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Abstract Starting from the Boltzmann kinetic equations for a mixture of gas molecules
whose internal structure is described by a discrete set of internal energy levels, hydrody-
namic equations at Euler level are deduced by a consistent hydrodynamic limit in the pres-
ence of a two-scale collision process. The fast process driving evolution is constituted by
mechanical encounters between particles of the same species, whereas inter-species scatter-
ing proceeds at the macroscopic scale. The resulting multi-temperature and multi-velocity
fluid-dynamic equations are briefly commented on, and some results in closed analytical
form are given for special simplified situations like Maxwellian collision kernels, or mono-
atomic hard sphere gases.

Keywords Kinetic theory · Gas mixtures · Multi-temperature models
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1 Introduction

It has been very well known for quite some time that the approach to equilibrium predicted
by kinetic theory for gas mixtures might occur on different scales. Typically, when masses
are disparate, a first Maxwellization step of the different distribution functions is followed by
a slower equilibration of species (equalization of velocities and temperatures) [8]. Methods
of kinetic theory, mainly a Chapman–Enskog expansion or Grad thirteen-moment approach,
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were used in this kind of analysis [7, 13, 22]. On the other hand, a multi-temperature ap-
proach naturally arises also in plasmas at high temperature [3], in the flow field around
hypersonic vehicles at high altitude [15], as well as in several problems of aerothermody-
namics [16, 21]. In fact, a one-temperature gas flow description is not reliable in thermal
non-equilibrium conditions when vibrational relaxations and possible chemical reactions
proceed at the gas dynamic time scale, as widely investigated, especially by the Russian
school [12]. In more recent years, multi-temperature fluid-dynamic models have gained sig-
nificance and interest in the frame of rational thermodynamics [14]. The macroscopic the-
ory of homogeneous mixtures has been developed from basic principles on the assumption
that each constituent obeys the same balance laws as a single fluid, yielding qualitative ex-
pressions for the coefficients in the exchange rates for species momentum and energy, and
emphasizing the limiting role of a single temperature approach [19]. Several papers were
published along this line, dealing with average temperature, Maxwellian iteration, heat con-
duction [9, 18, 20], and leading also to a quantitative application to the problem of flame
structure [4]. The interested reader is referred to the review article [17] for more exhaustive
information on a matter that seems to attract a broad and intensive attention nowadays.

Of course, as usual, a consistent formal derivation of multi-temperature fluid-dynamics
as an asymptotic limit in collision dominated regime of a kinetic theory description would
be highly desirable [5]. The task becomes quite heavy if one wants to include into the picture
an essential ingredient for the above physical scenarios, like the occurrence of chemical re-
actions. Preliminary results in this direction were obtained in [2], but under very strong sim-
plifying assumptions, mainly consideration of only translational degrees of freedom (mono-
atomic molecules). We shall consider here non-reactive mixtures, but we shall allow for an
internal polyatomic structure, and subsequent additional degrees of freedom. In this way,
there is exchange of internal energy in a collision, but without exchange of mass. The in-
ternal molecular structure may be taken into account by a discrete or continuous energy
variable, as proposed in [10] and [6], respectively. Following the former discrete approach,
the hydrodynamic limit of the Boltzmann equations depends crucially on the fast processes
driving the evolution, whose collision operators are labeled by an inverse small parameter
(typically, a Knudsen number). Some hydrodynamic regimes, even for the reactive case,
were already considered in [1], but they were all leading to some single-temperature de-
scription. It is clear that, in order to avoid this restriction, one should be dealing with a gas
in which equilibration within each single separate component runs faster than equalization
of species parameters in the gas as a whole.

In [11] it was shown that, when the dominant operator is made up by all mechanical en-
counters preserving kinetic energy, including possible “resonant” collisions with change of
internal state within the same species (as allowed by some form of degeneracy in the energy
levels), hydrodynamic variables (apart from the usual mass densities) turn out to be given
by a unique mass velocity and a unique translational temperature for the mixture, plus an
internal (typically, vibrational) temperature for each species. The hydrodynamic limit is thus
of multi-temperature type, though different from the previous ones. The slow gas-dynamic
relaxation leads eventually to equalization of all temperatures, and, in case of reaction, to a
mass action law for chemical equilibrium. A more detailed fluid-dynamic description could
involve the presence of one mass velocity and of two temperatures for each species (one
translational and one internal). We leave this formidable task to future research, and start
addressing here the non-resonant problem, where vibrational temperatures disappear, but
each species is endowed by its own velocity and (translational) temperature. In Sect. 2 it
is assumed that fast collisions driving the overall evolution in our Q-component gas mix-
ture are constituted by all mechanical encounters between particles of the same species.
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Conservation of mass, momentum, and energy is postulated in each scattering event of any
type. Kinetic energy is thus not conserved in general, due to transitions of colliding particles
from one energy state to another. The Euler equations for the 5Q hydrodynamic variables
(densities, velocities, and temperatures of each species) are derived and briefly discussed in
Sect. 3. It is clear that this level of fluid-dynamic approximation represents a very simplified
description of the physical problem under investigation, and has to be considered only as
a first step in a complex asymptotic procedure that should lead eventually to more realis-
tic hydrodynamic equations at Navier–Stokes level, featuring important dissipative effects
like viscosity and heat flux. We hope to undertake this work in a near future. However, the
present results constitute the preliminary but indispensable step for any further develop-
ment, and their achievement requires, as we will see, significant amount of work in order to
overcome nontrivial technical difficulties. In the present multi-temperature Euler equations,
closed form analytical expressions for the slow collision contributions in the balance equa-
tions may be achieved under additional assumptions or in special situations (see Sect. 4),
like Maxwell collision model, or only one energy level per species.

2 Kinetic and Macroscopic Equations

We shall start from the kinetic model for internal state transitions proposed in [10], in which
each species s, s = 1, . . . ,Q, is endowed with a structure of N > 1 discrete energy levels,
to mimic non-translational degrees of freedom. For a proper mathematical treatment, the
QN different components are labeled according to a single index and ordered in such a way
that the s-th chemical species may be regarded as the equivalence class of the indices i

which are congruent to s modulo Q (we shall write simply i ≡ s). If Ai , 1 ≤ i ≤ QN,
denotes the general component, and Ei the corresponding energy of its state, the general
binary interaction is written as Ai + Aj � Ah + Ak , and is described at Boltzmann level in
terms of a cross section σhk

ij . We will denote by ΔEhk
ij the net increase of internal energy

Eh + Ek − Ei − Ej , whose gain or loss must be compensated by an opposite variation of
the kinetic energies. Energies Ei ≥ 0 are monotonically increasing with their index in the
frame of each species, and all molecules Ai with i ≡ s share the same mass ms . The kinetic
equations for the evolution of the distribution functions fi(x,v, t) read [10]

∂fi

∂t
+ v · ∇xfi = Ji[f ] =

∑

(j,h,k)∈Di

∫∫
K

ijhk

i [f ](v,w, n̂′)dwdn̂′, 1 ≤ i ≤ QN

K
ijhk

i [f ](v,w, n̂′) = Θ
(
g2 − δhk

ij

)
Bhk

ij

(
g, n̂ · n̂′) (1)

×
[(

μij

μhk

)3

fh

(
vhk

ij

)
fk

(
whk

ij

) − fi(v)fj (w)

]
,

where g = |v − w|, n̂ = (v − w)/g, and vhk
ij = εij v + εjiw + εkhg

hk
ij n̂′, whk

ij = εij v + εjiw −
εhkg

hk
ij n̂′, with ghk

ij = [ μij

μhk
(g2 −δhk

ij )]1/2. Here εij denotes the mass ratio mi/(mi +mj), μij =
εijmj the reduced mass, Bhk

ij = gσhk
ij the collision kernel, while δhk

ij stands for 2ΔEhk
ij /μij ;

when the latter is positive, the unit step function Θ actually introduces a threshold for the
collision. Moreover, the set Di is made up by all triplets (j, h, k) with h ≡ i and k ≡ j . The
main properties of the collision operator Ji (collision invariants, detailed balance, equilibria,
H -theorem) are a byproduct of the detailed investigation performed in [10], where also all
major moments, defined in the usual way, are listed. They include number density ni of
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each component and Ns of each species, the corresponding drift velocities ui and us , total
number density n, mass density ρ, mass velocity u, pressure tensor P, thermal energy density
U = 1

2 trP (defining temperature T as in a perfect gas), thermal heat flux q, excitation energy

density U ∗ = ∑QN
i=1 Eini , and excitation heat flux q∗. We briefly recall here that there exist

Q+4 independent collision invariants for the global collision operator, and they correspond
to the species number densities Ns , the global mass velocity u, and the total energy, sum of
the kinetic contribution 1

2ρu2 and of the internal one U + U ∗. Consequently, Q + 4 exact
nonclosed macroscopic conservation equations hold

∂Ns

∂t
+ ∇x · (Nsus) = 0 s = 1, . . . ,Q

∂

∂t
(ρu) + ∇x · (ρu ⊗ u + P) = 0 (2)

∂

∂t

(
1

2
ρu2 + U + U ∗

)
+ ∇x ·

[(
1

2
ρu2 + U + U ∗

)
u + P · u + q + q∗

]
= 0,

and collision equilibria are a (Q+4)-parameter family of Maxwellians with a common drift
velocity and temperature

Mi (v) = ni

(
ms

2πKT

)3/2

exp

[
− ms

2KT
(v − u)2

]
∀i ≡ s, ∀s = 1, . . . ,Q

ni = Ns

Zs(T )
exp

(
−Ei − Es

KT

)
, Zs(T ) =

∑

i≡s

exp

(
−Ei − Es

KT

)
,

(3)

where K is the Boltzmann constant and Zs the partition function. A strict entropy inequality
for relaxation to equilibrium can also be established in terms of the classical H -functional

H =
Q∑

s=1

∑

i≡s

∫
fi logfi dv. (4)

For the physical scenario described in the introduction, the typical mean free paths for colli-
sions between components of the same species are much shorter than for collisions between
components of different species, which in turn are of the same order as the macroscopic
scale. Therefore the proper adimensionalization introduces an order parameter ε � 1, rep-
resenting the Knudsen number [5] for the “affine” collisions, the fast process, whose effects
are dominant in the evolution problem. The scaled equations take then the form

∂fi

∂t
+ v · ∇xfi = 1

ε
J FA

i + J SL
i , (5)

where the superscripts FA (fast) and SL (slow) identify the sets, DFA
i and DSL

i respectively,
to which the sums on the triplets (j, h, k) in (1) must be restricted, namely

DFA
i = {

(j, h, k) ∈ Di, i ≡ j ≡ h ≡ k
}

DSL
i = Di \ DFA

i = {
(j, h, k) ∈ Di, i �≡ j,h ≡ i, k ≡ j

}
.

(6)

We are led thus to the analysis of the leading operators J FA
i , which ignore the presence of

interactions between different species. The study can be performed following standard pro-
cedures of kinetic theory (the interested reader may find some more details in [10] and [1]).
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Collision invariants are in number of 5Q, and may be chosen as

ϕi(v) = as + bs · msv + cs

(
1

2
msv

2 + Ei

)
∀i ≡ s, ∀s = 1, . . . ,Q (7)

with arbitrary as, cs ∈ R and bs ∈ R
3. Since Boltzmann lemma and detailed balance princi-

ple are easily shown to hold, the “fast” collision equilibria are given by

f M
i (v) = Ns

Zs(Ts)

(
ms

2πKTs

)3/2

exp

[
− ms

2KTs

(v − us)
2 − Ei − Es

KTs

]

∀i ≡ s, ∀s = 1, . . . ,Q,

(8)

each with a species density, velocity and temperature as free parameters, and with depen-
dence on the state via Ei and via the structure of the energy levels Ej , j ≡ s. Here Zs is the
same as in (3), but computed at the species temperature Ts .

For any practical application one is mainly interested in the macroscopic equations which
are obtained as weak forms of the kinetic equations when test functions are selected as the
(independent) fast collision invariants. A convenient basis is provided by the three following
options in (7), for each fixed s = 1, . . . ,Q: bs = 0, cs = 0; as = cs = 0; as = 0, bs = 0. They
would represent conservation of mass, of momentum, and of (total) energy within each
species. However, the resulting balance equations will not be of conservative type, due to the
presence of the slow collision operator, which does not vanish under the above test functions
(there is exchange of momentum and energy between different species). The general weak
form reads as

QN∑

i=1

∫
ϕi(v)J SL

i dv =
∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫
ϕi(v)Bhk

ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)

× [
fh

(
vhk

ij

)
fk

(
whk

ij

) − fi(v)fj (w)
]
dvdwdn̂′ (9)

and, on using the Jacobian dvhk
ij dwhk

ij dn̂ = (ghk
ij /g) dvdwdn̂′ and the microreversibility

relation
(

1 + δhk
ij

g2

)1/2

Bhk
ij

(
g

ij

hk, n̂ · n̂′) = B
ij

hk

(
g, n̂ · n̂′), (10)

may be recast, after suitable rearrangements of sums and integrations, as

QN∑

i=1

∫
ϕi(v)J SL

i dv =
∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫ [
ϕh

(
vhk

ij

) − ϕi(v)
]

× Bhk
ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)
fi(v)fj (w) dvdwdn̂′. (11)

Now take for ϕi the string which, once a species s is assigned, shows 1 in all positions i

which are congruent to s, and zero elsewhere. Take the corresponding weak form of Eq. (5),
and notice that, by virtue of Eq. (11), all collision contributions vanish (mass of each species
is preserved also by slow collisions). Since ρs = msNs and ρsus = ∑

i≡s ρiui , we obtain
simply the continuity equation for species s

∂Ns

∂t
+ ∇x · (Nsus) = 0 s = 1, . . . ,Q. (12)
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This coincides of course with the first of (2). Notice that it is closed in the present framework.
Take then for ϕi the string which, for given s, exhibits miv = msv in all positions which

are congruent to s, and zero otherwise. After a little algebra, the corresponding weak form
of Eq. (5) takes the form

∂

∂t
(ρsus) + ∇x ·

∑

i≡s

(ρiui ⊗ ui + Pi ) = Rs s = 1, . . . ,Q (13)

with appearance of mass velocity and pressure tensor of each component of the considered
species, and with a momentum exchange rate

Rs =
∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫
ms

(
vhk

ij −v
)
Bhk

ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)
fi(v)fj (w) dvdwdn̂′. (14)

Finally, take for ϕi the string which, for fixed s, exhibits 1
2miv

2 + Ei in all positions
which are congruent to s, and zero otherwise. Some longer manipulations lead to the energy
balance equation for the considered species

∂

∂t

[∑

i≡s

(
1

2
ρiu

2
i + 3

2
niKTi + Eini

)]
+ ∇x ·

{∑

i≡s

[(
1

2
ρiu

2
i + 3

2
niKTi

+ Eini

)
ui + Pi · ui + qi

]}
= Ss s = 1, . . . ,Q (15)

which involve additionally heat flux of each component of the species s, and with an energy
exchange rate

Ss =
∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫ {
1

2
ms

[(
vhk

ij

)2 − v2
] + Eh − Ei

}

× Bhk
ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)
fi(v)fj (w) dvdwdn̂′. (16)

The 5Q exact, kinetic theory based, macroscopic balance equations are then expressed
by (12), (13), (15), and are nonclosed with respect to the 5Q hydrodynamic fields Ns , us , Ts .
Constitutive equations are needed for all fields which are relevant to single components of
a species, in particular Pi and qi , and for the collision contributions on the right sides, (14)
and (16), that involve the specific distribution functions fi , and bear trace of their kinetic
origin via the collision kernels affecting all integrals.

It can be noticed that, if all Rs are summed over s, we are allowed an additional substitu-
tion in the integrations and summations to be performed, namely v ↔ w, n̂ ↔ −n̂′, i ↔ j ,
s ↔ r , and this leads to a symmetrized form

Q∑

s=1

Rs = 1

2

Q∑

s=1

∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫ (
msvhk

ij + mrwhk
ij − msv − mrw

)

× Bhk
ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)
fi(v)fj (w) dvdwdn̂′. (17)

An analogous symmetrized form may be obtained by summing up all Ss ,

Q∑

s=1

Ss = 1

2

Q∑

s=1

∑

r �=s

∑

i,h≡s

∑

j,k≡r

∫∫∫ [
1

2
ms

(
vhk

ij

)2 + 1

2
mr

(
whk

ij

)2 − 1

2
msv

2
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− 1

2
mrw

2 + ΔEhk
ij

]
Bhk

ij

(
g, n̂ · n̂′)Θ

(
g2 − δhk

ij

)
fi(v)fj (w) dvdwdn̂′, (18)

so that microscopic conservations in the single collisions imply the expected overall macro-
scopic conservations of momentum and energy

Q∑

s=1

Rs = 0,

Q∑

s=1

Ss = 0. (19)

Consequently, summing over s equations (13) and (15) yields consistently momentum and
energy conservation for the gas mixture as expressed by the second and third conservation
laws in (2).

3 Hydrodynamic Euler Equations

The lowest order hydrodynamic closure we are interested in here is now achieved by sub-
stituting the fast collision equilibria (8) for the distribution functions in all moments and
integrals appearing in Eqs. (13) to (16). One gets rather easily for the moments

∑

i≡s

ρiui ⊗ ui = ρsus ⊗ us ,
∑

i≡s

Pi = NsKTsI,
∑

i≡s

Pi · ui = NsKTsus , qi = 0

∑

i≡s

Eini = NsĒs(Ts),
∑

i≡s

Einiui = NsĒs(Ts)us ,

(20)

where the known function Ēs(Ts) represents an equilibrium average of the energy states of
the general species s

Ēs(Ts) = 1

Zs(Ts)

∑

i≡s

Ei exp

(
−Ei − Es

KTs

)
(21)

and accounts for the correction to the energy law for the s-th molecules due to the non-
translational degrees of freedom.

Euler equations for the present model of a polyatomic gas mixture, for physical situations
in which collisions between equal molecules are much more likely than any other event, read
then as (s = 1, . . . ,Q)

∂Ns

∂t
+ ∇x · (Nsus) = 0

∂

∂t
(ρsus) + ∇x · (ρsus ⊗ us) + ∇x(NsKTs) = R̂s (22)

∂

∂t

(
1

2
ρsu

2
s + 3

2
NsKTs + NsĒs(Ts)

)

+ ∇x ·
[(

1

2
ρsu

2
s + 5

2
NsKTs + NsĒs(Ts)

)
us

]
= Ŝs ,

where the exchange rates R̂s and Ŝs have become known functions of the 5Q unknown fields
(species densities, velocities and temperatures).
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A deep and detailed comparison of these results, obtained as asymptotic limit of a kinetic
approach, with other models, especially from thermodynamics, is out of the goals of this
paper, and will be matter of future work. However, we shall try to push analytical calculation
of the production terms as far as possible in order to extract their main features and to
analyze, at least in some simple cases, their trends versus the hydrodynamic fields.

To this end, we start writing R̂s = ∑
r �=s R̂sr , with

R̂sr = −μsr

∑

i,h≡s

∑

j,k≡r

∫∫∫ (
g −

√
g2 − δhk

ij n̂′
)

× Θ
(
g2 − δhk

ij

)
Bhk

ij

(
g, n̂ · n̂′)f M

i (v)f M
j (w) dvdwdn̂′, (23)

where integrations with respect to the unit vector n̂′ ∈ S2 may be performed separately,
leading to the angular moments of the collision kernel

B
hk(�)
ij (g) =

∫

S2

(
n̂ · n̂′)�

Bhk
ij

(
g, n̂ · n̂′)dn̂′ � = 0,1. (24)

Then, the product of the two Maxwellians can be cast as

f M
i (v)f M

j (w) = Ns

Zs(Ts)

Nr

Zr(Tr)

(
ms

2πKTs

) 3
2
(

mr

2πKTr

) 3
2

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)
exp

[−αsr(Gsr + γsrg − δsr )
2
]

exp
{−βsr

[
g − (us − ur )

]2}
(25)

where

αsr = ms

2KTs

+ mr

2KTr

, βsr =
(

2KTs

ms

+ 2KTr

mr

)−1

γsr = μsr

αsr

(
1

2KTs

− 1

2KTr

)
, δsr = 1

αsr

(
ms

2KTs

us + mr

2KTr

ur

) (26)

and Gsr is the center of mass velocity εsrv + εrsw. At this point, since dvdw = dGsr dg,
also the integration over Gsr ∈ R

3 may be performed explicitly, and one ends up with

R̂sr = −μsr

Ns

Zs(Ts)

Nr

Zr(Tr)

(
βsr

π

) 3
2 ∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)

×
∫

R3
Θ

(
g2 − δhk

ij

)
gB̄hk

ij (g) exp
{−βsr

[
g − (us − ur )

]2}
dg (27)

where

B̄hk
ij (g) = B

hk(0)
ij (g) −

(
1 − δhk

ij

g2

) 1
2

B
hk(1)
ij (g). (28)

Now it is easily realized that R̂sr = 0 whenever us = ur , and that it is a vector parallel to
us − ur when us �= ur , i.e. R̂sr = −Xsr êsr , where êsr is the unit vector in the direction of
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us − ur . This allows to push further analytical manipulations in polar coordinates, leaving
only a one-dimensional integral with respect to g = |g|

Xsr = μsr

2
√

π

1

β
1/2
sr |us − ur |2

Ns

Zs(Ts)

Nr

Zr(Tr)

×
∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)∫ ∞

0
Θ

(
g2 − δhk

ij

)
B̄hk

ij (g)

× {
(2βsr |us − ur |g − 1) exp

[−βsr(g − |us − ur |)2
]

+ (2βsr |us − ur |g + 1) exp
[−βsr(g + |us − ur |)2

]}
g dg. (29)

Of course the final integration depends on the specific form of the collision kernel Bhk
ij .

However, setting Δsr = β
1/2
sr |us − ur |, we may write

Xsr = μsr

2
√

π

1

β
3/2
sr |us − ur |2

Ns

Zs(Ts)

Nr

Zr(Tr)

×
∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)
Xhk

ij (|us − ur |, βsr ), (30)

where

Xhk
ij (|us − ur |, βsr ) =

∫ ∞

0
Θ

(
x2 − βsrδ

hk
ij

)
B̄hk

ij

(
β−1/2

sr x
)

× {
(2Δsrx − 1) exp

[−(x − Δsr)
2
]

+ (2Δsrx + 1) exp
[−(x + Δsr)

2
]}

x dx. (31)

We may conclude that R̂sr is a vector proportional to us − ur , and that its component on that
direction is linear in Ns and Nr , and depends on the other hydrodynamic parameters only
via Ts , Tr , and |us − ur |. There is little hope to cast Xhk

ij in closed analytical form, even for
some simple model of the reduced collision kernel B̄hk

ij . Some special cases are discussed in
the next section.

Similar steps are then in order for the energy exchange rate Ŝs = ∑
r �=s Ŝsr , with

Ŝsr = −μsr

∑

i,h≡s

∑

j,k≡r

∫∫∫ [
Gsr ·

(
g −

√
g2 − δhk

ij n̂′
)

+ 1

2
εrsδ

hk
ij − Eh − Ei

μsr

]

× Θ
(
g2 − δhk

ij

)
Bhk

ij

(
g, n̂ · n̂′)f M

i (v)f M
j (w) dvdwdn̂′. (32)

After noticing that

Eh − Ei − 1

2
εrsμsrδ

hk
ij = εsr (Eh − Ei) − εrs(Ek − Ej)

integrations with respect to n̂′ and Gsr may again be performed explicitly, and, skipping
technical details, one ends up with an integral over g, amenable to a one-dimensional integral
over g
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Ŝsr =
(

βsr

π

)3/2
Ns

Zs(Ts)

Nr

Zr(Tr)

∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)

×
∫

Θ
(
g2 − δhk

ij

)
exp

{−βsr

[
g − (us − ur )

]2}{
μsr

(
γsrg

2 − δsr · g
)
B̄hk

ij (g)

+ [
εsr (Eh − Ei) − εrs(Ek − Ej)

]
B

hk(0)
ij (g)

}
dg

= δsr · R̂sr +
(

βsr

π

) 1
2 Ns

Zs(Ts)

Nr

Zr(Tr)

∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)

×
∫

Θ
(
g2 − δhk

ij

){
μsrγsrg

3B̄hk
ij (g) + [

εsr (Eh − Ei) − εrs(Ek − Ej)
]

× gB
hk(0)
ij (g)

}exp{−βsr [g − (us − ur )]2} − exp{−βsr [g + (us − ur )]2}
|us − ur | dg (33)

(for us = ur the fraction inside the integral must be replaced by its limiting value
4βsrge−βsr g

2
). The latter expression may be finally recast as

Ŝsr = δsr · R̂sr + 1√
π

1

Δsr

Ns

Zs(Ts)

Nr

Zr(Tr)

×
∑

i,h≡s

∑

j,k≡r

exp

(
−Ei − Es

KTs

− Ej − Er

KTr

)
Y hk

ij (|us − ur |, βsr , γsr ), (34)

where the integrals Y hk
ij depend also on a weighted temperature difference via γsr :

Y hk
ij =

∫ ∞

0
Θ

(
x2 − βsrδ

hk
ij

){
μsrγsrβ

−1
sr x3B̄hk

ij

(
β−1/2

sr x
)

+ [
εsr (Eh − Ei) − εrs(Ek − Ej)

]
xB

hk(0)
ij

(
β−1/2

sr x
)}

× {
exp

[−(x − Δsr)
2
] − exp

[−(x + Δsr)
2
]}

dx. (35)

Once more Ŝsr depends in general on the hydrodynamic variables Ts and Tr separately, and
on velocities only through |us − ur |.

4 Exchange Rates for Simple Models

If we assume isotropic Maxwell-molecule type of interaction for a given collision (i, j) →
(h, k), we may write

B̄hk
ij (g) = B

hk(0)
ij (g) = κhk

ij = constant (36)

and the integral Xhk
ij in (31) reduces to

Xhk
ij = κhk

ij

∫ ∞

(βsr δ
hk
ij

)1/2

{(
2Δsrx

2 − x
)

exp
[−(x − Δsr)

2
]

+ (
2Δsrx

2 + x
)

exp
[−(x + Δsr)

2
]}

dx for δhk
ij > 0 (37)
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or, by easy calculations, to

Xhk
ij = 2

√
πκhk

ij Δ3
sr for δhk

ij ≤ 0. (38)

In the former case, patient manipulations lead to

Xhk
ij = 2κhk

ij

∫ ∞

(βsr δ
hk
ij

)1/2+Δsr

(
2Δsrz

2 + 2Δ3
sr − Δsr

)
e−z2

dz

+ κhk
ij

∫ (βsr δ
hk
ij

)1/2+Δsr

(βsr δ
hk
ij

)1/2−Δsr

[
2Δsrz

2 + (
4Δ2

sr − 1
)
z + 2Δ3

sr − Δsr

]
e−z2

dz (39)

so that everything is amenable to primitives of e−z2
times the first few integer powers of z,

namely to Gaussian and error functions, precisely

Xhk
ij = 2

√
πκhk

ij

{
Δ3

sr F1(βsr ,Δsr) −
(

Δ2
sr − 1

2

)
F2(βsr ,Δsr)

+ Δsr

√
βsrδ

hk
ij F3(βsr ,Δsr)

}
(40)

for δhk
ij > 0, where

F1(βsr ,Δsr) = 1 −
erf(

√
βsrδ

hk
ij + Δsr) + erf(

√
βsrδ

hk
ij − Δsr)

2

F2(βsr ,Δsr) = e
−(

√
βsr δ

hk
ij

+Δsr )
2 − e

−(
√

βsr δ
hk
ij

−Δsr )
2

2
√

π
(41)

F3(βsr ,Δsr) = e
−(

√
βsr δ

hk
ij

+Δsr )
2 + e

−(
√

βsr δ
hk
ij

−Δsr )
2

2
√

π
,

recovering (38) for δhk
ij → 0. Expressions (38), (40), (42) make the dependence on βsr and

on |us − ur | = β
−1/2
sr Δsr explicit, if (36) holds. Unfortunately, this does not make explicit

the whole exchange rate R̂s . In fact, the sums in (30) involve, together with Xhk
ij , also its

“reciprocal” X
ij

hk , for which the collision kernel is not Maxwellian anymore, because of the
microreversibility condition (10). If we assume for instance that (36) holds for all (i, j, h, k)

such that ΔEhk
ij > 0, then (40) is valid for all such (i, j, h, k), but, since

B̄
ij

hk(g) = κhk
ij

(
1 + δhk

ij

g2

)1/2

(42)

we need to compute also, with δhk
ij > 0, the integrals

X
ij

hk = κhk
ij

∫ ∞

0

(
x2 + βsrδ

hk
ij

)1/2{
(2Δsrx − 1) exp

[−(x − Δsr)
2
]

+ (2Δsrx + 1) exp
[−(x + Δsr)

2
]}

dx (43)
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which, with the presence of an irrational function of x, seems not to be amenable to any of
the most common elementary or special functions.

A notable simplification occurs for monoatomic gases (N = 1), which is a kind of limit-
ing situation, or toy model, for our physical system, but nevertheless can provide, as usual,
some insight on the general problem, especially about dependence of the exchange rates
on the hydrodynamic fields or combinations thereof. In particular, results can be useful for
comparison with a general thermodynamic theory, based on first principles only, in whose
frame they should not depend on the specific molecule, nor on the type of intermolecular
potential. In the case of a single internal level, energy jumps are absent and sums are made
up by a single term, so that momentum exchange rates collapse to

R̂sr = − 1

2
√

π
μsrNsNr

us − ur

Δ3
sr

∫
B̄sr

sr

(
β−1/2

sr x
)

× {
(2Δsrx − 1) exp

[−(x − Δsr)
2
]

+ (2Δsrx + 1) exp
[−(x + Δsr)

2
]}

x dx. (44)

For a Maxwellian collision model like (36), the final expression is very easy

R̂sr = −μsrNsNrκ
sr
sr (us − ur ), (45)

but other collision models may allow explicit integration. The most significant one is prob-
ably the rigid sphere model

B̄sr
sr (g) = ηsr

sr g (46)

and we quote here for illustrative purposes the final pair exchange rate (for us �= ur )

R̂sr = −ηsr
srμsrNsNr√

πβ
1/2
sr

(us − ur )

[(
Δsr + 1

Δsr

− 1

4Δ3
sr

)√
πerf(Δsr)

+
(

1 + 1

2Δ2
sr

)
exp

(−Δ2
sr

)]
(47)

in agreement with a result of [2]. The projection Xsr depends here on velocities us and ur

only via |us −ur |, and on temperatures Ts and Tr only via the combination Ts

ms
+ Tr

mr
, whereas

in (45) it was linear in |us − ur | and independent of temperatures. Limiting trends in (47)
are

Xsr = 8

3
√

π

ηsr
srμsrNsNr |us − ur |

β
1/2
sr

+ O
(|us − ur |3

)
for |us − ur | → 0

Xsr ∼ ηsr
srμsrNsNr |us − ur |2 for |us − ur | → ∞.

(48)

Analogously, for the energy exchange rates, assuming isotropic Maxwellian molecules for
a given (i, j) → (h, k) collision, as expressed by (36), the integral Y hk

ij in (35) becomes

Y hk
ij = κhk

ij

∫ ∞

(βsr δ
hk
ij

)1/2

{
μsrγsrβ

−1
sr x3 + [

εsr (Eh − Ei) − εrs(Ek − Ej)
]
x
}

× {
exp

[−(x − Δsr)
2
] − exp

[−(x + Δsr)
2
]}

dx (49)
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for δhk
ij > 0, while the lower integration bound must be replaced by 0 in the case δhk

ij ≤ 0.
In the latter case manipulations are standard, though a bit lengthly, requiring essentially
primitives of Gaussians times integer powers of x, and yield

Y hk
ij = κhk

ij

√
πΔsr

{
μsr

[
γsr |us − ur |2 − 3K(Ts − Tr)

ms + mr

]

+ εsr (Eh − Ei) − εrs(Ek − Ej)

}
for δhk

ij ≤ 0 (50)

with clear dependence on Ts , Tr (also inside γsr ) and on |us − ur |, and with appearance of
the actual temperature difference Ts − Tr .

Much more tedious and cumbersome is the computation for δhk
ij > 0, and we report here

only the final result (recovering (50) if δhk
ij → 0)

Y hk
ij = κhk

ij μsrγsrβ
−1
sr

√
π

[
Δsr

(
Δ2

sr + 3

2

)
F1(βsr ,Δsr)

+ (
1 + βsrδ

hk
ij + Δ2

sr

)
F2(βsr ,Δsr ) +

√
βsrδ

hk
ij Δsr F3(βsr ,Δsr)

]

+ κhk
ij

[
εsr (Eh − Ei) − εrs(Ek − Ej)

]√
π

[
Δsr F1(βsr ,Δsr)

+ F2(βsr ,Δsr)
]
. (51)

For the same reasons as for R̂sr , the actual computation of Ŝsr in closed form remains an
open problem in general, even introducing as many Maxwell-molecules assumptions (36)
as possible, since microreversibility renders the “reciprocal” collisions not manageable.

Once more, a considerable simplification occurs for monoatomic gases, in which case
we have from (34)–(35)

Ŝsr = δsr · R̂sr − 2μsrNsNr

Δsr

√
π

K(Ts − Tr)

ms + mr

∫ ∞

0
x3B̄sr

sr

(
β−1/2

sr x
)

× {
exp

[−(x − Δsr)
2
] − exp

[−(x + Δsr)
2
]}

dx. (52)

Now there are no jumps of internal energy and an overall assumption of Maxwell-type col-
lision like (36) is consistent with microreversibility, yielding, after some simple algebra

Ŝsr = δsr · R̂sr − μsrNsNrκ
sr
sr

(
3K(Ts − Tr)

ms + mr

− γsr |us − ur |2
)

= −μsrNsNrκ
sr
sr

[
(εsrus + εrsur ) · (us − ur ) + 3K(Ts − Tr)

ms + mr

]
(53)

which recovers a result from [2]. In this simplified case also other collision models can be
worked out explicitly. For instance, for hard sphere interactions, we may use (46) and get

Ŝsr = −μsrNsNrη
sr
sr β

−1/2
sr

×
{

1

αsr

[(
Δ2

sr + 1 − 1

4Δ2
sr

)
erf(Δsr)

Δsr

+
(

1 + 1

2Δ2
sr

)
e−Δ2

sr√
π

]
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×
(

ms

2KTs

us + mr

2KTr

ur

)
· (us − ur ) + 2K(Ts − Tr)

ms + mr

×
[(

Δ4
sr + 3Δ2

sr + 3

4

)
erf(Δsr)

Δsr

+
(

Δ2
sr + 5

2

)
e−Δ2

sr√
π

]}
(54)

with limiting trends

Ŝsr = −μsrNsNrη
sr
sr β

−1/2
sr

8

3
√

π

[
3K(Ts − Tr)

ms + mr

+ 1

αsr

(
ms

2KTs

us + mr

2KTr

ur

)

· (us − ur ) + O
(|us − ur |2

)]
for |us − ur | → 0 (55)

Ŝsr ∼ −μsrNsNrη
sr
sr βsr

2K(Ts − Tr)

ms + mr

|us − ur |3 for |us − ur | → ∞.

Above results about the dependence of the exchange rates on the hydrodynamic variables
seem, at least qualitatively, not to be directly amenable to trends predicted, in a different
frame, starting from basic principles of thermodynamics [19]. Quantifying and understand-
ing the relevant discrepancies is scheduled as future investigation.
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