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Abstract  
 

The Partial Least Squares Path Modeling (PLS-PM) is a method meant to estimate a 

network of causal relationships defined according to a theoretical model. The 

complexity of the theoretical construct is studied by taking into account the 

relationships among non measurable indicators (latent variables), represented by a set 

of observed variables (manifest variables). PLS-PM aims to estimate, through a 

system of interdependent equations based on simple and multiple regressions, the 

network of relations among the manifest variables and their own latent variable, and 

among the latent variables inside the model. The causal relationships among 

variables are represented through a Path Diagram, in which the latent variables are 

enclosed in circles and the manifest variables are enclosed in boxes. PLS-PM 

involves three sets of relations: 1) structural or inner model, 2) measurement or outer 

model, 3) the weight relations upon which latent variable scores can be calculated. 

The first model takes into account the relations among the latent variables and the 

second takes into account the relations between manifest variables and the 

corresponding latent variable. In the structural model each endogenous (dependent) 

latent variable is linked to the others by a multiple regression model. The structural 

design only assumes recursive models, i.e. the path diagram takes the form of a 

causal chain with no loops. Different types of measurement models exists, depending 

the kind of relationship: 1) reflective model (observed variables are considered being 

caused by the latent variable (i.e., indicators reflect the construct; the latent variable 

is considered as the cause of the manifest variables and each manifest variable is an 
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effect of the unique corresponding latent variable); 2) formative model (the latent 

variables are considered as being caused by its manifest variables); and 3) MIMIC 

model (multiple effect indicators for multiple causes, it represents a mixture of both 

the reflective and the formative models within the same block of manifest variables). 

Independently from the type of measurement model, the standardized latent variable 

scores are computed as a linear combination of its manifest variables and outer 

weights (the so-called weight relation). 

Once the theoretical model is specified, the next phase in PLS-PM is the estimation 

of the model parameters. The PLS algorithm consists of three stages. The first stage 

is an iterative procedure of ordinary least squares regressions taking into account the 

relationships of the structural and measurement model, in order to calculate weights 

required to give final estimates for each latent variable. This first stage is the “core” 

stage in the PLS algorithm. Subsequently, the second and third stage involve the non-

iterative estimation of the coefficients of the structural and measurement model, 

respectively. The structural model coefficients (path coefficients) are calculated by 

ordinary least squares regressions between latent variables. The measurement model 

coefficients (loading coefficients) are also estimated by regressions but taking into 

account the kind of mode to be used (reflective or formative). 

 

PLS-PM has been widely used in economical (the customer satisfaction is a typical 

example) and psychological settings. In biomedical context, the published articles are 

scanty and generally published in open access journals. 

The aim of this study was to apply the PLS-PM in a different field, since it has been 

widely used in economical (the customer satisfaction is a typical example) and 
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psychological setting. In biomedical context, the published articles are scanty and 

generally published in open access journals.  

I used the PLS-PM method in order to analyze the adherence of the procedures 

provided for diagnosis, treatment (surgical and medical), and follow-up of breast 

cancer through a set of indicators. Indeed, the used approaches in this field since 

oversimplify the complex problem since they do not consider simultaneously 

multiple aspects of the diagnostic, therapeutic and follow-up pathways. This method 

has several strengths, as PLS-PM allows the reduction of dimensionality of several 

health indicators into a smaller number of latent variables (and more interpretable), 

and then allows to study causal relationships between these latent variables, 

representing the different aspects of the diagnostic, therapeutic and follow-up 

pathways. This method also requires no distributional assumptions with respect to 

the variables included in the model. The limit of this method is the bias deriving 

from the a priori selection of the relationships among latent variables and of the 

indicators used to characterize the latent variable. Although the limited sample size 

makes the analyses explorative-orientated only, the present study represents an 

unique example of PLS-PM application in the biomedical research, in particular in 

the evaluation of the adherence of the diagnostic and treatment procedures for breast 

cancer.  
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1. Essentials of 
Path Modeling 

 

 

 

 

Path Modeling, also known as Structural Equation Modeling (SEM), is a generic 

term used to designate a set of different statistical techniques that meant to estimate a 

network of causal relationships defined according to a theoretical model. The 

concept of SEM refers to cause-effect relationships between variables which can be 

specified by a series of equations. The concept of Path Modeling refers to a graphical 

approach in which the relationships between variables (structural equations) are 

graphically displayed, through in what is known as Path Diagram.  

Fornell defined SEM as a second generation of multivariate methods as it allows not 

only an exploratory approach (data then conceptualization) but also a theory-based 

approach. This method is used when we are interested in modeling a phenomenon of 

interest based on a theoretical framework. A theoretical model is imposed on the 

data, and the strength of the relationships is examined. In summary, path modeling is 

a useful set of methods that allows the combination of prior knowledge with 

measured data. The prior knowledge is provided by some theory for a certain 
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phenomenon of interest, in which a model for the cause-effects relationships among 

variables is proposed [1]. 

Path Modeling involves latent variables (LVs) which are theoretical variables that 

cannot be observed nor measured directly. Because these types of variables cannot be 

observed nor measured explicitly, LVs have to be measured through variables that 

are perfectly observable and measurable which are known as manifest variables 

(MVs) or indicators. LVs are very common in social sciences (e.g., psychology, 

sociology, and economy) in which there are many concepts of theoretical nature such 

as intelligence, socioeconomic status or industrial development. 
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1.1 Reflective versus formative indicators 

Once we have assumed that LVs can be observed and measured indirectly through 

MVs or indicators, we need to consider the ways in which LVs are (indirectly) 

measured: LVs can be observed/measured in two ways: (1) through their 

consequences or effects reflected on their MVs; (2) through different indicators that 

are assumed to cause the LVs. In the first case, called reflective way, MVs are 

considered as being caused by the LV, whereas in the second case, called formative 

way, a LV is supposed to be formed by its MVs [2]. 

Suppose that a doctor is examining a patient trying to determinate the presence or 

absence of some disease. The doctor might evaluate the patient symptoms (e.g., body 

temperature, blood pressure, pulse rate, respiration rate, feelings of nausea). The 

doctor might ask about the patient’s lifestyle (e.g., diet, drinking and smoking habits) 

that might be causing the disease. So, symptoms can be considered as reflective 

indicators because they reflect the disease, whereas lifestyle habits can be seen as 

formative indicators because they form (cause) the disease (Figure 1.1).  

 

Figure 1.1. A latent variable (disease) measured by formative and reflective 

indicators [3]. 
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In the reflective way it is expected that different indicators are to be highly correlated 

because they are measuring the same concept [4]. The same cannot be said about 

formative indicators because a LV can be caused by two or more MVs mutually 

uncorrelated. 

The difference between reflective and formative indicators is related to the 

conceptualization of two data analysis methods: factor analysis and principal 

component analysis. In factor analysis, the latent variables are called factors, and it is 

assumed that these factors explain the observed variables. In contrast, the LVs in 

principal component analysis are called components, which are obtained as linear 

composites of the observed variables. Under the factor analysis point of view, a 

factor Fj is associated to the observed variables in a reflective form, whereas under 

the principal component analysis point of view, a component PCj can be represented 

as LV with formative indicators (Figure 1.2) [3]. 

 

Figure 1.2. Factors from factor analysis (Fj) and components from principal 

component analysis (PCj) as latent variables. 

Factors regarded as latent variables with reflective indicators. 

Principal components regarded as latent variables measured by formative indicators. 
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1.2 Path Diagrams  

The main characteristic of path modeling technique is its graphical approach. The 

visual representation of the models are called path diagrams. They provide a 

graphical representation of the relationships among a set of variables, with the 

special property that they can be translated into a system of simultaneous equations. 

The great advantage of path diagrams is that they allow for the visualization of the 

relationships and, in terms of a causal model, its graphical display makes it possible 

to understand the conceptualization of the model [3]. 

Path diagrams have a conventional notation (Table 1.1). Briefly, LVs are enclosed in 

circles and MVs are enclosed in boxes.Variables may be grouped in two classes: 

endogenous or dependent (variables caused by one or more variables) and exogenous 

or independent (variables not caused by any other variables). Endogenous LVs are 

usually represented by η whereas exogenous LVs are represented by the Greek letter 

ξ. Arrows show causal relationships among variables (either latent or manifest), and 

the direction of the array defines the direction of the relation, i.e. variables receiving 

the array are to be considered as endogenous variables in the specific relationship.  
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Table 1.1. Main path diagram notation  

 
Manifest variable 

 
Latent variable 

 

Exogenous latent variable (ξ) causes 

endogenous latent variable (η) 

 

Correlation between two manifest 

variables 
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1.3  Path Modeling analysis 

The model includes two parts or sub-models: the measurement model and the 

structural model. The first model represents how each construct is measured by its 

indicator variables. The structural model involves the causal relations among the 

constructs and it is represented by a simultaneous system of equations among the 

latent variables. The path modeling process starts with a theoretical framework that 

involves the establishment of the theoretical relationships among constructs or latent 

variables. The subsequent step is deciding how many and which observed variables 

will be considered as indicators of the constructs. The selection of manifest variables 

and its number is sometimes a subjective matter and no criterion exists on this point. 

Regarding the number of indicators some authors suggest to use as many indicators 

as possible although having too many may present problems with model fitting [3]. 

Once the relationships of the model are fixed, they can be visualized in the form of a 

path diagram. The next step involves the mathematical specification of the model, 

that is, its translation into a system of equations, followed by the estimation phase 

and the validation of results. 

In conclusion, Path Modeling is a methodology for the analysis of indirectly 

measured cause and effect relationships in complex systems. This analysis can be 

accomplished under two major approaches: confirmatory and predictive purposes. 

The confirmatory approach is concerned with theory development and testing by 

testing whether the assumed theory and hypotheses can be confirmed; the model is 

analyzed by examining the covariance structure of the data and testing probabilistic 

assumptions. The predictive approach focuses on making predictions about the 
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outcome variables of interest and it involves the variability of data in the form of a 

prediction model of the dependent variables. The path modeling method for 

confirmatory purposes has the generic name of Covariance Structure Analysis 

(CSA), also known as LISREL. In turn, the predictive oriented methodology is 

Partial Least Squares Path Modeling (PLS-PM).  

<<When we use a covariance-based SEM approach we implicitly assume that the 

data is generated by some “true” theoretical model. In this scenario, the goal of CSA 

is to recover the “true” model that gave rise to the observed covariances. Briefly, 

when using CSA we are concerned with fitting a model and reproducing the observed 

covariances. This approach resorts to classical theory of statistical inference and is 

based on a heavy use of distributional assumptions about the behavior and 

personality of the data. Consequently, the analyst is forced to move slowly; and the 

modeling process requires careful thought and stringent justifications that more often 

than not end up compromising the whole analysis with the bizarre (and sometimes 

contradictory) principle of the data must follow the model. In contrast, […]PLS-PM 

models are not considered to be ground truth, but only an approximation with useful 

predictiveness. In other words, PLS-PM assumes no model by which the data were 

generated. There is only the data and nothing but the data. In this sense, PLS-PM 

follows the spirit of a dimension reduction technique that we can use to get useful 

insight of the data on hand. The ultimate goal in PLS-PM is to provide a practical 

summary of how the set of dependent variables are systematically explained by their 

sets of predictors. Besides the description of PLS-PM as an alternative approach to 

SEM covariance structure analysis, PLS-PM can also be regarded as a technique for 

analyzing a system of relationships between multiple blocks of variables, or if you 
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want to put it in simple terms, multiple data tables. […] In summary, we can regard 

PLS-PM as a coin with the two following faces: 

• PLS Path Modeling as a component-based alternative for estimating Structural 

Equation Models. 

• PLS Path Modeling as a method for analyzing a system of linear relationships 

between multiple blocks of variables.>> [5]. 

PLS-PM was originally developed as an analytical alternative to CSA for situations 

where the theory is weak and where the general assumptions of CSA are not met. 

The overall goal of PLS is to use observed independent variables to predict observed 

dependent variables. This is realized indirectly by extracting independent and 

dependent latent variables from observed variables. This is done in such a way that 

they optimally address one or both of these two goals: explaining response variation 

and explaining predictor variation. The goal is to predict the dependent variables 

(both latent and manifest) by minimizing the residual variances of the endogenous 

(i.e. dependent) variables. In particular, the method of partial least squares balances 

the two objectives, seeking latent variables that explain both response and predictor 

variation [3]. 
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2. PLS Path Model 
(PLS-PM): the 
Method 

 

 

 

 

The basic idea of Partial Least Squares (PLS) methods is the estimation process used 

to calculate model parameters. This process is performed by separating the 

parameters to be estimated in parts (hence the term partial) in order to apply an 

iterative procedure of least squares regressions to calculate them.  

PLS methods are not derived through probabilistic reasoning or numerical 

optimization. Moreover, PLS has not assumptions about variables and error 

distributions and for this reason it is called as a “soft modeling”. It doesn’t rely on 

the classic inferential tradition. Variables can be numerical, ordinal, or nominal. 

Partial Least Squares Path Modeling (PLS-PM) is one of the PLS techniques. It is a 

multivariate technique of second generation by combining causal modeling with data 

analysis features. PLS-PM is a statistical method that has been developed for the 

analysis of structural equation models with latent variables, specially designed to 



21 
 

provide an alternative approach to the LISREL models. As opposed to the 

covariance-based approach, PLS is prediction oriented aiming to obtain estimates of 

latent variables for prediction purposes, maximizing the variance explained for the 

dependent variables (both latent and manifest variables).  

PLS-PM is a methodology meant to estimate a network of causal relationships 

defined according to a theoretical model. The complexity of the theoretical construct 

is studied taking into account the relationships among non measurable indicators 

(latent variables), represented by a set of observed variables (manifest variables). 

PLS-PM aims to estimate, through a system of interdependent equations based on 

simple and multiple regressions, the network of relations among the manifest 

variables and their own latent variables, and among the latent variables inside the 

model. The causal relationships among variables are represented through a Path 

Diagram, in which the latent variables are enclosed in circles and the manifest 

variables are enclosed in boxes.  

PLS-PM involves three sets of relations: 1) structural or inner model, 2) 

measurement or outer model, 3) the weight relations upon which latent variables 

scores can be calculated. The first model takes into account the relations among the 

latent variables and the second one takes into account the relations between manifest 

variables and the corresponding latent variable. In the structural model each 

endogenous (dependent) latent variable is linked to the others by multiple regression 

model. The basic structural design only assumes recursive models, i.e. the path 

diagram takes the form of a causal chain with no loops. Different types of 

measurement models exists, depending on kind of relationship: 1) reflective model 

(the observed variables are considered being caused by the latent variable (i.e., 
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indicators reflect the construct; the latent variable is considered as the cause of the 

manifest variables and each manifest variable is an effect of the unique 

corresponding latent variable); 2) formative model (the latent variables are 

considered as being caused by its manifest variables); and 3) MIMIC model 

(multiple effect indicators for multiple causes, it represents a mixture of both the 

reflective and the formative models within the same block of manifest variables). 

Independently from the type of measurement model, the standardized latent variable 

scores are computed as a linear combination of its manifest variables and outer 

weights (the so-called weight relation). 

 

Figure 2.1 Path Diagram: The structural model is painted in blue grey, the 

measurement model in sky blue. 
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Once the theoretical model is specified, the next phase in PLS-PM is the estimation 

of the model parameters. The PLS algorithm consists of three stages. The first stage 

is an iterative procedure of ordinary least squares regressions taking into account the 

relationships of the structural and measurement model, in order to calculate weights 

required to give final estimates for each latent variable. Subsequently, the second and 

third stages involves the non-iterative estimation of the coefficients of the structural 

and measurement model, respectively. The structural model coefficients (path 

coefficients) are calculated by ordinary least squares regressions between latent 

variables. The measurement model coefficients (loading coefficients) are also 

estimated by regressions but taking into account the kind of mode to be used 

(reflective or formative). 
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2.1 Structural model 

The structural model (also known as inner model) considers only the latent variables, 

which are assumed to be linearly interconnected according to a causal-effect 

relationship model. 

The associations among latent variables can be represented by a linear multi-equation 

system which has to be recursive. Latent variables can play both predictee and 

predictor roles: a latent variable that is never predicted is called exogenous, 

otherwise is called endogenous. For simplicity, no distinctions in notation are made 

between endogenous and exogenous constructs; all latent variables will denote as x. 

The linear equations take the following form: 

 

 

 

with predictor specification 

 

where the parameter ��� is called the path coefficient (representing the path from the 

i-th to the j-th latent variable), ζi is the inner residual term, and the index i ranges 

over all predictors of ��. Predictor specification implies that the residuals have zero 

mean and are uncorrelated with the latent variables. 
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2.2 Measurement model 

The measurement model (also known as outer model) establishes the relation 

between a block of manifest variables and its latent variable. Each indicator is 

supposed to be associated with just one latent variable Because the latent variable is 

an unmeasured variable, it has to be indirectly measured trough the manifest 

variables, hence the name measurement model. There are three options to establish 

the connections of the manifest variables to its latent variable: 

a) Reflective way 

b) Formative way 

c) Multiple effect indicators for multiple causes way (MIMIC) 

a) Reflective way 

In the reflective way the latent construct is considered as the cause of the 

indicators.  

 

Figure 2.2 Path diagram of reflective way 
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In this case, the manifest variables can be considered reflects or manifestations of 

their latent variable. The manifest variable ���  is assumed to be a linear function 

of its latent variable �� 

 

where ���  is the loading coefficient and 	��  is the outer residual term. 

When predictor specification is adopted,  

, 

which implies that the residuals have zero mean and are uncorrelated with the 

manifest variables. 

 

b) Formative way 

In the formative way the latent construct is considered as being caused by its 

indicators 

 

Figure 2.3 Path diagram of formative way 
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The latent variable �� is assumed to be a linear function of its manifest variables 

��� 

 

assuming predictor specification 

 

which means that the residuals have zero mean and are uncorrelated with the 

manifest variables. 

 

c) MIMIC way 

MIMIC way can be considered as a mix of reflective and formative ways. 

In this case there are two linear equations 

 

and 

 

where the index h ranges over all reflective manifest variables, and the index l 

ranges over all formative manifest variables, h+l = k.  

when predictor specification is adopted, 

and 

 

Main differences between reflective and formative manifest variables can be 

summarize as in Table 2.1. 
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Table 2.1. Main differences between reflective and formative manifest variables. 

Reflective  Formative 

The direction of causality is from 

construct to measure 

 The direction of causality is from measure to 

construct 

It is expected that the measures are 

correlated between them 

 It is not expected that the measures are 

correlated between them. The model does not 

imply the internal consistency 

The elimination of an indicator from the 

measurement model does not alter the 

meaning of the construct 

 The elimination of an indicator from the 

measurement model can alter the meaning of 

the construct 

The measurement error is taken into 

account for each item 

 The measurement error is taken into account 

for the construct 
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2.3 Weight relations 

Although the measurement model specifies the relations between the latent variables 

and their set of indicators, this specification is done in a conceptual level. In other 

words, the outer relations refer to the indicators and the “true” latent variable. 

However, we do not really know it. For this reason the weight relations must be 

defined. Latent variable estimates or scores are defined as follows: 

 

where 
��� are the weights used to estimate the latent variable as a linear combination 

of their observed manifest variables. “Note that by using weight relations the 

problem of factor indeterminacy, present in covariance structure models, is avoided 

in PLS” [3]. 
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2.4 Soft modeling 

Predictor specification implies that residual terms have zero mean and are 

uncorrelated with the independent variables (latent or manifest ones). Moreover, the 

outer model residuals are uncorrelated with all latent variables and with the inner 

model residuals. As consequence, the Ordinary Least Squares (OLS) estimates are 

consistent and the prediction using OLS estimates is consistent with minimum 

residual variance. It is also important to remark that PLS does not restrict the 

structure of the residual covariance [3]. The relevant feature of PLS-PM (as well as 

all the PLS techniques) is that no assumptions need to be made on the data about 

distribution and observations independently distributed. This means that PLS 

approach avoids the rigid assumptions of the method of maximum likelihood. For 

these reasons, PLS approach is more flexible, being known as a soft modeling 

technique [6]. 
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2.5 PLS-PM algorithm  

Once the theoretical model has being specified, the next phase in PLS-PM is the 

estimation of the parameters carried out by the PLS algorithm. The PLS estimation 

algorithm proceeds in three stages.  

1) The first step consists of an iterative procedure of simple and/or multiple 

regressions taking into account the relationships of the inner model, the outer 

model and the weight relations. The result is the estimation of a set of weights 

which are used to calculate the latent variable scores as linear combinations 

of their associated manifest variables; 

2)  the second and third steps involve the non-iterative estimation of the 

structural model coefficients (path coefficients) and  

3) the measurement model coefficients (loadings).  

 

2.5.1 PLS-PM algorithm – stage 1 

This first stage is the “core” stage in the PLS algorithm. The goal of this stage is the 

calculation of weights required to give final estimates for each latent variable �� as a 

linear combination �� of its � manifest variables ��� 

 

where 
��� are called outer weights, scaled to give ��  unit variance. This 

standardization is done to avoid scale ambiguity of the latent variable. Since they are 

unknown, some standardization is required to avoid such scale ambiguity.  
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The process to calculate the weights follows an iterative mechanism that takes into 

account the hypothesized relations of the structural and the measurement models 

(Table 2.2). For each model (structural and measurement) there is an associated 

approximation of the latent variables: outside approximation for the measurement 

model, and inside approximation for the structural model. Several options for 

performing first stage are available depending on how the relations between latent 

variables in the structural model are established, and also on how the indicators are 

associated to their latent variables. 
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Table 2.2 PLS-PM iterative algorithm 

1) Start with arbitrary outer weights 
  

e.g. 
�=1, 
�=1, ... , 
�=1 

2) External approximation 

Compute LVs as linear combinations of their MVs 

e.g. �� = 
��� + ... + 
��� 

3) Updating inner weights 

Take into account the structural relationships between LVs 

e.g. ��� = cor(��, ��), only if ��� is connected with ���  

4) Internal Approximation 

Re-compute LVs taking into account their LV neighbors 

e.g. �� = ����� + ����� only if ��� is connected with ��� and ��� 

5) Updating outer weights 

Re-compute 
 with the LVs form the internal approximation 

e.g. under mode A, 
�= cov(��, ��) or 
�= cor(��, ��) if MVs are standardized 

6) Check for convergence  

e.g. |
��� - 
����| < 0. 00001 

7) Repeat steps 2 - 6 until convergence 

 

LV= latent variable, MV= manifest variable 
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Stage 1.1-1.2: External approximation 

The iterative process begins with an initial proxy of each latent variable as a linear 

combination of its manifest variables 

 

Where �� is a scalar that gives �� unit variance, and the sign ambiguity ± is solved 

by choosing the sign so that the majority of the ��� is positively correlated with �� 

 

 

The standardized latent variable is finally expressed as: 

 

where the 
��� are called the outer weights. 

 

The idea behind the outside approximation is to obtain a set of weights to estimate 

a latent variable accounting for as much variance as possible for the indicators and 

the constructs. The algorithm begins with an initial outside approximation of the 

latent variables by using arbitrary weights which are scaled to obtain unit variance 

for the latent variables. 
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Stage 1.3-1.4: Internal approximation 

In this step the connections among latent variables in the inner model are taken 

into account in order to obtain a proxy of each latent variable calculated as a 

weighted aggregate of its adjacent latent variables. The internal estimation ��  of �� 

is defined by: 

 

where ���  are the inner weights which are assumed to be scaled so that the 

variable in parentheses is standardized. 

The connections among latent variables in the inner model are taken into account 

only when two latent variables are connected by an arrow. In other words, inner 

weights ���  between two constructs exist only when there is an arrow between �� 

and ��. 

There are three options to calculate the inner weights: 

• Centroid scheme. This scheme only considers the sign direction of the 

correlations between a latent variable and its adjacent (neighboring) latent 

variables.  

 

Some problems may be present when a correlation is close to zero, causing a 

sign changes during the iterations from +1 to -1.  

• Factor scheme. To avoid the problems of the centroid scheme, the factor 

scheme uses the correlation coefficient as the inner weight instead of using 
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only the sign of the correlation. This scheme considers not only the sign 

direction but also the strength of the paths in the structural model. 

• Path scheme. The latent variables are divided in antecedents (predictors) and 

followers (predictands) depending on the cause-effects relationships between 

two latent variables. An latent variable can be either a follower, if it is caused 

by another latent variable, or an antecedent if it is the cause of another latent 

variable. If �� is a follower of �� then the inner weight is equal to the 

correlation between �� and ��. On the other hand, for the antecedents �� of ��, 

the inner weights are the regression coefficient of �� in the multiple regression 

of �� on the ��’s associated to the antecedents of ��. The path weighting 

scheme has the advantage of taking into account both the strength and the 

direction of the paths in the structural model. However, this scheme presents 

some problems when the latent correlation matrix is singular  

The centroid scheme is the Wold’s original algorithm scheme, whereas the other 

two are implemented in Lohmöller’s version. The centroid scheme represents the 

default option in the software R.  

In practice, choosing one weighting scheme in particular over the others has little 

relevance on the estimation process and does not influence the results 

significantly [7]. 

 

Stage 1.5: Updating outer weights 

There are three ways of calculating the outer weights 
�� (mode A, mode B, and 

mode C). Each mode corresponds to a different way of relating the manifest 

variables with the latent variables in the theoretical model. Mode A is used when 
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the indicators are related to their latent variable through a reflexive way. Instead, 

mode B is preferred when indicators are associated with their latent variable in a 

formative way. Mode C is supposed to be used when the indicators of an LV are 

connected by MIMIC way, and it is rarely used in practice.  

• Mode A. In the reflective way, each weight 
�� is the regression coefficient of 

�� in the simple regression of ���  on ��: 

��� = 
����. 

As �� is standardized:  


�� = (��
′��)"� ��

′��� = #$%&��� , ��( = #$)(��� , ��). 

In case the manifest variables have been also standardized, such a covariance 

becomes a correlation. Note that the covariance between variable ���  and the 

latent variable ��  is used without considering how ���  is related to other 

variables in block *�. In other words, it does not matter if variables in block *�  

are highly correlated, mode A guarantees statistical stabilization of ��  in the 

outside approximation. 

• Mode B. In the formative way, ��  is regressed on the block of indicators related 

to the latent construct ��, and the vector 
�  of weights 
��  is the regression 

coefficient in the multiple regression: 

, , 

where *�  is the matrix with columns of manifest variables ���. 

In this case, we might have some problems when variables ��� in *�  are highly 

correlated, causing the estimation process to become unstable. 
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• Mode C. This case is implemented in Lohmöller’s version and it is a special 

case of mode B. The MIMIC way is a kind of mix between reflective and 

formative ways, so the path coefficients for the h manifest variables related in a 

reflective way are estimated by a simple linear regression: ��+ = ,�+�� and the 

path coefficients for the l manifest variables related in a formative way are 

estimated by a multiple linear regression:  �� = ∑ .������ . 

 

Stage 1.6: Check for convergence 

In every iteration step (S = 1, 2, 3,…,) convergence is checked comparing the 

outer weights of step S against the outer weights of step S-1.  

Wold proposed |
���
/"�  - 
���

/ | < 0.00001 as a convergence criterion [8]. Convergence 

is not guaranteed although it is always found in practice [9]. 

 

Figure 2.4. The first (and core) stage of PLS path modeling algorithm [3]. 
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2.5.2 PLS-PM algorithm – stage 2 

The second stage of the algorithm consists in the calculation of the path coefficient 

estimates �0��, according to the structural or inner model. 

The path coefficients are estimated by ordinary least squares in the multiple 

regression of �� on the ��’s related to it 

. 

The path coefficients can be interpreted as correlation coefficient, if the manifest 

variables are standardized.  

 

2.5.3 PLS-PM algorithm – stage 3 

The third stage of the algorithm consists in the calculation of the loading coefficient 

estimates �0��, according to the measurement or outer model. 

The loadings are estimated depending on the corresponding way.  

In the reflective way, the loading coefficients are the regression coefficients of the 

simple linear regression of each manifest variable ���  on the corresponding latent 

variable ��: 

 

In the formative way, the weight coefficients 12 coincide with the outer weights 

obtained in the first stage. This is because we perform the multiple linear regression 

of �� on ���: 
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2.5.4 Location parameters 

If we look at the predictor specification equations (shown below) we can observe 

three more parameters that we have not estimated at all: �3�, �3�� (in reflective way), 

and 13� (in formative way) 

 

These parameters correspond to the location parameters, that is, we take into account 

the mean of the manifest and latent variables. However, until now, we have only 

considered standardized manifest variables (zero mean and unit variance). In fact, 

because it has been imposed that way during the algorithm, the estimated latent 

variables are also standardized. In order to obtain the location parameters the 

researcher must consider whether it makes sense to calculate them. This decision 

concerns data scales which are the key criteria to decide whether to estimate location 

parameters. We must say that this aspect on scales is not considered in Wold’s 

original algorithm. It was developed by Lohmöller (1989) who extended PLS-PM to 

applications with mixtures of categorical and interval-scaled data. 
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2.6 PLS-PM flowchart. 

In conclusion, the PLS-PM algorithm can be summarized by the flowchart in Figure 

2.5.  

 

Figure 2.5. Flowchart of the Partial Least Square Path Modeling (PLS-PM) 
algorithm.  

 
 

  

Path coefficients 
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formative 

Stage 2 
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2.7 PLS-PM validation  

PLS-PM lacks a well identified optimization criterion; however it provides some 

quality indices or measures. The validation of a PLS-PM requires the analysis and 

interpretation of both the measurement and the structural model. This order has to be 

respected because we must first check that we are really measuring what we are 

assuming to measure, before any conclusions can be drawn regarding the 

relationships among the latent variables. 

No single criterion exists within the PLS framework to measure the overall quality of 

a model, so we cannot perform inferential statistical tests for goodness of fit. As an 

alternative, non-parametrical tests can be applied for the assessment of the structural 

model. 
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2.7.1 Measurement model validation: reflective measures  

Unidimensionality of indicators 

When you have a block of reflective indicators it is supposed that those indicators 

will reflect, to some extent, the latent variable that they are associated with. Actually, 

it is assumed that the latent variable is the cause of its indicators. This means that if a 

construct changes (increases or decreases), then the indicators associated with it will 

also change in the same direction. Thus, it is logical to suppose that the indicators are 

closely related in such a way that they are in one dimensional space. 

The reflective indicators must be in a space of one dimension since they are 

practically indicating the same latent variable. In PLS-PM we have three main 

indices to check unidimensionality: 

 

• Cronbach's alpha. 

 

where p is the number of variables. 

It evaluates how well a block of indicators measure their corresponding latent 

construct. In this case, the observed variables are required to be standardized and 

positively correlated. If the number of variables increases, Cronbach's alpha 

increases as well. As it is expected. As a rule of thumb, a block is considered as 

unidimensional when Cronbach’s alpha is larger than 0.7. 
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• Dillon-Goldstein's rho 

 

where 4��is the first principal component of the j-th block of indicators.  

As in the case of Cronbach’s alpha, the Dillon-Goldstein’s rho is also focused on 

the variance of the sum of variables in the block of interest. As a rule of thumb, a 

block is considered as unidimensional when Dillon-Goldstein’s rho is larger than 

0.7. This index is considered to be a better indicator than the Cronbach’s alpha 

because it takes into account to which extent the latent variable explains the block 

of indicators. 

 

• Check the first eigenvalue of the indicators' correlation matrix 

If a block is unidimensional, then the first eigenvalue of the correlation matrix of 

the manifest variables should be much more larger than one whereas the second 

eigenvalue should be smaller than 1. In this way, the assessment of the first 

eigenvalue differs from the Kaiser’s criterion since it is not used to extract the 

number of components (which is considered one of the least accurate methods for 

deciding which components to extract from a PCA). The evaluation of the first 

eigenvalue is performed in regards to the rest of the eigenvalues in order to have an 

idea of how unidimensional is a block of indicators. 
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Indicators are well explained by their latent variables 

Then, we should check that indicators are well explained by their latent variables. 

We check it by means of three tools: 

• Communality  

 

is the communality for the k-th manifest variable of the j-th block. 

Communality is calculated with the purpose to check that indicators in a block are 

well explained by its latent variable. The reflective relation: ��� = ����� + 	��, 

implies that the latent variable explains its indicator, so we have to evaluate how 

well indicators are explained by its latent variables. To do this, we examine the 

loadings which indicate the amount of variance shared between the construct and its 

indicators. 

Communality measures how much of the manifest variable variance is explained by 

its own latent variable. In other words, how well the manifest variables described 

the related latent variable or the part of variance between a construct and its 

indicators that is common to both. One expects to have more shared variance 

between latent variable and manifest variables than error variance, that is: λ�7
� >

%9)(ε�7) with var&ε�7( = 1 − λ�7
� . 

Indicators with a low communality are those for which the model is “not working” 

and the researcher may use this information to drop such variables from the 

analysis. 

It is possible to measure the quality of the whole measurement model by mean of 

the average communality index, that is a weighted average of all the block-specific 
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communality indexes with weights equal to the number of manifest variables in 

each j-th block: @$A(�B, ��B)CCCCCCCCCCCCCCCC = �
D

∑ E�@$A(��, ���)� . 

 

• Composite reliability 

  

where λ�7 is the component loading of the k-th indicator in the j-th block, and 

var&ε�7( = 1 − λ�7
� . 

 

• Average Variance Extracted 

 

Average Variance Extracted (AVE) is similar to Jöreskog’s composite reliability, 

but AVE attempts to measure the amount of variance that an latent variable 

captures from its indicators in relation to the amount of variance due to 

measurement error. AVE should be larger than 0.50 which means that 50% or more 

variance of the indicators should be accounted for. 

 

 

Differentiation between construct 

Then, we should assess the degree to which a construct is different from other 

constructs. This is done by verifying that the shared variance between a construct and 

its indicators is larger than the shared variance with other constructs. In other words, 

no indicator should load higher on another construct than it does on the construct it 
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intends to measure. We calculate the correlations between a construct and other 

indicator besides its own block. If an indicator loads higher with other constructs 

than the one it is intended to measure, we might consider its appropriateness because 

it is not clear which construct or constructs it is actually reflecting. 
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2.7.2 Measurement model validation: formative measures  

Unlike reflective indicators, formative indicators are considered as causing a latent 

variable. Formative indicators do not necessarily measure the same underlying 

construct, that is, formative indicators are not supposed to be correlated. For this 

reason, formative measures cannot be evaluated in the same way of reflective 

measures; and all the assessment criteria based on the loadings are discarded in the 

formative measures. 

In this way we compare the outer weights of each indicator in order to determine 

which indicators contribute most effectively to the construct. Attention must be paid 

in order to avoid misinterpreting relative small absolute values of weights as poor 

contributions. If we are considering the elimination of some indicator, this should be 

done based on multicollinearity: the elimination is recommended if high 

multicollinearity occurs.  

 

2.7.3 Structural model validation 

The quality of the structural model is evaluated examining three measures: 

• the coefficients of determination F� 

The R� is calculated for the endogenous latent variables. R� evaluate the quality of 

each structural equation. For each regression in the structural model we have a R� 

that is interpreted similarly as in any multiple regression analysis: R� indicates the 

amount of variance in the endogenous (dependent) latent variable explained by its 

independent latent variables.  
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• the redundancy  

  

is the redundancy index for the k-th manifest variable associated to the j-th block, 

where ��  is the j-th endogenous latent variable; ���  is the k-th indicator associated to 

��; ���
�  is the communality; F�|I

�  is the F� coefficient from the regression between 

��  and its predictors ��. 

Redundancy measures the percent of the variance of indicators in an endogenous 

block that is predicted from the independent latent variables associated to the 

endogenous latent variable. Another definition of redundancy is the amount of 

variance in an endogenous construct explained by its independent latent variables. 

In other words, it reflects the ability of a set of independent latent variables to 

explain variation in the dependent latent variable. High redundancy means high 

ability to predict. In particular, the researcher may be interested in how well the 

independent latent variables predict values of the indicators’ endogenous construct. 

A global quality measure of the structural model is provided by the average 

redundancy index: FJ(�B, �B�)CCCCCCCCCCCCCC = �
K

∑ FJ(��, ���)� , where J is the number of 

endogenous latent variables in the model. 

 

• the Goodness-of-Fit (GoF) 

 

where J is the number of latent variables in the model; J* is the number of 

endogenous latent variables and j* indicates an endogenous block; cor�(x�7, ξ�) is 
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the correlation between the k-th manifest variable of the j-th block and the 

corresponding latent variable; R�(ξ�∗;  ξ�∗
′ s → predicting ξ�∗) is the R2 value of the 

regression between the j*-th endogenous latent variable and its associated 

predictors ξ�∗
′ s . 

The first term is the average communality of each block which measures the quality 

of the measurement model. The second term is the average of the determination 

coefficient for each endogenous construct according to latent variables which 

explain it. In other words: GoF = ](Average Communality) ∗ (Average  R�). 

Hence, GoF is a compromise between the quality of the measurement model and 

the quality of the structural model. Acceptable/good values within the PLS-PM 

community are GoF >0.7. Since it takes in to account communality, this index is 

more applicable to reflective indicators than to formative indicators. However, you 

can also use the GoF index in presence of formative blocks, in which case more 

importance will be given to the average R2. 
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2.7.4 Validation by resampling 

Since PLS-PM is a soft modeling approach, that is it does not imply distributional 

assumptions, significance levels for the parameter estimates (based on normal 

theory) are not suitable. Instead, it is possible to estimate the significance of the 

parameters based on resampling procedures are used to obtain information about the 

variability of the parameter estimates. For example, bootstrapping it is a non-

parametric approach for estimating the precision of the PLS parameter estimates. The 

bootstrap procedure is the following: M samples are created in order to obtain M 

estimates for each parameter in the PLS model. Each sample is obtained by sampling 

with replacement from the original data set, with sample size equal to the number of 

cases in the original data set. 

 

 

  



52 
 

2.8 PLS-PM for non-metric data 

PLS-PM is a technique born to handle quantitative variables. However, in the 

practice categorical indicators could be used to measure complex concepts as well. 

To overcome this problem a recent technique has been proposed by G. Russolillo 

[10], the Non-Metric Partial Least Squares (NM-PLS) algorithm. It consists in a new 

class of PLS algorithms that allow the PLS iteration to work as an optimal scaling 

algorithms, calculating iteratively both scaling and model parameters. 

In the Non-Metric PLS-PM algorithm the computation of the latent variables starts 

with an arbitrary choice of their inner estimates  d�,  …, de. Afterwards, a new first 

step is added in each cycle of the iterative procedure. It is a quantification step, in 

which each categorical indicator is transformed in a quantitative one; this new 

quantified indicator ��f
∗  is obtained as the orthogonal projection of df.  on the space 

spanned by the columns of *g �f . From a computational point of view, 

. 

The procedure continues with the second and the third steps, i.e. the inner estimation 

and the outer estimations of each latent variable. Once new outer estimates are 

computed, the cycle restarts with the quantification step and it is iterated until the 

convergence between inner and outer estimations is reached. 

This procedure yields as output both scaling and model parameters. It assures that 

quantified indicators show suitable properties in terms of optimality and 

interpretability. The scaling parameters maximize correlation of the quantified 

indicator with the inner estimate of the own LV, and as consequence its weight in the 

construction of the LV in a reflective scheme. Moreover, the weight of each 
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quantified indicator can be expressed also in terms of part of variability of df 

explained by �h�f ’s modalities. In particular, it is possible to show the following 

equivalence: 

 

Hence, the weight of ��f
∗  reflects the predictive capability of the categories of ��f 

with respect to df, measured by the correlation ratio squared root. It is for this reason 

that the NM-PLSPM algorithm is very useful to yield reliable weights for building 

composite and complex indicators from simple indicators observed on a variety of 

measurement scales. 
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3. The evaluation of the 

activities and decisions in 

health care systems: a cohort 

study from Lombardy 
 

 

 

3.1  Introduction  

When evaluating the degree to which the care delivered to oncologic patients − such 

as woman with breast cancer − is adherent to evidence-based guidelines, it is 

necessary to consider multiple aspects of the diagnostic, therapeutic and follow-up 

pathways [11]. In fact, single process indicators are informative variables which 

allow to concisely evaluate a single aspect of complex phenomena. However, single 

indicators do not give a complete view of the cure paths and their appropriateness or 

adherence to the guidelines. Coherent sets of quality indicators have been then 

developed from evidence-based guidelines, and chosen to measure the different 

aspects of  the clinical pathway suitable for a patient with specific characteristics, 

such as stage and comorbidities. Nevertheless, it is difficult to simultaneously 

evaluate many different indicators and a single summary measure it is deemed 
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necessary, but obtaining a methodologically sound and easy to interpret measure 

represents a challenge [12,13].  

In the literature, different approaches have been proposed [14,15]. Some are along 

the line of providing a simple summary indicator that can be easily understood from 

health professionals and patients, such as using the proportion of indicators met by 

each patient or the all-or-non approach [16]. These approaches have advantages if we 

want to promote a widespread use of a quality assessment tool. On the other side, it 

oversimplify a complex problem. The evaluation of the entire diagnostic and 

therapeutic pathway is complex, as it involves elements of the decision process that 

cannot be directly measurable or observable. Also, the components of the decisional 

process are dependent and influenced by each other. For these reasons, other 

statistical methods are needed. One proposed approach uses a hierarchy or selection 

of the most relevant indicators, with respect to the outcome, and a system of weights 

to combine them. Although this approach better reflects complexity, the assigned 

weights are fairly arbitrary [15,17]. Other proposed methods to summarize a set of 

indicators into a single, or a few measures use latent variables [18,19]. 

The aim of the present study is to evaluate the appropriateness of the procedures 

performed in each step of  the breast cancer are pathway (i.e., diagnosis, surgical and 

medical treatment, and short term follow-up) through the estimation of a summary 

measure for each of them, and to investigate their relationships. For this purpose, we 

used a Partial Least Square (or Projection to Latent Structures) path model (PLS-PM) 

approach. The cohort under study is constituted of incidents breast cancer cases 

occurring between 2007 and 2009 and followed for at least one year after the 

diagnosis of cancer in six local health authorities of Lombardy, Northern Italy. 
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3.2 Material and methods 

Population and database 

We included all incident breast cancers occurring between 2007 and 2009 in the 

geographic area corresponding to six local health authorities of Lombardy, Northern 

Italy (5,320,272 inhabitants on  31 December 2012) [20]. Most of them included the 

incident breast cancer cases identified by the cancer registry; two local health 

authorities included all cases derived from a validated algorithm to identify breast 

cancer cases from hospital discharge records [20]. All cases with another diagnosis 

or hospitalization for cancer (except for skin cancer) between 1990 and 2009 were 

excluded from the analysis in order to include cases with only breast cancer and 

consequently to evaluate the specific diagnostic and therapeutic pathway.  

From a systematic review of the literature and considering only indicator that could 

be calculated with the available information, we defined a preliminary set of 

indicators.  

The indicators were then improved and assessed for their mean and consistency by 

epidemiologist and breast cancer surgeons, oncologists and radiotherapists through 

several meetings and the final set was composed by several indicators. 

Through deterministic record linkage between each registry and the administrative 

available databases (hospitalizations, outpatient, pharmaceutical prescription and 

specific database for anticancer drugs), we calculated for each patient the indicators 

to measure the appropriateness of the procedures provided for diagnosis, treatment 

(surgical and medical) and follow-up. 

Subsequently we calculated the indicators by each local health authority: the 

indicators represent the proportion of subjects in this cohort with a specific 
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caractheristic for each local health authority, e.g., the proportion of patients with ≥85 

years. Thus, we have a dataset with 6 observations or rows (6 local health 

authorities) and more than 20 indicators or columns. 

 

Statistical analysis 

To examine our research question we performed a PLS-PM analysis [21]. PLS-PM is 

a methodology meant to estimate a network of causal relationships defined according 

to a theoretical model and to represent the causal relationships through a graphic, 

called diagram. The complexity of the theoretical construct is studied taking into 

account the relationships among non measurable indicators (latent variables), 

represented by a set of observed variables (manifest variables). In a path model 

approach, variables are grouped in two classes: 1) those that are caused by one or 

more variables (endogenous or dependent variables), and 2) those that are not caused 

by any other variables in the diagram (exogenous or independent variables). 

PLS-PM involves two type of models: 1) the measurement or outer model, taking 

into account the relations between manifest variables (or indicators) and the 

corresponding latent variable (or domain); 2) the structural or inner model, taking 

into account the relations among the latent variables, i.e. between each endogenous 

(dependent) latent domain and other latent domains. Different types of measurement 

models exists, depending on the kind of relationship between indicators and domain; 

we choose a reflective model, i.e. manifest indicators reflect the domain.  

Once the hypothesized model is specified, a 3 stages algorithm is used to estimate the 

parameters. The first stage is an iterative procedure of ordinary least squares (OLS) 

regressions taking into account the relationships of the structural and measurement 
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model, to calculate weights required to give final estimates for each latent variable 

(domain). The second and third stages involves the non-iterative estimation of the 

coefficients of the structural (path coefficients) and measurement model (loading 

coefficients), respectively. 

As the reflective set of indicators reflects the (unique) domain, it should be 

homogeneous and unidimensional, i.e., a set of indicators describing a domain are 

assumed to measure the same unique underlying concept. There exist several tools to 

check the homogeneity and unidimensionality, including Cronbach’s alpha, Dillon-

Goldstein’s rho, and principal component analysis of a set. A set of indicators is 

considered homogenous if the Cronbach’s alpha or the Dillon-Goldstein’s rho are 

larger than 0.7, while a block is considered unidimensional if the first eigenvalue is 

higher than 1 and the others are smaller [6]. After assessing the quality of the 

measurement model, we evaluated the quality of the structural model through the R2 

determination coefficients for each endogenous domain. Instead, for each regression 

in the structural model we have an R2 that is interpreted as the amount of variance in 

the endogenous domain explained by its exogenous domains. In the literature, the 

explanation of the variance is described as substantial , moderate or weak with 

reference to thresholds of R2 equal to 0.67 , 0.33 to 0.19 , respectively . 

In the PLS-PM approach, no criterion exist to evaluate the goodness of fit of the 

global model, so we cannot perform inferentially statistical tests for goodness of fit. 

Nevertheless, a descriptive index of goodness of fit in both the structural and the 

measurement models has been proposed, i.e., the GoF index. This index ranges from 

0 to 1, with a value close to 1 indicating a good fit [22,6]. 
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The indicators were performed through SAS 9.2, while PLS-PM analysis was 

conducted using the plspm package in R software [23].  

 

 

3.3 Results  

The data set consisted of 18 process indicators measuring adherence to international 

guidelines for the diagnosis and treatment of breast cancer, 3 indicators for 

complications, and 3 indicators for patients characteristics. For the PLS-PM analysis, 

each process indicator was measured as the percentage of patient that did not perform 

the appropriate diagnostic or therapeutic process; for example, the indicator 

estimating the percentage of mammographies performed within six months prior to 

diagnosis − which would be a positive tool for a early diagnosis − is considered as 

the percentage of patients who did not perform a mammography within six months 

prior to diagnosis. 

We supposed a process characterized by six different domains, plus one domain for 

patients characteristics and one for complications. A detailed description of the 

model, domains and indicators is provided in Table 3.1.  

The domain called Disadvantage included patients’ age and comorbidities, 

characteristics related to a lower probability of adherence to diagnostic and 

therapeutic guidelines on primary breast cancer. Six other domains measured lack of 

adherence to guidelines for primary non metastatic breast-cancer in different phases 

of the diagnostic and therapeutic pathway: Diagnosis, including indicators measuring 

lack of adherence to diagnostic guidelines; Timing, including an indicator measuring 

the proportion of patients with a long interval between diagnosis and breast surgery 
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and one between surgery and the beginning of medical treatment; Surgical treatment 

1, measuring  lack of adherence to general surgical  guidelines; Surgical treatment 2, 

measuring lack of use of minimal invasive surgical techniques in stage I patients; 

Medical treatment, including indicators measuring lack of adherence to medical 

treatment guidelines; Follow-up, including indicators measuring lack of adherence to 

guidelines for short-time follow-up. The last domain, Complications, included 

indicators measuring the proportion of patients experiencing side effects from 

medical treatment. 

We supposed that Disadvantage was connected to all the other domains, except for 

Surgical treatments 2; Diagnosis was joined to Timing, Surgical and Medical 

treatments, and Follow-up; Timing was connected to Surgical treatment 1; Surgical 

treatment 1 was related to Medical treatment and Follow-up; Medical treatment was 

connected to Complications and Follow-up (Figure 3.1 and 3.2). 

The final model selection was based on the clinical meaning and the evaluation of 

internal consistence that is a high positive correlation between indicators of the same 

domain (Table 3.2) and quality measures of the measurement models, including 

Cronbach’s alpha, Dillon-Goldstein’s rho, and the difference between the two 

principal components (Table 3.3).  

 

Figure 3.1 and Figure 3.2 show the structural model based on the eight domains as 

described above. Each domain is inside of an ellipse; the relationships between 

domains, defined a priori, are represented by arrows. The statistics given in Figure 

3.1 and Figure 3.2 represent the values of the path or regression coefficients and the 

correlation coefficients linking the domains, respectively.  
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A low adherence to the guidelines for the diagnostic procedures in breast cancer was 

negatively associated with low adherence to the guidelines of surgical treatment (β = 

-0.55) and to the timing (β =-0.62) and highly positively associated with low use of 

minimal invasive surgery (surgical treatment 2, β=0.97). A higher proportion of 

elderlies and patients with comorbidities was negatively associated to low adherence 

to the guidelines of medical treatment (β = -0.70) and positively associated to low 

adherence to the guidelines for the diagnostic procedures (β = 0.62) and surgical 

treatment (β = 0.69). Moreover, the timing was positively associated with low 

adherence to the guidelines of surgical treatment (β = 0.64), and a low adherence to 

the guidelines of surgical treatment was negatively associated with the follow-up (β 

= -0.87) (Figure 3.1). 

 

In order to take into account all the paths (direct and indirect), Table 3.4 shows the 

direct, indirect, and total effects. The indirect effects are obtained as the product of 

the path coefficients by taking an indirect path. For instance, consider the impact of 

Disadvantage on Surgical treatment2, even though these two domains are not directly 

related, there is an indirect path from Disadvantage to Surgical treatment2 that goes 

through Diagnosis. If you multiply the path coefficient of Disadvantage on Diagnosis 

(0.619) with the path coefficient of Diagnosis on Surgical treatment2 (0.967), you get 

the indirect effect of Disadvantage on Surgical treatment2:  0.598 = 0.619 x 0.967.  

 

Considering correlation coefficients > 0.5, meaning that the higher the lack of 

adherence in one domain the higher the lack of adherence in the other, was found 

between: Diagnosis and Surgical treatment 2 (r= 0.97), Timing and Surgical 
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treatment 1 (r= 0.67), Disadvantage and Diagnosis (r= 0.62). A negative correlation 

was found between Disadvantage and Medical Treatment (r =-0.88), Diagnosis and 

Medical Treatment (r =-0.82), Diagnosis and Timing (r =-0.71), Diagnosis and 

Surgical treatment 1 (r= -0.59), Disadvantage and Timing (r =-0.53) (Figure 3.2, 

Table 3.5). 

 

Concerning the structural model, the quality was moderate for the Timing (R2 = 

0.52), Diagnosis (R2 = 0.38), and Complications (R2 = 0.36) domains, and substantial 

for all the other domains (R2 > 0.68). Furthermore, the quality of the global model 

was discrete when evaluated in terms of the goodness of fit (GoF = 0.65). 

 

Table 3.6 show the values of the scores of the domains by local health authority. 

Figure 3.3 is a representation of the values of the scores of the domains by local 

health authority. Figure 3.4 is a representation of the six local health authorities 

according to the values of the Diagnosis and Complications domains. Figure 3.5 

summarize the scores of all the domains for each local health authority. 

 

 

 



  



Table 3.1. Specification of the measurement model in Partial Least Square Path Modeling (PLS-PM) approach: description of domains and 
indicators. 
 
Domain 
 

Description of the domain Indicator Description of the indicator 

Disadvantage Characteristics related to a lower probability of 
adherence to diagnostic and therapeutic 
guidelines on primary breast cancer 

Comorbidity Proportion of patients with chronic cardiovascular disease 
and/or diabetes at diagnosis 

 Advanced 
age 

Proportion of patients ≥ 75 years 

 Deprivation Proportion of patients in the lower two quintiles of 
deprivation index 

Diagnosis Indicators measuring lack of adherence to 
diagnostic guidelines on primary breast cancer  
 

D1 Proportion of women aged over 50 who did not receive 
bilateral mammography 3 months before surgery 

D2 Proportion of women aged 50-69 years who did not have a 
screening mammography performed in the 3 months 
preceding diagnosis performed in the 6 months preceding 
diagnosis 

D3 Proportion of breast cancer women without cytological 
and/or histological assessment in the 3  months prior 
surgery  

D4 Proportion of patients in stage I, and not undergoing 
mastectomy , undergoing  bone scanning or thoracic CT or 
liver US or abdominal CT /MR or tumour markers 
measurement in the 3  months prior to surgery 

Timing Indicators measuring the proportion of patients 
with a long interval between diagnosis and 
breast surgery and between surgery and the 
beginning of medical treatment 

T1 Proportion of patients whose first postoperative treatment 
was not initiated within 60 days of surgery in the event of 
chemotherapy and within 90 days in the event of 
radiotherapy 
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Domain 
 

Description of the domain Indicator Description of the indicator 

  T2 Proportion of patients undergoing surgery more than 30 
days from mammography. 

Surgical treatment1  Indicators measuring lack of adherence to 
general surgical  guidelines on primary breast 
cancer  

S1a Proportion of stage I and II women who did not undergo 
breast-conserving surgery 

 S2a Proportion of patients developing lymphedema within two 
years from breast surgery 

 S3a Proportion of patients undergoing a second surgery  within 
3 months from the first breast conserving surgery, 
excluding reconstructions 

 S4a Proportion of patients not undergoing reconstructive 
surgery within a year among patients who underwent 
mastectomy 

Surgical treatment2 Indicators measuring lack of use of minimal 
invasive surgical techniques in stage I patients 

S1b Proportion of patients not undergoing SLNB in the setting 
of breast conserving surgery for T1 tumors 

  S2b Proportion of patients with pathological stage I breast 
cancer undergoing axillary clearance at first surgery or 
within 3 months 

Medical treatment Indicators measuring lack of adherence to 
medical treatment guidelines on primary breast 
cancer  

M1 Proportion of patients with stage III tumors not undergoing 
neoadjuvant systemic theraphy (either hormonal or chemo) 

M2 Proportion of women who did not receive radiation 
treatment within a year after breast conserving surgery 

M3 Proportion of breast cancer women > 50 years with 
pathological stage II-III not receiving adjuvant hormone 
theraphy or chemotheraphy in the following year 

 M4 Proportion of breast cancer women < 50 years with 
pathological stage II-III not  receiving adjuvant 
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Domain 
 

Description of the domain Indicator Description of the indicator 

chemotheraphy in the following year 

Complications Indicators measuring surgical complications and 
side effects from  medical treatment in patients 
with primary breast cancer 

C1 Proportion of patients experiencing side effects requiring 
hospitalization during chemotherapy 

C2 Proportion of patients experiencing hematological side 
effects requiring hospitalization during chemotherapy 

 C3 Proportion of patients experiencing cardio-vascular side 
effects requiring hospitalization during chemotherapy 

Follow-up Indicators measuring lack of adherence to 
guidelines for follow-up after primary treatment 
of breast cancer 

F1 Proportion of patients > 50 years not undergoing 
mammography within 18 months after surgery 

 F2 Proportion of patients not enrolled  in palliative care within 
6 months of death within 3 months of death 
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Table 3.2. Correlations between indicators and domains. 
                 Disadvantage  Diagnosis   Timing  Surg.treat2  Surg.treat1  Medical_treat  Follow-up Complications 
Disadvantage                                                                                            
  Comorbidity          0.9323     0.5874  -0.3516      0.6765        0.170        -0.79067    -0.0867       0.3194 
  advanced age         0.0808     0.1610   0.1991      0.1096        0.215         0.00463    -0.1613       0.6704 
  Deprivation          0.9244     0.5320  -0.6833      0.5661       -0.199        -0.86479     0.4464       0.1205 
Diagnosis                                                                                               
  D1                 -0.3330     0.3992  -0.2120      0.3635       -0.839         0.08100     0.4718       0.1004 
  D2                   0.2680     0.5960  -0.5051      0.5946       -0.385        -0.51164     0.2061       0.1461 
  D3                  -0.7062     0.0759   0.2418      0.0307       -0.396         0.47577    -0.0321       0.1324 
  D4                   0.5877     0.7617  -0.4029      0.7163       -0.227        -0.62661     0.2597       0.8238 
Timing                                                                                                   
  T1                  -0.6210    -0.7629   0.9697     -0.6582        0.676         0.86755    -0.8712      -0.4422 
  T2                  -0.0379    -0.2655   0.6750     -0.1210        0.378         0.40747    -0.5399      -0.1239 
Surg.treat2 
  S1b                  0.4639     0.8079  -0.3235      0.9146       -0.525        -0.50424     0.1436       0.2088 
  S2b                  0.7618     0.9740  -0.7271      0.9421       -0.438        -0.91122     0.4342       0.6904 
Surg.treat1 
  S1a                  0.1290    -0.5983   0.5685     -0.4784        0.924         0.24033    -0.7466      -0.3706 
  S2a                  0.4906     0.1502   0.0571      0.1359        0.426        -0.28156    -0.1670       0.5748 
  S3a                  0.0250    -0.3651   0.4970     -0.3417        0.912         0.17005    -0.7612       0.1345 
  S4a                 -0.1735    -0.6644   0.7856     -0.6081        0.942         0.51094    -0.8010      -0.0772 
Medical_treat  
  M1                  -0.7561    -0.7412   0.4382     -0.7663        0.276         0.69607    -0.2997      -0.5524 
  M2                  -0.4700    -0.6000   0.7404     -0.6136        0.593         0.67058    -0.5359       0.0672 
  M3                  -0.5886    -0.2372   0.7472     -0.1589        0.123         0.70154    -0.5431      -0.0529 
  M4                  -0.6998    -0.6718   0.5930     -0.5717       -0.038         0.82442    -0.2196      -0.8175 
Follow-up                                                                                                
  F1                   0.1189     0.5043  -0.8590      0.3492       -0.870        -0.48324     0.9931       0.2441 
  F2                   0.2480     0.4434  -0.8887      0.2975       -0.766        -0.55403     0.9934       0.1870 
Complications                                                                                            
  C1                   0.2730     0.2645  -0.0306      0.1570        0.343        -0.26759    -0.1182       0.8621 
  C2                   0.2854     0.5405  -0.2973      0.4329        0.112        -0.47923    -0.0504       0.8186 
  C3                   0.2584     0.7186  -0.5792      0.5813       -0.580        -0.50206     0.6162       0.7860 



Table 3.3. Unidimensionality indices 
                #MVs  C.alpha  DG.rho  eig.1st  eig.2nd 
Disadvantage       3    0.444   0.704     1.78    1.004 
Diagnosis          4    0.497   0.715     1.82    1.046 
Timing             2    0.644   0.849     1.47    0.526 
Surgical trt 2     2    0.841   0.927     1.73    0.274 
Surgical trt 1     4    0.842   0.899     2.79    0.854 
Medical trt        4    0.705   0.820     2.15    1.086 
Followup           2    0.986   0.993     1.97    0.027 
Complications      3    0.763   0.865     2.04    0.655 
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Figure 3.1. Structural model. The path coefficients represent the direct effects between the 
domains performed according to the Partial Least Square Path Modeling (PLS-PM) approach. 
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Table 3.4 Direct, indirect, and total effect of the relationship between domains. 
 
                  relationships  direct  indirect     total 
1     Disadvantage -> Diagnosis   0.619     0.000   0.61879 
2        Disadvantage -> Timing  -0.146    -0.386  -0.53105 
3      Disadvantage -> surg.trt2  0.000     0.598   0.59817 
4      Disadvantage -> surg.trt1  0.689    -0.684   0.00468 
5    Disadvantage -> medical_trt -0.701    -0.181  -0.88243 
6      Disadvantage -> followup  -0.504     0.690   0.18531 
7   Disadvantage ->complications -0.603     0.936   0.33282 
8           Diagnosis -> Timing  -0.623     0.000  -0.62303 
9         Diagnosis -> surg.trt2  0.967     0.000   0.96667 
10        Diagnosis -> surg.trt1 -0.554    -0.400  -0.95395 
11      Diagnosis -> medical_trt -0.294    -0.155  -0.44967 
12        Diagnosis -> followup  -0.864     1.451   0.58679 
13     Diagnosis -> complications 0.000     0.477   0.47698 
14           Timing -> surg.trt2  0.000     0.000   0.00000 
15           Timing -> surg.trt1  0.643     0.000   0.64272 
16         Timing -> medical_trt  0.000     0.105   0.10463 
17           Timing -> followup   0.000    -0.702  -0.70158 
18        Timing -> complications 0.000    -0.111  -0.11099 
19         surg.trt2-> surg.trt1  0.000     0.000   0.00000 
20       surg.trt2-> medical_trt  0.000     0.000   0.00000 
21         surg.trt2-> followup   0.000     0.000   0.00000 
22      surg.trt2-> complications 0.000     0.000   0.00000 
23       surg.trt1-> medical_trt  0.163     0.000   0.16280 
24         surg.trt1-> followup  -0.865    -0.227  -1.09158 
25      surg.trt1 ->complications 0.000    -0.173  -0.17268 
26       medical_trt -> followup -1.392     0.000  -1.39219 
27    medical_trt->complications -1.061     0.000  -1.06072 
28      followup -> complications 0.000     0.000   0.00000 
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Figure 3.2. Structural model. The coefficients represent the correlations between the domains 
performed according to the Partial Least Square Path Modeling (PLS-PM) approach. 
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Table 3.5. Correlation between domains 

              Disadvantage  Diagnosis  Timing  Surg.trt2  Surg.trt1  Medical_trt  Followup Complications 
Disadvantage        1.0000      0.619  -0.531     0.674    0.0047      -0.882     0.185      0.333 
Diagnosis           0.6188      1.000  -0.713     0.967   -0.5858      -0.824     0.477      0.653 
Timing             -0.5311     -0.713   1.000    -0.585    0.6718       0.840    -0.880     -0.405 
Surg.trt2            0.6742      0.967  -0.585     1.000   -0.5134      -0.782     0.325      0.508 
Surg.trt1            0.0047     -0.586   0.672    -0.513    1.0000       0.332    -0.823     -0.101 
Medical_trt         -0.8824     -0.824   0.840    -0.782    0.3320       1.000    -0.522     -0.528 
Followup             0.1853      0.477  -0.880     0.325   -0.8231      -0.522     1.000      0.217 
Complications         0.3328      0.653  -0.405     0.508   -0.1009      -0.528     0.217      1.000 
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Table 3.6. Scores of the domains by local health authorities 

LHA Disadvantage Diagnosis Timing Surg.trt2 Surg.trt1 Medical_trt Followup Complications 

1 -0.38 -1.53 1.89 -1.31 2.13 1.21 -1.98 -0.48 

2 1.39 1.52 -0.78 1.48 -0.44 -1.31 0.55 1.58 

3 0.63 0.90 -0.80 0.81 0.08 -1.05 -0.07 0.68 

4 -1.84 -0.38 0.25 -0.74 -0.72 1.16 0.46 0.41 

5 0.37 -0.61 -0.97 -0.77 -0.24 -0.43 1.24 -0.75 

6 -0.17 0.10 0.40 0.53 -0.82 0.42 -0.19 -1.44 
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Figure 3.3. Representation of the six local health authorities according to the values 
of the domains. LHA: local health authority.  
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Figure 3.4. Representation of the six local health authorities according to the values 
of the Diagnosis and Complications domains. 



Figure 3.5. Score of the latent variables (domain) by local health authority.
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Score of the latent variables (domain) by local health authority. 
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4. Conclusion 
 
 

 

 

 

The core of the PLS algorithm is the calculation of the weights required to estimate 

the latent variables. The weights are obtained based on how the structural and the 

measurement model are specified. This is done by means of an iterative procedure in 

which two kinds of approximation for the latent variables are alternated until 

convergence of weight estimates. These two types of approximation, called the inside 

approximation and the outside approximation, have to do with the inner relations and 

the outer relations, respectively. The algorithm begins with arbitrary initial weights 

used to calculate an outside approximation of the latent variables, that is, initial 

weights are given in order to approximate the latent variables as linear combinations 

of their manifest variables. Then, the inner relations among latent variables are 

considered in order to calculate the inside approximations, having the option of 

choosing between three possible scenarios, called weighting schemes, to perform this 

approximation: (1) centroid, (2) factor, and (3) path scheme. Once the inside 

approximations are obtained, the algorithm turns around to the outer relations when 

new weights are calculated considering how the indicators are related to their 

constructs: by mode A (reflective), or by mode B (formative). Mode A implies 

simple linear regressions while mode B implies multiple linear regressions. The 
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simple/multiple regressions coefficients are then used as new weights for an outside 

approximation. The process continues iteratively until convergence of the weights is 

reached. After convergence of the weights, and once the latent variables are 

estimated, the parameters of the structural and the measurement models can be 

obtained. The structural coefficients, also known as path coefficients, are calculated 

by ordinary least square regressions between latent variables. There are as many 

regressions as endogenous latent variables. The parameters of the measurement 

model, the loading coefficients, are also estimated by least square regressions but 

taking into account the kind of mode to be used (reflective or formative). PLS-PM is 

a more exploratory way of performing structural equation modeling than the popular 

LISREL approach. The latter approach resorts to classical theory of statistical 

inference and is based on a heavy use of distributional assumptions about the 

behavior and personality of the data. LISREL also requires larges samples, in 

contrast, PLS-PM uses ordinary least squares, which does not make distributional 

assumptions and can model skewed and ordinal data. Hence, it is more suitable for 

research with small samples, and non-normal distributions.  

 

I used the PLS-PM method in order to analyze the adherence of the procedures 

provided for diagnosis, treatment (surgical and medical), and follow-up of breast 

cancer through a set of indicators. This method has several strengths, as PLS-PM 

allows the reduction of dimensionality of several health indicators into a smaller 

number of latent variables (and more interpretable) first, and then allows to study 

causal relationships between these latent variables. This method also requires no 

distributional assumptions with respect to the variables included in the model. The 
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limit of this method is the bias deriving from the selection of the indicators used to 

characterize the latent variable. Moreover, by using a dataset with 6 observations (6 

local health authorities) the sample size is too small to make some inference. 

 

The aim of this study was to apply the PLS-PM in a different field, since it has been 

widely used in economical (the customer satisfaction is a typical example) and 

psychological setting. In biomedical context, the published articles are scanty and 

generally published in open access journals [24-26]. For example, Xue et al. [24] 

introduced PLSPM to analyze the association between single or multiple SNPs and 

obesity in the European Prospective Investigation of Cancer (EPIC)-Norfolk study; 

Vitalino et al. [25] analyzed a theoretical stress model that examined whether 

relationships of chronic stress, psychophysiology, and coronary heart disease varied 

between the sex and among users or not users of hormone replacement therapy 

(among women). Moreover, in the paper by Fischer [26], empirical approaches that 

applied PLS-PM to decision-making in healthcare were summarized through a 

systematic literature search. PLS-PM was used as an estimation technique for a 

structural equation model that specified hypotheses between the components of 

decision processes and thereasonableness of decision-making. The model was 

estimated for a sample of 55 coverage decisions on the extension of newborn 

screening programs in Europe. However, he focused on the economical aspects of 

the screening programs. Thus, the present study represents an unique example of 

PLS-PM application in the evaluation of the adherence of the procedures provided 

for diagnosis, treatment (surgical and medical), and follow-up of breast cancer 

through a set of health indicators, and to investigate the difference between various 
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health structures, such as the local health authority, although the limited sample size 

makes the analyses only explorative-orientated.   
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