeled cells were retained, while unlabeled cells run through. Cells were washed 3 times with 500 

µl buffer and then column was removed from the separator and placed on a 15 ml collection tube. 

To elute SSEA-1 positive cells, 1 ml buffer was added and flushed out pushing a plunger into the 

column. 

 

  3.2.15 PCR reactions 

   3.2.15.1 Mouse colony genotyping 

Mice were genotyped by PCR on genomic DNA from tail biopsies. Mice were enumerated with ear 

punches, or by toes tattoos in case of 1-3 days-old pups, using a Neo9 neonate Rodent tattooing 

system (Aims). Tail biopsies were digested by 15 μl Proteinase K enzyme in a 250 μl TLB solution 

at 56°C for about 2 hours. Upon dissolution of the tails, 250 μl isopropanol (Merk) was added and 

samples were centrifuged at 13200 rpm for 10 minutes. 250 μl of cold 70% ethanol was added to 

the pellet, and samples were centrifuged at 13200 rpm for 10 minutes. After air drying at 56°C, 

pellets were solubilized in TE buffer. DNA samples were stored at 4°C. PCR reaction to genotype 

the mouse colony was performed with Taq polymerase (Biotools) with thermal profile and primers 

listed in Tab.2.  

Temperature Time # cycles 

95°C 5’ 1 
95°C 30’’ 

40 60.5°C 30’’ 

72°C 

 

 

30’’ 

 

 

72°C 5’ 1 

4°C forever  
 

oc/oc Forward 

primer 

GGC CTG GCT CTT CTG AAG CC 600 nM 

 Reverse 

primer 

CCG CTG CAC TTC TTC CCG CA 600 nM 

wt  Forward 

primer 

TCA TGG GCT CTA TGT TCC GG 400 nM 

 Reverse 

primer 

GAA GGC GCT CAC GGA TTC GT 400 nM 
 

Tab.2. Thermal profile, sequences and concentrations of primers of PCR reaction for mouse colony genotyping. 

 

   3.2.15.2 Correct BAC homologous recombination verification 

PCR reactions were performed for detection of HIS3 and CM(R) sequences into the genome of 

iPSc. After the iPSc purification from feeder cells (§3.2.14), cells were collected into a 1.5 ml 
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microcentrifuge tube and centrifuged at 6000 rpm for 5 minutes. Pellet was washed in PBS and 

centrifuged at 6000 rpm for 5 minutes. Supernatant was discarded and pellet was stored at -20°C. 

DNA was extracted with QIAamp DNA Mini kit (Qiagen) according to the manufacturer’s 

instructions. Briefly, pellet was resuspended in 200 μl PBS, 20 μl Proteinase K and 200 μl buffer 

AL and cells were incubated for 10 minutes at 56°C. 200 μl 100% ethanol (Merck) was added and 

sample was transferred into a spin column. Column was washed with 500 μl buffer AW1 and buffer 

AW2. Sample was centrifuged at 13200 rpm for 3 minutes. DNA was eluted in 200 μl water and 

stored at -20°C. PCR reactions were performed with AccuTaq (Sigma-Aldrich) thermal profiles and 

primers listed in Tab.3. 

Temperature Time # cycles 

95°C 5’ 1 

95°C 30’’ 
40 58°C 30’’ 

72°C 

 

 

30’’ 

 

 

72°C 5’ 1 
4°C forever  

 

HIS3 Forward 

primer 

AGC ACT CGA TCT TCC CAG AA 800 nM 

 Reverse 

primer 

TTC AGT GGT GTG ATG GTC GT 800 nM 

CM(R) Forward 

primer 

TCC GGC CTT TAT TCA CAT TC 600 nM 

 Reverse 

primer 

TCG TCG TGG TAT TCA CTC CA 600 nM 
 

Tab.3. Thermal profile, sequences and concentrations of primers of PCR reactions for the verification of correct BAC 

homologous recombination. 

 

   3.2.15.3 Expression of Tcirg1 gene 

RNA was extracted from cell pellets with trizol method. 1 ml TRIzol Reagent (EUROzol, 

EuroClone) was added to a pellet, cells were lysed by pipetting up and down and incubated at RT 

for 5 minutes. 200 μl chloroform (AnalaR) was added and tube was shaked vigorously. After 

incubation at RT for 3 minutes, sample was centrifuged at 12000 g for 15 minutes at 4°C. 

Chloroform precipitated with protein and DNA, while RNA remained in the upper aqueous phase 

that was removed and placed into a new tube. 500 μl isopropanol (Merck) was added and tube was 

incubated at RT for 10 minutes. Sample was centrifuged at 12000 g for 15 minutes at 4°C. 

Supernatant was discarded and 1 ml 75% ethanol was added. Tube was vortexed to wash RNA and 

then centrifuged at 7500 g for 5 minutes at 4°C. Superrnatant was discarded and pellet was air dried 

without drying it completely. RNA pellet was resuspended in 50 μl RNase-free water and incubated 

at 55°C for 10 minutes. RNA was placed on ice and quantified by Nanodrop. 1 μg RNA was 

utilized for retrotranscription using QuantiTect Reverse Transcription Kit (Qiagen), according to 

manufacturer’s procedure. cDNA was stored at -20°C. Reverse transcriptase PCR was performed 

with thermal profile previously indicated in Tab.2 with only wt forward and oc/oc reverse primers. 
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  3.2.16 Differentiation to the hematopoietic lineage 

To form EBs the hanging drop method was followed. 800 cells were placed in a 20 μl drop of 

culture medium without LIF. At day 2 plates were turned and EBs were transferred into plates 

adding cytokines to induce differentiation (50 ng/ml m-BMP4 (R&D), 50 ng/ml m-SCF 

(PeproTech), 50 ng/ml h-Flt3L (PeproTech), 10 ng/ml m-IL-3 (PeproTech), 10 ng/ml m-IL-6 

(PeproTech), 10 ng/ml m-GM-CSF (PeproTech), 3 U/ml h-EPO (R&D)). At day 4 and 8 fresh 

medium was added with the same cytokine cocktail except for m-BMP4, since this protein was 

needed only for initial mesoderm induction. Fluorescence-activated cell sorter (FACS) analyses 

were performed every day from 8 to 12 of culture in most experiments.  

 

  3.2.17 Colony forming cell assay (CFC) 

Cells from iPSc differentiation culture were seeded (40000 cells/ml) into semi-solid methylcellulose 

(MethoCult Media 3234, Stem Cell Technologies). They were centrifuged at 1200 rpm for 5 

minutes. 1.85 ml methylcellulose was added to a round bottom tube. Methylcellulose was stored in 

aliquots at -20°C and thawed when needed. Cells resuspended in 150 μl IMDM and 5X cytokines 

(Tab.4) with 1X P/S resuspended in 500 μl IMDM were added to methylcellulose, to reach a final 

total volume of 2.5 ml containing 1X cytokines.  

 

hEPO 3 U/ml R&D 

mSCF 20 ng/ml PeproTech 
mIL-6 10 ng/ml PeproTech 

mIL-3 10 ng/ml PeproTech 
mTPO 10 ng/ml PeproTech 

hFlt3L 20 ng/ml PeproTech 

mGM-CSF 10 ng/ml PeproTech 
 

Tab.4. Cytokines used for CFC assay. 

 

Cells were resuspended slowly with a 2.5 ml syringe with a blunt end needle. 2.2 ml was taken with 

the syringe and plated dividing the volume into two 35-mm tissue culture dishes to obtain 

duplicates. Plates were incubated for 7-10 days, then colonies were observed and counted by optical 

microscope. Burst forming unit-erythroid colonies (BFU-E) derive from an immature progenitor of 

the erythroid lineage with high proliferative capacity, which gives rise to more than 200 

erythoblasts in a single or multiple clusters. Colonies appears large, hemoglobinized (red or brown 

coloured) and single cells are difficult to distinguish. Colony forming unit-monocyte colonies 

(CFU-M) originate from a mature, myeloid-committed progenitor with limited proliferative 

capacity that give rise at least to 20 macrophage cells, typically more. Colonies are small, organized 
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in a single cluster and composed of colourless round cells. Colony forming unit-monocyte-

granulocyte colonies (CFU-GM) arise from an earlier progenitor able to differentiate in both 

lineages. Colonies can contain thousand of cells in single or multiple clusters. Colony forming unit-

granulocyte-erythrocyte-monocyte-megakaryocyte colonies (CFU-GEMM, also called mixed) 

derive from a multilineage immature progenitor and contain erythroblasts and cells of myeloid 

lineages. Colonies are large, with red clusters mixed with colourless cells. 

 

  3.2.18 FACS staining 

Cells were collected, counted and centrifuged at 1200 rpm for 10 minutes. Cells were incubated for 

30 minutes on ice with the chosen antibodies (Tab.5) diluted in 100 µl PBS FACS, then washed 

with 2 ml PBS FACS and centrifuged at 1500 rpm for 5 minutes. Cells were resuspended in 150 μl 

PBS FACS, transferred into a FACS tube and kept on ice. LSR Fortessa or FACSCanto II equipped 

with Diva software (BD) were used for data acquisition and FlowJo software (Tree Star) was 

employed to analyze data. Cell sorting was performed using a FACS Aria I, with a fluidic upgrade 

to the version III, (BD Biosciences) equipped with Diva software, and data were analyzed using 

FlowJo. Sorted cells were collected in FBS and centrifuged, and then resuspended in medium for 

culture. 

anti-CD4 FITC conjugated 1:100 eBioscience 

anti-CD8 FITC conjugated 1:100 eBioscience 
anti-CD11b FITC conjugated 1:100 eBioscience 

anti-CD11b AlexaFluor488 conjugated 1:100 eBioscience 

anti-CD19 PE conjugated 1:100 eBioscience 
anti-CD41 eFluor450 conjugated 1:50 eBioscience 

anti-CD45 PerCP conjugated 1:1000 BD 
anti-CD45 PE-Cy7 conjugated 1:500 eBioscience 

anti-CD45.1 FITC conjugated 1:200 eBioscience 
anti-CD45.2 eFluor450 conjugated 1:100 eBioscience 

anti-cKit PE conjugated 1:100 eBioscience 

anti-cKit eFluor780 conjugated 1:100 eBioscience 
anti-Gr-1 eFluor780 conjugated 1:200 eBioscience 

anti-Sca1 PE conjugated 1:100 eBioscience 
anti-Sca1 APC conjugated 1:100 eBioscience 

anti-SSEA1 AlexaFluor647 conjugated 1:50 eBioscience 

 

Tab.5. Antibodies used for FACS staining. APC, allophycocyanin; Cy, cyanin dye; FITC, fluorescein isothiocyanate; 

PE, phycoerythrin; PerCP, peridinin chlorophyll protein. 

 

  3.2.19 Cytospin 

From CFC assay, some colonies were individually picked with a micropipette and diluted into a 

PBS 10% FBS solution. Cells were centrifuged at 1800 rpm for 10 minutes and residual 

methylcellulose was removed by vacuum aspiration. Cells were resuspended in 150 μl PBS 2% 

FBS. Cytospin cassette was prepared with a Histo-bound charged slide and cellular resuspension 
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was loaded into it. Cells were centrifuged at 800 g for 5 minutes. Slide was then stained with May-

Grunwald/Giemsa staining (§3.2.20). 

 

  3.2.20 May-Grunwald/Giemsa staining 

May-Grunwald solution (Carlo Erba) was diluted 1:3 in water and added to slides for 7 minutes. 

Then it was discarded and added to slides a second time for 7 minutes. It was discarded and Giemsa 

solution (Carlo Erba) diluted 1:10 in water was added to slides for 18 minutes. It was discarded and 

slides were immerged in tap-water and then in distilled water to eliminate salts. Slides were air 

dried and mounted with Eukitt mounting medium (Sigma-Aldrich). 

 

  3.2.21 Osteoclast differentiation protocol 

CD45
+
 cells were purified from iPSc derived hematopoietic cells by magnetic beads as previously 

described (§3.2.14) and were cultured for a week in Minimal Essential Medium Alpha Modification 

(αMEM, Gibco), 10% FBS, 100 U/ml P/S, 2 mM L-glutamine in presence of 20 ng/ml m-SCF 

(Peprotech) and 100 ng/ml m-M-CSF (Peprotech). Then cells were transferred on plastic or on 

dentine slices (Osteosite, iDS, Pantec) and cultured in the same medium supplemented with 20 

ng/ml m-M-CSF and 30 ng/ml m-RANKL (Peprotech). After 5-10 days osteoclasts on plastic were 

fixed and stained with TRAP assay (Sigma-Aldrich: acid phosphatase, Leukocyte) accordingly to 

kit instructions, while dentine slices were stained with 1% Toluidine Blue for 3 minutes and then 

washed in water. The same protocol was pursued with oc/oc or wt mice freshly-isolated splenocytes 

or BM cells, after purification of CD11b
+
 (instead of CD45

+
) cells by magnetic beads. 

 

  3.2.22 Actin ring staining 

Cells were washed with warm PBS and then fixed with citrate solution (Sigma-Aldrich):acetone 

(Merk):37% formaldehyde (Merk) 2:4:1 30 seconds at RT. After a wash in water, DAPI, 1:50000 

diluted in water, was added for 5 minutes at RT into the dark. Cells were washed twice in water and 

were permeabilized in Perm buffer 20 minutes at RT. Phalloidin TRITC conjugated (Sigma-

Aldrich) 1:25 was added for 30 minutes at RT into the dark. Finally cells were washed 3 times in 

water. 

 

  3.2.23 Transplantation 

In utero transplantation was performed as already described (Tondelli et al, 2005). Briefly, pregnant 

recipient heterozygous females were anesthetized with an intraperitoneal injection of 0.25 g/kg 
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body 2,2,2-Tribromoethanol (Avertin, Sigma-Aldrich) at 13.5 days p.c. An incision was performed 

through the skin and the peritoneum, and the uterine horns were exposed and kept wet with saline 

solution. The embryos were injected through the uterine wall and placenta in the direction of the 

liver with a glass capillary loaded with 10 µl of cells suspension. The uterus was reinserted in the 

peritoneal cavity and the incisions were sutured with absorbable sutures and staples. 

 

For neonatal transplantation syringes loaded with 30 µl of cells suspension were used injecting mice 

with or without radiation (400 RAD, RADGIL radiator) in liver or in temporal vein, visualizing it 

through the skin with the help of optical fibres. 

 

In both cases, donor cells were obtained from iPSc derived hematopoietic sorted cells or from wt 

CD45.1 bone marrow cells. The latter were collected by flushing of femurs and tibias using a 23-

gauge needle. Bones were discarded and cells were filtered through a 30 μm filter (cell strainer, 

BD) and washed in PBS FACS by centrifuging at 1500 rpm for 10 minutes. Red blood cells were 

lysed by 2 ml Red Blood Lysis Buffer (Gibco) for 5 minutes at RT. Cells were washed in PBS 

FACS, refiltered and centrifuged at 1500 rpm 10 minutes. 

  

  3.2.24 Blood withdrawal 

Mice were warmed under a heat lamp and local anesthesia was applied on tail. Through a cut in the 

tail using a blade, 2-3 blood drops were collected in 1X PBS 10 mM EDTA and blood flow was 

stopped by dabbing the tail. Blood was centrifuged at 1600 rpm for 5 minutes at RT and 200 µl-1 

ml Red Blood Lysis Buffer was added to the pellet, accordingly to its dimension, for 10 minutes at 

RT. Ten v/v PBS FACS were added and cells were centrifuged at 1500 rpm for 10 minutes at RT. 

 

  3.2.25 Serum calcium level analyses 

As terminal procedure, blood was collected in empty microcentrifuge tubes by a syringe from the 

heart of euthanized mice. Blood was allowed to clot and, after a centrifugation at 8000 rpm for 10 

minutes, serum was collected. Blood total calcium levels were determined using a Ci16200 

Architect Abbott instrument (Abbott Park). 

 

  3.2.26 Hematopoietic organs analyses 

To evaluate engraftment level in the transplanted mice, they were euthanized and long bones, 

spines, spleens and thymi were dissected. Long bones were processed as described in §3.2.23. 
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Spleens and thymi were washed in PBS, smashed on a filter and centrifuged at 1500 rpm for 10 

minutes. Obtained cells were used for FACS staining. 

The spines were fixed in 4% PFA for 2 days, then 70% ethanol was added overnight and finally 

they were maintained in 100% ethanol. Spines were decalcified in Ion Exchange Decal Unit 

(Biocare Medical, Concord) and paraffin-embedded for hematoxylin and eosin staining (§3.2.27). 

 

  3.2.27 Hematoxylin and eosin staining 

Sections were prepared from paraffin-embedded organs and were deparaffinized by 5 minutes in 

Xylene (Sigma-Aldrich). Then they were rehydrated by an inverse alcoholic scale: 5 minutes in 

100% ethanol twice, 5 minutes in 90% ethanol, 5 minutes in 70% ethanol, 5 minutes in distilled 

water twice. They were stained 2 minutes in Hematoxylin (Sigma-Aldrich), washed in distilled 

water for 5 minutes and stained 10 minutes in Eosin (Sigma-Aldrich). After a wash in distilled 

water for 5 minutes, slides were dehydrated with an alcoholic scale: 5 minutes in 70% ethanol, 5 

minutes in 90% ethanol, 5 minutes in 90% ethanol and finally 5 minutes in Xylene twice. Slides 

were mounted with Eukitt mounting medium. 
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4 Results 

 

 4.1 iPSc generation 

To obtain iPSc from oc/oc mouse strain, a third generation self-inactivating polycistronic lentiviral 

vector was employed. The polycistronic cassette contains three out of the four Yamanaka’s 

reprogramming factors: Oct4, Sox2, Klf4 under the control of the spleen focus-forming virus 

promoter (sffv) (Fig.9). c-Myc was not used to avoid problems related to tumorigenesis caused by 

its over-expression.  

 

 

Fig.9. Scheme of lentiviral vector carrying the reprogramming genes. In the two LTRs are inserted loxP sites. The 

promoter sffv guides the transcription of the reprogramming genes Oct4, Sox2, Klf4, spaced by 2A peptides. The 

second peptide (2A*) is modified to avoid internal recombination. At the end, the WPRE element allows good 

expression levels and high virus titre during the production. 

 

Fibroblasts isolated from a tail biopsy of an oc/oc female mouse expressing the CD45.1 isoform 

were transduced with the lentiviral vector using MOI =1 for reprogramming into pluripotent cells. 

Four weeks later, iPS colonies grew up and were picked on the basis of their ES cell-like 

morphology, with a reprogramming efficiency of 0.01%, estimated as the ratio of the number of iPS 

clones over the number of infected cells. Clones were analysed for the number of integrated vector 

copies, vector copy number (VCN), into the murine genome by real-time PCR analysis. The clones 

with the lowest VCN were selected and assessed for the chromosomal integrity by analysing the 

frequency of metaphases with normal distribution of chromosomes.  

 

 

Fig.10. Scheme of the reprogramming and selecting procedure. Fibroblasts from wt and oc/oc mice were overnight 

transduced and subsequently cultured in a medium specific for pluripotent cells supplemented with LIF. After about 20 

days iPS colonies grew up, were picked and transferred on mitotically inactive feeder cells. VCN and numerical 

distribution of chromosome analyses were performed to select clones to be transfected with a plasmid carrying Cre 

recombinase. This procedure excised the reprogramming vector from the iPSc genome. A VCN analysis was performed 

on bulk culture to evaluate the success of the excision and cells were subcloned at a limiting dilution. On the subclones, 

VCN and numerical distribution of chromosome analyses were performed to select iPSc with VCN=0 and optimal 

chromosomal setting. These subclones were then characterized for their stemness, pluripotent and safety profile. 
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Next, selected iPSc were transfected with a plasmid expressing Cre-recombinase to obtain the 

excision of lentiviral vector sequences. iPS clones showing a VCN near zero were subcloned. 

Subclones with VCN equal to zero showing a normal chromosomes content were selected and 

characterized: oc/oc iPSc #13.62 and #16.74 (Fig.10). The obtained iPS clones showed a normal 

karyotype (Fig.11A) and their stemness and pluripotency were assessed by various assays. They 

expressed the alkaline phosphatase, a marker of stemness (Fig.11B). Moreover, they expressed the 

typical pattern of genes important for the maintenance of self-renewal and pluripotency abilities: 

Oct4, Sox2, Nanog and SSEA-1 (Fig.11C). Next, the pluripotency of iPS clones was analysed by 

testing in vitro and in vivo their ability to differentiate towards the three germ layers. We pushed the 

in vitro differentiation towards mesoderm, endoderm and ectoderm, which were evaluated by 

immunofluorescence using antibodies against Brachyury, Alphafetoprotein and Nestin, respectively 

(Fig.11D). As for the in vivo differentiation, we used the teratoma formation assay in which, upon 

subcutaneous injection into NSG mice, iPS clones spontaneously formed a tumor solid mass 

comprising structures derived from the three germ layers (Fig.11E). 

 

The same procedures of generation and characterization of iPSc were previously performed starting 

from MEFs obtained from a wt E13.5 male embryo (C57BL/6 CD45.1) giving rise to the wt iPSc 

#6.25.39 and #6.25.68 (data presented in the master degree thesis “Lentiviral-mediated induced 

pluripotent stem cells generation and differentiation to the hematopoietic lineage: towards a cellular 

therapy approach for infantile malignant osteopetrosis”, Sharon Muggeo).  

In conclusion, we were able to generate murine iPS clones from an osteopetrotic mouse model for 

the first time, with efficiency comparable to what we previously described for wt iPSc. Through 

various assays we demonstrated stemness and pluripotency of the obtained clones, which were 

vector free and showed a normal karyotype. 
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Fig.11. Characterization of selected oc/oc iPSc. (A) Karyotype of oc/oc iPSc #13.62 (upper panel) and oc/oc iPSc 

#16.74 (lower panel). (B) Alkaline phosphatase staining on oc/oc iPSc #13.62 (left panel) and oc/oc iPSc #16.74 (right 

panel). All images are at 10X magnification. (C) Immunofluorescence of indicated stemness markers on oc/oc iPSc 

#13.62 (left panel) and oc/oc iPSc #16.74 (right panel). Nuclei are stained with DAPI. All images are at 20X 

magnification. (D) Immunofluorescence of indicated pluripotency markers on oc/oc iPSc #13.62 (upper panel) and 

oc/oc iPSc #16.74 (lower panel). Nuclei are stained with DAPI. All images are at 20X magnification. (E) Hematoxylin 

and eosin staining on teratoma structures representing mesoderm (left panel), endoderm (middle panel) and ectoderm 

(right panel) tissues from oc/oc iPSc #13.62 (upper panel) and oc/oc iPSc #16.74 (lower panel). All images are at 40X 

magnification. 
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 4.2 oc/oc iPSc correction 

oc/oc iPSc #13.62 and #16.74 were transfected with a BAC containing the murine genomic region 

encompassing the entire Tcirg1 gene coding sequence, including introns as well as 5’ and 3’ 

flanking regions, thus presumably maintaining most if not all of its regulatory sequences. To easily 

select the iPS clones integrating the donor sequences, we engineered the BAC by inserting a FRT-

flanked neomycin resistance cassette into the intron 10 of the gene (Fig.12). The iPSc clones were 

cultured in the presence of neomycin on a neomycin-resistant DR4 feeder layer and only the 

resistant clones were analyzed for site-specific correction, after two rounds of selection. 

 

 

 

Fig.12. Scheme of BAC. Into the backbone of the bacterial artificial chromosome (BAC) is inserted the wt form of 

Tcirg1 gene, with a neomycin resistance cassette under the control of the PGK promoter (PGK-NEO), flanked by FRT 

sites, included into the intron 10. 

 

The presence and the expression of the correct sequence of Tcirg1 were investigated by specific 

PCR analysis (Fig.13A and data not shown) and the iPS clones in which vector backbone sequences 

were still present due to occurrence of non-correct homologous recombination (off-targeting) were 

further excluded. As previously described (Howden et al, 2011), PCR reactions were performed 

with primers for Chloramphenicol resistance (CM(R)) and the yeast Histidine3 (HIS3) gene, both 

present in the BAC backbone that should not be integrated into the genome (Fig.13B). The presence 

of Tcirg1 gene in the chromosome 19, its endogenous murine position into the genome, was also 

confirmed by FISH assay (Fig.13C). Two clones were finally selected: iPSc #13.62.18-BAC and 

#16.74.32-BAC. After the genetic correction, the iPS clones maintained their pluripotency and 

showed a normal karyotype (data not shown). In conclusion, we were able to correct iPS 

osteopetrotic clones replacing the mutated gene by an engineered BAC system. 
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Fig.13. Successful correction of oc/oc iPS clones. (A) RT-PCR for detection of Tcirg1 expression in wt iPSc #6.25.39 

(used as a positive control), in two samples derived from spleen and tail of an oc/oc mouse (used as negative controls), 

in iPSc #13.62.18-BAC and #13.62.32-BAC. (B) PCR for detection of HIS3 and CM(R) sequences into the genome of 

wt iPSc #6.25.39 (used as negative control), iPSc #13.62.18-BAC, iPSc #13.62.32-BAC and two other clones 

previously discarded due to the insertion in another chromosome (#13.62.17-BAC) or to the presence of multiple BAC 

insertions (#13.62.15-BAC). The first lane is the internal positive control and shows the PCR product obtained from the 

BAC used for the transfection. (C) FISH assay on iPSc #13.62.18-BAC and #13.62.32-BAC. The arrows indicate the 

localization of the BAC probe on the chromosome 19 in a sub-centromeric localization.  

 

 4.3 Differentiation of iPS clones to the hematopoietic lineage 

To obtain hematopoietic cells from corrected oc/oc iPSc, we took advantage of a differentiation 

protocol previously optimized on wt iPSc. EBs were first generated from iPSc, deprived of residual 

feeder cells and cultured in suspension in low attachment Petri dishes. However, this method was 

not efficient since only a minority of the cells expressed hematopoietic markers. Next, we tested the 

hanging drop method. In detail, iPSc were let grow in suspension concentrated at the lower of drops 

that hang from the lid of a plate. Two days later, EBs were cultured in a medium supplemented with 

cytokines inducing hematopoietic differentiation in tissue culture treated plates, to allow the 

formation of the hemogenic endothelium, from which HSCs arise at the early stage of embryo 

development (Fig.14). 

From about 8 to 10 days of culture cardiomyocyte-like cells characterized by a rhythmic beat were 

observed, indicating that iPSc were able to differentiate into the mesodermal layer (data not shown). 

We obtained cells expressing the CD45 marker, specific for mature hematopoietic cells, and CD41 

marker, the antigen present on primitive hematopoietic cells in E7 yolk sac and E11.5 fetal liver 

(§1.5.2, 1.5.3). 
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Fig.14. Scheme of the hematopoietic differentiation protocol. iPS clones were seeded in drops that hang from low 

attachment plates. At day 2 EBs were formed and transfected into tissue culture treated plates with hematopoietic 

cytokines (BMP4, IL-3, IL-6, SCF, GM-CSF, Flt3L, VEGF). From day 8 to 12 of culture cytofluorimetric analyses 

were performed. 

 

In order to optimize the protocol and increase the number of hematopoietic cells, the effect of 

various hematopoietic cytokines was tested. For example, iPSc differentiation was performed in the 

presence or absence of the cytokine VEGF. The cell culture was analyzed at day 8 and 12. At day 8 

of culture in the presence of VEGF we observed a significant increase in the total number of 

obtained cells and, in particular, a significant increase of the yield of CD41
+
 cells (Fig.15).  

We also evaluated the effect of TPO to the culture medium. The addition of this cytokine caused at 

day 8 a decrease of hematopoietic cells and immature progenitors expressing c-Kit and Sca1, 

indicating a detrimental effect on the differentiation (Fig.16). On this basis, we decided to modify 

the cytokine cocktail by adding VEGF. 

 

 

Fig.15. Effect of VEGF on hematopoietic differentiation. Histogram showing number of CD41
+
 and CD45

+
 cells 

obtained per culture plate from the specified days of culture, in presence or absence of VEGF. In each culture plate 

were seeded 75 EBs. Error bars indicate standard error.  
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Fig.16. Effect of TPO on hematopoietic differentiation. FACS analysis representing day 8 of culture in presence 

(upper panel) or absence (lower panel) of TPO. The first columns show hematopoietic CD41
+
 and/or CD45

+
 cells and, 

gated on these, the second columns show immature progenitors expressing c-Kit and Sca1 markers. Numbers in the 

FACS plots indicate percentages among alive cells. 

 

From day 8 to 12 of the culture we performed cytofluorimetric analyses to evaluate the generation 

of hematopoietic cells, with the aim to recognise the various subset of cellular populations and 

identify the day at which they emerged at the maximum frequency. FACS analyses consistently 

showed a population of CD45
+
 cells, which reached the maximum at day 12. The vast majority of 

CD45
+
 cells was also CD11b

+
, indicating that they were committed to the myeloid lineage, whereas 

a minor but important part was composed of immature progenitors negative for CD11b and co-

expressing c-Kit and Sca1 markers (Fig.17). As the CD45
+
 fraction increased throughout time 

during culture, we observed a progressive decrease of the population expressing CD41, similarly to 

the physiologic fetal hematopoiesis (Fig.18). 

The functionality of obtained differentiated cells was tested by the clonogenic CFC assay, which 

showed a great variety of hematopoietic colonies types at each tested time point. c-Kit
+
 cells were 

purified by immunomagnetic beads and seeded into semi-solid methylcellulose medium 

supplemented with hematopoietic cytokines. After 7 to 10 days, the obtained individual colonies 

were scored and cytospin preparations were performed to identify cellular subpopulations (Fig.19). 

Erythroid, myeloid and mixed hematopoietic colonies were obtained, indicating the presence in the 

culture of clonogenic multipotent or oligopotent progenitors.  
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Fig.17. Presence of myeloid and progenitors cells in culture. Representative FACS plots showing the expression of 

CD45 pan-hematopoietic marker and of myeloid CD11b markers (left panels), and the expression of c-Kit and Sca1, 

progenitor cells markers, gated on the CD11b 
low/- 

CD45
+
 fraction (right panels), The contour plots referred to unstained 

cells (upper panel), wt iPSc #6.25.39 (middle panel), and iPSc #13.62.18-BAC (lower panel) at day 11 of culture. 

Numbers in the FACS plots indicate the percentages among alive cells. 

 

 

 

 

Fig.18. Time-course FACS analysis. Representative FACS plots showing the expression of CD41 and CD45 

hematopoietic markers at different time points of the differentiation protocol (from day 8 to 12) of wt iPSc #6.25.39 

(upper panel) and iPSc #13.62.18-BAC (lower panel). Numbers in the FACS plots indicate percentages among alive 

cells. 
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Fig.19. Hematopoietic colonies. Representative examples of an erythroid colony (BFU-E), a granulocyte-monocyte 

colony (CFU-GM), a monocyte colony (CFU-M) and a granulocyte-erythrocyte-monocyte-megakaryocyte colony 

(CFU-GEMM) from wt iPSc #6.25.39 (left panels). Middle insert shows a representative example of a cytospin 

preparation of a CFU-GEMM colony showing macrophages (MФ), monocytes (Mo), granulocytes (Gr) and 

erythrocytes (Er). The right panel shows a representative example of a CFU-GM colony obtained from oc/oc iPSc 

#13.62.18-BAC. The colonies images are at 4X magnification while the cytospin image is at 40X magnification. 

 

In conclusions, we succeeded in generating hematopoietic cells from wt and gene-corrected iPSc, 

including myeloid cells and early progenitors able to give rise to multipotent hematopoietic 

colonies. 

 

 4.4 Differentiation into osteoclasts 

We next tested the ability of wt and gene-corrected iPSc to differentiate into osteoclasts, the 

relevant cells for the ARO treatment.  

At the end of the hematopoietic differentiation period, CD45
+
 cells were purified by 

immunomagnetic beads in order to enrich for the osteoclast precursors and eliminate non-

hematopoietic cells that also developed during the process. Purified hematopoietic cells were 

cultured in presence of M-CSF and SCF to stimulate the proliferation of progenitor cells and push 

monocytes differentiation. Six days later RANKL was added, the cytokine necessary for the fusion 

of pre-osteoclasts and activation of mature osteoclasts (Fig.20). 

Osteoclasts are giant multinucleated cells with a great number of vacuoles and lysosomes. The 

region of attachment, the sealing zone, is characterized by the presence of a ring composed of F-

actin filaments (actin ring) (§1.6.1). At the appearance of osteoclast-like cells in culture, after 

careful observation under a phase-contrast inverted microscope (Fig.21A), their identity was 

confirmed by the count of the nuclei (>3), the presence of the actin ring and the expression of 

TRAP (Fig.21B, C), a lysosomal enzyme required for osteoclast functionality. These markers 

indicate the correct differentiation towards osteoclasts. As a control, iPSc derived cells were 

cultured in absence of RANKL and, as expected, they did not form osteoclasts (Fig.21D). 
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Fig.20. Scheme of the osteoclast differentiation protocol. At day 11 of the hematopoietic differentiation protocol, 

CD45
+
 cells were purified by immunomagnetic beads and plated in presence of M-CSF and SCF. After six days, SCF 

was replaced by RANKL and cultures continued on plates or on dentine slides. In the first case, at day 10 from the 

purification of CD45
+
 cells, cultured cells were stained to evaluate TRAP expression. In the second case, cells were 

cultured on dentine slides until day 16, when substrates were stained to verify the presence of resorption pits. 

 

To test the resorption activity of obtained osteoclasts, a fraction of the cells was cultured on dentine 

discs, which were subsequently stained with toluidine blue to highlight the formation of resorption 

pits (Fig.21E).  

All the tested iPS clones gave rise to osteoclasts in culture, which were comparable to those 

obtained starting from mouse bone marrow or spleen (Fig.21C). As expected, wt iPSc derived 

osteoclasts were able to resorb dentine, while oc/oc iPSc derived osteoclasts failed to form 

resorption pits due to the lack of the TCIRG1 protein into the acidification proton pump (Fig.21E). 

Our first attempt to generate corrected iPSc functionally able to resorb bone was unsuccessful (data 

not shown). Since it is known that the presence of the neomycin cassette may interfere with the 

transgene protein production (Scacheri et al, 2001), we decided to eliminate the antibiotic resistance 

from the corrected genomic region. Therefore, gene-corrected iPSc were transiently transfected 

with the Flp recombinase to excise the neomycin resistance cassette flanked by FRT sites. After 

subcloning, cellular clones that lost the resistance ability against the antibiotic were selected (iPSc 

#13.62.18.22). They were subsequently differentiated into osteoclasts and seeded on dentine slices, 

in which a fully restored capacity to resorb the substrate was observed, demonstrating the successful 

gene correction of oc/oc iPSc (Fig.21E). 
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Fig.21. Osteoclasts formation and resorption pits from iPS clones. (A) Bright field representative image of an 

osteoclast in culture (20X magnification, scale bars = 50 m). (B) Representative examples of immunofluorescence of 

phalloidin highlighting the actin ring (20X magnification, scale bars = 50 m). (C) Representative TRAP staining of 

osteoclasts. In the first line they derive from wt iPSc #6.25.68 (left panel), wt spleen cells (middle panel), and wt bone 

marrow cells (right panel). In the second line they derive from oc/oc iPSc #13.62 (left panel), oc/oc spleen cells (middle 

panel), and iPSc #13.62.18-BAC after the flippase step (right panel). All the images are at 10X magnification, scale bars 

= 100 m. (D) Representative images of TRAP staining of the cell culture without the presence of RANKL from wt 

bone marrow cells (upper panel) and wt iPSc #6.25.68 (lower panel). All the images are at 4X magnification, scale bars 

= 200 m. (E) Representative images of resorption pits in dentine discs stained by toluidine blue. In the first line they 

derive from wt iPSc #6.25.68 (left panel) and wt bone marrow cells (right panel). In the second line they derive from 

oc/oc iPSc #13.62 (left panel) and iPSc #13.62.18-BAC after the flippase step (right panel). All the images are at 10X 

magnification, scale bars = 100 m. 
 

In conclusion, we were able to differentiate iPSc into very specialized cells such as osteoclasts, 

demonstrating also their functionality by the resorption pits assay. Moreover, oc/oc derived iPSc 

generated non-functional osteoclasts as cells derived from oc/oc mice. Upon gene-correction, oc/oc 
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iPSc become equally able to efficiently resorb dentine, demonstrating their fully functional 

correction. 

 

 4.5 In vivo experiments 

We then moved from in vitro experiments to in vivo reconstitution assays, to test whether iPSc 

derived differentiated cells could give rise to HSCs able of life-long self-renewal and leading to 

rescue the oc/oc phenotype. To this end, we used the oc/oc strain as recipient of the transplant. This 

in vivo model allowed the evaluation of the engraftment capacity of in vitro iPS differentiated cells, 

their viability and persistence during the life, and their ability to differentiate in vivo into functional 

osteoclasts rescuing the bone phenotype. 

To set up and optimize the in vivo transplantation experiments with iPSc, wt bone marrow cells 

were first used as positive control. We chose donor and recipient mice mismatched for CD45.1 and 

CD45.2 isoforms to track the donor derived hematopoietic cells. CD45.1 wt mice were chosen as 

donor and CD45.2 oc/oc strain was kept as recipient. Due to the very short life span of homozygous 

affected mice, we routinely maintain this strain by inter-crossing heterozygous mice. 

Osteopetrotic defects occur early in life, even before birth. The transplantation can rescue only bone 

defects, while secondary neurological defects, such as hearing and visual loss due to cranial nerve 

compression, can only be prevented. Therefore the earliest the transplant, the best is the chance of 

recovery (§1.6.4). Previous studies have proposed an approach to prevent the onset of the disease 

before birth by performing HSC transplantation directly into the uterus (Frattini et al, 2005, 

Tondelli et al, 2009). These studies demonstrated the therapeutic efficacy and feasibility of this 

approach. 

 

  4.5.1 In utero transplantations 

   4.5.1.1 Set up of the technique with wt bone marrow cells  

To test the in utero transplantation technique and evaluate the minimal amount of donor cells 

needed to obtain a rescue of the osteopetrotic phenotype, transplantations with an increasing 

number of wt bone marrow cells were performed. wt CD45.1 bone marrow cells were transplanted 

into the liver of embryos in anesthetized CD45.2 heterozygous pregnant females at 13.5 days post 

coitum, mated with heterozygous male mice. Animals did not receive any conditioning, as described 

in Frattini et al, 2005. At birth, newborns were genotyped and transplanted oc/oc mice were 

monitored for viability and health status. Starting from about 4 weeks after birth we checked the 

engraftment level by FACS analysis performed on peripheral blood. 1x10
6
 wt bone marrow cells
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per embryo were initially transplanted, subsequently the number of transplanted cells was increased 

accordingly to Tab.6 until we obtained an oc/oc mouse with the rescue of the phenotype. The 

success of in utero transplantation depends on various factors: number and viability of the embryos, 

delivery of the cells to the fetal liver, outcome of the surgical operation, post-natal mother care, 

presence of oc/oc pups among the litter, reaching the sufficient number of transplanted cells to 

obtain a result. As highlighted by Tab.6, we faced all these issues. In case of wt and heterozygous 

mice, not showing any bone defect, we evaluated only the engraftment. 

 

Pregnant 

females 

Transplanted 

embryos 

Transplanted 

cells/embryo 
Born mice 

Alive mice 

after P4 

Engraftment/ 

phenotype rescue 

3 15 1x10
6
 6 (1 oc/oc) 3 (0 oc/oc) 0 

4 33 5x10
6
 20 (4 oc/oc) 2 (0 oc/oc) 1 

2 15 7x10
6
 7 (2 oc/oc) 7 (2 oc/oc) 0 

1 8 8x10
6
 4 (2 oc/oc) 4 (2 oc/oc) 1 oc/oc 

 

Tab.6. Summary of in utero transplantations performed with wt bone marrow cells. Columns indicate the number 

of pregnant females operated, transplanted embryos, transplanted cells per embryo, resulting born mice, mice survived 

after 4 days from birth and mice which showed engraftment or rescue of the phenotype. 

 

In the successful experiment, we transplanted 8x10
6
 cells. We observed the survival of an oc/oc 

mouse that was sacrificed at 8 months and analyzed for the engraftment. Any growth retardation 

was observed during its life. Periodical FACS analyses on peripheral blood were performed to 

evaluate the engraftment level. At 5 weeks after the transplantation, 29% of donor cells was found 

and the level gradually decreased until 7% at 26 weeks (Fig.22). 

 

  

Fig.22. Evaluation of wt donor cells engraftment in transplanted oc/oc mouse. (A) Representative FACS plot 

showing the percentage of donor cells in the peripheral blood of the oc/oc recipient at 5 weeks. (B) Analysis of the 

percentage of wt donor cells in the transplanted oc/oc mouse evaluated by cytofluorimetric analyses from 5 to 26 weeks 

post-transplantation. 

 

Eight months after birth the mouse was sacrificed to assess the engraftment level also in

A B 
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hematopoietic organs and analyze the resorption activity of donor cells derived osteoclasts in the 

bone. By cytofluorimetric analyses the percentage of donor cells into the bone marrow, spleen and 

thymus was evaluated. Despite the low chimerism at the sacrifice, 7% in bone marrow, 5% in 

spleen and 2% in thymus (Fig.23), donor cells were sufficient to allow bone remodeling in the oc/oc 

mouse, which was more similar to those of a wild type than those of an osteopetrotic mouse 

(Fig.24). 

 

Fig.23. Engraftment of wt donor cells in the hematopoietic organs. Percentage of donor cells in bone marrow (BM), 

spleen (SP) and thymus (TH) at the sacrifice, evaluated by cytofluorimetric analyses. 
 

 

 

Fig.24. Morphological analyses of vertebrae. Hematoxylin and eosin staining of the vertebrae from (A) an untreated 

age-matched wt, (B) an untreated oc/oc mouse at 16 days, (C) the transplanted oc/oc at the sacrifice. 

 

Moreover, the level of calcium in the serum of the oc/oc transplanted mouse was analyzed. This is a 

relevant parameter indicating osteoclasts resorption activity. In mice, values less than 2 mmol/L 

indicate ipocalcemia, typical condition of the oc/oc untreated mice. In our experiment, transplanted 

oc/oc showed a normal level of calcium at the sacrifice, indicating again the rescue of the bone 

phenotype (Fig.25). 
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Fig.25. Serum calcium level. Analysis of calcium levels in the sera of different mice: oc/oc untreated (left column), wt 

untreated (middle column), and transplanted oc/oc mouse at the sacrifice (right column). 

 

   4.5.1.2 In utero transplantations using iPSc derived cells 

For applying the tested protocol to iPSc derived cells, we started transplanting wt iPSc derived 

hematopoietic cells at the end of the differentiation period, synchronising the pregnancy of 

heterozygous females to reach 13.5 days post coitum on day 8 or 12 of the culture (Fig.26A). 

Differentiated hematopoietic cells were isolated by flow cytometry, sorting a population expressing 

the hematopoietic markers CD41 and/or CD45 and lacking SSEA1, the stemness marker expressed 

by undifferentiated iPSc (Fig.26B).  

 

 

 

A 
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Fig.26. Scheme of the in utero transplantation protocol. (A) We synchronised the pregnancy of CD45.2 

heterozygous females to reach 13.5 days post coitum on day 12 of the hematopoietic differentiation protocol. Then we 

collected CD45.1 hematopoietic cells from the in vitro culture, sorted and transplanted into the liver of the embryos, 

allowing the females to deliver pups after a week. In this scheme the transplantation is performed using cells obtained at 

day 12 of culture, similarly in utero transplantations were also performed with donor cells obtained at day 8 of the 

culture. (B) Flow sorting strategy to isolate hematopoietic cells used in the transplant. Gated on SSEA1
-
 cells, CD41

+
 

and/or CD45
+
 were selected. Representative plots indicating cells at day 8 of culture (upper panel) and day 12 of culture 

(middle panel). The last panel indicates a representative plot of the purity of the cells (lower panel). 

 

Cells obtained either at day 8 or day 12 of culture were transplanted, since they may represent two 

different developmental stages, with more immature or more differentiated hematopoietic cells, 

respectively. Moreover, we tested the hypothesis that transplantation in fetal liver could allow the 

differentiation into hematopoietic cells directly in vivo, completing the specification started in vitro. 

We transplanted a number of cells ranging from 1x10
4
 cells up to 4.5x10

5
 cells per embryo, without 

knowing their genotype in advance (Tab.7). Despite we transplanted 101 embryos, our attempts 

were not successful, since we could analyze only 5 post-natal mice, of which only 1 oc/oc. In fact, 

unfortunately in all cases we had problems with the survival of either the females or the embryos 

(only 25 born mice), with high frequency of perinatal mortality (only 5 mice survived after P4) and 

also with the paucity of homozygous mutant mice in the progeny (Tab.7). In the few mice analyzed, 

we never observed engraftment of donor cells or rescue of the osteopetrotic phenotype. 
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Pregnant 

females 

Transplanted 

embryos 

Transplanted 

cells/embryo 
Born mice 

Alive mice 

after P4 

Engraftment/ 

phenotype rescue 

2 17 1x10
4
 1 oc/oc 0 0 

1 7 2x10
4
 7 (4 oc/oc) 3 (1 oc/oc) 0 

1 9 5x10
4
 7 0 0 

1 10 9x10
4
 0 0 0 

3 25 1.5x10
5
 0 0 0 

1 9 2x10
5
 0 0 0 

2 15 3.5x10
5
 3 0 0 

1 9 4.5x10
5
 7 2 0 

 

Tab.7. Summary of in utero transplantations performed with wt iPSc derived cells. Columns indicate the number 

of pregnant females operated, transplanted embryos, transplanted cells per embryo, resulting born mice, mice survived 

after 4 days from birth and mice which showed engraftment or rescue of the phenotype. 

 

The positive control was represented by the transplant in which 8x10
6
 wt bone marrow cells were 

used. Based on these findings, we concluded that the number of wt iPSc derived hematopoietic cells 

was not sufficient to induce any effect in transplanted mice. We cannot draw any conclusions on the 

in vivo functionality of iPSc derived cells. As a result, we cannot compare the two methods and we 

cannot conclude the in vivo lack of functionality of iPSc derived cells. Due to technical limitations, 

we were unable to successfully scale-up the culture in order to obtain a higher number of cells. 

Based on this technical limitation, we decided to exploit another route for the transplantation. 

 

  4.5.2 Neonatal transplantations 

   4.5.2.1 Set up of the technique with wt bone marrow cells 

As an alternative strategy post-natal transplantation was tested, to avoid critical issues of in utero 

transplantation technique, especially the need to distribute donor cells among all the embryos, since 

it is not possible knowing their genotype before. 

Starting from wt bone marrow cells to set up a positive control, we decided to transplant 2-3 days 

old new-born oc/oc mice, performing the genotype on tail biopsies the day after birth, rather than 2-

3 weeks old oc/oc mice because of the necessity to correct the defects as early as possible. The 

same amount of wt bone marrow cells used for the successful in utero transplantation was injected 

(8x10
6
 cells). Injection directly into the liver was first tested, since it remains a hematopoietic site 

for few days after birth, with or without irradiating the neonates. However, the analysis of 

transplanted mice showed insufficient engraftment in the bone marrow (Tab.8 and data not shown). 

Then transplantation in the temporal vein was performed, allowing the cells to reach hematopoietic 

niches through the blood circulation. This technique gave the best rate of success. Treated mice 

receiving transplant in the absence of conditioning failed to engraft or did not reach long-term 

persistence, while irradiated mice showed high percentages of donor cells in the peripheral blood, 
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belonging to all different hematopoietic subpopulations (Fig.27A). Of note, three oc/oc mice 

showed rescue of the phenotype (Tab.8). The level of donor cells was monitored by periodical 

peripheral blood analysis. At 4 weeks after the transplantation, all the mice showed a range of donor 

cells from 79% to 92% apart from a heterozygous mouse showing 51% of engraftment and another 

control mouse without donor cells in the peripheral blood (Fig.27B). Importantly, the values 

remained stable until the sacrifice performed at 5 months and the presence of donor cells several 

weeks after transplant indicated that HSCs successfully engrafted. 

 

Transplanted 

mice 
Irradiation 

Route of 

delivery 

Alive mice 

after P4 

Engraftment/ 

phenotype rescue 

8 not performed into the liver 8 0 

7 400 RAD into the liver 7 1 

7 not performed in temporal vein 7 4 short-term 

7 (3 oc/oc) 400 RAD in temporal vein 7 (3 oc/oc) 6 (3 oc/oc) 
 

Tab.8. Summary of neonatal transplantations performed with wt bone marrow cells. Columns indicate the number 

of transplanted mice, conditioning regiment, route of delivery of the cells, number of mice survived after 4 days from 

birth and mice which showed engraftment or rescue of the phenotype. 

 

 

 

A 
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Fig.27. Evaluation of wt donor cells engraftment in transplanted mice. (A) Representative FACS plot showing the 

percentage of CD45.1
+
 cells in the peripheral blood of the oc/oc recipient at 20 weeks post-transplantation and 

contribution of these cells to all subpopulations: myeloid cells (left panel), B cells (middle panel), and T cells (right 

panel). (B) Analysis of the percentage of wt donor cells in transplanted mice evaluated by cytofluorimetric analyses 

from 4 to 20 weeks post-transplantation.  

 

Interestingly, we observed an oc/oc mouse with neurological problems, hydrocephalus and visual 

impairment, which was sacrificed, together with a control mouse, at 47 days from the 

transplantation due to its poor health status. The engraftment level in hematopoietic organs (bone 

marrow, spleen, and thymus) was assessed by cytofluorimetric analysis. In the oc/oc mouse wt 

donor cells reached 97% in the bone marrow, 83% in spleen and 97% in thymus, while in the 

control mouse the transplantation did not worked and no donor cells were observed (Fig.28A). The 

resorption activity of osteoclasts in the bone was also analyzed, showing a complete rescue of the 

phenotype in the transplanted oc/oc (Fig.28B). This observation confirmed that, although the bone 

defect can be cured by the transplant, neurological alterations occurring during the first phases of 

the disease are not reversible. 

Of note, we observed a long-term survival of a transplanted oc/oc mouse with no donor cells 

detectable in peripheral blood. The analysis in the peripheral blood started at week 12 after birth 

because of the very low body weight (<6gr) of the transplanted mouse. All the other time points did 

not reveal the presence of wt engrafted cells (Fig.27B). Nevertheless, the oc/oc mouse survived up 

to the sacrifice at 5 months indicating a rescue of the phenotype. Therefore we hypothesized the 

engraftment of short-term donor progenitor cells, which progressively exhausted during time, but 

were anyway enough to allow the rescue of the phenotype. 

Five months after birth we sacrificed the mice to assess the engraftment level in hematopoietic 

organs and analyze the resorption activity of osteoclasts in the bone. The percentage of donor cells 

reached high values into the bone marrow (30-71%), spleen (26-96%) and thymus (27-100%). The 

oc/oc mouse previously mentioned was the exception, in fact it lacked donor cells in hematopoietic 

organs (Fig.29). 

B 
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Fig.28. Analysis of transplanted mice organs at the sacrifice 47 days post-transplantation. (A) Percentage of donor 

cells in bone marrow (BM), spleen (SP) and thymus (TH) at the sacrifice, evaluated by cytofluorimetric analyses. (B) 

Hematoxylin and eosin staining of the vertebrae from the transplanted oc/oc at the sacrifice. 
 

Donor cells differentiated in vivo into functional osteoclasts that remodeled oc/oc bones, resulting in 

a complete rescue of 1 oc/oc transplanted mouse and a partial rescue in the mutant mouse without 

long-term engraftment (Fig.30). 

 

 

 

Fig.29. Presence of wt donor cells in the recipient organs. Percentage of donor cells in bone marrow (BM), spleen 

(SP) and thymus (TH) at the sacrifice evaluated by cytofluorimetric analyses. 

 

 

B 

A 
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Fig.30. Morphological analyses of vertebrae. Hematoxylin and eosin staining of vertebrae from the transplanted oc/oc 

mice at the sacrifice showing a complete rescue of the phenotype (A) and only partial rescue for the oc/oc without long-

term engraftment (B). 

 

Furthermore, we analyzed the levels of calcium in the serum of transplanted oc/oc mice showing 

normal levels at the sacrifice, indicating once more the rescue of the phenotype (Fig.31). 

 

Fig.31. Serum calcium levels. Analysis of calcium levels in the sera of different mice: oc/oc untreated (first column), 

wt untreated (middle column) and transplanted oc/oc mice at the sacrifice (right column). 

 

   4.5.2.2. Neonatal transplantations using iPSc derived cells 

As we demonstrated the feasibility and efficacy of the neonatal transplantation protocol in temporal 

vein using wt bone marrow cells, we evaluated the effect of the transplantation of iPSc derived 

hematopoietic cells in oc/oc new-born mice. We followed the neonatal transplantation protocol 

depicted in Fig.32. Donor cells were isolated following the flow sorting strategy indicated in 

Fig.26B. 

We transplanted cells 1.6x10
5
 cells up to 3.7x10

6
 cells obtained at day 8 or day 12 of culture 

(Tab.9). Unfortunately, we did not detect donor cells in the recipients and indeed the oc/oc treated 

mice died soon indicating the failure of the transplantation. Since we could not transplant an amount 

of iPSc derived cells comparable to the number of wt positive control (8x10
6
 cells), we could not 

compare these experiments to those performed with wt cells. 
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Fig.32. Scheme of the neonatal transplantation protocol. We synchronise the birth of pups with the achievement of 

differentiated cells obtained at day 12. Mice were genotyped the day after birth in order to select the mutant mice 

among the wild type and the heterozygous ones. Then we collected CD45.1 hematopoietic cells from the in vitro culture 

and transplanted only into affected and their control mice after radiation. In this scheme the transplantation was 

performed at day 12 of culture, a similar scheme was followed for transplantation at day 8 of culture. 

 

We transplanted too few iPSc derived cells to exclude a priori the possibility that if present in an 

adequate number, they are able to rescue the osteopetrotic phenotype, but presently, with our 

settings, we are not able to increase this number. We speculate that the low number of iPSc derived 

cells, due to the technical limit to expand and obtain large amount of hematopoietic progenitors, is 

responsible of the lack of bone phenotype rescue. 

 
Transplanted 

mice 

Transplanted 

cells/embryo 

Alive mice 

after P4 

Engraftment/ 

phenotype rescue 

7 (1 oc/oc) 1.6x10
5
 6 (0 oc/oc) 0 

1 2x10
5
 1 0 

10 2.5x10
5
 9 0 

2 (1 oc/oc) 5x10
5
 2 (1 oc/oc) 0 

4 (2 oc/oc) 9x10
5
 1 0 

1 oc/oc 1x10
6
 1 oc/oc 0 

1 oc/oc 3.7x10
6
 1 oc/oc 0 

 

Tab.9. Summary of neonatal transplantations performed with iPSc derived cells. Columns indicate the number of 

transplanted mice, number of mice survived after 4 days from birth and mice which showed engraftment or rescue of 

the phenotype. 

 

Thus, the in vivo experiments indicate that despite the successful in vitro differentiation into the 

hematopoietic lineage including production of functional osteoclasts, further improvements of the 

culture conditions are needed to increase the number of cells necessary to test the in vivo 

functionality of differentiated iPSc.  
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5 Discussion 

 

ARO is a rare life-threatening condition caused by a defect in the resorbing activity of osteoclasts. 

The most frequently mutated gene is TCIRG1, encoding for a subunit of the V-ATPase pump 

responsible for the acidification of the bone environment indispensable for the resorption activity of 

osteoclasts. The disease has as unique possible treatment HSC transplantation, since osteoclasts 

derive from myeloid precursors belonging to the hematopoietic lineage (Sobacchi et al, 2013). 

However, this treatment presents several difficulties, first of all the need for a matched donor. Only 

few patients have access to HLA-identical or HLA-matched unrelated donors, who ensure the best 

5-year disease-free survival rate estimated at 88% and 80%, respectively (Schulz, 2013). On the 

other hand, this rate is evaluated only at 66% for patients transplanted with HLA-haploidentical 

donor cells. Engraftment complications are the most frequent cause of death and still patients 

treated after the age of 10 months frequently underwent serious complications (Schulz, 2013). 

During the years the outcome has greatly improved, since about a decade ago the success 

percentage was about 73% using HLA-identical donors, while with HLA-related donors was about 

43% (Driessen et al, 2003). Moreover, secondary defects, such as hearing and visual loss due to 

cranial nerve compression can be prevented by transplantation, but not reversed once they have 

occurred. 

Alternative strategies have been tested, such as T-cell depleted HSCs from HLA-haploidentical 

donors or cord blood from unrelated donors (Schulz et al, 2002), but severe problems were 

recurrently observed including rejection, delayed hematopoietic reconstitution, venous occlusive 

disease, pulmonary hypertension, and hypercalcemic crisis (Steward et al, 2004). 

For these reasons, we have focused on corrected autologous HSCs as a novel approach to therapy. 

Autologous HSCs gene therapy represents an emerging therapeutic opportunity to avoid issues 

linked to the requirement of compatible donors and to the side effects caused by conditioning 

regimen, thus reducing the morbidity and mortality of the transplant. However, genetic 

manipulations of HSCs are difficult: they cannot be maintained in culture for long time, they are 

very slowly dividing cells and need cytokine pre-stimulation to induce cell proliferation with the 

risk to modify their characteristics (Baum et al, 2003). Moreover, they show low rate of 

homologous recombination and are difficult to be transfected (Waldman, 1992). As an alternative, 

iPSc represent an innovative source of donor cells. They are pluripotent stem cells derived from the 

reprogramming of somatic cells, so they have an easily accessible cell source, obtainable without 

invasive procedures. The feasibility to perform gene targeting is greater, for their tolerance to 
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homologous recombination, they are easily transfected, can be selected and expanded to obtain a 

homogeneous population in which 100% of the cells are genome edited. 

Generation of iPSc from patients who do not have access to a HLA-identical donor could allow 

their site-specific genetic correction by homologous recombination, followed by differentiation 

towards hematopoietic progenitors and autologous transplantation. 

 

In the present study, I have exploited iPSc as source of cells to treat ARO and to test the feasibility 

of gene-correction technology using as donor a BAC engineered vector. In particular, I show a step-

by-step strategy by which gene-corrected osteopetrotic iPSc were used to generate hematopoietic 

progenitor cells able to give rise to functional osteoclasts, thus providing a proof of principle for an 

autologous cell therapy approach to treat ARO.  

 

For the first time, iPSc from the osteopetrotic oc/oc mouse model were generated, together with 

iPSc from wt mouse. Their stemness and pluripotency were confirmed by immunofluorescence of 

expressed stemness markers (Oct4, Sox2, Nanog, SSEA1), and in vitro differentiated embryonic 

germ layers (mesoderm, endoderm and ectoderm) recognized by the expression of Brachyury, AFP 

and Nestin. Furthermore, we have demonstrated the in vivo generation of teratomas comprising the 

three germ layers by hematoxylin and eosin staining. The use of a self-inactivating lentiviral vector 

for reprogramming lowered the risk to influence the expression of genes adjacent to the viral 

insertion site, thus increasing safety. Furthermore, c-Myc was eliminated from the reprogramming 

factors list, to avoid problems related to its tumorigenic activity. The vector carries also two loxP 

sites in the LTRs to guide the recombination activity of the transiently expressed Cre recombinase, 

which mediates the excision of the vector sequences from the host genome. We selected only iPS 

clones in which the reprogramming vector was completely eliminated. Moreover, we chose iPSc 

with normal karyotype. 

 

The next step was the correction of iPS osteopetrotic clones by replacing the mutated gene with an 

engineered BAC system. Taking advantage of the large genomic region carried by this vector, the 

entire correct form of Tcirg1 gene was placed in, restoring the large mutation that causes the 

phenotype. Long arms up- and down-stream the gene, comprising the regulatory sequences, were 

added, to guarantee the correct expression of the gene and strongly support the homologous 

recombination process. In fact the larger homology sequences are included in the vector, the best 

efficiency of homologous recombination is reached. It was necessary to select the clones in which 

insertion of the full Tcirg1 gene had occurred, by specific PCR and RT-PCR analysis that assess the 
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presence and the expression of the gene. Moreover, specific analysis was performed in order to 

detect potential backbone sequences (HIS3 and CM(R)) left into the genome, signs of non-

homologous recombination. FISH assays were conducted to verify the correct position of the 

inserted gene into the genome in a sub-centromeric position of the chromosome 19. The correction 

likely happens in heterozygosis due to the rare occurrence of the homologous recombination event. 

Anyhow, this should be sufficient to correct the cellular phenotype, since heterozygous mice and 

humans are not affected by the disease.  

 

As the aim was to evaluate the ability of wt and oc/oc corrected iPSc to form functional osteoclasts, 

a protocol for the hematopoietic differentiation was first set up, to obtain myeloid precursors of 

osteoclasts. Various differentiation protocols have been described to obtain in vitro the 

hematopoietic lineage, but the only ones which provide long-term stem cells utilize the over-

expression of additional transcription factors, such as Hoxb4, Lhx2, or the combination of Gata2, 

Gfi1b, cFos, and Etv6 (Kyba et al, 2002, Kitajima et al, 2011, Pereira et al, 2013). This represents 

an additional manipulation and requires the use of integrating vectors for the stable expression of 

transgenes, while several efforts have been made during time to circumvent non-targeted, 

potentially dangerous genetic manipulations. We decided to avoid the over-expression of 

supplementary transgenes, to induce differentiation in more physiological conditions. The EBs 

method was chosen, in conjugation of a hematopoietic cytokines cocktail that first induces the 

mesoderm development at the expense of the other two germ layers, and then pushes towards the 

hematopoietic specification, likely through a hemogenic endothelium intermediate, in order to 

obtain a robust stem/progenitor fraction. 

After about a week of culture we obtained cardiomyocyte-like cells characterized by a rhythmic 

beat, demonstrating the presence of mesodermal cells derived from iPSc. At the end of the 

differentiation period we succeeded in generating hematopoietic cells expressing the pan-

hematopoietic marker CD45 and/or the CD41 antigen, present on primitive hematopoietic cells. 

Time-course experiments were performed to identify the day of the culture in which hematopoietic 

cells reach the highest possible proportion. They revealed a kinetics resembling the physiological 

one, with CD41
+
 cells decreasing throughout time, gradually giving rise to mature CD45

+
 cells. 

This trend was shown also by BAC-corrected iPSc. Among the mature cells, myeloid cells were 

predominantly obtained, the ones we need to test the functionality of corrected oc/oc derived iPSc, 

since osteoclasts derive from myeloid progenitors. Early progenitors were also obtained, negative 

for the myeloid marker CD11b and expressing c-Kit and Sca1, markers of immature cells. 
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Moreover, c-Kit
+
 cells were able to give rise to erythroid, myeloid and mixed hematopoietic 

colonies, indicating the presence in culture of clonogenic multipotent or oligopotent progenitors.  

At the end of the hematopoietic differentiation period a selective specification towards osteoclasts 

was induced adding to the culture medium the cytokines M-CSF, SCF and finally RANKL. 

Osteoclasts similar to the ones produced from wt bone marrow and spleen cells were obtained and 

they demonstrated their functionality by the resorption pits assay. oc/oc derived iPSc generated non-

functional osteoclasts, as cells derived from oc/oc mice. Upon gene-correction, oc/oc iPSc become 

able to efficiently resorb dentine, demonstrating their fully functional correction. Interestingly, the 

cells became functional only after the excision of the neomycin resistance cassette inserted into the 

BAC to facilitate the selection of transfected clones. The excision was possible through the transient 

expression of the Flp recombinase, thanks to the presence of FRT sites flanking the cassette. 

Probably this sequence, even if placed in an intron, interfered with the correct expression of the 

Tcirg1 gene (Scacheri et al, 2001). 

 

We tried also to test the in vivo functionality of iPSc derived hematopoietic cells, to assess their 

capacity to engraft and rescue the osteopetrotic phenotype. The oc/oc mouse model was used as 

recipient of the transplantation. In this model the earliest the transplant, the best is the chance of 

recovery, because of irreversible damages occur early in life, even before birth. For this reason, the 

transplantation can rescue only bone defects, while neurological and secondary defects, such as 

hearing and visual loss due to cranial nerve compression, can only be prevented. On this basis, in 

utero transplantation represents the earliest time-point in which the administration of hematopoietic 

cells can prevent the onset of osteopetrotic signs (Frattini et al, 2005, Tondelli et al, 2009). However 

this technique, although feasible in humans, has several critical issues: operator’s manual skills, 

number and viability of the embryos, delivery of the cells to the organ of injection (embryonic 

liver), outcome of the surgical operation, post-natal mother care, the presence of a limited number 

of oc/oc pups among the litter in which evaluate the rescue of the phenotype. 

To set up and optimize the in vivo transplantation experiments with iPSc, wt bone marrow cells 

were first used as positive control. We gradually increased the number of transplanted cells until the 

achievement of a positive result. 8x10
6
 cells were necessary to observe the survival of an oc/oc 

mouse without any growth retardation and resulting in 26% of donor cells in the peripheral blood, 

which were maintained during its entire life, until the sacrifice at 8 months. Despite the low 

chimerism at the sacrifice (7% in bone marrow, 5% in spleen and 2% in thymus), wt donor cells 

were sufficient to allow the rescue of the phenotype of the oc/oc mouse, with long-term survival 

instead of 2-3 weeks of life span. In addition, the bones were successfully remodeled, showing 
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normal trabeculae with normal bone marrow cells inside, a very different situation respect to the 

osteopetrotic bone characterized by a “bone-in-bone” appearance without any bone marrow cells 

inside. The transplanted oc/oc mouse showed also a normal level of calcium at the sacrifice, 

indicating again the rescue of the bone remodeling activity by wt osteoclasts. 

Unfortunately we did not reach the same results with iPSc derived hematopoietic cells. Cells 

obtained either at day 8 or day 12 of the hematopoietic differentiation protocol were transplanted, 

since they may represent two different developmental stages, with more immature or more 

differentiated hematopoietic cells, respectively. All stages of maturation were tested, since 

transplantation in fetal liver might allow the differentiation into hematopoietic cells directly in vivo, 

completing the specification started in vitro providing the correct microenvironment for the survival 

and differentiation. We isolated by cell sorting hematopoietic cells lacking the SSEA1, a marker of 

undifferentiated cells and expressing CD41 and/or CD45 antigens. We transplanted all the available 

cells, ranging from 1x10
4
 cells up to 4.5x10

5
 cells per embryo. In the few analyzable mice, we 

never observed engraftment of donor cells. Furthermore in the only evaluable oc/oc mouse we did 

not have rescue of the osteopetrotic phenotype. We had to face several issues related to the 

technique. We first had problems with the survival of either the pregnant females undergoing in 

utero procedures or the embryos. We also observed a high frequency of perinatal mortality and a 

scarcity of oc/oc mice in the progeny. Importantly, we transplanted too few iPSc derived cells for 

technical limit, thus not achieving the number of hematopoietic cells obtained from the wt bone 

marrow, preventing us to draw conclusions on the in vivo functionality of iPSc derived cells. We 

were unable to successfully scale-up the culture in order to obtain a higher number of cells. 

Moreover, because of the technical limitation of this technique we decided to test another method 

for the transplantation. 

 

To circumvent the problems related to in utero transplantation and in particular to increase the 

number of transplanted cells without dividing the amount among all the embryos of a pregnant 

female, transplantations in post-natal mice were performed. In this way we could determine the 

mice genotype before the transplant and injected all the iPSc derived differentiated cells into the 

oc/oc host. In order to perform the transplant the earlier possible moment, we injected 2-3 days old 

new-born mice. Transplantations with wt bone marrow cells were first performed, to test the 

optimal route of delivery in mice. The same amount of wt bone marrow cells used for the successful 

in utero transplantation was injected. Injection directly into the liver was first tested with or without 

irradiation, since this organ remains a hematopoietic site for few days after birth. However, the 

analysis of transplanted mice showed insufficient engraftment. Probably liver traps the cells and do 



66 

 

not support enough their survival and homing to the other hematopoietic sites. Then transplantation 

in the temporal vein was performed, allowing the cells to reach hematopoietic niches through the 

blood circulation. Without irradiating recipient mice, transplanted cells failed at all the engraftment 

or did not reach long-term persistence. Hence, mice were sub-lethally irradiated before the 

transplant, based on the literature indications (Johansson et al, 2006). In one of the oc/oc mice 

transplanted in temporal vein post-irradiation we observed rescue of the phenotype with long-term 

survival, up to the sacrifice at 5 months post-transplantation, normal growth and high percentages of 

donor cells in the peripheral blood reaching 99%, even several weeks after transplant, belonging to 

all different hematopoietic subpopulations. It showed high levels of donor cells also at the sacrifice 

(71% in bone marrow, 91% in spleen and 100% in thymus) and normalization of the bone 

remodeling activity. 

Interestingly, we observed an oc/oc transplanted mouse with a prolonged life span showing 79% of 

donor cells in the peripheral blood. Despite the engraftment, it showed neurological problems, 

hydrocephalus and visual impairment. So it was sacrificed at 47 days from the transplantation due 

to its poor health status. The high engraftment level was confirmed at the sacrifice in hematopoietic 

organs (97% in bone marrow, 83% in spleen and 97% in thymus), together with a complete rescue 

of the bone phenotype. This confirmed the possibility that neurological defects occurring early at 

the onset of the disease, cannot be rescued by the transplant, which can cure the bone defect. 

We observed also long-term survival, up to 5 months, of a transplanted oc/oc mouse with no donor 

cells detectable in peripheral blood. Before week 12 it was not possible to analyze the peripheral 

blood because the body weight was too low and in all the other time points, comprised the sacrifice 

at 5 months, wt donor cells were not present. Nevertheless, the prolonged survival indicates that 

probably a short-term engraftment of donor progenitor cells had occurred, instead of HSCs. They 

initiated a bone remodeling activity that persisted also until the sacrifice, in which a partial rescue 

of the bone phenotype was evident, but they progressively exhausted during time. We can conclude 

that for the treatment of this disease transplant of HSCs is not strictly required, and that 

hematopoietic progenitors might be enough to produce a partial rescue, sufficient for a long-term 

result. Also in this case we did not reproduce these results with iPSc derived cells. We followed the 

previously applied flow sorting strategy to purify hematopoietic cells from the culture. Even if we 

tried to increase the number of transplanted cells, ranging from 1.6x10
5
 to 3.7x10

6
 cells, because of 

technical reasons we did not reach the amount of 8x10
6
 cells necessary to be curative. Thus, we 

hypothesize to have transplanted too few iPSc derived cells to exclude the possibility that they have 

the capacity to rescue the osteopetrotic phenotype. Unfortunately, the current laboratory technology 

does not allow to obtain such a high number of iPSc, unless using bioreactor technology. Although 
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we obtained successful differentiation in vitro into the hematopoietic lineage including production 

of functional osteoclasts, further improvements of the culture conditions to increase the number of 

obtained cells and their percentages in the culture are necessary to test the in vivo functionality of 

differentiated iPSc. 

At the present day we were not able to reach in vivo results, however in literature there are no data 

showing the possibility to obtain transplantable HSCs from an iPSc culture without adding 

supplemental transgenes. In addition, for human cells, also the use of HoxB4 was not sufficient to 

obtain fully functional HSCs able to reconstitute a hematopoietic system. Despite all the efforts, the 

scientific community has not yet reached the goal to in vitro reproduce the complex 

microenvironment made of cells, cytokines and signals that sustains the correct HSCs development.  
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