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Abstract. We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to
Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T = 0 using the fixed-node
diffusion Monte Carlo method. We calculate the equation of state and the gap parameter as a
function of the interaction strength, observing large deviations compared to mean-field predictions.
In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction
effects that are completely neglected in the mean-field picture. We also consider the highly polarized
gas and the competition between a polaronic and a molecular picture.
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The study of ultracold atomic Fermi gases has become an active and rich field of re-
search [1]. Important areas of investigation include the BCS-BEC crossover in a super-
fluid gas with resonantly enhanced interactions, the Chandrasekhar-Clogston instability
of the superfluid state when spin polarization is increased, the possible onset of itin-
erant ferromagnetism in a gas with repulsive interactions [2] and the realization of the
Hubbard model for fermions loaded in optical lattices [1].

Low dimensional configurations of degenerate Fermi gases have also been the object
of experimental and theoretical studies [1]. In particular, a two-dimensional (2D) ultra-
cold Fermi gas has been recently realized using a highly anisotropic pancake-shaped
potential, and the density profile of the cloud has been measured using in situ imag-
ing [3]; moreover the single particle spectral function has been measured by means of
rf spectroscopy [4]. On the theoretical side, the evolution from a superfluid state with
large Cooper pairs to one with tight molecules in a 2D system of attractive fermions was
first investigated by Miyake [5] and later by Randeria and coworkers [6] aiming to de-
scribe high-Tc superconductors. More recent studies are in general based on perturbative
or mean-field (MF) approaches that are suitable in the regime of weak coupling, but are
bound to break down for stronger interactions (see references in [8]). Recently we have
obtained the first determination using quantum Monte Carlo methods of the equation of
state at T = 0 of a homogeneous 2D Fermi gas in the BCS-BEC crossover [8].

In this paper we review the main results that we have more extensively shown in [8],
concerning the equation of state and the pairing gap as a function of the interaction
strength. We show that in the strong-coupling regime the emergence of interaction
effects involving dimers produce large deviations compared to MF predictions. We also
discuss the problem of the polaron-molecule transition in a two-dimensional Fermi gas.



Method. We consider a homogeneous two-component Fermi gas described by the
Hamiltonian

H =− h̄2

2m

(
N↑

∑
i=1

∇
2
i +

N↓

∑
i′=1

∇
2
i′

)
+∑

i,i′
V (rii′) , (1)

where m denotes the mass of the particles, i, j, ... and i′, j′, ... label, respectively, spin-
up and spin-down particles and N↑ = N↓ = N/2, N being the total number of atoms.
We model the interspecies interatomic interactions using an attractive square-well (SW)
potential: V (r) = −V0 for r < R (V0 > 0), and V (r) = 0 otherwise. In order to ensure
that the mean interparticle distance is much larger than the range of the potential we
use nR2 = 10−6, where n is the gas number density, or equivalently kFR = 0.0025 in
terms of the Fermi wave vector kF =

√
2πn. We simulate a strictly 2D system and

describe the low-energy collisions of the SW potential in terms of the 2D scattering
length a2D defined as a2D = R eJ0(κ)/κJ1(κ), where J0(1)(x) are Bessel functions of the

first kind and κ =
√

V0mR2/h̄2. The scattering length is non negative and diverges at
κ = 0 and at the zeros of J1, corresponding to the appearance of new two-body bound
states in the well. Close to these points the shallow dimers have size a2D and their
binding energy is given by εb =−4h̄2/(ma2

2De2γ), where γ ' 0.577 is Euler’s constant.
The dependence of a2D on the depth V0 in the region where the well supports only
one bound state is shown in the inset of Fig. 1. Two regions are clearly identified by
comparing a2D with the mean interparticle distance 1/kF : i) kFa2D� 1 corresponds to
the BCS regime where interactions are weak and dimers are large and weakly bound,
ii) kFa2D � 1 corresponds to the BEC regime of tightly bound composite bosons.
Compared to the 3D case the BCS-BEC crossover in 2D exhibits important differences.
a) For a purely attractive potential a two-body bound state exists for arbitrarily weak
attractions. b) The weak-coupling limit corresponds to a diverging scattering length
a2D. c) The 2D scattering amplitude of particles colliding at low energy is given by
f (k) = 2π/[log(2/ka2Deγ) + iπ/2] [7]. There is no range of values of a2D for which
f (k) is independent of interaction (unitary limit). d) The mean-field coupling constant
can be written as g = (2π h̄2/m)/ log(1/kFa2D) with logarithmic accuracy. Within the
same accuracy, the region kFa2D ∼ 1 identifies the strong-coupling crossover between
the BCS and the BEC regimes [see inset of Fig. 1].

Simulations are carried out using the fixed-node diffusion Monte Carlo (FN-DMC)
method. This numerical technique yields an upper bound for the ground-state energy
of the gas, resulting from an ansatz for the nodal surface of the many-body wave
function that is kept fixed during the calculation (see Refs. [9, 8] for more details).
The boundary condition is enforced using a trial function that we choose of the general
form ψT (R) = ΦS(R)ΦA(R). ΦS is a positive function of the particle coordinates and is
symmetric in the exchange of particles with equal spin, while ΦA satisfies the fermionic
antisymmetry condition and determines the nodal surface of ψT . The symmetric part
is chosen of the Jastrow form ΦS(R) = ∏i,i′ f↑↓(ri,i′)∏i< j f↑↑(ri j)∏i′< j′ f↓↓(ri′ j′), where
two-body correlation functions of the interparticle distance have been introduced. Two
important regimes are described by the ΦA component: i) if it is an antisymmetrized
product ΦA(R) = A

(
φ(r11′)φ(r22′)...φ(rN↑N↓)

)
of pairwise orbitals φ corresponding

to the two-body bound state of the potential V (r), ψT (R) describes a BCS state of
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FIGURE 1. Equation of state in the BCS-BEC crossover with εb/2 subtracted from E/N. Squares refer
to the BCS and circles to the JS wave function. The solid line is a fit to the data, the dot-dashed line shows
the equation of state (2) of composite bosons and the dotted line shows the perturbation expansion holding
in the BCS regime (see text). The dashed line is the MF result. Inset: 2D scattering length a2D as a function
of the depth V0 for a SW potential of radius R. The BCS and BEC regimes correspond, respectively, to
kF a2D� 1 and kF a2D� 1.

dimers that is expected to be appropriate in the deep BEC regime; ii) if instead ΦA(R) =
D↑(N↑)D↓(N↓), namely the product of the plane-wave Slater determinants for spin-up
and spin-down particles, ψT is a typical Jastrow-Slater (JS) function of a normal Fermi
liquid. This description is expected to hold in the BCS regime of a weakly interacting
gas where the effect of pairing on the ground-state energy is negligible.

Energy per particle. In Fig. 1 we show the FN-DMC results for the equation of
state as a function of the interaction parameter in units of the energy per particle of the
noninteracting gas EFG = h̄2k2

F/4m = εF/2, where εF is the Fermi energy, with εb/2
subtracted. The BCS wave function provides a lower energy for values of the interaction
parameter η = log(kFa2D). 1, while the JS function is more favorable for larger values
of η . The role of finite-size effects has been investigated using the method described
in [10]. In the deep BEC regime, besides the molecular contribution, the remaining
fraction of energy corresponds to the interaction energy of the dimers. Concerning this
contribution to the energy, the MF result E/N = EFG + εb/2 [5, 6], which is shown
for comparison, misses the expected logarithmic dependence on density and interaction
strength. Effects beyond mean-field are therefore much more pronounced in 2D than in
3D (see [1]). In the BEC regime the FN-DMC results are fitted with the equation of state
of a gas of composite bosons corresponding to hard disks of diameter ad
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where md = 2m is the mass of the dimer, while the number of dimers, and correspond-
ingly their density nd , is half of the total number of fermions Nd = N/2. The above ex-
pression includes beyond mean-field terms [11] and allows for a precise determination
of the dimer-dimer scattering length ad . We obtain ad = 0.55(4)a2D, in agreement with
the four-body calculation in Ref. [7]. In the opposite BCS regime, where the contribution
of the pairing gap can be neglected, the fermionic equation of state can be described in
terms of an attractive normal Fermi liquid (FL). Beyond logarithmic accuracy one has
the second-order expansion in terms of η

E
N = EFG

(
1− 1

η
+ A

η2

)
[12]. From a best fit

we find the result A= 0.06(2) for the coefficient of the second-order term. The derivative
of the energy density with respect to the coupling constant can be related to the contact
parameter C [14], which we have extracted from our Monte Carlo data (see [8]).

Pairing gap. In Fig. 2 we show the results for the pairing gap ∆gap in the strong-
coupling regime. This quantity is defined from the difference of ground-state energy
E(N↑,N↓) of systems having one and two more (less) particles ∆gap = 1/2[2E(N/2±
1,N/2)−E(N/2±1,N/2±1)−E(N/2,N/2)] [13]. At the MF level [5, 6] the pairing
gap coincides with the result for the order parameter ∆gap = ∆ =

√
2εF |εb| if |εb|< 2εF ,

and is given by ∆gap = εF + |εb|/2 for larger values of |εb|. In the BEC regime the
quantity ∆gap− |εb|/2, shown in the inset of Fig. 2, displays the repulsive interaction
effects between unpaired fermionic atoms and bosonic dimers. In fact, the energy of the
system with one extra spin-up particle can be written as the sum of the contribution (2) of
N/2 dimers and the Fermi-Bose interaction energy E(N/2+1,N/2) = E(N/2,N/2)+
gBFnd , where gBF = 3π h̄2/[m log(1/nda2

ad)] is the coupling constant fixed by the atom-
dimer reduced mass 2m/3 and the effective scattering length aad . By using the definition
of ∆gap and the value ad = 0.55a2D for the dimer-dimer scattering length in the energy
functional (2), we find aad = 1.7(1)a2D from the fit shown in the inset of Fig. 2.
Experimental results concerning the pairing gap [4] have not revealed beyond mean
field effects in the pairing gap at finite temperature; it is still not clear whether this is due
to temperature or other effects.

Polaron-molecule transition. In order to investigate more on the nature of the cor-
relations between unpaired fermionic atoms and bosonic dimers or single fermionic im-
purities (polarons) in two dimensions, we have also considered a system consisting of
N↑ fermions and a single ↓ fermion, with the same attractive interaction as described
above. This problem has been studied variationally in [16, 15] and with diagrammatic
calculations in ladder approximation in [17, 18]. We have used the JS and the polar-
ized BCS [13] nodal surfaces in order to study the polaron and the molecular states,
respectively. Finite size effects have been corrected by performing simulations with
N↑ = 13,25,37,49 and N↑ = 14,26,38,50 with the JS and the polarized BCS wave-
functions, respectively. Preliminary FN-DMC results show that a polaron to molecule
transition happens around |εb|/εF ∼ 15(1).
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FIGURE 2. Excitation gap in the BCS-BEC crossover. The solid line is the MF result. Inset: excitation
gap with |εb|/2 subtracted from ∆gap. The dashed line is a fit using the energy functional of a Fermi-Bose
mixture.
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