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In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer’s disease (AD) and frontotemporal lobar
degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune e-ector cells in the
central nervous system (CNS).,ey are extremely sensitive to the environmental changes in the brain and are activated in response
to several pathologic events within the CNS, including altered neuronal function, infection, injury, and in.ammation. While
short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of
neurodegenerative disorders, includingADandFTLD. In this framework, the purpose of this review is to give an overviewof clinical
features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative
diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.

1. Introduction

Dementia is a chronic or progressive loss of cortical and
subcortical functions resulting in cognitive decline, accom-
panied by disturbances of mood, behavior and personality,
and synaptic loss [1]. Alzheimer’s disease (AD) is the most
prevalent dementia in the elderly, whereas the most common
type of dementia in the presenile population (<65 years) is
frontotemporal lobar degeneration (FTLD).

Alzheimer’ s disease a-ects up to 75% of the more than
35 million people su-ering from dementia worldwide, and
the prevalence is believed to double every 20 years [2].
FTLD instead represents nearly 20% of cases of early-onset
dementia [3].

Both AD and FTLD are characterized by insoluble *la-
mentous aggregates in the brain.,ey share this feature with
Parkinson’s disease, Lewy body dementia, and Creutzfeldt-
Jakob disease. In particular, AD pathology is characterized by
amyloid beta (A!) plaques and tau-containing neuro*brillary
tangles (NFTs).,e abnormal protein accumulation triggers
a brain in.ammatory reaction, inducing the production
of a series of proin.ammatory mediators and microglial
activation [4]. Chronic microglial activation may contribute

to the development and progression of neurodegenerative
disorders, such as AD and FTLD.

,e purpose of this review is to describe the main clinical
and biomolecular features of AD and FTLD and to charac-
terize the role of neuroin.ammation in the pathogenesis of
these diseases, with particular interest on the role played by
microglia, which represents the immune system of the brain.

2. Clinical Features of Alzheimer’s Disease and
Frontotemporal Lobar Degeneration

2.1. Alzheimer’s Disease. Alzheimer’s disease is a progressive
neurodegenerative disease, which is characterized by cog-
nitive decline due to neuronal loss [5–7]. ,e hallmarks of
AD are the extracellular A! plaque deposition (named senile
plaques) and the intraneuronalNFTs of hyperphosphorylated
tau protein [8]. Deposition of A! seems to be the *rst
biological process during the pathogenesis of AD, beginning
many years before the appearance of symptoms. Also tau
deposition in the brain, despite occurring later thanA!, starts
before clinical onset of the disease. ,ese changes are well
re.ected in the cerebrospinal .uid (CSF), in which increased
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levels of total tau and phosphorylated tau as well as decreased
A! levels are altered early during the pathogenesis [9]. Several
studies showed in fact that changes in these biomarkers can
be seen in the preclinical stage of the disease (mild cognitive
impairment, (MCI)), and this can be useful to establish MCI
subjects that likely will turn into AD [10]. In a minority of
cases, very o/en with an early onset (from the forth decade),
AD is transmitted with an autosomal dominant pattern of
inheritance. ,ese cases are caused by autosomal dominant
mutations in speci*c genes, including amyloid precursor
protein (APP) and presenilin (PSEN) 1 and 2 [11]. However,
except for PSEN2, all the mutations are fully penetrant. ,e
majority of cases have amultifactorial pathogenesis, resulting
from the combination of several genetic and environmental
factors. ,e main gene associated with sporadic AD is the
apolipoprotein E gene (APOE) [12].

2.2. Frontotemporal Lobar Degeneration. Frontotemporal
lobar degeneration comprises a spectrum of clinical syn-
dromes and is pathologically and genetically heterogeneous.
,e disease onset occurs between 45 and 65 years, and the
prevalence is equal between men and women (see [17] for
review). ,e most frequent clinical features are progressive
changes in behavior, executive dysfunction, and language
impairment.

Frontotemporal lobar degeneration can manifest with
two major syndromes: behavioral variant frontotemporal
dementia (bvFTD) and primary progressive aphasia (PPA).
bvFTD is characterized by changes in behavior and personal-
ity, such as disinhibition, apathy, and loss of empathy, leading
to a loss of social competence. bvFTD has been associated
with symmetrical ventromedial frontal, orbital frontal, and
insular atrophy and le/ anterior cingulate atrophy [13]. “,e
International Behavioral Variant FTD Criteria Consortium”
established international consensus criteria for bvFTD: a
diagnosis of bvFTD is based upon a three-tier, hierarchi-
cal classi*cation system into “possible,” de*ned by clinical
criteria, “probable,” supported by neuroimaging data, and
“de*nite” bvFTD, con*rmed by neuropathological evidence
or the identi*cation of a pathogenic mutation [14]. ,e
clinical feature of PPA [15] is pronounced impairment in lan-
guage, which may consist in de*cits in language articulation,
object-naming, syntax, and word comprehension. Primary
progressive aphasia is further categorized into progressive
non.uent aphasia (PNFA), characterized by expressive or
motor speech de*cits with predominantly le/ perisylvian
atrophy and semantic dementia (SD), described by a loss
of semantic knowledge with associated atrophy of the le/
greater than the right anterior temporal lobes [16]. A third
newly described subtype is named logopenic aphasia [15].

Furthermore, there is a signi*cant clinical, pathological
and genetic overlap between FTLD and amyotrophic lateral
sclerosis (ALS). FTLD-ALS patients have a poor diagnosis
with a mean survival of 2-3 years from the onset of *rst
symptoms [16, 17]. Other diseases are closely related to
FTLD, such as progressive supranuclear palsy, corticobasal
syndrome, and FTD with parkinsonism [13].

,e neuropathology of FTLD can be divided into four
subtypes, according to its histology: with tau deposits (FTLD-
tau); with tau-negative, but with ubiquitin (FTLD-ubiquitin
or FTLD-U) and TAR DNA binding protein (TDP)-43
positive inclusions (FTLD-TDP); with neuronal intermediate
*lament inclusions and cases with no detectable inclusions
[18].,ere are also a considerable number of TDP-43negative
FTLD-U cases with inclusions of fused-in-sarcoma protein
(FUS), referred to as FTLD-FUS [13].

3. Genetics

3.1. Autosomal Dominantly Inherited Alzheimer’s Disease.
,eAPP gene is localized in the chromosome 21 and encodes
for A! precursor, a transmembrane polypeptide of 770
amino acids. ,e release of A! follows at least two APP
cleavages, processed by di-erent classes of secretases. ,e
*rst cleavage occurs within the extracellular domain by "-
or !-secretase, and the second proteolytic cut takes place in
the transmembrane region by a third secretase, known as #-
secretase. In the amyloidogenic pathway, APP is processed
sequentially by !- and #-secretase, with the generation of
A!40-42 fragments, which aggregate and form senile plaques
[19–21]. ,e most common APP mutations occur in the
transmembrane domain or in the #-secretase cleavage site,
leading to an increased A! production [20, 21]. Similarly,
in the Down syndrome, the presence of a third APP copy
gene causes an A! overproduction, which explains why the
patient with Downs syndrome develops AD pathology in
their brains [22]. Finally, substitutions that take place within
the A! peptide result in a peptide that is more prone to
cluster together and to form aggregates [20, 21].,e other two
genes involved in familial AD are components of #-secretase
complex, known as PSEN1, and its homologous PSEN2.
PSEN1, which is in the chromosome 14, consists of 12 exons
encoding for a transmembrane protein [23]. Its homologous
PSEN2 is located in the chromosome 1, and encodes also for
a transmembrane protein consisting of 12 exons [24]. PSEN1,
or its isoform PSEN2, forms the catalytic core of #-secretase
complex together with nicastrin, anterior pharynx-defective
1, and presenilin enhancer 2. Most of PSEN1 mutations are
missense mutations, which lead to an altered cleavage site in
theAPP sequence.,e patients carrying thesemutations have
an autosomal dominant inheritance form of AD with a full
penetrance and an age of onset of about 30 years old [11, 25].
Conversely, PSEN2 mutation is an uncommon cause of AD
with an incomplete penetrance and later onset [11].Mutations
in PSEN1/2 genes cause an increased A!40/A!42 ratio with
increased A!42, that is, more incline to aggregate than A!40
[20, 21]. Patients with di-erent mutations in the same gene
show heterogeneous clinical features [26].

3.2. Autosomal Dominantly Inherited Frontotemporal Lobar
Degeneration. Frontotemporal lobar degeneration has a
strong genetic component, demonstrated by the fact that
about 40% of FTLD patients have a positive family history
of dementia [27]. Several genes have been recognized to play
a role in autosomal dominant FTLD: microtubule-associated
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protein tau (MAPT), progranulin (GRN), and C9ORF72. In
a minority of FTLD cases, valosin-containing-protein-(VCP-
) 1, transactive DNA-binding protein (TDP-43), FUS, and
chromatin-modifying protein 2B (CHMP2B) genes have been
found to be responsible for the disease [3].

,e *rst mutations causing FTD with parkinsonism
(FTDP-17) were *rst found in chromosome 17 MAPT [28],
which encodes for the tau protein, critical for microtubule
assembly and stabilization in neurons. At present, more
than 40 mutations have been identi*ed in 134 pedigrees
(http://www.molgen.vib-ua.be/ADMutations/default.cfm?
MT=1&ML=0&Page=ADMDB). Mutations are predomi-
nantly clustered in exons 9–13 of the microtubule-binding
region near the alternatively spliced exon 10 [29] and mostly
modify the normal function of tau [30, 31].

Mutations in a second gene in chromosome 17, named
progranulin (GRN), were discovered in 2006 [32, 33]. GRN
mutations cause about 5–10% of all FTLD cases, varying
depending on the population considered (see [17] for
review). To date, 69 di-erent GRN mutations have been
described in 231 families (http://www.molgen.vib-ua.be/
ADMutations/default.cfm?MT=1&ML=0&Page=ADMDB).
GRN mutations, which include frameshi/, splice-site, and
nonsense mutations, are distributed across the complete
coding region and splice sites of the gene. ,ese are loss-
of-function mutations, which lead to reduced functional
protein, resulting in haploinsu0ciency [13].

Recently, a hexanucleotide repeat expansion in the non-
coding region of C9ORF72 has been recognized as the
genetic abnormality on chromosome 9p21 underlying the
majority cases of familial FTLD [3]. Majounie and colleagues
observed pathological C9ORF72 repeat expansions in 11.4%
of 1,381 FTLD patients of European origin, rising to 24.8%
in familial patients, whereas a C9ORF72 repeats expansion
frequency of 6.0% in sporadic FTLD [13]. ,e chromosome
9 expansion seems to mediate neurodegeneration through
an RNA-mediated mechanism. Wild-type alleles contain less
than 30 repeats, while mutated alleles have hundreds to
thousands repeats [34].

,e frequency of the hexanucleotide repeat expansions
has been recently determined in a large population of 651
FTLD patients and the clinical characteristics of carriers
and noncarriers compared. 39 FTLD patients (6%) presented
the pathogenic repeat expansion: 24 of these patients had a
positive family history for dementia and/or ALS (61.5%).,e
presentation with late-onset psychosis was more frequent in
carriers than noncarriers, as well as the presence of cognitive
impairment at onset. ,ese data con*rmed that the repeat
expansion in C9ORF72 is a common cause of FTLD and,
importantly, it is o/en associated with late-onset psychosis
and memory impairment [35].

3.3. Sporadic Alzheimer’s Disease: Genetic Risk Factors. A
number of genetic variants contribute to the risk of devel-
oping sporadic AD.,e gene that is strongly associated with
AD is APOE. ,is gene is located in chromosome 19 and
consists of 4 exons, which encodes for a protein of 229 amino
acids. ,ere are three APOE isoforms: $2, $3, and $4. ,e

$3 isoform is the most common allele among populations,
while the $2 allele is found in only 1–5% of people and
likely plays a protective role, by decreasing AD risk [36].,e$4 allele is found in the 50% patients a-ected by AD and
confers a threefold increased risk for AD development [37].
A! tra0cking, metabolism, and accumulation are regulated
by APOE in a di-erent manner by the three APOE isoforms.
Perhaps this is the reason why the $4 allele confers a high AD
risk, while the $2 allele is a protective factor [38–40]. Even
though APOE $4 itself cannot be the cause of AD [41], the$4 isoform leads to an earlier onset of symptoms in APP or
PSEN1 mutation carriers [42]. Many additional risk variants
have been described on a candidate-based hypothesis. In the
last few years, Genome Wide Association Studies (GWAS),
carried out in large populations, identi*ed novel risk genes,
including complement receptor type I (CRI), phosphatidyl
inositol binding clathrin assembly protein (PICALM), clus-
terin (CLU), and bridging integrator 1 (BIN1).

3.4. Susceptibility Genes and Risk Loci in Frontotemporal
Lobar Degeneration. Little is known about susceptibility
genes contributing to the risk of developing FTLD.

,ere has been so far only one GWAS in FTLD-
TDP, which identi*ed a possible susceptibility locus, which
encompasses the gene TMEM106B on chromosome 7p21
[43].,e study identi*ed three signi*cantly associated single
nucleotide polymorphisms (SNPs), which seemed to be
related to an increased expression ofTMEM106B, a condition
that could be possibly involved in the pathogenesis of FTLD-
TDP [43].

Finch et al. tried to replicate the association of
TMEM106B SNPs, using a large series of patients with FTLD
with and without GRN mutations. ,ey also performed
in vivo studies in plasma and peripheral blood to test
the hypothesis that TMEM106B SNPs regulate GRN
expression levels and in.uence FTLD risk by modulating
GRN expression. ,e authors found that TMEM106B SNPs
signi*cantly reduced the disease penetrance in patients with
GRN mutations, potentially by modulating GRN levels [44].

Apart from this GWAS study, Rademakers and colleagues
demonstrated that a common genetic variant (rs5848),
located in the 3!-untranslated region of GRN in a binding-
site for microRNA-659, was a major susceptibility factor for
FTLD-U [34]. Another variant, in the *rst intron ofGRN, was
also reported to be associated with FTLD in another cohort
of patients [45]. Details on additional candidate-based genes
associated are reviewed in [46].

4. Microglia and Neuroinflammation

Microglia are the unique resident macrophages of the CNS,
representing about 5–10% of the adult brain cell population
[47]. In healthy conditions, microglia have a rami*ed mor-
phology with a small, round soma and numerous branching
processes [48]. During development, microglial cells are
involved in di-erent processes, such as clearance of dying or
dead cells, elimination of excess axons, promotion of neu-
roaxonal growth, axonal guidance, neuronal di-erentiation,
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regulation of embryonic cortical precursor cell development,
astrocyte proliferation, and angiogenesis. ,ey are also able
to release a variety of cell signaling factors like neurotrophins
and extracellular matrix components [47].

A number of pathologic events, including altered neu-
ronal function, infection, injury, and in.ammation, rapidly
activate microglia. Activated microglia change from a rami-
*ed to a hyperrami*ed phenotype, proliferate, migrate to the
site of damage, and secrete both cytotoxic and neurotrophic
factors [49]. As themain cells of innate immunity of the CNS,
microglia constitutively express themost important receptors
(MHC I and II, chemokine receptors) at low levels [50].
During activation, the immunologically relevant molecules
are upregulated and the appropriate antigen presented via
MHC II [51]. Moreover, microglial cells can cross present
exogenous antigens on MHC I to CD8+ T cells [52].

Microglia can present two distinct molecular pheno-
types and e-ector functions depending on the activation
pathway. ,e M1 phenotype is induced by classic activation
of microglia and is characterized by production of proin-
.ammatory cytokines, such as IL-1! and TNF-", and free
radicals such as reactive oxygen species (ROS). It plays a
central role in the defense against pathogens and tumor
cells but can also damage healthy cells, like neurons and
glial cells. ,e alternative M2 anti-in.ammatory phenotype
is induced by IL-4 and IL-13 and expresses CD206 and
arginase 1, which downregulate in.ammation and promote
tissue remodeling/repair and angiogenesis [47].

While short-term microglial activity has generally a
neuroprotective role, chronic activation has been implicated
in the pathogenesis of neurodegenerative disorders.,e exact
mechanism leading to microglial overactivation is still not
fully understood, but glial-neuronal crosstalk seems to be
central, as well as microglia and astrocyte interaction. Proin-
.ammatory cytokines secreted by activated microglia inhibit
astrocyte gap junction communication, which in.uences the
role of astrocytes in providing neuronal support [50]. More-
over, activated microglia can release the neurotransmitter
glutamate, which trigger excitotoxic neurodegeneration and
cell death of astrocytes and oligodendrocytes [47].

4.1. Microglia Activation and the Role of In*ammation in AD.
Lines of evidence of in.ammatory involvement in AD were
*rst observed by Alois Alzheimer in autopsied brains from
patients with AD [53, 54]. ,is hypothesis is supported by
the epidemiologic studies which show that patients treated
with nonsteroidal anti-in.ammatory drugs (NSAIDs) had
a reduced incidence of AD [55–57]. Later, neuron models
demonstrated that the metabolites and products of in.am-
matory reaction, were neurotoxic [58, 59].,ese products of
in.ammatory reactions may initiate and promote neuronal
degeneration in AD [60].

Neuroin.ammation depends essentially onmicroglia and
astrocytes activation that respond to various injuries and
stimulations, through the expression of in.ammatory factors
such as cytokines and chemokines, and the release of reactive
oxygen species (ROS) and nitric oxide (NO) that *nally cause
oxidative stress [61–64]. Many studies, in fact, show that

oxidative stress responsive transcription factors, such as NF-%B and CHOP, are directly linked with the in.ammatory
pathway by regulating proin.ammatory genes [65–67].

Cytotoxic activation and in.ammatory factors stimulate
glial cells to the release of several proin.ammatory signals
generating a vicious circle between neuroin.ammation and
oxidative stress that results in a self-sustaining in.ammatory
condition [68].

,is in.ammatory state could, moreover, modify inter-
cellular communication through the deregulation of gap
junction channel and hemichannel [69]. In AD, astrocytes
show a decreased gap junctional intercellular communication
(GJIC) and an increased hemichannel functionality [70–
74]. During AD progression, A! accumulation increases
hemichannel activity, which generates Ca2+ di-usion also
through GJIC. ,is in.ux raises the intracellular Ca2+ con-
centration in the neighbors astrocytes cells allowing the
release of glutamate and activation of neuronal NMDA
receptors [75]. ,e hemichannel activation, instead, drives
the release of ATP that *nally activates the purinergic
receptor (P2). P2 and NMDA a-ect electrochemical and
Ca2+ imbalance in neurons, which leads *nally to cell death
[76]. Similarly, decreased GJIC may defend the physiological
intercellular di-usion of nutrient and metabolites, essential
for growth and survival of neurons, generating cell death.
On the other hand, the decreased GJIC may be a defensive
mechanism to avoid the di-usion of death signal and toxic
molecules through cells [77]. In this contest, even though
themain AD hallmarks are senile plaques and neuro*brillary
tangles, several recent studies have showed that activated
microglia are one of the principal players of neuroin.am-
mation, together with A! plaques deposition or astrocytes
stimulation [78].

Wisniewski et al. [79], by electron microscopic analysis,
observed that at least 80% of A! plaques colocalize with
activated microglia in the brain of AD patients [79, 80].
In vivo and in vitro experiments suggest that microglia,
recruited in A! plaques site, are able to surround and
phagocytize A! peptides. ,is mechanism is regulated by
Toll-like receptor, suggesting an impairment of the immune
system in AD pathogenesis. In the same way, astrocytes cells,
which provide trophic and metabolic support to neurons,
also regulate phagocytic activity of microglia cells [81–83].
,e lines of evidences show that under chronic in.ammatory
condition, astrocytes are unable to preserve the scavenger role
of microglia suggesting an impairment of this physiological
mechanism in AD patients [84].

A! plays also an important role in the regulation of
proteasome activity witch is essential for the degradation of
ubiquitin-conjugated proteins [85]. ,e deregulation of this
mechanism seems to be involved in the neuroin.ammation
neurodegeneration process, and A! is one of the factors that
could inhibit proteasome functions [86–90]. Moreover, A!
deposition is responsible for microglia activation in a way
strictly dependent on amyloid load; evidence of this comes
frommany experiments, where APP gene disruption reduces
microglia activation and decreases neuroin.ammation [91].
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A! contributes to enhance in.ammatory response by
NF-%B stimulation, a nuclear factor implicated in cytokine
production and also regulates the extracellular signal-
regulated kinase (ERK) andmitogen-activated protein kinase
(MAPK) pathway that leads to cytokines and chemokine
production [92, 93]. Several proin.ammatory cytokines and
chemokines have been found dysregulated in AD patients
[94]. IL-1, IL-6, and TNF-", which are proin.ammatory
cytokines, were found upregulated in AD patients [95]. In
particular, IL-1 induces microglia and astrocytes activation,
enhancing in.ammation; moreover, it stimulates acetyl-
cholinesterase and iNOS enzymatic activity [96–98]. IL-6
supports astrogliosis and stimulates the release of acute phase
protein [99–101]. In addition, TNF-" expression is regulated
by CD40L. Activated microglia, treated with CD40L, lead
to an increased TNF-" level that results in neuron injury.
,e evidence comes from the APP mice de*cient for CD40
that shows decreased microglia activation and reduction of
in.ammatory response [102]. In vitro analysis showed that
A! stimulates the secretion of speci*c chemokines, such
as CCL2 and CCL3. In AD patients, where their levels are
elevated, CCL2 and CCL3 recruit astrocytes and microglia
cells to A! plaques site increasing neuroin.ammation [103,
104]. Cytokines and chemokines are altered in CSF from
patients compared with controls. Galimberti et al. showed
that IL-11 levels are increased in CSF of mild AD and FTLD
patients and positively correlated with the Mini Mental State
Examination (MMSE) score. On the contrary,MCP1 and IL-8
levels were increased in all AD and in almost FTLD patients.
Moreover, IP10 concentration was elevated in CSF from AD
patients as well as subjects with MCI but was unchanged
in FTLD patients [105, 106]. By putting these data together,
these studies suggest that IP-10 probably is involved only in
AD pathology. On the contrary, MCP1 and IL-11, which were
found upregulated in FTLD and others neurodegenerative
disease, may be implicated in a common step shared by these
pathologies. ,e positive correlation between high MMSE
score and the IL-11/IP-10 peaks detected in CFS suggests
that up-regulation of these cytokines is an early event in
the pathogenesis of AD/FTLD, that is, not observed in the
late stages of the disease, implying that the high level of
proin.ammatory cytokine represents an early and transitory
e-ort of immune cells to restore brain health [105, 107].
Additionally, the complement system is active in the early
stage of the disease. In fact, A! is able to activate the com-
plement system by alternative pathway [108]. Nonetheless,
the complement activation produces in.ammation and cell
damage; studies in mice models showed that the complement
system had also neuroprotective roles.,ese studies demon-
strated that the complement complex inhibition increased
A! deposition, suggesting that the complement complex is
essential for clearance of apoptotic cells, debris cells, and toxic
protein aggregates [109–111].

Recent investigations showed that activated microglia
and in.ammation are not always detrimental but can have
a reparative role in neuronal damage. For example, CD45,
a bound protein-tyrosine phosphatase, is highly expressed
in activated microglia of AD patients rather than controls
[112]. Tan et al. inhibited CD45 activity to investigate its

role in reactivity of microglia to the A! protein [113]. ,e
results showed an increased level of TNF-" and other toxic
molecules, which generated neuron damage.,e use of CD45
agonist decreased TNF-" expression and oxide nitric produc-
tion, downregulating microglial activation.,e conclusion is
that CD45 could play bene*cial and protective e-ects in AD
[114].

Other studies show that sometimes proin.ammatory
cytokines promote bene*cial neuroin.ammation, decreasing
AD mice amyloidosis. Sha/el et al. [115] created a transgenic
mouse IL-!XAT to study the role of IL-1! in neuroin.amma-
tion. ,is transgenic mouse overexpressed IL-! in a speci*c
temporal and spatialmanner following FIV-Cre injection. IL-!XAT mouse showed a high neuroin.ammation caused by
astrocytes and microglia activation. APP mice were crossed
with IL-!XAT mice, showing a drastic reduction of A! plaques
and an increased phagocytosis activity [115]. ,ese data
suggest that IL-! expression leads to a bene*cial neuroin-
.ammation that enhances A! removal. Other investigators
obtained the same results by expressing IFN-#, in TgCRND8
mice, a mouse model of cerebral amyloidosis. ,e analysis,
a/er IFN-# injection, showed a remarkable decrease of A!
plaques [116]. Taken together, these data suggest that certain
forms of in.ammation and microglia activation are quite
helpful in neurodegenerative pathology, such as AD [117].

4.2. Microglia, Tau, and Progranulin: Role in FTLD. Cagnin
et al. [118] *rst observed microglial activation in FTLD.
,ey used positron emission tomography and a marker of
“peripheral benzodiazepine sites,” [11C] (R)-PK11195, which is
upregulated on activated microglia during progressive tissue
pathology [119]. ,ey demonstrated an increased binding
of [11C] (R)-PK11195 in the typically a-ected frontotempo-
ral brain regions, which implied the presence of activated
microglia response re.ecting progressive neuronal degener-
ation [118].

Interestingly, activated microglia express progranulin
[120–122]. Progranulin expression greatly increased in
response to experimental traumatic spinal cord injury in
a mouse model, and microglia were the primary sources
of progranulin a/er injury [120]. Tanaka et al. [121]
demonstrated that progranulin de*ciency induced exacer-
bated in.ammatory responses associated with activated
microglia, such as excessive increase of CD68-positive cells,
which is a marker for activated microglia, and TGF!-Smad3
signaling, a central mediator initiating formation of the
glial scar [123], excessive protein oxidation and laminin
immunoreactivity a/er traumatic brain injury [121].

Yin et al. [124] tried to understand the mechanism by
which loss of function mutations in GRN cause FTLD.
,ey generated conditional GRN knock-out mice, with the
expectation that GRN gene deletion might be embryonic
lethal. Instead, it was not the case. Initially, they observed that
GRN-de*cient macrophages produced more proin.amma-
tory cytokines and chemokines, such as CCL2, CXCL1, IL-6,
IL-12p40, and TNF, but less anti-in.ammatory cytokine IL-10
compared to wild-type (wt) macrophages, when exposed to
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bacterial lipopolysaccharide. However, GRN-de*cient mice
failed to clear bacterial infection as fast as wt mice and were
characterized by an exaggerated in.ammatory tissue damage.
Immunostaining of brain sections for CD68 revealed greater
activation of microglia with age in GRN-de*cient mice than
wt mice. Moreover, GRN-de*cient microglia responded to
in.ammatory stimuli by becoming more cytotoxic than wt
microglia, andGRN-de*cient neurons weremore susceptible
than wt to damage by activated microglia and by certain
cytotoxic stresses, such as depletion of glucose and oxy-
gen. ,ey also showed enhanced hippocampal ubiquitin
immunostaining and increased phosphorylation of TDP-
43 in the hippocampus and thalamus of old GRN-de*cient
mice. ,e authors thus hypothesized that FTLD may arise
from the congruence of two independent phenotypes of
GRN insu0ciency: deregulated in.ammation and increased
neuronal vulnerability to damage [124]. In another study, the
same authors assessed the behavioral pro*le ofGRN-de*cient
mice from 1 to 18months (mo) of age, *nding impairment in
social recognition tasks. Behavioral de*cits appeared early in
the disease (at 1moof age), and theywere still present at 18mo
of age.,ese *ndings were consistent with the behavioral and
personality changes observed in FTLD patients. A possible
mechanism underlying GRN-de*ciency-linked behavioral
de*cits is that the anti-in.ammatory action of GRN may be
indispensable for a balanced immune response in the brain
[125].

Martens et al. [126] demonstrated that the loss of
GRN resulted in increased neuron loss in response to
injury in the CNS. When exposed acutely to 1!-methil-4-
(2!-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), a neuro-
toxin that targets the dopaminergic neurons of the substantia
nigra pars compacta (SNpc), mice lacking GRN (Grn−/−)
showed an exaggerated, prolonged in.ammatory response
in activated microglia and that this mechanism likely con-
tributed to enhanced neuron death following injury. Consis-
tent with this, conditional mutants lacking GRN in microglia
exhibitedMPTP-induced phenotypes similar toGrn−/−mice.
Selective depletion of GRN from microglia in mixed cortical
cultures resulted in increased death of wild-type neurons
in the absence of injury. Furthermore, Grn−/− microglia
treated with LPS/IFN-# exhibited an ampli*ed in.ammatory
response and conditioned media from these microglia pro-
moted death of cultured neurons.,ese results indicated that
GRN de*ciency leads to dysregulated microglial activation
and thereby contributed to increased neuron loss with injury,
revealing a role for GRN in the attenuation of neuroin.am-
mation and suggesting that this mechanism contributed to
neurodegeneration in GRN-de*cient FTLD. Further, GRN
may attenuate in.ammation and neuron death in other forms
of neurodegeneration or CNS injury [126].

Interestingly, progranulin also seems to play a role in
the activation of microglia in AD. GRN polymorphisms
have been associated with AD [127, 128], and progranulin
has been found to colocalize with A! plaques in brains
of AD patients [129] and in some lines of transgenic mice
models of AD [130]. Recently, Pickford et al. studied the
e-ect of progranulin on neurons and microglia [131]. Using

microarray and cytokine arrays, they found out that pro-
granulin increased the secretion of leptin and,2 cytokines,
such as IL-4, IL-10, and IL-5, which have been associated
with neuroprotection. Moreover, progranulin reduced the
secretion of TRAIL, amember of the TNF superfamily, which
is a regulator of apoptosis and is upregulated in the AD
patients’ brains [132]. Reduction of TRAIL secretion may be
a neuroprotective mechanism of progranulin.,ey observed
that progranulin promoted chemotaxis and endocytosis of
extracellular peptides, including A!, by microglia. In addi-
tion, progranulin induced di-erentiation of microglia into
the M2 anti-in.ammatory phenotype. So, the activation of
progranulin pathway could be a new strategy to promote
microglial clearance of A!without the activation of cytotoxic
cytokines [131].

Bellucci et al. [4] focused instead their attention on
a mutation of tau protein. In particular, they studied the
e-ect of P301S mutated human tau protein in a patient
with FTLDP-17T, a hereditary neurodegenerative disorder
characterized by a spectrum of clinical phenotypes ranging
from an FTLD-predominant to a parkinsonism-predominant
type, linked to chromosome 17 with tau mutations [133]. In
the cortex and hippocampus of the P301S patient, activated
microglia, expressing CD68, and in*ltrating macrophages
were detected. ,ese cells were particularly concentrated
in the surroundings of phosphorylated (phospho)-tau-
positive neurons. Moreover, the presence of CD68 posi-
tive cells around blood vessels indicated that the reactive
microgliosis was probably accompanied by a remarkable
macrophage in*ltration. Activated microglia evolved also
in a macrophagic state, a condition that happens during
chronic neuroin.ammation, and phospho-tau-positive neu-
rons released activating signals, such as IL-1! and COX2.
IL-1! acts as a chemotactic factor, and COX2 induces the
production of prostaglandins, which may activate several
intracellular kinases able to phosphorylate tau on speci*c
sites [134]. Based on these results, the authors concluded that
microglial activation and the production of proin.ammatory
mediators by phospho-tau-positive neurons may di-eren-
tially contribute to neuronal death and disease progression
in neurodegenerative tauopathies [4].

5. Conclusions

In the last few years, genetic and molecular aspects at the
basis of AD and FTLD have been better clari*ed, including
the role of genes, in.ammatory factors, and brain immune
cells, microglia. Regarding autosomal dominant forms of AD
and FTLD, many new genes have been identi*ed, and new
diagnostic criteria have been proposed. Concerning events at
the basis of the diseases, it has become clearer and clearer that
microglia play a crucial role, displaying both in.ammatory
and neuroprotective properties.

Activated microglia could help in the recovery process
or potentially aggravate CNS damage. In addition, a link
has found between products of mutated genes, microglia,
and in.ammatory factors. A better understanding of such
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mechanisms, responsible for the development and progres-
sion of neurodegenerative disorders, will be a challenge for
the future, with the aim of identifying speci*c targets for a
tailored therapy.
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Blennow, and O. Hansson, “Cerebrospinal .uid levels of !-
amyloid 1-42, but not of tau, are fully changed already 5 to
10 years before the onset of Alzheimer dementia,” Archives of
General Psychiatry, vol. 69, no. 1, pp. 98–106, 2012.

[11] L. M. Bekris, C.-E. Yu, T. D. Bird, and D. W. Tsuang, “Review
article: genetics of Alzheimer disease,” Journal of Geriatric
Psychiatry and Neurology, vol. 23, no. 4, pp. 213–227, 2010.

[12] B. V.Hooli GMohapatra,M.Mattheisen et al., “Role of common
and rare APP DNA sequence variants in Alzheimer disease,”
Neurology, vol. 78, no. 16, pp. 1250–1257, 2012.

[13] A. Sieben, T. van Langenhove, S. Engelborghs et al., “,e genet-
ics and neuropathology of frontotemporal lobar degeneration,”
Acta Neuropathologica, vol. 124, no. 3, pp. 353–372, 2012.

[14] K. Rascovsky, J. R. Hodges, D. Knopman et al., “Sensitivity
of revised diagnostic criteria for the behavioural variant of
frontotemporal dementia,” Brain, vol. 134, no. 9, pp. 2456–2477,
2011.

[15] M. L. Gorno-Tempini, A. E. Hillis, S. Weintraub et al., “Clas-
si*cation of primary progressive aphasia and its variants,”
Neurology, vol. 76, no. 11, pp. 1006–1014, 2011.

[16] K.A. Josephs, J. R.Hodges, J. S. Snowden et al., “Neuropatholog-
ical background of phenotypical variability in frontotemporal
dementia,” Acta Neuropathologica, vol. 122, no. 2, pp. 137–153,
2011.

[17] R. Ferrari, A.,umma, and P. Momeni, “Molecular genetics of
frontotemporal dementia,” Acta Neuropathologica, vol. 124, no.
3, pp. 373–382, 2012.

[18] L. Sun and J. L. Eriksen, “Recent insights into the involvement of
progranulin in frontotemporal dementia,” Current Neurophar-
macology, vol. 9, no. 4, pp. 632–642, 2011.

[19] T. Tomiyama, T. Nagata, H. Shimada et al., “A new amyloid !
variant favoring oligomerization in Alzheimer’s-type demen-
tia,” Annals of Neurology, vol. 63, no. 3, pp. 377–387, 2008.

[20] T. Iwatsubo, D. M. A. Mann, A. Odaka, N. Suzuki, and Y. Ihara,
“Amyloid ! protein (A!) deposition: A!42(43) precedes A!40
in Down syndrome,”Annals of Neurology, vol. 37, no. 3, pp. 294–
299, 1995.

[21] A. Tandon, E. Rogaeva, M. Mullan, and P. H. St. George-
Hyslop, “Molecular genetics of Alzheimer’s disease: the role of!-amyloid and the presenilins,” Current Opinion in Neurology,
vol. 13, no. 4, pp. 377–384, 2000.

[22] K. E. Wisniewski, H. M. Wisniewski, and G. Y. Wen,
“Occurrence of neuropathological changes and dementia of
Alzheimer’s disease in Down’s syndrome,” Annals of Neurology,
vol. 17, no. 3, pp. 278–282, 1985.

[23] S. Baulac, M. J. LaVoie, W. T. Kimberly et al., “Functional#-secretase complex assembly in Golgi/trans-Golgi network:
interactions among presenilin, nicastrin, Aph1, Pen-2, and #-
secretase substrates,” Neurobiology of Disease, vol. 14, no. 2, pp.
194–204, 2003.

[24] W. T. Kimberly, M. J. LaVoie, B. L. Ostaszewski, W. Ye, M. S.
Wolfe, and D. J. Selkoe, “#-Secretase is a membrane protein
complex comprised of presenilin, nicastrin, aph-1, and pen-2,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 11, pp. 6382–6387, 2003.

[25] H. Karlstrom, W. S. Brooks, J. B. J. Kwok et al., “Variable
phenotype of Alzheimer’s disease with spastic paraparesis,”
Journal of Neurochemistry, vol. 104, no. 3, pp. 573–583, 2008.

[26] M. Cruts, C. M. van Duijn, H. Backhovens et al., “Estimation
of the genetic contribution of presenilin-1 and -2 mutations
in a population-based study of presenile Alzheimer disease,”
Human Molecular Genetics, vol. 7, no. 1, pp. 43–51, 1998.

[27] J. S. Goldman, J. M. Farmer, E. M. Wood et al., “Comparison
of family histories in FTLD subtypes and related tauopathies,”
Neurology, vol. 65, no. 11, pp. 1817–1819, 2005.

[28] M. Baker, I. R. Mackenzie, S. M. Pickering-Brown et al.,
“Mutations in progranulin cause tau-negative frontotemporal
dementia linked to chromosome 17,” Nature, vol. 442, no. 7105,
pp. 916–919, 2006.

[29] R. Rademakers, M. Cruts, and C. van Broeckhoven, “,e
role of tau (MAPT) in frontotemporal dementia and related
tauopathies,”HumanMutation, vol. 24, no. 4, pp. 277–295, 2004.

[30] L. Buée and A. Delacourte, “Comparative biochemistry of tau
in progressive supranuclear palsy, corticobasal degeneration,



8 Clinical and Developmental Immunology

FTDP-17 and Pick’s disease,” Brain Pathology, vol. 9, no. 4, pp.
681–693, 1999.

[31] M. Goedert and R. Jakes, “Mutations causing neurodegenera-
tive tauopathies,” Biochimica et Biophysica Acta, vol. 1739, no. 2,
pp. 240–250, 2005.

[32] M. Cruts, I. Gijselinck, J. van der Zee et al., “Null mutations in
progranulin cause ubiquitin-positive frontotemporal dementia
linked to chromosome 17q21,” Nature, vol. 442, no. 7105, pp.
920–924, 2006.

[33] B. F. Boeve, M. Baker, D. W. Dickson et al., “Frontotemporal
dementia and parkinsonism associated with the IVS1+1G→A
mutation in progranulin: a clinicopathologic study,” Brain, vol.
129, no. 11, pp. 3103–3114, 2006.

[34] M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve et al.,
“Expanded GGGGCC hexanucleotide repeat in noncoding
region of C9ORF72 causes chromosome 9p-linked FTD and
ALS,” Neuron, vol. 72, no. 2, pp. 245–256, 2011.

[35] D. Galimberti, C. Fenoglio, and M. Serpente, “Autosomal dom-
inant frontotemporal lobar degeneration due to the C9ORF72
hexanucleotide repeat expansion: late-onset psychotic clinical
presentation,” Biological Psychiatry, 2013.

[36] R. W. Mahley, “Apolipoprotein E: cholesterol transport protein
with expanding role in cell biology,” Science, vol. 240, no. 4852,
pp. 622–630, 1988.

[37] E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene
dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s
disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–
923, 1993.

[38] E. M. Castano, F. Prelli, T. Wisniewski et al., “Fibrillogenesis in
alzheimer’s disease of amyloid! peptides and apolipoprotein E,”
Biochemical Journal, vol. 306, no. 2, pp. 599–604, 1995.

[39] J. Ma, A. Yee, H. B. Brewer Jr., S. Das, and H. Potter, “Amyloid-
associated proteins "1-antichymotrypsin and apolipoprotein
E promote assembly of Alzheimer !-protein into *laments,”
Nature, vol. 372, no. 6501, pp. 92–94, 1994.

[40] T. Wisniewski, E. M. Castaño, A. Golabek, T. Vogel, and B.
Frangione, “Acceleration of Alzheimer’s *bril formation by
apolipoprotein E in vitro,” +e American Journal of Pathology,
vol. 145, no. 5, pp. 1030–1035, 1994.

[41] P. Pastor, C. M. Roe, A. Villegas et al., “Apolipoprotein E$4
modi*es Alzheimer’s disease onset in an E280A PS1 kindred,”
Annals of Neurology, vol. 54, no. 2, pp. 163–169, 2003.

[42] A. D. Roses, “Apolipoprotein E and Alzheimer’s disease: a
rapidly expanding *eld with medical and epidemiological
consequences,”Annals of the New York Academy of Sciences, vol.
802, pp. 50–57, 1996.

[43] V. M. van Deerlin, P. M. A. Sleiman, M. Martinez-Lage et al.,
“Common variants at 7p21 are associated with frontotemporal
lobar degeneration with TDP-43 inclusions,” Nature Genetics,
vol. 42, no. 3, pp. 234–239, 2010.

[44] N. Finch, M. M. Carrasquillo, M. Baker et al., “TMEM106B
regulates progranulin levels and the penetrance of FTLD in
GRN mutation carriers,” Neurology, vol. 76, no. 5, pp. 467–474,
2011.

[45] D. Galimberti, C. Fenoglio, F. Cortini et al., “GRN variability
contributes to sporadic frontotemporal lobar degeneration,”
Journal of Alzheimer’s Disease, vol. 19, no. 1, pp. 171–177, 2010.

[46] C. Cerami, E. Scarpini, S. F. Cappa, and D. Galimberti, “Fron-
totemporal lobar degeneration: current knowledge and future
challenges,” Journal of Neurology, vol. 259, no. 3, pp. 2278–2286,
2012.

[47] M. Czeh, P. Gressens, and A. M. Kaindl, “,e yin and yang
of microglia,” Developmental Neuroscience, vol. 33, no. 3-4, pp.
199–209, 2011.

[48] J. A. Smith, A. Das, S. K. Ray, and N. L. Banik, “Role of pro-
in.ammatory cytokines released from microglia in neurode-
generative diseases,” Brain Research Bulletin, vol. 87, no. 1, pp.
10–20, 2012.
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