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ABSTRACT. We give a corrected proof of the main Lemma 2 from the paper in the title (our Corollary 7).

1. INTRODUCTION

The paper [H] was concerned with the problem of describing the closure (in the topology of uniform convergence on the unit
ball) of the algebra An.X/ of polynomials generated by all polynomials of degree at most n on the Banach space X . Of course, if
X is finite-dimensional, then this situation is covered by the classical theorem of Stone and Weierstraß, so our interest lied with the
case of infinite-dimensional Banach spaces X . This natural problem was suggested to us by Richard Aron, but its origin can be
traced back to Shilov ([A1], [A2], [S]), and some early partial results on it were obtained in [NS].

The principal tool for obtaining our results in [H] was the finite-dimensional quantitative Lemma 2, which was obtained as a
by-product of a new theory of algebraic bases for algebras of sub-symmetric polynomials on RN .

Unfortunately, the arguments in [H] contain a serious gap, which was recently spotted by the third one of the present authors.
More precisely, the power series on top of page 213 should have been correctly centred at the point .x01 ; : : : ; x

0
n/, rather than at the

origin. It is not clear to us at the present moment if this problem can be fixed, and so the theory of algebraic bases developed in [H]
remains to be only a conjecture.

In the present note we give a different proof of the above mentioned lemma, which corresponds to our Corollary 7. As a result,
all the infinite dimensional applications stated in [H], as well as in several papers by various authors which have relied on our
previous work (e.g. [DD], [DG]) remain valid. In fact, the strongest results concerning polynomial algebras are contained in the
paper [DAH], which is also based on the lemma in question.

For more detailed introduction to the subject and more references we refer to [DAH]. Let us now proceed with the corrected
proof of Corollary 7.

2. PROOF OF THE MAIN RESULT

By N0 we denote the set N [ f0g, i.e. the non-negative integers. The canonical basis of RN will be denoted by fej gNjD1. By
Df.x/ we denote the Fréchet derivative of the function f at the point x. By P .dRN /, P d .RN /, and P .RN / we denote the space
of real d -homogeneous polynomials, polynomials of degree at most d , and all polynomials on RN , respectively. We say that a
polynomial P 2 P .RN / is sub-symmetric if

P

 
kX

jD1

xj enj

!
D P

 
kX

jD1

xj ej

!
whenever 1 � k < N , x1; : : : ; xk 2 R, and 1 � n1 < � � � < nk � N .

Let n 2 N. For a multi-index ˛ D .˛1; : : : ; ˛n/ 2 Nn
0 we denote its order by j˛j D

Pn
jD1 j̨ . Further, we denote the set of

multi-indices of length k and order d 2 N0 by

I.n; d/ D
˚
˛ 2 f0; : : : ; dgnI j˛j D d

	
:

For n; d 2 N we denote IC.n; d/ D f˛ 2 I.n; d/I j̨ > 0; j D 1; : : : ; ng and IC.d/ D
Sd
nD1 IC.n; d/.

Given k;N 2 N, k � N , and ˛ 2 IC.k; d/ we define PN˛ 2 P .dRN / by

PN˛ .x/ D
X

1��1<���<�k�N

x˛1�1 � � � x
˛k
�k
: (1)

ForN � d the polynomials fPN˛ I ˛ 2 IC.d/g form a linear basis of the space of sub-symmetric d -homogeneous polynomials on
RN . An important special case of these polynomials are the power sum symmetric polynomials sNn .x/ D P

N
.n/
.x/ D xn1C� � �Cx

n
N .

Our main result concerns the properties of sub-symmetric polynomials, however in its proof we need to work also with partial
derivatives of the polynomials PN˛ and for this reason we consider also the polynomials PN˛ given by the formula (1) where
˛ 2 I.k; d/, k � N , using the convention that x0 D 1 for every x 2 R. We denote by Hn;K.RN / the subspace of P n.RN /
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generated by the polynomials PN˛ , ˛ 2
Sn
dD0

SK
kD1 I.k; d/. For formal reasons we also put PN˛ D 0 if k > N and PN

. /
D 1,

both even for N D 0, further I.0; 0/ D f. /g, and R0 D f0g. Note that these definitions are consistent with (1), using the
convention that a sum over an empty set is zero and a product over an empty set is equal to 1.

The following fact describes an important relation between the restriction of PM˛ to the first N coordinates and PN˛ . Note that
for M > N we consider canonically RN as a subspace of RM .

Fact 1. Let M;N; k; d 2 N0, N < M , and ˛ 2 I.k; d/ be such that ˛m > 0 and ˛mC1 D � � � D ˛k D 0 for some 0 � m � k.
Then

PM˛ .x/ D

kX
jDm

�
M �N

k � j

�
PN.˛1;:::; j̨ /.x/

for every x 2 RN . Conversely,

PN˛ .x/ D

kX
jDm

.�1/k�j
�
M �N C k � j � 1

k � j

�
PM.˛1;:::; j̨ /.x/

for every x 2 RN .

Proof. The first relation follows from the following (recall that x 2 RN , i.e. xNC1 D � � � D xM D 0 as per the aforementioned
convention):

PM˛ .x/ D
X

1��1<���<�k�M

x˛1�1 � � � x
˛m
�m
D

X
1��1<���<�k�M

�m�N

x˛1�1 � � � x
˛m
�m

D

kX
jDm

X
1��1<���<�k�M
�j�N<�jC1

x˛1�1 � � � x
˛m
�m
D

kX
jDm

�
M �N

k � j

�
PN.˛1;:::; j̨ /.x/:

The second relation can be proved by induction on k � m. For k � m D 0 it follows immediately from the first one. For the
induction step we use the first relation together with the inductive hypothesis to obtain

PN˛ .x/ D P
M
˛ .x/ �

k�1X
jDm

�
M �N

k � j

�
PN.˛1;:::; j̨ /.x/

D PM˛ .x/ �

k�1X
jDm

�
M �N

k � j

� jX
lDm

.�1/j�l
�
M �N C j � l � 1

j � l

�
PM.˛1;:::;˛l /.x/

D PM˛ .x/ �

k�1X
lDm

 
k�1X
jDl

.�1/j�l
�
M �N

k � j

��
M �N C j � l � 1

j � l

�!
PM.˛1;:::;˛l /.x/

and the result now follows from the identity
Pk
jDl .�1/

j�l
�
M�N
k�j

��
M�NCj�l�1

j�l

�
D 0. Adding or removing a couple of zero

summands, this is equivalent to
PM�N
pD0 .�1/k�l�p

�
M�N
p

��
M�NCk�l�p�1

M�N�1

�
D 0, which is the Fréchet formula for the polynomial

t 7!
�
M�NCk�l�t�1

M�N�1

�
of degree M �N � 1 ([F], or [HK] for a more recent proof).

ut

It is very important to notice that the previous fact covers all the special cases like N < k � M , k > M , N D 0, m D 0,
or k D 0. Observe also that in particular in the sub-symmetric case (i.e. ˛ 2 IC.d/) we have PM˛ �RN D PN˛ . Hence for
sub-symmetric polynomials the superscript N can be dropped. We will use this simplification for the polynomials sNn D sn.

The next fact deals with the situation when we fix the first N coordinates of PM˛ .

Fact 2. Let N; d 2 N0, M;k 2 N, N < M , k � M , ˛ 2 I.k; d/, and y 2 RN . Then the polynomial .x1; : : : ; xM�N / 7!
PM˛ .y1; : : : ; yN ; x1; : : : ; xM�N / belongs to Hd;minfk;M�N g.RM�N /.

Proof.

PM˛ .y1; : : : ; yN ; x1; : : : ; xM�N / D

kX
jD0

X
1��1<���<�k�M
�j�N<�jC1

y˛1�1 � � �y
j̨
�j x

j̨C1

�jC1�N
� � � x

˛k
�k�N

D

X
0�j�k

k�.M�N/�j�N

PN.˛1;:::; j̨ /.y/P
M�N
. j̨C1;:::;˛k/

.x1; : : : ; xM�N /:

ut
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Let k; d 2 N, ˛ 2 I.k; d/, k � N , x 2 RN , and 1 � l � N . Then

@PN˛
@xl

.x/ D
@

@xl

0BB@ kX
jD1

X
1��1<���<�k�N

�jDl

x˛1�1 � � � x
˛k
�k

1CCA D kX
jD1

j̨>0

j̨

X
1��1<���<�j�1<l

l<�jC1<���<�k�N

x˛1�1 � � � x
j̨�1
�j�1 x

j̨�1

l
x j̨C1
�jC1 � � � x

˛k
�k

D

kX
jD1

j̨>0

j̨P
l�1
.˛1;:::; j̨�1/

.x1; : : : ; xl�1/x
j̨�1

l
PN�l. j̨C1;:::;˛k/

.xlC1; : : : ; xN /:

(2)

These partial derivatives have the following useful property:

Fact 3. Let k; d;N 2 N, ˛ 2 I.k; d/, k � N . Then
PN
lD1

@PN˛
@xl
2 Hd�1;k.RN /.

Proof.

NX
lD1

@PN˛
@xl

.x/ D

NX
lD1

kX
jD1

j̨>0

j̨

X
1��1<���<�j�1<l

l<�jC1<���<�k�N

x˛1�1 � � � x
j̨�1
�j�1 x

j̨�1

l
x j̨C1
�jC1 � � � x

˛k
�k

D

kX
jD1

j̨>0

j̨

NX
lD1

X
1��1<���<�k�N

�jDl

x˛1�1 � � � x
j̨�1
�j�1 x

j̨�1
�j x j̨C1

�jC1 � � � x
˛k
�k
D

kX
jD1

j̨>0

j̨P
N
.˛1;:::; j̨�1; j̨�1; j̨C1;˛k/

.x/:

ut

We note that this fact does not hold with IC.k; d/ and the space of sub-symmetric polynomials in place of I.k; d/ and
Hd�1;k.RN /, and this is the sole reason for considering the larger spaces Hn;K.RN /.

For each x 2 RN we naturally identify DPN˛ .x/ with the vector
� @PN˛
@x1

.x/; : : : ;
@PN˛
@xN

.x/
�
2 RN .

Fact 4. Let M;N; k; d 2 N, M > N , ˛ 2 I.k; d/, k � N , and x 2 RN . Then DPN˛ .x/ is a linear combination of vectors

DPM
ˇ
.x/�N D

�
@PM
ˇ

@x1
.x/; : : : ;

@PM
ˇ

@xN
.x/
�
2 RN , ˇ 2

Sk
mD1 I.m; d/.

Proof. Let 1 � m � k be such that ˛m > 0 and ˛mC1 D � � � D ˛k D 0. Fix 1 � l � N . If j̨ > 0, then m � j and hence by
Fact 1

PN�l. j̨C1;:::;˛k/
.xlC1; : : : ; xN / D

kX
sDm

csP
M�l
. j̨C1;:::;˛s/

.xlC1; : : : ; xN ; 0; : : : ; 0/;

where cs D .�1/k�s
�
M�NCk�s�1

k�s

�
. Therefore using (2) and the fact that ˛sC1 D � � � D ˛k D 0 if m � s � k we obtain

@PN˛
@xl

.x/ D

kX
jD1

j̨>0

j̨P
l�1
.˛1;:::; j̨�1/

.x1; : : : ; xl�1/x
j̨�1

l

kX
sDm

csP
M�l
. j̨C1;:::;˛s/

.xlC1; : : : ; xN ; 0; : : : ; 0/ D

kX
sDm

cs
@PM
.˛1;:::;˛s/

@xl
.x/;

from which the statement follows.
ut

We will also make use of the following version of the Lagrange multipliers theorem.

Theorem 5. Let G � Rn be an open set, f 2 C 1.G/, F 2 C 1.GIRm/, and assume that F has a constant rank. If the
function f has a local extremum with respect to M D fx 2 GI F.x/ D 0g at a 2 M , then Df.a/ is a linear combination of
DF1.a/; : : : ;DFm.a/, where F1; : : : ; Fm are the components of the mapping F .

Proof. Let k D rankF.x/ for x 2 G. SinceDF is continuous, we may without loss of generality assume thatDF1.x/; : : : ;DFk.x/
are linearly independent for each x 2 G. From the Rank theorem it follows that there are C 1-smooth functions gj of k variables,
j D k C 1; : : : ; m, and a neighbourhood U of a such that Fj .x/ D gj

�
F1.x/; : : : ; Fk.x/

�
for each x 2 U , j D k C 1; : : : ; m

(see e.g. [Z, Proposition 8.6.3.1]). Notice that gj .0; : : : ; 0/ D gj
�
F1.a/; : : : ; Fk.a/

�
D Fj .a/ D 0, j D k C 1; : : : ; m. Therefore

M \ U D fx 2 U I F1.x/ D 0; : : : ; Fk.x/ D 0g and we may use the classical version of the Lagrange multipliers theorem
ut

Now we are ready to prove the key lemma.

Lemma 6. For every n;K 2 N there are N 2 N and u; v 2 RN such that P.u/ D P.v/ for every P 2 Hn;K.RN / but
snC1.u/ ¤ snC1.v/.
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Proof. The proof is based on the observation that
PN
lD1

@snC1
@xl

.x/ D .n C 1/sn.x/, which together with Fact 3 leads to an
inductive proof. For each fixed K 2 N we prove the statement by induction on n. So fix K 2 N and denote M.n/ DS
1�d�n

S
1�k�K I.k; d/. The spaceHn;K.RN / is generated by a constant function and polynomials PN˛ , ˛ 2M.n/. For n D 1

the functions PN˛ , ˛ 2 M.n/ are linear and so there is N 2 N large enough such that
T
˛2M.n/ kerPN˛ contains a non-zero

element u. Then it suffices to take v D 2u.
The inductive step from n � 1 to n will be proved by contradiction. So assume that for each N � K and each u; v 2 RN

satisfying PN˛ .u/ D PN˛ .v/ for all ˛ 2 M.n/ we have snC1.u/ D snC1.v/. Now let FN W RN ! RjM.n/j be the mapping
whose components are the polynomials PN˛ , ˛ 2M.n/ in some fixed order and let AN .x/ be its Jacobi matrix at x 2 RN , i.e.

AN .x/ D
�
@PN˛
@xl

.x/
�
˛2M.n/
lD1;:::;M

. Note that the number of rows of the matrix of functions AN does not depend on N . Thus there is

N � K and y 2 RN such that rank AN .y/ D r D maxM�K;x2RM rank AM .x/.
By the inductive hypothesis there are M > N and g; h 2 RM�N such that P.g/ D P.h/ for all P 2 Hn�1;K.RM�N /

but sn.g/ ¤ sn.h/. If we denote by AM .x/�N the matrix consisting of the first N columns of the matrix AM .x/, then r D
rank AN .y/ � rank AM .y/�N � rank AM .y/ � r , where the first inequality follows from Fact 4. Let wM1 ; : : : ; w

M
r be the

rows of AM such that wM1 .y/�N ; : : : ; wMr .y/�N are linearly independent. Using the continuity of the entries of AM it is
easy to see that there is a neighbourhood U � RM of y such that for each x 2 U the vectors wM1 .x/�N ; : : : ; wMr .x/�N
are linearly independent and so they form a basis of the space spanned by the rows of AM .x/�N . Clearly the same holds for
wM1 .x/; : : : ; w

M
r .x/ and AM .x/.

Fix an arbitrary ´ 2 U and put S D fx 2 U I PM˛ .x/ D PM˛ .´/; ˛ 2M.n/g. By our assumption snC1 is constant on S and
so Theorem 5 implies that DsnC1.´/ is a linear combination of the rows of AM .´/. It follows that for each ´ 2 U the vector
DsnC1.´/ is a linear combination of wM1 .´/; : : : ; w

M
r .´/.

Next, we put u D y C c
PM�N
jD1 gj eNCj , v D y C c

PM�N
jD1 hj eNCj for some suitable c ¤ 0 so that u; v 2 U . Notice that

since Hn�1;K.RM�N / is generated by homogeneous polynomials, we still have P.cg/ D P.ch/ for all P 2 Hn�1;K.RM�N /

but sn.cg/ ¤ sn.ch/. For a fixed ˛ 2M.n/ and 1 � l � N consider the polynomial P.x/ D @PM˛
@xl

.y1; : : : ; yN ; x1; : : : ; xM�N /.
Then by (2) and Fact 2 we have P 2 Hn�1;K.RM�N / and so P.cg/ D P.ch/. Therefore

wMj .u/�N D w
M
j .v/�N ; j D 1; : : : ; r: (3)

We have DsnC1.u/ D
Pr
jD1 �jw

M
j .u/ andDsnC1.v/ D

Pr
jD1 �jw

M
j .v/ for some �j ; �j 2 R and of course the same holds

when we restrict to the firstN coordinates of all of these vectors. But sinceDsnC1.u/�N D .nC1/.yn1 ; : : : ; ynN / D DsnC1.v/�N ,
combined with (3) and the fact thatwM1 .u/�N ; : : : ; wMr .u/�N are linearly independent we obtain �j D �j , j D 1; : : : ; r . Finally,
from Fact 3 and Fact 2 it follows that x 7!

PM
lD1w

M
j

�
y C

PM�N
jD1 xj eNCj

�
l
2 Hn�1;K.RM�N /, j D 1; : : : ; r . Therefore

.nC 1/sn.u/ D

MX
lD1

@snC1

@xl
.u/ D

rX
jD1

�j

MX
lD1

wMj .u/l D

rX
jD1

�j

MX
lD1

wMj .v/l D

MX
lD1

@snC1

@xl
.v/ D .nC 1/sn.v/:

Since sn.u/ D sn.y/C sn.cg/ and sn.v/ D sn.y/C sn.ch/, we get sn.cg/ D sn.ch/, which is a contradiction.
ut

Recall that an algebra of polynomials on RN is a subspace of P .RN / that is closed with respect to pointwise multiplication.
Given an algebra A � P .RN / we say that the set B � A generates the algebra A if for every p 2 A there is a subset
fb1; : : : ; bkg � B and a polynomial P 2 P .Rk/ such that p D P B .b1; : : : ; bk/.

Corollary 7. For every n 2 N there exist N 2 N and " > 0 such that for every M � N

sup
x2B

`M
1

jp.x/ � snC1.x/j � "

for every p from the algebra generated by the sub-symmetric polynomials on RM of degree at most n.

Proof. Applying Lemma 6 to K D n we obtain N 2 N and u; v 2 B`N
1

such that P.u/ D P.v/ for every P 2 Hn;n.RN /

but snC1.u/ ¤ snC1.v/. We put " D 1
2
jsnC1.u/ � snC1.v/j. Let M � N . Since all sub-symmetric polynomials from P n.RN /

are contained in Hn;n.RN /, from the remark after Fact 1 it follows that in particular P.u/ D P.v/ for every sub-symmetric
P 2 P n.RM /. We conclude that p.u/ D p.v/ for every p from the algebra generated by the sub-symmetric polynomials from
P n.RM /. The statement now easily follows.

ut
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