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ABSTRACT 

 

Toll-like receptors (TLRs) play key roles in detecting pathogens and initiating 

inflammatory responses via the activation of specific signaling pathways. The TLRs 

activity must be tightly regulated to avoid excessive inflammation and consequent 

immunopathology, ranging from autoimmunity to cancer. MicroRNAs (miRNAs) 

are a new class of negative regulators involved in setting the balance of the 

immune response to inflammatory triggers. In this study, we identified miR-

125a~99b~let-7e cluster and miR-146b as miRNAs that, after LPS engagement on 

human monocytes, are induced by the anti-inflammatory IL-10 and TGFβ, but are 

inhibited by the pro-inflammatory IFNγ.  

Bioinformatic analysis predicted and experimental evidence demonstrated that 

miR-125a-5p, let-7e-5p and miR-146b directly target the TLR pathway at multiple 

levels, including receptors (TLR4, CD14), signaling molecules (IRAK1, MyD88, 

TRAF6), and effectors (TNFα, IL-6, CCL3, CCL7, CXCL8).  

We showed that over-expression or inhibition of miR-125a, let-7e and miR-

146b expression with lentiviral vector in human monocytes had a significant 

impact on the production of pro-inflammatory cytokines in response to LPS. In 

particular, we identified a role for miR-125a-5p and miR-146b in mediating the 

LPS hyporensponsiveness observed after IL-10 or TGFβ priming or during the 

endotoxin tolerance, the phenomenon of reduced sensitivity to subsequent 

challenge of LPS. The up-regulation of miR-125a-5p and miR-146b into THP-1 cells 

mimicked the LPS, IL-10 or TGFβ priming, whereas the inhibition of them by 

lentiviral vector or a pre-treatment with IFNγ reverted, partially, the tolerant 

phenotype.  

In an in vivo model of acute inflammatory response, we obtained that miR-125a-

5p, miR-99b-5p and miR-146b were induced in macrophages recruited at the site 

of inflammation during the resolution process, and this was impaired in 

macrophages of IL-10 KO mice. Our studies indicated that miRNA cluster and miR-

146b represent a new negative feedback mechanism of the TLR signaling pathway.  
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1. INTRODUCTION 

 

1.1 The immune system 

 

 The human body provides a perfect habitat for many germs, such as bacteria, 

viruses, fungi, and parasites, so the immune system has been evolved to recognize 

and to distinguish them from the organism’s health tissues. The immune system 

can be divided in subsystems with increasing specificity: the innate immune system 

offers an immediate, but non-specific response and it is found in all animals and 

plants; and the adaptive immune system, activated by the innate immune cells if the 

infection could not be cleared. It is extremely specific, relying on antigen-specific 

receptors and results in immunological memory which allows a better response 

after a re-infection of the same pathogen.  

Both adaptive and innate immune systems are needed for an optimal response 

against pathogens because, other than chronologically subsequent, they are also 

highly integrated: the innate responses stimulate and direct the adaptive ones, 

while the adaptive responses react against pathogens by stimulating also effector 

mechanisms of innate immunity. 

 

1.1.2 The innate immune system 

The innate immune system is formed by a group of cells or molecules which 

recognize elements conserved and used in a large group of pathogens, called 

pathogen associated molecular patterns (PAMPs), by germline-encoded pattern-

recognition receptors (PRR). These PRRs have evolved  to recognize what is 

infectious non-self from non-infectious self, a vital distinction [1].  

The innate immune system is made of both humoral components, composed by 

soluble proteins as the complement system, and cellular components, that include 
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macrophages, monocytes, polymorphonucleated granulocytes (PMN; neutrophils, 

basophils, mast cells, and eosinophils), natural killer (NK) cells and dendritic cells 

(DCs). These cells are activated during and inflammatory response and clear the 

infection; but subsequently migrate to lymphoid organs and present microbial 

antigens, as antigen presenting cells (APCs), to specific T lymphocytes trigger 

adaptive immune response.  

 

- Neutrophils 

Neutrophils are the most abundant leukocytes in mammals. During the acute 

phase of inflammation, they are the first cells that arrive at the site of 

inflammation. Once in the inflammatory tissue, the hallmark functions of 

neutrophils are: the ability to act as phagocytes, the release of anti-microbial 

mediators from their granules, and the production of reactive oxygen 

intermediates (ROI) with anti-microbial potential [2]. Another described 

mechanism of killing bacteria is the formation of neutrophil extracellular traps 

(NET), a net of fibers composed by chromatin and serine proteases that trap and 

kill bacteria with a high concentration of anti-inflammatory mediators, preventing 

the spread of pathogens and of damaging molecules [3]. All of these processes are 

highly regulated by the signals they receive from different PRRs, including almost 

all members of Toll-like receptor (TLR) family with the exclusion of TLR3 [4]. The 

resting neutrophils have a very short average lifespan in the circulation, of about 

5.4 days [5], and after the activation they survive only 1-2 days. It has been 

hypothesized that the short lifetime of neutrophils derived from an evolutionary 

adaption, because reduce the diffusion of pathogens that have been phagocytized 

and because limits the damage of antimicrobial products released by neutrophils 

during the inflammatory response. Usually, after the ingestion of pathogens, 

neutrophils undergo apoptosis and are phagocytosed by macrophages, an 

important step for the resolution of inflammation.  
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- Monocytes 

Monocytes, macrophages and DC are mononuclear phagocytes that were 

universally considered as related cell types that arise from a continuum of 

differentiation, established by van Furth’s mononuclear phagocyte system (MPS) 

concept in 1968 [6]. However, although monocytes can originate DCs and 

macrophages during inflammation, recent studies have demonstrated that most of 

tissue macrophages do not derive from differentiated monocytes in the steady 

state and rather originate from yolk sac of fetal liver and populate organs at birth 

[7]. Monocytes have an essential role in antimicrobial immune defense but they are 

also implicated in many inflammatory diseases and they can be recruited to tumor 

sites and can inhibit tumor-specific immune defense mechanisms [8].  

Monocytes represent 10% of leukocytes in human blood and 4% of leukocytes 

in mouse blood, with a marginal pool in the spleen and lungs that can be mobilized 

in certain conditions [9, 10]. Monocytes arise from myeloid precursor cells in 

primary lymphoid organs, including the fetal liver and bone marrow, during both 

embryonic and adult haematopoiesis [11]. There are two main phenotypically and 

functionally distinct subsets of monocytes: the first subset — defined as LY6Clow 

cells in mice and as CD14lowCD16+ cells in humans — seems to be dedicated to the 

surveillance of endothelial integrity and these cells effectively act as luminal blood 

macrophages; the second main subset — defined as LY6Chi cells in mice and as 

CD14+ cells in humans — have classical monocyte functions, such as rapid 

extravasation at sites of injury and replenishment of peripheral DC and 

macrophage compartments [12]. A peculiar feature of monocytes is their plasticity 

that can be recapitulated in vitro with different stimuli: human and mouse 

monocytes cultivate with IL-4 and granulocyte- macrophage colony- stimulating 

factor (GM-CSF) differentiate them into DCs; stimulation with M-CSF differentiate 

them into macrophages [13].   
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- Macrophages  

Macrophages are haematopoietic cells that populate every tissue including the 

brain. They play a major role in tissue homeostasis and development, through 

clearance of foreign and damaged cells and participate in the induction and 

resolution of the inflammation [14]. Recently, fate-mapping studies revealed that 

adult microglia, alveolar macrophages, splenic red pulp macrophages and F4/80hi 

peritoneal cavity macrophages do not derive from blood monocytes for their 

replenishment but have a fetal origin, at least under steady-state conditions [7]. In 

normal mice, these cells exist togheter with ‘F4/80lo macrophages’, that have 

haematopoietic origin [15]. Macrophages are divided into two classes: the ‘M1-M2 

paradigm’. Classically activated M1 macrophages are induced by interferon γ 

(IFNγ) alone or with microbial stimuli (e.g. LPS) or cytokines (e.g. TNF and GM-

CSF). Alternative M2 activation can be induced by IL-4 and IL-13 [16] and many 

other cytokines like IL-33 [17]  and IL-21 [18]. Macrophages can also be polarized 

into an ‘M2-like’ state, by different stimuli as transforming growth factor-β (TGFβ), 

glucocorticoids, IL-10 and Wnt5a [19]. This ‘M2-like’ macrophages share some 

characteristics of M2 cells, as high expression of IL-10, mannose receptor, and 

angiogenic factors [20]. In general, M1 cells produce more inflammatory cytokines 

(IL-1β, TNF, IL-6) and reactive oxygen species and mediate defense against 

intracellular parasites and tumors. Instead, M2 cells have more anti-inflammatory 

properties and mediate parasite clearance, angiogenesis, tissue remodelling, 

tumour progression and immunoregulation [21].  
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1.2 Pattern recognition receptors  

 

The innate immune cells express different pattern recognition receptors (PRR) 

to identify PAMPs, associated to microbial and viral pathogens, as well as damage- 

associated molecular patterns (DAMPs), associated with molecules released by the 

damaged cell. The PRRs can be in intracellular compartments, on cell surface or 

secreted into bloodstream and tissue fluids [22] with different functions, as 

opsonization, activation of complement, phagocytosis and induction of pro-

inflammatory signaling pathways.  

The secreted PRRs, as complement receptors, collectins and pentraxins, are 

released immediately after the infection [23-25]. The collectins belongs to the C-

type lectins superfamily and form a family of collagenous Ca2+- dependent lectins 

which can bind to oligosaccharide structures or lipids present on the surface of 

microorganism. One of the member of this family is mannan-bindig lectin (MBL) 

that binds specifically mannose residues at the terminal portion, which are 

abundant on many microorganisms, and associates with MBL-associated serine 

proteases (MASP). The binding of MBL to MASP1 and MASP2 activates them that 

initiate the lectin complement pathway [26]. The pentraxin superfamily are 

composed of serum proteins known as acute phase proteins. C-reactive protein 

(CRP) and serum amyloid P (SAP) are the short pentraxins and PTX3 is the long 

pentraxin. They can induce the activation of the classical pathway of complement 

and facilitate pathogen recognition by DCs and macrophages. 

There are some cell surface receptors that function as PRRs and mediate 

phagocytosis of microorganism. Macrophage mannose receptor (MMR) is a 

member of C-type lectin family and interacts with fungal pathogens and different 

gram-negative and gram-positive bacteria. It can induce phagocytosis of pathogens 

and delivery into the lysosomal compartment. Macrophage scavenger receptor 

(MSR) is another phagocytic PRRs that has specificity to LTA, LPS and double-

stranded RNA (dsRNA) [27]. Another scavenger receptor is MARCO, which binds to 

LPS and bacterial cell walls and induces phagocytosis [28].  
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Several PRRs are presented in the cytoplasm where they detect virus and 

bacteria penetrated in the intracellular compartment. NOD-like receptors (NLR) 

contain and N-terminal CARD domain, a nucleotide binding domain (NBD) and a C-

terminal leucine-rich repeat (LRR). The CARD domains of NOD1 and NOD2 bind a 

protein kinase, RIP2, which in replay activates NF-κB and MAPK signaling 

pathways [29]. Rig-I-like receptors (RLR) are another class of intracellular PRRs, 

which recognize viral RNA. Two of the RLRs, MDA-5 and RIG-I sense ds-RNA and 

induce a cellular response via CARD domain; instead LGP-2 does not expressed 

CARD domains so it fails to induce signaling alone but has been found to be 

necessary for effective RIG-I and MDA5-mediated responses [30]. Toll like 

receptors are the best characterized among the PRRs and thus will be discussed in 

further detail.  

 

1.2.1 Toll like receptors (TLRs) 

The TLRs are a type of PRRLs, homologues of the Drosophila Toll protein. They 

are transmembrane proteins composed of an extracellular domain containing 

leucine-rich repeats (LRRs), that mediate the recognition of PAMPs, and a 

cytoplasmic tail that contains a conserved region called the Toll/IL-1 receptor 

(TIR) domain, required for signaling transduction [31]. In human, there are 10 

TLRs, with TLR1 to TLR9 being conserved in humans and mice; mouse TLR10 is 

not functional for a retrovirus insertion, and the genes coding for TLR11, TLR12 

and TLR13 are not present in the human genome. They differ from each other in 

PAMP ligands and their cellular localization. TLR1, TLR2, TLR4, TLR5, TLR6 and 

TLR11 are exposed on cell membrane and recognize mainly lipoproteins, lipids 

and protein expressed on microbial surface; TLR3, TLR7, TLR8 and TLR9 

recognize nuclear acids and are exposed on intracellular compartments, as 

endosomes, endoplasmic reticulum and lysosomes [32].  
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-  TLR4 

TLR4 was the first discovered human homologue of Drosophila Toll [33]. Its 

main ligand is the lypopolisaccharide (LPS), an element present on the outer 

membrane of the Gram-negative bacteria. On cell surface, TLR4 complexes with 

MD-2, which lacks a transmembrane domain but is associated with the 

extracellular part of TLR4 [34]. The LPS in the serum is bound by LPS-binding 

protein (LBP) that transfer LPS monomer to CD14, a glycosylphosphatidylinositol-

linked protein that delivers LPS-LBP to TLR4-MD-2 complex [35]. TLR4, in 

addition to LPS,  has been implicated in the recognition of the fusion protein of the 

respiratory syncytial virus, lipoteichoic acid (LTA) and the heat shock protein 

hsp60 [36, 37].  

 

- TLR2 

TLR2 is a cell surface TLR that recognize the largest number of ligands among 

all PRRs, derived from fungi, bacteria, viruses and parasites. These include 

peptidoglycan from Gram-positive bacteria, lipopeptides from bacteria and 

zymosan from fungi [38]. TLR2 can not recognize PAMPs alone, but assembles  

with either TLR1 or TLR6 to form heterodimers, and this increase repertoire of 

ligand specificities [39]. TLR2 can interact with other cell surface receptors 

present on the cell membrane, as CD36 and dectin-1, a C-type lectin that detects 

fungus β-glucan and causes its internalization [40].  

 

- The other TLRs 

TLR3 recognizes double-stranded RNA (dsRNA) generated from the replication 

of single-stranded RNA (ssRNA) viruses, in intracellular compartments. It can bind 

polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of dsRNA, imitating a 

viral infection. The antiviral immune response induced leads to the release of 

inflammatory cytokines and type I interferon [31]. 
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TLR5 is a cell surface TLRs that recognize the bacterial flagellin protein. It is 

expressed at high level on DCs in the lamina propria of small intestine [41]. In 

mouse, TLR11 corresponds to TLR5 and it have high expression in kidney and 

bladder, where recognizes uropathogenic bacterial components [42].  

TLR7 is an intracellular TLRs, expresses principally by pDCs at lysosome 

compartment. It identifies ssRNA of RNA viruses as influenza A virus, vesicular 

stomatitis virus and human immunodeficiency virus [31]. It also recognizes small 

interfering RNAs and synthetic poly(U) RNA [43]. In vitro and in clinic, it is 

activated by imiquimod and resiquimod (R-848). Human TLR8 shows high 

homology to mouse TLR7 even in ligand specificity, but mouse TLR8 appears to be 

nonfunctional [31].   

TLR9 recognizes unmethylated CpG motifs express frequently in viral and 

bacterial DNA but are unusual in mammalian cells [44]. Synthetic CpG 

oligodeoxynucleotides work as ligand of TLR9 and active DCs, macrophages and B 

cells to produce type I IFNs and inflammatory cytokines. TLR9, as TLR7 are 

sequestered in the ER in rest cells but after a ligand stimulation they can traffic to 

endolysosomes [45]. 
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Figure. 1: Toll-like receptors. TLR2, alone or in combination with other TLRs, senses 

lipoproteins, lipoarabinomannans and lipoteichoic acids; TLR4 senses different lipopolysaccharides 

of the Enterobacteriaceae; TLR5 recognizes flagellin of flagellated bacteria; TLR3, TLR7 and TLR8 

detect viral RNA, whereas TLR9 recognizes low-methylated DNA that contains CpG motifs, which 

are characteristic of bacterial DNA. Imagine adapted from [46].  
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1.3 TLRs signaling pathways 

 

Upon recognition of their ligands, TLRs activate specific host defense responses. 

For example, TLR4 and TLR3 induce type I IFN and inflammatory cytokines 

expressions, whereas TLR2-TLR1, TLR2-TLR6 and TLR5 induce mainly 

inflammatory cytokines. These differences are due to different Toll-1-resistence 

(TIR) domain-containing adaptor molecules, including MyD88, TIRAP (Mal), TRIF 

and TRAM, which are recruited by different TLRs and activate distinct signaling 

pathways. MyD88 (myeloid differentiation primary-response protein 88) is used 

by all TLRs except TLR3, and induces inflammatory cytokines by the activation of 

NF-κB and mitogen-activated protein kinases (MAPKs). In contrast, TRIF (TIR 

domain-containing adaptor protein inducing IFNβ) is used by TLR3 and TLR4 and 

induces alternative pathways, activating the transcription factors NF-κB and IRF3 

to produce type I IFN and inflammatory cytokines. TRAM (TRIF-related adaptor 

molecule) is a sorting adaptors that recruit TRIF to TLR4, instead TIRAP function 

as sorting MyD88 to TLR4 and TLR2 [32]. Thus, TLRs signaling can be classified in 

MyD88-dependent pathways or TRIF-dependent pathways. 

 

1.3.1 The MyD88-dependent pathway 

When PAMPs bind to the specific TLRs, MyD88 recruits the IL-1 receptor-

associated kinase IRAK4, which phosphorylates IRAK1 and IRAK2 sequentially. 

Activated IRAKs interact with Tumor necrosis factor receptor-associated factor 6 

(TRAF6), an E3 ubiquitin protein ligase, which catalyzes the formation of a K63-

linked polyubiquitin chain on TRAF6 itself and on IKK-γ/NF-κB essential 

modulator (NEMO) [47]. A complex formed of TAK1 (TGF-β-activated kinase 1) 

and TAK1 binding proteins (TAB1, TAB2, and TAB3) is recruited to TRAF6 [48] 

and IKK-β is phosphorylated, which leads to NF-κB activation. TAK1 

simultaneously activates the MAPKs Erk1, Erk2, p38 and JNK, which activate other 

transcription factors, including AP-1 [48]. In addition to NF-κB activation, the 

transcription factor IRF-5 is activated and it translocates into the nucleus and 
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induces expression of inflammatory cytokines [49]. There are other molecules 

activated downstream the TLRs engagement, as IκBζ, which acts as inducer of the 

NF-κB p50 subunit to induce IL-6 and IL-12p40 [50], and C/EBPδ, which amplify 

IL-6 production downstream NF-κB [51].  

 

1.3.2 The TRIF-dependent pathway 

The TRIF-dependent pathway stimulates both IRF3 and NF-κB. TRIF forms a 

complex with TRAF6, Pellino-1, TRADD and RIP-1 that activates TAK1, which in 

turn activates the NF-κB and MAPK pathways [52]. On the other hand, TRIF 

activates TBK1 via TRAF3 to induce IRF3 and IRF7 translocation into the nucleus, 

resulting in the expression of IFN- inducible genes. This signaling pathway is used 

by TLR4 and by TLR3, when they are internalized in the endosome compartment 

after the initial trigger [53].  
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Figure 2: TLRs signaling pathways. TLR signaling is initiated by ligand-induced dimerization 

of receptors. Following this, the TIR domains of TLRs engage MYD88 and MAL, or TRIF and TRAM. 

TLR4 moves from the plasma membrane to the endosomes in order to switch signaling from 

MYD88 to TRIF. Engagement of the signaling adaptor molecules stimulates interactions between 

IRAKs and TRAFs and that lead to the activation of the MAPKs, JNK and p38, and to the activation of 

the transcription factors. A major consequence of TLR signaling is the induction of pro-

inflammatory cytokines, and in the case of the endosomal TLRs, the induction of type I IFNs. 

Imagine from [54].  
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1.4  microRNA 

 

Signaling pathways commonly activated during acute immune responses induce 

the transcription of coding and non-coding RNAs (ncRNA). For definition, ncRNAs 

are all RNAs that are not transcribed in proteins and they include ribosomal RNA 

(rRNA) and transfer RNA (tRNA), involved in the translation process; small 

nucleolar RNA (snoRNA), which participate in the splicing process; microRNA 

(miRNA) and long non-coding RNA (lncRNA), that regulate gene expression [55]. 

The increase identification of non-coding genome functions sheds light on the 

complexity of eukaryotes and supports a fundamental role to non-conding RNAs 

on the evolutionary process.  

 

 

1.4.1 The biogenesis of miRNA 

MiRNAs are small, single-stranded non-coding RNAs of 19-23 nucleotides in 

length. miRNAs are found in animals, plants, and some viruses, with the function in 

RNA silencing and regulation of gene expression at post-transcriptional level [56]. 

The first miRNA were identified in 1993 in Caenorhabditis elegans worm, in the 

course of a study of lin-4 gene, which instead of producing an mRNA encoding a 

protein, it produced short non-coding RNAs, that contained sequences partially 

complementary to multiple sequences in the 3' UTR of the lin-14 mRNA [57]. 

Presently, there are 28645 mature miRNA listed in miRBase21 (June 2014).  

Most miRNAs are produced from intergenic regions or can be found in introns. 

In some cases, a miRNA gene can be transcribed with its host gene, such as the 

bic/miR-155 gene [58]. Interestingly, there are miRNA genes formed by multiple 

hairpins on a single cluster, as the miR-17-92 cluster [59]. miRNAs are transcribed 

by RNA polymerase II (Pol II) as a long pri-miRNA that is 5’ capped and 

polyadenylated [60]. A single pri-miRNA may include one or more miRNA 

precursors that are stem-loop structures, constituted of about 70 nucleotides. The 
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position of the stem-loop in the pri-miRNA is recognizes by a nuclear protein 

known as DiGeorge Syndrome Critical Region 8 (DGCR8 or "Pasha" in 

invertebrates) that, together with Drosha, form the microprocessor complex [61]. 

Drosha is an RNase III enzyme that, thanks to DGCR8, cleaved the pri-miRNA in a 

precise position to liberate the hairpins with a 5’ phosphate groups and an 

overhang at its 3’ hydroxyl end. This is termed precursor miRNA (pre-miRNA). 

Some miRNAs that are located in the introns of the mRNA host gene, termed 

“mirtrons”, can bypassed the microprocessor complex and can be spliced out 

directly by the spliceosome [62]. 

Pre-miRNAs are then actively exported out of the nucleus by the 

nucleocytoplasmic Exportin-5. This protein recognizes the 3’ overhang of the pre-

miRNA hairpins and mediates the transport of the correctly processed stem-loops 

in a RAS- related nuclear protein-guanosine triphosphate (RAN-GTP)-dependent 

manner [63].  

Once in the cytoplasm, pre-miRNAs are cleaved by Dicer, an RNase III enzyme, 

to an imperfect miRNA/miRNA* duplex of about 22 nucleotides in length [64]. 

Dicer acts in conjunction with an RNA-binding protein TRBP (Tar RNA binding 

protein), needed for Dicer stability, and proteins of Argonaute family, mostly Ago2, 

to form the RNA-induced silencing complex (RISC). Normally, the strand of the 

miRNA duplex that is incorporated in the RISC complex is selected depending on 

its thermodynamic instability or the position of the stem-loop [65]. The miRNA*, or 

the passenger strand, is generally degraded, but sometimes, both strands of the 

duplex are functional and target different mRNA populations [66].  
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1.4.2 The miRNA targeting of mRNA 

The RISC complex, once formed with the mature miRNA, will act as gene 

regulator. Plant miRNAs are usually complementary to coding regions of mRNA 

targets with perfect base pairing and promote cleavage of the RNA [67]. 

Conversely, mammalian miRNAs bind the mRNA targets with partial 

complementarity in the 3’ UTR of the mRNA. Only the ‘seed region’ of the miRNA 

(nucleotides 2-7 from 5’ end) still have to be perfectly complementary [68]. 

Recently, an alternative RISC assembly have been proposed, in contrast to the 

consensus view that all miRNAs are associated to Ago proteins. The authors 

identified the existence of miRNA-mRNA duplexes not bound by Ago proteins and 

demonstrated that Ago proteins can bind and repress this duplex in a second 

moment [69].  

miRNAs can repress targets in different ways: cleaving of target mRNAs (usually 

for plant miRNAs), repressing mRNA translation or promoting its degradation. A 

theory proposes that RISCs repress the initiation step of the translation process by 

competing with eIF4E (eukaryotic initiation factor-4), which recognizes the 5’UTR 

of mRNA and initiates ribosome formation, for binding to the 5’cap of mRNA. 

Moreover, this interaction limit the cooperation among the 5′ cap and 3′ poly(A) 

tail for a correct translation [70]. An alternative mechanism of miRNA actions 

propose that Ago proteins prevent the assembly of the 60S subunit of the ribosome 

on the mRNA [71]. Other studies suggest that mRNAs can be repressed not only at 

the initiation step of translation but even when they are associated with active 

polysomes, necessary for translation [72].  

Additional studies revealed that miRNAs can induce mRNA degradation by 

favoring removal of Poly(A) tail. The mRNAs can be degraded by progressive 3’5’ 

decay, catalysed by exosome, or by the removal of the cap followed by 5’3’ 

degradation, catalysed by the exonuclease XRN1. The recruitment of the different 

decay machinery is controlled by the RISC. The final step of degradation is thought 

to occur in P-bodies, which are structure of the cell enriched of enzymes and 

translational repressors [73].  
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Figure 3: miRNA processing. The pri-miRNA is transcribed by RNA pol II or III and it is cleaved 

by the microprocessor complex Drosha–DGCR8 (Pasha) in the nucleus. The resulting precursor 

hairpin, the pre-miRNA, is exported from the nucleus by Exportin-5–Ran-GTP. In the cytoplasm, the 

RNase Dicer in complex with the double-stranded RNA-binding protein TRBP cleaves the pre-

miRNA hairpin to its mature length. The functional strand of the mature miRNA is loaded together 

with Argonaute proteins (usually Ago2) into the RISC, where it guides RISC to silence target mRNAs 

through mRNA cleavage, translational repression or deadenylation. Imagine from [74]. 
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1.4.3 The miRNA in innate immune response  

MiRNAs are implicated in the regulation of proliferation, maturation, 

differentiation and activation of the innate and adaptive immune systems.  

Following exposure of immune cells to pathogens or to inflammatory signals, 

hundreds of genes are up- or down-regulated in order to induce an efficient 

immune response. miRNA transcripts are also dynamically altered during this 

process, and many of them are strongly involved in TLR signaling. Important 

miRNAs that are up-regulated after stimulation of TLRs are miR-155 [75] miR-

146a [76], miR-9 [77]. Other miRNAs have been reported to be down-regulated by 

the TLR activation, for example LPS can reduce the expression of let-7i [78] and 

miR-125b [6]. Many of those TLR-dependent miRNAs are also found dysregulated 

in cancer [79] thus representing a link between inflammation and cancer 

progression. As other TLR-responsive genes, also miRNA activity must be 

negatively regulated. For example, the anti-inflammatory cytokines IL-10 inhibits 

the activity of miR-155 [80]. Another kind of inhibitor, in particular in tumor, are 

the long non-coding RNA (lncRNA) that act as miRNA “sponge” and are called 

‘competing endogenous RNA’ (ceRNA) [81]. They contain multiple copies of the 

miRNA response element, even for a combination of different miRNAs, becoming 

suitable for miRNA binding and changing in the amount of miRNA that is available. 

In this way, they can impact the multiple targets of multiple microRNAs. 

Now, we focus the discussion on miRNAs that are the argument of this thesis.    

 

- miR-125a~99b~let-7e cluster 

In humans, miR-125a, miR-99b and let-7e belong to a cluster present on 

chromosome (chr) 19. There are other isoforms of this cluster found in a different 

location within the genome: miR-125b-1, let-7a-2 and miR-100 found on chr 11 

and miR-125b-2, miR-99a and let-7c found on chr 21. It is not yet clear whether 

this different cluster play unique or redundant roles in mammalian biology but it is 

clear they have a different transcriptional control. MiR-125a has recently found 
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enriched in mouse and human HSCs, with evidence that it can impact HSC 

engraftment and output of mature hematopoietic cells [82]. There are evidences 

that, among the other members of the cluster, miR-125a can decrease the level of 

apoptosis in hematopoietic progenitors by targeting pro-apoptotic factors, such as 

Bak1 [83].  

An abnormal expression of miR-125a was found in several cancers. In breast 

cancer, miR-125a was reported down-regulated in biopsy specimens, with the 

capacity to inhibit ERBB2 and ERBB3 pathway [84]; in hepatocellular carcinoma, 

decreased miR-125a was found in both cell lines and tissues and over-expression 

of miR-125a inhibited the proliferation and metastasis of hepatocellular carcinoma 

by targeting MMP11 and VEGF [85]. In autoimmune diseases, miR-125a has been 

found down-regulated in T cells of systemic lupus erythematosus (SLE) patients. 

This contributes to the elevated expression of the inflammatory chemokine 

RANTES in SLE by the reduced targeting of KLF13 in activated T cells [86]. MiR-

125a was also significantly up-regulated in macrophages by oxidized low density 

lipoprotein (oxLDL) and it was reported to regulate the proinflammatory response, 

lipid uptake, and ORP9 expression [87]. 

The let-7e belongs to a big family of microRNAs first discovered in 

Caenorhabditis elegans, and functionally conserved from worms to humans. The 

human let-7 family contains 13 members located on nine different chromosomes. 

The members are: let-7a-1, 7a-2, 7a-3, 7b, 7c, 7d, 7e, f7-1, 7f-2, 7g, 7i, mir-98, and 

mir-202 [88]. These members have been found deregulated in many human 

cancers. In the macrophage’s activity, let-7e has been demonstrated to be Akt1 

dependent after LPS stimulation and it can regulate the TLR4 expression, 

controlling macrophage tolerance and sensitivity to endotoxin [89].  

The miR-99 family is composed of miR-99a, miR-99b and miR-100. They were 

found down-regulated in human prostate tumor tissue and in all prostate cancer 

cell lines. Ectopic expression of this members blocked the proliferation of prostate 

cancer cells and reduced the prduction of prostate-specific antigen, by the 

targeting of the growth regulatory kinase mTOR and the chromatin-remodeling 
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factors SMARCA5 and SMARCD1[90]. Another study identified miR-99b, together 

with miR-99a, as new modulators of TGF-β pathway that alter SMAD3 

phosphorylation, in turn altering cell migration and adhesion in normal murine 

mammary gland cells, blocking the epithelial to mesenchymal transition of breast 

cancer [91].  

 

 

- miR-146 family 

The miR-146 family is composed of two members, miR-146a and miR-146b, 

located on chromosomes 5 and 10, respectively. miR-146a was initially found 

during a pivotal study by David Baltimore group who identified miRNAs important 

in the innate immune response to microbial infection [76]. This study confirmed 

that many miRNAs were induced following TLR signaling and proposed for the 

first time the existence of a negative feedback loop between TLR-induced miRNA 

and TLR signaling pathway. They found that miR-146a was rapidly up-regulated 

after LPS and PolyI:C, as well as pro-inflammatory cytokines, IL-1β and TNFα, via 

the transcriptional activity of NF-κB. In turn, miR-146a targets important adaptor 

of the TLR pathway, as TRAF6 and IRAK1, thereby having a negative feedback 

effect on the TLR signaling. To better define the function of miR-146a, the miR-

146a knockout mice (miR-146a-/-) were generated. These mice showed no obvious 

abnormality early on, but at 6 months of age they developed a progressive 

myeloproliferative disorder which eventually progressed to splenic myeloid 

sarcoma, which is likely to be due to chronic inflammation [92]. miR-146a-/- mice 

exhibited an hyper-responsive reaction to systemic LPS, and bone marrow-derived 

macrophages from miR-146a-/- showed a significant increase in inflammatory 

cytokines production upon LPS stimulation, as IL-6, TNFα and IL-1β [92]. The 

importance of miR-146a in myeloid immune response was also demonstrated in 

human monocytes in the context of endotoxin-induced tolerance [93]. In addition, 

mouse macrophages infected with vesicular stomatitis virus up-regulated miR-

146a expression, that in turn negatively regulated type I IFN production through a 
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TLR4/MyD88-independent but RIG-I/NF-κB-dependent pathway [94]. This finding 

is supported by a study in which miR-146a was detected at reduced level in human 

peripheral blood mononuclear cells of systemic lupus erythematosus patients and 

this resulted in increased type I IFNs [95].   

miR-146b is the other member of the miR-146 family and its mature form 

sequence differs only by 2 nucleotides in the 3’ end (Figure 4 ). Although it shares 

many targets with miR-146a, little is known about its regulation of expression. 

Recently, miR-146b has been associated in erythroid and megakaryocytic 

differentiation of HSC via its regulation on platelet-derived growth factor receptor 

α and its effect on GATA-1 expression [96].  miRNA profiling by microarrays has 

shown that miR-146b expression is impaired in many cancer types, such as breast 

cancer [97], lung cancer [98], melanoma [99] and colorectal cancer [100]. Studies 

on resolution of the inflammation mediated by pro-resolving lipid mediators 

identified a set of miRNAs that are temporally regulated, among which there is 

miR-146b [101].  
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Figure 4: The miR-146 family. (A) Stem-loop sequence and structure of the pre-miR-146a and 

pre-miR-146b. (B) Identities between the sequence of miR-146a-5p and miR-146b-5p. MiR-146a-

5p and miR-146b-5p differ by only two nucleotides located outside the seed region (red box). 

 

  



 

34 
 

1.5  Negative regulation of the immune response 

 

The activation of a robust innate immune response against damaging stimuli, 

known as acute inflammation, is essential to allow maintenance of homeostasis but 

it can be deleterious if it is uncontrolled. Sustained inflammation can lead to 

various metabolic, autoimmune, and inflammatory disorders, such as 

inflammatory bowel disease, obesity, multiple sclerosis, rheumatoid arthritis, 

asthma, atherosclerosis, chronic obstructive pulmonary disease (COPD), and also 

contribute to cancer progression [102]. The resolution of inflammation is an 

important and active process that involve mediators and signaling pathways that 

switch pro-inflammatory cell phenotypes and induce pro-resolution phenotypes, 

control apoptosis of recruited inflammatory cells, and their removal by 

phagocytosis.  

 

 

1.5.1 The phases of self-resolving acute inflammation  

Macroscopically, the inflammatory reaction is recognized by well known major 

signs: calor (heat), rubor (redness), tumor (swelling), and dolor (pain), described 

by Cornelius Celsius during the Roman Empire. Microscopically, in response to 

PAMP or DAMP, the tissue resident immune cells (resident macrophages, dendritic 

cell and epithelial cells) rapidly release pro-inflammatory mediators, as TNFα and 

IL-1β, and chemoattractant factors, as IL-8/CXCL8, CCL2, CCL3. Mediators 

produced in this phase of inflammation increase the permeability of the vessel 

wall, accompanied by hyperemia, with consequent exudation of plasma proteins 

and fluid from the blood into tissue (edema). The up-regulation of cell adhesion 

molecules (selectins and integrins) on endothelial cells and the presence of 

chemoattractant factors allow the migration of leukocytes from the circulation to 

the site of injury. Neutrophils are the first cells that extravasate followed by 

mononuclear cells, mainly monocytes, that become activated and produce more 
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mediators, including growth factors (G-CSF, GM-CSF), cytokines, chemokines, lipid 

mediators and reactive oxygen species (ROS). With progression of the 

inflammatory response, PMN start undergoing apoptosis followed by phagocytosis 

by macrophages, a phenomenon called efferocytosis. During the resolution phase, 

macrophages switch toward an anti-inflammatory phenotype and start releasing 

anti-inflammatory molecules (such as IL-10 and TGFβ) and pro-resolving 

mediators such as lipid mediators (lipoxins, resolvins, protectins, maresins) [103], 

glucocorticoids [104] and ROS [105]. In order to mantain a healthy status, both the 

initiation of acute inflammation and its resolution must be efficient. 

 

1.5.2  The anti-inflammatory cytokine IL-10 

IL-10 is the founding member of the class II family of α-helical cytokines, 

composed of type I interferons, interferon γ (IFNγ), IL-19, IL-20, IL-22, IL-24 (Mda-

7), IL-26 and IL-10 [106].  It is released by different cell types including DCs, 

macrophages, mast cells, eosinophils, NK cells, T reg, T and B cells [107].  

IL-10 is recognized by the heterodimeric receptor consisting of IL-10R1 and 

IL10R2 subunits, which activates the receptor –associated Janus tyrosine kinases 

JAK1 and Tyk2, resulting in activation of STATs (signal transducers and activators 

of transcription), principally STAT3 [108]. The activated JAK1 phosphorylates two 

tyrosine residues of the IL-10R1 and creates binding sites for the Src homology 2 

(SH2) domains of STAT3, that becomes phosphorylated, dimerizes and enters into 

the nucleus to start the anti-inflammatory process [109]. If STAT3 is lacking in 

neutrophils and macrophages, IL-10 cannot inhibit their production of 

proinflammatory cytokines [110]. The JAK1/STAT3 signaling is shared by different 

cytokines receptors as IL-6R, but IL-10 has anti-inflammatory effects and IL-6 does 

not. This is due to suppressor of cytokine signaling (SOCS) 3, that belongs to SOCS 

family of SH2-containing E3 ligases, that have a role in suppressing specifically 

cytokine signaling. SOCS3 is induced after IL-6 and IL-10 stimulation but it binds 

only to the gp130 subunits of the IL-6R to block it signaling [111].  
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- The IL-10 action 

The hallmark IL-10 action is the selective reduction of pro-inflammatory gene 

transcription, reducing the expression of inflammatory cytokines as TNFα, IL-6, IL-

1, IL-8 and IL-12. However, microarray analysis determined that only ∼ 15-20%  of 

genes induced by LPS were decreased by IL-10 in macrophages [112]. Evidence 

indicates that IL-10 does not induce a direct inhibition of inflammatory gene 

expression but, rather, induces the expression of transcriptional repressors that 

mediate the inhibition of promoters of inflammatory genes [113]. Despite 

numerous groups have investigated the IL-10-inducible genes able to mediate IL-

10 anti-inflammatory effects, they have yet to be found. A study identified that 

PI3K-Akt signaling can augments some of IL-10-inducible gene expression in part 

by eliminating the repressive effects of GSK3 [114]. Additionally, IL-10 can reduce 

co-stimulatory and MHC class II molecule expression on macrophage surface, 

affecting antigen presentation to T cells [115]. In mouse model studies, it has been  

confirmed the anti-inflammatory activity of IL-10 in different settings, as 

respiratory virus infections, colitis, ischemia and reperfusion, acute myocarditis, 

and endotoxic shock [116]. Specifically, mice lacking IL-10 (IL-10 -/-) or the IL10R 

(IL-10R -/-) develop severe spontaneous colitis [117]. Moreover, B-cell lymphoma 

patients have elevated levels of IL-10 and activation of JAK/STAT pathway, 

suggesting that IL-10, reducing the immune response against the tumor, 

contributes to tumor proliferation [118]. 

 

- The IL-10 production in innate immune cells 

The induction of IL-10 in macrophages and DCs represents a way to dampen the 

pro-inflammatory phenotype and a mechanism of immune escape used by 

different pathogens, because IL-10 is induced by the activation of specific PRRs: 

TLR2, TLR4 and TLR9, TLR3 (only in macrophages), DC-SIGN, and dectin 1. Some 

viruses can produce an homologous of IL-10 (vIL-10) to directly inhibit the 
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immune system of the host [119]. For an optimal LPS- dependent induction of IL-

10 in macrophages, it is necessary the activation of the TRIF- and MYD88- 

dependent pathways and the production and signaling by type I IFNs [120]. 

Following TLR stimulation, the activation of the MAPKs Erk and p38, via the 

activation of the transcription factor Sp1, modulate IL-10 production [121]. As 

inhibitory mediator of IL-10 expression, there is IFNγ that, in addition to block the 

activation of the MAPK, induces the release of GSK3 by antagonizing PI3K/Akt 

activation and suppressing the binding of AP1 on IL-10 promoter [122]. IL-10 itself 

can feed back to produce dual-specificity protein phosphatase 1 (DUSP1), which 

prevents the phosphorylation of p38 and thus limits IL-10 production. By contrast, 

IL-10 can induce the expression of tumour progression locus 2 (TPL2), a MEK 

kinase required for activation of Erk [112]. After the stimulation of TLR, TPL2 

dissociates from the NF-κB inhibitory complex NF-κB1 (p105) and activates Erk.   
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Figure 5: IL-10 production by immune cells. The p38 and ERK pathways activation lead to IL-

10 expression. A negative feedback loop to regulate IL-10 production is formed by IFNγ, that blocks 

the activation of the MAPKs and can also interfere with PI3K/Akt pathway, inducing the release of 

GSK3, that in turn suppresses the AP1 binding on IL-10 promoter.  Even IL-10 can feed back to 

induce the expression of DUSP1, which negatively regulates p38 phosphorylation and thus limits 

IL-10 production. IL-10 can also positively feed back to induce TPL2 expression, that is an up-

stream activator of ERK, inducing an amplification loop of its own expression [123].  
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- The IL-10 and miRNAs 

Recent studies revealed that IL-10 can be post-transcriptionally regulated by 

miRNAs, including miR-106a, miR-466l, miR-98, miR-27, let-7 and miR-1423p-5p 

[124]. For example, miR-106a have the ability to down-regulate IL-10 in vitro and 

knock-down of this miRNA has the potential to alleviate symptoms in an asthma 

model, with increased IL-10 levels in the lungs and improved disease phenotype 

[125]. miR-466l can regulate IL-10 but has a positive effect, because the miRNA 

binding to the IL-10 3’UTR results in a stabilization and protection from RBP 

degradation of the transcripts [126]. Other miRNAs can regulate indirectly IL-10 

expression, as miR-21. LPS stimulation induces miR-21 that targets PDCD4, a 

negative regulator of IL-10, thus promoting IL-10 production [127].  

On the other hand, IL-10 can also modulate a number of miRNAs, up-regulating 

those with anti-inflammatory activity such as miR-187 [128] and down-regulating 

those that contribute to a pro-inflammatory response such as miR-155 [80]. MiR-

155 is a LPS-induced miRNA and its repression by IL-10 increases the activity of 

SHIP1, an important negative regulator of TLR signaling [80]. Furthermore, our lab 

identified miR-187 as an IL-10-induced miRNA acting in IL-10-mediated 

suppression of TNFα, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by 

primary human monocytes following activation of TLR4. miR-187 targets TNF-α 

mRNA stability in a direct way and indirectly decreases IL-6 and IL-12p40 

expression by targeting IκBζ, an important regulator of these cytokines [128]. As 

discussed in this thesis the miR-146b is aslo induced by IL-10 [129], indicating that 

an interplay between IL-10 and miRNA represents a new regulatory network 

during inflammation.  
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1.5.3 The anti-inflammatory cytokine TGFβ 

Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that regulates 

differentiation, cell proliferation, survival and migration. It plays a critical role in 

fibrosis, wound healing, carcinogenesis, development, and immune responses 

through its regulatory effects on many cell types [130].  

The TGF-β superfamily of cytokines contains more than 30 structurally related 

polypeptide growth factors including TGF-βs (1–3), activins (A, B), inhibins (A, B), 

bone morphogenetic proteins (BMPs 1–20) and growth differentiation factors 

including myostatin, nodal, leftys (1,2), and Müllerian-inhibiting substance (MIS) 

[131]. In mammals, there are three homologous TGF-β isoforms: TGF-β1, TGF-β2, 

and TGF-β3. The predominant isoform expressed in immune cells is TGF-β1, but in 

vitro, all three isoforms have similar properties, instead in vivo, they have both 

redundant and distinctive functions depending on where and when they are 

expressed during development [132, 133].  

 

 

- The TGFβ signaling 

TGFβ signals are transmitted via a transmenbrane receptor complex consisting 

of  the TGFβ type I receptor (TβRI) and TGFβ type II receptor (TβRII), that are 

serine/threonine kinase receptors. TGFβ is secreted by cells as a latent complex, 

composed of homodimer of mature TGFβ noncovalently associated with an 

homodimer of latency-associated protein (LAP). TGF-β needs to be liberated for 

binding to its receptors, but the mechanisms for activation are not clear. However, 

in vitro this can be achieved using heat, several proteases or extremes of pH [134]. 

The active form of TGFβ initially binds TβRII, that induces recruitment and 

complex formation with TβRI. The constitutively active serine/threonine kinase 

activity of TβRII phosphorylates TβRI, which in turn recruits and phosphorylates  

the transcription factors Smad. The vertebrate Smad family is composed of eight 

members divided in three groups: R-Smad1, 2, 3, 5, and 8 are receptor-associated 

Smads, Co-Smad4 is common Smad, I-Smad6 and 7 are the two inhibitory Smads. 
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R-Smads are located in the cytoplasm and after phosphorylation they associate 

with Co-Smad4 and translocate into the nucleus. R-Smads bind to specific 

sequences of the promoter but need other transcription factors to form complexes 

that control gene expression by recruiting coactivators that contain histone-acetyl 

transferase activity (e.g., CBP/p300); or histone-deacetylase activity–containing 

corepressors (e.g., Sno/Ski) [135]. Even if Co-Smad4 is involved in all Smad-

mediated transcription, it is not essential for TGFβ response: the traslocation of R-

Smad into the nucleus can also take place without Co-Smad4 and some Smad4-

deficient cell lines are still sensible to TGFβ signaling [136]. The I-Smads, Smad6 

and Smad7, act as inhibitor because they compete with R-Smads for receptor or 

Co-Smad interaction and target receptors for degradation [137]. Besides the Smad-

dependent pathways, TGFβ also activates the JNK, p38, Erk MAPKs and PI3K 

pathways [138].   
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Figure 6. TGFβ signaling. TGFβ signaling is transduced through Smad and non-Smad pathways. 

TGFβ ligand binds to TGFBR2 and TGFBR1. TGFBR2 phosphorylates (P) TGFBR1, which 

subsequently phosphorylates and activates SMAD2 and SMAD3. Activated SMAD2 and SMAD3 form 

a Smad complex with SMAD4 and translocate into the nucleus. In the nucleus, the Smad complex 

interacts with other DNA-binding transcription factors, and co-activators and co-repressors, binds 

to the promoter regions of TGFβ target genes and regulates the transcription of target genes. TGFβ 

stimulation also activates other signalling cascades in addition to the Smad pathway. TGFβ 

receptors activate p38, JNK, Ras–Erk, PI3K–Akt, and small GTPases such as RHOA and CDC42. From 

[139] 
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- The TGFβ action  

TGFβ signaling is very important for the immune system because TGFβ1 

knockout mice develop a severe lethal inflammatory disease within 3 weeks of 

birth, with inflammatory cell infiltration and lesions  in different organs [140, 141]. 

The importance of TGFβ in T-cell response it has been made evident in mice that 

have an impaired TGFβ signaling on T cell [142]. Conversely, the effect of TGFβ 

signaling on macrophages is not so clear, maybe for the contrasting effects that it 

has in the monocyte/macrophage lineage. TGFβ reveals pro-inflammatory 

functions on monocytes: it acts as a chemoattractant to the site of inflammation 

[143]; it induces adhesion molecules, for adhesion to extracellular matrix; and it 

induces matrix metalloproteinases (MMPs), which can degrade vascular 

membranes to allow monocytes migration. In addition, TGFβ potentiates the 

inflammatory immune response of monocytes by induction of IL-6, IL-1 and 

leukotriene C4 synthase [138]. On macrophages, TGFβ act as an anti-inflammatory 

molecule: it prevents the expression of some LPS-induced inflammatory molecules 

as TNFα and some chemokines including CCL3 and CXCL2; it down-regulates the 

expression of inducible NO synthase (iNOS) and the production of nitric oxide 

(NO); it inhibits CD14 expression and MyD88-dependent TLR signaling pathways 

via degradation of MyD88 [144]. The TGFβ inhibition on macrophages can be 

mediated by Smad3 because over-expression of Smad3 represses iNOS and MMP-

12 promoter activity in macrophages, whereas the blocking of Smad3 activity 

alleviates the TGFβ inhibition [145]. In addition, TGFβ can inhibit the antigen 

presentation function of macrophages by the down-regulation of MHCII, the co-

stimulatory molecule CD40 and the inflammatory cytokine IL-12p40 expression 

[146].  

 

- The TGFβ and miRNAs 

Using in silico miRNA–mRNA target predictions the TGFβ signaling cascade can 

be targeted by miRNAs but few of this targeting have been experimentally 

validateted, especially in the immune cells. In tumorigenesis, for example, miR-
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146a has been demonstrated to target SMAD4. As in acute pro-myelocytic 

leukemia cells all transretinoic acid up-regulates SMAD4 and down-regulates miR-

146a [147]. During the development process, the targeting by let-7c of TGFβR1 

may control TGFβ signaling activity at each developmental stage of the liver to the 

necessary level [148]. TGFβ has been demonstrated to have a role in the epithelial 

to mesenchymal transition (EMT) because it down-regulates all the five members 

of miR-200 family that inhibit E-cadherin transcriptional repressors, ZEB1 and 

ZEB2, involved in tumor metastasis and EMT. The over-expression of the miR-200 

family was enough to block TGFβ-induced EMT, and, to the contrary, the inhibition 

of miR-200 family was enough to cause EMT [149].  
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PROJECT AIMS 

 

The overall aim of this project is to investigate the role of miRNAs in the 

regulation of monocytes/macrophages immune response after the engagement of 

TLRs. The previously identification of miR-125a~99b~let-7e cluster and miR-146b 

up-regulation in human monocytes after LPS stimulation forms the basis for this 

thesis. The specific purposes of the project are: 

 Characterization of miR-125a, miR-99b, let-7e and miR-146b expression 

in human monocytes after pro- and anti-inflammatory stimuli; 

 Bioinfomatically analysis of the promoters of miR-125a~99b~let-7e 

cluster and miR-146b, in order to identify key conserved binding sites to 

determine the transcriptional regulation of these miRNAs; 

 Identification of miR-125a, miR-99b, let-7e and miR-146b targets in the 

context of LPS-mediated inflammation with in silico and experimental 

approaches; 

 Determination of the functional role of these miRNAs in an in vivo model 

of inflammation. 

Analysis of the regulation of TLR pathway in monocytes can provide new 

insights into the mechanistic details of the inflammatory immune response 

process. 
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2. MATERIALS AND METHODS 

 

Reagents. 

LPS from E. coli (serotype 055:B5), Zymosan A from Sigma Aldrich. Pam3CSK4, 

imiquimod, CpG DNA, and poly(I:C) were purchased by Enzo Life Sciences. IL-10 

and recombinant murine M-CSF were from R&D System. IFNγ and IL-1β were from 

Peprotech. The AG-490 inhibitor was purchased from Calbiochem. Rabbit anti-

Myd88 antibody was purchased from Enzo Life Science, rabbit anti–IRAK-1 and 

rabbit anti-TRAF6 antibodies were from Cell Signaling Technology. Ab-anti-Pol II 

(N-20) and anti-STAT3 (C-20) for ChIP experiments were purchased from Santa 

Cruz Biotechnology. Anti-SMAD3 ChIP grade from Abcam. Other antibodies were 

purchased from Biolegend unless specified otherwise. Fluorochrome-conjugated 

antibodies were from BD Bioscience.  

 

Human monocytes purification and cell culture. 

Human monocytes were obtained from healthy donor buffy coats by two-steps 

gradient centrifugation using Ficoll (Biochrom) and Percoll (Amersham). 

Monocytes were resuspended in RPMI 1640 medium (Lonza) supplemented with 

10% heat-inactivated fetal bovine serum (FBS; Lonza), 100 U/mL 

penicillin/streptomycin (Lonza) and 25 mM L-glutamine (Lonza). The human THP-

1 and murine RAW 264.7 cell lines (American Type Culture Collection, ATCC) were 

maintained by twice weekly passages in RPMI 1640 medium containing 10% heat-

inactivated FBS, 100 U/mL penicillin-streptomycin, 25 mM L-glutamine at 37°C 

with 5% CO2. HEK-293T cells (ATCC) were grown in Dulbecco’s modified Eagle 

medium (DMEM) (Cambrex) supplemented with 10% FBS, 100 U/mL penicillin-

streptomycin, and 25 mM L-glutamine at 37°C with 5% CO2. Trypan Blue was used 

to determine cell viability.  
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RNA isolation and real-time PCR. 

Total RNA was prepared using TRIzol (Ambion) and Direct-zol RNA MiniPrep 

kit (Zymo Research) and quantitative real-time PCR (qPCR) was conducted using a 

7900HT Real-time PCR System (Applied Biosystems). For miRNA quantification, 

300 ng of total RNA was reverse transcribed using TaqMan® MiRNA Reverse 

Transcription kit (Applied Biosystems). For gene quantification, 1 μg of RNA was 

reverse transcribed with random primers and quantification was performed using 

Power SYBR Green Mix (Applied Biosystems) with specific primer pairs (Table 1). 

Experimental data were then analyzed using the SDS2.2 software and the relative 

expression values were calculated according to the “comparative Ct” method using 

U6 for human and snor202 for mouse miRNA endogenous control and GAPDH for 

mRNA endogenous control. The list of oligonucleotides used is reported in Table 1. 

 

Constructs generation. 

3’UTR of CCL3, IL-6, CXCL8, TNF, CCL7, TLR4, TLR2, CD14, MYD88, TRAF6 and 

IRAK1 was amplified from genomic DNA and was cloned in the biosensor 

psiCHECKTM-2 vector (Promega) for the evaluation of miRNA activity. Pre-miR-

125a~99b~let7e, pre-miR-125a, pre-miR-99b, and pre-let-7e were amplified from 

genomic DNA and subsequently cloned in pcDNA3 expression vector. The pCR2.1 

vector (Invitrogen) was used as subcloning vector. To knockdown miRNA 

expression, sponge constructs (miRT) containing multiple sequential repeats of 

miRNA imperfect complementary seed site region were cloned into a psiCHECKTM-

2 vector (Promega), downstream the renilla luciferase gene. The fragment 

containing the SV40 promoter together with the renilla luciferase gene fused to the 

miR sponge fragment was then subcloned into the pRRLSIN.CPPT.PGK.GFP.WPRE 

vector (plasmid no. 12252; Addgene) in an antisense orientation respect the GFP 

cassette. The expression of the luciferase reporter gene was checked to assess the 

efficacy of miR inhibition. A lentiviral construct (miRT-CT/pRRL-CT), encoding for 

a hairpin yielding a 22-mer RNA designed to lack homology to any human gene, 

was used as control. 
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Lentiviral THP1 infection.  

HEK293T cells were cultured in DMEM supplemented with 10% FBS, 25 mM L-

glutamine but without PenStrep at 37°C with 5% CO2 and transfected with pRRL or 

miRT lentiviral vectors plus pLP1, pLP2, pVSVg vectors (necessary for the 

lentiviral formations) using Lipofectamine 2000 (Invitrogen). After 3 days, we 

replaced the medium and incubated for at least 24 hours. At 4 day, we collected the 

supernatant and filtered it in 0,4 μm filter and applied 1 ml directly on THP1 cells 

plated 1 x 106 cells/well in a 6-well plate. We sealed and centrifuged the plate at 

1800rpm x 90min at room temperature with reduced break and accelerator.  After 

8 days from the infections we counted and sorted the cells for the GFP present in 

the lentiviral construct. Lentiviral infections must be conducted in a P3 room.  

 

Bone-marrow derived macrophages. 

Harvest bone marrow cells from femura and tibia of 8- to 12- week old WT and 

IL-10 KO C57BL/6J mice plated in IMDM with 10% FCS overnight at 37°C. Non-

adherent cells were resuspended at 5 x 106 cells/dish in complete bone marrow 

macrophage medium (IMDM, 10% FCS, 150 μM MTG, 1%P/S, 1%Glut, 10 ng/mL 

M-CSF) in low attachment culture dish (Corning Costar) and cultured for 7 days 

replacing medium at day 3. To prepare BMDM to further stimulations, cells were 

detached with 2mL of Accutase and replate at the concentration of 0.5 x106 

cells/mL in complete bone marrow macrophage medium without M-CSF in 

multiwell 6 or 24 wells low attachment (500uL/well). After overnight culture 

BMDM were stimulated with 100 ng/mL LPS (Sigma) plus 20ng/mL mIL-10 (R&D 

System) or 100 ng/mL LPS for indicated time points. 
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Murine zymosan A- induced peritonitis. 

Male C57BL/6 from 8-10 week old of wild type (Charles River Laboratories) and 

IL-10 KO mice (The Jackson Laboratory) were administered zymosan A (Sigma-

Aldrich) at 1 mg/mouse, suspended in 0.5 ml of sterile saline to initiate peritonitis. 

At selected time intervals, mice were euthanized, peritoneal exudates were 

collected with 5 ml of cold Ca2+/Mg2+ free PBS  (PBS-/-). Leukocytes were stained 

with Turk's solution to exclude erythrocytes and enumerated using a 

hemocytometer and light microscopy. 1 x 106 cells were analyzed by FACS analysis 

to identify different cell populations and the rest were sorted for macrophages 

cells.  

 

Murine LPS- induced peritonitis. 

Male C57BL/6J from 8-10 week old WT mice (Charles River Laboratories) were 

administered an intra-peritoneal injection of LPS (2.5 mg/kg) or PBS-/- as control. 

Peritoneal exudates were collected with 5 ml of cold PBS-/- at 0, 6, 24 and 48 hours 

from the injections. Leukocytes were stained with Turk's solution to exclude 

erythrocytes and enumerated using a hemocytometer and light microscopy. 0.2 x 

106 cells were analyzed by FACS analysis to identify different cell populations. The 

remaining cells at each time point were pooled and subjected to macrophages 

purification with Manual MACS Cell Separation (Miltenyi Biotec). 

 

FACS analysis and sorting. 

Cells were resuspended in FACS buffer (1% FBS in PBS + 0.1% NaN3 (sodium 

azide)) were incubated with antibodies for 30 minutes in the dark at 4°C. Cells 

were washed 3 times with FACS buffer and fixed with 0.1% paraformaldyhyde. 

Control samples were generated using fluorescence minus one controls. 

Fluorochrome-conjugated antibodies for flow cytometry were anti-CD11b (clone 

M1/70), anti-CD45 (clone 30-F11), anti-Ly6G (clone 1A8), anti-Ly6C (clone AL-21), 
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anti-CD19 (clone 1DE), anti-CD11c (clone HL3) from BD Bioscience; anti-F4/80 

(CI:A3-1) from Serotec. All Abs were titrated under assay conditions, and optimal 

photomultiplier voltages were established for each channel using calibration beads 

(BD Biosciences). Each murine leukocyte population was identified on the basis of 

antigen expression, as well as size and granularity on forward-scatter/side-scatter 

(FSC/SSC) plots, as follows: Macrophages: FSChigh/SSChigh, CD45+, CD11b+, 

F4/80high, LY6G-; neutrophils: FSCmed/SSChigh, CD45med, CD11bmed, 

Ly6Ghigh; lymphocytes: FSC/SSClow, CD45high, CD11b−, CD19+. 

For sorting procedure, cells were stained with specific antibodies and 

resuspended at 10 x 106 cell/ml in a buffer for sort (PBS-/- + 1% FCS + 2mM 

EDTA).Flow cytometry was performed using FACSCanto II flow cytometer or 

sorted with FACSAria (BD Biosciences) and data analyzed with FACSDiva 6.1.1 

software (BD Biosciences) or Flowjo6.1 (Treestar).  

 

Bioinformatic analysis. 

For each miRNA predicted target genes were defined using the microrna.org 

database [150] and the relative enrichment of biological functions and associated 

networks was determined using the Ingenuity Pathway Analysis software (IPA; 

Ingenuity Systems) by applying the “expression in immune cells” filter and the 

built-in Fisher exact test. The relationship of miRNA of interest with the 124 genes 

included in the Inflammatory response network was graphically visualized using 

IPA. The probability score of each conserved human or murine miRNA to be 

involved in this network was calculated according to the formula: miRx=-

1/log2[(Tx  N)/124], where T = number of predicted target genes of miRx and N = 

genes included in the Inflammatory response network. The statistical value of the 

involvement in the TLR signaling pathway, as identified by IPA, was defined by 

fitting the target distribution to Gaussian functions with mean 25.74/43.82 and SD 

11.40/10.59, for human/mouse respectively. Similarly, the distribution of the 

percentage of common predicted target genes between human miR-125a-5p and 

60 random murine miR was fitted to a Gaussian function with mean 23.86 and SD 
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9.85. Evolutionary conserved regions and transcription factor binding sites were 

identified using the MULAN software (http://mulan.dcode.org) [151] and 

visualized using the Jalview 2.8 software (www.jailview.org) [152]. 

 

Luciferase reporter assay. 

HEK-293T cells were plated in 24-well plates in 500 l DMEM supplemented 

with 10% FBS and 1% of L-glutamine at 16 x 104/well and after 24 h were 

transfected with 100 ng psiCHECKTM-2-3’-UTR reporter construct and 10µM of 

mirVana miR mimcs (Life Technologies), using Lipofectamine 2000 (Invitrogen), 

according to the manufacturer’s protocol. After 48 h, cells were lysed and firefly 

and renilla luciferase activities were determined using the Dual-Glo Luciferase 

Assay System (Promega). The enzymatic activities of both luciferases were 

quantified using a MultiDetection Microplate Reader Synergy 2 luminometer 

(BioTek). The values of renilla luciferase activity were normalized by firefly 

luciferase activities, which served as internal control. Normalized values were 

expressed as fold changes relative to the value of the negative control. 

 

Chromatin immunoprecipitation (ChIP) assay. 

12x106 human monocytes were used for each ChIP. Cells were cross-linked for 

10 minutes at room temperature using 1% formaldehyde. Cross-linking was 

quenched by adding glycine to a final concentration of 0.125M. The cells were then 

collected, resuspended in lysis buffer (5mM PIPES pH 8, 85mM KCl, 0.5% NP40 

and protease inhibitors), and incubated on ice for 30 min. Before proceeding with 

sonication to generate 200−400 bp fragments, the efficiency of sonication was 

assessed with agarose gel electrophoresis. Chromatin samples were pre-cleared 

for 1 hour with protein-G magnetic beads (Life Technologies) and then 

immunoprecipitated overnight at 4°C with specific antibodies: Ab-anti-Pol II (N-

20) (Santa Cruz Biotechnology), anti-STAT3 (C-20) (Santa Cruz Biotechnology), 

anti-SMAD3 (Abcam). Rabbit IgG (Millipore) was used as negative control. After 

http://mulan.dcode.org/
http://www.jailview.org/
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incubation, the immunocomplexes were bound to protein-G magnetic beads for 2 

hours and subsequently washed with low-salt wash buffer (0.1% SDS,  2mM EDTA, 

20mM Tris HCl pH8, 1% Triton X-100, 150mM NaCl and protease inhibitors), high-

salt wash buffer (0.1% SDS, 2 mM EDTA, 20mM Tris HCl pH8, 1% Triton x-100, 

500mM NaCl and protease inhibitors), and TE buffer. Immunocomplexes were 

then eluted in elution buffer (1% SDS, 100mM NaHCO3) and cross-linking reverted 

overnight at 65°C. Samples were then extracted with QIAquick PCR Purification Kit 

(Qiagen) and qPCR was performed in triplicates using promoter-specific primers 

(Table 1). 1% of starting chromatin was not immunoprecipitated and used as 

input. Signals obtained from the ChIP samples were normalized on signals 

obtained from corresponding input samples, according to the formula: 100 x 2ˆ(input 

Ct - sample Ct). Results were expressed as fold enrichment relative to untreated cells.   

 

Immunoprecipitation of Ago2-bound RNAs (RIP) assay. 

5 to 10 x 106 of cells for each experimental point were pelletted, washed with 

PBS-/- 1x and lysed in 300 μl of lysis buffer (150 mM KCL, 25 mM Tris PH 7.4, 5 mM 

EDTA, 0,5% NP40, 5 mM DTT, protease inhibitor cocktails (Roche), 100 U/ml 

Superase-In (Ambion)). The cells were lived on ice for 30 min and then centrifuged 

14000 rpm for 30 min at 4°C. The supernatants were incubated with protein G 

sepharose magnetic beads (GE Healthcare) conjugated with anti-Ago2 (EIF2C2 

monoclonal antibody, clone 2E12-1C9; Abnova) or isotype IgG1k control Abs 

(Abnova) ON at 4°C. After the immunoprecipitations, we kept the flow-through 

which contains the Ago2 unbound fraction, labeled “left over ip”. The beads with 

the Ago2 bound fraction were washed 3 times with the lyses buffer, before the 

direct RNA extraction with the TRizol.  Sequences of 3’UTR mRNA-specific primers 

used in qPCR are listed in Table 1.  
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ELISA assay. 

All antibodies and detection reagents were purchased from R&D Systems. The 

ELISA were carried out according to the manufacturer’s instructions. Samples 

were diluted so that the optical density fell within the optimal portion of a log 

standard curve. 

 

Western blot. 

5 x 106 cells were treated as indicated and lysed with a buffer containing 50 mM 

Tris-HCl (pH 8), 150 mM NaCl, 5 mM EDTA, 1.5 mM MgCl2, 10% glycerol, 1% triton 

X-100, and protease/phosphatase inhibitors. The proteins were quantified using 

DC protein assay (Bio-Rad)  and same amount for each sample were 

electrophoresed with a 10% SDS-PAGE gel. The proteins were transferred on a 

nitrocellulose membrane and immunoblotted with the antibody rabbit anti-human 

Myd88, rabbit anti-human IRAK1 and rabbit anti-human TRAF6, using standards 

conditions. Chemiluminescence was acquired by ChemiDoc XRS Imaging System, 

densitometric analysis was performed by Image Lab software (Bio-Rad) and 

protein band intensity was calculated by normalization over -tubulin or actin 

band intensity reveald on the same blot. 

 

Statistical analysis. 

Statistical evaluation was determined using the Student t-test or the One-way 

ANOVA with Prism4. P values < 0.05 were considered significant. 
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Table 1. List of oligonucleotides used 

 

Cloning of miR-cluster: 

TLR4 3’-UTR 
5’- AATACAGAGTCTTCCAGGTG-3’ 

5’-TGTTCAATCACCCTAGACCT-3’ 

TLR2 3’-UTR 
5’- GTTCCCATATTTAAGACCAG-3’ 

5’- TCTCATCCTGTAAAGTTTAA-3’ 

CD14 3’-UTR 
5’-TGGATAACCTGACACTGGA-3’ 

5’-ATGAAGAAAGCCTAAGTATG-3’ 

MYD88 3’-UTR 
5’-CTCCTCCTTTCGTTGTAG-3’ 

5’-GACTCTCTTTGGAGCATA-3’ 

IRAK1 3’-UTR 
5’-ATCATTTATGCTTGGGAGGT-3’ 

5’-AAGAGGACACTCGGTTACA-3’ 

IL-6 3’-UTR 
5’-GTCAGAAACCTGTCCACT-3’ 

5’-AATATGTATAAGTTAGCCAT-3’ 

CXCL8 3’-UTR 
5’-CCAAGAGAATATCCGAACT-3’ 

5’- CAAAGAGAATCCCAATAAGC-3’ 

TNFα 3’-UTR 
5’-GGAGGACGAACATCCAACCT-3’ 

5’-AGCAATGAGTGACAGTTGGTCA-3’ 

CCL3 3’-UTR 
5’-CTGAGCCTTGGGAACAT-3’ 

5’-AGAGCATCTTTATTATTTCC-3’ 

CCL7 3’-UTR 
5’-ACATTCATGACTGAACTGA-3’ 

ACAAAAATCTATTTTAT 

hsa-miR-125a 
5’-TGCCTATCTCCATCTCTGACC -3’ 

5’-TGGTGGTCAAATGTCATGCT -3’ 

hsa-let-7e 
5’-CTGTCTGTCTGTCGGGTCTG -3’ 

5’-GCAGGGACAAGGACAGAAAA -3’ 

Cloning of miR-146b: 
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TLR4 3’-UTR 
5’-GTCAGAAACCTGTCCACT-3’ 

5’-TGTGCCTAATTCAGAAGATG-3’ 

TLR2 3’-UTR 
5’- GTTCCCATATTTAAGACCAG-3’ 

5’- TCTCATCCTGTAAAGTTTAA-3’ 

IL-6 3’-UTR 
5’-GTCAGAAACCTGTCCACT-3’ 

5’-AATATGTATAAGTTAGCCAT-3’ 

IRAK1 3’-UTR 
5’-ATCATTTATGCTTGGGAGGT-3’ 

5’-AAGAGGACACTCGGTTACA-3’ 

MyD88 3’-UTR 
5’-GCAAATATCGGCTTTTCTCA-3’ 

5’-GACTCTCTTTGGAGCATA-3’ 

TRAF6 3’-UTR 
5’-TTGCCCTCACTTGCTCAA-3’ 

5’-AGATGCTACTTCGTAACCTC-3’ 

miR-146b 
5’-TGGAATAGGAGTTCTCTTG-3’ 

5’-TAGTGGCAGGTTATGAGCA-3’ 

Seed mutagenesis (hsa targets): 

miR125a-5p TLR4-3’UTR 
5’-AAGGACAATCAGGATGTCATAAATGAAAATAAAAACCACAATG-3’ 

5’- CATTGTGGTTTTTATTTTCATTTATGACATCCTGATTGTCCTT-3’ 

let-7e-5p TLR4-3’UTR 
5’- CCATGACAAAGAAAGTCATTTCAACTCTTATCAAGTTGAATAA-3’ 

5’-TTATTCAACTTGATAAGAGTTGAAATGACTTTCTTTGTCATGG -3’ 

miR146b TLR4-3’UTR 
5’-TGTCTATGGCTGTTTGAGATTCTCTACTCTTGTGCTTG-3’ 

5’-CAAGCACAAGAGTAGAGAATCTCAAACAGCCATAGACA-3’ 

miR125a-5p CD14-3’UTR 
5’-CTGCCTTGGCTTCGAGTCCCGTCAGG -3’ 

5’-CCTGACGGGACTCGAAGCCAAGGCAG-3’ 

miR146b IRAK1-3’UTR 
seed1 

5’-GATCCCCCAAATCCGGCAAAGTTCTCATGGTC-3’ 

5’-GACCATGAGAACTTTGCCGGATTTGGGGGATC-3’ 

miR146b IRAK1-3’UTR 
seed 2 

5’-GCAAAGTTCTCATGGTCGTTCTCATGGTGCACGA-3’ 

5’-TCGTGCACCATGAGAACGACCATGAGAACTTTGC-3’ 

miR125a-5p IRAK1-3’UTR  
seed 1 

5’-CAGACAGGGAAGGGAAACATTTTGAAAAGACATGTATCAC -3’ 

5’-GTGATACATGTCTTTTCAAAATGTTTCCCTTCCCTGTCTG-3’ 

miR125a-5p IRAK1-3’UTR  5’-CAGGGAAGGGAAACATTTTGGACATGTATCACATGTCTTC -3’ 
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seed 2 5’-GAAGACATGTGATACATGTCCAAAATGTTTCCCTTCCCTG-3’ 

let-7e-5p MyD88-3’UTR 
seed1 

5’-AGGAGGAATCTGTGCTCTACCTCTCAATTCCTGG -3’ 

5’-CCAGGAATTGAGAGGTAGAGCACAGATTCCTCCT-3’ 

let-7e-5p MyD88-3’UTR 
seed2 

5’-CAAACTCTGGAAAGGACCCTACCAGTATTTATACCTCTA-3’ 

5’-TAGAGGTATAAATACTGGTAGGGTCCTTTCCAGAGTTTG-3’ 

let-7e-5p MyD88-3’UTR 
seed3 

5’-CTGAGTTTATAATAATAAATAATATCTTGGAAACTTGTGTGTG -3’ 

5’-CACACACAAGTTTCCAAGATATTATTTATTATTATAAACTCAG-3’ 

miR146b MyD88-3’UTR 
5’-GAACTGCAGACACAGCTTCTCCCTCTCTCCTT-3’ 

5’-AAGGAGAGAGGGAGAAGCTGTGTCTGCAGTTC-3’ 

miR146b TRAF6-3’UTR 
seed 1 

5’-CCTGGAGAAAACAGTGTCCTTGCCCTGTTCTC-3’ 

5’-GAGAACAGGGCAAGGACACTGTTTTCTCCAGG-3’ 

miR146b TRAF6-3’UTR 
seed 2 

5’-CTCGAGAAGAGTTATTGCTCTAGTTGAGTTCTCATTTTTTTAACC-3’ 

5’-GGTTAAAAAAATGAGAACTCAACTAGAGCAATAACTCTTCTC-3’ 

miR146b TRAF6-3’UTR 
seed 3 

5’-ATTTGAACCATAATCCTTGGATTAAGTTCTCATTCACCCCAG-3’ 

5’-CTGGGGTGAATGAGAACTTAATCCAAGGATTATGGTTCAAAT-3’ 

miR125a-5p TNFα-3’UTR 
5’-TCTGGAATCTGGAGACAGCCTTTGGTTCTGGC -3’ 

5’-GCCAGAACCAAAGGCTGTCTCCAGATTCCAGA-3’ 

let-7e-5p IL6-3’UTR 
5’-GTCAGAAACCTGTCCACT-3’ 

5’-AATATGTATAAGTTAGCCAT-3’ 

miR125a-5p CCL3-3’UTR 
5’-AAATGTGTATCGGATGCTTTTGTGGCTGTGATCGG -3’ 

5’-CCGATCACAGCCACAAAAGCATCCGATACACATTT-3’ 

let-7e-5p CCL3-3’UTR 
5’-GTGTGACCTCCACAGCTTTCTATGGACTGGTTGT-3’ 

5’-ACAACCAGTCCATAGAAAGCTGTGGAGGTCACAC-3’ 

miR125a-5p CXCL8-3’UTR 
5’-GATGTTTTATTAGATAAATTTCGGGTTTTTAGATTAAAC-3’ 

5’-GTTTAATCTAAAAACCCGAAATTTATCTAATAAAACATC-3’ 

let-7e-5p CXCL8-3’UTR 
5’-AAGTATTAGCCACCATCTCACAGTGATGTTGTGAGG -3’ 

5’-CCTCACAACATCACTGTGAGATGGTGGCTAATACTT-3’ 

let-7e-5p CCL7-3’UTR 
5’-ATGCTCCTCCCTTCTCCATGGGGGTATTGTA-3’ 

5’-TACAATACCCCCATGGAGAAGGGAGGAGCAT-3’ 

Q-PCR: 
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hsa-TLR4 
5’-CACCTGATGCTTCTTGCTG-3’ 

5’-TCCTGGCTTGAGTAGATAA-3’ 

hsa-CD14 
5’-GCAACACAGGAATGGAGA-3’ 

5’-ACAGATTGAGGGAGTTCA-3’ 

hsa-IRAK1 
5’-TGAAGAGGCTGAAGGAGAA-3’ 

5’-CACAATGTTTGGGTGACGAA-3’ 

hsa-MyD88 
5’-GCACATGGGCACATACAGAC-3’ 

5’-GACATGGTTAGGCTCCCTCA-3’ 

hsa-TRAF6 
5’-GTCCCTTCCAAAAATTCCAT-3’ 

5’-CACAAGAAACCTGTCTCCTT-3’ 

hsa-IL-6 
5’-TACCCCCAGGAGAAGATTCC-3’ 

5’-TTTTCTGCCAGTGCCTCTTT-3’ 

hsa-CCL3 
5’-TGACTACTTTGAGACGAGCA-3’ 

5’-CTGACATATTTCTGGACCC-3’ 

hsa-CCL7 
5’-CTGCTGCTACAGATTTATCA-3’ 

5’-TCCTTGTCCAGTTTGGTCTT-3’ 

hsa-CXCL8 
5’-GCCAGGAAGAAACCACCGGAAGGA-3’ 

5’-GGGTCCAGACAGAGCTCTCTTCC-3’ 

hsa-TNFα 
5’-GCTGCACTTTGGAGTGATCG-3’ 

5’-GAGGTACAGGCCCTCTGATG-3’ 

hsa-GAPDH 
5’-GATCATCAGCAATGCCTCCT-3’ 

5’-TGTGGTCATGAGTCCTTCCA-3’ 

ChIP assay: 

hsa-STAT3cluster 
5’-AACGCCTTGTCCAGTGACCTT-3’ 

5’-GTGGGGGTGGTTTGAGAA-3’ 

SP1-200bp-site/ Pol II-
cluster 

5’-AGGGAAGGGGGAAGAGA-3’ 

5’-GTGGGGGTGGTTTGAGAA-3’ 

SP1-320bp-site/ STAT3-
cluster 

5’-TTCTCGGCTTCCCCTCT-3’ 

5’-CAACCTCCCAGACCCTCAG-3’ 

SP1-770bp-site/NFkB- 5’-TCCCCACCTCCTCTTTAG-3’ 
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cluster 5’-GCCCATAGCCCCGCTTTG-3’ 

Pol-II miR-155 
5’-ACCATTTCTTCCTCTCTTAG-3’ 

5’-GGCTCCAACCTTTGTTCTT-3’ 

Pol-II miR-146b 
5’-AATAGGAGTTCTCTTGGTAT-3’ 

5’-AATTCAGTTCTCAGTGCC-3’ 

Pol-II miR-146a 
5’-GAGGAAGTGACATTGAAAGC-3’ 

5’-TGTATGGTAGACACACACAT-3’ 

Pol-II miR-155 
5’-ACCATTTCTTCCTCTCTTAG-3’ 

5’-GGCTCCAACCTTTGTTCTT-3’ 

STAT3 miR-146b 
5’-CTCGGCTGAACTCTCCAGA-3’ 

5’-GCAAACCAAGGGGCTTTCT-3’ 

STAT3 miR-146a 
5’-GCACTTGAAAAGCCAACAGG-3’ 

5’-CACAGCGAGGGAGGAAGA-3’ 

STAT3 IL-10 
5’-GCAGAAGTTCATGTTCAACCAA -3’ 

5’-AGGCCTCTTCATTCATTAAAA -3’ 

RIP assay: 

hsa-TLR4-RIP 
5’-CCTCCTCAGAAACAGAACAT-3’ 

5’-TCATAACGGCTACACCATTT-3’ 

hsa-CD14-RIP 
5’-CTAACTCCCTAAGAAACCC -3’ 

5’-ACCTTTTAATCCAGATGCCA -3’ 

hsa-IRAK1-RIP 
5’-CTCTTTGCCCATCTCTTTG-3’ 

5’-GCCACACTTTTCCAAATTGT-3’ 

hsa-MYD88-RIP 
5’-GCTTGGGCTGCTTTTCATT-3’ 

5’-CCTGCTCACATCATTACAGT-3’ 

hsa-TRAF6-RIP 
5’-TAAGTTCTCATTCACCCCAG-3’ 

5’-AGGAAATAAGTAAGCAAGGC-3’ 

hsa-TNFα-RIP 
5’-CTGACATCTGGAATCTGGA-3’ 

5’-TCTGGAAACATCTGGAGAG -3’ 

hsa-IL6-RIP 
5’-GCATTCCTTCTTCTGGTCA-3’ 

5’-ATAGTGTCCTAACGCTCATA-3’ 
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hsa-CXCL8-RIP 
5’-TACTCCCAGTCTTGTCATTG-3’ 

5’-TTCCGTAATTCAACACAGCA -3’ 

hsa-CCL3-RIP 
5’-AAGCCACCAGACTGACAAA-3’ 

5’-CCTTTTAAAAGAGCATCTTT-3’ 

hsa-CCL7-RIP 
5’-GGATTTTGGTGGGTTTTGAA-3’ 

5’-TGAGGTAGAGAAGGGAGG-3’ 
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3. RESULTS 

 

3.1 The miR-125a~99b~let-7e cluster and miR-146b are 

induced by IL-10 and TGFβ 

 

To identify miRNA potentially involved in the monocytes-mediated response to 

stimuli of bacterial origin in humans, we  previously analyzed their miRNA 

expression profile after stimulation with 100 ng/ml LPS using a TaqMan-based 

Low Density Array [77]. Under this conditions, we confirmed the induction of LPS-

dependent miRNAs described in monocytic cell lines or mouse macrophages, such 

as miR-146a [76] and miR-155 [75], and we identified previously unrecognized 

miRNAs, including miR-9 [77], miR-187 [128], miR-125a-5p, let-7e-5p, miR-99b-

5p and miR-146b. For miR-9 [77] and miR-187 [128], we described their 

involvement in the regulation of monocytes activation by the direct targeting of a 

specific gene involved in the NFKB pathway (p50 NFKB and NFKBIZ respectively). 

We here report our study regarding the second group of LPS-dependent miRNA in 

order to identify a potential role in the innate immune response: miR-125a-5p, let-

7e-5p, miR-99b-5p and miR-146b. 

MiR-125a-5p, let-7e-5p and miR-99b-5p belong to a cluster encoded by a 

conserved region hosted in the first intron of the linc00085 gene and we will refer 

to it as ‘miRNA cluster’.  

 

3.1.1 Regulation of miR-125a, miR-99b, let-7e and miR-146b by pro-

inflammatory stimuli. 

We stimulated human monocytes with different TLR ligands and with the 

proinflammatory cytokines IL-1β. IL-1β and the TLR2 agonist palmitoyl-3-

cysteine-serine-lysine-4 (Pam3CSK4) induced miR-125a-5p, let-7e-5p, miR-99b-5p 

and miR-146b to similar extent as LPS, while the TLR3 agonist poly(I:C), the TLR7 
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agonist imiquimod, and a CpG oligodeoxynucleotide (agonist of TLR9) were 

inactive (Fig. 1A to D).  

 

 

Figure 1: Regulation of miR-125a, miR-99b, let-7e and miR-146b by pro-inflammatory 

stimuli. Human purified monocytes were cultured with different stimuli (100 ng/mL LPS, 25 

ng/mL IL-1β, 2 μg/mL Pam3CSK4, 3 μg/mL imiquimod, 50 μg/mL poly(I:C), 1 μM ODN) for 24 h. 

Levels of miR-125a-5p (A), miR-99b-5p (B), let-7e-5p (C) and miR-146b (D)  were measured by 

qPCR in triplicate samples. Results are expressed as fold change over control (mean ± SEM; n = 3; * 

p< 0.05). 
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3.1.2 IL-10 induces miR-125a~99b~let-7e cluster and miR-146b 

expression. 

Differently from miR-146a,  rapidly induced in response to LPS (detectable after 

2 hours of stimulation),  miR-125a, miR-99b, let-7e and miR-146b showed instead 

a delayed kinetics of expression (Fig. 2 A-D), suggesting the involvement of IL-10, 

which is late induced in monocytes after LPS exposure [123, 153, 154]. We 

stimulated human monocytes with LPS, IL-10 alone and LPS plus IL-10 and we 

measured miRNAs expression levels at different time points. Recombinant IL-10 

induced the expression of miR-125a-5p, miR-99b-5p, let-7e-5p and miR-146b, and 

potentiated their expression by LPS (Fig. 2). Instead, IL-10 stimulation had no 

effect on the expression of miR-146a, that is only LPS-dependent (Fig. 2 E).   
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Figure 2: IL-10 induces miR-125a~99b~let-7e cluster and miR-146b expression. Human 

purified monocytes were cultured with 100 ng/mL LPS (black), 20 ng/mL IL-10 (white), or both 

stimuli (grey) for the indicated times.  Levels of miR-125a-5p (A), let-7e-5p (B), miR-99b-5p (C), 

miR-146b (D) and miR-146a (E) were measured by qPCR in triplicate samples. Results are 

expressed as fold change over control (mean ± SEM; n = 3; * p< 0.05). 
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3.1.3 Inhibition of IL-10 signaling pathway leads to a reduction of miR-

125a, miR-99b, let-7e and miR-146b expression 

To investigate whether endogenously produced IL-10 played a role in the 

expression of miR-125a-5p, miR-99b-5p, let-7e-5p and miR-146b induced by LPS, 

monocytes were pretreated by an anti-IL-10R blocking monoclonal antibody (and 

isotype-specific control IgG) or the JAK/STAT signaling pathway inhibitor AG-490 

compound [155]. MiRNAs expression were analyzed 24 h after LPS stimulation. 

The activity of the inhibitor AG-490 was confirmed by the reduced detection of IL-

10 after 24 h LPS in monocytes pre-treated with the inhibitor (data not shown). 

Blocking endogenous IL-10 signaling or its production, we observed a significant 

reduction of miR-125a-5p, miR-99b-5p, let-7e-5p and miR-146b expression after 

LPS stimulation, whereas miR-146a induction was not affected (Fig. 3).   
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Figure 3: miR-125a~99b~let-7e cluster and miR-146b induction after LPS challenge is 

driven by IL-10.  Human monocytes were pre-treated or not for 30 min with 5 μM of the JAK/STAT 

inhibitor AG-490 and then stimulated for 24 h with 100 ng/ml LPS. Alternatively, monocytes 

stimulated for 24 h with 100 ng/ml LPS were cultured in the presence of 10 µg/ml anti-IL-10R or 

isotype control MoAb. MiRNAs levels were measured by qPCR in triplicate samples and results 

expressed as fold change over control (mean ± SEM; n = 3; * p< 0.05 ). 
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3.1.4 Regulation of miR-125a, miR-99b, let-7e and miR-146b by anti-

inflammatory stimuli. 

We then investigated the regulation of these miRNAs by other anti-

inflammatory mediators in order to define if they were only relevant for IL-10-

mediated anti-inflammatory action or also induced by other anti-inflammatory 

signals. Interestingly, we found that, in addition to IL-10, TGFβ but not 

glucocorticoids (Dex), IL-4 and IL-13 increased miRNA cluster and miR-146b 

expression (Fig. 4). 
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Figure 4: miR-125a~99b~let-7e cluster and miR-146b induced by TGFβ. Human purified 

monocytes were cultured with 20 ng/mL Dex, 50 ng/mL TGFβ, 20 ng/mL IL-4, 50 ng/ml IL-13 or 

20 ng/ml IL-10 for 24 hours. MiRNAs levels were measured by qPCR in triplicate samples and 

results expressed as fold change over control (mean ± SEM; n = 3; * p< 0.05 ). 
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3.1.5 miRNA cluster and miR-146b enriched in RISC of LPS-, IL-10-, 

TGFβ stimulated human  monocytes 

To demonstrate the functional activity of these miRNAs we checked their 

presence into the RISC complex upon different stimulation conditions. To this aim, 

we performed a RNA-induced silencing complex (RISC) immunoprecipitation, 

using Ago2 antibody. Indeed, to be functional miRNA must be incorporated into a 

RISC-complex, composed of specific RNA-binding protein, miRNA and the mRNA 

target. Ago2 is an essential components of the complex [156]. Consistent with the 

expression data, we obtained miRNA cluster and miR-146b loading in the RISC 

only when the cells were treated with LPS, IL10 and TGFβ but not with dex  (Fig.5).  
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Figure 5: miRNA cluster and miR-146b enriched in RISC of LPS-, IL-10-, TGFβ stimulated 

human monocytes. Human purified monocytes were cultured with 100 ng/ml LPS, 20 ng/mL Dex, 

50 ng/mL TGFβ or 20 ng/mL IL-10 for 24 hours. Cell extracts were subjected to RIP assay using 

anti-Ago2 or IgG control Abs. Levels of miR-125a-5p (A), miR-99b-5p (B), let-7e-5p (C) and miR-

146b (D) were measured by qPCR in triplicate samples. Results are expressed as fold change over 

control (mean ± SEM; n = 3). 
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3.1.6 IFNγ blocks miRNA cluster and miR-146b expression 

IL-10 and TGFβ primarily operate as feedback inhibitors of the LPS-mediated 

inflammatory response and are part of a more complex network of regulation in 

which also operates IFNγ, as a coadiuvator of LPS activatory stimulus [157]. 

Therefore we studied the effect of IFNγ stimulation on miR-125a~99b~let-7e 

cluster expression and miR-146b. We found that IFNγ was able to reduce miR 

cluster expression at early time points and it also abolished the effect of LPS-

mediated upregulation when monocytes were challenged with both LPS and IFNγ 

(Fig.6). 

Taken together, these data identify the miR-125a~99b~let-7e cluster and miR-

146b as an LPS, IL-10, and TGFβ-responsive gene, negatively modulated by IFNγ, 

therefore suggesting a complex feedback loop regulatory mechanism that 

orchestrates the inflammatory response upon TLR engagement.  
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Figure 6: IFNγ blocks miRNA cluster and miR-146b expression. Human purified monocytes 

were culture with 100 ng/mL LPS (black), 20 ng/mL IFNγ (white) or both stimuli (grey) for 4, 8, 12 

and 24 hours. MiRNAs levels were measured by qPCR in triplicate samples and results were 

expressed as fold change over control (mean ± SEM; n = 3; * p< 0.05 ).  
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3.2 Transcriptional regulation of miR-125a~99b~let-7e cluster 

and miR-146b in human monocytes 

 

3.2.1 Genomic organization and bioinformatic analysis of miR-

125a~99b~let-7e cluster promoter. 

 

MiR-125a-5p, let-7e-5p and miR-99b-5p represent the mature products of the 

miR-125a~99b~let-7e cluster, encoded by a conserved region hosted in the first 

intron of the linc00085 gene in human chromosome 19 (Fig. 7). To investigate the 

transcriptional regulation of these miR we performed a bioinformatics analysis, 

scanning a 2kb region upstream the predicted transcription start site of the gene. 

We identified putative binding sites for transcription factors, known to be LPS-, IL-

10-, and TGFβ- sensitive, more exactly:  NFκB, STAT3 and SMAD respectively. ( Fig. 

7). 

 

 

Figure 7: Genomic organization and bioinformatic analysis of the miR-125a~99b~let-7e 

cluster promoter. Pairwise sequence local alignments of human (chr.19: 52191745-52196592) 

and murine (chr.17: 17827604-17832451) cluster miR-125a~99b~let-7e loci are visualized as a 

conservation plot generated by Mulan using the TBA alignment program (see Materials and 

Methods). Black blocks identify evolutionary conserved regions (ECR) with >50% identity between 

the two species over 100 bp segments. The transcription start site [158], TATA boxes (black 

squares), and the putative binding sites for transcription factors are indicated. 
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3.2.2 Direct transcriptional induction of miR-125a~99b~let-7e cluster by 

LPS, IL-10 and TGFβ. 

 

To study the transcriptional regulation of the miR-125a~99b~let-7e cluster 

upon TLR4/TLR2, IL-10 and TGFβ stimulation, we analyzed the recruitment of 

RNA polymerase II (Pol II) to its promoter region in the presence of different 

stimuli. 

Chromatin immunoprecipitation (ChIP) experiments on human monocytes 

stimulated with LPS, IL-10 and TGFβ showed a recruitment of the Pol II on the 

promoter of miR-125a~99b~let-7e cluster, confirming a direct transcriptional 

induction of the miRNA cluster by this stimuli (Fig. 8A). We used miR-155 as a 

positive control for the LPS stimulation because it is a very well-known LPS-

responsive miRNA [75], for whom we obtained a consistent Pol II recruitment on 

its promoter. Instead we did not obtained any Pol II enrichment on the miR-155 

promoter region after IL-10 stimulation which regulates negatively miR-155 

expression [80], that we used here as a negative control.  

Consistent with the positive effect of IL-10 on the expression of miR-

125a~99b~let-7e cluster, we validated by Chip the binding of the IL-10-dependent 

transcription factor STAT3 to a highly conserved site present in  the miRNA cluster 

promoter (Fig. 7). ChIP data showed a STAT3 recruitment on this binding site only 

after short term exposure to IL-10 but not LPS (Fig. 8B). We also identified a 

binding site for SMAD3, a TGFβ- dependent transcription factor and Chip 

experiments showed its recruitment to miRNA cluster promoter 24h after TGFβ 

challenge, consistent with the miRNA kinetic data (Fig. 8C). Interestingly, ChIP 

experiments also showed that the NF-kB putative binding site predicted in the 

promoter region of the miR-125a~99b~let-7e cluster was engaged by the 

corresponding transcription factor after challenge with LPS but not IL-10 (Fig.8D).  

Collectively, these data demonstrate that in monocytes the miR-125a~99b~let-

7e cluster is transcriptional induced by anti-inflammatory stimuli (i.e. IL-10 and 

TGFb) and  lately by TLR engagement.  
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Figure 8: Transcriptional regulation of miR-125a~99b~let-7e cluster in human 

monocytes. ChIP assay was carried out on human monocytes stimulated or not for 2 h with 20 

ng/ml of IL-10, 100ng/ml LPS or 50 ng/ml of TGFβ using anti-Pol II (A), anti-STAT3 (B), anti-

SMAD3 (C) and anti-NFkB (D). Q-PCR was carried out using specific primers for the miR-

125a~99b~let-7e promoter (black columns) or on miR-155 promoter (white column). Results are 

expressed as fold change over control (mean± SEM; n =3). 
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3.2.3 Genomic organization and bioinformatic analysis of miR-146b and 

miR-146a promoters. 

 

MiR-146b is the second member of the miR-146 family and it is located in an 

intergenic region on human chromosome 10. According to published data [76], the 

miR-146b predicted  transcription start site is located 700 bp upstream of the 

mature miR-146b sequence [76] (Fig. 9A). To identify putative cis regulatory 

elements critical for the transcriptional regulation of miR-146b, we analyzed 1000 

bp upstream of the pre-miR-146b coding region with bioinformatic tools, as well 

the promoter of miR-146a [129]. Conserved putative binding sites for STAT3, the 

main transcription factor mediating the IL-10 anti-inflammatory action in 

monocytes [159], were predicted on both miR-146a and miR-146b promoter 

regions. NFkB binding sites were predicted on the promoter of miR-146a, as 

described by Taganov [76], and even on the promoter of miR-146b.  

 

To study the transcriptional regulation of miR-146b in monocytes, we 

performed ChIP experiments. Stimulation of monocytes with LPS enriched the 

recruitment of Pol II onto the miR-146b promoter, as well as to the miR-146a and 

miR-155 promoters, known LPS-dependent miRNAs (Fig. 9B to D). Conversely, 

stimulation of monocytes with IL-10, resulted in Pol II recruitment only on the 

promoter region of miR-146b (Fig. 9C) and not on the promoter of miR-146a (Fig. 

9B) or miR-155 (Fig. 9D), consistent with the selective IL-10-mediated 

upregulation of miR-146b expression.  

To verify if the predicted STAT3 binding sites on both the promoters were 

functional, we performed ChIP analysis on monocytes stimulated with IL-10 and 

analyzed STAT3 recruitment. We demonstrated the recruitment of STAT3 protein 

exclusively on the miR-146b promoter region, while no STAT3 enrichment was 

found on the miR-146a promoter region (Fig. 9E).  
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MiR-146b could be even regulated by NF-kB because of the two putative NF-kB 

binding sites predicted on promoter region. We used two chemical inhibitors, 

CAPE (Caffeic acid phenethyl ester) [160] and PDTC (pyrrolidine dithiocarbamate) 

[161], to specifically impair NF-kB signaling. In LPS stimulated monocytes, 

blocking of NF-kB activity resulted in an impairment of miR-146a expression 

levels, consistent with previous reports of NF-kB driving the expression of miR-

146a [76]; but blocking of NF-kB activity had no role on miR-146b induction by 

LPS (Fig. 9F).  

These data indicate that miR-146a and miR-146b undergo a profound different 

regulation in monocytes exposed to pro- and anti-inflammatory stimuli and 

identify miR-146b, but not miR-146a, as an IL-10-dependent miRNA, suggesting 

that miR-146b may play a role in mediating the anti-inflammatory activity of IL-10.  
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Figure 9: MiR-146b induction after LPS challenge is driven by IL-10. (A) Graphical 

representation of predicted promoter regions reporting binding sites of transcription factors of 

potential interest.(B to D) ChIP assays were carried out using anti-Pol II Ab and analysed by qPCR 

with specific primers binding to the miR-146b, miR-146a, and miR-155 promoters. Data from qPCR 

have been normalized to input DNA and displayed as fold change over untreated cells (mean  SEM; 

n = 3 (E) Monocytes were stimulated or not for 4 h with 20 ng/ml IL-10. ChIP assays were carried 

out using anti-STAT3 Ab and analysed by qPCR with specific primers binding to miR-146a (white 

columns) and miR-146b (black columns) promoters. (F) Cells were pretreated for 1 h with the NF-

kB inhibitors PDTC (1 μM) or CAPE (2 μM) and then stimulated for 12 h with 100 ng/ml LPS. MiR-

146a (white columns) and miR-146b (black columns) expression levels were measured by qPCR in 

triplicate samples and results expressed as fold change over control (mean ± SEM; n = 3).  
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3.3 MiR-125a-5p, let-7e-5p and miR-146b directly target the 

TLR signaling pathway at multiple levels. 

 

To gain insight into the functional role of miRNAs in the context of LPS-

mediated inflammation, we chose an in silico approach to identify potential miR-

125a~99b~let-7e cluster and miR-146b targets. We combined miRanda [150] 

target predictions with pathways analysis based on the Ingenuity Pathway 

Analysis database (available at www.ingenuity.com). The intersection between 

biological pathways and the predicted targets of each miRNA of the cluster 

indicated a significant enrichment of genes associated to the biological functions 

Inflammatory response, Immune cell trafficking, Cell-mediated immune response, 

and Cell signaling for both miR-125a-5p and let-7e-5p, while miR-99b-5p was not 

related to any of these functions (Table 2). In particular, the predicted target genes 

of miR-125a-5p and let-7e-5p generated an “inflammatory network” including a 

set of nodes with internal connectivity centered on the TLR pathway higher than 

the connectivity observed with the rest of the network, which included receptors 

(TLR4, CD14), signaling molecules (IRAK1), and inflammatory mediators (TNF, 

IL-6, CCL3, CCL7, CXCL8) (Fig. 10).  

For miR-146b, the targets analysis showed a significant enrichment in “TLR 

signaling”, “NF-kB signaling”, and “IL-1β signaling” pathways (Fig. 11A). Among the 

predicted targets there were the receptors TLR4 and TLR2, the signal transducers 

MYD88, TRAF6 and IRAK1 and the only effector molecules IL6 (Fig. 11B). From 

these results, we hypothesized a role for miR-125a~99b~let-7e cluster and miR-

146b in fine tuning the inflammatory response induced in monocytes by TLR/ IL-

1R activation.  

 

 

 

  

http://www.ingenuity.com/
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Table 2. 
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Figure 10: Predicted target genes of miR-125a-5p and let-7e-5p on the Inflammatory 

response molecular network. The Inflammatory response molecular network was extracted using 

the IPA analysis knowledge database and used to display functional relationships with predicted 

target genes of human miR-125a-5p (green), let-7e-5p (red), or both (yellow). Genes not predicted 

as targets are in black. The Toll-Like Receptor pathway (boxed) showed a significant enrichment of 

miR-125a~99b~let-7e cluster predicted target genes (p value = 1.42 x10-5). 
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Figure 11 : miR-146b targets the TLR signaling pathway. (A) Canonical pathways 

significantly enriched for miR-146b predicted target genes as identified by the Ingenuity Pathways 

Analysis library [129]. (B) Predicted targets of miR-146b belonging to TLR signaling pathway 
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3.3.1 The targeting of the receptors: TLR4 is a direct target of miR-

125a, let-7e and miR-146b 

To validate bioinformatic predictions, we started to investigate the direct 

targeting at the receptors level of the TLR signaling pathway by miR-

125a~99b~let-7e cluster and miR-146b.  

We generated reporter constructs that contain the renilla luciferase gene fused 

to the 3′ UTRs mRNAs of putative miRNA cluster and miR-146b target genes. These 

reporter constructs were transiently transfected into 293T cells together with 

miRNA mimics, a chemically modified double-stranded RNAs that mimic 

endogenous miRNAs.   

In 293T cells, over-expression of miR-125a-5p or let-7e-5p or miR-146b but not 

miR-99b-5p, significantly decreased the luciferase activity of the reporter 

construct containing the TLR4 3’UTR. 5 bp deletion in the miR-125a-5p or let-7e-

5p or miR-146b miRNA-responsive element (MRE) fully restored luciferase levels, 

indicating miRNA specificity for their predicted target sites (Fig. 12A).  

 

To confirm that TLR4 is a direct target of miR-125a-5p, let-7e and miR-146b, we 

generated miR/lentiviral-based expression vectors (pRRL-miR) over-expressing 

the individual miRNAs (pRRL-125a, pRRL-let7e and pRRL-miR146b) and we 

transduced them into the human monocytic cell line THP-1, a well-established 

model for in vitro studies of the TLR signaling [162]. We obtained a significant 

enrichment of the TRL4 transcript in the immunoprecipitated RISC of pRRL-125a, 

pRRL-let7e and pRRL-miR146b THP-1 cells, as compared to cells transduced with 

the control vector (pRRL-ct) (Fig. 12B).  

 

In a complementary approach, cells transduced with lentiviral expression 

vectors expressing artificial mRNA targets to inhibit miR-125a-5p, let-7e-5p or 

miR-146b (miRT-125a-5p, miRT-let7e-5p and miRT-miR-146b, respectively) 

showed a significant decrease in the TLR4 transcript enrichment in the RISC after 

LPS stimulation as compared to cells transduced with the control vector (miRT-ct) 

(Fig. 12C).   
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Finally, when compared to control vector-transduced cells, TLR4 protein levels 

were significantly decreased in cells transduced with pRRL-125a, pRRL-let7e and 

pRRL-miR-146b and significantly increased in cells transduced with miRT-125a-

5p, miRT-let7e-5p and miRT-miR-146b (Fig. 12D).  

Taken together, these data validate the predicted direct targeting of TLR4 by 

miR-125a-5p, let7e-5p and miR-146b.  
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Figure 12 : TLR4 is a direct target of miR-125a-5p, let-7e and miR-146b. (A) Luciferase 

assay was done in 293T cells cotransfecting TLR4 3’UTR (normal or mutated) with miR-125a-5p or 

let-7e-5p or miR-99b-5p or miR-146b mimic or a negative control (CT). Results are expressed as 

mean (% variation  SEM; n = 3) of the ratio between renilla luciferase and firefly control luciferase 

activities. Cell extracts from THP-1 cells transduced with pRRL-125a or pRRL-let-7e or pRRL-146b 

and the control vector pRRL-ct (B) or with miRT-125a-5p or miRT-let-7e-5p or miRT-146b and the 

control vector miRT-ct (C) were subjected to RIP assay using anti-Ago2 or IgG control Abs. Levels of 

TLR4 transcript was assayed in triplicate by qPCR and expressed as normalized fold enrichment. 

TLR4 protein level was measured by flow cytometry in pRRL-125A or pRRL-let-7e or pRRL-146b 

THP-1 cells (D, upper panels, grey histograms) or miRT-125a-5p or miRT-let-7e-5p (D, lower 

panels, grey histograms) or their corresponding control vectors (CT; black histograms). Isotype 

control staining are shown in dotted histograms. Results from one representative experiment are 

shown. Mean Fluorescence Intensity values (± SEM) from 5 independent experiments are reported. 
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3.3.2 The targeting of the receptors: TLR2 is not a direct target of miR-

146b 

Among the predicted targets of miR-146b, that are components of the TLR 

pathway, we also identified  TLR2. Despite it is a predicted target of miR-146b,  

miR-146b over-expression did not induce any impairment of the luciferase activity 

(Fig. 13A) , did not cause any enrichment of TLR2 mRNA in the RISC complex (Fig. 

13B)  and did not reduce TLR2 protein expression (Fig. 13D). In complementary 

experiments, THP-1 cells transduced with miRT-146b and stimulated with LPS did 

not show any increase of the TLR2 transcript in the RISC complex (Fig. 13C) nor a 

decrease in TLR2 protein expression as compared to miRT-ct THP-1 cells (Fig. 

13E). Taken together, these results indicate that, contrary to predictions, TLR2 is 

not a direct target of miR-146b. 
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Figure 13: TLR2 is not a direct target of miR-146b. Luciferase constructs based on the 3’UTR 

of TLR2 was cotransfected in 293T cells with miR-146b mimic or a negative control (CT). Results 

are expressed as mean (% variation  SEM; n = 3) of the ratio between renilla luciferase and firefly 

control luciferase activities. Cell extracts from THP-1 cells transduced with pRRL-146b and the 

control vector pRRL-ct (B) or with miRT-146b and the control vector miRT-ct (C) were subjected to 

RIP assay using anti-Ago2 or IgG control Abs. Levels of TLR2 transcript was assayed in triplicate by 

qPCR and expressed as normalized fold enrichment. TLR2 protein level was measured by flow 

cytometry in cells transduced with pRRL-146b or miRT-146b vectors (D and E, grey histograms) or 

their corresponding control vectors (CT; black histograms). Isotype control staining are shown in 

dotted histograms. Results from one representative experiment are shown. Mean Fluorescence 

Intensity values (± SEM) from 5 independent experiments are reported.  
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3.3.3 The targeting of the receptors: CD14 is a direct target of miR-

125a-5p 

Another important member for the TLR signaling is CD14, a co-receptor of TLR4 

for the detection of bacterial LPS [163]. CD14 is predicted to be a direct target of 

miR-125a-5p by the bioinformatic analysis. Indeed we obtained a reduction in 

luciferase activity only in 293T cells transfected with CD14 3’UTR reporter 

construct together with miR-125a-5p mimic and not with let-7e and miR-99b-5p 

mimic. This targeting is specific because the mutation of miR-125a-5p MRE 

abrogated the downregulation of the luciferase activity (Fig. 14A). As expected we 

obtained an enrichment of CD14 mRNA in the RISC complex only in pRRL- 125a 

THP1 cells (Fig. 14B), whereas the inhibition of miR-125a-5p, in miRT- 125a-5p 

THP1 cells, caused a decrease of CD14 mRNA content in the Ago2-

immunoprecipitated fraction (Fig. 14C). At the protein level, only the over-

expression or the inhibition of miR-125a-5p modulated the CD14 expression on 

cell surface, in comparison of let-7e (Fig. 14D and E) . We can conclude that CD14 

is a specific and direct target of miR-125a-5p.  
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Figure 14: CD14 is a direct target of miR-125a-5p. (A) Luciferase assay was done in 293T 

cells cotransfecting CD14 3’UTR (normal or mutated) with miR-125a-5p or let-7e-5p or miR-99b-

5p mimic or a negative control (CT). Results are expressed as mean (% variation  SEM; n = 3) of 

the ratio between renilla luciferase and firefly control luciferase activities. Cell extracts from THP-1 

cells transduced with pRRL-125a or pRRL-let-7e and the control vector pRRL-ct (B) or with miRT-

125a-5p or miRT-let-7e-5p and the control vector miRT-ct (C) were subjected to RIP assay using 

anti-Ago2 or IgG control Abs. Levels of CD14 transcript was assayed in triplicate by qPCR and 

expressed as normalized fold enrichment. CD14 protein level was measured by flow cytometry in 

pRRL-125A or pRR-let-7e THP-1 cells (D and E, grey histograms, left graphs) or miRT-125a-5p or 

miRT-let-7e-5p (D and E, grey histograms, right graphs) or their corresponding control vectors (CT; 

black histograms). Isotype control staining are shown in dotted histograms. Results from one 

representative experiment are shown. Mean Fluorescence Intensity values (± SEM) from 5 

independent experiments are reported.  
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3.3.4 The targeting of the adaptors: IRAK-1, MyD88 and TRAF6 

According to the bioinformatics prediction, together with the receptors, also 

other component of TLR signaling pathway are putative targets of these miRNAs. 

Therefore, we investigated the miRNAs role in regulating the signaling adaptors 

involved in this pathway. Luciferase assays validated IRAK-1 as direct target of 

miR-125a-5p and miR-146b (Fig. 15A), MyD88 as direct target of let-7e-5p and 

miR-146b (Fig. 16A), and TRAF6 (Fig. 17A) as direct target of miR-146b. In all 

cases, abrogation of miR-125a-5p, let-7e and miR-146b effects by mutagenesis of 

their seed match regions in targets 3’UTR demonstrated the specificity of their 

action. Consistent with this, RIP analysis revealed a significant enrichment of IRAK-

1 (Fig. 15B), MyD88 (Fig. 16B), and TRAF6 (Fig. 17B) transcripts in the 

corresponding pRRL-125a, pRRL-let-7e, pRRL-146b transduced THP-1 cells and a 

reduction in THP-1 cells transduced with miRT-125a, miRT-let-7e and miRT-146b 

compared to miRT-ct (Fig. 15C, 16C, and 17C). Western blot analysis confirmed 

that protein levels of IRAK-1 are reduced when miR-125a or miR-146b are over-

expressed (Fig. 15D and E, left panels); instead the inhibition of miR-125a-5p (Fig. 

15D, right panel) or miR-146b (Fig. 15E, right panel) increased its expression. 

Western blot of Myd88 confirmed its targeting by let-7e and miR-146b (Fig. 16D 

and  E), whereas TRAF6 protein level is modulated by miR-146b (Fig. 17D and E).  
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Figure 15: IRAK1 is a direct target of miR-125a-5p and miR-146b. (A) Luciferase assay was 

done in 293T cells cotransfecting IRAK1 3’UTR (normal or mutated) with miR-125a-5p or let-7e-5p 

or miR-99b-5p or miR.146b mimic or a negative control (CT). Results are expressed as mean (% 

variation  SEM; n = 3) of the ratio between renilla luciferase and firefly control luciferase activities. 

Cell extracts from THP-1 cells transduced with pRRL-125a or pRRL-let-7e or pRRL-146b and the 

control vector pRRL-ct (B) or with miRT-125a-5p or miRT-let-7e-5p or miRT-146b and the control 

vector miRT-ct (C) were subjected to RIP assay using anti-Ago2 or IgG control Abs. Levels of IRAK1 

transcript was assayed in triplicate by qPCR and expressed as normalized fold enrichment. Protein 

levels of IRAK1(D and E) were evaluated on immunoblots using specific Ab followed by incubation 

with goat anti-rabbit Ab. Normalization was performed on actin levels (D and E, lower panels) 

evaluated on the same blot. Results from one representative experiment of 3 performed are shown.  
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Figure 16: MyD88 is a direct target of let-7e-5p and miR-146b. (A) Luciferase assay was 

done in 293T cells cotransfecting MyD88 3’UTR (normal or mutated) with miR-125a-5p or let-7e-

5p or miR-99b-5p or miR.146b mimic or a negative control (CT). Results are expressed as mean (% 

variation  SEM; n = 3) of the ratio between renilla luciferase and firefly control luciferase activities. 

Cell extracts from THP-1 cells transduced with pRRL-125a or pRRL-let-7e or pRRL-146b and the 

control vector pRRL-ct (B) or with miRT-125a-5p or miRT-let-7e-5p or miRT-146b and the control 

vector miRT-ct (C) were subjected to RIP assay using anti-Ago2 or IgG control Abs. MyD88 

transcript was quantified in triplicate by qPCR and expressed as normalized fold enrichment. 

Protein levels of MyD88 (D and E) were evaluated by Western Blot using anti-Myd88 Ab. 

Normalization was performed on actin or tubulin expression (D and E, lower panels) evaluated on 

the same blot. Results are representative of 3 independent experiments.  
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Figure 17: TRAF6 is a direct target of miR-146b. (A) Luciferase assay was done in 293T cells 

cotransfecting TRAF6 3’UTR (normal or mutated) with miR.146b mimic or a negative control (CT). 

Results are expressed as mean (% variation  SEM; n = 3) of the ratio between renilla luciferase and 

firefly control luciferase activities. Cell extracts from THP-1 cells transduced with pRRL-146b and 

the control vector pRRL-ct (B) or with miRT-146b and the control vector miRT-ct (C) were 

subjected to RIP assay using anti-Ago2 or IgG control Abs. TRAF6 transcript was quantified in 

triplicate by qPCR and expressed as normalized fold enrichment. Protein levels of TRAF6 (D and E) 

were evaluated by Western Blot using anti-TRAF6 Ab. Normalization was performed on tubulin 

expression (D and E, lower panels) evaluated on the same blot. Results are representative of 3 

independent experiments. 
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3.3.5 Direct targeting of pro-inflammatory cytokines by miR-125a, let-

7e and miR-146b 

Bioinformatic analysis also predicted a significant number of LPS-

dependent pro-inflammatory cytokines as potential targets of miR-125a-5p or let-

7e-5p (Fig. 10). Luciferase assays confirmed that miR-125a-5p negatively regulates 

TNFα, and mutations at the corresponding MRE abolished miR125a-5p-mediated 

suppression (Fig. 18A). Consistent with this, RIP analysis revealed a significant 

enrichment of the TNFα transcript in miR-125a transduced THP-1 cells (Fig. 18B) 

and a parallel decrease of their loading in the RISC when miR-125a-5p was 

inhibited (Fig. 18C). Similar approaches confirmed targeting by let-7e-5p of IL-6 

and CCL7 (Fig. 18D to F and Fig. 18G to I, respectively), while CCL3 and CXCL8 

were shown to be targeted by both miR-125a-5p and let-7e-5p (Fig. 18J to L and 

Fig. 18M to O, respectively). Conversely, though IL-6 was also predicted as a direct 

target of miR-146b, luciferase assay on the IL-6 3’UTR and RIP assay did not 

confirm this prediction (Fig. 19).  

Over-expression of miR-125a-5p and let-7e-5p caused a significant 

reduction of most but not all their direct target transcripts, suggesting that, 

depending on the specific target, either mRNA destabilization or transduction 

inhibition could be involved in their inhibitory effect (Fig. 20A). For miR-146b, its 

targeting affects stability of MyD88 and TRAF6 but not IRAK1 transcript; instead 

the over-expression of miR-146a destabilizes IRAK1 and TRAF6 and not MyD88 

mRNA (Fig. 20B). Even if the two miR-146 isoforms share most of all the targets, 

they can adopt different mechanism to regulate the same pathway.  
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Figure 18: Direct targeting of pro-inflammatory cytokines by miR-125a-5p and let-7e-5p. 

Luciferase constructs with the 3’UTR of TNFα (A), IL-6 (D), CCL7 (G), CCL3 (J), and CXCL8 (M) were 

cotransfected in 293T cells with miR-125a-5p, let-7e-5p, miR-99b-5p mimics or with a negative 

control mimic (CT). Results are expressed as mean (% variation  SEM; n = 3) of the ratio between 

renilla luciferase and firefly control luciferase activities. Cell extracts from THP-1 cells transduced 

with pRRL-125a, pRRL-let-7e, and the control vector pRRL-ct (panels B, E, H, K, N) or with miRT-

125a-5p, miRT-let-7e-5p, and the control vector miRT-ct (panels C, F, I, L, O) were subjected to RIP 

assay using anti-Ago2 or IgG Abs and levels of TNFα (panels B and C), IL-6 (panels E and F), CCL7 

(panels H and I), CCL3 (panels K and L), and CXCL8 (panels N and O) mRNAs were assayed in 

triplicate by Q-PCR and expressed as normalized fold enrichment. 
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Figure 19: IL-6 is not a direct target of miR-146b. Luciferase construct with the 3’UTR of IL-

6(A) (normal or mutated) was cotransfected in 293T cells with miR-146b mimic or with a negative 

control mimic (CT). Results are expressed as mean (% variation  SEM; n = 3) of the ratio between 

renilla luciferase and firefly control luciferase activities. Cell extracts from THP-1 cells transduced 

with pRRL-146b and the control vector pRRL-ct (B) or with miRT-146b and the control vector 

miRT-ct (C) were subjected to RIP assay using anti-Ago2 or anti-IgG. Abs and levels of IL-6 mRNA 

were assayed in triplicate by qPCR and expressed as normalized fold enrichment. 
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Figure 20: Effect of miR-125a-5p, let-7e-5p and miR-146b on transcripts of their direct 

target genes. (A) Levels of transcripts encoding TLR4, CD14, IRAK1, TNFα, IL-6, CCL3, CXCL8 and 

CCL7 were measured by Q-PCR in pRRL-ct, pRRL-125a, and pRRL-let7e THP-1 cells stimulated for 4 

h with 100ng/mL LPS and normalized to GAPDH. (B) Levels of transcripts encoding TRAF6, MyD88, 

and IRAK1 were measured by qPCR in pRRL-ct, pRRL-146b and pRRL-146a THP-1 cells stimulated 

for 4 h with 100ng/mL LPS and normalized to GAPDH. Results are shown as fold change over non 

stimulated control (mean ± SEM; n = 3). 
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3.4 MiR-125a-5p, let-7e-5p and miR-146b regulate LPS-

dependent production of inflammatory cytokines 

 

As we demonstrated a direct targeting of multiple components involved in the 

TLR4 signaling pathway by cluster miR-125a~99b~let-7e and by miR-146b, we 

investigated their biological impact on TLR4 activity evaluating the production of 

inflammatory cytokines after LPS exposure. As compared to pRRL-ct THP-1 cells, 

pRRL-125a (Fig. 21A to G, left panels), pRRL-let7e (Fig. 22A to G, left panels) and 

pRRL-146b (Fig. 23A to G, left panels) THP-1 cells showed a significant reduction 

of LPS-dependent production of several inflammatory cytokines, including IL-6, 

TNFα, CXCL8, CCL2, CCL3, CCL7 and IL-12p40. Conversely, a significant increase of 

these pro-inflammatory cytokines was observed when miR-125a-5p (Fig. 21A to G, 

right panels) or let-7e-5p (Fig. 22A to G, right panels) or miR-146b (Fig. 23A to G, 

right panels) were inhibited using corresponding miRT vectors. Of note, miR-125a-

5p and let-7e-5p showed a significant effect on both cytokines identified as direct 

targets (TNFα, IL-6, CCL3, CCL7, CXCL8; see Fig.18) as well as others known to be 

not direct targets (IL-12p40, CCL2), indicating a global effect of these miRNAs on 

the TLR4 signaling pathway.  
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Figure 21: MiR-125a-5p down-regulates the production of pro-inflammatory cytokines. 

Levels of pro-inflammatory cytokines measured by ELISA in cell-free supernatants of THP-1 cells 

transduced with pRRL-ct and pRRL-125a or with miRT-ct and miRT-125a-5p after stimulation with 

1 μg/mL LPS for 8 h for TNFα (A), CCL3 (E), and CXCL8 (G), or 24 h for IL-6 (B), IL-12p40 (C), CCL7 

(F), CCL2 (D). Results of three independent experiments are shown.  
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Figure 22: let-7e-5p down-regulates the production of pro-inflammatory cytokines. Levels 

of pro-inflammatory cytokines measured by ELISA in cell-free supernatants of THP-1 cells 

transduced with pRRL-ct and pRRL-let-7e or with miRT-ct and miRT-let-7e after stimulation with 1 

μg/mL LPS for 8 h for TNFα (A), CCL3 (E), and CXCL8 (G), or 24 h for IL-6 (B), IL-12p40 (C), CCL7 

(F), CCL2 (D). Results of three independent experiments are shown.  
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Figure 23: miR-146b down-regulates the production of pro-inflammatory cytokines. 

Levels of pro-inflammatory cytokines measured by ELISA in cell-free supernatants of THP-1 cells 

transduced with pRRL-ct and pRRL-146b or with miRT-ct and miRT-146b after stimulation with 1 

μg/mL LPS for 8 h for TNFα (A), CCL3 (E), and CXCL8 (G), or 24 h for IL-6 (B), IL-12p40 (C), CCL7 

(F), CCL2 (D). Results of three independent experiments are shown. 
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3.4.1 miR-125a-5p, let-7e-5p and miR-146b target specifically TLR4 

signaling pathway 

To confirm the specific targeting of TLR4 signaling pathway, we measured the 

effect of cluster miR-125a~99b~let-7e and miR-146b on the production of the 

IFN-inducible gene CXCL10. CXCL10 can be induced by LPS, mainly as a secondary 

effect of TRIF-dependent IFNβ production, or by IFNγ, which operates through the 

activation of a MyD88/IRAK-1-independent STAT1-dependent pathway [164]. The 

expression level of CXCL10 were significantly inhibited in pRRL-125a, pRRL-let-7e 

and pRRL-146b THP-1 cells (Fig. 24A to C, left panels) and increased in miRT-

125a-5p, miRT-let-7e-5p and miRT-146b THP-1 cells after stimulation with LPS 

(Fig. 24A to C, right panels). While no expression change was observed when 

CXCL10 was induced by IFNγ in THP1 cells that over-express or inhibit the 

miRNAs (Fig. 24D to F), confirming that the effects of the miRNAs were mediated 

by their specific targeting of the TLR4 signaling pathway. 
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Figure 24: miR-125a-5p, let-7e-5p and miR-146b targeting are TLR4-dependent. (A to C) 

Levels of CXCL10 cytokine measured by ELISA in cell-free supernatants of THP-1 cells transduced 

with pRRL-ct, pRRL-125a, pRRL-let-7e and pRRL-146b or with miRT-ct, miRT-125a-5p, miRT-let-

7e  and miRT-146b after stimulation with 1 μg/mL LPS 24h. (D to F) Levels of CXCL10 cytokine 

measured by ELISA in cell-free supernatants of transduced THP-1 cells stimulated with 10 ng/ml of 

IFNγ for 24h.   Results of three independent experiments are shown. 
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3.5 The miR-125a-5p and miR-146b mediates LPS tolerance 

 

3.5.1 miR-125a-5p, miR-99b-5p and miR-146b are induced in 

endotoxin tolerized human monocytes 

As we demonstrated that miR-125a-5p, let-7e-5p and miR-146b represent 

effective negative regulators of TLR signaling, we asked whether they were 

involved in the induction of LPS tolerance, the phenomenon of reduced sensitivity 

to subsequent challenge of LPS. Human monocytes were primed with different 

doses of LPS for 18 hours followed by wash with PBS and challenged with a second 

dose of LPS. After 24 hours of incubation with challenged LPS, we measured TNFα 

and miRNAs expression. TNFα is considered the most reliable marker of endotoxin 

tolerance because it is downregulated in all tolerized samples compared to 

untolerized control, as we shown here and as expected from previous studies (Fig. 

25 and [165]). Given that during our life we are usually exposed to different doses 

of LPS and since it is also known that low doses of priming LPS can induced 

endotoxin tolerance [166], we wanted to recapitulate that in vitro, by using 

different priming conditions.  
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Figure 25: Human monocytes pretreated with different doses of LPS reduce TNFα 

expression. Human monocytes were primed with 0, 0.1 or 10 ng/ml LPS continuously for 18 h, 

washed twice with PBS, and challenged with 10 ng/ml LPS. Supernatants and cell pellets were 

collected 24 h later. Results are expressed as mean  SEM of three donors. * p< 0.05. 

To understand the role of miRNAs in LPS tolerance, we analyzed miRNAs 

expression in the tolerized monocytes in relation to untolerized control. As 

expected, miR-146a (Fig. 26E) showed significantly higher expression in primed 

and challenged monocytes, as described in Nahid et al. [93]. Even miR-125a-5p, 

miR-99b-5p and miR-146b resulted up-regulated in tolerized monocytes in 

relation to untolerized control (Fig. 26A, B and C). In the case of let-7e-5p we did 

not measured any increment in its expression after the subsequent challenge of 

LPS (Fig. 26C). Consequently, miR-125a-5p and miR-146b may play an important 

role in LPS tolerance, targeting fundamental components of TLR pathway. Even if 

miR-99b-5p is up-regulated in tolerized monocytes we did not find any functional 

role of it in inflammatory pathways. Conversely, for let-7e-5p we have 

demonstrated its role in targeting of TLR pathway but we did not observed its 

induction in the tolerance process. [167] 
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Figure 26: miR-125a-5p, miR-99b-5p and miR-146b are induced in endotoxin tolerized 

human monocytes. Human monocytes were primed with 0, 0.1 or 10 ng/ml LPS continuously for 

18 h, washed twice with PBS, and challenged with 10 ng/ml LPS. Supernatants and cell pellets were 

collected 24 h later. Results are expressed as mean  SEM of three donors. * p< 0.05. 
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3.5.2 IFNγ blocks the upregulation of miR-125a-5p, miR-99b-5p and 

miR-146b during endotoxin tolerance  

IFNγ has activating effect on monocytes and it has been demonstrated that IFNγ 

can revert LPS tolerance in human [168] and mice [169]. In addition, in 

experimental model of endotoxin tolerance in mice, IFNγ production was reduced 

by T/NK cells, major producer of this cytokine [170]. These results suggest IFNγ as 

a key regulator of this process even if its LPS tolerance reversal is not well 

understood. We have shown that IFNγ was able to abolished miRNA cluster and 

miR-146b induction due to LPS stimulation (Fig.6) so we hypothesized that these 

miRNAs inhibition can have a role in LPS tolerance impairment. Human monocytes 

were pretreated with IFNγ and then subjected to LPS tolerance model. After 24h of 

incubation with challenged LPS, we measured TNFα and miRNAs expression.  

In our endotoxin model, TNFα was down-regulated by subsequent LPS 

stimulation as we have shown in Fig. 24, but IFNγ pre-treatment was able to 

restore the diminished TNFα production of tolerized monocytes as the expression 

levels of monocytes pre-treated with IFNγ but not tolerized (Fig. 27). For miRNAs 

expression, LPS tolerance induced the up-regulation of miR-125a-5p, miR-99b-5p 

and miR-146b as shown in Fig. 26. If monocytes were pre-treated with  IFNγ and 

than challenged two times with LPS, the same miRNAs could not be up-regulated 

anymore, as in monocytes that are pre-treated with IFNγ and stimulated only once 

with LPS (Fig. 28A,B and D). For let-7e-5p expression, we did not observed any 

variation in expression even after IFNγ stimulation (Fig. 28C). Differently is for 

miR-146a, because IFNγ did not abolished its expression in tolerized monocytes 

but rather IFNγ increased its expression after LPS stimulation (Fig. 28E). These 

results demonstrate the ability of IFNγ to block miRNAs expression even during 

LPS tolerance induction.  
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Figure 27: IFNγ pre-treatment restores the diminished TNFα production of tolerized 

monocytes. Human monocytes were pre-treated with 10 ng/ml IFNγ and primed with 0.1 ng/ml 

LPS continuously for 18 h, washed twice with PBS, and challenged with 10 ng/ml LPS. Supernatants 

and cell pellets were collected 24 h later. Results are expressed as mean  SEM of three donors. * p< 

0.05. 
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Figure 28: IFNγ pre-treatment blocks up-regulation of miRNA cluster and miR-146b in 

tolerized monocytes. Human monocytes were pre-treated with 10 ng/ml IFNγ and primed with 

0.1 ng/ml LPS continuously for 18 h, washed twice with PBS, and challenged with 10 ng/ml LPS. 

Supernatants and cell pellets were collected 24 h later. Results are expressed as mean  SEM of 

three donors. * p< 0.05. 
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3.5.3 Up-regulation of miR-125a-5p and miR-146b mimic LPS priming 

to induce endotoxin tolerance.  

 

It has been shown that the anti-inflammatory IL-10 and TGFβ are involved in 

the process of LPS desensitization [171]. Furthermore, IL-10 and TGFβ can directly 

induce a state of LPS hyporesponsiveness [171]. Exposure of human monocytes to 

TGFβ and IL-10 for 2 hours induced their hyporesponsiveness to LPS challenge 

with respect the production of inflammatory cytokines (Fig. 29). As previously 

reported [171, 172], IFNγ pre-treatment strongly enhanced LPS-dependent 

production of inflammatory cytokines and significantly impaired the LPS- (Fig. 27), 

TGFβ- and IL-10-dependent tolerization effect (Fig. 29A and B).  

Considering that LPS, IL-10 and TGFβ can induce the expression of miRNA 

cluster and miR-146b and they target the principal molecules of TLR signaling, we 

investigated whether the up-regulation of miRNA cluster and miR-146b was 

involved in the induction of LPS hyporesponsiveness. In particular we only focused 

on miR-125a-5p and miR-146b because let-7e-5p did not appear to be induced 

during LPS tolerance and miR-99b-5p has not target correlated to immune 

functions.  

To determine the functional role of these miRNAs in the process of endotoxin 

tolerance, THP1 cells were primed and challenged with LPS. THP1 cells that over-

express miR-125a-5p or miR-146b and stimulated only once with LPS produced 

significantly lower levels of TNFα in comparison of pRRL-control cells, inducing a 

state of tolerization (as shown even in fig. 21A and 23A). Furthermore, the ability 

of pRRL-125a-5p and pRRL-146b THP1 cells to cause tolerization was almost 

similar to the tolerance induced in pRRL-ct with subsequent LPS stimulation (Fig. 

30). These data demonstrate the ability of miR-125a-5p and miR-146b to induce 

LPS tolerance in our in vitro model. 
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Figure 29: IL-10 and TGFβ induce a state of LPS hyporesponsiveness in monocytes but 

IFNγ pre-treatment impairs it. Human monocytes were pre-treated or not with 10 ng/ml IFNγ 

over-night and primed or not with 20 ng/ml IL-10 (A) or 50 ng/ml TGFβ (B) for 2 h and challenged 

with 10 ng/ml LPS for 48 h. Levels of TNFα were measured by ELISA in cell free supernatants. 

Results are expressed as mean  SEM of at least three donors. * p< 0.05. 
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Figure 30: Up-regulation of miR-125a-5p and miR-146b mimic LPS priming to induce 

endotoxin tolerance. TNFα levels were measured by ELISA in cell free supernatants of pRRL-ct 

and pRRL-125a (A)or pRRL-146b (B) THP1 cells stimulated with 1000 ng/ml LPS for 24 h. To 

induce tolerance, pRRL-ct THP1 cells were stimulated over-night with 100 ng/ml, washed twice 

with PBS, and challenged with 1000 ng/ml LPS for 24 h. Results are expressed as mean  SEM of 

three independent experiments. * p< 0.05. 
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3.5.4 Inhibition of miR-125a-5p and miR-146b expression reduce LPS-, 

IL-10-, TGFβ- tolerance. 

 

To corroborate the role of mR-125a-5p and miR-146b on tolerance, miRT-ct, 

miRT-125a-5p and miRT-146b THP-1cells were subjected to LPS-, IL-10-, and 

TGFβ- tolerance. Blocking miR-125a-5p or miR-146b expression resulted in a 

increased TNFα expression upon LPS stimulation respect to ct cells; the induction 

of a tolerized state by pre-treating cells with IL10, LPS or TGFb, as also described 

in the literature, causes a decrease of TNFα expression that was partially or fully 

restored when the miRT-125a-5p or miRT-146b THP1 cells were used in tolerizing 

conditions (Fig. 31A and B). These implies that miRNA inhibition is important but 

not sufficient to completely revert the tolerant phenotype in THP1 cells and that 

the different priming stimulus induced a different degree of tolerization.  

Taken together, our results strongly suggest that miR-125a-5p and miR-146b 

represents a molecular effector of LPS, IL-10 and TGFβ pathways to negatively 

regulate the LPS inflammatory signal.  
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Figure 31: Inhibition of miR-125a-5p and miR-146b expression reduce LPS-, IL-10-, TGFβ- 

tolerance. TNFα levels were measured by ELISA in cell free supernatants of miRT-ct and miRT-

125a (A) or miRT-146b (B) THP1 cells stimulated with 1000 ng/ml LPS for 48 h. To induce 

tolerance, miRT-THP1 cells were stimulated with100 ng/ml LPS, 20 ng/ml IL-10 or 50 ng/ml TGFβ 

for 2 h and challenged with 1000 ng/ml LPS for 48 h. Results are expressed as mean  SEM of 

independent experiments. * p< 0.05. 
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3.6 Role of miRNA cluster and miR-146b in resolution of 

inflammation 

3.6.1 miRNA cluster and miR-146b expression in BMdM of WT and IL-

10 KO mice 

As shown in fig.7 miRNA cluster is well conserved between human and mice 

both at the level of its promoter region both in their pre- and mature sequences. 

This is also true for miR-146b. To assess our miRNAs induction in mice, we 

performed a kinetic experiments on bone marrow derived macrophages (BMdM) 

from WT and IL-10 KO mice, stimulated with LPS or LPS plus IL-10 for 2, 4, 8, 24 

hours. Mir-125a-5p, miR-99b-5p, let-7e-5p and miR-146b were induced in 

response to LPS in WT BMdM with a delay kinetic as in human monocytes. In IL-10 

KO BMdM, LPS could not induce miRNA expression as in WT BMdM (Fig. 32A, C, E 

and G). Addition of exogenous IL-10 up-regulated and accelerated miRNAs 

induction over non stimulated-control in comparison of stimulation with LPS alone 

in WT and IL-10 KO macrophages (Fig. 32B, D, F and H). Furthermore, IL-10 

rescued the gap of miR-125a-5p and miR-146b expression between WT and IL-10 

KO BMdM (Fig. 32B and H).  The fold changes after LPS stimulation were not as in 

human experiments because for human we used monocytes instead for mouse we 

used bone marrow differentiated- macrophages. We also measured miR-146a as a 

positive control for LPS responsiveness and we observed significant induction to 

LPS but no difference between WT and IL-10 KO BMdM (Fig. 32I). Even the 

presence of exogenous IL-10 did not change miR-146a expression in both WT and 

IL-10 KO BMdM (Fig. 32L).  
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Figure 32: miRNA cluster and miR-146b induction in WT and IL-10 KO BMdM. Primary 

BMdM of WT (black symbol) or IL-10 KO (white symbol) mice were stimulated with 100 ng/ml LPS 

(A, C, E, G) or 100 ng/ml plus 20 ng/ml IL-10(B, D, F, H) for 2, 4, 8 and 24 hours or left unstimulated 

prior to cell lysis. MiRNAs levels were measured by qPCR. Results were expressed as fold change 

over unstimulated control (mean ± SEM; n = 3; * p< 0.05 ).  

 

 

3.6.2 miRNA cluster and miR-146b expression in peritoneal 

macrophages after LPS- induced peritonitis  

To further investigate the induction of miRNA cluster and miR-146b in an in 

vivo setting, an intra-peritoneal (i.p) injection of LPS or PBS was administered in 

WT mice and miRNAs expression levels measured in peritoneal macrophages at 

different time points. In agreement with fig. 32, fig. 33 reveals induction of 

expression of miR-125a-5p, let-7e-5p, miR-99b-5p and miR-146b in response of 

LPS in vivo, with the peak at later time points. For miR-155 we observed the major 

increment at earlier time point because it is known to be potently induced in 

response of TLR4 activation [75] (Fig. 33F). Mir-146a increment also indicates LPS 

responsiveness of the peritoneal macrophages (Fig. 33E). Analysis of the cell 

populations at different time points after LPS injections, revealed a decreasing 

macrophages percentage on all the leukocytes immediately after the infection, and 

an increased neutrophil cell compositions (Fig. 34). The peak of miRNA induction 

in macrophages at 48 hours correspond to decreasing neutrophils. Together these 

data suggest a role for miR-125a-5p, let-7e-5p, miR-99b-5p and miR-146b in 

macrophages to shutdown the inflammatory process.  
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Figure 33: miRNA cluster and miR-146b induction in WT peritoneal macrophages. 

C57BL/6 mice were administered an intra-peritoneal injection of LPS (2.5 mg/kg) or PBS. Exudates 

were collected at 0, 6, 24 and 48 hours and macrophages were isolated with MACS cell separations. 

MiRNAs levels were measured by qPCR and results were expressed as fold change over non treated 

mice. The data were the mean of 2 independent experiments with 4 mice per condition ± SEM. 

  



 

120 
 

 

 

Figure 34: analysis of peritoneal cell populations after LPS injections. C57BL/6 mice were 

administered an intra-peritoneal injection of LPS (2.5 mg/kg) or PBS. Exudates were collected at 0, 

6, 24 and 48 hours and analyzed by flow cytometry. (A) Macrophages were characterized as 

F4/80+ and CD11b+; (B) neutrophils as LY6G+, CD11b+ among CD45+ cells. Results are the mean 

of 4-8 mice per condition ± SEM.  
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3.6.3  miRNA cluster and miR-146b expression in peritoneal 

macrophages after zymosan-induced peritonitis 

Since miRNA cluster and miR-146b have emerged as fine tuners of 

inflammatory signaling induced especially by anti-inflammatory IL-10, it was of 

interest to investigate whether they played roles in resolution. To identify a miRNA 

kinetic of expression during resolution in an acute inflammatory response, we 

used the zymosan-induced peritonitis model that has been widely used as a self-

resolving model of acute inflammation. Since KO mice of our miRNAs of interest 

were not available, we applied the resolving model on WT and IL-10 KO mice that 

express less miR-125a-5p, miR-99b-5p, let-7e-5p and miR-146b. Zymosan A 

particles from S. cerevisiae, a Toll-like receptor 2 and 4 ligand, were injected i.p. in 

WT and IL-10 KO mice and peritoneal exudates were collected to monitor 

temporal changes in leukocyte composition and macrophage miRNAs expression. 

After zymosan injection, leukocytes infiltrated the peritoneal cavity during the 

onset phase of acute inflammation reaching a maximum at ∼12 hours (data not 

shown) and declined at later hours [101]. In IL-10 KO mice we observed an 

increased number of peritoneal cells at 72 hours comparing to WT (Fig. 35A). Flow 

cytometry analysis confirmed that the majority of leukocytes in WT and IL-10 KO 

exudates were PMN (Ly-6G high/CD11b+). In WT mice, PMN declined during the 

resolution phase from 24 to 72 hours after initiation of peritonitis. Instead in IL-10 

KO mice, there were a delay in PMN reduction that starts at 48 hours compared to 

WT. At 72 hours after  zymosan injection we observed more PMN in IL-10 KO 

exudates than in WT (Fig. 35B). Resident peritoneal macrophages (F4/80+/ 

CD11b+ cells), which represent the main leukocyte population in naive mice 

peritonea [173], were slightly detected in exudates at 6 hours, with no significantly 

difference in WT and IL-10 exudates (Fig. 35C). Conversely to PMN, macrophages 

gradually increased during the resolution phase in WT mice, but not in IL-10 KO 

mice, where they were significantly less abundant at 24 and 72 hours (Fig. 35C). 

Altogether these data demonstrate that the absence of IL-10 results in increased 

neutrophil infiltrations and reduced recruitment of resolving macrophages, thus 
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furtherly confirming that IL-10 is an important anti-inflammatory mediator having 

a role in the resolution of inflammation. 

To identify if miR-125a-5p, miR-99b-5p, let-7e-5p and miR-146b were 

temporally regulated during acute inflammation and the self-limited resolution, we 

monitored miRNA expression in exudates of WT and IL-10 KO mice. At 6 hours, 

most likely representing the PMN content of these exudates, miR-125a-5p, miR-

99b-5p, let-7e-5p and miR-146a did not increase (Fig. 36A, B, C and E). Instead, 

miR-146b and miR-155 were up-regulated at 6 hours respect to basal and for miR-

146b the absence of IL-10 did not increase its expression, suggesting an IL-10 

dependent expression even in PMN (Fig. 36D and F). Afterward, miR-125a-5p, 

miR-99b-5p and let-7e-5p increased gradually at later intervals (24-72 hours) in 

the resolution phase. In IL-10 KO exudates, we obtained a reduced miR-125a-5p, 

miR-99b-5p and let-7e-5p expression, confirming an IL-10 dependency (Fig. 36A, B 

and C). The absence of IL-10 had no impact on miR-146a expression, instead 

augmented miR-155 induction, consistent with the known IL-10 inhibition on its 

expression [80] (Fig. 36E and F).  

To further address the miRNA induction in specific cells during resolution, we 

quantified miRNA expression in sorted macrophages from basal, 48 and 72 hours 

after zymosan injection. In WT resolving macrophages, we obtained an higher 

induction of all miRNAs analyzed compared to the resident macrophages (Fig. 37). 

The lack of IL-10 significantly influenced the expression of miR-125a-5p at both 48 

and 72 hours (Fig. 37A) and the expression of miR-99b-5p only at 72 hours (Fig. 

37B). For let-7e-5p there was a difference in the expression between WT and IL-10 

KO cells even if it is not statistically significant (Fig. 37C). miR-146b and miR-146a 

showed an equal increased in resolving macrophages of WT and IL-10 KO mice 

(Fig. 37D and E). Consistent with previous data, miR-155 was highly expressed in 

IL-10 KO mice (Fig. 37F). Together, these data indicate that miR-125a-5p, miR-

99b-5p, let-7e-5p and miR-146b are temporally and differentially regulated during 

self-limited resolution and IL-10 has an important role on their induction.   
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Figure 35: increased neutrophil infiltrations and reduced recruitment of resolving 

macrophages in IL-10 KO mice. WT and IL-10 KO mice were administered an intra-peritoneal 

injection of Zymosan-A (1 mg/mouse) or PBS. Exudates were collected at 0, 6, 24, 48 and 72 hours, 

counted (A) and analyzed by flow cytometry. (B) Neutrophils were gated as LY6G+/CD11b+ (C) 

Macrophages were gated as F4/80+/CD11b+. Results are the mean of 3-4 mice per condition ± 

SEM. * p< 0.05.  
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Figure 36: miRNA cluster and miR-146b are temporally regulated in peritoneal 

inflammatory exudates. WT and IL-10 KO mice were administered an intra-peritoneal injection of 

Zymosan-A (1 mg/mouse) or PBS. Exudates were collected at 0, 6, 24 and 72 hours. MiRNAs levels 

were measured by qPCR and results were expressed as 2-ΔCt. Results are the mean of 3-4 mice per 

condition ± SEM. * p< 0.05 IL-10 KO vs WT group; # p< 0.05 vs basal WT; § p< 0.05 vs basal IL-10 

KO. 
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Figure 37: miRNA cluster and miR-146b expression in resolving macrophages. WT and IL-

10 KO mice were administered an intra-peritoneal injection of Zymosan-A (1 mg/mouse) or PBS. 

Exudates were collected at 0, 48 and 72 hours. MiRNAs levels were measured by qPCR and results 

were expressed as 2-ΔCt. Results are the mean of 3-4 mice per condition ± SEM. * p< 0.05 IL-10 KO vs 

WT group; # p< 0.05 vs basal WT; § p< 0.05 vs basal IL-10 KO. 
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4. DISCUSSION 

 

Inflammation is a protective physiological process that must be tightly 

regulated to prevent development of diseases such as autoimmunity. Several 

regulatory mechanisms have evolved to control the magnitude and duration of 

inflammation. Among such negative regulators, IL-10 and TGFβ are important 

inhibitors of TLR signaling pathway and act primarily by inhibiting the production 

of pro-inflammatory cytokines at both transcriptional [153] and post-

transcriptional levels [124]. MiRNAs are now emerging as additional negative 

feedback mechanism operating in innate immune system. By investigating the 

potential role of miRNAs in the post-transcriptional mechanisms dampening 

innate immune cell activation, we identified the evolutionary conserved miR-

125a~99b~let-7e cluster and the miR-146b as late-induced genes after LPS 

stimulation in human monocytes and murine macrophages.  

Our study demonstrate that the LPS-late induction of miRNAs expression is due 

to the action of the anti-inflammatory cytokines IL-10 and TGFβ.  

Through bioinformatics tools, we characterized the core promoter region of the 

miRNA cluster  and we experimentally confirmed a direct transcriptional role for 

IL-10, TGFβ and LPS stimulation on miRNA cluster expression.  

MiR-146b belongs to the miR-146 family, composed also by miR-146a and the 

two isoforms differ only by 2 nt at the 3’ end in their mature sequence. Despite 

their sequence similarity, we provide evidence that they are differentially 

regulated at a transcriptional level. By performing chromatin immunoprecipitation 

we showed that miR-146b induction depends on the activity of IL-10, whereas IL-

10 does not influence miR-146a expression.  

These findings uncover new direct targets of IL-10 and TGFβ and suggest that 

miRNA cluster and miR-146b could mediate  their anti-inflammatory mechanism 

of action. 

To date, the biological role of this miRNAs in the context of the innate immune 

response is still poorly understood. Let-7e-5p and miR-125a-5p have been 
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associated with the development of the immune system [82] and miR-125a-5p has 

been proposed to suppress classical activation and promote the anti-inflammatory 

alternative activation of macrophages [174]. Instead, miR-146b functional role is 

mostly associated with tumor biology and it has been found  less expressed in 

many human solid tumors compared with normal tissues[97, 98]. To investigate 

the functional role of miRNA cluster and miR-146b in the regulation of the 

inflammatory response in macrophages we adopted a computational method 

based on IPA analysis to identify potential targets. As clustered miRNAs are usually 

co-regulated, it is conceivable that members within the same cluster could function 

in a cooperative manner, acting coordinately to control a biological process. The in 

silico analysis revealed that predicted targets of miR-125a-5p and let-7e-5p were 

significantly enriched in the Inflammatory response (97/124 and 52/124 genes, 

respectively) and more specifically in the TLR signaling pathway (27/43 and 22/43 

genes, respectively), with multiple key genes being predicted as targets for both 

miRNAs. Even for miR-146b, the target analysis showed a significant enrichment in 

“TLR signaling”, “NF-kB signaling”, and “IL-1β signaling” pathways. Bioinformatic 

predictions were experimentally confirmed by luciferase and RIP assays, as well as 

by the quantification of protein levels in monocytes over-expressing or inhibiting 

the specific miRNA. Notably, miR-99b-5p, which has an overall significantly 

reduced number of predicted targets when compared to miR-125a-5p and let-7e-

5p (1364, 7089, and 5595 target genes, respectively), was not actively involved in 

the modulation of these pathways, suggesting that its expression could represent 

the consequence of evolutionary constrains imposed by the other cluster 

members.  

Among the predicted targets of miR-125a-5p, let-7e-5p and miR-146b, 

belonging to the TLR pathway we have validated the receptor TLR4, the co-

receptor CD14, the adaptors IRAK-1, MyD88 and TRAF6, and the pro-inflammatory 

cytokines TNFα, IL-6, CCL7, CCL3 and CXCL8. Most but not all the transcripts of 

these direct targets are reduced because either mRNA destabilization or 

transduction inhibition could be involved in their inhibitory effects. These findings 

indicate that miR-125a-5p, let-7e-5p and miR-146b cooperatively regulate key 

genes at different steps of TLR signaling pathway, through the subtle individual 
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regulation of multiple genes rather than operating a strong repression of isolated 

targets [175, 176].  

 

We demonstrate that the expression modulation of the individual miRNA 

influences the monocytes inflammatory response triggered by LPS stimulations. In 

particular, enforced expression of miR-125a-5p, let-7e-5p and miR-146b resulted 

in a significant reduction in LPS-dependent production of several inflammatory 

cytokines. Conversely, inhibition of 125a-5p or let-7e-5p or miR-146b significantly 

increase these pro-inflammatory cytokines release.  

Due to the aberrant inflammatory response associated with abnormal 

expression of miR-125a-5p, let-7e-5p and miR-146b, it is of outmost importance 

that these miRNAs are carefully regulated.  

It has been shown that the anti-inflammatory IL-10 and TGFβ are involved in 

the process of LPS desensitization in monocytes and they can directly induce a 

state of LPS hyporesponsiveness [171]. This hyporesponsiveness state is 

characterized by a significant reduction in the inflammatory capacity of 

monocytes/macrophages to a subsequent endotoxin challenge. Trancriptome 

analysis on murine and human macrophages have shown that the tolerization 

process not only down-regulate a large number of pro-inflammatory genes, but 

also up-regulate some anti-inflamamtory genes [167].  In keeping with these 

previously studies, we demonstrate the up-regulation of miR-125a-5p, miR-99b-5p 

and miR-146b in tolerized human monocytes induced by LPS, IL-10 or TGFβ 

priming. More interestingly, we demonstrate that miR-125a-5p and miR-146b 

over-expression or inhibition impact on the outcome of the tolerant state.  

Another important molecule in the endotoxin tolerance is IFNγ, which has the 

ability to amplify the pro-inflammatory response in macrophages but it is down-

regulated in experimental models of tolerance [170]. Specifically, in LPS-tolerant 

mice model the suppression of IFNγ production is due to the dysfunction of 

tolerant macrophages which have impaired ability to induce IFNγ by T and NK 

cells. IL-10 is an inhibitor of IFNγ production and its expression is sustained after 
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the induction of LPS tolerance[170]. It has been shown that IFNγ can revert LPS 

tolerance in human [168] and mice [169] but its mechanism of action is not well 

understood. We demonstrate that IFNγ can inhibit miRNA cluster and miR-146b 

expression in human monocytes stimulated with LPS. Moreover, we show that 

IFNγ blocks miRNAs expression even during LPS tolerance induction.  

Altogether these evidences suggest that during the initial phase of inflammation, 

LPS stimulation of monocytes leads to the production of pro-inflammatory 

cytokines which act on T/NK cells to induce IFNγ production. IFNγ amplifies the 

monocytes immune response even by blocking the anti-inflammatory miRNA 

cluster and miR-146b expression. At late phase of inflammation the production of 

TGFβ and IL-10, which inhibits IFNγ, induce the up-regulation of the miRNAs that 

act as a negative feedback loop inhibiting the TLR pathways and thus promoting 

tolerance.   

Another model in which we provide evidence of a role of miRNA cluster and 

miR-146b as anti-inflammatory molecules, is the in vivo self-limited resolution of 

inflammation. The acute inflammatory response is a protective process unless it is 

uncontrolled because it is now recognized that persistent inflammation plays a 

central role in many diseases, as arthritis, asthma, cancers, and cardiovascular 

diseases [102]. In self-limited inflammation, neutrophils immediately infiltrate the 

inflamed tissue sites and, usually, the starting point of resolution is defined as the 

time when neutrophils number decreased. Contemporary, activated tissue-

resident macrophages go to the lymph nodes and are substitute by monocytes-

derived macrophages that can acquire different phenotypes, from pro-

inflammatory to alternatively activated, depending on the microenvironment. In 

time course experiments, miRNA cluster and miR-146b expression kinetics were 

measured in different murine in vivo models of acute inflammation (LPS- and 

zymosan- induced peritonitis). Interestingly,  we found a gradually increased 

expression of the anti-inflammatory miRNA cluster and miR-146b in macrophages. 

This suggests a miRNA role in the dampening of inflammation, that is an important 

step through which immune cells switch to an anti-inflammatory phenotype.  
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Published studies have analyzed the macrophage phenotype isolated from a 

resolving peritonitis elicited by zymosan [177]. They described this resolving 

macrophages with typically M2 markers, as they express mannose receptor, IL-10, 

TGFβ, and arginase 1 but also express markers typical of M1 macrophages (e.g. 

COX 2 and iNOS). Transcriptomic analysis of resolving macrophages revealed that, 

comparing to pro-inflammatory macrophages, they up-regulate genes necessary 

for antigen uptake, cell proliferation and chemoattraction and priming of T/B cells 

and to a lesser extent, immune function [178]. These phenotypic characteristics 

are consistent with a role of miRNA cluster and miR-146b that we observed up-

regulated in sorted macrophages of resolving peritonitis (48-72h after zymosan 

injection).  

Moreover, we confirmed the key role of IL-10 for the resolution of inflammation. 

In particular we showed a delay in the neutrophil clearance and in the 

macrophages recruitment at the site of infection in IL-10 KO mice injected with 

zymosan respect to WT mice. In addition, IL-10 KO resolving macrophages showed 

an impaired induction of miR-125a-5p, miR-99b-5p and let-7e-5p that results in a 

augmented production of inflammatory cytokines (data not shown).   

It is likely that the anti-inflammatory IL-10 and TGFβ that are produced during 

the acute inflammation, can induce the production of miRNA cluster and miR-

146b, that act to dampening the inflammatory characteristic of macrophages to 

acquire a resolving phenotype.   

 

Overall, in this project we have identify miR-125a-5p, let-7e-5p and miR-146b 

as a new set of anti-inflammatory miRNAs. They are actively involved in the 

feedback regulatory mechanism of TLR4-inflammatory pathway by a multiple 

targeting mechanism, directed to the receptors, the adaptor proteins and the 

downstream effectors. The demonstration that miR-125a-5p and miR-146b 

mediate the LPS desensitization supports the hypothesis that miRNA action 

represents an important homeostatic layer of regulation, buffering the duration 

and intensity of inflammatory responses. For clinical relevance, this state of LPS 
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hyporesponsiveness is observed in sepsis, trauma and high-risk surgery patients, 

in which an excessive pro-inflammatory reaction is often followed by a 

compensatory anti-inflammatory response syndrome, called immunoparalysis. If 

this immunoparalysis is long-lasting, it may therefore lead to a fatal outcome in 

critically ill patients due to opportunistic infections [179]. It will be interesting to  

speculate that modulating the level of miR-125a-5p and miR-146b can be used in 

therapeutic intervention for inflammation diseases. 
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Toll-like receptors (TLRs) play key roles in detecting pathogens and
initiating inflammatory responses that, subsequently, prime specific
adaptive responses. Several mechanisms control TLR activity to avoid
excessive inflammation and consequent immunopathology, including
the anti-inflammatory cytokine IL-10. Recently, several TLR-respon-
sive microRNAs (miRs) have also been proposed as potential regu-
lators of this signaling pathway, but their functional role during the
inflammatory response still is incompletely understood. In this study,
we report that, after LPS engagement, monocytes up-regulate miR-
146b via an IL-10–mediated STAT3-dependent loop. We show evi-
dence that miR-146bmodulates the TLR4 signaling pathway by direct
targeting of multiple elements, including the LPS receptor TLR4 and
the key adaptor/signaling proteins myeloid differentiation primary re-
sponse (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK-1),
and TNF receptor-associated factor 6 (TRAF6). Furthermore, we
demonstrate that the enforced expression of miR-146b in human
monocytes led to a significant reduction in the LPS-dependent pro-
duction of several proinflammatory cytokines and chemokines, in-
cluding IL-6, TNF-α, IL-8, CCL3, CCL2, CCL7, and CXCL10. Our results
thus identify miR-146b as an IL-10–responsive miR with an anti-in-
flammatory activity based on multiple targeting of components of
the TLR4 pathway in monocytes and candidate miR-146b as a mo-
lecular effector of the IL-10 anti-inflammatory activity.

Toll-like receptors (TLRs) have important roles in detecting
pathogens and initiating inflammatory responses that, sub-

sequently, prime specific adaptive immune responses during in-
fection (1). It is therefore important that TLR signaling pathways
are tightly regulated. One of the most effective suppressor of TLR-
induced inflammatory cytokine production is IL-10, which displays
powerful inhibitory actions on innate immune cells (2,3), not only
by direct inhibition of cytokine transcription (4,5) but also by
destabilizing their coding RNA (6) and blocking their translation
(7). MicroRNAs (miRs) are small (22–24 nt) noncoding RNA se-
quences acting primarily as translational repressors of gene tran-
scripts by interacting with their 3′ UTRs (8,9). In the field of
inflammation, miRs are attracting increasingly interest for their
ability to regulate strength and timing of TLR responses (10). Al-
though their role in the resolution of inflammation is just beginning
to be explored, their emerging importance in the modulation of
TLR signaling strongly suggests a possible regulation of their ex-
pression by anti-inflammatory stimuli. In this respect, IL-10 has
been recently shown to inhibit miR-155 induction by TLRs (11),
thus increasing the expression of the miR-155 target gene SH2
domain-containing inositol-5′-phosphatase 1 (SHIP1) and pro-
moting expression of anti-inflammatory genes (12). Moreover,
a direct role of miR-187 in IL-10–mediated suppression of proin-
flammatory cytokines has been recently demonstrated (13), and
miR-21 has been reported to promote an anti-inflammatory re-
sponse by increasing IL-10 production through the down-regula-
tion of programmed cell death 4 (PDCD4) (14). We here report
that LPS induces expression of miR-146b via an IL-10–dependent
loop, and demonstrate that miR-146b play an anti-inflammatory
role in monocytes by direct targeting multiple elements involved in
the TLR4 signaling pathway, thus making this miR a candidate
feedback modulator of the LPS response potentially involved in
inflammation resolution.

Results
MiR-146b Expression Is Induced by IL-10 in Human Monocytes. TLRs
have been shown to regulate a distinct panel of miR in monocytes,
including miR-155 andmiR-146a (15-17).We have here identified
miR-146b, a second member of the miR-146 family located within
an intergenic region on chromosome 10, as an LPS-responsive
miR induced at a later time point compared with miR-146a and
miR-155 (Fig. 1A). MiR-146b induction by LPS was also mirrored
by its enrichment in the RNA-induced silencing complex (RISC),
suggesting its functional role in human primary monocytes (Fig.
S1A). Analysis of miR-146b expression in monocytes stimulated
with IL-1β and different TLR agonists, including the TLR2 agonist
palmitoyl-3-cysteine-serine-lysine 4 (Pam3CsK4), the TLR3 ago-
nist poly(I:C), the TLR7 agonist imiquimod, and the TLR9 agonist
synthetic CpG oligonucleotides (ODN), showed that miR-146b
induction is restricted to the signaling pathway activated by IL-1β
and TLR2/TLR4 (Fig. S2A). As the ability of different stimuli to
induce miR-146b directly correlates with their ability to induce
IL-10 production (Fig. S2B), we asked whether IL-10 could be
involved in the induction of miR-146b by LPS. As shown in Fig.
1B, IL-10 stimulation induced miR-146b but was unable to induce
expression of miR-146a and miR-155, and suppressed the LPS-
dependent induction of miR-155, as previously reported (11).
Consistent with these results, the inhibition of the LPS-induced
endogenous IL-10 by using an anti–IL-10 receptor blocking
monoclonal antibody or the JAK/STAT inhibitor AG-490 (18)
resulted in a significant reduction of miR-146b induction by LPS,
whereas miR-146a expression was not affected andmiR-155 levels
were further increased (Fig. 2 A–C). Finally, the LPS-dependent
induction of miR-146b observed in murine bone marrow-derived
macrophages was severely reduced when macrophages were
obtained from IL-10−/− animals, indicating that, also in the murine
system, miR-146b is induced by LPS via an IL-10–dependent
feedback loop. Conversely, miR-146a induction by LPS was not
significantly different in WT and IL-10−/− macrophages, further
demonstrating the IL-10 dependency of miR-146b and not miR-
146a (Fig. 1C).
The human mature miR-146b is generated by processing of the

premiR-146b molecule transcribed from an intergenic region on
chromosome 10, with the predicted transcription start site located
700 bp upstream of the mature miR-146b sequence (15). To gain
additional insight into the role of IL-10 in the transcriptional
regulation of miR-146b in monocytes, the recruitment of poly-
merase II (Pol II) to the miR-146b promoter region in the pres-
ence of LPS or IL-10 was investigated. As expected, ChIP analysis
indicated that, in LPS-stimulated monocytes, Pol II was recruited
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to the miR-146b promoter, as well as to the miR-146a and miR-
155 promoters (Fig. 2 D–F). Conversely, in monocytes stimulated
with IL-10, Pol II recruitment was observed only on the promoter
region of miR-146b and not miR-146a or miR-155, consistent with
the selective IL-10–mediated up-regulation of miR-146b expres-
sion (Fig. 2 D–F). To identify putative cis-regulatory elements
critical for IL-10–dependent gene transcription, a comparative
bioinformatic analysis covering 1,000 bp upstream of the premiR-
146b coding region was performed. Conserved putative binding
sites for STAT3, the main transcription factor mediating the
IL-10 anti-inflammatory action in monocytes (19), were predicted
on both miR-146a and miR-146b promoter regions (Fig. 2G);
however, ChIP analysis on monocytes stimulated with IL-10
showed an IL-10–dependent significant recruitment of STAT3
protein on the region encompassing the two predicted STAT3
binding sites exclusively in the miR-146b promoter region,
whereas no STAT3 recruitment was found on the miR-146a
promoter region (Fig. 2H). In the miR-146b promoter region,
two putative NF-κB binding sites were also predicted. Inter-
estingly, the NF-κB chemical inhibitors caffeic acid phenetyl ester
(CAPE) and pyrrolidine dithiocarbamate (PDTC) significantly
inhibited miR-146a expression levels, consistent with previous

reports of NF-κB driving the expression of miR-146a in LPS-
stimulatedmonocytes (15), but had no role onmiR-146b induction
by LPS in monocytes (Fig. 2I). These data indicate that miR-146a
and miR-146b undergo a profound different regulation in mon-
ocytes exposed to pro- and anti-inflammatory stimuli and identify
miR-146b, but not miR-146a, as an IL-10–dependent miR, sug-
gesting that miR-146b may play a role in mediating the anti-
inflammatory activity of IL-10.

The TLR/IL-1 Receptor Signaling Pathway as a miR-146b Target. To
gain insight into the functional role of miR-146b in the context of
LPS-mediated inflammation, we chose an in silico approach to
identify potential miR-146b targets. As algorithms based on seed
pairing and evolutionary conservation typically have low specificity
predictive value, we combined miRanda (20) predictions with
pathways analysis based on the Ingenuity Pathway Analysis data-
base (www.ingenuity.com), mapping biomolecular networks based
on known pathways, GeneOntology, and interactions. Interestingly,
miR-146b targets showed significant enrichment in “TLR sig-
naling,” “NF-κB signaling,” and “IL-1β signaling” pathways (Fig.
3), leading us to investigate the hypothesis that miR-146b may
contribute to the IL-10-dependent feedback inhibitory loop fine

Fig. 1. IL-10 induces miR-146b expression. Ex-
pression levels of miR-146a (white symbols), miR-
146b (black symbols), and miR-155 (gray symbols)
were measured by qPCR in triplicate samples of
human monocytes cultured for the indicated times
with 100 ng/mL LPS (A) or with 20 ng/mL IL-10 (B).
Results are expressed as fold change vs. untreated
cells (mean ± SEM; n = 3). (C ) Bone marrow-de-
rived macrophages from WT (solid line) or IL-10−/−

mice (dashed line) were stimulated or not stimu-
lated for the indicated time with 100 ng/mL LPS,
and expression of miR-146b (closed symbols) and
miR-146a (open symbols) was quantified by qPCR in triplicate samples. Results expressed as fold change vs. untreated cells (mean ± SEM; n = 3).

Fig. 2. MiR-146b induction after LPS challenge is
driven by IL-10. (A–C) Human monocytes were pre-
treated or not pretreated for 30 min with 5 μM of
the JAK/STAT inhibitor AG-490 and then stimulated
for 12 h with 100 ng/mL LPS. Alternatively, mono-
cytes stimulated for 12 h with 100 ng/mL LPS were
cultured in the presence of 10 μg/mL anti-IL-10 re-
ceptor (-αIL-10R) or isotype control mAb. MiR levels
were measured by qPCR in triplicate samples and
results expressed as fold change vs. control (mean ±
SEM; n = 3). ChIP assays were carried out by using
anti-Pol II Ab and analyzed by qPCR with specific
primers binding to the miR-146b, miR-146a, and
miR-155 promoters (D, E, and F, respectively). Data
from qPCR have been normalized to input DNA and
displayed as fold change vs. untreated cells (mean ±
SEM; n = 3). (G) Graphical representation of pre-
dicted promoter regions reporting binding sites of
transcription factors of potential interest. (H) Mon-
ocytes were stimulated or not stimulated for 4 h
with 20 ng/mL IL-10. ChIP assays were carried out by
using anti-STAT3 Ab and analyzed by qPCR with
specific primers binding to miR-146a (white col-
umns) and miR-146b (black columns) promoters. (I)
Cells were pretreated for 1 h with the NF-κB inhib-
itors PDTC (1 μM) or CAPE (2 μM) and then stimu-
lated for 12 h with 100 ng/mL LPS. MiR-146a (white
columns) and miR-146b (black columns) expression
levels were measured by qPCR in triplicate samples
and results expressed as fold change vs. control
(mean ± SEM; n = 3).
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tuning the inflammatory response induced in monocytes by TLR/
IL-1 receptor (IL-1R) activation. In particular, miR-146b was
predicted to directly target both receptors and key signal trans-
ducers of the TLR/IL-1 signaling pathway but not effector mol-
ecules, with the remarkable exception of IL-6 (Fig. S3).

TLR4 Is a Direct Target of miR-146b. To validate predictions, the
direct targeting of TLR2 and TLR4 by miR-146b was inves-
tigated. In 293T cells, miR-146b significantly decreased luciferase
activity of a reporter gene containing the TLR4 3′UTR, and the
deletion of 5 nt in the 3′UTR seed match sequence abolished the
inhibitory effect of miR-146b on luciferase levels, indicating that
the observed down-regulation was dependent on the predicted
miR-146b target site (Fig. 4A). The significant enrichment of
TRL4 mRNA in the RISC complexes immunoprecipitated from
human monocytic THP-1 cells transduced with the lentiviral-
based expression vector pRRL-miR146b, compared with THP-1
cells transduced with the control lentiviral construct pRRL-ctrl,
provide direct evidence that miR-146b directly targets TLR4 (Fig.
4B). Consistent with this, pRRL-146b–transduced THP-1 cells
showed a significant decrease of TLR4 protein levels compared
with THP-1 cells transduced with pRRL-ctrl [mean fluorescence
intensity (MFI), pRRL-ctrl, 1,117 ± 120; pRRL-146b, 790 ± 98;
P < 0.05; Fig. 4C]. Protein reduction was not mirrored by a cor-
responding reduction at the transcript level (pRRL-ctrl, 0.040 ±
0.25; pRRL-146b, 0.044 ± 0.19, relative to GAPDH), indicating
that miR-146b acts by blocking translation of TLR4 mRNA. As
a complementary approach, we used lentiviral expression vectors
to obtain a permanent miR-146b inhibition (miRzip-146b), and
we found a significant decrease of TLR4 transcript in the RISC
complex of LPS-stimulated THP-1 cells (Fig. 4B), also mirrored
by a corresponding increase of TLR4 protein in miRzip-146b cells
compared with miRzip-ctrl THP-1 cells (MFI, miRzip-ctrl, 3,616 ±
98; miRzip-146b, 5,323 ± 111; P < 0.05; Fig. 4D). Conversely,

miR-146b overexpression did not induce any impairment of the
TLR2 transcript stability as assessed by luciferase assay (Fig. 4E),
did not enrich TLR2 transcript in the RISC complex (Fig. 4F),
and did not reduce TLR2 protein expression (MFI, pRRL-ctrl,
1,671 ± 59; pRRL-146b, 1,530 ± 61; P value not significant; Fig.
4G). In parallel experiments, THP-1 cells stimulated with LPS in
the presence of miRzip-146b did not show any increase of the
TLR2 transcript in the RISC complex (Fig. 4F), nor a decrease in
TLR2 protein expression compared with miRzip-ctrl THP-1 cells
(MFI, miRzip-ctrl, 1,001 ± 20; miRzip-146b, 1,186.5 ± 157; P
value not significant; Fig. 4H). Taken together, these results in-
dicate that, contrary to predictions, TLR2 is not a direct target
of miR-146b.

Multitargeting of TLR Signaling Pathway by miR-146b. As the TLR/
IL-1R signaling pathway scored as a major target of miR-146b,
signaling adaptors involved in this pathway were investigated.
Luciferase assays validated myeloid differentiation primary re-
sponse 88 (MyD88), interleukin-1 recpetor-associated kinase 1
(IRAK-1), and TNF receptor-associated factor 6 (TRAF6) as di-
rect targets of miR-146b, and, in all cases, abrogation of miR-146b
effects by mutagenesis of its seed match regions in target 3′UTR
demonstrated the specificity of its action (Fig. 5 A, E, and I, re-
spectively). Consistent with this, RISC immunoprecipitation (RIP)
analysis revealed a significant enrichment of MyD88, IRAK-1, and
TRAF6 transcripts in pRRL-146b–transduced THP-1 cells and
a corresponding reduction in THP-1 cells transduced with miRzip-
146b but not miRzip-ctrl (Fig. 5 B, F, andL, respectively). Western
blot analysis confirmed that enforced expression of miR-146b re-
duced MyD88, IRAK-1, and TRAF6 protein levels (Fig. 5 C, G,
andM, respectively), whereas miR-146b inhibition enhanced their
protein expression levels (Fig. 5 D, H, and N). Conversely, even
though IL-6 was also predicted as a direct target of miR-146b,
luciferase assay on the IL-6 3′UTR and RIP assay did not confirm
this prediction (Fig. 5 O and P, respectively). Quantitative real-
time PCR (qPCR) experiments revealed that miR-146b targeting
affected stability of MyD88 and TRAF6 but not IRAK-1 tran-
scripts, suggesting that, in this latter case, the miR-146b effect is
likely mediated by translation repression. Conversely, miR-146a
significantly destabilized IRAK-1 and TRAF6 but not MyD88
transcript (Fig. S4 A–C). The predicted energy interactions of
miR-146a and miR-146b on their corresponding seeds on these
targets did not correlate with their effect on the transcripts’ sta-
bility (Fig. S4 A–C), indicating the involvement of other still un-
known parameters. Taken together, these results demonstrate that
miR-146b targets multiple elements involved in the TLR signaling
system, as previously described for miR-146a (15), but also in-
dicate that the two miR-146 isoforms adopt different mechanisms
to regulate TLR adaptors, suggesting they may exert different
functions on the TLR signaling pathway.

Fig. 3. miR-146b targets the TLR signaling pathway. Canonical pathways
significantly enriched for miR-146b predicted target genes as identified by
the Ingenuity Pathways Analysis library.

Fig. 4. TLR4 is a direct target of miR-146b. (A and
E) Luciferase constructs with the entire 3′UTR of
TLR4 (luc-TLR4) or the corresponding construct mu-
tated in the miR-146b seed region (luc-mut-TLR4) or
TLR2 (luc-TLR2) were cotransfected in 293T cells with
miR-146b mimic or a negative control mimic (ctrl).
Results are expressed as the ratio between renilla
and firefly luciferase activities (mean percent varia-
tion ± SEM; n = 3). (B and F) Cell extracts from THP-1
cells transduced with pRRL-ctrl (CT; closed columns)
or pRRL-146b (146b; closed columns) or transduced
with miRzip-ctrl (CT; open columns) or miRzip-146b
(146b; closed columns) were subjected to RIP assay
by using anti-Ago2 or IgG control Abs, and levels of
TLR4 and TLR2 transcripts (B and F, respectively)
were assayed in triplicate by qPCR in RIP (IP AGO2) and leftover samples. Results are expressed as normalized fold enrichment (mean percent variation ± SEM;
n = 3). (C, D, G, and H) Protein levels were measured by flow cytometry on THP-1 cells transduced with pRRL-ctrl (gray histogram) or pRRL-146b (black
histogram) (C and G, TLR4 and TRL2, respectively) or with miRzip-ctrl (gray) or miRzip-146b (black; D and H, TLR4 and TRL2, respectively). The isotype control
staining is shown by the white histogram. One experiment representative of four performed with similar results is shown.
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MiR-146b Controls Induction of Proinflammatory Cytokines by TLR
Agonists. As we demonstrated a direct targeting of multiple ele-
ments involved in the TLR/IL-1R signaling pathway by miR-146b,
we investigated its biological impact on the TLR-dependent
production of proinflammatory cytokines. In THP-1 cells ex-
posed to LPS, we observed a significant reduction of proin-
flammatory cytokine and chemokines when miR-146b expression
was enhanced by cell transduction with pRRL-146b and a significant
enhancement when miR-146b expression was inhibited by cell
transduction with miRzip-146b (Fig. 6 A–H). Similar results were
obtained when the TLR2 agonist Pam3CsK4 was used (Fig. S5).
Finally, we measured the effect of miR-146b on the production of
the IFN-inducible CXCL10 induced by LPS, mainly a secondary

consequence of TRIF-dependent IFN-β production, or IFN-γ,
which operates through the activation of a MyD88/IRAK-1–
independent STAT1-dependent pathway (21). Consistent with
the notion that miR-146b specifically operates on the TLR/IL-1R
signaling pathway, the induction of CXCL10 production by LPS
was significantly impaired in pRRL-146b–transduced THP-1 cells
and enhanced in miRzip-146b–transduced THP1 cells (Fig. 6H),
whereas its induction by IFN-γ was unaffected (Fig. 6I). Taken
together, these data identify miR-146b as an anti-inflammatory
miR able to reduce the inflammatory signal transmitted through
the engagement of TLR4 by a multiple targeting mechanisms
directed to the receptor and its adaptor proteins.

Fig. 5. Multitargeting of the TLR4 signaling pathway by miR-146b. 3′UTR luciferase constructs were cotransfected in 293T cells with miR-146b mimic or
a negative control mimic (ctrl). MyD88 (A), IRAK-1 (E), TRAF6 (I), and IL-6 (M). Results are expressed as the ratio between renilla and firefly luciferase activities
(mean percent variation ± SEM; n = 3). Cell extracts from pRRL-ctrl–transduced (CT) or pRRL-146b–transduced (146b) THP-1 cells (white histograms); miRzip-
ctrl–transduced or miRzip-146b–transduced THP-1 cells (black histograms) were subjected to RIP assay by using anti-Ago2 or IgG control Abs. Levels of MyD88
(B), IRAK-1 (F), TRAF6 (J), and IL-6 (N) mRNAs were assayed in triplicate by qPCR in RIP (IP AGO2) and leftover samples and expressed as normalized fold
enrichment. (mean percent variation ± SEM; n = 3). Protein levels were analyzed by Western blot and normalized on tubulin, used as loading controls. MyD88
(C and D), IRAK-1 (G and H), and TRAF6 (K and L). One experiment representative of four is shown.
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Discussion
Negative regulation of the immune response plays an important
role in controlling homeostasis of the immune system and in
preventing development of autoimmune diseases. Multiple regu-
latory mechanisms, including a complex network of receptors,
transcription factors, adaptors, and effector molecules, have
evolved to keep activation of the immune system in check. Evi-
dence is now emerging indicating that miR might constitute an
additional negative feedback mechanism operating in the innate
immune system (22-24). MiR-146a has been the first miR associ-
ated to the inflammatory response, described as an miR rapidly
induced by proinflammatory stimuli in phagocytes (15), and ex-
perimental evidence has clearly defined its role of negative regu-
lator of inflammation (10, 25, 26) and its involvement in endotoxin
tolerance (27, 28). The miR-146 family also includes miR-146b,
which is encoded by a distinct gene on a separate chromosome and
only differs from miR-146a by 2 nt at the 3′ end in its mature se-
quence. Despite their sequence similarity, it is still unclear whether
these two miRs fulfill redundant or distinct functions. Unlike miR-
146a, little information is available on the biological role in the
context of the immune response of miR-146b, which has been
mostly associated with tumor biology, being expressed at lower
levels in many human solid tumors compared with normal tissues
(29–32).
Here we report that LPS stimulation induces miR-146b ex-

pression in human monocytes, with delayed kinetics with respect
to miR-146a. Most relevant, our study provides evidence for a link
between miR-146b and IL-10, demonstrating that miR-146b in-
duction depends on the activity of IL-10 produced after LPS
challenging, whereas, to the contrary, IL-10 does not influence
miR-146a expression. This is consistent with ChIP data showing
a central role of STAT3 in the induction of miR-146b but not miR-
146a, which instead depends upon NF-κB. Bioinformatic analysis
revealed a significant enrichment of miR-146b potential targets in

the TLR signaling, IL-1 signaling, and NF-kB signaling pathways,
which play an essential role in the innate immune response driving
transcriptional activation of genes encoding for proinflammatory
cytokines and costimulatory molecules, which subsequently con-
trol the activation of antigen-specific adaptive immune responses.
Luciferase and RIP assays validated the LPS receptor TLR4 and
the proximal adaptor molecules MyD88, IRAK-1, and TRAF6 as
true miR-146b targets. As these molecules sustain the TLR4 sig-
naling pathway and showed a relatively mild down-regulation at
the protein level, these findings are consistent with the present
understanding that miRs might conceivably exert their major ac-
tivities through the subtle individual regulation of multiple targets
involved in a common signaling pathway rather then operating a
strong repression of isolated targets (29, 30). In keeping with this
mechanism of regulation, enforced expression of miR-146b re-
sulted in the marked reduction of proinflammatory cytokines
highly expressed upon TLR triggering. These findings suggest that
miR-146b mediates some of the anti-inflammatory activities of
IL-10 repressing the inflammatory response inmonocytes by direct
targeting of transcripts encoding TLR4 and key adaptors/signaling
molecules.
Although our results leave open the question whether the two

miR-146 isoforms are functionally equivalent, their divergent and
asynchronous transcriptional regulation suggests they play differ-
ential roles during distinct temporal windows of the inflammatory
process. During the development of the inflammatory process
miR-146a and b may represent the components of a relay team in
which one isoform succeeds to other to control expression of pro-
inflammatory genes, first through the activity of the LPS-depend
induction of miR-146a, and subsequently during the resolution
phase maintaining transcripts repression through the IL-10 de-
pendent induction of miR-146b. In this respect it is worth noticing
that miR-146a–deficient mice are indeed overresponsive to bac-
terial challenge and produce excessive amount of proinflammatory
cytokines (31), but they show an autoimmune phenotype with late
onset and incomplete penetrance and lack a global change in the
expression of putative miR-146 targets (32). This phenotype is
suggestive of the existence of a compensatory mechanism oper-
ating in miR-146a–deficient animals. Finally, similar to miR-146b,
miR-146a has been shown to target IRAK-1 and TRAF6, although
in different cellular contexts (15, 29), but its ability to also directly
target MyD88 and TLR4 has not been investigated.
Further research is required to understand whether miR-146b

truly serves as a molecular switch involved in the resolution of
inflammation, but it is interesting to note that this miR has been
reported to be expressed during the resolution phase in a murine
model of acute inflammation (33). A broader and deeper un-
derstanding of how miR-146b acts in concert with the growing
number of negative regulators, particularly in the context of
complex inflammatory processes involving signaling by multiple
receptors, may well lead to novel therapeutic approaches for the
rapidly expanding number of diseases driven by dysregulated
inflammatory responses.

Materials and Methods
Materials. A detailed list of materials is provided in SI Materials and Methods.

Cell Purification and Culture. Human monocytes were obtained from healthy
donor buffy coats by two-step gradient centrifugation using Ficoll (Bio-
chrom) and Percoll (Amersham). Human studies were approved by the eth-
ical committee of Istituto Clinico Humanitas, Milan, Italy. Monocytes and
THP-1 cell line (American Type Culture Collection) were resuspended in RPMI
1640 (Lonza) supplemented with 10% (vol/vol) heat-inactivated FBS (Lonza),
100 U/mL penicillin/streptomycin (Lonza), and 25 mML-glutamine (Lonza).
The HEK-293T cell line (American Type Culture Collection) was grown in
Dulbecco’s modified Eagle medium (DMEM) (Cambrex) supplemented with
10% (vol/vol) FBS, 100 U/mL penicillin/streptomycin, and 25 mM L-glutamine.
Murine bone marrow-derived macrophages were obtained as described in SI
Materials and Methods.

ChIP Assay. ChIP experiments were performed as described elsewhere (34)
and in SI Materials and Methods.

Fig. 6. MiR-146b down-regulates TLR4-dependent production of proin-
flammatory cytokines. (A–H) Proinflammatory cytokine levels measured by
ELISA in cell-free supernatants of THP-1 cells transduced with lentiviral
vectors overexpressing miR-146b (pRRL-146b and its respective control) or
a miR-146b sponge (miRzip-146b and its respective control) after stimulation
with 1 μg/mL LPS. (I) CXCL10 levels measured by ELISA in cell-free super-
natants collected under the same experimental conditions after stimulation
with 10 ng/mL IFN-γ.
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ELISA. Antibodies and detection reagents for ELISAs were purchased from
R&D Systems and used according to the manufacturer’s instructions. Samples
were diluted so that the optical density fell within the optimal portion of
a log standard curve.

Quantification of miR and mRNA. Total RNA was purified by using TRIzol Re-
agent (Ambion), and qPCR was conducted by using a 7900HT Real-Time PCR
System. One hundred nanograms of total RNA were reverse-transcribed for
quantification of miR expression by using TaqMan MiRNA Reverse Transcrip-
tion Kit (Applied Biosystems), according to themanufacturer’s instructions and
as described in detail in SI Materials and Methods.

Constructs. The 3′UTR of TLR4, TLR2, MyD88, IRAK-1, TRAF6, and IL-6 were
amplified from genomic DNA and cloned in the biosensor psiCHECK-2 vector
(Promega). PremiR-146b and premiR-146a were amplified from genomic
DNA and cloned in the pcDNA3 expression vector as described in SI Materials
and Methods. To knock down miR-146b expression, the miRzip lentivector-
based construct anti–miR-146b and the relative control were purchased from
System Biosciences. The list of oligonucleotides used is reported in Table S1.

Luciferase Reporter Assay. HEK-293T cells were transfected after 24 h with
100 ng psiCHECK-2–3′UTR reporter construct and 700 ng pcDNA3-miR or
pcDNA3 as control, by using Lipofectamine 2000 (Invitrogen), according
to the manufacturer’s protocol, as described in detail in SI Materials
and Methods.

FACS Analysis. Cells were washed twice with PBS solution containing 1% BSA.
Aspecific bindingwas blocked by using Fc-block (BD Biosciences).Washed cells
were resuspended in a 1:200 dilution of APC-conjugated anti-human TLR4

(clone HTA125; eBioscience) or anti-human TLR2 antibody (clone 383936; R&D
Systems) or the mouse IgG2a isotype control APC (eBioscience). Stained cells
were washed twice with PBS solution containing 1% BSA and analyzed by
flow cytometry (FACSCanto; BD Biosciences).

Immunoprecipitation of Ago2-Bound RNAs. Immunoprecipitation of Ago2-
bound RNAs (RIP), which contains miRs and their targetmRNA, was performed
as previously described (35), with minor modifications and as described in
detail in SI Materials and Methods. Briefly, 30 × 106 pRRL-ctrl and pRRL-146b
THP-1 cells were stimulated for 2 h with 1 μg/mL LPS, whereas miRzip-ctrl and
miRzip-146b THP-1 cells were stimulated for 12 h with 1 μg/mL LPS. In all
experiments, an aliquot of immunoprecipitation supernatants, corresponding
to 0.5 × 106 cell equivalent, was removed after immunoprecipitation (in-
dicated as “left over”) and used as control for the specificity of the assay.
Results were expressed as fold enrichment relative to Ago2-immunoprecipi-
tation control samples.

Statistical Analysis. Statistical evaluation was performed with use of the
Student t test or one-way ANOVA and reported in figures. P values less than
0.05 were considered significant.
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SI Materials and Methods
Reagents. LPS from Escherichia coli (serotype 055:B5), Pam3CsK4,
imiquimod, synthetic CpG oligonucleotides (ODN) and poly(I:C)
were purchased from Enzo Life Sciences. Human IL-10 and IL-1β
were purchased from R&D Systems. AG-490 was purchased from
Calbiochem. Rabbit anti-Myd88 antibody was purchased from
Enzo Life Science, and rabbit anti–IRAK-1 and rabbit anti-
TRAF6 antibodies from Cell Signaling Technology. Other anti-
bodies were purchased from Biolegend unless specified otherwise.

Purification of Murine Macrophages.Mouse macrophages, obtained
from 6- to 8-wk C57BL/6 mice, were plated in six-well plates at
a density of 1 to 2 × 105/cm2. Femora and tibiae of hind legs were
flushed with PBS solution and cells were resuspended in Iscove’s
modified Dulbecco’s medium (IMDM) medium with L-glutamine,
10% (vol/vol) FCS, 100 U/mL penicillin, and 100 mg/mL of
streptomycin and cultured for 7 d with 10 ng/mL macrophage
colony-stimulating factor (MCSF). Macrophages were detached
using PBS solution containing 10 mM EDTA, washed, and re-
suspended in IMDM medium supplemented with, 10% heat-
inactivated FCS, 100 U/mL of penicillin, and 100 mg/mL of
streptomycin.

Lentiviral Constructs. The pCR2.1 vector (Invitrogen) was used as
subcloning vector. For THP-1 cells transduction, the microRNA
(miR)/lentiviral-based expression vector pRRL-miR-146b and
premiR-146a were generated cloning a 500-bp region encom-
passing the premiR-146b andpremiR-146a in the pRRLSIN.cPPT.
PGK-GFP.WPREvector (plasmid 12252;Addgene).The lentiviral
construct pRRL-ctrl, encoding for a hairpin yielding a 22-merRNA
with no homology to any human gene, was used as mock construct.

ChIP Assay. Sheared chromatin from 5 × 106 monocytes was im-
munoprecipitated overnight (ON) at 4 °C by using polyclonal
antibodies against polymerase II (N-20; sc-899; Santa Cruz Bio-
technology), STAT3 (C-20; sc-482; Santa Cruz Biotechnology).
One percent of starting chromatin was used, not immunoprecipi-
tated, and used as input. Quantitative real-time PCR (qPCR) was
performed in triplicate by using promoter-specific primers (Table
S1). Signals obtained from the ChIP samples were normalized on
signals obtained from corresponding input samples, according
to the formula 100 × 2̂ (input Ct − sample Ct). Results were expressed
as fold enrichment relative to untreated cells.

Quantification of miR andmRNA.TotalRNAwas reverse transcribed
and quantification was performed by using Power SYBR Green
Mix (Applied Biosystems) with specific primer pairs (Table S1).
Experimental data were then analyzed using the SDS2.2 software,
and the relative expression values were calculated according to the

“comparative Ct” method using U6 as endogenous control for
miR and GAPDH for mRNA.

Luciferase Reporter Assay. HEK-293T cells were plated in 24-well
plates in 500 μL of D-MEM supplemented with 10% FBS and 1%
of L-glutamine at 16 × 104 per well. After 24 h, cells were trans-
fected with 100 ng psiCHECK-2–3′UTR reporter construct and
700 ng pcDNA3-miR or pcDNA3 as control by using Lipofect-
amine 2000 (Invitrogen). After 48 h, cells were lysed, and firefly
and renilla luciferase activities were determined by using the Dual-
Glo Luciferase Assay System (Promega). The enzymatic activities
of both luciferases were quantified by using a MultiDetection
Microplate Reader Synergy 2 luminometer (BioTek). The values
of renilla luciferase activity were normalized by firefly luciferase
activities, which served as internal control. Normalized values
were expressed as fold changes relative to the value of the neg-
ative control.

In Silico Prediction of miR-146b Targets. The list of miR-146b pre-
dicted targets with their probability (mirSVR) score was obtained
from the microRNA database (www.microrna.org) (1). The rela-
tive enrichment of biological functions and associated networks
was determined calculating the P value associated to the Fisher
exact test built into the Ingenuity Pathway Analysis software (In-
genuity Systems).

Immunoprecipitation of Ago2-Bound RNAs. Immunoprecipitations
were carried out ON at 4 °C by using Magna Chip Protein A+G
magnetic beads (Millipore) conjugated with anti-Ago2 (EIF2C2
monoclonal antibody, clone 2E12-1C9; Abnova) or isotype IgG1k
control Abs (Abnova). A total of 30 × 106 pRRL-ctrl and pRRL-
146b THP-1 cells were stimulated for 2 h with 1 μg/mL LPS,
whereas miRzip-ctrl and miRzip-146b THP-1 cells were stimu-
lated for 12 h with 1 μg/mL LPS. In all experiments, an aliquot of
immunoprecipitation supernatants, corresponding to 0.5 × 106

cell equivalent, was removed after immunoprecipitation (in-
dicated as “left over”) and used as control for the specificity of
the assay. Results were expressed as fold enrichment relative to
Ago2-IP CT samples. Sequences of 3′UTR mRNA-specific pri-
mers used in qPCR are listed in Table S1. The miR/mRNA
enrichment to the RNA-induced silencing complex was calcu-
lated according to the formula 2−(CtAgo − CtIgG) and normalized
over GAPDH for mRNA and U6 for miR.

Prediction of miRNA–mRNA Duplex Secondary Structure. The
RNAhybrid Web server (http://bibiserv.techfak.uni-bielefeld.
de/rnahybrid) (2) was used to predict multiple binding sites of
miRNAs in large target RNAs, calculating the minimum free
energy related to the secondary structure of the miRNA–

mRNA duplex.
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changes in transcript abundance. PLoS ONE 3(5):e2126.
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Fig. S1. MiR-146b enrichment in the RISC complex. (A) Human monocytes were stimulated or not with 100 ng/mL LPS for 16 h. Cell extracts were subjected to
RIP assay using anti-Ago2 or IgG control Abs and levels of miR-146b were assayed in triplicate by Q-PCR in RIP (IP AGO2) and left over samples and expressed as
normalized fold enrichment of miR-146b. (B) Cell extracts from pRRL-ctrl transduced (CT) and pRRL-146b transduced (146b) THP-1 cells were subjected to RIP
assay using anti-Ago2 or IgG control Abs and levels of miR-146b were assayed in triplicate by Q-PCR in RIP (IP AGO2) and left over samples and expressed as
normalized fold enrichment of miR-146b. Results are shown as normalized fold enrichment (mean ± SEM).

Fig. S2. MiR-146b induction by different stimuli correlates with IL-10 expression. (A) Expression levels of miR-146a (white columns), miR-146b (black columns),
and miR-155 (grey columns) were measured by Q-PCR in triplicate samples of human monocytes cultured for 24 h with TLR/IL-1R agonists (100 ng/mL LPS, 5 μg/
mL poly(I:C), 1 μg/mL Pam3CsK4, 1μM CpG-DNA, 100 ng/mL imiquimod, 100 ng/mL IL-1β). Results are expressed as fold change over untreated cells (mean ± SEM;
n = 3). (B) Monocytes were cultured for 24 h with 100 ng/mL LPS, 1 μg/mL Pam3CsK4, 5 μg/mL poly(I:C), 100 ng/mL IL-1β, or 200 ng/mL dexamethasone. IL-10
release in cell-free supernatants was analyzed by ELISA and correlated to the expression of miR-146b, quantified by Q-PCR. Dotted line represents the linear
regression curve correlating miR-146b expression levels with IL-10 release in the indicated experimental conditions. Results shown are from one representative
of three independent experiments.
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Fig. S3. Predicted miR-146b targets in the TLR pathway. Graphic representation of the TLR4/TRL2 pathway with predicted miR-146b target genes highlighted.

Curtale et al. www.pnas.org/cgi/content/short/1219852110 3 of 5

www.pnas.org/cgi/content/short/1219852110


Fig. S4. Differential effect of miR-146a and miR-146b on transcripts of TLR signalling adaptors. Relative MyD88 (A), IRAK-1 (B), and TRAF6 (C) mRNA levels
were measured by Q-PCR in pRRL-ctrl, pRRL-146b, miRzip-ctrl and miRzip-146b THP-1 cells and normalized to GAPDH. Results are shown as fold change over
nonstimulated control (mean ± SEM). The predicted structure of the miRNA-mRNA target duplex is graphically visualized, according to RNA hybrid algorithm
(see SI Materials and Methods) and the corresponding minimum free energy (m.f.e.) is also reported.

Fig. S5. MiR-146b down-regulates TLR2-dependent production of pro-inflammatory cytokines. (A–G) Pro-inflammatory cytokine levels measured by ELISA in
cell-free supernatants of THP-1 cells transduced with lentiviral vectors overexpressing miR-146b (pRRL-146b and its respective control) or a miR-146b sponge
(miRzip-146b and its respective control) after stimulation with 1 μg/mL Pam3CsK4.
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Table S1. List of oligonucleotides used

Type Oligonucleotide

Cloning
TLR4 3′UTR 5′-GTCAGAAACCTGTCCACT-3′

5′-TGTGCCTAATTCAGAAGATG-3′
TLR2 3′UTR 5′- GTTCCCATATTTAAGACCAG-3′

5′- TCTCATCCTGTAAAGTTTAA-3′
IL-6 3′UTR 5′-GTCAGAAACCTGTCCACT-3′

5′-AATATGTATAAGTTAGCCAT-3′
IRAK-1 3′UTR 5′-ATCATTTATGCTTGGGAGGT-3′

5′-AAGAGGACACTCGGTTACA-3′
MyD88 3′UTR 5′-GCAAATATCGGCTTTTCTCA-3′

5′-GACTCTCTTTGGAGCATA-3′
TRAF6 3′UTR 5′-TTGCCCTCACTTGCTCAA-3′

5′-AGATGCTACTTCGTAACCTC-3′
miR-146b 5′-TGGAATAGGAGTTCTCTTG-3′

5′-TAGTGGCAGGTTATGAGCA-3′
miR-146b seed mutagenesis
TLR4 5′-TGTCTATGGCTGTTTGAGATTCTCTACTCTTGTGCTTG-3′

5′-CAAGCACAAGAGTAGAGAATCTCAAACAGCCATAGACA-3′
IRAK-1 (seed 1) 5′-GATCCCCCAAATCCGGCAAAGTTCTCATGGTC-3′

5′-GACCATGAGAACTTTGCCGGATTTGGGGGATC-3′
IRAK-1 (seed 2) 5′-GCAAAGTTCTCATGGTCGTTCTCATGGTGCACGA-3′

5′-TCGTGCACCATGAGAACGACCATGAGAACTTTGC-3′
MyD88 5′-GAACTGCAGACACAGCTTCTCCCTCTCTCCTT-3′

5′-AAGGAGAGAGGGAGAAGCTGTGTCTGCAGTTC-3′
TRAF6 (seed 1) 5′-CCTGGAGAAAACAGTGTCCTTGCCCTGTTCTC-3′

5′-GAGAACAGGGCAAGGACACTGTTTTCTCCAGG-3′
TRAF6 (seed 2) 5′-CTCGAGAAGAGTTATTGCTCTAGTTGAGTTCTCATTTTTTTAACC-3′

5′-GGTTAAAAAAATGAGAACTCAACTAGAGCAATAACTCTTCTC-3′
TRAF6 (seed 3) 5′-ATTTGAACCATAATCCTTGGATTAAGTTCTCATTCACCCCAG-3′

5′-CTGGGGTGAATGAGAACTTAATCCAAGGATTATGGTTCAAAT-3′
qPCR
MyD88 5′-GCACATGGGCACATACAGAC-3′

5′-GACATGGTTAGGCTCCCTCA-3′
IL-6 5′-TACCCCCAGGAGAAGATTCC-3′

5′-TTTTCTGCCAGTGCCTCTTT-3′
TLR4 5′-CACCTGATGCTTCTTGCTG-3′

5′-TCCTGGCTTGAGTAGATAA-3′
TRAF6 5′-GTCCCTTCCAAAAATTCCAT-3′

5′-CACAAGAAACCTGTCTCCTT-3′
IRAK-1 5′-TGAAGAGGCTGAAGGAGAA-3′

5′-CACAATGTTTGGGTGACGAA-3′
ChIP assay
Pol-II on miR-146b 5′-AATAGGAGTTCTCTTGGTAT-3′

5′-AATTCAGTTCTCAGTGCC-3′
Pol-II on miR-146a 5′-GAGGAAGTGACATTGAAAGC-3′

5′-TGTATGGTAGACACACACAT-3′
Pol-II on miR-155 5′-ACCATTTCTTCCTCTCTTAG-3′

5′-GGCTCCAACCTTTGTTCTT-3′
STAT3 in miR-146b 5′-CTCGGCTGAACTCTCCAGA-3′

5′-GCAAACCAAGGGGCTTTCT-3′
STAT3 in miR-146a 5′-GCACTTGAAAAGCCAACAGG-3′

5′-CACAGCGAGGGAGGAAGA-3′
RIP assay
IRAK-1 5′-CTCTTTGCCCATCTCTTTG-3′

5′-GCCACACTTTTCCAAATTGT-3′
TRAF6 5′-TAAGTTCTCATTCACCCCAG-3′

5′-AGGAAATAAGTAAGCAAGGC-3′
MYD88 5′-GCTTGGGCTGCTTTTCATT-3′

5′-CCTGCTCACATCATTACAGT-3′
TLR4 5′-CCTCCTCAGAAACAGAACAT-3′

5′-TCATAACGGCTACACCATTT-3′
TLR2 5′-CAACTGTAATCTGTAGCAAC-3′

5′-TAGCAGGAAGAAAGAATGAC-3′
IL-6 5′-GCATTCCTTCTTCTGGTCA-3′

5′-ATAGTGTCCTAACGCTCATA-3′

Curtale et al. www.pnas.org/cgi/content/short/1219852110 5 of 5

www.pnas.org/cgi/content/short/1219852110

