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Abstract

The Partial Least Squares Path Modeling (PLS-PN)nsethod meant to estimate a
network of causal relationships defined accordingat theoretical model. The
complexity of the theoretical construct is studibg taking into account the
relationships among non measurable indicatorsnflat@iables), represented by a set
of observed variables (manifest variables). PLS-Bilis to estimate, through a
system of interdependent equations based on siamgemultiple regressions, the
network of relations among the manifest variabled their own latent variable, and
among the latent variables inside the model. Thesalarelationships among
variables are represented through a Path Diagmanvhich the latent variables are
enclosed in circles and the manifest variables emelosed in boxes. PLS-PM
involves three sets of relations: 1) structuraihorer model, 2) measurement or outer
model, 3) the weight relations upon which latentiatdle scores can be calculated.
The first model takes into account the relation®m@gnthe latent variables and the
second takes into account the relations betweenif@esanvariables and the
corresponding latent variable. In the structuradeieeach endogenous (dependent)
latent variable is linked to the others by a mudtipegression model. The structural
design only assumes recursive models, i.e. the gatlram takes the form of a
causal chain with no loops. Different types of meament models exists, depending
the kind of relationship: 1) reflective model (obssd variables are considered being
caused by the latent variable (i.e., indicatorgeotfthe construct; the latent variable

is considered as the cause of the manifest vagaiild each manifest variable is an



effect of the unique corresponding latent varigb®)formative model (the latent
variables are considered as being caused by itsfesainariables); and 3) MIMIC
model (multiple effect indicators for multiple cass it represents a mixture of both
the reflective and the formative models within saene block of manifest variables).
Independently from the type of measurement motiel standardized latent variable
scores are computed as a linear combination ofmasifest variables and outer
weights (the so-called weight relation).

Once the theoretical model is specified, the néwsp in PLS-PM is the estimation
of the model parameters. The PLS algorithm consisthree stages. The first stage
is an iterative procedure of ordinary least squaggsessions taking into account the
relationships of the structural and measurementemadal order to calculate weights
required to give final estimates for each latemtalde. This first stage is the “core”
stage in the PLS algorithm. Subsequently, the staod third stage involve the non-
iterative estimation of the coefficients of theustural and measurement model,
respectively. The structural model coefficientstijpeoefficients) are calculated by
ordinary least squares regressions between lateigles. The measurement model
coefficients (loading coefficients) are also estidaby regressions but taking into

account the kind of mode to be used (reflectiveoanative).

PLS-PM has been widely used in economical (theooost satisfaction is a typical

example) and psychological settings. In biomedicaitext, the published articles are
scanty and generally published in open accessasirn

The aim of this study was to apply the PLS-PM uhiféerent field, since it has been

widely used in economical (the customer satisfaci® a typical example) and



psychological setting. In biomedical context, théblgshed articles are scanty and
generally published in open access journals.

| used the PLS-PM method in order to analyze theemsahce of the procedures
provided for diagnosis, treatment (surgical and icady] and follow-up of breast
cancer through a set of indicators. Indeed, tha&l @ggroaches in this field since
oversimplify the complex problem since they do rmminsider simultaneously
multiple aspects of the diagnostic, therapeutic faidw-up pathways. This method
has several strengths, as PLS-PM allows the remucti dimensionality of several
health indicators into a smaller number of lateatiables (and more interpretable),
and then allows to study causal relationships betwéhese latent variables,
representing the different aspects of the diagoogherapeutic and follow-up
pathways. This method also requires no distribafi@ssumptions with respect to
the variables included in the model. The limit bistmethod is the bias deriving
from the a priori selection of the relationships among latent véemland of the
indicators used to characterize the latent variadlinough the limited sample size
makes the analyses explorative-orientated only, gresent study represents an
unique example of PLS-PM application in the biorsabtiresearch, in particular in
the evaluation of the adherence of the diagnostitcteeatment procedures for breast

cancer.
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1. Essentials of
Path Modeling

Path Modeling, also known as Structural Equationd®img (SEM), is a generic
term used to designate a set of different statistechniques that meant to estimate a
network of causal relationships defined accordingat theoretical model. The
concept of SEM refers to cause-effect relationshigisveen variables which can be
specified by a series of equations. The concepiatii Modeling refers to a graphical
approach in which the relationships between vagmlstructural equations) are

graphically displayed, through in what is knowrPagh Diagram.

Fornell defined SEM as a second generation of rariaite methods as it allows not
only an exploratory approach (data then concepaiidin) but also a theory-based
approach. This method is used when we are intef@stemodeling a phenomenon of
interest based on a theoretical framework. A thiegalemodel is imposed on the
data, and the strength of the relationships is @@ In summary, path modeling is
a useful set of methods that allows the combinatbnprior knowledge with

measured data. The prior knowledge is provided dayes theory for a certain
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phenomenon of interest, in which a model for theseaeffects relationships among

variables is proposed [1].

Path Modeling involves latent variables (LVs) whiate theoretical variables that
cannot be observed nor measured directly. Bechease types of variables cannot be
observed nor measured explicitly, LVs have to besueed through variables that
are perfectly observable and measurable which amvk as manifest variables
(MVs) or indicators. LVs are very common in socggiences (e.g., psychology,
sociology, and economy) in which there are manyepts of theoretical nature such

as intelligence, socioeconomic status or industigalelopment.
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1.1Reflective versus formative indicators

Once we have assumed that LVs can be observed eaduned indirectly through
MVs or indicators, we need to consider the wayswvimch LVs are (indirectly)
measured: LVs can be observed/measured in two wélks:through their
consequences or effects reflected on their MVsthi{@ugh different indicators that
are assumed to cause the LVs. In the first cadkedceeflective way, MVs are
considered as being caused by the LV, whereaseirsé¢bond case, calléormative

way, a LV is supposed to be formed by its MVs [2].

Suppose that a doctor is examining a patient trygngeterminate the presence or
absence of some disease. The doctor might evahmaatient symptoms (e.g., body
temperature, blood pressure, pulse rate, respirafite, feelings of nausea). The
doctor might ask about the patient’s lifestyle (ediet, drinking and smoking habits)
that might be causing the disease. So, symptomsbeaconsidered as reflective
indicators because theyflect the disease, whereas lifestyle habits can be sgen a

formative indicators because thieym (cause) the disease (Figure 1.1).

Figure 1.1. A latent variable (disease) measurefbiygative and reflective

indicators [3].

CAUSES: EFFECTS:

+ Eating habits _ ___— > -+ Body temperature
* Drinking habits : Disease -—\—> * Blood pressure

* Smoking habits /’_’_,7 \) * Pulse rate

* Sleeping habits * Respiration rate

Formative Indicators Reflective Indicators
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In the reflective way it is expected that differ@mdicators are to be highly correlated
because they are measuring the same concept [é¢]sdime cannot be said about
formative indicators because a LV can be causedmMoyor more MVs mutually

uncorrelated.

The difference between reflective and formative idatbrs is related to the
conceptualization of two data analysis methodstofa@nalysis and principal
component analysis. In factor analysis, the latanibles are called factors, and it is
assumed that these factors explain the observadbles. In contrast, the LVs in
principal component analysis are called componemtsch are obtained as linear
composites of the observed variables. Under theoifaanalysis point of view, a
factor F; is associated to the observed variables in a taftieform, whereas under
the principal component analysis point of view.oanponent PCcan be represented

as LV with formative indicators (Figure 1.2) [3].

Figure 1.2. Factors from factor analysis;) (land components from principal
component analysis (PGs latent variables.

Factors regarded as latent variables with reflective indicators.

Principal components regarded as latent variables measured by formative indicators.
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1.2Path Diagrams

The main characteristic of path modeling technicués graphical approach. The
visual representation of the models are calpath diagrams. They provide a
graphical representation of the relationships amanget of variables, with the
special property that they can be translated indgstéem of simultaneous equations.
The great advantage of path diagrams is that they d&or the visualization of the
relationships and, in terms of a causal modelgnéphical display makes it possible

to understand the conceptualization of the model [3

Path diagrams have a conventional notation (Taldlg Briefly, LVs are enclosed in

circles and MVs are enclosed in boxes.Variables tmaygrouped in two classes:
endogenous or dependent (variables caused by anerervariables) and exogenous
or independent (variables not caused by any otheables). Endogenous LVs are
usually represented bywhereas exogenous LVs are represented by the Grek

&. Arrows show causal relationships among variaf@éber latent or manifest), and
the direction of the array defines the directiortledf relation, i.e. variables receiving

the array are to be considered as endogenous learialthe specific relationship.

14



Table 1.1. Main path diagram notation

x Manifest variable

@ Latent variable
@_)@ Exogenous latent variablé)(causes
endogenous latent variabhg) (
/—_\ Correlation between two manifest

X ¥y variables
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1.3 Path Modeling analysis

The model includes two parts or sub-models: the sonesnent model and the
structural model. The first model represents hoshezonstruct is measured by its
indicator variables. The structural model involwbe causal relations among the
constructs and it is represented by a simultanegagem of equations among the
latent variables. The path modeling process statts a theoretical framework that
involves the establishment of the theoretical refethips among constructs or latent
variables. The subsequent step is deciding how raadywhich observed variables
will be considered as indicators of the construtle selection of manifest variables
and its number is sometimes a subjective mattemanctiterion exists on this point.
Regarding the number of indicators some authorgesigo use as many indicators
as possible although having too many may preseitiggns with model fitting [3].
Once the relationships of the model are fixed, ey be visualized in the form of a
path diagram. The next step involves the mathemdasigecification of the model,
that is, its translation into a system of equatidoowed by the estimation phase

and the validation of results.

In conclusion, Path Modeling is a methodology fbie tanalysis of indirectly

measured cause and effect relationships in comgystems. This analysis can be
accomplished under two major approaches: confirrpaamd predictive purposes.
The confirmatory approach is concerned with thedeyelopment and testing by
testing whether the assumed theory and hypothesede confirmed; the model is
analyzed by examining the covariance structuréhefdata and testing probabilistic

assumptions. The predictive approach focuses oningaredictions about the
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outcome variables of interest and it involves theability of data in the form of a
prediction model of the dependent variables. Théh paodeling method for
confirmatory purposes has the generic name of Gawee Structure Analysis
(CSA), also known as LISREL. In turn, the predietieriented methodology is

Partial Least Squares Path Modeling (PLS-PM).

<<When we use a covariance-based SEM approach ikcithly assume that the
data is generated by some “true” theoretical mddethis scenario, the goal of CSA
is to recover the “true” model that gave rise te tibserved covariances. Briefly,
when using CSA we are concerned with fitting a maael reproducing the observed
covariances. This approach resorts to classicalryhef statistical inference and is
based on a heavy use of distributional assumptiabnsut the behavior and
personality of the data. Consequently, the anasy&tirced to move slowly; and the
modeling process requires careful thought andgennjustifications that more often
than not end up compromising the whole analysi$ whe bizarre (and sometimes
contradictory) principle of the data must followetmodel. In contrast, [JPLS-PM
models are not considered to be ground truth, blyt @an approximation with useful
predictiveness. In other words, PLS-PM assumes odeinby which the data were
generated. There is only the data and nothing Hutdita. In this sense, PLS-PM
follows the spirit of a dimension reduction techregthat we can use to get useful
insight of the data on hand. The ultimate goal ik'5#°M is to provide a practical
summary of how the set of dependent variables yatematically explained by their
sets of predictors. Besides the description of PMsas an alternative approach to
SEM covariance structure analysis, PLS-PM can laéscegarded as a technique for

analyzing a system of relationships between mealtlgbcks of variables, or if you
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want to put it in simple terms, multiple data tablg..] In summary, we can regard
PLS-PM as a coin with the two following faces:
* PLS Path Modeling as a component-based altemdtiv estimating Structural

Equation Models.

* PLS Path Modeling as a method for analyzing desysof linear relationships

between multiple blocks of variables.>> [5].

PLS-PM was originally developed as an analyticedrahtive to CSA for situations
where the theory is weak and where the generahgssans of CSA are not met.
The overall goal of PLS is to use observed indepenhdariables to predict observed
dependent variables. This is realized indirectly éxtracting independent and
dependent latent variables from observed variaflbs is done in such a way that
they optimally address one or both of these twdsg@xplaining response variation
and explaining predictor variation. The goal ispiedict the dependent variables
(both latent and manifest) by minimizing the residuvariances of the endogenous
(i.e. dependent) variables. In particular, the métbf partial least squares balances
the two objectives, seeking latent variables tixalan both response and predictor

variation [3].
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2. PLS Path Model
(PLS-PM): the
Method

The basic idea of Partial Least Squares (PLS) nastiwthe estimation process used
to calculate model parameters. This process isopedd by separating the
parameters to be estimated in parts (hence the panral) in order to apply an

iterative procedure of least squares regressionaltolate them.

PLS methods are not derived through probabiliseasoning or numerical
optimization. Moreover, PLS has not assumptionsutbeariables and error
distributions and for this reason it is called asaft modeling”. It doesn't rely on

the classic inferential tradition. Variables camenerical, ordinal, or nominal.

Partial Least Squares Path Modeling (PLS-PM) isafithe PLS techniques. It is a
multivariate technique of second generation by domf causal modeling with data
analysis features. PLS-PM is a statistical methat has been developed for the

analysis of structural equation models with lateatiables, specially designed to
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provide an alternative approach to the LISREL m&deds opposed to the
covariance-based approach, PLS is prediction @ieaiming to obtain estimates of
latent variables for prediction purposes, maxingzihe variance explained for the

dependent variables (both latent and manifest bkasi

PLS-PM is a methodology meant to estimate a netwaricausal relationships
defined according to a theoretical model. The cexipf of the theoretical construct
is studied taking into account the relationshipsoaghnon measurable indicators
(latent variables), represented by a set of obsemagiables (manifest variables).
PLS-PM aims to estimate, through a system of iej@eddent equations based on
simple and multiple regressions, the network ofitrehs among the manifest
variables and their own latent variables, and amibieglatent variables inside the
model. The causal relationships among variablesrepeesented through a Path
Diagram, in which the latent variables are enclosecaircles and the manifest

variables are enclosed in boxes.

PLS-PM involves three sets of relations: 1) strradtuor inner model, 2)
measurement or outer model, 3) the weight relatigmsn which latent variables
scores can be calculated. The first model takesantount the relations among the
latent variables and the second one takes intouat¢be relations between manifest
variables and the corresponding latent variable.tHa structural model each
endogenous (dependent) latent variable is linketi¢others by multiple regression
model. The basic structural design only assumesrse® models, i.e. the path
diagram takes the form of a causal chain with nop$o Different types of
measurement models exists, depending on kind afioekhip: 1) reflective model

(the observed variables are considered being cahbgethe latent variable (i.e.,

21



indicators reflect the construct; the latent vadeais considered as the cause of the
manifest variables and each manifest variable is effect of the unique
corresponding latent variable); 2) formative mod#he latent variables are
considered as being caused by its manifest vasgbiend 3) MIMIC model
(multiple effect indicators for multiple causes,répresents a mixture of both the
reflective and the formative models within the sabhgck of manifest variables).
Independently from the type of measurement motiel standardized latent variable
scores are computed as a linear combination ofm#sifest variables and outer

weights (the so-called weight relation).

Figure 2.1 Path Diagram: The structural model isnted in blue grey, the

measurement model in sky blue.
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Once the theoretical model is specified, the néwsp in PLS-PM is the estimation
of the model parameters. The PLS algorithm consisthree stages. The first stage
is an iterative procedure of ordinary least squaggsessions taking into account the
relationships of the structural and measurementemadal order to calculate weights
required to give final estimates for each latemtalde. Subsequently, the second and
third stages involves the non-iterative estimatibrthe coefficients of the structural
and measurement model, respectively. The structmmatlel coefficients (path
coefficients) are calculated by ordinary least sgsiaregressions between latent
variables. The measurement model coefficients {tmpdtoefficients) are also
estimated by regressions but taking into accoust kimnd of mode to be used

(reflective or formative).
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2.1Structural model

The structural model (also known as inner modetsaters only the latent variables,
which are assumed to be linearly interconnectedordony to a causal-effect
relationship model.

The associations among latent variables can besepted by a linear multi-equation
system which has to be recursive. Latent variabkes play both predictee and
predictor roles: a latent variable that is neveedmted is called exogenous,
otherwise is called endogenous. For simplicity,diiinctions in notation are made
between endogenous and exogenous constructstealt kzariables will denote as x.

The linear equations take the following form:
é:j = :8()] +Zﬁji§i + é/j

with predictor specification

E[¢

é:, ) = IBOj + Z :ij;

where the parametg; is called the path coefficient (representing théhdrom the
i-th to the j-th latent variable§; is the inner residual term, and the index i ranges
over all predictors of;. Predictor specification implies that the residuiagve zero

mean and are uncorrelated with the latent variables

24



2.2Measurement model

The measurement model (also known as outer mod#§bleshes the relation
between a block of manifest variables and its tateariable. Each indicator is
supposed to be associated with just one latenabiariBecause the latent variable is
an unmeasured variable, it has to be indirectly smesl trough the manifest
variables, hence the name measurement model. Bhertree options to establish
the connections of the manifest variables to tisnavariable:

a) Reflective way

b) Formative way

c) Multiple effect indicators for multiple causes wa@IMIC)

a) Reflective way
In the reflective way the latent construct is cdesed as the cause of the

indicators.

Figure 2.2 Path diagram of reflective way

25



In this case, the manifest variables can be coraideflects or manifestations of

their latent variable. The manifest variablg is assumed to be a linear function
of its latent variablg;

e = }%Jk + ;ijé:j TE,
where4;, is the loading coefficient ang, is the outer residual term.

When predictor specification is adopted,

E(x

5./ ) = 20.//( + ’I//«é/ ,

Jk
which implies that the residuals have zero mean aeduncorrelated with the

manifest variables.
b) Formative way
In the formative way the latent construct is coestdl as being caused by its

indicators

Figure 2.3 Path diagram of formative way
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The latent variabl€; is assumed to be a linear function of its manif@stables
xjk

5] = 7[0.1' +Z7[ka.1k + 5./‘

k

assuming predictor specification
E(égz | x.fk): oy + 27X 0
k

which means that the residuals have zero mean endreorrelated with the

manifest variables.

c) MIMIC way
MIMIC way can be considered as a mix of reflectwal formative ways.

In this case there are two linear equations

xjh = ZO]h + ;Ljhgj + gjh é:j = 7[0‘/' + Z”ﬂxﬂ + 5;’
and !

where the indexh ranges over all reflective manifest variables, #mel indexI
ranges over all formative manifest variables| = k.

when predictor specification is adopted,

E(th ‘ 57): /101’7 + ﬂ’jhgj and E(ng ’ xj/)z 72-0] + Zﬂ.ﬂxﬂ
I

Main differences between reflective and formativenifest variables can be

summarize as in Table 2.1.
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Table 2.1. Main differences between reflective tonmthative manifest variables.

Reflective

Formative

The direction of causality is from
construct to measure
It is expected that the measures are

correlated between them

The elimination of an indicator from the
measurement model does not alter the
meaning of the construct

The measurement error is taken into

account for each item

The direction of causality is from measure to
construct

It is not expected that the measures are
correlated between them. The model does not
imply the internal consistency

The elimination of an indicator from the
measurement model can alter the meaning of
the construct

The measurement error is taken into account

for the construct

28



2.3Weight relations

Although the measurement model specifies the cglatbetween the latent variables
and their set of indicators, this specificatiord@ne in a conceptual level. In other
words, the outer relations refer to the indicatarsl the “true” latent variable.

However, we do not really know it. For this reagbe weight relations must be

defined. Latent variable estimates or scores diaatkas follows:
S = Z WX
k
whereiv;, are the weights used to estimate the latent Varaba linear combination

of their observed manifest variables. “Note that using weight relations the

problem of factor indeterminacy, present in covaz@astructure models, is avoided

in PLS” [3].
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2.4Soft modeling

Predictor specification implies that residual terrhave zero mean and are
uncorrelated with the independent variables (laterhanifest ones). Moreover, the
outer model residuals are uncorrelated with akratvariables and with the inner
model residuals. As consequence, the Ordinary L8gsares (OLS) estimates are
consistent and the prediction using OLS estimasegansistent with minimum

residual variance. It is also important to remanlattPLS does not restrict the
structure of the residual covariance [3]. The ratéeature of PLS-PM (as well as
all the PLS techniques) is that no assumptions nedie made on the data about
distribution and observations independently disteld. This means that PLS
approach avoids the rigid assumptions of the metifochaximum likelihood. For

these reasons, PLS approach is more flexible, bkimayn as a soft modeling

technique [6].
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2.5PLS-PM algorithm

Once the theoretical model has being specified,ndyd phase in PLS-PM is the
estimation of the parameters carried out by the Bligérithm. The PLS estimation
algorithm proceeds in three stages.

1) The first step consists of an iterative proceduresimple and/or multiple
regressions taking into account the relationshfgb@inner model, the outer
model and the weight relations. The result is steration of a set of weights
which are used to calculate the latent variableescas linear combinations
of their associated manifest variables;

2) the second and third steps involve the non-itezatestimation of the
structural model coefficients (path coefficientajla

3) the measurement model coefficients (loadings).

2.5.1 PLS-PM algorithm — stage 1

This first stage is the “core” stage in the PLSoaltpm. The goal of this stage is the

calculation of weights required to give final esdiies for each latent variabje as a

linear combinatiorY; of its K; manifest variables;,,
5./’ - Y.i - Z‘vakxfk
k

where w;, are called outer weights, scaled to giVe unit variance. This

standardization is done to avoid scale ambiguittheflatent variable. Since they are

unknown, some standardization is required to asaith scale ambiguity.
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The process to calculate the weights follows araiiee mechanism that takes into
account the hypothesized relations of the structamal the measurement models
(Table 2.2). For each model (structural and measend) there is an associated
approximation of the latent variables: outside agpnation for the measurement
model, and inside approximation for the structunabdel. Several options for

performing first stage are available depending ow lthe relations between latent
variables in the structural model are establislaed, also on how the indicators are

associated to their latent variables.
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Table 2.2 PLS-PM iterative algorithm

1) Start with arbitrary outer weighis
e.g.w;=1,w,=1, ... wp=1
2) External approximation
Compute LVs as linear combinations of their MVs
e.0.Y; =wyxq + ... Fwxg
3) Updating inner weights
Take into account the structural relationships eetwlLVs
e.g.e;, = cor(y, Y,), only if LV, is connected witiV,
4) Internal Approximation
Re-compute LVs taking into account their LV neigrdo
e.0.Z; = e, Y, + e 3Y5 onlyif LV is connected witliV, andLV;
5) Updating outer weights
Re-computev with the LVs form the internal approximation
e.g. under mode Ay,= cov(x;, Z;) Or wy= cOr,, Z;) if MVs are standardized
6) Check for convergence
€.9. Woud - Wnew1| < 0. 00001

7) Repeat steps 2 - 6 until convergence

LV= latent variable, MV= manifest variable
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Sage 1.1-1.2: External approximation

The iterative process begins with an initial praftyach latent variable as a linear

combination of its manifest variables

Wheref; is a scalar that givel§ unit variance, and the sign ambiguity + is solved

by choosing the sign so that the majority of theis positively correlated witl;

s,-g{;s,gn{wr(m v )}}

The standardized latent variable is finally expeelsas:
Y, = ;ijxjk

where thew;, are called the outer weights.

The idea behind the outside approximation is t@iobd set of weights to estimate
a latent variable accounting for as much variarscpassible for the indicators and
the constructs. The algorithm begins with an ihitiatside approximation of the
latent variables by using arbitrary weights whick scaled to obtain unit variance

for the latent variables.
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Sage 1.3-1.4: Internal approximation

In this step the connections among latent varialigbe inner model are taken
into account in order to obtain a proxy of eaclenatvariable calculated as a
weighted aggregate of its adjacent latent variafdles internal estimatio; of ¢;

is defined by:

Z;= ZeiiYi

i3, #0,
B;i#0

where ¢;; are the inner weights which are assumed to beedcsd that the

variable in parentheses is standardized.

The connections among latent variables in the inmedel are taken into account

only when two latent variables are connected bwmow. In other words, inner

weightse;; between two constructs exist only when there israow betweers;

and¢;.

There are three options to calculate the inner kisig

* Centroid scheme. This scheme only considers the digection of the
correlations between a latent variable and its cadlja (neighboring) latent

variables.

Sign{cor(Y/. Y, )} &;.¢, _adjacents
e = . .
! 0 otherwise
Some problems may be present when a correlatiolose to zero, causing a
sign changes during the iterations from +1 to -1.

* Factor scheme. To avoid the problems of the cahscheme, the factor

scheme uses the correlation coefficient as the meght instead of using
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only the sign of the correlation. This scheme aders not only the sign
direction but also the strength of the paths instinectural model.

» Path scheme. The latent variables are divided tiecadents (predictors) and
followers (predictands) depending on the causeztffeslationships between
two latent variables. An latent variable can baeita follower, if it is caused
by another latent variable, or an antecedentif ithe cause of another latent
variable. If §; is a follower of¢; then the inner weight is equal to the
correlation betweetirf; andY;. On the other hand, for the antecedg&ntsf ¢;,
the inner weights are the regression coefficiert af the multiple regression

of Y;

; on theY;'s associated to the antecedentséaf The path weighting

scheme has the advantage of taking into accoumt thet strength and the
direction of the paths in the structural model. [doer, this scheme presents
some problems when the latent correlation matrstngular
The centroid scheme is the Wold’s original alganitecheme, whereas the other
two are implemented in Lohmdller’s version. Thetoeid scheme represents the
default option in the software R.
In practice, choosing one weighting scheme in paldr over the others has little
relevance on the estimation process and does nrihtemtce the results

significantly [7].

Sage 1.5: Updating outer weights

There are three ways of calculating the outer wsigh (mode A, mode B, and

mode C). Each mode corresponds to a different wakelating the manifest

variables with the latent variables in the theamtmodel. Mode A is used when
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the indicators are related to their latent varighl®ugh a reflexive way. Instead,
mode B is preferred when indicators are assochigdtheir latent variable in a
formative way. Mode C is supposed to be used whernndicators of an LV are
connected by MIMIC way, and it is rarely used iagiice.
* Mode A. In the reflective way, each weighy is the regression coefficient of
Z; in the simple regression ®f, onZ;:
Xjk = WjkZj.
As Z;is standardized:
Wi = (Z;2;)"* Zixjy, = cov(xjx, Z;) = cor(xjx, Z;).
In case the manifest variables have been also atdizéd, such a covariance
becomes a correlation. Note that the covariancedmst variablex;, and the
latent variableZ; is used without considering how, is related to other
variables in block;. In other words, it does not matter if variableslock X;
are highly correlated, mode A guarantees statlssitabilization ofY; in the
outside approximation.
* Mode B. In the formative way;; is regressed on the block of indicators related
to the latent construd;, and the vectow; of weightswj, is the regression

coefficient in the multiple regression:
L. =) w,x, v 1y
J Z JE Jk , Wj _(XJ'X]') X‘/'Zj,
whereX; is the matrix with columns of manifest variablgg.

In this case, we might have some problems wherabigsx;,in X; are highly

correlated, causing the estimation process to beagrstable.
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* Mode C. This case is implemented in Lohmoller'ssiam and it is a special
case of mode B. The MIMIC way is a kind of mix beem reflective and
formative ways, so the path coefficients for th@anifest variables related in a
reflective way are estimated by a simple lineargsgionx;, = p;,Z; and the
path coefficients for thé manifest variables related in a formative way are

estimated by a multiple linear regressidh:= Y., g, xj;.

Sage 1.6: Check for convergence

In every iteration step (S = 1, 2, 3,...,) convergerg checked comparing the
outer weights of step S against the outer weighssep S-1.

Wold proposedi;; ' - wj;| < 0.00001 as a convergence criterion [8]. Coremtg

is not guaranteed although it is always found axcpce [9].

Figure 2.4. The first (and core) stage of PLS patidleling algorithm [3].

Iterative procedure

T Wiy et By = &y = eo(Y,, W,

Y, ~ WK, T W ey =gy =cor(Y;, Y
b i L O b By = €3y = car(Y,. ¥.)

Convergenca?
d
L 0.0001

Z ~e,Y,Te Y,

Z,~e, X e ¥,

1) AT, B T
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2.5.2 PLS-PM algorithm — stage 2

The second stage of the algorithm consists in #heutation of the path coefficient
estimates{?ﬁ, according to the structural or inner model.
The path coefficients are estimated by ordinarystlesquares in the multiple

regression of; on they;’s related to it
Y, = ZIB./'I'YI?
o -1
B =) Yin,

The path coefficients can be interpreted as cdroglecoefficient, if the manifest

variables are standardized.

2.5.3 PLS-PM algorithm — stage 3

The third stage of the algorithm consists in thiewdation of the loading coefficient
estimatesTﬁ, according to the measurement or outer model.
The loadings are estimated depending on the camelspg way.
In the reflective way, the loading coefficients &ne regression coefficients of the
simple linear regression of each manifest variabjeon the corresponding latent

variabley;:

A

x, =AY,
ﬂ“ﬂf = (YJ',YJ')_I Yj,xjk
In the formative way, the weight coefficients coincide with the outer weights

obtained in the first stage. This is because wéparthe multiple linear regression

of ¥; onx;y:
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Y, = Z 7 X i
k

T, = (X;Xj )_IX;'YJ = Wi

2.5.4 Location parameters

If we look at the predictor specification equatidigsown below) we can observe
three more parameters that we have not estimat@t Af;, 1, % (in reflective way),

andm,; (in formative way)

E (gf € ) = fy; + Z Bs; (structural model)

|

(x___‘.ﬁ__ &, ) = Ao + 4,5, (reflective way measurement model)

by

(‘-f | X ) =TTy + er -« . (formative way measurement model)

These parameters correspond to the location pagasnéhat is, we take into account
the mean of the manifest and latent variables. Weweuntil now, we have only
considered standardized manifest variables (zeranna&d unit variance). In fact,
because it has been imposed that way during theriddg, the estimated latent
variables are also standardized. In order to obth&n location parameters the
researcher must consider whether it makes sensal¢alate them. This decision
concerns data scales which are the key criteriietide whether to estimate location
parameters. We must say that this aspect on s@alest considered in Wold’'s
original algorithm. It was developed by Lohmollé©89) who extended PLS-PM to

applications with mixtures of categorical and intdrscaled data.
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2.6PLS-PM flowchart.
In conclusion, the PLS-PM algorithm can be sumneariay the flowchart in Figure

2.5.

Figure 2.5. Flowchart of the Partial Least SquathRodeling (PLS-PM)
algorithm.

A old
—» 1.1 External Approximation Yo D Wax,
E
Z . e Tel.'.}
1.2 Internal Approximation Ctntl'qid scheme
€, Factorial scheme
Stage 1 Path weight scheme
Hewdie | 230909090 d 0000 smmmsesiessscee e
Procedure ~ i
1 W =(Z;2,) Zix, Mode A

1.3 Outer weights

W =(X/X))'X)Z, ModeB

W ew ik = 5?5}:({‘0}‘(1{;* . Z_I- )) MOdC C

NO

1.4 Convergence?

9 —_—T _T "{' X
LVs Final Estimates 51 =1 = 2 W
w o TTTTmTmmmmmmmmmmmmmmmmmmmmmmTT
Stage 2 Path coefficient B, =YYy,
: A=) 'Yx, reflective
. = X reflective
Stage 3 Loa_d!ng w =X Yixy, _
coefficients £, =w, formative
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2.7 PLS-PM validation

PLS-PM lacks a well identified optimization critemni; however it provides some
quality indices or measures. The validation of &M requires the analysis and
interpretation of both the measurement and thetsiral model. This order has to be
respected because we must first check that we ealéy measuring what we are
assuming to measure, before any conclusions candragvn regarding the
relationships among the latent variables.

No single criterion exists within the PLS framewdokmeasure the overall quality of
a model, so we cannot perform inferential statistiests for goodness of fit. As an
alternative, non-parametrical tests can be apptiethe assessment of the structural

model.

42



2.7.1 Measurement model validation: reflective measures

Unidimensionality of indicators

When you have a block of reflective indicatorssitsupposed that those indicators
will reflect, to some extent, the latent varialilattthey are associated with. Actually,
it is assumed that the latent variable is the cafigs indicators. This means that if a
construct changes (increases or decreases), thendicators associated with it will
also change in the same direction. Thus, it iscllgio suppose that the indicators are
closely related in such a way that they are indimeensional space.

The reflective indicators must be in a space of direension since they are
practically indicating the same latent variable. RbS-PM we have three main

indices to check unidimensionality:

» Cronbach's alpha.

Z Ccor(x ;, X z)
, k=t - <P -1
p+Zc0r(x/k,x>/k,) p+l

k#k'

where p is the number of variables.

It evaluates how well a block of indicators meastireir corresponding latent

construct. In this case, the observed variablegeqgaired to be standardized and
positively correlated. If the number of variablesxcreases, Cronbach's alpha
increases as well. As it is expected. As a rul¢hafnb, a block is considered as

unidimensional when Cronbach’s alpha is larger than
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¢ Dillon-Goldstein's rho

2

Y 2
Z cor(x ;.t,)
i1

» j
{Z cor(X .1, )} + z (1 —cor? (X1, ))
k=1

D=
o=

wheret;,is the first principal component of the j-th blogkindicators.

As in the case of Cronbach’s alpha, the Dillon-Gt@th’s rho is also focused on
the variance of the sum of variables in the blotknterest. As a rule of thumb, a
block is considered as unidimensional when DillanidStein’s rho is larger than
0.7. This index is considered to be a better indicthan the Cronbach’s alpha
because it takes into account to which extent akent variable explains the block

of indicators.

* Check the first eigenvalue of the indicatorsrefation matrix
If a block is unidimensional, then the first eigalue of the correlation matrix of
the manifest variables should be much more largen tone whereas the second
eigenvalue should be smaller than 1. In this wag assessment of the first
eigenvalue differs from the Kaiser’s criterion @nit is not used to extract the
number of components (which is considered one @fie¢ast accurate methods for
deciding which components to extract from a PCA)e Tevaluation of the first
eigenvalue is performed in regards to the reshefdigenvalues in order to have an

idea of how unidimensional is a block of indicators
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Indicators are well explained by their latent variables

Then, we should check that indicators are well @xld by their latent variables.

We check it by means of three tools:

* Communality
Com(& xjy) = cor’( & xy) = /1‘};(
is the communality for the k-th manifest variabfehe j-th block.
Communality is calculated with the purpose to chigkt indicators in a block are
well explained by its latent variable. The refleetirelation: x;, = A&, + €k,
implies that the latent variable explains its imdor, so we have to evaluate how
well indicators are explained by its latent varegbl To do this, we examine the
loadings which indicate the amount of variance astidretween the construct and its
indicators.
Communality measures how much of the manifest bbgigariance is explained by
its own latent variable. In other words, how wélé tmanifest variables described
the related latent variable or the part of variabetween a construct and its
indicators that is common to both. One expects asehmore shared variance
between latent variable and manifest variables #vaor variance, that i§i]-2k >
var (g) with var(g) = 1 — Aj.
Indicators with a low communality are those for efhthe model is “not working”
and the researcher may use this information to dwogh variables from the
analysis.
It is possible to measure the quality of the wholeasurement model by mean of

the average communality index, that is a weightextage of all the block-specific
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communality indexes with weights equal to the numiifemanifest variables in

each j-th blockCom (¢, xy,) = %Z]-PjCom(fj,xkj).

» Composite reliability

o XA
’ (Z/i‘]k )2 +Zvar(sjk)

where Aj is the component loading of the k-th indicatortle j-th block, and

var(g) = 1 — A

» Average Variance Extracted

AVE = 24

z A+ Z var(e ;)

Average Variance Extracted (AVE) is similar to Bkeg’'s composite reliability,

but AVE attempts to measure the amount of variatha# an latent variable
captures from its indicators in relation to the amo of variance due to
measurement error. AVE should be larger than 0.b@wmeans that 50% or more

variance of the indicators should be accounted for.

Differentiation between construct

Then, we should assess the degree to which a oons# different from other
constructs. This is done by verifying that the sldarariance between a construct and
its indicators is larger than the shared varianttk ather constructs. In other words,

no indicator should load higher on another consttiugn it does on the construct it
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intends to measure. We calculate the correlaticetsvden a construct and other
indicator besides its own block. If an indicatoads higher with other constructs
than the one it is intended to measure, we mighsider its appropriateness because

it is not clear which construct or constructs iacdually reflecting.
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2.7.2 Measurement model validation: formative measures

Unlike reflective indicators, formative indicatoase considered as causing a latent
variable. Formative indicators do not necessarilgasure the same underlying
construct, that is, formative indicators are nopmased to be correlated. For this
reason, formative measures cannot be evaluatethansame way of reflective
measures; and all the assessment criteria bas#dtednadings are discarded in the
formative measures.

In this way we compare the outer weights of eadhcator in order to determine
which indicators contribute most effectively to tta@nstruct. Attention must be paid
in order to avoid misinterpreting relative smallsalute values of weights as poor
contributions. If we are considering the eliminatiof some indicator, this should be
done based on multicollinearity: the elimination recommended if high

multicollinearity occurs.

2.7.3 Structural model validation

The quality of the structural model is evaluatedmaiing three measures:

» the coefficients of determinatidt?
TheR? is calculated for the endogenous latent variallésvaluate the quality of
each structural equation. For each regressionearstiuctural model we haveR#
that is interpreted similarly as in any multipleression analysi®R? indicates the
amount of variance in the endogenous (dependemet)tlaariable explained by its

independent latent variables.

48



« the redundancy

Rd(&;,x,) =4, xR},

is the redundancy index for the k-th manifest y@daassociated to the j-th block,
where¢; is the j-th endogenous latent variablg, is the k-th indicator associated to
¢ Afk is the communalitijzlf is the R? coefficient from the regression between
¢; and its predictors;.

Redundancy measures the percent of the varianged@htors in an endogenous
block that is predicted from the independent lateatiables associated to the
endogenous latent variable. Another definition eflundancy is the amount of
variance in an endogenous construct explainedsboyndependent latent variables.
In other words, it reflects the ability of a set iaflependent latent variables to
explain variation in the dependent latent varialtlggh redundancy means high
ability to predict. In particular, the researcheayrbe interested in how well the
independent latent variables predict values ofrideators’ endogenous construct.

A global quality measure of the structural modelp®vided by the average

redundancy indeX:Rd(f],x]k)=%Zde(€j;xjk), where J is the number of

endogenous latent variables in the model.

« the Goodness-of-Fit (GoF)

J

(1 & ) .

Z(—Zcor‘(x;\j,fj )J ZRZ(&.* £l — prea’icﬁngfj*)

GoF = | NP - '
J J

where J is the number of latent variables in thedehoJ* is the number of

endogenous latent variables and j* indicates arogembus blockcorz(xjk, &) Is
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the correlation between the k-th manifest variabfethe j-th block and the
corresponding latent variablB? (§;.; E;-*s - predicting §;,) is the R value of the
regression between the j*th endogenous latentabli and its associated
predictorsg,s .

The first term is the average communality of ealdclbwhich measures the quality

of the measurement model. The second term is theage of the determination

coefficient for each endogenous construct accordmdatent variables which

explain it. In other words:GoF = ./(Average Communality) * (Average R2).
Hence, GoF is a compromise between the qualithefrheasurement model and
the quality of the structural model. Acceptabledomlues within the PLS-PM
community are GoF >0.7. Since it takes in to act@mammunality, this index is
more applicable to reflective indicators than torative indicators. However, you
can also use the GoF index in presence of formdtiweks, in which case more

importance will be given to the average R
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2.7.4 Validation by resampling

Since PLS-PM is a soft modeling approach, that @oes not imply distributional
assumptions, significance levels for the paramesimates (based on normal
theory) are not suitable. Instead, it is possilbleestimate the significance of the
parameters based on resampling procedures ardaséthin information about the
variability of the parameter estimates. For exampleotstrapping it is a non-
parametric approach for estimating the precisiothefPLS parameter estimates. The
bootstrap procedure is the following: M samples @eated in order to obtain M
estimates for each parameter in the PLS model. Eatiple is obtained by sampling
with replacement from the original data set, widimgple size equal to the number of

cases in the original data set.

51



2.8PLS-PM for non-metric data

PLS-PM is a technique born to handle quantitatiegiables. However, in the
practice categorical indicators could be used tasuee complex concepts as well.
To overcome this problem a recent technique haa peaposed by G. Russolillo
[10], the Non-Metric Partial Least Squares (NM-Pla®)orithm. It consists in a new
class of PLS algorithms that allow the PLS itematio work as an optimal scaling
algorithms, calculating iteratively both scalingdanodel parameters.

In the Non-Metric PLS-PM algorithm the computatiohthe latent variables starts
with an arbitrary choice of their inner estimatés, ..., 9,. Afterwards, a new first
step is added in each cycle of the iterative propmdit is a quantification step, in
which each categorical indicator is transformedairguantitative one; this new

quantified indicator,, is obtained as the orthogonal projectiondpf on the space

spanned by the columnsfif,q . From a computational point of view,

2= X, (X0, X,) X0, |

The procedure continues with the second and the $iteéps, i.e. the inner estimation
and the outer estimations of each latent variaBlece new outer estimates are
computed, the cycle restarts with the quantificatstep and it is iterated until the
convergence between inner and outer estimatiomrached.

This procedure yields as output both scaling andehparameters. It assures that
quantified indicators show suitable properties iernts of optimality and
interpretability. The scaling parameters maximizarelation of the quantified

indicator with the inner estimate of the own LVdaas consequence its weight in the

construction of the LV in a reflective scheme. Muver, the weight of each
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quantified indicator can be expressed also in teofhpart of variability ofd,
explained byx,, 's modalities. In particular, it is possible to shthe following
equivalence:

Pz 9, = Nz,y9,
Hence, the weight of,, reflects the predictive capability of the categerbfx,,

with respect taj,, measured by the correlation ratio squared roe.for this reason

that the NM-PLSPM algorithm is very useful to yigkliable weights for building
composite and complex indicators from simple intticea observed on a variety of

measurement scales.
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3. The evaluation of the
activities and decisions in

health care systems: a cohort

study from Lombardy

3.1 Introduction

When evaluating the degree to which the care deld/éo oncologic patients — such
as woman with breast cancer - is adherent to evelbased guidelines, it is
necessary to consider multiple aspects of the dstgn therapeutic and follow-up
pathways [11]. In fact, singlerocess indicatorsre informative variables which
allow to concisely evaluate a single aspect of desnphenomenadowever, single
indicators do not give a complete view of the quaéhs and their appropriateness or
adherence to the guidelines. Coherent sets of tyuadicators have been then
developed from evidence-based guidelines, and ochtsemeasure the different
aspects of the clinical pathway suitable for agpatwith specific characteristics,
such as stage and comorbidities. Neverthelesss difficult to simultaneously

evaluate many different indicators and a single rmany measure it is deemed
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necessary, but obtaining a methodologically sound @asy to interpret measure
represents a challenge [12,13].

In the literature, different approaches have bempgsed [14,15]. Some are along
the line of providing a simple summary indicatoattican be easily understood from
health professionals and patients, such as usmgibportion of indicators met by
each patient or the all-or-non approach [16]. Tleg®oaches have advantages if we
want to promote a widespread use of a quality assest tool. On the other side, it
oversimplify a complex problem. The evaluation ok tentire diagnostic and
therapeutic pathway is complex, as it involves @ets of the decision process that
cannot be directly measurable or observable. Als® components of the decisional
process are dependent and influenced by each oHwer.these reasons, other
statistical methods are needed. One proposed agpuses a hierarchy or selection
of the most relevant indicators, with respect ® ¢litcome, and a system of weights
to combine them. Although this approach betterecdfl complexity, the assigned
weights are fairly arbitrary [15,17]. Other propdseethodsto summarize a set of
indicators into a single, or a few measures usmtatariables [18,19].

The aim of the present study is to evaluate theaguateness of the procedures
performed in each step of the breast cancer dhsvps (i.e., diagnosis, surgical and
medical treatment, and short term follow-up) thrioulge estimation of a summary
measure for each of them, and to investigate tie&tionshipsFor this purpose, we
used &Partial Least Square (or Projection to Latent $tmas) path model (PLS-PM)
approach.The cohort under study is constituted of incidelntsast cancer cases
occurring between 2007 and 2009 and followed foleast one year after the

diagnosis of cancer in six local health authorigesombardy, Northern Italy.

55



3.2 Material and methods

Population and database

We included all incident breast cancers occurriegivieen 2007 and 2009 in the
geographic area corresponding to six local healthaities of Lombardy, Northern
Italy (5,320,272 inhabitants on 31 December 2(Q2Q). Most of them included the
incident breast cancer cases identified by the eramegistry; two local health
authorities included all cases derived from a \aid algorithm to identify breast
cancer cases from hospital discharge records [DEtases with another diagnosis
or hospitalization for cancer (except for skin am)detween 1990 and 2009 were
excluded from the analysis in order to include sas#h only breast cancer and
consequently to evaluate the specific diagnostittharapeutic pathway.

From a systematic review of the literature and mrgg only indicator that could
be calculated with the available information, wefirtedl a preliminary set of
indicators.

The indicators were then improved and assessethéar mean and consistency by
epidemiologist and breast cancer surgeons, on&itognd radiotherapists through
several meetings and the final set was composag\mral indicators.

Through deterministic record linkage between eagstry and the administrative
available databaseshdspitalizations, outpatient, pharmaceutical pipson and
specific database for anticancer diyigge calculatedfor each patient the indicators
to measure the appropriatenegshe procedures provided for diagnosis, treatment
(surgical and medical) and follow-up

Subsequently we calculated the indicators by eadall health authority: the

indicators represent the proportion of subjectsthis cohort with a specific
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caractheristic for each local health authority, alge proportion of patients wittB5
years. Thus, we have a dataset with 6 observatmnsows (6 local health

authorities) and more than 20 indicators or columns

Statistical analysis

To examine our research question we performed amNI&nalysis [21]. PLS-PM is

a methodology meant to estimate a network of cae$ationships defined according
to a theoretical model and to represent the cawtationships through a graphic,
called diagram. The complexity of the theoreticahstruct is studied taking into
account the relationships among non measurablecatats (latent variables),
represented by a set of observed variables (manigables). In a path model
approach, variables are grouped in two classethdbe that are caused by one or
more variables (endogenous or dependent varialsled)?) those that are not caused
by any other variables in the diagram (exogenousd®pendent variables).

PLS-PM involves two type of models: 1) the measweinor outer model, taking
into account the relations between manifest vasmb{or indicators) and the
corresponding latent variable (or domain); 2) threicdural or inner model, taking
into account the relations among the latent vaesbl.e. between each endogenous
(dependent) latent domain and other latent domaiiferent types of measurement
models exists, depending on the kind of relatiom&t@tween indicators and domain;
we choose a reflective model, i.e. manifest indicateflect the domain.

Once the hypothesized model is specified, a 3 stalg@rithm is used to estimate the
parameters. The first stage is an iterative proeedb ordinary least squares (OLS)

regressions taking into account the relationshipthe structural and measurement
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model, to calculate weights required to give firatimates for each latent variable
(domain). The second and third stages involvesnthreiterative estimation of the
coefficients of the structural (path coefficiene)d measurement model (loading
coefficients), respectively.

As the reflective set of indicators reflects theniQue) domain, it should be
homogeneous and unidimensional, i.e., a set otatdis describing a domain are
assumed to measure the same unique underlyingmioridesre exist several tools to
check the homogeneity and unidimensionality, incigdCronbach’s alpha, Dillon-
Goldstein’s rho, and principal component analydisaset. A set of indicators is
considered homogenous if the Cronbach’s alpha erQition-Goldstein’s rho are
larger than 0.7, while a block is considered unghisional if the first eigenvalue is
higher than 1 and the others are smaller [6]. Alissessing the quality of the
measurement model, we evaluated the quality othetural model through the’R
determination coefficients for each endogenous dontastead, for each regression
in the structural model we have ahtRat is interpreted as the amount of variance in
the endogenous domain explained by its exogenoowiths. In the literature, the
explanation of the variance is described as subatanmoderate or weak with
reference to thresholds of Bqual to 0.67 , 0.33 to 0.19 , respectively .

In the PLS-PM approach, no criterion exist to eatduthe goodness of fit of the
global model, so we cannot perform inferentiallgtistical tests for goodness of fit.
Nevertheless, a descriptive index of goodnesstohfboth the structural and the
measurement models has been proposed, i.e., then@@k This index ranges from

0 to 1, with a value close to 1 indicating a goibf2,6].
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The indicators were performed through SAS 9.2, eviLS-PM analysis was

conducted using thel spmpackage in R software [23].

3.3 Results

The data set consisted of 18 process indicatorsumieg adherence to international
guidelines for the diagnosis and treatment of hremscer, 3 indicators for
complications, and 3 indicators for patients chemastics. For the PLS-PM analysis,
each process indicator was measured as the pegeenitpatient that did not perform
the appropriate diagnostic or therapeutic procdes; example, the indicator
estimating the percentage of mammographies perfbrmithin six months prior to
diagnosis — which would be a positive tool for alyeadiagnosis — is considered as
the percentage of patients who did not perform anmagraphy within six months
prior to diagnosis.

We supposed a process characterized by six diffel@mains, plus one domain for
patients characteristics and one for complicatiohsdetailed description of the
model, domains and indicators is provided in Table

The domain called Disadvantage included patientge aand comorbidities,
characteristics related to a lower probability atharence to diagnostic and
therapeutic guidelines on primary breast cancero8ier domains measured lack of
adherence to guidelines for primary non metastagast-cancer in different phases
of the diagnostic and therapeutic pathway: Diag)ascluding indicators measuring
lack of adherence to diagnostic guidelines; Timingluding an indicator measuring

the proportion of patients with a long intervalweén diagnosis and breast surgery
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and one between surgery and the beginning of mietigament; Surgical treatment
1, measuring lack of adherence to general surgicadielines; Surgical treatment 2,
measuring lack of use of minimal invasive surgiahniques in stage | patients;
Medical treatment, including indicators measurilagkl of adherence to medical
treatment guidelines; Follow-up, including indicatoneasuring lack of adherence to
guidelines for short-time follow-up. The last domaiComplications, included
indicators measuring the proportion of patients eeigmcing side effects from
medical treatment.

We supposed that Disadvantage was connected tbheaither domains, except for
Surgical treatments 2; Diagnosis was joined to mgniSurgical and Medical
treatments, and Follow-up; Timing was connecte&uogical treatment 1; Surgical
treatment 1 was related to Medical treatment antbweup; Medical treatment was
connected to Complications and Follow-up (Figufedhd 3.2).

The final model selection was based on the clincahning and the evaluation of
internal consistence that is a high positive catreh between indicators of the same
domain (Table 3.2) and quality measures of the oreasent models, including
Cronbach’s alpha, Dillon-Goldstein’s rho, and théfedence between the two

principal components (Table 3.3).

Figure 3.1 and Figure 3.2 show the structural mbdsked on the eight domains as
described above. Each domain is inside of an ellipse relationships between
domains, defined a priori, are represented by arove statistics given in Figure
3.1 and Figure 3.2 represent the values of the gatbgression coefficients and the

correlation coefficients linking the domains, respeely.
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A low adherence to the guidelines for the diagmostocedures in breast cancer was
negatively associated with low adherence to thdaines of surgical treatmerfi €
-0.55) and to the timing3(=-0.62) and highly positively associated with lage of
minimal invasive surgery (surgical treatment20.97). A higher proportion of
elderlies and patients with comorbidities was neght associated to low adherence
to the guidelines of medical treatmefit£ -0.70) and positively associated to low
adherence to the guidelines for the diagnostic guoes § = 0.62) and surgical
treatment § = 0.69). Moreover, the timing was positively asated with low
adherence to the guidelines of surgical treatmgnt (.64), and a low adherence to
the guidelines of surgical treatment was negatiaslyociated with the follow-uf (

=-0.87) (Figure 3.1).

In order to take into account all the paths (diatl indirect), Table 3.4 shows the
direct, indirect, and total effects. The indireffeets are obtained as the product of
the path coefficients by taking an indirect patbr Fstance, consider the impact of
Disadvantage on Surgical treatment2, even thouggethwo domains are not directly
related, there is an indirect path from DisadvaatigSurgical treatment2 that goes
through Diagnosis. If you multiply the path coeiiict of Disadvantage on Diagnosis
(0.619) with the path coefficient of Diagnosis ammr@@cal treatment2 (0.967), you get

the indirect effect of Disadvantage on Surgicatment2: 0.598 = 0.619 x 0.967.

Considering correlation coefficients > 0.5, meanthgt the higher the lack of

adherence in one domain the higher the lack of redice in the other, was found

between: Diagnosis and Surgical treatment 2 (r=7)0.9iming and Surgical
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treatment 1 (r= 0.67), Disadvantage and Diagnasi®©62). A negative correlation
was found between Disadvantage and Medical Tredtfner0.88), Diagnosis and
Medical Treatment (r =-0.82), Diagnosis and Timifrg=-0.71), Diagnosis and
Surgical treatment 1 (r= -0.59), Disadvantage amdifig (r =-0.53) (Figure 3.2,

Table 3.5).

Concerning the structural model, the quality wasdemate for the Timing (R=
0.52), Diagnosis (R= 0.38), and Complications {R 0.36) domains, and substantial
for all the other domains (R> 0.68). Furthermore, the quality of the globald®alo

was discrete when evaluated in terms of the goadoifit (GoF = 0.65).

Table 3.6 show the values of the scores of the dwmmay local health authority.
Figure 3.3 is a representation of the values ofst@res of the domains by local
health authority. Figure 3.4 is a representatiorthef six local health authorities
according to the values of the Diagnosis and Carapbns domains. Figure 3.5

summarize the scores of all the domains for eaci leealth authority.

62






Table 3.1. Specification of the measurement mad®artial Least Square Path Modeling (PLS-PM) apgnodescription of domains and

indicators.
Domain Description of the domain Indicator Descriptiortloé indicator
Disadvantage Characteristics related to a lowdsairitity of Comorbidity Proportion of patients with chronic cardiovasculeease
adherence to diagnostic and therapeutic and/or diabetes at diagnosis
guidelines on primary breast cancer Advanced Proportion of patients 75 years
age
Deprivation Proportion of patients in the lower tguaintiles of
deprivation index
Diagnosis Indicators measuring lack of adherenceto D1 Proportion of women aged over 50 who did noénee
diagnostic guidelines on primary breast cancer bilateral mammography 3 months before surgery
D2 Proportion of women aged 50-69 years who didhaee a
screening mammography performed in the 3 months
preceding diagnosis performed in the 6 months pliage
diagnosis
D3 Proportion of breast cancer women without cydalal
and/or histological assessment in the 3 montlws pri
surgery
D4 Proportion of patients in stage I, and not ugdeng
mastectomy , undergoing bone scanning or tho@&tior
liver US or abdominal CT /MR or tumour markers
measurement in the 3 months prior to surgery
Timing Indicators measuring the proportion of paise T1 Proportion of patients whose first postoperatreatment

with a long interval between diagnosis and
breast surgery and between surgery and the
beginning of medical treatment

was not initiated within 60 days of surgery in gwent of
chemotherapy and within 90 days in the event of
radiotherapy




Domain Description of the domain Indicator

Descriptiortloé indicator

T2
Surgical treatmentlindicators measuring lack of adherenceto  Sla
general surgical guidelines on primary breast

cancer S2a

S3a

S4a

Surgical treatment2ndicators measuring lack of use of minimal S1b
invasive surgical techniques in stage | patients

S2b
Medical treatment Indicators measuring lack of aehee to M1
medical treatment guidelines on primary breast
cancer M2
M3
M4

Proportion of patients undergoing surgery mbeant30
days from mammography.

Proportion of stage | and 1l women who diduratergo
breast-conserving surgery

Proportion of patients developing lymphedenthiwiwo
years from breast surgery

Proportion of patients undergoing a seconcesyrgithin
3 months from the first breast conserving surgery,
excluding reconstructions

Proportion of patients not undergoing reconstrel
surgery within a year among patients who underwent
mastectomy

Proportion of patients not undergoing SLNBhi& $etting
of breast conserving surgery for T1 tumors

Proportion of patients with pathological sthbeeast
cancer undergoing axillary clearance at first siyge
within 3 months

Proportion of patients with stage Il tumors nodergoing
neoadjuvant systemic theraphy (either hormonahenw)
Proportion of women who did not receive radiatio
treatment within a year after breast conservingesyr
Proportion of breast cancer women > 50 years wit
pathological stage II-lll not receiving adjuvantrimmne
theraphy or chemotheraphy in the following year
Proportion of breast cancer women < 50 years wit
pathological stage II-Ill not receiving adjuvant
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Domain Description of the domain Indicator Descriptiortioé indicator

chemotheraphy in the following year

Complications Indicators measuring surgical congtians and C1 Proportion of patients experiencing side effeetpiiring
side effects from medical treatment in patients hospitalization during chemotherapy
with primary breast cancer C2 Proportion of patients experiencing hematoldgaie
effects requiring hospitalization during chemotipgra
C3 Proportion of patients experiencing cardio-véacside
effects requiring hospitalization during chemotipgra
Follow-up Indicators measuring lack of adherenceto  F1 Proportion of patients > 50 years not undergoing
guidelines for follow-up after primary treatment mammography within 18 months after surgery
of breast cancer F2 Proportion of patients not enrolled in paliratcare within

6 months of death within 3 months of death
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Table 3.2. Correlations between indicators and diesna
D sadvant age Di agnosi s Timng Surg.treat2 Surg.treatl Medical _treat Follow up Conplications
D sadvant age

Conorbidity 0.9323 0.5874 -0.3516 0. 6765 0.170 - 0. 79067 - 0. 0867 0. 3194

advanced age 0. 0808 0.1610 0.1991 0. 1096 0.215 0. 00463 -0.1613 0.6704

Deprivation 0. 9244 0.5320 -0.6833 0. 5661 -0.199 - 0. 86479 0. 4464 0. 1205
Di agnosi s

D1 -0.3330 0.3992 -0.2120 0. 3635 -0.839 0. 08100 0.4718 0. 1004

D2 0. 2680 0.5960 -0.5051 0. 5946 -0.385 -0.51164 0. 2061 0. 1461

D3 -0. 7062 0.0759  0.2418 0. 0307 -0. 396 0. 47577 -0.0321 0. 1324

D4 0. 5877 0.7617 -0.4029 0.7163 -0. 227 -0. 62661 0. 2597 0. 8238
Ti m ng

T1 -0.6210 -0.7629 0.9697 - 0. 6582 0.676 0. 86755 -0.8712 -0. 4422

T2 -0.0379 -0.2655 0.6750 -0.1210 0.378 0.40747 - 0. 5399 -0.1239
Surg.treat 2

Slb 0. 4639 0.8079 -0.3235 0. 9146 -0.525 -0.50424 0. 1436 0.2088

S2b 0.7618 0.9740 -0.7271 0.9421 -0.438 -0.91122 0.4342 0. 6904
Surg.treatl

Sla 0. 1290 -0.5983 0.5685 -0.4784 0. 924 0. 24033 -0. 7466 -0. 3706

S2a 0. 4906 0.1502 0.0571 0. 1359 0. 426 - 0. 28156 -0. 1670 0.5748

S3a 0. 0250 -0.3651 0.4970 - 0. 3417 0.912 0. 17005 -0.7612 0. 1345

Sda -0.1735 -0.6644 0.7856 - 0. 6081 0.942 0.51094 -0. 8010 -0.0772
Medi cal _treat

ML -0. 7561 -0.7412 0.4382 -0. 7663 0.276 0. 69607 - 0. 2997 -0. 5524

M -0. 4700 -0.6000 0.7404 -0.6136 0.593 0. 67058 - 0. 5359 0. 0672

VB - 0. 5886 -0.2372 0.7472 - 0. 1589 0.123 0.70154 -0.5431 - 0. 0529

V7] - 0. 6998 -0.6718 0.5930 -0.5717 -0.038 0. 82442 -0. 2196 -0.8175
Fol | ow up

F1 0.1189 0.5043 -0.8590 0. 3492 -0.870 - 0. 48324 0.9931 0. 2441

F2 0. 2480 0.4434 -0.8887 0. 2975 -0.766 - 0. 55403 0.9934 0. 1870
Conpl i cati ons

C1 0.2730 0.2645 -0.0306 0. 1570 0.343 -0. 26759 -0.1182 0. 8621

c2 0. 2854 0.5405 -0.2973 0.4329 0.112 -0.47923 - 0. 0504 0. 8186

C3 0. 2584 0.7186 -0.5792 0.5813 -0.580 - 0. 50206 0.6162 0. 7860
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Table 3.3. Unidimensionality indices
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Figure 3.1. Structural model. The path coefficigefgresent the direct effects between the
domains performed according to the Partial LeasaBfPath Modeling (PLS-PM) approach.
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Table 3.4 Direct, indirect, and total effect of tieéationship between domains.

rel ationships direct indirect t ot al
1 Di sadvant age -> Di agnosi s 0.619 0. 000 0.61879
2 D sadvantage -> Timng -0.146 -0.386 -0.53105
3 D sadvantage -> surg.trt2 0.000 0. 598 0.59817
4 D sadvantage -> surg.trtl 0.689 -0.684 0. 00468
5 D sadvantage -> nedical _trt -0.701 -0.181 -0.88243
6 D sadvantage -> followp -0.504 0. 690 0. 18531
7 Di sadvant age ->conplications -0.603 0. 936 0. 33282
8 Di agnosis -> Timng -0.623 0.000 -0.62303
9 Di agnosis -> surg.trt2 0.967 0. 000 0. 96667
10 Di agnosis -> surg.trtl -0.554 -0.400 -0.95395
11 Di agnosis -> nedical _trt -0.294 -0.155 -0.44967
12 Di agnosis -> followp -0.864 1.451 0. 58679
13 Di agnosi s -> conplications 0.000 0.477 0.47698
14 Timng -> surg.trt2 0.000 0. 000 0.00000
15 Timng -> surg.trtl 0.643 0.000 0.64272
16 Timng -> nmedical _trt 0.000 0.105 0.10463
17 Timing -> fol |l owup 0. 000 -0.702 -0.70158
18 Timng -> conplications 0.000 -0.111 -0.11099
19 surg.trt2-> surg.trtl 0.000 0. 000 0. 00000
20 surg.trt2-> nedical _trt 0.000 0. 000 0. 00000
21 surg.trt2-> fol l owup 0. 000 0. 000 0. 00000
22 surg.trt2-> conplications 0.000 0. 000 0. 00000
23 surg.trtl-> nedical _trt 0.163 0. 000 0. 16280
24 surg.trtl1-> followp -0.865 -0.227 -1.09158
25 surg.trtl ->conplications 0.000 -0.173 -0.17268
26 medi cal _trt -> followp -1.392 0.000 -1.39219
27 medi cal _trt->conplications -1.061 0.000 -1.06072
28 foll owup -> conplications 0.000 0. 000 0. 00000
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Figure 3.2. Structural model. The coefficients esent the correlations between the domains
performed according to the Partial Least Squark Maideling (PLS-PM) approach.
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Table 3.5. Correlation between domains

D sadvantage Diagnosis Timng Surg.trt2 Surg.trtl Medical_trt Followp Conplications

Di sadvant age 1. 0000 0.619 -0.531 0.674 0. 0047 -0.882 0. 185 0. 333
Di agnosi s 0.6188 1.000 -0.713 0. 967 - 0. 5858 -0.824 0.477 0. 653
Ti mi ng -0.5311 -0.713 1. 000 -0.585 0.6718 0. 840 - 0. 880 -0. 405
Surg.trt2 0.6742 0.967 -0.585 1. 000 -0.5134 -0.782 0. 325 0. 508
Surg.trtl 0. 0047 -0. 586 0.672 -0.513 1. 0000 0. 332 -0.823 -0.101
Medi cal _trt -0. 8824 -0.824 0. 840 -0.782 0. 3320 1. 000 -0.522 -0.528
Fol | owup 0. 1853 0.477 -0.880 0. 325 -0.8231 -0.522 1. 000 0.217
Conpl i cati ons 0. 3328 0.653 -0.405 0. 508 -0. 1009 -0.528 0.217 1. 000
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Table 3.6. Scores of the domains by local healthaaities

LHA Di sadvantage Di agnosis Tim ng Surg.trt2 Surg.trtl Medical _trt Followp Conplications
1 -0.38 -1.53 1.89 -1.31 2.13 1.21 -1.98 -0. 48
2 1.39 1.52 -0.78 1.48 -0.44 -1.31 0.55 1.58
3 0.63 0.90 -0.80 0.81 0.08 -1.05 -0. 07 0. 68
4 -1.84 -0.38 0. 25 -0.74 -0.72 1.16 0. 46 0.41
5 0. 37 -0.61 -0.97 -0.77 -0.24 -0.43 1.24 -0.75
6 -0.17 0.10 0. 40 0. 53 -0.82 0.42 -0.19 -1.44
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Figure 3.3. Representation of the six local heaitthorities according to the values
of the domains. LHA: local health authority.
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Figure 3.4. Representation of the six local heaitthorities according to the values
of the Diagnosis and Complications domains.
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Figure 3.5Score of the latent variables (domain) by localtheauthority
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4. Conclusion

The core of the PLS algorithm is the calculatiorthed weights required to estimate
the latent variables. The weights are obtained dasehow the structural and the
measurement model are specified. This is done @nmef an iterative procedure in
which two kinds of approximation for the latent iadnes are alternated until

convergence of weight estimates. These two typepfoximation, called the inside
approximation and the outside approximation, haveat with the inner relations and
the outer relations, respectively. The algorithngibg with arbitrary initial weights

used to calculate an outside approximation of #tenkt variables, that is, initial

weights are given in order to approximate the katamiables as linear combinations
of their manifest variables. Then, the inner relaéi among latent variables are
considered in order to calculate the inside appnaxions, having the option of
choosing between three possible scenarios, cakéghting schemes, to perform this
approximation: (1) centroid, (2) factor, and (3)tlpascheme. Once the inside
approximations are obtained, the algorithm turmaiad to the outer relations when
new weights are calculated considering how thecatdrs are related to their
constructs: by mode A (reflective), or by mode Brifiative). Mode A implies

simple linear regressions while mode B implies iplét linear regressions. The
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simple/multiple regressions coefficients are theaduas new weights for an outside
approximation. The process continues iterativelil @onvergence of the weights is
reached. After convergence of the weights, and dihee latent variables are
estimated, the parameters of the structural andnieasurement models can be
obtained. The structural coefficients, also knowmpath coefficients, are calculated
by ordinary least square regressions between l|ai@mables. There are as many
regressions as endogenous latent variables. Thempters of the measurement
model, the loading coefficients, are also estimdigdeast square regressions but
taking into account the kind of mode to be usetlecéve or formative). PLS-PM is
a more exploratory way of performing structural &ipn modeling than the popular
LISREL approach. The latter approach resorts tssatal theory of statistical
inference and is based on a heavy use of distobati assumptions about the
behavior and personality of the data. LISREL alsquires larges samples, in
contrast, PLS-PM uses ordinary least squares, wihi@s not make distributional
assumptions and can model skewed and ordinal Hatace, it is more suitable for

research with small samples, and non-normal digiohs.

| used the PLS-PM method in order to analyze theemsmhce of the procedures
provided for diagnosis, treatment (surgical and icedy] and follow-up of breast
cancer through a set of indicators. This method dea®ral strengths, as PLS-PM
allows the reduction of dimensionality of severahalh indicators into a smaller
number of latent variables (and more interpretabis}, and then allows to study
causal relationships between these latent variafiles method also requires no

distributional assumptions with respect to the afalgs included in the model. The
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limit of this method is the bias deriving from thelection of the indicators used to
characterize the latent variable. Moreover, by gisirdataset with 6 observations (6

local health authorities) the sample size is toalstn make some inference.

The aim of this study was to apply the PLS-PM uhiféerent field, since it has been
widely used in economical (the customer satisfaci® a typical example) and
psychological setting. In biomedical context, théblshed articles are scanty and
generally published in open access journals [24-B6f example, Xue et al. [24]
introduced PLSPM to analyze the association betvegggle or multiple SNPs and
obesity in the European Prospective Investigatib@ancer (EPIC)-Norfolk study;
Vitalino et al. [25] analyzed a theoretical stres®del that examined whether
relationships of chronic stress, psychophysiol@gnd coronary heart disease varied
between the sex and among users or not users afoher replacement therapy
(among women). Moreover, in the paper by Fischét,[8mpirical approaches that
applied PLS-PM to decision-making in healthcare eveummarized through a
systematic literature search. PLS-PM was used ass@imation technique for a
structural equation model that specified hypothdsesveen the components of
decision processes and thereasonableness of demsking. The model was
estimated for a sample of 55 coverage decisionghenextension of newborn
screening programs in Europe. However, he focusethe economical aspects of
the screening programs. Thus, the present studggepts an unique example of
PLS-PM application in the evaluation of the adheeenf the procedures provided
for diagnosis, treatment (surgical and medical)d &llow-up of breast cancer

through a set of health indicators, and to inveséighe difference between various
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health structures, such as the local health adyh@lthough the limited sample size

makes the analyses only explorative-orientated.
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