LACK OF INTEGRABILITY VIA VISCOSITY
SOLUTION METHODS
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ABSTRACT. In this paper we use viscosity solution methods to
show that almost integrable Hamiltonian systems are not smoothly
integrable at rotation numbers which are exponentially close to

resonances.
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1. INTRODUCTION

A main problem in classical mechanics is to study the existence in-
variant tori for Hamiltonian systems of the form:

(1) H(p,) = 5lpP + eV (z),

in which V is a smooth Z"-periodic potential. The KAM theorem as-
serts that tori with frequencies {2 that satisfy a Diophantine condition:

Q-k|>Clk|™, VkezV,

persist provided that € is small enough. More precisely, KAM theory
asserts that for all such 2 and sufficiently small € there are smooth
functions f(X,€) = f(X,V,Q) and g(X,¢€) = g(X,¢;V, ), periodic
in X, such that, if we set

(2) z(t) = X (@) + f(X(1),¢)  p(t) =9(X(?),€)

We would like to thank Ugo Bessi for many enlightening discussions.
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with
X =Q,
then (z(t),p(t)) is a solution to the Hamiltonian dynamics
& =—DyH(p, z) p= D,H(p,x).

Furthermore, ¢ is unique, and f is determined up to a translation.
Additionally, there is a vector P and a number H(P) for which the
Hamilton-Jacobi equation

H(P+ D,u,z) = H(P)
has a unique (up to constants) smooth periodic solution and
g9(X,€) = P+ Dyu(X + f(X,¢)).

Since the curves z(t) are characteristics to the Hamilton-Jacobi equa-
tion and smooth solutions are viscosity solutions, these curves are min-
imizers of the action

/TL(:c,a':)+P-:b+F(P).

for all times 7" among all curves with the same endpoints.

However, it is known that tori with frequencies that are sufficiently
close to resonances can be destroyed by arbitrarily small perturbations
(see, for instance, [Mat88], [Mat86], [For94], and [Bes00]), even if V'
is analytic. The objective of this paper is to give an elementary proof
that does not exist a change of coordinates as in (2) which satisfies
very weak bounds.

We say that H is a-smoothly integrable at the rotation number €2 if:

(A) There is a smooth function:
F(X,0) = F(X,6V,9),
periodic in X, and a differentiable function u(z, €) such that for
9(X,€) = P+ Dyu(X + f(X,€),€),
and any z, € TV,
(x(t),p(t)) = (o + Qt + f(zo + Q,€), g(xo + O, €))
is a solution to the Hamiltonian dynamics. Also,

{z+ f(x,e), €TV} =TV,
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(B) f satisfies the bound:
(3) [Dx f(X,€)l, DX f(X, )] < Ce*,

for a suitable @ € R and a positive constant C, which may
depend on 2 and V.

Hypothesis (A) means that we are looking for a Lagrangian torus
that is a graph of a closed one-form (z, P+ D,u), as the ones guaranteed
by the KAM theory. The function u is a C*! solution to the Hamilton-
Jacobi equation

H(P + Dyu,z) = H(P),

and the orbit z(¢) in (A), which is a characteristic for v, is is minimal,
that is, it minimizes

Se(t) + u(z(t))
among all Lipschitz curves with the same initial condition, in which
is the viscosity solution of the Hamilton-Jacobi equation and

S,(T) = /0 S — eV (a(0) + Pi+ H(P) dt

We say that the rotation number €2 is exponentially close to a reso-
nance if there exists a sequence T,, — oo and w,, € ﬁZN such that

1 — wy| < e,

In this paper we give an elementary proof that if €2 is exponentially close
to a resonance, then it is possible to construct an analytic potential V'
such that the Hamiltonian H is not a-smoothly integrable at {2, even
for negative . In particular, Theorem 6 below will provide a necessary
condition for smooth integrability (namely, estimate (8) below), which
can be easily checked in explicit examples. For instance, in Theorem 8
an explicit analytic example violating such condition is dealt with.

Analogously, considering C* (instead of analytic potentials) one can
also prove that a-smooth integrability also fails if the rotation number
) is polynomially close to resonances, that is:

|Q - wn‘ S %7

Ty
for large enough g.

We remark that, unlike the standard converse KAM methods, we do
not rely on any computation of the splitting of separatrices and, in fact,
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our techniques are only based on a-priori estimates for viscosity solu-
tions and minimizing orbits to the Lagrangian dynamics. Our proof,
as the one in [Bes00], for instance, relies in showing that if such a torus
exist then its orbits do not minimize the action. In [Bes00], this is done
by computing the action along homoclinic orbits. In this paper, we use
periodic orbits, constructed using elementary bifurcation theory, which
are not minimizers of the action. By taking larger and larger periods
we show that such a torus does not exit for arbitrarily small e. An
important feature is that « in (3) is allowed to take negative values.
Moreover, we can treat potentials with infinitely many harmonics (see
Section 5).

The paper is organized as follows: in section 2 we recall the main facts
and estimates on viscosity solutions for Hamilton-Jacobi equations; the
main technical points, estimates for the action of minimizing orbits, and
the construction of periodic orbits, using Liapunov-Schmidt reduction,
are discussed, respectively, in sections 3 and 4; finally, an analytic
potential V for which H is not a-smoothly integrable is constructed in
section 5.

2. VISCOSITY SOLUTIONS

In this section we recall some facts about viscosity solutions of Hamilton-
Jacobi equations. As stated in the introduction, such results will be
the key to study the non-existence of smooth integrability. As most of
these results are not new, they will be stated for the convenience of the
reader, and the proofs can be found in the references mentioned.

The first result we quote is the classical Lions, Papanicolao and
Varadhan theorem on the existence of periodic viscosity solutions to
Hamilton-Jacobi equations [LPV88].

Theorem 1 (Lions, Papanicolao, Varadhan). Suppose
1
H(p,x) = 5lp|” + €V(x)

with V(z) smooth and Z" periodic in z. Then, for any value P €
RN there exists a unique number H(P), the effective Hamiltonian, for
which the equation

(4) H(P + Dyu(w, P),z) = H(P)

has a ZY -periodic viscosity solution u. Furthermore H(P) is conver in
P. The viscosity solution is semiconcave and Lipschitz.
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For the readers which are not familiar with viscosity solutions, we
recall that a viscosity solution u to (4) is a continuous function with
the following property: for any smooth function ¢ and at any point x
at which u — ¢ has a local maximum (resp. local minimum) we have
H(P + D,¢(x0), m0) < H(P) (resp. > H(P)).

Viscosity solutions of (4) have a variational characterization as fixed
points of a control theory problem (see, for instance [FS93]). The action
S, of a Lipschitz orbit z(t) is given by

T

1 _

(5) S,(T) :/ SJf? — V(a(t)) + Pi + H(P) b
0

Then, we have:

Theorem 2. Let u be a viscosity solution to (4) and Sy as in (5).
Then,

u(w) = inf  S,(T) +u(a(T)),

in which the infimum is taken over all Lipschitz trajectories x(-) with
initial condition z(0) = z. Furthermore, there is a minimizing trajec-
tory which has ||Z||p~ < C, independent of €, for small e.

In general, the solutions to (4) are not smooth, however viscosity
solutions enjoy some regularity, as shown in the next theorem.

Lemma 1 (A priori Lipschitz estimates). Suppose u is a viscosity so-
lution to (4). Then, for any h

u(z + h) + u(x — h) — 2u(z) < C||DV||e?||h|? ,
in which || - || is the periodic distance in the torus:
el = inf |2+ K.
In particular, this implies
|Dullz= < C[| DV ||pe'/?.

PROOF. Since u is periodic, we may assume that ||h|| = |h|. Let z(t),
0<t< %, be an optimal trajectory with z(0) = x. Define

y=(t) = 2(t) & h(1 — VVet).
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Then
u(x+h) +u(z —h) —u(z) <

1/veq 1

< [ S1a0) = VR + Slate) + Ve - a0+
0
+ O(€||DV || e || )dt <

< OOV s velhl.

It is a well know result that a semiconcave periodic function is Lipschitz.
[ |

Since the works of Fathi [Fat97a, Fat97b, Fat98a, Fat98b], and E
[E99], among others, the connection between viscosity solutions and the
weak KAM theory has become a well established fact. We summarize
some of these results in the next theorem (see also [EGO01]).
Theorem 3. Let u(z, P) be a viscosity solution to (4). Then, for any
P there exists a set, the Mather set, contained in the graph

(z, P+ Dyu(z, P)),
which s invariant under the Hamiltonian dynamics
& =—DyH(p, ) p=D.H(p,x).

Furthermore, if u is smooth, this set is an invariant torus and any
trajectory (x(-), p(-)) to the Hamiltonian dynamics is a minimizer, that
is
u(z(0)) = Sz(T) + u(z(T)).
The rotation vector w of a curve z(-) is the limit
z(T)

lim =w
T—00

Y

provided it exists. It turns out that one can relate the differentiability
properties of the effective Hamiltonian H with asymptotic properties,
such as the rotation number, of the trajectories in the Mather set. In
the next theorem we state one possible result, see also [Gom02] for
sharper asymptotic estimates.

Theorem 4. Suppose that x(-) is a minimizing orbit corresponding to
some P. Then, the rotation number w of z(-) is

w = —DPH(P),
provided H(P) is differentiable at P.
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Let L(z,v) be the Legendre transform of H(p, z), that is,

L(x,v) = sup —p-v — H(p, z).
p

In our case

1
L(z,v) = §|’U|2 — eV (x).
The Legendre transform of H(P) is defined by
(6) L(w) =sup—P-w— H(P).
P

The next theorem shows that L is an average of L along a minimizing
trajectory [EGO1].

Theorem 5. Let x(-) be a minimizing trajectory with rotation vector
w, then,

_ 1 [T
T(w) = lim ~ / L(z, i)dt.
T Jo
In particular, if the supremum on (6) is achieved at P, then

L(w)+HPY)+PY-w=0.

3. ESTIMATES FOR THE ACTION

In this section we prove the main technical estimates concerning the
difference of action between orbits of different rotation numbers. All
these estimates are elementary, but they are also the key to our main
result.

In what follows, we assume the frequency €2 to be fixed.

In the first lemma, we consider two different periodic orbits, not
necessarily minimizing nor satisfying the equations of motion, with
the same period T and rotation vector w. In general, they will have
different action, which can be estimated, for small €, by the Melnikov

gap:
T
(7) M= / V(3o + wt) — V(F1 + wt)dt.
0

Lemma 2. Let xy and x, be two periodic orbits in TN of frequency
w e FZN. Assume that

xi(t) = T; + wt + ey;(t),
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with y;(0) = y;(T). Assume further that y; together with its derivative
are bounded. Then,

T
S, (T) = Sy (T) > € / V(21 + wt) — V(Zo + wh)dt — O(ET).
0
Furthermore, the term O(€*T) can be estimated by

CET (|17 + 1DV Iz llyllze<] -

PROOF. Observe that
1 1 -
SualT) = S (T) = [ Sl -+ el = Sloo+ e+
0

+ V(T + wt + eyr) — €V (Tp + wt + eyp)+
+ PY - (w+ego) — P (w+ egn)dt >

T
ze/ V(Z1 + wt) — V(To + wt)dt — O(€T)
0

|
In the next lemma, we consider orbits whose rotation numbers are
close and have the same initial point, and estimate the difference be-

tween their actions. For simplicity, in what follows we will assume
T>1.

Lemma 3. Let w and Q) be given rotation numbers. Assume that x(t)
and z(t) are, respectively, orbits of rotation numbers w and 2. Suppose
that x(t) has period T and minimizes the action among all T-periodic
orbits with initial condition x(0). Furthermore assume that

z(t) = Qt + f(Q,€)
satisfies x(0) = z(0). Then
Se — 8. < CT?|lw — Q)
the constant C, satisfies:
Ca < CA+|IDfllz= + [ID*fllzee + | DV |L)
PROOF. Since the orbit z(¢) is minimal, the orbit & = wt + f(wt, €)
has a larger action, that is:
Se(T) < /OT %|w + Df(wt, e)w|® — €V (wt + f(wt,€)) +

+ PY . Df(wt, e)w — L(w)dt,
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using the fact that, for any w,
H(P¥)+ L(w) + P¥-w=0.

Furthermore

1
&GU:A S0+ DF(Q1, ) ~ &V (Ot + F(21,0) +
+ PP DO, 0 — T(Q)dt.

Then, since L is convex it is locally Lipschitz, and so
T_ JE—
/ L(w) - L(2) < Clw—QIT.
0
Since f(w,T,€) = f(0,€), we have

/OT [PY - Df(wt,e)w— P?- Df(Qt,e)Q] =

= —P2[f(QT,¢) — f(0,¢)]
< Gyl — w|T,

and the constant Cj can be estimated by Cy < C(1 + ||Df]|r=)-
The remaining terms can be estimated by:
71 2 1 2
/ Sl -+ Df(wt, ul’ — 510+ DF(Qt, 0~
0

— eV (wt+ f(wt,e)) + eV (Qt + f(Qt,€)) dt <
<OT? |w—-9Q,

the constant C; can be bounded by
C1 < C(L+|IDfllze + [|D*fllzee + [IDV][2e)? .
[ |

Lemma 4. For any T-periodic curve z(t) with rotation number w we
have

PrRoOOF. Recall that
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and

. 1 nT
T(w) < lim —/ L(z,2) + P* - (3 — w)dt =
0

:_/TML@+JW(¢—Mﬁ.

[ |
We show in the next lemma that the action S of a minimizing curve
is almost independent on the initial point.

Lemma 5. Suppose that the system is smoothly integrable at ) and let
z=Qt+ f(2,€). Then,

[S:(T)| < Ce'2||2(T) — 2(0)]],
in which || - || s the periodic distance in the torus. Furthermore, if
w € +Z", then

1S.(T)| < C1e'?|lw — QIT,

and the constant C1 < C(1 + ||Df||=)(1 + ||DV||1e).
PROOF. The first estimate follows from the existence of a (C!) vis-

cosity solution u corresponding to €2, from (A) at page 2, the a-priori
Lipschitz estimates of lemma 1, and

S:(T) = u(2(0)) — u(z(T)).

The second estimate follows from the first one and the hypothesis. W

By combining all the previous lemmas, one can prove that if the
Melnikov gap M, as defined in (7), is too large, then the system is not
smoothly integrable at 2.

Theorem 6. Suppose the system is smoothly integrable at 2 and as-
sume that there are two periodic orbits xq, x1, with period T, with fre-
quency w € +Z, of the form

zi(t) = Z; + wt + eyi(t),

as in lemma 2. Let us assume that x; are action minimizing among all
T-periodic orbits with initial condition z;(0). Let

T
M= / V(31 + wt) — V(Zo + wt)dt.
0
Then,

2

T
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The constant Cy depends polynomially in ||D f||zs, ||[D? ||, ||[DV ||z
and ||V ||z ; the constant Cy depends polynomially in || D?V ||pe, || DV || 1,
IVllzeo, in \lyill 2o, 119l

PROOF. Let z; be a minimal orbit with frequency Q of the form (2),
with initial condition z; = Zz;. This choice is possible by assumption
(A). Assume S;, < S;,. Then (evaluating all actions at time 7T')

Sgy — Sop < Sgy — Sy + 55 — Sap-

From lemma 2, we have

eM — CET < Sy — S,
Lemma 3 yields

Spy — S, < CT?Hw — Q.
Lemma 5 implies

1S, < Cre'?lw — QIT.
Finally, from lemma 4
Sz 2 0,

yields the last inequality necessary to the estimate. |

4. CONSTRUCTION OF PERIODIC ORBITS

The main goal of this section is to use a well known Liapunov-
Schmidt reduction to construct periodic orbits for which the estimates
in the previous section can be applied.

Theorem 7. Let w € %ZN. There exists A > 1, polynomially depend-
ing on T and on the C3-norm of V so that: if Ae < 1, the system has
a periodic orbit (z,(t),p.,(t)) of rotation number w. Furthermore, such
orbit has the form

2u(t) = 2.,(0) + wt + v (t)

pw(t) =w+ ng(t) )
with

yw(o) = yw(T) =0,

sup |yo(t)|+ T sup |9,(t)] <A.
te[0,T] te[0,T7]
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Proor. For the proof of this theorem we will follow the well known
Liapunov-Schmidt reduction (see, for instance [ACZE87], [BBV03] and
references therein). Remarkably, the desired periodic orbits will be
obtained as critical points of a suitably restricted action functional. We
first build a family of pseudo-orbits, that is, curves (z(-),p(-)) which
satisfy the equations of motion and with z(0) = z(7T') and p(0) =
p(T) + Ofe).

Lemma 6. Let w € +Z". Fiz z, € TV. Then, there ezists A > 1,
polynomially depending on T and on the C3*-norm of V so that: if
Ae < 1, there exists (x4, (), ps, (t)), whose dependence on x* is C*,
which satisfies the equation of motion for any time t € [0,T], and such
that

sup |y(t)|+ 7 sup [y(t)] <A.
te[0,7) te[0,T]

Proor. Let X = C'([0,T],RY),Y ={f € X : f(0) = f(T) = 0}.
Consider X and Y as Banach spaces endowed with the norm:

|f]| = sup | f| + Tsup | f|.
[0,T] [0,T]

Define the linear operator £ on Y as

//f dsdT——//f Ydsdr,  Vte[0,T].

Then, £(X) C Y and the operator norm of £ is bounded by 472
Furthermore, if ¢ = Lf, then ¢g is C? and § = f. Additionally, let P
be given by:

P(f(t) =V'(ze +wt) = V'(zy + wt — eL(V (2, + wi)) +ef (1)) =

T T
=V'(zs + wt) = V' (x* + wt + e% / / V(24 +ws)dsdr —
o Jo

—e/ot/OTV'(a:*+ws)dsdr+6f(t)) :

Notice that ||P(0)|| < Ae, for a suitable constant A which is polynomial
in T and in the C3-norm of V. Moreover, the Lipschitz norm of P in
the unit ball is bounded by C'Ae. Whence, |LP(0)| < CAe, therefore



LACK OF INTEGRABILITY VIA VISCOSITY SOLUTION METHODS 13

(see [BBVO03]), if (by changing A — CA, if necessary) Ae < 1, there
exists g € X so that ||g|| < A and g = LPg. The desired pseudo-orbit
is then

Tz, (1) = 24 + wt + ey(t) ,
Po.(t) = w + €y(t)

where

T T t T
y(t) = 1/ / V'(z. + ws) dsdr — / / V!(zs + ws) dsdr + g(t) .
TJ)o Jo 0 Jo

Also, the map z* — (24, ,ps,) is C' by the standard Implicit Function
Theorem. |
The proof of theorem 7 ends as follows. Let (z,,,p,.) be the pseudo-
orbit constructed above.
Define the functional £ on TV as

(9) £(z.) = / L(@a. (), 5. (1)) dt .

Then, critical points for £ are periodic solutions of the equation of
motion, as the reader may easily check by inspecting the Euler equation
for £. The existence of critical points for £ on TV is now a well known
fact from finite-dimensional analysis. |

Let us point out some easy relations between the functional £ above
and the action:

Lemma 7. If (z,,(t), p..(t)) is a pseudo-orbit constructed in lemma 6
and € is as in (9), then

T
T
‘5(37*)—1—6/ V(:r*+wt)dt—§\w|2 < Aé,
0

with A > 1 polynomially depending on T and on the C3-norm of V.

ProoF. It is a straightforward calculation, by using the estimates on

the pseudo-orbit given in lemma 6. |
Corollary 1. Let the hypotheses of theorem 7 hold. Define, for any
xz € TV,

M(x):/OTV(ac—i—wt)dt.

Let xp; and x,, be points of absolute marimum and minimum for M,
respectively. Let us assume that they are non-degenerate, i.e., that there
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exist positive quantities 0 and u so that
M(zy) > M)+ p, Vo € 0Bs(zm),

and
M(z) > M(zp) + u, Vo € 0Bs(xy,) .

Let also m = M(zy) — M(zy,). Then', there exists A > 1, polyno-
mially depending on T and on the C3-norm of V so that: if u* :=
min{y, 1} and € < %, then € has at least one critical point x3; in
Bs(znr) and at least one critical point z, in Bs(zy). These critical
points correspond to two different periodic orbits x, p(t) and ., (1),

of frequency w, whose action satisfies

m

|S-Tu,M (T) - Sww,m (T)‘ 2 € 5 .
Proor. It follows directly from theorem 7, lemma 7 and the definition
of the action. [ |

We now point out that, even if one of the orbits constructed above
mazimizes the functional £, they both minimize the action among all
T-periodic orbits with the same initial point:

Lemma 8. For € sufficiently small, the orbits x(t) constructed above
are minimizers of the action among all T-periodic orbits y(t) with

7(0) = z(0).
PROOF. We have

10 N I AT F
| ghitravear> [ Sl - d) + 5ls -
. 2 . 2 2
+ €V (z) + D,V (z)(y — z) — €Cly — x|*dt .
Since x is a solution to the Euler-Lagrange equation we have
T
/ z-(§—2)+eD,V(x)(y—z)dt = 0.
0
Poincaré inequality applied to the interval [0, 7] yields

T T
[ -ar<e [a-a
0 0

Thus, for sufficiently small ¢ we have

N 71
/ ~1H]? + €V (y)dt > / ~|&|? + eV (2)dt.
0 2 0 2

LOf course, m > p > 0.
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5. AN EXPLICIT EXAMPLE

In this last section we construct an analytic potential for which H is
not smoothly integrable at rotation number €2, provided (2 is exponen-
tially close to resonances. With minor modifications, it is possible to
construct C* potentials for which the system is not smoothly integrable
at a rotation number polynomially close to resonances.

Theorem 8. Let N > 2. Suppose the Hamiltonian H is as in (1), and
the rotation number Q is irrational, that is, Q- k # 0 for any k € ZV,
and exponentially close to a resonance, that is, there exrists a sequence
T, — 0o and w, € TLRZN such that

1Q — w,| < e,

Then, if b is sufficiently large, there exists a periodic analytic potential
V' for which H is not a-smoothly integrable at the rotation number €.

PrROOF. Let w/, and @' be, respectively, the projections of w, and §2
onto their first two components. Note that, taking a subsequence, if
necessary, we may assume that none of the projections w/, are parallel.
Indeed, let us assume that, inductively, we constructed a set of rational
frequencies
Wy s« ey Wy

so that wy, and wy, are non-parallel for each 7,7 = 1,..., k. Then, there
must be an index n* > n; so that wy. is parallel to none of the wj, .
Indeed, if not, there is a subsequence which is parallel to some w;%;
since such subsequence converges to 2’ and w,’% is rational, we would
infer that Q' = 1(v1, 1), for suitable v1,v5 € Z, 7 € R\ {0}. Hence,
Q- (—wvp,v1,0,...,0) =0, in contradiction with the assumptions.

Thus, we now assume that none of the projections w), are parallel.
Let us write w/, = Tin(ynl, Vn2), With v,1, vpe € Z. Consider a sequence
kn = (=Vn2,Vn1,0,...,0) € ZN. Then, |k,| < const Ty, w, - k, = 0,

and w; - k, # 0 if n # 4. Therefore,
1;
/ cos(2mky, - (T + wjt))dt = 6,;T,, cos(2nk, - T).
0
Let

o0

V(z) = Z e Ir cos(2mky, - z),

n=1
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for some ¢ > 0 sufficiently large to make V' analytic.

We will show that for a sequence €, — 0 the inequality (8) in theorem
6 is not satisfied.

Fix w, and choose ¢, = e , for some d > 0 to be determined. By
corollary 1 and lemma 8, we obtain two periodic orbits of the system,
which are action minimizing among trajectories with their same initial
point, and whose Melnikov gap is, at least, of the order of Tj,e=“Tn.
Then, by means of (3), inequality (8) reads

—dTy,

0 —
e*CTn S KlTyf(z (' K:‘)n‘ +6n) S KlTnl(z(e(ngfb)Tn +€den)’

€n

for suitable positive constants K;. Therefore, if d > c and b > ¢+ K3d,
this inequality fails as 7,, — oc. |
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