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Rumin’s Complex and Intrinsic Graphs

in Carnot Groups

Marco Marchi

Abstract. This thesis is concerned with some aspects of geometric analysis

on Carnot groups. In the first chapter, we study differential forms and Ru-

min’s complex on Carnot groups. In particular, we undertake the analysis of

Rumin’s Laplacian ΔR on the Heisenberg group. We obtain a decomposition

of the space of Rumin’s forms with L2 coefficients into invariant subspaces and

describe the action of ΔR restricted to these subspaces up to unitary equiva-

lence. We also obtain that this decomposition provide a Lp decomposition of

the space of Rumin’s forms.

In the second chapter, we study intrinsic Lipschitz graphs and intrin-

sic differentiable graphs within Carnot groups. Both seem to be the natural

analogues inside Carnot groups of the corresponding Euclidean notions. In

particular, we prove that one codimensional intrinsic Lipschitz graphs are sets

with locally finite G-perimeter. From this a Rademacher’s type theorem for

one codimensional graphs in a general class of groups is proved.
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PREFACE i

Preface

This thesis is concerned with some aspects of geometric analysis on Carnot
groups.

A Carnot group is a connected, simply connected, stratified nilpotent Lie group.
These groups arise naturally in a variety of settings, they have drawn a great deal of
interest in the recent years and are still a fertile field of research. As basic references
for Carnot groups we refer to [15], [21], [65].

The interest in Carnot groups is multi-fold. On one hand they represent the
simples setting of sub-Riemannian geometry. On another hand, stratified nilpotent
Lie algebras are the simplest example of non-abelian Lie algebras. In this setting,
representation theory and more specific Lie algebras (such as Heisenberg-type, and
of Métivier, see [38, 58], [46, 16]) are of current great interest.

Moreover, the first step in the stratification, the subspace g1 plays a funda-
mental role in analysis of distinguished partial differential operators. The naturally
arising differential operator given by the sum of squares of a (left invariant) basis
of g1 is the basic example of a hypoelliptic, sub-elliptic differential operator, by the
celebrated theorem by L. Hörmander, see [37].

The most famous and studied Carnot group is certainly the Heisenberg group
Hn. A detailed analysis of sub-elliptic partial differential operators was undertaken
by E. M. Stein and G. B. Folland in the seminal paper [22]. The main object of the
their study was the so-called tangential Cauchy–Riemann complex on Hn and the
naturally arising Laplacian, the so-called Kohn Laplacian. This operator is defined
on forms on Hn, but it acts diagonally (with respect to a natural basis), so that its
analysis immediately reduces to the analysis of scalar differential operators.

The tangential Cauchy–Riemann complex on Hn arises as the “trace” of a
complex structure, since the group Hn can be identified with the boundary of a
domain in Cn+1. On a more general Carnot group such a structure is not present,
while one is interested on the objects defined intrisically in terms of the first level
of the stratification.

The differential operator dH obtained as the exterior differential defined only by
differentiation along directions of g1 does not give rise to a complex, that is, d2

H 6= 0.
In order to obtain a complex, M. Rumin introduced a subspace of the exterior
algebra of the cotangent bundle and the associated exterior differential, that we
denote by dR, that turns out to form a complex, [59], [61], [62]. Rumin proceeded
to study the main properties of the associated Laplacian ΔR. In particular he
proved that, on Hn, ΔR is hypoelliptic and maximal hypoelliptic in the sense of [35].
Rumin’s Laplacian has been intesively studied by several authors. In particular here
we mention [9], [10], [11], [31].

An important area of research involves the spectral analysis of Laplacians on
differential manifolds, as in the spirit of the Hodge Laplacian on a Riemannian
manifold. In this setting there exists a vast literature and we simply refer to [8]
and the references therein.

Such an analysis is intimately connected with the so-called Riesz transforms,
their Lp-boundedness, the strong Lp-decomposion of the space of forms. In this
spirit see the recent work [49] and [50] for the case of the Hodge Laplacian on the
Heisenberg group.

In the first part of this thesis, following the scheme in [50], we study the spectral
properties of ΔR on Hn. In particular, we decompose the space of the smooth
intrinsic forms as direct sum of subspaces that are invariant under the action of ΔR

and on which the action of ΔR can be expressed, up to unitary equivalence, by well-
understood scalar operators. These invariant subspaces are orthogonal with respect
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to the natural L2-inner product, thus providing an orthogonal decomposition of the
space of intrisinc forms with L2 coefficients.

At this point, we are able to prove a Mihlin–Hörmander multiplier theorem for
ΔR, with minimal smoothness assumption on the multiplier given by half of the
topologica dimension of underlying manifold Hn. This result allows us in particular
to show that the decomposition for L2 extend to the case of the space of intrisinc
forms with Lp coefficients, 1 < p < ∞.1

In the second chapter of the thesis we recall the notion of intrinsic graphs
within Carnot groups and specifically of intrinsic Lipschitz graphs, that has been
introduced with different degrees of generality in [30], [7], [29]. In [24] B. Franchi
and R. Serapioni provide a comprehensive presentation of this theory.

Then we introduce the notions of intrinsic differentiable functions within a
general Carnot group G and we prove the almost everywhere differentiability of
one dimensional intrinsic Lipschitz functions inside a wide class of Carnot groups.

Our interest in intrinsic Lipschitz functions originates from the problem of
defining appropriately rectifiable sets inside Carnot groups.

Several notions of rectifiability have been proposed in the last few years: in this
regard the reader is referred to [2], [3], [25], [28], [55], [42].

In Euclidean spaces, rectifiable sets are obtained, up to a negligible subset, by
“gluing up” countable families of C1 or of Lipschitz submanifolds. Hence, under-
standing C1 and Lipschitz submanifolds within Carnot groups, is preliminary in
order to develop a satisfactory theory of intrinsic rectifiable sets. We refer the
reader to [24] for a complete discussion of the problem that lies behind the notion
of Lipschitz graph. Let us sketch here the main points of the discussion of [24].

First of all, we stress that considering Euclidean regular submanifolds may be
both too general and too restrictive (see e.g. [39] for a striking example related to
the second instance).

On the other hand, in Euclidean spaces C1 submanifolds can be locally viewed,
equivalently, as (i) C1 injective images of an open subset of a linear space; (ii) non-
critical level sets of C1-functions; (iii) graphs of C1 maps between complementary
linear subspaces.

Notion (i) has a natural counterpart in general metric spaces that goes back at
least to Federer’s book (see [20] and [2] ). According to this definition, Lipschitz
submanifolds of a metric spaces are Lipschitz images of open subsets of Euclidean
spaces. When working with a Carnot group G, open subsets of homogeneous sub-
groups of G might be more natural parameter spaces (see [55] and [42]). Rectifiable
curves are instances of this class of sets. On the other hand, notion (ii) has been
largely studied in the recent literature, thanks to the implicit function theorem in
Carnot groups proved in [25] and [26].

However, neither point of view (i) nor (ii) seem to describe the complexity of
the geometry of Carnot groups, even of the Heisenberg groups (see [2],[40],[12],[6]).

The notion of graph appears at the first glance as ill-suited to be generalized
outside of the Euclidean setting, since Carnot groups in general fail to be Cartesian
products of subgroups. However, this obstacle can be overcome when the group G
can be decomposed as a product G = M ∙ H of two homogeneous complementary
subgroups M, H (see [24]). Indeed, if such a composition is given, we can recall the
following definition introduced in [24]: let M, H be complementary homogeneous
subgroups of a group G, then the intrinsic (left) graph of f : A ⊂M→ H is the set

graph (f) = {g ∙ f(g) : g ∈ A}.

1We expect the Riesz transform dRΔ
−1/2
R to be bounded on Lp, for 1 < p < ∞. However,

at this time we have not completed the proof of this fact and we leave it as a future project.
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Intrinsic graphs appeared naturally in [30], [7], [29] in relation with non crit-
ical level sets of differentiable functions from G to Rk. Indeed, implicit function
theorems for groups ([25], [28], [26], [17], [18]) can be rephrased stating precisely
that these level sets are always, locally, intrinsic graphs.

Intrinsic graphs are ‘intrinsic’ since they keep being intrinsic graphs after left
translations or dilations δλ: see [24]. Moreover, the notion of intrinsic graph is
more general and flexible than parametrizations or level sets. For instance, already
in Heisenberg groups, both non critical level sets and images of regular maps are
locally intrinsic differentiable graphs (see [7]).

A further step consists now in the characterization of Lipschitz graphs when
the group G admits a decomposition G = M ∙H. Since the Carnot group is endowed
with its Carnot-Carathéodory distance, it might appear natural to consider graphs
of maps from M to H that are Lipschitz w.r.t. such distance. Unfortunately, this
notion is not invariant under group translations (except in trivial cases), and must
be abandoned. A notion of intrinsic Lipschitz graphs, which is invariant under
translations, is introduced in [24].

Going back to our original motivation related to the notion of rectifiability, we
can wonder whether the notion of Lipschitz graph yields suitable differentiability
properties as in the Euclidean setting.

With this aim, we give two equivalent definitions of intrinsically differentiable
functions f : M→ H in Definition 2.3.7 and Theorem 2.3.14.

Another more algebraic definition of differentiability using intrinsic linear func-
tions, i.e. functions whose graphs are homogeneous subgroups, is proved to be
equivalent to the previous one in Theorem 2.3.14. We recall also that an extensive
study of intrinsic differentiability following an alternative but (likely) equivalent
approach has been carried on in [5], [13], [14] [53].

In the last part of the chapter we consider the case G = M ∙ V with V one
dimensional and horizontal. In this case we prove the general fact that the graphs
of intrinsic Lipschitz functions f : M→ V are boundaries of sets with locally finite
G-perimeter.

This fact is not only interesting in itself but also yields a Rademacher’s type
theorem (see Theorem 2.4.15 below).

Indeed the rectifiability of the reduced boundary of a set of finite G-perimeter
(the so-called De Giorgi’s theorem in Carnot groups) yields, in particular, the almost
everywhere intrinsic differentiability of the boundary, when the boundary is an
intrinsic graph. Now, De Giorgi’s theorem in Carnot groups, proved for Heisenberg
groups in [25] and for step 2 groups in [27] (see also [4] for a different approach) has
been recently generalized by the author to the much larger class of type ? Carnot
groups (see Definition 2.1.1) in [43].

Clearly it is natural to ask, and it is an open problem to the best of our
knowledge, whether a Rademacher’s type theorem holds for one dimensional valued
intrinsic Lipschitz functions inside a general Carnot groups. One should also ask the
equivalently natural question if Rademacher’s theorem holds for intrinsic Lipschitz
functions valued in higher dimensional horizontal homogeneous subgroups.
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Introduction

In this chapter we recall some basic definition, well-known facts and set up
our notation. We will not provide any proofs since they are easily available in the
literature. We will begin by recalling some basic facts about Carnot groups. For a
general account, see for instance [15, 21, 34].

I.1. Carnot groups

Definition I.1.1 (Carnot group). A Carnot group G is a connected, simply
connected, nilpotent Lie group with stratified Lie algebra g. This means that the
Lie algebra g of the left-invariant vector fields on G has finite dimension N and
there exist linear subspaces (so-called layers) g1, . . . , gκ such that

(I.1.1) g = g1 ⊕ ∙ ∙ ∙ ⊕ gκ, [g1, gi] = gi+1, gκ 6= {0},

where gi = {0} if i > κ, and [g1, gi] is the subspace of g generated by the commu-
tators [X,Y ] with X ∈ g1 and Y ∈ gi. Here κ is the step of the stratification and
is also called step of the group.

Let X1, . . . , XN be a base for g such that X1, . . . , Xm1 is a base for g1 and,
for 1 < j ≤ κ, Xmj−1+1, . . . , Xmj

is a base for gj . Here we have m0 = 0 and
mj − mj−1 = nj .

The subbundle of the tangent bundle TG that is spanned by the vector fields
X1, . . . , Xm1 plays a particularly important role in the theory, it is called the hori-
zontal bundle HG; the fibers of HG are

HGx = span {X1(x), . . . , Xm1(x)}, x ∈ G.

The sections of HG are called horizontal sections, a vector of HGx is a hori-
zontal vector while any vector in TGx that is not horizontal is a vertical vector.

Definition I.1.2. An absolutely continuous curve γ : [0, T ] → G is a sub-
unit curve with respect to X1, . . . , Xm1 if there exist measurable real functions
c1(s), . . . , cm1(s), s ∈ [0, T ] such that

∑
j c2

j ≤ 1 and

γ̇(s) =
m1∑

j=1

cj(s)Xj(γ(s)), for a.e. s ∈ [0, T ].

The Carnot-Carathéodory distance dc of x, y ∈ G is defined as

dc(x, y) := inf {T > 0 : there exists a sub-unit curve γ with γ(0) = x, γ(T ) = y} .

By Chow’s Theorem, the set of sub-unit curves joining x and y is not empty,
furthermore dc is a distance on G that induces the Euclidean topology (see [15] or
Theorem 1.6.2 in [48]).

Since the exponential map is a one to one diffeomorphism from g to G, any
x ∈ G can be written, in a unique way, as x = exp(x1X1 + ∙ ∙ ∙ + xNXN ) and we
identify x with the N-tuple (x1, . . . , xN ) ∈ RN and G with (RN , ∙), i.e. RN endowed
with the product ∙. The identity of G is denoted as e = (0, . . . , 0).

1
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If G is a Carnot group, for all λ > 0, the (non isotropic) dilations δλ : G→ G
are automorphisms of G defined as

δλ(x1, ..., xN ) = (λα1x1, λ
α2x2, ..., λ

αN xN ),

where αi = j, if mj−1 < i ≤ mj . Dilations are defined also for λ ∈ R setting

δλx := δ|λ|x
−1 =

(
δ|λ|x

)−1
, when λ < 0.

We denote the product of x and y ∈ G as x ∙ y or as xy. Moreover, for every x ∈ G
we define the left translation by x as

τx : G→ G

τxy = xy for all y ∈ G.

The explicit expression of the group operation ∙ is determined by the Campbell-
Hausdorff formula (see [21]). It has the form

(I.1.2) x ∙ y = x + y + Q(x, y), for all x, y ∈ RN ,

where Q = (Q1, . . . ,QN ) : RN ×RN → RN and each Qi is a homogeneous polyno-
mial of degree αi with respect to the intrinsic dilations of G. More explicitly,

Qi(δλx, δλy) = λαiQi(x, y), for all x, y ∈ G and λ > 0.

It is useful to think G = G1 ⊕ G2 ⊕ ∙ ∙ ∙ ⊕ Gκ, where Gi = exp(gi) = Rni is the
ith layer of G and to write x ∈ G as (x1, . . . , xκ), with xi ∈ Gi. According to this
notation 2

x ∙ y =
(
x1 + y1, x2 + y2 + Q2(x, y), . . . , xκ + yκ + Qκ(x, y)

)
, for all x, y ∈ G,

where each Qj is a vector valued polynomial homogeneous of degree j with respect
to the non isotropic dilations δλ.

It is always possible to define a homogeneous norm on G. A homogeneous norm
is a function G→ R+, vanishing only at the origin, such that ‖p‖ =

∥
∥p−1

∥
∥ and

‖p ∙ q‖ ≤ ‖p‖ + ‖q‖ , ‖δλp‖ = λ ‖p‖ ,

for all p, q ∈ G and λ > 0. Given any homogeneous norm ‖∙‖ on G, it is possible to
define a distance d(∙, ∙) in G as

(I.1.3) d(p, q) = d(q−1 ∙ p, 0) =
∥
∥q−1 ∙ p

∥
∥ , for all p, q ∈ G.

Any such distance d in (I.1.3) is comparable with the Carnot-Carathéodory distance
dc; in particular, they all induce the Euclidean topology on G. Both d and dc are
left translation invariant and 1-homogeneous, i.e.

(I.1.4) d(g ∙ p, g ∙ q) = d(p, q), d(δλ(p), δλ(q)) = λd(p, q)

for all p, q, g ∈ G and all λ > 0, and similarly for dc. For r > 0 and p ∈ G,
Uc(p, r), Bc(p, r) will be the open and closed balls associated with the distance dc

and U(p, r), B(p, r) the ones associated with d.
From now on we will assume that a norm ‖∙‖ and the associated distance d are

chosen in G.
Using either the distance dc or the distance d, Hausdorff measures and spherical

Hausdorff measures of dimension m ≥ 0 are obtained following Carathéodory’s
construction (see [20, Section 2.10.2.]). They are denoted respectively Hm

c , Sm
c ,

Hm
d , Sm

d . Translation invariance and dilation homogeneity of Hausdorff measures
follow from (I.1.4) and, for A ⊆ G, p ∈ G and r ∈ [0,∞),

Sm
d (p ∙ A) = Sm

d (A) and Sm
d (δrA) = rmSm

d (A).

2When using this notation, it will be clear that the superscript does not indicate an exponent.
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Definition I.1.3. The integer Q =
∑N

j=1 αj =
∑κ

i=1 i dim Vi is the homoge-
neous dimension of G.

We stress that Q is also the Hausdorff dimension of RN with respect to dc (see
[47]).

Finally we recall (see e.g. [65]) that the N -dimensional Lebesgue measure
mG is the Haar measure of the group G. Therefore if E ⊂ RN is measurable, then
mG(g∙E) = mG(E) for every g ∈ G. Moreover, if λ > 0 then mG(δλ(E)) = λQmG(E).
We note that

mG(Uc(p, r)) = rQmG(Uc(p, 1)) = rQmG(Uc(0, 1)).

I.2. Differential forms on Carnot groups

Let g be the Lie algebra of G, with basis given by {X1, . . . , XN}. Then we can
consider the dual space of g, denoted by Λ1g, that is, the real vector space of all
linear functionals on g. In particular we can consider a particular basis of Λ1g, the
so-called dual basis, which will be denoted by {θ1, . . . , θN}. Denoting by 〈∙|∙〉 the
pairing of duality, we have that 〈θi|Xj〉 = δij . Moreover, we can introduce an inner
product 〈∙, ∙〉 on Λ1g such that the dual basis above will be an orthonormal basis.
In general, we can define the exterior algebras of g and Λ1g as follows:

Λ∗g :=
N⊕

k=0

Λkg , Λ∗g :=
N⊕

k=0

Λkg,

where Λ0g = R = Λ0g, whereas for 1 ≤ k ≤ N :

Λkg = span{Xi1 ∧ . . . ∧ Xik
|1 ≤ i1 < . . . < ik ≤ N},

Λkg = span{θi1 ∧ . . . ∧ θik
|1 ≤ i1 < . . . < ik ≤ N},

respectively called k-vectors and k-covectors.

Remark I.2.1. Obsviously g = Λ1g. By definition Λ1g = (Λ1g)∗, where (Λ1g)∗

is the dual space of Λ1g. Since g is finite-dimensional, Λkg ∼= (Λkg)∗, that is, the
space of k-covectors is naturally isomorphic to the dual space of k-vectors.

We will denote by Θk = {θi1 ∧ ∙ ∙ ∙ ∧ θik
|1 ≤ i1 < ∙ ∙ ∙ ik ≤ N} the basis of

Λkg obtained from the basis (θ1, . . . , θN ) of Λ1g. Moreover, the inner products
〈∙, ∙〉 defined on g and Λ1g extend canonically to Λkg and Λkg making their basis
orthonormal too.

We would like to define the Hodge ?-operator3 wich provides a linear isomor-
phism and a duality between Λkg and ΛN−kg and between Λkg and ΛN−kg for all
k ∈ {1, . . . , N}.

Defining the ?-operator requires choosing an orientation of the space V . In this
way any other basis which is obtained from one with positive orientation through
an automorphism with positive determinant will be positive as well. The remaining
ones will be called negative.

Now, the action of the ?-operator on the elements of the orthonormal bases is
extremely simplified:

? : Λkg→ ΛN−kg, ?(Xi1 ∧ . . . ∧ Xik
) = Xj1 ∧ . . . ∧ XjN−k

,

? : Λkg→ ΛN−kg, ?(θi1 ∧ . . . ∧ θik
) = θj1 ∧ . . . ∧ θjN−k

,

where the multi indices (j1, . . . , jN−k) are chosen so that (Xi1 , . . . , Xik
, Xj1 , . . . , XjN−k

)
is a positive basis for g and similarly (θi1 , . . . , θik

, θj1 , . . . , θjN−k
) is a positive basis

for Λ1g.

3Since the symbol ∗ already appears in several occurrences, we choose to denote the Hodge

operator by ?.
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Definition I.2.2. If v ∈ Λkg, then we can uniquely define v\ ∈ Λkg as the
element of Λkg such that

〈v\, w〉 = w(v) = 〈v|w〉, for all w ∈ Λkg.

If w ∈ Λkg, then we can uniquely define w\ ∈ Λkg as the element of Λkg such that

〈w\, v〉 = w(v) = 〈v|w〉, for all v ∈ Λkg.

Definition I.2.3. Let Φ : V → W be a linear map between two finite di-
mensional vector spaces V and W , we can extend it to k-vectors and k-covectors
by:

ΛkΦ : ΛkV → ΛkW, (ΛkΦ)(v1 ∧ . . . ∧ vk) := Φ(v1) ∧ . . . ∧ Φ(vk);

and for α ∈ ΛkW and v1 ∧ . . . ∧ vk ∈ ΛkV

ΛkΦ : ΛkW → ΛkV, 〈(ΛkΦ)(α)|(v1 ∧ . . . ∧ vk)〉 := 〈α|(ΛkΦ)(v1 ∧ . . . ∧ vk)〉.

We will then consider dτp instead of Φ as a linear map from g to itself. This
implies that we are allowed to move the fibre from the origin e ∈ G by using the
differential of left translations. More precisely, ∀ g ∈ G we can extend the linear
map dτg : g → g to k-vectors and k-covectors as done above, so we can define the
spaces:

Λk,gg := (Λkdτg)(Λkg),

Λk
gg := (Λkdτg)(Λ

kg),

where we have Λk,eg = Λkg and Λk
eg = Λkg. One can also define a basis of any of

these fibers using a basis Θk of Λkg:

Θk
g := (Λkdτg−1)(Θk).

We refer to the section g 7→ Θk
g of Λkg as the left-invariant frame associated with

Θk. The inner product on Λkg = Λk,eg and Λkg = Λk
eg induces an inner product

on Λk,gg and Λk
gg respectively.

〈Λkdτg(v), Λkdτg(w)〉 := 〈v, w〉, ∀ v, w ∈ Λkg;

〈Λkdτg(ϕ), Λkdτg(ψ)〉 := 〈ϕ,ψ〉, ∀ ϕ,ψ ∈ Λkg.

We will denote by Ωk or C∞Λkg the set of smooth sections G 3 g 7→ Λk
gg, i.e. the

(differential) k-forms on G. Let f : G1 → G2 be a smooth map and ω be a k-form
on G2, then the pull-back of ω by f is given by:

f ]ω(g) := (Λk(dfg))ω(f(g)), ∀ g ∈ G1.

Definition I.2.4 (Left-invariant forms). A k-form on G is said to be left-
invariant if τ ]

pα = α, for any p ∈ G.

Proposition I.2.5. Let ξ ∈ Λkg and g ∈ G. Setting Iξ(g) :=
(
Λkdτg−1

)
(ξ),

we obtain:

(i) the map g 7→ Iξ(g) belongs to Ωk and is left-invariant;
(ii) any left-invariant form α ∈ Ωk takes the form α = Iα(e).

I.3. Rumin’s complex on Carnot groups

We now introduce one of the main objects of our studies.

Definition I.3.1. Let α ∈ Λ1g, α 6= 0. We say that α has a pure weight p if
α\ ∈ gp. In this case we write w(α) = p. In general, given a k-covector β ∈ Λkg,
we say that β has pure weight p if β can be expressed as a linear combination of
covectors θi1 ∧ ∙ ∙ ∙ ∧ θik

such that w(θi1) + ∙ ∙ ∙ + w(θik
) = p.
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Proposition I.3.2. Let α, β ∈ Λkg be two k-covectors of different weights, then
they are orthogonal.

Corollary I.3.3. We can express the space of k-covectors as a direct sum of
subspaces which depend on the weight. The simplest case is obtained for Λ1g:

Λ1g = (Λ1g)1 ⊕ (Λ1g)2 ⊕ ∙ ∙ ∙ ⊕ (Λ1g)κ ,

where (Λ1g)` is the span of 1-covectors of weight `. An analogous decomposition
holds for arbitrary k-covectors. Precisely,

Λkg =
P (k)

max⊕

p=P
(k)
min

(Λkg)p ,

where (Λkg)p is the span of k-covectors of weight p, P
(k)
min, P

(k)
max are respectively the

smallest and the largest weight that can be attained by k-covectors.

Remark I.3.4. This particular decomposition of Λkg is well described also at
the level of the basis Θk. Indeed, all of its elements have pure weight, hence for
any possible p ∈ {P (k)

min, . . . , P
(k)
max} we can define a basis of (Λkg)p simply by:

(Θk)p := Θk ∩ (Λkg)p.

All the considerations we have gone through for k-covectors can be extended
to k-forms: the space of all smooth sections of (Λkg)p will be denoted by (Ωk)p or
C∞(Λk)p, which is the vector space of all smooth k-forms of pure weight p on G.
More generally, if Λ is any fiber bundle over G we denote by L2Λ, C∞Λ, etc., the
space of global sections of Λ with L2, C∞, etc. coefficients.

The decomposition we have seen for Λkg will induce an analogous decomposi-
tion on k-forms:

Ωk =
P (k)

max⊕

p=P
(k)
min

(Ωk)p.

Proposition I.3.5. [62] Let α ∈ (Ωk)p be a left-invariant k-form of pure weight
p, such that dα 6= 0, then w(dα) = w(α). In other words:

d
(
(Ωk)p

)
⊂ (Ωk+1)p.

We would like to use this result in order to find a more sophisticated way to
express the exterior differential d in terms of weights. In general, an k-form of
pure weight p, α ∈ (Ωk)p, will not be a left-invariant form. However it can be
expressed as a linear combination of the elements of the orthogonal basis (Θk)p of
left-invariant forms as follows:

α =
∑

i

fiθ
k
i , where {θk

i }i = (Θk)p.

Therefore the expression for the differential in local coordinated will be:

dα =
∑

i

d(fiθ
k
i ) =

∑

i

dfi ∧ θk
i + fidθk

i =
∑

i




N∑

j=1

Xj(fi)θj ∧ θk
i



+ fidθk
i .

This provides us with a well-given decomposition of the differential operator d by
weights.

Definition I.3.6. Let α =
∑

i fiθ
k
i be an arbitrary k-form of pure weight p as

above, then we can write:

dα = d0α + d1α + ∙ ∙ ∙ + dκα ,
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where di denotes the part of d which increases the weight of the form α by i. Then
we will have:

d0α =
∑

i

fidθk
i ∈ (Ωk+1)p ,

d`α =
∑

i

∑

Xj∈g`

Xj(fi)θj ∧ θk
i ∈ (Ωk+1)p+` for ` ∈ {1, . . . , κ}.

In particular, d0 is an algebraic operator, in the sense that its action can be
identified at any point with the action of an operator from Λkg→ Λk+1g (that we
denote again by d0). In other words, d0 is C∞-linear.

Lemma I.3.7. Let α ∈ Ωk be a left invariant differential form, then: dα = d0α
is still a left invariant form.

We want to define an inverse of the operator d0. We can exploit the following
isomorphism:

d0 : Λkg/ ker d0

∼=−→ Λk+1g ∩ ran d0 ,

so that taking any β ∈ Λk+1g, there exists a unique α ⊥ ker d0 such that d0α = β+ξ,
with ξ ∈ (ran d0)⊥.

Definition I.3.8. We define

d−1
0 : Λk+1g→ {α ∈ Λkg |α ⊥ ker d0}

β 7→ d−1
0 β = α .

Notice that if β ∈ (ran d0)⊥, then d−1
0 β = 0.

Now we are ready to construct Rumin’s complex. Let us consider the following
operator:

d−1
0 d : ran d−1

0 → ran d−1
0 .

We can split this new operator depending on the filtration of g:

d−1
0 d = d−1

0 (d0 + d1 + ∙ ∙ ∙ + dκ)

= d−1
0 d0 + d−1

0 d1 + d−1
0 d2 + ∙ ∙ ∙ + d−1

0 dκ.

Proposition I.3.9 ([62]). The map d−1
0 d ran d−1

0
= Id+D, where D := d−1

0 (d−

d0), is an isomorphism from ran d−1
0 to itself. Moreover the differential operator

P :=
r−1∑

k=0

(−D)k, with r ∈ N such that Dr ≡ 0,

is the inverse of d−1
0 d on ran d−1

0 .

Remark I.3.10. This means that, when restricted to this subspace, de Rham
differential itself has a left inverse which we will denote by Q := Pd−1

0 , i.e. Qd = Id
on (ker d0)⊥.

Theorem I.3.11 ([62]). The de Rham complex (Ω∗, d) splits in the direct sum
of two sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := ran d−1
0 + ran (dd−1

0 ),

such that the projection ΠE on E along F is given by ΠE = I − Qd − dQ.

Remark I.3.12. ΠE is not orthogonal.

Definition I.3.13 ([62]). For 0 ≤ k ≤ N we set

Ek
0 := ker d0 Λkg ∩ (ran d0 Λk−1g)

⊥ ⊂ Λkg.

The elements of C∞Ek
0 will be called Rumin’s k-forms (or intrinsic k-forms) on G.
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Remark I.3.14. Ek
0 inherits from Λkg the scalar product. Moreover, there

exists a orthogonal basis Ek
0 = {ξj} of Ek

0 that is adapted to the filtration of g. It
is straightforward to see that E1

0 = span{θ1, . . . , θm1}, the space of horizontal 1-
covectors, therefore we can assume that ξj = θj without loss of generality. We will

denote by P
(k)
min and P

(k)
max respectively the lowest and highest weight of covectors in

Ek
0 and setting (Ek

0 )p := Ek
0 ∩ (Λkg)p we obtain the following decomposition:

Ek
0 =

P (k)
max⊕

p=P
(k)
min

(Ek
0 )p.

Let us stress the fact that (Ek
0 )p has an orthonormal basis given by (Ek

0 )p :=
Ek
0 ∩ (Λkg)p, so that all the elements in (Ek

0 )p have pure weight p.

Theorem I.3.15 ([62]). Using the same notations and definition above we have:

(i) if we denote by ΠE0 the orthogonal projection from Ω∗ to C∞E∗
0 , we

have:

ΠE0 = Id − d−1
0 d0 − d0d

−1
0 , ΠE⊥

0
= d−1

0 d0 + d0d
−1
0 ;

(ii) if dR := ΠE0dΠE, then (C∞E∗
0 , dR) is an exact complex.

Definition I.3.16. The exact complex (C∞E∗
0 , dR) is called Rumin’s complex,

and dR is called Rumin’s differential.

Remark I.3.17. If we denote Rumin’s k-forms with Lr-coefficients by LrEk
0 ,

then the projection from LrΛkg onto LrEk
0 is bounded, since Ek

0 is a subspace of
Λkg.

Proposition I.3.18 ([62]). Let α ∈ C∞(Ek
0 )p, we denote by (ΠEα)j the com-

ponent of (ΠEα) of weight j (that is necessarily greater than or equal to p). Then

(ΠEα)p = α ,

(ΠEα)p+r+1 = −d−1
0

(
r+1∑

`=1

d`(ΠEα)p+r+1−`

)

, for r ∈ N.

The Hodge ?-duality holds on Rumin’s complex. In order to understand this
fact, we need some technical results concerning the formal adjoint in L2Λ∗g of the
differential operators di’s for i = 0, . . . , κ.

Definition I.3.19 (L2-adjoint of d). We begin by recalling the definition of
the formal adjoint d∗ of the de Rham exterior differential d in L2Λ∗g:

〈dα, β〉 = 〈α, d∗β〉,

for all compactly supported smooth forms α ∈ Ωk−1, β ∈ Ωk. The direct conse-
quence of the definition is that d∗ : Ωk → Ωk−1 satisfies the equality

d∗ = (−1)N(k+1)+1 ? d?,

where ? denotes the Hodge-? operator.

Proposition I.3.20. Recalling the formal decomposition in Remark I.3.4, if
k = 0, 1, . . . , N, P

(k)
min ≤ p ≤ P

(k)
max and i = 0, 1, . . . , κ, we have:

d∗i ((Ω
k)p) ⊂ (Ωk−1)p−i and d∗i = (−1)N(k+1)+1 ? di ? .

Proposition I.3.21 ([62],[31]). Let us take 0 ≤ k ≤ N and let ? denote the
Hodge-? operator, then

?Ek
0 = EN−k

0

and
d∗

R = (−1)N(k+1)+1 ? dR ? .
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Remark I.3.22. Let η ∈ Ωk, then

? ? η = (−1)k(N−k)η.

In the Heisenberg group the previous relations are simpler.

Remark I.3.23. Let G = Hn and ω ∈ Ωk, then

(I.3.1) d∗
Rω = (−1)k ? dR ? ω, ? ? ω = ω.

Proposition I.3.24. ?ΔR = ΔR?

Proof. It follows from Remark I.3.23. �

Remark I.3.25. First of all, the “naif Hodge Laplacian” associated with dR,
i.e.

(I.3.2) d∗
RdR + dRd∗R

generally is not homogeneous (and therefore, to the best of our knowledge, we lack
Rockland- type hypoellipticity results (see, e.g., [35]) and sharp a priori estimates in
a natural scale of Sobolev spaces). This because dR itself may not be homogeneous,
but mainly because the two terms in (I.3.2) may have different orders.

However, if G = Hn, then dR is always homogeneous and it is of the second
order when it acts on n-forms, while it is of the first order in the other cases.
Hence, it is possibile to construct a homogeneous “Laplacian” operator as defined
by Rumin in [59].

Definition I.3.26 ([59, 9]). If ΔR,k is Rumin’s laplacian acting on k-forms,
then

ΔR,k :=






d∗
RdR + dRd∗

R if k 6= n, n + 1

d∗
RdR + (dRd∗

R)2 if k = n

(d∗
RdR)2 + dRd∗R if k = n + 1 .

If k = n, n + 1, ΔR,k is a homogeneous fourth order operator, while it is a
homogeneous second order operator in the other cases.

Moreover we recall an important theorem.

Theorem I.3.27 ([59]). If G = Hn, ΔR is hypoelliptic and maximal hypoelliptic
in the sense of [35].

Then, after a definition, we state an easy consequence of Proposition 6.18 in
[31].

Definition I.3.28 (Folland-Stein Sobolev spaces). Let I = (i1, . . . , is) be a
multi-index, we set XI = Xi1

1 ∙ ∙ ∙Xis
s . Furthermore we set |I| := i1 + ∙ ∙ ∙ + is

the order of the differential operator XI and d(I) := d1i1 + ∙ ∙ ∙ + dsis its degree of
homogeneity with respect to group dilations. Let k be a positive integer, 1 ≤ p < ∞,
and let Ω be an open set in G. The Folland-Stein Sobolev space W k,p

G (Ω) associated
with the vector fields X1, ..., Xm1 is defined to consist of all functions f ∈ Lp(Ω)
with distributional derivatives XIf ∈ Lp(Ω) for any XI with d(I) ≤ k.

Now we consider the operator ΔR,k in L2Ek
0 .

Proposition I.3.29. For k 6= n, n+1, dom(ΔR,k) = W 2,2
G Ek

0 , while dom(ΔR,k) =
W 4,2
G Ek

0 for k = n, n + 1. In particular ΔR is self-adjoint on its domain.

Proof. The proof follows the same arguments as Proposition 6.18 of [31]. �
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I.4. Complementary subgroups and graphs

Here we recall some facts about subgroups and graphs of Carnot groups.
From now on G will be a Carnot group identified with RN through exponential

coordinates. A homogeneous subgroup H of G (see [64, 5.2.4]) is a Lie subgroup
such that δλg ∈ H, for all g ∈ H and for all λ > 0.

Definition I.4.1. Let M, H be homogeneous subgroups of G. We say that
M,H are complementary subgroups in G, if M ∩H = {e} and if

G = M ∙H,

that is for each g ∈ G, there are m ∈M and h ∈ H such that g = m ∙ h.

If M,H are complementary subgroups of G and one of them is a normal sub-
group then G is said to be the semi-direct product of M and H. If both M and H
are normal subgroups then G is said to be the direct product of M and H.

The elements m ∈ M and h ∈ H such that g = mh are unique because of
M∩H = {e} and are denoted as components of g along M and H or as projections
of g on M and H.

Proposition I.4.2 (see [7, 24]). If M,H are complementary subgroups in G
there is c0 = c0(M,H), 0 < c0 ≤ 1, such that for all g = mh

(I.4.1) c0 (‖m‖ + ‖h‖) ≤ ‖g‖ ≤ ‖m‖ + ‖h‖ .

From now on, we will keep the following convention: when M,H are comple-
mentary subgroups in G, M will always be the first ‘factor’ and H the second one
and gM ∈M and gH ∈ H are the unique elements such that

g = gMgH.

Observe that, because in general the group is not abelian,

(gM)−1 6= (g−1)M, (gH)−1 6= (g−1)H.

Moreover we stress that the notation g = gMgH is ambiguous because each compo-
nent gM or gH depends on both the complementary subgroups M and H and also
on the order under which they are taken.

The projection maps PM : G→M and PH : G→ H are defined as

(I.4.2) PM(g) := gM, PH(g) := gH

Notations gM or PM(g) will be used indifferently, the choice being suggested by
typographical reasons only.

Notice that, differently from Euclidean spaces, PM and PH, in general, are
not Lipschitz maps, from G to M or to H, when G, M and H are endowed with
the restriction of the left invariant distance d of G, (see the example in [24]).
Nevertheless PM : G → M and PH : G → H are C∞ (indeed polynomial) maps
from G = RN → G = RN . This is the content of the following proposition.

Proposition I.4.3 (See Proposition 2.2.16 in [24]). Let M, H be complemen-
tary subgroups of G, then the projection maps PM : G → M and PH : G → H
defined in (I.4.2) are polynomial maps. More precisely, if κ is the step of G, there
are 2κ matrices A1, . . . , Aκ, B1, . . . , Bκ, depending on M and H, such that

Aj and Bjare (nj , nj)-matrices, for all 1 ≤ j ≤ κ,

and, with the notations of (I.1.2),

PMg =
(
A1g1, A2(g2 −Q2(A1g1, B1g1)), . . . , Aκ(gκ −Qκ(A1g1, . . . , Bκ−1gκ−1))

)
;

PHg =
(
B1g1, B2(g2 −Q2(A1g1, B1g1)), . . . , Bκ(gκ −Qκ(A1g1, . . . , Bκ−1gκ−1))

)
;

Aj is the identity on Mj , and Bj is the identity on Hj , for 1 ≤ j ≤ κ.
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Now we come to the main definition.

Definition I.4.4. Let H be a homogeneous subgroup of G. We say that a set
S ⊂ G is a (left) H-graph (or a left graph in direction H) if S intersects each left
coset of H in one point at most.

One has an important special case when H admits a complementary subgroup
M. Indeed, in this case, there is a one to one correspondence between left cosets
of H and points of M and we get that S is a left H-graph if and only if there is
ϕ : E ⊂M→ H such that

S = graph (ϕ) := {ξ ∙ ϕ(ξ) : ξ ∈ E}.

By uniqueness of the components along M and H, if S = graph (ϕ) then ϕ is
uniquely determined among all functions from M to H. From now on we will
consider mainly graphs of functions acting between complementary subgroups.

If a set S ⊂ G is an intrinsic (left) graph in direction H then it keeps being an
intrinsic (left) graph in direction H after left translations or group dilations.

Proposition I.4.5 (See [7, 24]). Let H be a homogeneous subgroup of G. If
S is a H-graph then, for all λ > 0 and for all q ∈ G, δλS and q ∙ S are H-graphs.
If, in particular, M,H are complementary subgroups in G, if S = graph (ϕ) with
ϕ : E ⊂M→ H, then

For all λ > 0, δλS = graph (ϕλ),with

ϕλ : δλE ⊂M→ H and

ϕλ(m) = δλϕ(δ1/λm), for m ∈ δλE .

For any q ∈ G, q ∙ S = graph (ϕq), where

ϕq : Eq ⊂M→ H, Eq = {m : PM(q−1m) ∈ E} and

ϕq(m) = (PH(q−1m))−1 ∙ ϕ
(
PM(q−1m)

)
, for all m ∈ Eq.

The algebraic expression of ϕq in Proposition I.4.5 can be made more explicit
when G is a semi-direct product of M,H (see e.g. Remark 2.2.23 in [24]).

Remark I.4.6. From Proposition I.4.5 and the continuity of the projections
PM and PH it follows that the continuity of a function is preserved by translations.
Precisely, given q and f : M → H, then the translated function fq is continuous
in m ∈ M if and only if the function f is continuous in the corresponding point
PM(q−1m).



CHAPTER 1

Analysis of Rumin’s Laplacian on the Heisenberg
group

In this chapter we undertake the analysis of Rumin’s Laplacian ΔR on the
Heisenberg group. Our goal is multi-fold. On one hand we wish to obtain a decom-
position of the space of Rumin’s forms with L2 coefficients into invariant subspaces
and describe the action of ΔR restricted to these subspaces up to unitary equiva-
lence. If we prove that the projections of these subspaces are Lp-bounded, we also
obtain that this decomposition provide a Lp decomposition of the space of Rumin’s
forms. Finally we wish to prove a multiplier theorem for ΔR.

It turns out that the CR structure on Hn plays a fundamental role in our
analysis. Therefore, it is convenient to identify Hn with Cn ×R, thus stressing the
complex structure on the horizontal part.

1.1. The Heisenberg group Hn

Let Hn be the (2n + 1)-dimensional Heisenberg group with coordinates (z, t) ∈
Cn × R and product given by

(z, t)(z′, t′) = (z + z′, t + t′ −
1
2
Im(z ∙ z̄′)).

A basis of left-invariant vector fields is formed by

Zj =
√

2

(

∂zj −
i

4
z̄j∂t

)

, Z̄j =
√

2

(

∂z̄j +
i

4
zj∂t

)

, T = ∂t,

for 1 ≤ j ≤ n, where
[Zj , Z̄j ] = iT.

Moreover we set

L := −
n∑

j=1

(ZjZ̄j + Z̄jZj) .

Definition 1.1.1. The anisotropic dilations are defined as

δλ(z, t) := (λz, λ2t), for all λ > 0.

Let D be a differential operator on Hn. It is homogeneous of degree α ∈ N if

(D(f δλ))(x) = λα(Df)(δλ(x))

for all λ > 0, f ∈ C∞(Hn).

Remark 1.1.2. Let α ∈ C, we recall that the operator L + iαT is locally
solvable, hypoelliptic and sub-elliptic if and only if α 6= ±(n + 2k) for every k ∈ N.
These operators play a central role in the analysis on the Heisenberg group. They
are often called Folland-Stein operators, see [22].

As in any Carnot group, in Hn the ordinary Lebesgue measure is the Haar
measure.

11
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Definition 1.1.3. Given two functions f, g ∈ L1(Hn) we define the convolution
f ∗ g as

(f ∗ g)(x, y, t) =
∫

Hn

f((x, y, t)(x′, y′, t′)−1)g(x′, y′, t′) dx′dy′dt′.

The dual basis of complex 1-covectors is

ζj =
1
√

2
dzj , ζ̄j =

1
√

2
dz̄j , θ = dt +

i

4

n∑

j=1

(z̄jdzj − zjdz̄j).

Definition 1.1.4. For simplicity of notation, we simply write Λk instead of
Λkg. We denote by Λk

H := (Λk)k the space of horizontal k-covectors, i.e. the space
of k-covectors of weight k. For p, q non-negative integers with p + q = k, we call
Λp,q the space of k-covectors of bidegree (p, q) in Λk

H :

Λp,q = span






∑

|I|=p,|I′|=q

ζI ∧ ζ̄I′





.

We denote by LpΛk, SΛp,q, etc. the space of Lp-sections, S-sections, etc. of the
corresponding bundle over Hn, i.e. the space of k-forms with L2-coefficients, (p, q)-
forms with S-coefficients.

Therefore the differential of a function f can be expressed as

df =
n∑

j=1

(Zjfζj + Z̄jf ζ̄j) + Tfθ.

Knowing that

dζj = dζ̄j = 0, dθ = −i

n∑

j=1

ζj ∧ ζ̄j ,

the exterior derivative of differential forms can be easily computed.

1.1.1. Bargmann representations. In our spectral analysis of ΔR we are
going to need a particular space of test forms that was introduced in [50]. In order
to describe such space we need to briefly describe a family of unitary irreducible
representation for Hn. We follow the presentation in [50]. For proofs see the cited
reference.

The L2-Fourier analysis on the Heisenberg group involves the family of infi-
nite dimensional irreducible unitary representations {πλ}λ 6=0 such that πλ(0, t) =
eiλtI. These representations are most conveniently realized for our purposes in the
Bargmann form. Let F = F(Cn) be the space of entire functions F on Cn such
that

‖F‖2
F =

∫

Cn

|F (w)|2e−
1
2 |w|2dw < ∞.

Let λ 6= 0, the family of Bargmann representations πλ on F is defined as follows:
r for λ = 1,

(π1(z, t)F )(w) = eite−
1
2 〈w,z〉− 1

4 |z|
2

F (w + z);

r for λ > 0,

πλ(z, t) = π1(λ
1
2 z, λt);

r for λ < 0,
πλ(z, t) = π−λ(z̄,−t).
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The unitary group U(n) acts on Hn through the automorphisms

(z, t) 7→ (z, t)g = (gz, t), where g ∈ U(n),

and on L2(Hn) through the representation

(α(g)f)(z, t) = f((z, t)g−1

).

We also consider the pair of contragradient representations U , Ū of U(n) on F ,
given by

(1.1.1) UgF = F ◦ g−1, Ūg = Uḡ.

Then, for λ > 0,

πλ(gz, t) = Ugπλ(z, t)Ug−1 ,

π−λ(gz, t) = Ūgπ−λ(z, t)Ūg−1 .

The representation U in (1.1.1) splits into irreducibles according to the decompo-
sition of F

(1.1.2) F =
∑

j≥0

Pj ,

where Pj denotes the space of homogeneous polynomials of degree j.
We denote by Pj the orthogonal projection of F on Pj , and by F∞ the space

of functions F ∈ F such that

‖PjF‖F = o(j−N ), for all N ∈ N.

Then F∞ is the space of C∞-vectors for all representations πλ. The differential of
πλ is given by 1 πλ(T ) = iλ and

πλ(Z`) =

{√
2λ∂w`

if λ > 0

−
√

|λ|
2 w` if λ < 0 ,

πλ(Z̄`) =

{
−
√

λ
2 w` if λ > 0

√
2|λ|∂w`

if λ < 0 .

We adopt the following definition of πλ(f):

(1.1.3) πλ(f) =
∫

Hn

f(x)πλ(x)−1dx ∈ L(F ,F).

Notice that πλ(f ∗ g) = πλ(g)πλ(f), but this disadvantage is compensated by a
simpler formalism when dealing with forms.

One way to write the Plancherel formula for f ∈ L2 is

‖f‖2
2 = cn

∫ +∞

−∞
‖πλ(f)‖2

HS |λ|ndλ = cn

∫ +∞

−∞

∑

j,j′

‖Pjπλ(f)Pj′‖2
HS |λ|ndλ .

Let V be a finite dimensional Hilbert space. Defining πλ(f) for V -valued func-
tions f by (1.1.3), we have

πλ(f) ∈ L(F ,F) ⊗ V ∼= L(F ,F ⊗ V ).

Suppose now that V is the representation space of a unitary representation ρ of
U(n), and consider the two representations U ×ρ, Ū ⊗ρ of U(n) on F⊗V . Denote

by Σ+ = Σρ,+ (resp. Σ− = Σρ,−) the set of irreducible representations σ ∈ Û(n)
contained in U ⊗ ρ (resp. in Ū ⊗ ρ), and let

(1.1.4) F ⊗ V =
⊕

σ∈Σ±

E±
σ

1Here we denote dπλ by πλ in order to simplify the notation.
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be the corresponding orthogonal decompositions into U(n)-types. When V = C,
the decomposition (1.1.4) reduces to (1.1.2). To indicate the dependence on ρ, we
shall sometime also write E±

σ = Eρ,±
σ .

Lemma 1.1.5. Each E±
σ is finite dimensional and decomposes into U(n)-invariant

subspaces
E±

σ =
⊕

j

E±
σ ∩ (Pj ⊗ V ).

In particular E±
σ ⊂ F ⊗ V . More precisely, E±

σ ⊂ F∞ ⊗ V .

The decomposition of F ⊗ V given above leads to the following form of the
Plancherel formula for L2V , with P±

σ denoting the orthogonal projection of F ⊗V
onto E±

σ :

(1.1.5)

‖f‖2
2 = cn

∫ +∞

−∞

∑

j∈N,σ∈Σsgn λ

∥
∥P sgn λ

σ πλ(f)Pj

∥
∥2

HS
|λ|ndλ

= cn

∫ +∞

−∞

∑

σ∈Σsgn λ

∥
∥P sgn λ

σ πλ(f)
∥
∥2

HS
|λ|ndλ.

Let ρ′ be another unitary representation of U(n) on a finite dimensional Hilbert
space V ′. The convolution

f ∗ K(x) =
∫

Hn

K(y−1x)f(y)dy

of integrable functions f with values in V and K with values in L(V, V ′) pro-
duces a function taking values in V ′. In the representations πλ, λ 6= 0,

πλ(K) ∈ L(F ,F ⊗ L(V, V ′) ∼= L(F ⊗ V,F ⊗ V ′),

and
πλ(f ∗ K) = πλ(K)πλ(f) ∈ L(F ,F ⊗ V ′).

Let ρ̃ (resp. ρ̃′) be the representation α ⊗ ρ on L2V (resp. α ⊗ ρ′ on L2V ′) of
U(n) and suppose that convolution by K is an equivariant operator, i.e.

(1.1.6) ρ̃′(g)(f ∗ K) = (ρ̃(g)f) ∗ K

for g ∈ U(n) and f ∈ SV . Since for f ∈ SV and ξ ∈ F , if λ > 0,

πλ(ρ̃′(g)(f ∗ K))ξ =
∫∫

ρ′(g)K(y−1x)f(y)Ugπλ(x−1)Ug−1ξ dydx,

πλ((ρ̃(g)f) ∗ K)ξ =
∫∫

K(y−1x)ρ(g)f(yg−1

)πλ(x−1)ξ dydx,

by letting f tend weakly to δ0 ⊗ v, with v ∈ V , we see that (1.1.6) implies
∫

ρ′(g)K(x)vUgπλ(x−1)Ug−1ξdx =
∫

K(x)ρ(g)vπλ(x−1)ξdx.

Replacing ξ by Ugξ, we obtain

Ug ⊗ ρ′(g)(πλ(K)(ξ ⊗ v)) = πλ(K)(Ugξ ⊗ ρ(g)v)

for every ξ ∈ F , v ∈ V . A similar formula holds for λ < 0 with Ū in place
of U . Thus (1.1.6) implies the following identities, for K defining an equivariant
convolution operator:

(1.1.7)
(U ⊗ ρ′)(g)πλ(K) = πλ(K)(U ⊗ ρ)(g), λ > 0

(Ū ⊗ ρ′)(g)πλ(K) = πλ(K)(Ū ⊗ ρ)(g), λ < 0

for g ∈ U(n), i.e. πλ(K) intertwines U⊗ρ and U⊗ρ′, or Ū⊗ρ and Ū⊗ρ′ depending
on the sign of λ. The following is an immediate consequence.
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Lemma 1.1.6. Assume that convolution by K ∈ L1⊗L(V, V ′) is an equivariant
operator. Then, setting Σρ,ρ′,sgn λ = Σρ,sgn λ ∩ Σρ′,sgn λ,

πλ(K) =
⊕

σ∈Σρ,ρ′,sgn λ

πλ,σ(K),

with πλ,σ(K) : Eρ,sgn λ
σ → Eρ′,sgn λ

σ .

By a variant of Schwartz’s Kernel Theorem, the convolution operators D with
kernels K ∈ S ′(Hn) ⊗ L(V, V ′) are characterized as the continuous operators from
S(Hn) ⊗ V to S ′(Hn) ⊗ V ′ that commute with left translations on Hn. Lemma
1.1.6 applies to operators of this kind, provided the Fourier transform πλ(K) is
well defined for λ 6= 0. This is surely the case if K has compact support, and in
particular for a left-invariant differential operator Df = f ∗ (Dδ0). We then have

πλ(Df) = πλ(Dδ0)πλ(f) = πλ(D)πλ(f) .

With ρk denoting the representation of U(n) on Λk induced from its action
on Hn by automorphisms, and, as before let ρ̃k = α ⊗ ρk be the tensor product
acting on L2Λk. Then d, d∗, Δk are equivariant operators. The same applies to
∂, ∂̄, dH etc. on the appropriate L2-subbundles. Notice that �,� and ΔH have the
special property of acting scalarly on (p, q)-forms, by Remark 1.2.2. Since the sub-
Laplacian L has the property that πλ(L) acts as a scalar multiple of the identity
(namely, as |λ|(2m + n)I) on Pm ⊂ F , the same is true for the image of �,�, ΔH

under πλ, see [22].
For 0 < δ < R and N ∈ N, denote by Sδ,R,N (Hn) the space of functions f

satisfying the following properties:

(i) f ∈ S(Hn);
(ii) πλ(f) = 0 for |λ| ≤ δ and |λ| ≥ R;
(iii) for δ < |λ| < R,Pjπλ(f) = 0 for j > N .

We set S0 =
⋃

δ,R,N Sδ,R,N .

Lemma 1.1.7. S0 is invariant under left translations, and dense in L2 .

Proof. See Lemma 3.1 of [50]. �

1.2. Differential forms on Hn

We are interested in horizontal k-forms, which can be written as

ω =
∑

|I|+|I′|=k

fI,I′ζI ∧ ζ̄I′

,

with

ζI = ζi1 ∧ ζi2 ∧ ∙ ∙ ∙ ∧ ζip
.

Definition 1.2.1. We define the following differential operators.

∂ω =
n∑

j=1

ζj ∧ Zjω, ∂̄ω =
n∑

j=1

ζ̄j ∧ Z̄jω, dHω = ∂ω + ∂̄ω,

� = ∂∂∗ + ∂∗∂, � = ∂̄∂̄∗ + ∂̄∗∂̄, ΔH = �+�,

Remark 1.2.2. The following identities hold (see also [49]):

(1.2.1) ∂2 = ∂̄2 = ∂∂̄∗ + ∂̄∗∂ = ∂̄∂∗ + ∂∗∂̄ = 0.
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The operators �, �, ΔH act on (p,q)-forms as scalar operators:

� =
1
2
L + i

(n

2
− p
)

T,

� =
1
2
L − i

(n

2
− q
)

T,

ΔH = L + i(q − p)T.

As we will see in Proposition 1.3.1, an important role is played by e(dθ) (the
operator of exterior multiplication by dθ) and e∗(dθ) (its adjoint w.r.t. the inner
product in Λ∗). Moreover, the Lefschetz decomposition plays a special role in our
analysis. In order to describe it we need the following.

Proposition 1.2.3 ([49]). Consider the following subspaces of Λp,q,

V p,q
j = e(dθ)jker e∗(dθ) Λp−j,q−j

W p,q
l = e∗(dθ)lker e(dθ) Λp+l,q+l

Then V p,q
j is non-trivial if and only if max{0, k − n} ≤ j ≤ min{p, q}, W p,q

l is
non-trivial if and only if max{0, n − k} ≤ l ≤ min{n − p, n − q}, and we have the
equality

V p,q
j = W p,q

l , for l = j + n − k = l(j).

Moreover, Λp,q is the orthogonal sum of the non-trivial V p,q
j , and

e(dθ)e∗(dθ) = j(j + 1 + n − k) = (l(j) + 1)(l(j) + k − n),(1.2.2)

e∗(dθ)e(dθ) = (j + 1)(j + n − k) = l(j)(l(j) + 1 + k − n)(1.2.3)

on V p,q
j .

Corollary 1.2.4. e(dθ) : Λk
H → Λk+2

H is injective for 0 ≤ k ≤ n − 1 and
surjective for n − 1 ≤ k ≤ 2n − 1, while e∗(dθ) : Λk

H → Λk−2
H is surjective for

2 ≤ k ≤ n + 1 and injective for n + 1 ≤ k ≤ 2n + 1.

Proof. From (1.2.2) we get that e∗(dθ) is injective if j(j+1+n−k) 6= 0 for all
j such that max{0, k−n} ≤ j ≤ min{p, q}. In particular j ≥ 1 and (j+1+n−k) ≥ 1
if j ≥ k − n ≥ 1, that is, k ≥ n + 1.

From (1.2.3) we get that e(dθ) is injective if (j +1)(j +n−k) 6= 0 for all j such
that max{0, k − n} ≤ j ≤ min{p, q}. In particular j + 1 ≥ 1 and (j + n − k) ≥ 1 if
j ≥ 0 and n − k ≥ 1, that is, k ≤ n − 1. �

Remark 1.2.5 ([49]). [e∗(dθ), e(dθ)] = (n − k)I on horizontal k-forms.

Remark 1.2.6 ([49]). Some relations that we will need are:
r �∂̄ = ∂̄(�− iT ), �∂ = ∂(�+ iT );
r ∂̄∗� = (�− iT )∂̄∗, ∂∗� = (�+ iT )∂∗;
r [i(dθ), ∂] = −i∂̄∗, [i(dθ), ∂̄] = i∂∗;
r [∂∗, e(dθ)] = i∂̄, [∂̄∗, e(dθ)] = −i∂;
r [i(dθ), dH ] = i∂∗ − i∂̄∗, [d∗H , e(dθ)] = i∂̄ − i∂.

1.3. Rumin’s Laplacian on Hn

We begin our analysis of Rumin’s Laplacian ΔR on Hn by characterising the
space Ek

0 in this case.

Proposition 1.3.1 (see [9]). The subspaces of Rumin’s forms Ek
0 are

Ek
0 =

{
Λk

H ∩ ker e∗(dθ) if 0 ≤ k ≤ n
{
θ ∧ ω : ω ∈ Λk−1

H ∩ ker e(dθ)
}

if n + 1 ≤ k ≤ 2n + 1.



1.3. RUMIN’S LAPLACIAN ON Hn 17

Proof. By definition Ek
0 = ker d0 ∩ (Im d0)⊥.

If k = 0, we have E0
0 = Λ0 = Λ0

H ∩ ker e∗(dθ).
If k = 1, ker d0 = Λ1

H and ran d0 = {0}. Hence E1
0 = Λ1

H ∩ ker e∗(dθ).
Let k > 1 and α + θ ∧ β ∈ Λk. Note that

α + θ ∧ β ∈ ker d0 if and only if dθ ∧ β = 0.

Hence ker d0 = {α + θ ∧ β |β ∈ ker e(dθ)}. Moreover

α + θ ∧ β ∈ ran d0 ⇐⇒ β = 0 and α = dθ ∧ α′ for some α′ ∈ Λk−2.

Hence ran d0 = Λk
H ∩ ran e(dθ) and (ran d0)⊥ = {α+θ∧β |α ∈ ker e∗(dθ)}. Finally

Ek
0 = {α + θ ∧ β |α ∈ ker e∗(dθ) and β ∈ ker e(dθ)}.

If k ≤ n, then ker e(dθ) ∩ Λk−1
H = {0}. If k ≥ n + 1, then ker e∗(dθ) ∩ Λk

H =
{0}. �

We stress the fact that Rumin’s differential dR is in general a non-homogeneous
differential operator. However in Heisenberg groups Hn, dR is homogeneous with
respect to the dilations. Precisely dR : C∞Ek

0 → C∞Ek+1
0 can be identified with

a matrix-valued operator Lk := (Lk
i,j)1≤i≤r,1≤j≤s with s = dim Ek

0 , r = dim Ek+1
0

and Lk
i,j are homogeneous left-invariant differential operators of the same degree:

there exists a ∈ N such that

(Lk
i,j(f δλ))(p) = λα(Lk

i,jf)(δλ(p))

for all λ > 0, f ∈ C∞(Hn), 1 ≤ i ≤ r, 1 ≤ j ≤ s.

Lemma 1.3.2. If α ∈ C∞Ek
0 (Hn), ΠEα = α − d−1

0 d1α.

Proof. Thanks to Proposition I.3.18 it suffices to show that if

(ΠEα)j = 0

for j > k + 1. Since ΠEα is a k-form, its weight is k + 1 at most. �

In particular the following proposition holds.

Proposition 1.3.3 (see [9]). If 0 ≤ k ≤ n − 1, Rumin’s differential is

dR : C∞Ek
0 → C∞Ek+1

0

ω 7→ Πker e∗(dθ)dHω

and it is a first order operator, where Πker e∗(dθ) is the orthogonal projection on
ker e∗(dθ).

If k = n, Rumin’s differential is

dR : C∞En
0 → C∞En+1

0

ω 7→ θ ∧ (Tω + dHe(dθ)−1dHω)

and it is a second order operator.
If k ≥ n + 1, we may reduce to the case k ≤ n; indeed, if we set ω′ := ?ω ∈

C∞E2n+1−k
0 , we can apply Remark I.3.23 and obtain d∗Rω′ = (−1)2n+1−k?dR?ω′ =

(−1)k+1 ? dRω.

Proof. We recall that dR = ΠE0dΠE , where ΠE = I − d−1
0 d1. If ω ∈ C∞Ek

0

with 0 ≤ k ≤ n − 1, then

dRω = ΠE0d0ω + ΠE0(d1 − d0d
−1
0 d1)ω + ΠE0(d2 − d1d

−1
0 d1) + ΠE0(−d2d

−1
0 d1)ω

= ΠE0d1ω − ΠE0ΠR(d0)d1ω

= ΠE0d1ω

= Πker e∗(dθ)dHω.
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If ω ∈ C∞En
0 , then

dRω = ΠE0d0ω + ΠE0(d1 − d0d
−1
0 d1)ω + ΠE0(d2 − d1d

−1
0 d1)ω + ΠE0(−d2d

−1
0 d1)ω

= ΠE0(d2 − d1d
−1
0 d1)ω.

Now (d2 − d1d
−1
0 d1)ω = θ ∧ (Tω + dHe(dθ)−1dHω) since

e(dθ) : Λn−1
H → Λn+1

H

is invertible. Moreover Tω + dHe(dθ)−1dHω ∈ ker e(dθ), since

e(dθ)(Tω + dHe(dθ)−1dHω) = Te(dθ)ω + d2
Hω = 0.

Then

dRω = ΠE0

(
θ ∧ (Tω + dHe(dθ)−1dHω)

)
= θ ∧ (Tω + dHe(dθ)−1dHω).

�

1.4. First properties of ΔR

Now we consider Rumin’s forms with coefficients in L2(Hn).

L2Ek
0 =

{
L2Λk

H ∩ ker e∗(dθ) if 0 ≤ k ≤ n
{
θ ∧ ω : ω ∈ L2Λk−1

H ∩ ker e(dθ)
}

if n + 1 ≤ k ≤ 2n + 1
.

Proposition 1.4.1. The operators �, �, T map S0E
k
0 into itself. Moreover T

is invertibile in S0E
k
0 .

Proposition 1.4.2. If k < n, ΔR,k is injective on dom (ΔR,k) = W 2,2
G Ek

0 .
ΔR,n is injective on dom (ΔR,n) = W 4,2

G En
0 .

Proof. Note that ΔR,k is hypoelliptic as proved in [59]. Since Proposition
3.2 in [10], if ω ∈ L2Ek

0 and ΔRω = 0, then ω has polynomial coefficients in L2,
hence ω = 0. �

In the sections that follow, we will need to restrict ourselves where � and �
are injective, therefore we state here some facts related to the problem of their
injectivity.

Remark 1.4.3. We recall Remark 1.1.2 and observe that: � is injective and
hypoelliptic on (p, q)-forms with p 6= 0, n, whereas � is injective and hypoelliptic on
(p, q)-forms with q 6= 0, n. If p = 0 ker�0 = ker ∂, while if p = n ker�n = ker ∂∗.
If q = 0 ker�0 = ker ∂̄, while if q = n ker�n = ker ∂̄∗.

Hence we define the following injective operators.

Definition 1.4.4.

�′ω :=






�ω if 1 ≤ p ≤ n − 1

� ker ∂ω if p = 0

� ker ∂∗ω if p = n ,

�
′
ω :=






�ω if 1 ≤ q ≤ n − 1

� ker ∂̄ω if q = 0

� ker ∂̄∗ω if q = n .

Remark 1.4.5. Observe that

�0 = �n =
1
2
(L + inT ), �n = �0 =

1
2
(L − inT ).

We denote by C the orthogonal projection from L2(Hn) to ker(L + inT ), while C̄ is
the orthogonal projection from L2(Hn) to ker(L − inT ).
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Definition 1.4.6. Consider ∂ as a closed operator from L2Λp,q to L2Λp+1,q.
We denote by Rp the holomorphic Riesz transforms defined on S0Λp,q (with values
in S0Λp+1,q).

(1.4.1) Rp =






∂�
− 1

2
p = �

− 1
2

p+1∂ for 1 ≤ p ≤ n − 2

∂�′−
1
2

0 (I − C) = �
− 1

2
1 ∂ for p = 0

∂�
− 1

2
n−1 = �′−

1
2

n ∂ for p = n − 1.

The adjoint operators R∗
p from S0Λp+1,q to S0Λp,q are:

R∗
p =






�
− 1

2
p ∂∗ = ∂∗�

− 1
2

p+1 for 1 ≤ p ≤ n − 2

�′−
1
2

0 ∂∗ = ∂∗�
− 1

2
1 for p = 0

�
− 1

2
n−1∂

∗ = ∂∗�′−
1
2

n (I − C̄) for p = n − 1.

When omitting the subscript will not cause confusion, we will write R instead
of Rp.

Remark 1.4.7. The following identities hold:

Rp�
1
2
p = �

1
2
p+1Rp = ∂ ;

Rp+1Rp = R∗
pR

∗
p+1 = 0 ;

R∗
pRp + Rp−1R

∗
p−1 = I, (1 ≤ p ≤ n − 1);

R∗
0R0 = I − C ;

Rn−1R
∗
n−1 = I − C̄ .

Proposition 1.4.8 ([50]). For 0 ≤ p ≤ n − 1,

(L2Λp,q)∂-cl = kerRp = ker ∂.

For 1 ≤ p ≤ n,

(L2Λp,q)∂-ex = ranRp−1R
∗
p−1 = ranRp−1 = ∂(S0Λp−1,q).

For 1 ≤ p ≤ n − 1,
(L2Λp,q)∂-cl = (L2Λp,q)∂-ex.

For 1 ≤ p ≤ n,
(L2Λp,q)∂∗-cl = kerR∗

p−1 = ker ∂∗.

For 0 ≤ p ≤ n − 1,

(L2Λp,q)∂∗-ex = ranR∗
pRp = ranR∗

p = ∂∗(S0Λp+1,q).

For 1 ≤ p ≤ n − 1,
(L2Λp,q)∂∗-cl = (L2Λp,q)∂∗-ex.

The antiholomorphic Riesz transforms Rq and their adjoints R
∗
q are easily

defined and the following formula holds for all q

Rq�
1
2
q = �

1
2
q+1Rq = ∂̄.

Definition 1.4.9. On (p, q)-forms we define

Cp = I −R∗
pRp, Cq = I −R

∗
qRq, for 0 ≤ p, q ≤ n − 1, Cn = Cn = I.

Proposition 1.4.10 ([50]). Cp is the orthogonal projection of L2Λp,q onto the
kernel of ∂, and Cq is the orthogonal projection of L2Λp,q onto the kernel of ∂̄,
Moreover, if ω ∈ S0Λp,q, with 1 ≤ p ≤ n − 1, then

Cpω = 0 ⇐⇒ ω ∈ ∂∗(S0Λp+1,q) ⇐⇒ ∂∗ω = 0,
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whereas for p = 0,
C0ω = 0 ⇐⇒ ω ∈ ∂∗(S0Λ1,q),

and for p = n,
Cnω = 0 ⇐⇒ ω = 0.

Similar statements hold for Cq, if we replace p with q and conjugate all terms. In
particular, C0 = C and C0 = C.

1.5. A decomposition of L2Ek
0

In this part, we assume that 0 ≤ k ≤ n. The case where k > n can be reduced
to the case k ≤ n by means of Hodge duality. Clearly, ΔR maps S0E

k
0 into itself. We

begin by decomposing S0E
k
0 into orthogonal subspaces which are invariant under

ΔR and on which ΔR takes a simple form.
We recall that S0E

k
0 = S0Λk

H ∩ ker e∗(dθ) for 0 ≤ k ≤ n. Therefore we start by
decomposing S0Λk

H .

1.5.1. The subspaces. The decomposition is based on the following lemma.

Lemma 1.5.1. Every ω ∈ S0Λk
H decomposes as

ω = ω′ + ∂ξ + ∂̄η,

where ξ, η ∈ S0Λ
k−1
H , and ω′ ∈ S0Λk

H satisfies the condition

(1.5.1) ∂∗ω′ = ∂̄∗ω′ = 0.

The term ω′ is uniquely determined, and we can assume, in addition, that

(1.5.2) ξ ∈ (ker ∂)⊥, η ∈ (ker ∂̄)⊥.

Notice that, even with the extra assumption, ξ and η are not uniquely deter-
mined.

Proof. See Lemma 5.1 [50]. �

Remark 1.5.2. Observe that the decomposition, without the extra assump-
tions (1.5.2) on ξ and η, can be iterated, so to obtain in a next step that

ω = ω′ + ∂(ξ′ + ∂α1 + ∂̄β1) + ∂̄(η′ + ∂α2 + ∂̄β2)

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄β1 + ∂̄∂α2,

where now each of the primed symbols represents a form satisfying (1.5.1). Now
we iterate it a second time and get

ω = ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄(α′ + ∂σ1 + ∂̄σ2) + ∂̄∂(β′ + ∂τ1 + ∂̄τ2)

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄α′ + ∂∂̄∂σ1 + ∂̄∂β′ + ∂̄∂∂̄τ2

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄α′ + ∂̄∂β′ + d2
H(∂σ1 + ∂̄τ2)

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄α′ + ∂̄∂β′ − Te(dθ)(∂σ1 + ∂̄τ2).(1.5.3)

Definition 1.5.3. We set

W p,q
0 = {ω ∈ S0Λ

p,q : ∂∗ω = ∂̄∗ = 0} ,

W p,q
1 = {ω = ∂ξ + ∂̄η : ξ, η ∈ W p,q

0 } ,

W p,q
2 = {ω = ∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q

0 } .

It is clear that these subspaces are mutually orthogonal. We also set

W k
0 =

∑

p+q=k

W p,q
0 = {ω ∈ S0Λ

k
H : ∂∗ω = ∂̄∗ω = 0} .
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Lemma 1.5.4.

S0E
k
0 ⊂

∑

p+q=k

W p,q
0 ⊕

∑

p+q=k−1

W p,q
1 ⊕

∑

p+q=k−2

W p,q
2 .

Proof. It follows from Remark 1.5.2. Since S0E
k
0 = Λk

H ∩ ker e∗(dθ), we can
stop after the second iteration in formula (1.5.3). �

Lemma 1.5.5. W p,q
0 and W p,q

1 are in the kernel of e∗(dθ).
Moreover

(W p,q
2 )′ := W p,q

2 ∩ ker e∗(dθ) S0Λ
p+q+2
H

= {ω = ∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q
0 and �ξ = �η}.

Proof. Let ω ∈ W p,q
0 , then e∗(dθ)ω = T−1d∗

H
2ω = 0. Let ω = ∂ξ+∂̄η ∈ W p,q

1 ,
then e∗(dθ)(∂ξ + ∂̄η) = −i∂̄∗ξ + ∂e∗(dθ)ξ + i∂∗η + ∂̄e∗(dθ)η = 0.

We claim that W p,q
2 decomposes as an orthogonal sum

(1.5.4) W p,q
2 = (W p,q

2 )′ ⊕ e(dθ)W p,q
0 .

It is obvious by (1.12) that e(dθ)W p,q
0 ⊂ W p,q

2 , and clearly the two subspaces on
the right-hand side are orthogonal. Assume that ω = ∂̄∂ξ + ∂∂̄η ∈ W p,q

2 , with
ξ, η ∈ W p,q

0 . Then
e∗(dθ)ω = i(�ξ −�η) ∈ W p,q

0 .

Indeed, by (1.13) and (1.20) we have

e∗(dθ)(∂∂̄η + ∂̄∂ξ) = T−1d∗
H

2(∂∂̄η + ∂̄∂ξ)

= T−1(−∂∗∂�η + ∂̄∗�∂̄η + ∂∗�∂ξ − ∂̄∗∂̄�ξ)

= T−1(−��η + (�− iT )�η + (�+ iT )�ξ −��ξ)

= i(�ξ −�η).

Hence (W p,q
2 )′ = {ω = ∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q

0 and �ξ = �η}
We have seen that e∗(dθ)W p,q

2 ⊂ W p,q
0 , and therefore ω ∈ W p,q

2 ∩ (e(dθ)W p,q
0 )⊥

if and only if ω ∈ (W p,q
2 )′. �

Corollary 1.5.6.

S0E
k
0 =

∑

p+q=k

W p,q
0 ⊕

∑

p+q=k+1

W p,q
1 ⊕

∑

p+q=k+2

(W p,q
2 )′ .

If k = n there are some cases where W p,q
0 is trivial. We will need the following

proposition in Subsection 1.6.4.

Proposition 1.5.7 ([50]). Let 0 ≤ k ≤ n and p + q = k. Then W p,q
0 is trivial

if and only if k = n and 1 ≤ p, q ≤ n − 1.

Proof. The complete proof can be found in [50], Proposition 5.3. However,
there is an another way to see that W p,q

0 is trivial if k = n and 1 ≤ p, q ≤ n−1. Let
ω ∈ W p,q

0 , then e∗(dθ)dHω = 0. But e∗(dθ) is injective on n + 1 forms, therefore
dHω = 0. Also d∗

Hω = 0, since ω ∈ W p,q
0 . Therefore ΔHω = (L + i(q − p)T )ω = 0

with |q − p| < n, which implies ω = 0. �

Proposition 1.5.8. L2Ek
0 decomposes as the orthogonal sum

L2Ek
0 =

∑

p+q=k

W p,q
0 ⊕

∑

p+q=k−1

W p,q
1 ⊕

∑

p+q=k−2

(W p,q
2 )′ .

Proof. It follows from Corollary 1.5.6. �

Lemma 1.5.9. Given ξ ∈ W p,q
0 , there exists a unique ξ′ ∈ W p,q

0 such that
∂ξ = ∂ξ′ and Cpξ

′ = 0. An analogous statement holds for ∂̄ in place of ∂.
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Proof. See Lemma 5.8 [50]. �

Remark 1.5.10. Set Xp,q = {ξ ∈ W p,q
0 : Cpξ = 0}, Y p,q = {η ∈ W p,q

0 : C̄qη =
0}, Zp,q = Xp,q × Y p,q. The previous lemma implies that the spaces Zp,q provide
parametrizations for the spaces W p,q

1 , W p,q
2 . Moreover, if we set Ξp,q := Xp,q∩Y p,q,

then (W p,q
2 )′ = {∂̄∂�σ + ∂∂̄�σ : σ ∈ Ξp,q}. By Lemma 12.3 in [50], �ξ ∈ Xp,q and

�η ∈ Y p,q. Hence �ξ = �η = α ∈ Ξp,q. We set σ := (��)−1α, hence ξ = �σ and
η = �σ.

Remark 1.5.11. For convenience, we define the constant

(1.5.5) cpq :=
1

n − p − q
.

Corollary 1.5.12. The maps
(
∂ ∂̄

)
: Zp,q → W p,q

1 , (ξ, η) 7→ ∂ξ + ∂̄η,(1.5.6)
(
∂̄∂ ∂∂̄

)
: Zp,q → W p,q

2 , (ξ, η) 7→ ∂̄∂ξ + ∂∂̄η,(1.5.7)
(
∂̄∂�+ ∂∂̄�

)
: Ξp,q → (W p,q

2 )′, σ 7→ ∂̄∂�σ + ∂∂̄�σ,(1.5.8)

are bijections.

Proof. This corollary is already stated in [50]. Here we give a more detailed
proof. The maps are surjective by construction. Moreover the injectivity of map
(1.5.6) follows easily from Lemma 1.5.9 and Remark 1.5.10.

Now we prove the injectivity of maps (1.5.7) and (1.5.8). Since (1.5.4), if
ω = ∂̄∂ξ + ∂∂̄η ∈ W p,q

2 , then

ω = α + e(dθ)β,

with α ∈ (W p,q
2 )′ and β ∈ W p,q

0 . Recalling the notation of Proposition 1.2.3,
β ∈ V p,q

0 , hence
e∗(dθ)e(dθ)β = (n − p − q)β,

with p+q = k−2 ≤ n−2. We conclude that β = cpqe
∗(dθ)ω and α = Πker e∗(dθ)w =

ω − (n − p − q)−1e(dθ)e∗(dθ)ω. A simple computation shows that

α = ∂̄∂(icp,qT
−1�ξ + ξ − icp,qT

−1�η) + ∂∂̄(icp,qT
−1�ξ + η − icp,qT

−1�η),
(1.5.9)

β = icp,q(�ξ −�η).

Since on (p, q)-forms �−� = ic−1
p,qT , we can rewrite (1.5.9) as

α = ∂̄∂(icp,qT
−1�(ξ − η)) + ∂∂̄(icp,qT

−1�(ξ − η))

= ∂̄∂(�σ) + ∂∂̄(�σ) ,

with σ = icp,qT
−1(ξ − η). Notice that if �ξ = �η, then �σ = ξ and �σ = η

in accordance with Remark 1.5.10. Suppose ω = 0, then α = 0 and e(dθ)β = 0.
Moreover e(dθ) is injective, because β is a (k − 2)-form with k ≤ n. Hence β = 0,
that is, �ξ = �η. In order to prove the injectivity of map (1.5.7), we need to show
that ξ = η = 0. Now we compute ∂∗α and obtain

∂∗α = (∂∗∂̄∂�+ ∂∗∂∂̄�)σ

= (−∂̄��+�∂̄�)σ

= (−∂̄�+�∂̄)�σ

= (�−�)∂̄�σ

= ic−1
p,qT ∂̄�σ .
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Since ∂∗α = 0 and ∂̄ is injective on Y p,q, σ = 0, that is, ξ = η. This proves the
injectivity of map (1.5.8). We already know that �ξ = �η, hence (� − �)ξ = 0.
Finally we conclude that ξ = η = 0.

�

Remark 1.5.13. Recall that, by Proposition 4.12,

Xp,q =






W p,q
0 if 1 ≤ p ≤ n − 1

{0} if p = n

{ξ ∈ S0Λ0,q : Cξ = 0, ∂̄∗ξ = 0} if p = 0 .

By the proof of Lemma 5.9, the latter space is indeed nothing but (I −C)W 0,q
0 .

Analogous statements hold true for Y p,q. Finally, notice that the spaces Zp,q are
non-trivial if p + q ≤ n − 1.

1.5.2. The action of ΔR. Repeating the arguments formulated in [50] it is
possibile to prove the following lemmas.

Lemma 1.5.14. The following propositions hold:

(i) d∗H(W p,q
0 ) = 0 ;

(ii) d∗
H(W p,q

1 ) ⊂ W p,q
0 ;

(iii) d∗H(W p,q
2 ) ⊂ W p,q

1 ;
(iv) d∗

H(e(dθ)W p,q
1 ) ⊂ W p,q

2 ;
(v) e∗(dθ)(W p,q

2 ) ⊂ W p,q
0 .

Proof.
(i) If ω ∈ W p,q

0 then d∗
H(ω) = 0.

(ii) If ∂ω1 + ∂̄ω2 ∈ W p,q
1 then

d∗
H(∂ω1 + ∂̄ω2) = ∂̄∗∂ω1︸ ︷︷ ︸

=0

+∂∗∂ω1 + ∂∗∂̄ω2︸ ︷︷ ︸
=0

+∂̄∗∂̄ω2 = �ω1 +�ω2.

Now �ω1 +�ω2 ∈ W p,q
0 since

∂∗(�ω1 +�ω2) = 0 and ∂̄∗(�ω1 +�ω2) = 0.

Let us see the first identity:

∂∗(�ω1 +�ω2) = ∂∗�ω1 + ∂∗�ω2 = ∂∗∂∗∂ω1 +�∂∗ω2 + iT∂∗ω2 = 0.

The second one is proved similarly. Therefore,

d∗H : W p,q
1 → W p,q

0

(
∂ ∂̄

)
(

ξ
η

)

7→
(
� �

)
(

ξ
η

)

.

(iii) If ∂̄∂ω1 + ∂∂̄ω2 ∈ W p,q
2 then, using formula (1.2.1) and Remark 1.2.6,

d∗
H(∂̄∂ω1 + ∂∂̄ω2) = ∂∗(∂̄∂ω1 + ∂∂̄ω2) + ∂̄∗(∂̄∂ω1 + ∂∂̄ω2)

= −∂̄∂∗∂ω1 − ∂∂̄∗∂̄ω2 + ∂∗∂∂̄ω2︸ ︷︷ ︸
=�∂̄ω2

+ ∂̄∗∂̄∂ω1︸ ︷︷ ︸
=�∂ω1

= −∂̄∂∗∂ω1 − ∂∂̄∗∂̄ω2 + (∂̄�− iT ∂̄)ω2 + (∂�+ iT∂)ω1

= ∂((�+ iT )ω1 −�ω2) + ∂̄((�− iT )ω2 −�ω1).

This belongs to W p,q
1 since

∂∗((�+ iT )ω1 −�ω2) = 0, ∂∗((�− iT )ω2 −�ω1) = 0,

∂̄∗((�+ iT )ω1 −�ω2) = 0, ∂̄∗((�− iT )ω2 −�ω1) = 0.
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Finally,

d∗
H : W p,q

2 → W p,q
1

(
∂̄∂ ∂∂̄

)
(

ξ
η

)

7→
(
∂ ∂̄

)
(
�+ iT −�
−� �− iT

)(
ξ
η

)

.

(iv) Now,

d∗
He(dθ)(∂ξ + ∂̄η) = e(dθ)d∗

H(∂ξ + ∂̄η) + (i∂̄ − i∂)(∂ξ + ∂̄η)

= e(dθ)(�ξ +�η) + i(∂̄∂ξ − ∂∂̄η)

= (∂̄∂ + ∂∂̄)(−T−1)(�ξ +�η) + i(∂̄∂ξ − ∂∂̄η).

Hence,

d∗H : e(dθ)W p,q
1 → W p,q

2

e(dθ)
(
∂ ∂̄

)
(

ξ
η

)

7→
(
∂̄∂ ∂∂̄

)
(
−T−1�+ i −T−1�
−T−1� −T−1�− i

)(
ξ
η

)

.

(v) It follows from (d∗
H)2 = Te∗(dθ). e∗(dθ)(∂̄∂ξ + ∂∂̄η) = i(�ξ −�η).

e∗(dθ) : W p,q
2 → W p,q

0

(
∂̄∂ ∂∂̄

)
(

ξ
η

)

7→
(
i� −i�

)
(

ξ
η

)

.

�

Lemma 1.5.15. The following propositions hold:

(i) dH(W p,q
0 ) ⊂ W p,q

1 ;
(ii) dH(W p,q

1 ) ⊂ W p,q
2 ;

(iii) dH(W p,q
2 ) ⊂ e(dθ)W p,q

1 ;
(iv) e(dθ)W p,q

0 ⊂ W p,q
2 .

Proof.
(i) If ω ∈ W p,q

0 then dH(ω) = ∂ω + ∂̄ω ∈ W p,q
1 . The matrix form of dH is quite

simple, but it will turn out to be useful later.

dH : W p,q
0 → W p,q

1

w0 7→
(
∂ ∂̄

)
(

1
1

)
(
w0

)
.

(ii) If ∂ω1 + ∂̄ω2 ∈ W p,q
1 then dH(∂ω1 + ∂̄ω2) = ∂̄∂ω1 + ∂∂̄ω2 ∈ W p,q

2

dH : W p,q
1 → W p,q

2

(
∂ ∂̄

)
(

ξ
η

)

7→
(
∂̄∂ ∂∂̄

)
(

ξ
η

)

.

(iii) If ∂̄∂ω1+∂∂̄ω2 ∈ W p,q
2 then dH(∂̄∂ω1+∂∂̄ω2) = ∂∂̄∂ω1+∂̄∂∂̄ω2 = −Te(dθ)(∂ω1+

∂̄ω2) ∈ e(dθ)W p,q
1 .

dH : W p,q
2 → e(dθ)W p,q

1

(
∂̄∂ ∂∂̄

)
(

ξ
η

)

7→ e(dθ)
(
∂ ∂̄

)
(
−T 0
0 −T

)(
ξ
η

)

.

(iv) It follows from (dH)2 = −Te(dθ). In particular e(dθ)ω0 = −T−1(dH)2ω0.

e(dθ) : W p,q
0 → W p,q

2

ω0 7→
(
∂̄∂ ∂∂̄

)
(
−T−1

−T−1

)
(
ω0

)
.
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�

Remark 1.5.16. Let Π := Πker e∗(dθ) be the orthogonal projection on ker e∗(dθ).
Obviously, Π is the identity on W p,q

0 and on W p,q
1 .

If ω ∈ W p,q
2 with p + q = k − 2, using (1.5.9) we get

Π : W p,q
2 → (W p,q

2 )′

(
∂̄∂ ∂∂̄

)
(

ξ
η

)

7→
(
∂̄∂ ∂∂̄

)
(

icpqT
−1�+ 1 −icpqT

−1�
icpqT

−1� 1 − icpqT
−1�

)(
ξ
η

)

.

Thanks to the previous lemmas, the following theorem holds.

Theorem 1.5.17. If k ≤ n, W p,q
0 , W p,q

1 and (W p,q
2 )′ are ΔR-invariant, that is,

(i) ΔR(W p,q
0 ) ⊂ W p,q

0 ;
(ii) ΔR(W p,q

1 ) ⊂ W p,q
1 ;

(iii) ΔR((W p,q
2 )′) ⊂ (W p,q

2 )′.

1.6. Intertwining operators and different scalar forms for ΔR

First we study the subcritical case of Rumin’s Laplacian: 0 ≤ k ≤ n − 1.

1.6.1. Subcritical case: W p,q
0 . In this case ΔR is a scalar operator.

Proposition 1.6.1. Let p + q ≤ n − 1. Then on W p,q
0

(1.6.1) ΔR = ΔH .

Proof. Let ω0 ∈ W p,q
0 . Since d∗

H(ω0) = 0,

ΔR(ω0) = d∗
HΠdH(ω0) =

(
� �

)
(

1 0
0 1

)(
1
1

)
(
ω0

)
= ΔHω0.

�

1.6.2. Subcritical case: W p,q
1 . According to Corollary 1.5.12, we can write

W p,q
1 = {w = ∂ξ + ∂̄η : (ξ, η) ∈ Zp,q} .

Let ω1 ∈ W p,q
1 , then ω1 = ∂ξ + ∂̄η for some ξ, η ∈ W p,q

0 . Recall that ΔR =
ΠdHd∗H + d∗HΠdH .

Remark 1.6.2. We recall the constant cpq defined in (1.5.5). Since p + q =
k − 1 < n − 1, n − p − q > 1. Hence 0 < cpq < 1.

ΔRω1 =
(
∂ ∂̄

)
[(

1
1

)
(
� �

)
+

(
�+ iT −�
−� �− iT

)(
icp,qT

−1�+ 1 −icp,qT
−1�

icp,qT
−1� 1 − icp,qT

−1�

)](
ξ
η

)

=
(
∂ ∂̄

)
[(
� �
� �

)

+

(
−cp,q�+�+ iT � (cp,q − 1)
� (cp,q − 1) −cp,q�+�− iT

)](
ξ
η

)

=
(
∂ ∂̄

)
(
−cp,q�+ ΔH + iT cp,q�

cp,q� ΔH − iT − cp,q�

)(
ξ
η

)

.

Now we would like to diagonalize

M =

(
−cp,q�+ ΔH + iT cp,q�

cp,q� ΔH − iT − cp,q�

)

.

Proceeding formally, using the fact that all scalar entries commute, and recalling
that �−� = ic−1

p,qT on (p, q)-forms we have

det M = (1 − cp,q)(ΔH)2 + icp,qT (�−�) + T 2

= (1 − cp,q)(ΔH)2,
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and moreover,
tr M = (2 − cp,q)ΔH .

The characteristic polynomial is

p(x) = x2 − (2 − cp,q)ΔHx + (ΔH)2(1 − cp,q),

hence the eigenvalues are

λ1 = (1 − cp,q)ΔH and λ2 = ΔH .

We observe that 1 − cp,q > 0. In particular we have

M =

(
� 1
−� 1

)

M̃

(
� 1
−� 1

)−1

=

(
� 1
−� 1

)

M̃

(
Δ−1

H −Δ−1
H

Δ−1
H � Δ−1

H �

)

,

with M̃ =

(
(1 − cp,q)ΔH 0

0 ΔH

)

, since

(
� 1
−� 1

)

M̃

(
Δ−1

H −Δ−1
H

Δ−1
H � Δ−1

H �

)

=

(
(1 − cp,q)�ΔH ΔH

− (1 − cp,q)�ΔH ΔH

)(
Δ−1

H −Δ−1
H

Δ−1
H � Δ−1

H �

)

=

(
ΔH − cp,q� cp,q�

cp,q� ΔH − cp,q�

)

= M.

We set Q :=

(
� 1
−� 1

)

,

Z̃p,q := Ξp,q × W p,q
0 ,

where Ξp,q = Xp,q ∩ Y p,q and we define A1 : Z̃p,q → W p,q
1 as

A1

(
ξ
η

)

=
(
∂ ∂̄

)
(
� 1
−� 1

)(
ξ
η

)

.

Moreover A+
1 ξ := A1

(
ξ
0

)

, A−
1 η := A1

(
0
η

)

.

Lemma 1.6.3. If p+ q ≤ n−1, then the operator matrix Q : S0Λp,q ×S0Λp,q →
S0Λp,q × S0Λp,q is invertible with inverse

(1.6.2) Q−1 =

(
Δ−1

H −Δ−1
H

Δ−1
H � Δ−1

H �

)

.

Moreover Q maps the subspace W p,q
0 × W p,q

0 bijectively onto itself.

Proof. Formally det Q = ΔH , which is invertible since p+q ≤ n−1. Therefore
(1.6.2) is obvious. The operators � and � leave W p,q

0 invariant, therefore the lemma
is proved. �

Lemma 1.6.4. It holds that
(

I − Cp 0
0 I − C̄q

)

Q(Z̃p,q) = Zp,q .

Proof. Since

Zp,q =

(
I − Cp 0

0 I − C̄q

)

(W p,q
0 × W p,q

0 ) =

(
I − Cp 0

0 I − C̄q

)

Q(W p,q
0 × W p,q

0 ) ,

we need to show that
(

I − Cp 0
0 I − C̄q

)

Q(Z̃p,q) =

(
I − Cp 0

0 I − C̄q

)

Q(W p,q
0 × W p,q

0 ).
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Since Z̃p,q = Ξp,q × W p,q
0 = (I − Cp − C̄q)W

p,q
0 × W p,q

0 , it suffices to show that

(1.6.3)

(
I − Cp 0

0 I − C̄q

)

Q

(
ξ
0

)

=

(
(I − Cp)�ξ
−(I − C̄q)�ξ

)

=

(
0
0

)

for every ξ = (Cp + C̄q)ξ′. Note that

(I − Cp)(Cp + C̄q)�ξ′ = C̄q�ξ′ = 0

and

(I − C̄q)(Cp + C̄q)�ξ′ = Cp�ξ′ = 0 ;

hence (1.6.3) is verified. �

The following proposition follows immediately from the previous lemmas and
computations.

Proposition 1.6.5. The space W p,q
1 decomposes as the direct sum

W p,q
1 = A+

1 (Ξp,q) + A−
1 (W p,q

0 ).

Moreover, A+
1 and A−

1 are injective on Ξp,q,W p,q
0 respectively. The following iden-

tities hold, on Ξp,q,W p,q
0 respectively:

(1.6.4)
(A+

1 )−1ΔR(A+
1 ) = (1 − cpq)ΔH

(A−
1 )−1ΔR(A−

1 ) = ΔH .

Finally we set

(1.6.5) (W p,q
1 )+ := A+

1 (Ξp,q), (W p,q
1 )− := A−

1 (W p,q
0 ).

We will show that (W p,q
1 )+, (W p,q

1 )− are orthogonal by analysing the intertwining
operators in the next section.

1.6.3. Subcritical case: (W p,q
2 )′. We will need the following remark.

Remark 1.6.6. If �ξ = �η, then
(
�+ iT −�
−� �− iT

)(
ξ
η

)

=

(
−i(n − p − q − 1)T 0

0 i(n − p − q − 1)T

)(
ξ
η

)

,

and

(1.6.6)

(
a� −a�
−b� b�

)(
ξ
η

)

= 0

for every a, b ∈ C.
Also note that n − p − q = c−1

pq , since (1.5.5).

Proposition 1.6.7. Let A2 =
(
∂̄∂�+ ∂∂̄�

)
: Xp,q ∩ Y p,q → (W p,n−1−p

2 )′.
Then A2 is injective on Xp,q ∩Y p,q. The operator ΔR restricted to (W p,q

2 )′ is given
by

(1.6.7) ΔR (W p,q
2 )′ = A2 (1 − cpq)ΔHA−1

2 .

Proof. Recall that ΔR = ΠdHd∗
H + d∗

HΠdH , where Π is the orthogonal
projection onto ker e∗(dθ), and observe that ΠdHω2 = 0 if ω2 ∈ W p,q

2 . Hence
ΔRω2 = ΠdHd∗Hω2.
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Then,

ΔR(∂̄∂ξ + ∂∂̄η)

=
(
∂̄∂ ∂∂̄

)
(

icpqT
−1�+ 1 −icpqT

−1�
icpqT

−1� 1 − icpqT
−1�

)(
�+ iT −�
−� �− iT

)(
ξ
η

)

=
(
∂̄∂ ∂∂̄

)
(

icpqT
−1�+ 1 −icpqT

−1�
icpqT

−1� 1 − icpqT
−1�

)(
−i(c−1

pq − 1)T 0
0 i(c−1

pq − 1)T

)(
ξ
η

)

=
(
∂̄∂ ∂∂̄

)
(

(c−1
pq − 1) (cpq�− iT ) � (1 − cpq)
� (1 − cpq) (c−1

pq − 1)
(
iT + cpq�

)
)(

ξ
η

)

.

We can add (1.6.6) to the previous formula with a = b = 1 − cpq and we get

(
∂̄∂ ∂∂̄

)
(

(1 − cpq)(2�− ic−1
pq T ) 0

0 (1 − cpq)(2�+ ic−1
pq T )

)(
ξ
η

)

=
(
∂̄∂ ∂∂̄

)
(

(1 − cpq)ΔH 0
0 (1 − cpq)ΔH

)(
ξ
η

)

=
(
∂̄∂�+ ∂∂̄�

)
(1 − cpq)ΔHσ .

Here we used the identity �−� = ic−1
pq T .

�

Now we consider the critical case: k = n.

Lemma 1.6.8. The following identity holds:

ker e(dθ) ∩ Λn
H = ker e∗(dθ) ∩ Λn

H .

As a consequence, En+1
0 = {θ ∧ ω |ω ∈ Λn

H ∩ ker e∗(dθ)} = θ ∧ En
0 .

Proof. Let us prove that ker e(dθ) ∩ Λn
H ⊂ ker e∗(dθ) ∩ Λn

H . The other in-
clusion is analogous. Now [e∗(dθ), e(dθ)] = (n − k)I, therefore [e∗(dθ), e(dθ)] = 0
on horizontal n-form. Let ω ∈ ker e(dθ) ∩ Λn

H , then e∗(dθ)e(dθ)ω = 0; hence
e(dθ)e∗(dθ)ω = 0. But e(dθ) is injective on (n−2)-forms, therefore e∗(dθ)ω = 0. �

Lemma 1.6.9. If ω ∈ ker e∗(dθ) ∩ Λn
H = ker e(dθ) ∩ Λn

H , then e(dθ)−1dHω =
e∗(dθ)dHω.

Proof. [e∗(dθ), e(dθ)]dHω = −dHω, but e(dθ)dHω = 0 since ω ∈ ker e(dθ).
Therefore

e(dθ)e∗(dθ)dHω = dHω.

�

We will need the following remark.

Remark 1.6.10. We recall that if ω ∈ ker e∗(dθ) ∩ S0Λn
H , then

dRω = θ ∧ (Tω + dHe(dθ)−1dHω),

d∗
R(θ ∧ ω) = −Tω + d∗

He∗(dθ)−1d∗
Hω,

ΔRω = d∗
RdR + ΠdHd∗HΠdHd∗

H .

Since Lemma 1.6.9, e(dθ)−1dHω = e∗(dθ)dHω; hence we need to study the action
of e∗(dθ) on W p,n−1−p

2 (see Lemma 1.5.14, (v)) and on e(dθ)W p,n−2−p
1 . It is easy

to see that

e∗(dθ) : e(dθ)W p,n−2−p
1 → W p,n−2−p

1

e(dθ)
(
∂ ∂̄

)
(

ξ
η

)

7→
(
∂ ∂̄

)
(

ξ
η

)

.
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In fact, if ω ∈ W p,q
1 with p + q = n − 2, e∗(dθ)e(dθ)ω = ω, because of Proposition

1.2.3.
Moreover, in order to compute d∗

R, we need the action of e(dθ) on W p,n−1−p
0

(see Lemma 1.5.15, (iv)) and on W p,n−2−p
1 .

e(dθ) : W p,n−2−p
1 → e(dθ)W p,n−2−p

1

(
∂ ∂̄

)
(

ξ
η

)

7→ e(dθ)
(
∂ ∂̄

)
(

ξ
η

)

.

1.6.4. Critical case: W p,q
0 (p + q = n).

Remark 1.6.11. If ω0 ∈ Wn,0
0 or ω0 ∈ W 0,n

0 , then i(dθ)dHω0 = 0 and �ω0 =
�ω0 = 0. ΔHω0 = (L ± inT )ω0 = 0. Hence −T 2 = L2/n2.

Proposition 1.6.12. Let pq = 0 and p + q = n. Then on W p,q
0

(1.6.8) ΔR = −T 2 = L2/n2.

Proof. Note that d∗
Hω = 0 and dHω ∈ ker e∗(dθ) so that ΔRω = d∗

RdRω =
−T 2ω = L2/n2. �

1.6.5. Critical case: W p,q
1 (p + q = n − 1).

Proposition 1.6.13. Let A1 =
(
∂ ∂̄

)
: Zp,q → W p,n−1−p

1 . Then A1 is
injective. The operator ΔR restricted to W p,n−1−p

1 is given by

(1.6.9) ΔR W p,n−1−p
1

= A1(ΔH)2A−1
1

Proof. Observing that �−� = iT , we have

ΔR(∂ξ + ∂̄η) =
(
∂ ∂̄

)
M1M2

(
ξ
η

)

+
(
∂ ∂̄

)
(M3)

2

(
ξ
η

)

,

where

M1 =

(
−T 0
0 −T

)

+

(
�+ iT −�
−� �− iT

)(
−T−1

−T−1

)
(
� �

)
,

M2 =

(
T 0
0 T

)

+

(
1
1

)
(
i� −i�

)
,

M3 =

(
1
1

)
(
� �

)
.

Now,

M1M2 =

(
−i�− T −i�

i� i�− T

)(
i�+ T −i�

i� −i�+ T

)

=

(
�(ΔH − 2iT ) − T 2 −�ΔH

−�ΔH �(ΔH + 2iT ) − T 2

)

,

and

(M3)
2 =

(
� �
� �

)2

=

(
�ΔH �ΔH

�ΔH �ΔH

)

.

Hence

ΔR(∂ξ + ∂̄η) =
(
∂ ∂̄

)
(

2�(ΔH − iT ) − T 2 0
0 2�(ΔH + iT ) − T 2

)(
ξ
η

)

=
(
∂ ∂̄

)
(

4��− T 2 0
0 4��− T 2

)(
ξ
η

)

.
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Since 2�(ΔH − iT ) − T 2 = 2�(ΔH + iT ) − T 2 = 4��− T 2, we have

4��− T 2 = (2�(ΔH − iT ) − T 2)/2 + (2�(ΔH + iT ) − T 2)/2 = (ΔH)2.

Therefore,

ΔR(∂ξ + ∂̄η) =
(
∂ ∂̄

)
(

(ΔH)2 0
0 (ΔH)2

)(
ξ
η

)

.

�

1.6.6. Critical case: (W p,q
2 )′ (p + q = n − 2).

Proposition 1.6.14. Let A2 =
(
∂̄∂�+ ∂∂̄�

)
: Xp,q ∩ Y p,q → (W p,n−2−p

2 )′.
Then A2 is injective. The operator ΔR restricted to W p,n−2−p

2 is given by

(1.6.10) ΔR W p,n−2−p
2

= A2
(ΔH)2

4
A−1

2

Proof. Observing that �−� = 2iT , we have

ΔR(∂̄∂ξ + ∂∂̄η) =
(
∂̄∂ ∂∂̄

)
M1M2

(
ξ
η

)

+
(
∂̄∂ ∂∂̄

)
(M3)

2

(
ξ
η

)

,

where

M1 =

(
−T 0
0 −T

)

+

(
−T−1�+ i −T−1�
−T−1� −T−1�− i

)(
�+ iT −�
−� �− iT

)

,

M2 =

(
T 0
0 T

)

+

(
−T 0
0 −T

)

=

(
0 0
0 0

)

,

M3 =

(
1
2 iT−1�+ 1 − 1

2 iT−1�
1
2 iT−1� 1 − 1

2 iT−1�

)(
�+ iT −�
−� �− iT

)

.

Using the identity

(
�+ iT −�
−� �− iT

)

=

(
−iT 0

0 +iT

)

on (W p,q
2 )′, we have

ΔR(∂̄∂ξ + ∂∂̄η) =
(
∂̄∂ ∂∂̄

)
((

− 1
2�+ iT

)2
+ 1

4��
1
4�ΔH

1
4�ΔH

(
− 1

2�− iT
)2

+ 1
4��

)(
ξ
η

)

.

We recall that

(
a� −a�
−b� b�

)(
ξ
η

)

= 0 for all a, b ∈ C, since �ξ = �η. Then,

ΔR(∂̄∂ξ + ∂∂̄η)

=
(
∂̄∂ ∂∂̄

)
((

− 1
2�+ iT

)2
+ 1

4�
(
�+ ΔH

)
0

0
(
− 1

2�− iT
)2

+ 1
4� (�+ ΔH)

)(
ξ
η

)

=
(
∂̄∂ ∂∂̄

)
(

1
4

[
(�− 2iT )2 +�

(
�+ ΔH

)]
0

0 1
4

[
(�+ 2iT )2 +� (�+ ΔH)

]
)(

ξ
η

)

=
(
∂̄∂ ∂∂̄

)
(

1
4 (ΔH)2 0

0 1
4 (ΔH)2

)(
ξ
η

)

=
(
∂̄∂�+ ∂∂̄�

) 1
4
(ΔH)2σ .

�
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1.7. Unitary intertwining operators and projections

The intertwining operators for ΔR that we have defined in the previous section
were non-unitary and unbounded. In order to verify that the forms to which ΔR,
when restricted to the subspaces W p,q

0 ,W p,q
1 and (W p,q

2 )′ had been reduced on the
corresponding parameter spaces by means of the formulas are indeed describing the
spectral theory of ΔR on these subspaces, we need to replace the previous inter-
twining operators by unitary ones. Our next tasks will therefore be the following
ones:

(i) replace these intertwining operators with unitary ones;
(ii) determine the orthogonal projections from L2Ek

0 onto W p,q
0 , W p,q

1 and
(W p,q

2 )′, the L2-closures of the invariant subspaces W p,q
0 , W p,q

1 and (W p,q
2 )′.

These two tasks can be accomplished simultaneously by making use of the polar
decomposition of the intertwining operators.

1.7.1. Known facts from operator theory. We shall use the following fact
from spectral theory. Compare [57] for the case H = K.

Proposition 1.7.1. Let H,K be Hilbert spaces and A : dom A ⊂ H → K
be a densely defined, closed operator. Then there exist a positive self-adjoint op-
erator |A| : dom A ⊂ H → H, with dom |A| = dom A, and a partial isometry
U : H → K with ker U = ker A and ran U = ran A, so that A = U |A|. |A| and U
are uniquely determined by these properties together with the additional condition
ker |A| = ker A. Moreover, |A| =

√
A∗A, U∗U is the orthogonal projection from

H onto (ker A)⊥ = ran A∗, and UU∗ is the orthogonal projection from K onto
ran A = (ker A∗)⊥.

We also need the following principle.

Proposition 1.7.2 ([50]). Let H1,H2 be Hilbert spaces and let D1 ⊂ H1,
D2 ⊂ H2 be dense subspaces. Assume that for j = 1, 2, Sj : dom S1 ⊂ Hj → Hj

is a self-adjoint operator on Hj for which Dj is a core such that Sj(Dj) ⊂ Dj.
Moreover, let A : dom A ⊂ H1 → H2 be a closed operator such that the following
properties hold true:

(i) D1 ⊂ dom A and A(D1) ⊂ D2;
(ii) A intertwines S1 and S2 on the core D1, i.e.,

(1.7.1) AS1ξ = S2Aξ for all ξ ∈ D1.

Consider the polar decomposition A = U |A| from Proposition 7.1, where |A| =√
A∗A, and where U : H1 → H2 is a partial isometry, and assume furthermore that

D1 ⊂ dom |A|, and that

(iii) |A|(D1) = D1;
(iv) the commutation relation

(1.7.2) S1|A|ξ = |A|S1ξ for all ξ ∈ D1

holds true on the core D1.

Then, also U intertwines S1 and S2 on the core D1, i.e., U(D1) = A(D1) ⊂ D2,
and

(1.7.3) US1ξ = S2Uξ for all ξ ∈ D1.

Moreover, we have ran A = A(D1) = U(H1), ker A = ker |A| = ker U , and P :=
UU∗ is the orthogonal projection from H2 onto A(D1). Let us finally denote by Sr

2 =
S2 A(D1)

the restriction of S2 to A(D1), with domain dom Sr
2 := dom S2 ∩ A(D1).

If we assume in addition that
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(v) ker |A| = {0};
(vi) (I − iS1)−1(D1) ⊂ D1;
(vii) P (D2) = A(D1),

then U is injective, and we even that U(dom S1) = dom Sr
2 , and

Sr
2 = US1U

−1 on dom Sr
2 .

The next lemma will often facilitate the computation of the corresponding
operators A∗A.

Lemma 1.7.3 ([50]). Let H,K be Hilbert spaces and H1 ⊂ H and K1 ⊂ K be
closed subspaces. Let A : dom A ⊂ H → K be a densely defined, closed operator,
and assume that D ⊂ dom A is a core for A. Assume furthermore that D1 := D∩H1

is dense in H1 and that dom A1 := dom A ∩ H1 is mapped under A into K1, so
that the operator A1 : dom A1 ⊂ H1 → K1, given by restricting A to dom A1 :=
dom A ∩ H1, is densely defined and closed.

Under these conditions, also A∗ is densely defined, and dom A∗∩K1 ⊂ domA∗
1.

We shall further assume that E ⊂ K is a subspace of dom A∗ such that A(D) ⊂ E
and A∗(E) ⊂ D (so that, in particular, E1 := E ∩K1 is contained in dom A∗

1). Then
we have

A∗
1A1ξ = PH1A

∗Aξ for all ξ ∈ D1,

where PH1 : H → H1 denotes the orthogonal projection from the Hilbert space H
onto its closed subspace H1. In particular, if we know that A∗A maps D1 into H1,
then A∗

1A1ξ = A∗Aξ for every ξ ∈ D1.

In the case of W p,q
0 , with p+q ≤ n, the unitary intertwining operator is trivially

the identity. Hence, we consider the other cases.

1.7.2. Unitary interwining operators for W p,q
1 (subcritical case). We

would like to compute Up,q
1 = U1 = A1(A∗

1A1)−
1
2 . We have

A1 =
(
∂ ∂̄

)
(
� 1
−� 1

)

=
(
∂�− ∂̄� ∂ + ∂̄

)
,

so that

A∗
1A1 =

(
�∂∗ −�∂̄∗

∂∗ + ∂̄∗

)
(
∂�− ∂̄� ∂ + ∂̄

)
=

(
ΔH�� 0

0 ΔH

)

and

(A∗
1A1)

1
2 =

(
(ΔH��)

1
2 0

0 Δ
1
2
H

)

.

Lemma 1.7.4. We have that

A∗
1A1 =

(
ΔH�� 0

0 ΔH

)

,

A∗
1A1 : Z̃p,q → Z̃p,q is a bijection.

Moreover the subspaces (W p,q
1 )+ and (W p,q

1 )− defined in (1.6.5) are orthogonal.

Proof. It is clear that (
ΔH�� 0

0 ΔH

)

maps Z̃p,q into itself, because �� is a bijection on Ξp,q. Since the matrix is diagonal
(W p,q

1 )+ and (W p,q
1 )− are orthogonal. �
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Proposition 1.7.5. We have that

U1 = A1(A
∗
1A1)

− 1
2 =

(
U+

1 U−
1

)
,

with

U+
1 = RΔ

− 1
2

H �
1
2 − R̄Δ

− 1
2

H �
1
2 and U−

1 = RΔ
− 1

2
H �

1
2 + R̄Δ

− 1
2

H �
1
2 .

Proof. It suffices to notice that

A1(A
∗
1A1)

− 1
2 =

(
∂(ΔH�)−

1
2�

1
2 − ∂̄(ΔH�)−

1
2�

1
2 (∂ + ∂̄)Δ

− 1
2

H

)
=

=
(
RΔ

− 1
2

H �
1
2 − R̄(ΔH)−

1
2�

1
2 RΔ

− 1
2

H �
1
2 + R̄Δ

− 1
2

H �
1
2

)
.

�

Proposition 1.7.6. The operators U±
1 map Ξp,q, respectively W p,q

0 , onto (W p,q
1 )±

and intertwine D+ := (1 − cpq)ΔH and D− := ΔH respectively, with ΔR on the
core S0. Here cpq is the constant defined in (1.5.5). Moreover U+

1 : Ξp,q → L2Ek
0

and U−
1 : W p,q

0 → L2Ek
0 are linear isometries onto their ranges (W p,q

1 )+ and
(W p,q

1 )−, respectively, which intertwine D+ respectively D− with the restriction
of ΔR to (W p,q

1 )±.

ΔR (W p,q
1 )±

= U±
1 D±(U±

1 )−1 on domΔR (W p,q
1 )±

.

(U±
1 )−1 denotes the inverse of U±

1 when viewed as an operator into its range
(W p,q

1 )±. Finally, if we consider U±
1 as an operator mapping into L2Ek

0 , then
P p,q,±

1 := P±
1 := U±

1 (U±
1 )∗ is the orthogonal projection from L2Ek

0 onto (W p,q
1 )±.

Hence P p,q
1 := P p,q,+

1 +P p,q,−
1 is the orthogonal projection from L2Ek

0 onto (W p,q
1 ).

Proof. It suffices to see that all the hypothesis of Proposition 1.7.2 are sat-
isfied by U±

1 . We consider U+
1 . We set D1 = Ξp,q, H1 = Ξp,q, D2 = S0E

k
0 ,

H2 = L2Ek
0 , S1 = D+, S2 = ΔR and we denote by A the closure of A+

1 . Condi-
tion (i) of Proposition 1.7.2 is trivial. Condition (ii) is satisfied because of (1.6.4).
Conditions (iii) and (v) follows from Lemma 1.7.4.

According to Lemma 1.7.4, A∗A and S1 are positive scalar operators. Also
|A| =

√
A∗A is a scalar operator, therefore it commutes with S1. Thus condition (iv)

is satisfied. Condition (vi) is trivial. The explicit formula for U = U+
1 in Proposition

1.7.5 show that U maps the space Ξp,q into S0E
k
0 and U∗ maps S0E

k
0 into Ξp,q.

Finally, if P = UU∗ then P (D2) = P (S0E
k
0 ) = U(Ξp,q) = A(|A|−1(Ξp,q)) =

A(Ξp,q) = A(D1). This proves condition (vii).
The proof is analogous for the case U = U−

1 .
�

1.7.3. A unitary intertwining operator for (W p,q
2 )′. The arguments and

computations in this subsection are the same for both the subcritical and the critical
case. In particular we have p + q ≤ n − 2.

We wish to replace the intertwining operator A2 by a unitary one, denoted by
U2, which should be given by A2(A∗

2A2)−
1
2 .

Now we compute Up,q
2 = U2 = A2(A∗

2A2)−
1
2 .

A∗
2A2 =

(
�∂∗∂̄∗ +�∂̄∗∂∗

) (
∂̄∂�+ ∂∂̄�

)
=

=
(
�∂∗∂̄∗∂̄∂�+�∂∗∂̄∗∂∂̄�+�∂̄∗∂∗∂̄∂�+�∂̄∗∂∗∂∂̄�

)
=

=
(
�

2
�
(
�+ iT

)
− (��)2 − (��)2 +�2� (�− iT )

)
=

= ��((�−�)2 − iT (�−�)) =

= −T 2c−1
pq (c−1

pq − 1)�� ,
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where cpq is defined in (1.5.5).

Lemma 1.7.7. It holds that

A∗
2A2 = −T 2Ck(Ck − 1)�� ,

(A∗
2A2)

1
2 = |T |

√
c−1
pq (c−1

pq − 1)�� .

Moreover, (A∗
2A2)

1
2 maps Ξp,q bijectively onto itself and on Ξp,q we have

(A∗
2A2)

− 1
2 =

�− 1
2�

− 1
2

|T |
√

c−1
pq (c−1

pq − 1)
.

Proof.
A∗

2A2 = −T 2c−1
pq (c−1

pq − 1)�� > 0

since c−1
pq = (n − p − q) ≥ 2. It is clear that A∗

2A2 maps Ξp,q onto itself. �

Remark 1.7.8. We want to ensure the invertibility of � and �. Hence we
recall that if p = 0, then Xp,q = (I −C)Xp,q, and if q = 0, then Y p,q = (I − C̄)Y p,q.
Therefore we set

�r =

{
� if p ≥ 1

�′ if p = 0
, �r =

{
� if q ≥ 1

�
′

if q = 0
.

Proposition 1.7.9. The operator U2 which acts on Ξp,q is given by

M

(
1
2
e(dθ)ΔH�

− 1
2�

− 1
2 + ic−1

pq R̄R(�+ iT )
1
2�

− 1
2 +

1
2
c−1
pq e(dθ)iT�− 1

2�
− 1

2

)

,

where

M := −
T

|T |
√

c−1
pq (c−1

pq − 1)
.

Proof. We have that

A2(A
∗
2A2)

− 1
2 =

(∂̄∂�+ ∂∂̄�)(��)−
1
2

|T |
√

c−1
pq (c−1

pq − 1)

=

[
(∂̄∂ + ∂∂̄)ΔH + (∂̄∂ − ∂∂̄)(�−�)

]
(��)−

1
2

2|T |
√

c−1
pq (c−1

pq − 1)

=

[
−Te(dθ)ΔH + (2∂̄∂ + Te(dθ))(−ic−1

pq T )
]
(��)−

1
2

2|T |
√

c−1
pq (c−1

pq − 1)

= H1 + H2 + H3 ,

with

H1 = −
Te(dθ)

2|T |
√

c−1
pq (c−1

pq − 1)
ΔH�

− 1
2�

− 1
2 ,

H2 = −
ic−1

pq T

|T |
√

c−1
pq (c−1

pq − 1)
∂̄∂�− 1

2�
− 1

2 ,

H3 = −
c−1
pq Te(dθ)

2|T |
√

c−1
pq (c−1

pq − 1)
iT�− 1

2�
− 1

2 .

Observe that ∂̄∂ = R̄R(�+ iT )
1
2�

1
2 on W p,q

0 , with p + q ≤ n − 2.
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Now we can write

H2 = −
ic−1

pq T

|T |
√

c−1
pq (c−1

pq − 1)
R̄R(�+ iT )

1
2�

− 1
2 .

�

Proposition 1.7.10. The operator U2 maps the space Ξp,q onto (W p,q
2 )′ and

intertwines D with ΔR on the core S0, where

D :=

{
(1 − cpq)ΔH if p + q + 2 < n
1
4 (ΔH)2 if p + q + 2 = n.

Here cpq is the constant defined in (1.5.5). Moreover U2 : Ξp,q → L2Ek
0 is a linear

isometry onto (W p,q
2 )′ which intertwines D with the restriction of ΔR to (W p,q

2 )′.

ΔR (W p,q
2 )′

= U2D(U2)
−1 on domΔR (W p,q

2 )′
.

(U2)−1 denotes the inverse of U2 when viewed as an operator into its range (W p,q
2 )′.

Finally, if we consider U2 as an operator mapping into L2Ek
0 , then P p,q

2 := P2 :=
U2(U2)∗ is the orthogonal projection from L2Ek

0 onto (W p,q
2 )′.

Proof. We would like to apply Proposition 1.7.2 to A2. We set D1 = Ξp,q,
H1 = Ξp,q, D2 = S0E

k
0 , H2 = L2Ek

0 , S1 = D, S2 = ΔR and we denote by A
the closure of A2. Condition (i) Proposition 1.7.2 of is trivial. Condition (ii) is
satisfied because of (1.6.7). According to Lemma 1.7.7, A∗A is a positive matrix
with scalar operator entries and S1 is a scalar operator. Also |A| is a matrix with
scalar operator entries, therefore commutes with S1. Thus condition (iv) is satisfied.
Conditions (iii) and (v) follows from Lemma 1.7.7 . It is clear that condition (vi) is
satisfied. Finally, the explicit formula for U = U2 in Proposition 1.7.9 shows that
U maps the space Ξp,q into S0E

k
0 , so that U∗ maps S0E

k
0 into Ξp,q. If P = UU∗

then P (D2) = P (S0E
k
0 ) = U(Ξp,q) = A(|A|−1(Ξp,q)) = A(Ξp,q) = A(D1). Thus

(vii) is satisfied.
�

1.7.4. A unitary interwining operator for W p,q
1 (critical case). We

would like to compute Up,q
1 = U1 = A1(A∗

1A1)−
1
2 . We have

A∗
1A1 =

(
∂∗

∂̄∗

)
(
∂ ∂̄

)
=

(
∂∗∂ ∂∗∂̄
∂̄∗∂ ∂̄∗∂̄

)

=

(
� 0
0 �

)

and

(A∗
1A1)

1
2 =

(
�

1
2 0

0 �
1
2

)

.

Therefore

A1(A
∗
1A1)

− 1
2 =

(
∂�− 1

2 ∂̄�
− 1

2

)
=
(
R R̄

)
.

Proposition 1.7.11. The operator U1 which acts on Zp,q is given by
(
R R̄

)
.

Proposition 1.7.12. The operator U1 maps the space Zp,q onto W p,q
1 and

intertwines D := (ΔH)2 with ΔR on the core S0. Moreover U1 : Zp,q → L2Ek
0 is a

linear isometry onto W p,q
1 which intertwines D with the restriction of ΔR to W p,q

1 .

ΔR W p,q
1

= U1D(U1)
−1 on domΔR W p,q

1
.



36 1. ANALYSIS OF RUMIN’S LAPLACIAN ON THE HEISENBERG GROUP

(U1)−1 denotes the inverse of U1 when viewed as an operator into its range W p,q
1 .

Finally, if we consider U1 as an operator mapping into L2Ek
0 , then P p,q

1 := P1 :=
U1(U1)∗ is the orthogonal projection from L2Ek

0 onto W p,q
1 .

Proof. We would like to apply Proposition 1.7.2 to A1. We set D1 = Zp,q,
H1 = Zp,q, D2 = S0E

k
0 , H2 = L2Ek

0 , S1 = D, S2 = ΔR and we denote by A
the closure of A1. Condition (i) Proposition 1.7.2 of is trivial. Condition (ii) is
satisfied because of (1.6.7). According to Lemma 1.7.7, A∗A is a positive matrix
with scalar operator entries and S1 is a scalar operator. Also |A| is a matrix with
scalar operator entries, therefore commutes with S1. Thus condition (iv) is satisfied.
Conditions (iii) and (v) follows from Lemma 1.7.7 . It is clear that condition (vi) is
satisfied. Finally, the explicit formula for U = U1 in Proposition 1.7.9 show that U
maps the space Zp,q into S0E

k
0 , so that U∗ maps S0E

k
0 into Zp,q. If P = UU∗ then

P (D2) = P (S0E
k
0 ) = U(Zp,q) = A(|A|−1(Zp,q)) = A(Zp,q) = A(D1). Thus (vii) is

satisfied.
�

1.8. Decomposition of L2Ek
0 for k > n

We recall some facts about the Hodge operator. For more details see for exam-
ple [56].

Proposition 1.8.1. The Hodge ?-operator satisfies the following properties:

(i) for ω1, ω2 ∈ L2Ek
0 (Hn),
∫

Hn

ω1 ∧ ?ω2 = 〈ω1, ω2〉L2Λk ;

(ii) the operator ? : L2Ek
0 → L2E2n+1−k

0 is unitary;
(iii) d∗R = (−1)k

? dR ? (Remark I.3.23);
(iv) ?ΔR,k = ΔR,2n+1−k ? (Proposition I.3.24).

We set
∗

W0

r,s

= {ω′ ∈ S0Λr,s : ∂ω′ = ∂̄ω′ = 0} and define

Zr,s
0 = {ω = θ ∧ ω′ : ω′ ∈

∗
W0

r,s

},

Zr,s
1 = {ω = θ ∧ ω′ : ω′ = ∂∗σ + ∂̄∗τ, with σ, τ ∈

∗
W0

r,s

},

(Zr,s
2 )′ = {ω = θ ∧ ω′ : ω′ = ∂̄∗∂∗σ + ∂∗∂̄∗τ, with σ, τ ∈

∗
W0

r,s

and �σ = �τ}.

Lemma 1.8.2. Given p, q, we put r = n − p and s = n − q. Then

(i) ?(W p,q
0 ) = Zr,s

0 ;
(ii) ?(W p,q

1 ) = Zr,s
1 ;

(iii) ?((W p,q
2 )′) = (Zr,s

2 )′.

Theorem 1.8.3. Let n < k ≤ 2n + 1. Then L2Ek
0 admits the orthogonal

decomposition

L2Ek
0 =

∑

r+s=k−1

Zr,s
0 ⊕

∑

r+s=k

Zr,s
1 ⊕

∑

r+s=k+1

(Zr,s
2 )′.

Proof. It follows from Proposition 1.8.1 and Lemma 1.8.2.
�



1.9. Lp-MULTIPLIERS 37

1.9. Lp-multipliers

The decomposition of L2Λk presented in the previous sections, together with
the description of the action of ΔR on the various subspaces, can be used for
the Lp-functional calculus of ΔR. For this purpose, we are going to show that
LpΛk admits the same decomposition when 1 < p < ∞. Concretely this means
proving that the orthogonal projections on the various invariant subspaces and the
intertwining operators that reduce ΔR to scalar forms are Lp-bounded.

1.9.1. The multiplier theorem. The joint spectrum of L and i−1T is the
Heisenberg fan F ⊂ R2 defined as follows. If

lk,± = {(λ, ξ) : ξ = ±(n + 2k)λ, λ ∈ R∗
+},

then

F =
⋃

k∈N

(lk,+ ∪ lk,−).

The variable λ corresponds to i−1T and ξ to L, i.e., calling dE(λ, ξ) the spectral
measure on F , then

i−1T =
∫

F

λdE(λ, ξ), L =
∫

F

ξdE(λ, ξ).

If m is any bounded, continuous function on R × R∗
+, we can then define the

associated multiplier operator m(i−1T,L) by

m(i−1T,L) :=
∫

F

m(λ, ξ)dE(λ, ξ),

which is clearly bounded on L2(Hn). It follows from Plancherel’s formula that
the spectral measure of the vertical half-line {(0, ξ) : ξ ≥ 0} ⊂ F is zero. A
spectral multiplier is therefore a function m(λ, ξ) on F whose restriction to each
lk is measurable with respect to dλ for every k. Given ρ, σ > 0, we say that a
measurable function f(λ, ξ) is in the mixed Sobolev space L2

ρ,σ = L2
ρ,σ(R2) if

(1.9.1)
‖f‖2

L2
ρ,σ

: =
∫

R2

(1 + |ξ′|)2ρ(1 + |λ′| + |ξ′|)2σ|f̂(λ′, ξ′)|2dλ′dξ′ =

= c ‖(1 + |∂ξ|)
ρ(1 + |∂λ| + |∂ξ|)

σf‖2
2 < ∞.

Let η0 ∈ C∞
0 (R) be a non-trivial, non-negative, smooth bump function supported

in R∗
+ := (0,∞), put η1(x) := η0(x) + η0(−x) and set χ := η1 ⊗ η0. If f(λ, ξ)

is a continuous, bounded function on R × R∗
+, then we put fr(λ, ξ) = f(r1λ, r2ξ),

r = (r1, r2) ∈ (R∗
+)2, and we say that f ∈ L2

ρ,σ,sloc(R×R
∗
+) if for every r = (r1, r2) ∈

(R∗
+)2, the function frχ ∈ L2

ρ,σ and

(1.9.2) ‖f‖L2
ρ,σ,sloc

:= sup
r

‖frχ‖L2
ρ,σ

< ∞.

Definition 1.9.1. A function m satisfying (9.2) is called a Marcinkiewicz mul-
tiplier of class (ρ,σ). A smooth Marcinkiewicz multiplier is a Marcinkiewicz multi-
plier of every class (ρ, σ), i.e., satisfying the pointwise estimates

|∂j
λ∂k

ξ m(λ, ξ)| ≤ Cjk|λ|
−j |ξ|−k,

for every j, k.

Theorem 1.9.2 ([52]). Let m be a Marcinkiewicz multiplier of class (ρ, σ) for
some ρ > n and σ > 1

2 . Then m(i−1T,L) is bounded on Lp(Hn) for 1 < p < ∞,
with norm controlled by ‖m‖L2

ρ,σ,sloc
.
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1.9.2. Some classes of multipliers. We recall the definition of some classes
Ψρ,σ

τ of (possibly unbounded) smooth multipliers introduced in [50], in terms of
which we will understand the behaviour of the projections and intertwining oper-
ators presented in the previous sections. These classes are defined by pointwise
estimates on all derivatives, in analogy to (9.3), which must be satisfied on some
open angle Λn−ε := {(λ, ξ) ∈ R2 : ξ > (n − ε)|λ|} containing the Heisenberg fan F
taken away the origin.

Definition 1.9.3. We say that m ∈ Ψρ,σ
τ (ρ, σ, τ ∈ R) if

|∂j
λ∂k

ξ m(λ, ξ)| .

{
ξτ−j−k for ξ ≤ 1

(ξ + λ2)ρ− j
2 ξσ−k for ξ > 1

for every j, k ∈ N. We also say that m ∈ ∗Ψρ,σ
τ if m ∈ Ψρ,σ

τ and moreover

m(λ, ξ) &

{
ξτ for ξ < 1

(ξ + λ2)ρξσ for ξ > 1

Typical examples are given by the smooth functions m such that

m(λ, ξ) =

{
(ξ + pλ + aλ2)τ for ξ < 1

(ξ + λ2)ρ(ξ + qλ)σ for ξ > 2

with |p|, |q| < n.
We recall some properties proved in [50].

Lemma 1.9.4 ([50]). The classes Ψρ,σ
τ satisfy the following properties:

(i) ∂λΨρ,σ
τ ⊂ Ψ

ρ− 1
2 ,σ

τ−1 , ∂ξΨρ,σ
τ ⊂ Ψρ,σ−1

τ−1

(ii) Ψρ,σ
τ Ψρ′,σ′

τ ′ ⊂ Ψρ+ρ′,σ+σ′

τ+τ ′

(iii) if m ∈ ∗Ψρ,σ
τ and then ms ∈ Ψsρ,sσ

sτ for every s ∈ R (for s ∈ N, m ∈ Ψρ,σ
τ

is sufficient)

(iv) if ρ + σ ≤ ρ′ + σ′, 2ρ + σ ≤ 2ρ′ + σ′ and τ ≥ τ ′, then Ψρ,σ
τ ⊂ Ψρ′,σ′

τ ′

(v) In particular, if ρ + σ ≤ 0, 2ρ + σ ≤ 0 and τ ≥ 0, then Ψρ,σ
τ ⊂ Ψ0,0

0 , and
Ψρ,σ

τ consists of Marcinkiewicz multipliers.

Remark 1.9.5.

(i) Observe that if χ is a smooth cut-off function on R, compactly supported
in R \ {0} and with 0 ≤ χ ≤ 1, then η = χ(ξ/|λ|) and 1 − η are in Ψ0,0

0 .
By Lemma , multiplication by η or 1 − η preserves the classes Ψρ,σ

τ .
(ii) If we are given a multiplier m, which satisfies the inequalities, but is only

defined on an angle Γ leaving out a finite number of half-lines `k,± of F ,
we can easily extend m to a multiplier in Ψρ,σ

λ which vanishes identically
on the missing lines.

(iii) Property also applies to the situation where s > 0, only holds on an angle
omitting a finite number of half-lines in F , and m vanishes identically on
these half-lines

We denote by the same symbol Ψρ,σ
τ the class of operators defined by the

multipliers in this class. For notational convenience we shall often use the same
symbol to denote an operator M ∈ Ψρ,σ

τ and its multiplier M(λ, ξ).

1.10. Decomposition of LpEk
0

Theorem 1.10.1. Let 1 < r < ∞.
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(i) For 0 ≤ k ≤ n, LrEk
0 has a direct sum decomposition given by

LrEk
0 =

∑

p+q=k

W p,q
0

Lr

⊕
∑

p+q=k−1

W p,q
1

Lr

⊕
∑

p+q=k−2

(W p,q
2 )′

Lr

.

(ii) For n + 1 ≤ k ≤ 2n + 1, LrEk
0 has a direct sum decomposition given by

LrEk
0 =

∑

r+s=k−1

Zr,s
0

Lr

⊕
∑

r+s=k

W r,s
1

Lr

⊕
∑

r+s=k+1

(W r,s
2 )′

Lr

.

Proof. It follows from Lemma 1.10.5. �

The following result is clear, since the holomorphic and antiholomorphic Riesz
transforms of (1.4.1) are known to be Calderón-Zygmund type singular integral
operators, and consequently are Lr-bounded for 1 < r < ∞ (see, e.g., [22]).

Lemma 1.10.2. R, R̄, e(dθ) are Lr-bounded for 1 < r < ∞.

In the following lemma, for the sake of simplicity, we use an abuse of notation.

Lemma 1.10.3. �
1
2 ,�

1
2 , (�+iT )

1
2 ∈ Ψ

0, 1
2

1
2

for p+q+2 ≤ n, −iT ∈ Ψ
1
2 ,0
1 ⊂ Ψ0,1

1 .

Proof. The fact that −iT ∈ Ψ
1
2 ,0
1 is obvious.

(� + iT )
1
2 (λ, ξ) = 1√

2
(ξ + (n − 2(q + 1))λ)

1
2 where p + q + 2 ≤ n. Hence

|n − 2(q + 1)| ≤ n − 2. Therefore ξ + (n − 2(q + 1))λ ∼ ξ on an angle containing

the whole fan. This implies (�+ iT )
1
2 ∈ Ψ

0, 1
2

1
2

.

Now we prove that �
1
2 ∈ Ψ

0, 1
2

1
2

.

(�)
1
2 (λ, ξ) =

1
√

2
(ξ − (n − 2p)λ)

1
2 .

We note that
ξ − (n − 2p)λ ∼ ξ

on an angle containing the whole fan if p ≥ 1, and, if p = 0, on an angle avoiding just

the half-line ξ = nλ, λ > 0. If we use Remark 9.5 (iii), we can deduce �
1
2 ∈ Ψ

0, 1
2

1
2

.

A similar argument applies to �
1
2 . �

Lemma 1.10.4. Let p + q < n, then (ΔH) ∈ Ψ0,1
1 and (ΔH)−

1
2 ∈ Ψ

0,− 1
2

− 1
2

.

Proof. ΔH has multiplier ξ + (p − q)λ ∼ ξ, hence ΔH ∈ ∗Ψ0,1
1 . Therefore

(ΔH)−
1
2 ∈ Ψ

0,− 1
2

− 1
2

. �

Lemma 1.10.5. Let U denote any of the operators Up,q
1 or Up,q

2 . Then each com-
ponent of U consists of a multiplier operator in Ψ0,0

0 , possibly composed with e(dθ)
and the holomorphic and antiholomorphic Riesz transforms R, R̄. In particular,
for 1 < r < ∞, these operators are Lr-bounded.

Proof. It is sufficient to consider

U2 =M

(
1
2
e(dθ)ΔH�

− 1
2�

− 1
2 + ic−1

pq R̄R(�+ iT )
1
2�

− 1
2 +

1
2
c−1
pq e(dθ)iT�− 1

2�
− 1

2

)

,

where

M = −
T

|T |
√

c−1
pq (c−1

pq − 1)
,
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c−1
pq = n − k + 2, 0 ≤ k ≤ n, and

U1 =
(
RΔ

− 1
2

H �
1
2 − R̄(ΔH)−

1
2�

1
2 RΔ

− 1
2

H �
1
2 + R̄Δ

− 1
2

H �
1
2

)
.

Observing that �
1
2 , �

1
2 ∈ ∗Ψ

0, 1
2

1
2

the proof follows from Lemma 1.10.2, Lemma

1.10.3 and Lemma 1.10.4. �

1.10.1. Multipliers of ΔR. A function μ defined on the positive half-line is a
Mihlin-Hörmander multiplier of class ρ > 0 if, given a smooth function χ supported
on [ 12 , 4] and equal to 1 on [1, 2],

‖μ‖ρ,sloc := sup
t>0

‖μ(t∙)χ‖L2
ρ

< ∞.

Theorem 1.10.6. Let m : R → C be a bounded, continuous function in
L2

ρ,sloc(R) for some ρ > (2n + 1)/2. Then for every k = 0, . . . , 2n + 1, the op-
erator m(ΔR,k) is bounded on Lp(Hn)Ek

0 for 1 < p < ∞, with norm controlled by
‖m‖ρ,sloc.

Proof. It is clear that

ΔR,k =
∑

p+q=k

ΔR,kP p,q
0 +

∑

p+q=k−1

ΔR,kP p,q
1 +

∑

p+q=k−2

ΔR,kP p,q
2 ,

where P p,q
1 are the orthogonal projections onto W p,q

1 defined in Proposition 1.7.6
for the subcritical case and in Proposition 1.7.12 for the critical case, P p,q

2 are the
orthogonal projections onto W p,q

2 defined in Proposition 1.7.10, and P p,q
0 are the

orthogonal projections onto W p,q
0 . Obviously

∑

p+q=k

P p,q
0 = I −

∑

p+q=k−1

P p,q
1 −

∑

p+q=k−2

P p,q
2 .

Moreover, we recall that

ΔR,kP p,q
0 = Dp,q

0 P p,q
0 ,

ΔR,kP p,q
1 = Up,q

1 Dp,q
1 (Up,q

1 )∗P p,q
1 ,

ΔR,kP p,q
2 = Up,q

2 Dp,q
2 (Up,q

2 )∗P p,q
j ,

where Dp,q
j is the scalar form of ΔR restricted to W p,q

j as seen in formulas (1.6.1),
(1.6.4) (1.6.7), (1.6.8), (1.6.9) and (1.6.10). Then

m(ΔR)

=
∑

p,q

m(Dp,q
0 )P p,q

0 +
∑

p,q

Up,q
1 m(Dp,q

1 )(Up,q
1 )∗P p,q

1 +
∑

p,q

Up,q
2 m(Dp,q

2 )(Up,q
2 )∗P p,q

2 .

Finally the proof follows from Theorem 1.9.2. �



CHAPTER 2

Differentiability for intrinsic Lipschitz functions

In this chapter we address a different problem, specifically the description of
Lipschitz graphs on Carnot groups according to an intrinsic notion, see [24]. Again
Rumin’s complex play a crucial role here: in fact it is deeply related to the existence
of complementary subgroups in Carnot groups.

As already stated in the introduction, our interest in intrinsic Lipschitz func-
tions originates from the problem of defining appropriately rectifiable sets inside
Carnot groups. To this end we begin by introducing a new class of Carnot groups,
the so-called groups of type ?. These groups were introduced by the present author
in [43], where he proved the rectifiability of the reduced boundary of sets of finite
G-perimeter (the so-called De Giorgi’s theorem in Carnot groups).

Then we introduce the notions of intrinsic differentiable functions within a
Carnot group G and we prove a Rademacher’s type theorem for one dimensional
intrinsic Lipschitz functions inside this class of Carnot groups.

We also point out that a good portion of this chapter is joint with B. Franchi
and R. Serapioni, see [23].

2.1. Carnot groups of type ?

Definition 2.1.1 ([43]). We say that a stratified Lie algebra g = g1 ⊕ ∙ ∙ ∙ ⊕ gk
is of type ?1 if there exists a basis {X1, . . . , Xm1} of g1 such that

(2.1.1) [Xj , [Xj , Xi]] = 0, for all i, j = 1, . . . ,m1.

A Carnot group G is said to be of type ? if its Lie algebra g is of type ?.

Remark 2.1.2. We do not require the validity of (2.1.1) for every basis of g1,
since that would be equivalent to require that the step is 2. The proof is quite
straightforward. Suppose [Y1, [Y1, Y2]] = 0 for every Y1, Y2 ∈ g1. If X,Y, Z ∈ g1
then

0 = [X + Y, [X + Y,Z]] = [X, [Y,Z]] + [Y, [X,Z]]

0 = [X + Z, [X + Z, Y ]] = [X, [Z, Y ]] + [Z, [X,Y ]] = −2[X, [Y,Z]] + [Y, [X,Z]].

Therefore [X, [Y,Z]] = 0 for all X,Y, Z ∈ g1.

Example 2.1.3. Obviously step 2 Carnot groups are of type ?.
The Lie groups of unit upper triangular (m + 1) × (m + 1) matrices are non-

trivial examples of Carnot groups of type ?, for any m ∈ N (m > 2), where m
coincides with the step of the stratification. They are the nilpotent groups that
come from the Iwasawa decomposition of GLm+1(R).

Now let G be one of these groups. We wish to prove that G is of type ? for
m > 2. The Lie algebra g of G is isomorphic to the one of strictly upper triangular
(m + 1) × (m + 1) matrices (see [33], Part I, Chapter 2, Section 5.7, Example 1).
If Ei,j is the matrix with 1 in the (i, j)-th entry and 0 elsewhere, it is easy to see
that a basis of g is formed by the single-entry matrices Ek,k+` for ` = 1, . . . ,m

1No confusion should arise with the notation of the Hodge ?-operator.

41
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and k = 1, . . . ,m + 1 − `, and dim g = m(m+1)
2 . The choice of using the particular

parameters k and l will soon be explained.
The following formula, which can be proven by direct computation of the com-

mutators of single-entry matrices, gives the expression of Lie brackets in g.

(2.1.2) [Ek1,k1+`1 , Ek2,k2+`2 ] =






Ek1,k1+(`1+`2) if k1 < k2 and k1 + `1 = k2

−Ek2,k2+(`1+`2) if k1 > k2 and k2 + `2 = k1

0 otherwise.

From (2.1.2), it is easy to see that Ek,k+1 (for k = 1, . . . ,m) are generators of g.
Moreover, g = g1 ⊕ ∙ ∙ ∙ ⊕ gm with

g` = span{Ek,k+` | k = 1, . . . ,m + 1 − `}

for ` = 1, . . . ,m. This explains the use of the parameters k and `. Moreover, we
observe that m is the dimension of g1 and the step of the stratification.

Now we can finally prove that G is of type ?. We set Xk := Ek,k+1 for
k = 1, . . . ,m. From (2.1.2) we obtain that Ek,k+2 = [Xk, Xk+1] for k = 1, . . . ,m−1
and the other independent commutators of length 2 are zero, whereas Ek,k+3 =
[[Xk, Xk+1], Xk+2] = [Xk, [Xk+1, Xk+2]] for k = 1, . . . ,m − 2 and the other inde-
pendent commutators of length 3 are zero. Hence (2.1.1) holds.

Finally we observe that, if m = 2, G is isomorphic to the Heisenberg group H1.

The rectifiability of the reduced boundary of finite perimeter sets, proved in
[25, 27] inside Heisenberg groups and more generally inside step 2 groups, has been
extended by the author to groups of type ? in [43]. In particular we refer the reader
to Theorem 2.4.14. This theorem plays a key role in the proof of Theorem 2.4.15.

2.2. Intrinsic functions and intrinsic Lipschitz functions

First we recall some relations between the Rumin’s complex of intrinsic differ-
ential forms in a Carnot group G and the existence of complementary subgroups
in G (see [24]). Then we describe some interesting facts about intrinsic Lipschitz
functions.

2.2.1. Relations between Rumin’s complex and complementary sub-
groups.

Remark 2.2.1 ([24]). A homogeneous subgroup H is stratified, that is, H =
H1 ⊕ ∙ ∙ ∙ ⊕Hκ, where Hi ⊂ Gi and Hi is a linear subspace of Gi. If we denote by h
the Lie algebra of H, this follows once we prove that

(2.2.1) h = ⊕κ
p=1hp,

where hp = h ∩ gp. Indeed, if v ∈ h, we can write v =
∑

p vp, with vp ∈ gp,
p = 1, . . . , κ. Thus (2.2.1) follows if we show that

(2.2.2) vp ∈ h for all p = 1, . . . , κ.

To this end, we remind that h is a vector space and, in addition, it is homogeneous
with respect to group dilations. Hence, for λ > 0,

1
λ

δλv :=
1
λ

∑

p

λpvp = v1 +
∑

p≥2

λp−1vp ∈ h.

But 1
λδλv is bounded, and hence, if we choose λ = λn, with λn → 0 as n → ∞, we

can assume
(

1
λn

δλn
v
)
n

has a limit in h. Thus, we can conclude that v1 ∈ h. We
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can repeat now the argument replacing v by v − v1 ∈ h, and we write

1
λ2

δλ(v − v1) = v2 +
∑

p≥3

λp−2vp ∈ h,

obtaining eventually that v2 ∈ h. Iterating this argument, we get (2.2.2) and
therefore (2.2.1).

The following result shows that a pair of non-parallel intrinsic simple covectors
ξ ∈ Eh

0 and ω ∈ EN−h
0 naturally define a couple of complementary subgroups as

in Definition I.4.1. Following the notations of [36], p.90, if X is a vector field, we
denote by i(X) the interior product and by θ(X) the Lie derivative along X.

Theorem 2.2.2 ([24]). If 1 ≤ h < N , ξ ∈ Eh
0 and ω ∈ EN−h

0 are simple
covectors such that

ξ ∧ ω 6= 0,

we set

m := {X ∈ g : i(X)ξ = 0}, h := {X ∈ g : i(X)ω = 0}.

Then both m and h are Lie subalgebras of g. Moreover dimm = N − h, dim h = h
and g = m ⊕ h. If, in addition, ξ = ξ1 ∧ ∙ ∙ ∙ ∧ ξh, ω = ω1 ∧ ∙ ∙ ∙ ∧ ωN−h, where all
the ξi’s and the ωi have pure weights pi and qi, respectively, then both m and h are
homogeneous Lie subalgebras of g. Thus, if we set

M := exp(m) and H := exp(h),

then M and G are complementary subgroups. In particular, since ∗Eh
0 = EN−h

0 , if
ξ ∈ Eh

0 , we can choose ω := ∗ξ. In this case, m and h are orthogonal.
Reciprocally, suppose m and h are homogeneous Lie subalgebras of g such that

dimm = N − h, dim h = h, and g = m⊕ h. Then there exist a scalar product 〈∙, ∙〉0
in g, ξ ∈ Eh

0 and ω ∈ EN−h
0 such that ξ ∧ ω 6= 0 and

m := {X ∈ g : i(X)ξ = 0}, h := {X ∈ g : i(X)ω = 0}.

2.2.2. Intrinsic Lipschitz functions. Intrinsic Lipschitz functions in G are
functions, acting between complementary subgroups of G, with graphs non in-
tersecting naturally defined cones. Hence, the notion of intrinsic Lipschitz graph
respects strictly the geometry of the ambient group G.

We begin with two definitions of intrinsic cones.

Definition 2.2.3. Let H be a homogeneous subgroup of G, q ∈ G. The cones
X(q,H, α) with axis H, vertex q, opening α, 0 ≤ α ≤ 1 are defined as

X(q,H, α) = q ∙ X(e,H, α), where X(e,H, α) =
{
p : dist (p,H) ≤ α ‖p‖

}
,

where dist (p,H) := inf{
∥
∥p−1h

∥
∥ : h ∈ H}.

If M,H are complementary subgroups in G, q ∈ G and β ≥ 0, the cones
CM,H(q, β), with base M, axis H, vertex q, opening β are defined as

CM,H(q, β) = q ∙ CM,H(e, β), where CM,H(e, β) = {p : ‖pM‖ ≤ β ‖pH‖} .

The cones CM,H(q, β) are ‘equivalent’ with the cones X(q,H, α), indeed

Proposition 2.2.4 ([24]). If M,H are complementary subgroups in G then,
for any α ∈ (0, 1) there is β ≥ 1, depending on α, M and H, such that

CM,H(q, 1/β) ⊂ X(q,H, α) ⊂ CM,H(q, β),

Now we introduce the main definition of this subsection.



44 2. DIFFERENTIABILITY FOR INTRINSIC LIPSCHITZ FUNCTIONS

Definition 2.2.5. Let H be a homogeneous subgroup, not necessarily comple-
mented in G.
(i) An H-graph S is an intrinsic Lipschitz H-graph if there is α ∈ (0, 1) such that,

S ∩ X(p,H, α) = {p}, for all p ∈ S.

(ii) If there is a subgroup M such that M,H are complementary subgroups in G, we
say that f : E ⊂ M → H is intrinsic Lipschitz in E when graph (f) is an intrinsic
Lipschitz H-graph.
(iii) We say that f : E ⊂M→ H is intrinsic L-Lipschitz in E for some L ≥ 0 if for
all L̃ > L

(2.2.3) CM,H(p, 1/L̃) ∩ graph (f) = {p}, for all p ∈ graph (f).

The Lipschitz constant of f in E is the infimum of the L̃ > 0 such that (2.2.3) holds.

It follows immediately from Proposition 2.2.4 that f is intrinsic Lipschitz in E
if and only if it is intrinsic L-Lipschitz for an appropriate constant L, depending
on α, f and M.

Because of Proposition I.4.5 and Definition 2.2.3 left translations of intrinsic
Lipschitz H-graphs, or of intrinsic L-Lipschitz functions, keep being intrinsic Lips-
chitz H-graphs, or intrinsic L-Lipschitz functions.

We collect without proofs a few results about intrinsic Lipschitz functions. All
the proofs, here omitted, can be found in [24].

First we observe that the geometric definition of intrinsic Lipschitz graphs has
equivalent algebraic forms (see also [7], [30], [29]).

Proposition 2.2.6 ([24]). Let M,H be complementary subgroups in G, f : E ⊂
M→ H and L > 0. Then (i) to (iii) are equivalent.

(i) f is intrinsic L-Lipschitz in E.

(ii)
∥
∥PH(q̄−1q)

∥
∥ ≤ L

∥
∥PM(q̄−1q)

∥
∥ , for all q, q̄ ∈ graph (f).

(iii)
∥
∥fq̄−1(m)

∥
∥ ≤ L ‖m‖ , for all q̄ ∈ graph (f) and m ∈ Eq̄−1 .

Remark 2.2.7. f is intrinsic Lipschitz if and only if the distance of two points
q, q̄ ∈ graph (f) is bounded by the norm of the projection on the domain M of q̄−1q.
Precisely, f : E ⊂ M → H is intrinsic Lipschitz if and only if there is a constant
C > 0 such that

∥
∥q̄−1q

∥
∥ ≤ C

∥
∥PM(q̄−1q)

∥
∥ , for all q, q̄ ∈ graph (f).

The relations between the constant C and the Lipschitz constant L of f follow from
(I.4.1):
r if f is intrinsic L-Lipschitz then

∥
∥q̄−1q

∥
∥ ≤ (1 + L)

∥
∥PM(q̄−1q)

∥
∥ , for all q, q̄ ∈ graph (f);

r conversely, if
∥
∥q̄−1q

∥
∥ ≤ c0(1 + L)

∥
∥PM(q̄−1q)

∥
∥ then

∥
∥PH(q̄−1q)

∥
∥ ≤ L

∥
∥PM(q̄−1q)

∥
∥ , for all q, q̄ ∈ graph (f)

and f is intrinsic L-Lipschitz.

In general intrinsic Lipschitz functions are not metric Lipschitz functions. By
this we mean that, if f : M→ H is intrinsic Lipschitz then this does not yields the
existence of a constant C such that

∥
∥f(m̄)−1f(m)

∥
∥ ≤ C

∥
∥m̄−1m

∥
∥ for m, m̄ ∈M,



2.3. INTRINSIC DIFFERENTIABLE FUNCTIONS 45

not even locally. For a more complete discussion about this see Remark 3.1.8 of
[24]. Nevertheless, intrinsic Lipschitz functions are metric Hölder continuous and
hence uniformly continuous.

Proposition 2.2.8 ([24]). Let M, H be complementary subgroups in a step κ
group G. Let L > 0 and f : E ⊂M→ H be an intrinsic L-Lipschitz function. Then
(i) f is bounded on bounded subsets of E. Precisely, for all R > 0, p ∈ E with
‖p‖ ≤ R, there is C1 = C1(G,M,H, L,R, f (p)) > 0 such that

‖f(m)‖ ≤ C1, for all m ∈ E such that ‖m‖ ≤ R.

(ii) f is 1
κ -Holder continuous on bounded subset of E. Precisely, for all R > 0, there

is C2 = C2(G,M,H, C1, L,R) > 0 such that
∥
∥f(m̄)−1f(m)

∥
∥ ≤ C2

∥
∥m̄−1m

∥
∥1/κ

, for all m, m̄ ∈ E with ‖m‖ , ‖m̄‖ ≤ R.

The graphs of intrinsic Lipschitz functions are Ahlfors regular sets. If f : E ⊂
M→ H is intrinsic Lipschitz then the Hausdorff dimension of graph (f) is the same
as the metric dimension of the domain E . That is if s is this metric dimension of E
then

Ss
d (graph(f) ∩ U) < ∞,

for any bounded U ⊂ G.

Theorem 2.2.9. [24] Let M, H be complementary subgroups in G. Let dm

denote the metric dimension of M. If f : M→ H is intrinsic L-Lipschitz in M then
there is c = c(M,H) > 0 such that,

(
c0

1 + L

)dm

Rdm ≤ Sdm

d

(
graph (f) ∩ B(p,R)

)
≤ c(1 + L)dmRdm ,

for all p ∈ graph (f) and R > 0, where c0 is the structural constant in Proposition
I.4.2. In particular, graph (f) has metric dimension dm.

A non trivial corollary of Theorem 2.2.9 will be that 1-codimensional intrinsic
Lipschitz graphs are boundaries of sets of locally finite G-perimeter (see Theorem
2.4.10). The extension property for intrinsic Lipschitz functions taking values in
one dimensional subgroups, as stated in Theorem 2.2.10, is one of the main results
in [24] and is a key instrument in proving the equivalence of the two definitions of
rectifiable sets given in Definition 2.4.18.

Theorem 2.2.10. [24] Let M and V be complementary subgroups with V one
dimensional (and consequently horizontal). Let B ⊂M be a Borel subset of M and
f : B → V be an intrinsic L-Lipschitz function. Then there are f̃ : M → V and
L̃ = L̃(L,G,M,V) ≥ L such that

f̃ is intrinsic L̃-Lipschitz in M,

f̃(m) = f(m) for all m ∈ B.

2.3. Intrinsic differentiable functions

2.3.1. Intrinsic linear Functions. A function f : M → H, acting between
complementary subgroups of G, is intrinsic differentiable in a point m ∈ M if
the graph of f has a tangent homogeneous subgroup in mf(m) ∈ graph (f) (see
Definition 2.3.12). This notion can be stated also in terms of the existence of an
approximating intrinsic linear function. Intrinsic linear functions, acting between
complementary subgroups, are those functions whose graphs are homogeneous sub-
groups. We begin with this second approach.
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Definition 2.3.1. Let M and H be complementary subgroups in G. Then
` : M→ H is an intrinsic linear function if ` is defined on all of M and if graph (`) =
{m`(m) : m ∈M} is a homogeneous subgroup of G.

Intrinsic linear functions are not necessarily group homomorphisms between
their domains and codomains, as the following example shows.

Example 2.3.2. We consider the Heisenberg group H1 identified with (R3, ∙).
The group product is given by

(x1, x2, x3) ∙ (y1, y2, y3) := (x1 + y1, x2 + y2, x3 + y3 + (x1y2 − x2y1)/2) .

The linear subspaces V, W of R3, defined as V := {v = (v1, 0, 0)} and W := {w =
(0, w2, w3)} are complementary homogeneous subgroups of H1. For any fixed a ∈ R,
the function ` : V→W defined as

`(v) = (0, av1,−av2
1/2)

is intrinsic linear because graph (`) = {(t, at, 0) : t ∈ R} is a 1-dimensional homo-
geneous subgroup of H1. This ` is not a group homomorphism from V to W.

Intrinsic linear functions can be algebraically characterized as follows.

Proposition 2.3.3. Let M and H be complementary subgroups in G. Then
` : M→ H is an intrinsic linear function if and only if

`(δλm) = δλ(`(m)), for all m ∈M and λ ∈ R;

`(m1m2) =
(
PH(`(m1)

−1m2)
)−1

`
(
PM(`(m1)

−1m2)
)
, for all m1,m2 ∈M.

Proof. Because graph (`) is a homogeneous subgroup, for each m ∈ M there
is m̄ ∈M such that δλ (m`(m)) = m̄`(m̄); hence

δλmδλ (`(m)) = m̄`(m̄)

and by uniqueness of the components

m̄ = δλm and `(δλm) = `(m̄) = δλ (`(m)) .

Because graph (`) is a subgroup, for all m1,m2 ∈M there is m̄ such that

m1`(m1)m2`(m2) = m̄`(m̄).

Hence
m̄ = (m1`(m1)m2`(m2))M = m1 (`(m1)m2)M ,

`(m̄) = (m1`(m1)m2`(m2))H = (`(m1)m2)H `(m2).

This way we obtained

(2.3.1) ` (m1 (`(m1)m2)M) = (`(m1)m2)H `(m2), for all m1,m2 ∈M.

To get a more explicit expression we change variables. To do this, first we observe
that for each couple m ∈M and h ∈ H there is exactly one m̄ ∈M such that

(2.3.2) m = (hm̄)M
and m̄ can be explicitly defined as

(2.3.3) m̄ =
(
h−1m

)
M

.

Indeed
(
h
(
h−1m

)
M

)
M

=
(
hh−1m

((
h−1m

)
H

)−1
)

M
=
(
m
((

h−1m
)
H

)−1
)

M
= m.

To prove that the choice of m̄ in (2.3.2) is unique observe that

(hm1)M = (hm2)M =⇒ m1 = m2
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for all m1,m2 ∈M, h ∈ H. Indeed

hm1 = (hm1)M (hm1)H = (hm2)M (hm1)H = hm2 ((hm2)H)−1 (hm1)H ;

hence
m1 = m2 ((hm2)H)−1 (hm1)H ,

that gives
m−1

2 m1 = ((hm2)H)−1 (hm1)H ∈ H,

and finally m−1
2 m1 = 0 because M and H are complementary. This completes the

proof of the existence and uniqueness of m̄ as in (2.3.2) and (2.3.3).
Using (2.3.2) and (2.3.3), for all m1,m3 ∈M we define

m2 :=
(
`(m1)

−1m3

)
M

,

so that
m3 = (`(m1)m2)M

and we substitute inside (2.3.1) to get

`(m1m3) =
(
`(m1)

(
`(m1)

−1m3

)
M

)
H

`(
(
`(m1)

−1m3

)
M

)

=
(
`(m1)`(m1)

−1m3

((
`(m1)

−1m3

)
H

)−1
)

H
`(
(
`(m1)

−1m3

)
M

)

=
(
m3

((
`(m1)

−1m3

)
H

)−1
)

H
`(
(
`(m1)

−1m3

)
M

)

=
((

`(m1)
−1m3

)
H

)−1
`(
(
`(m1)

−1m3

)
M

)

for all m1,m3 ∈M. �

Corollary 2.3.4. Let G be the semidirect product of the complementary sub-
groups M and H. Let ` : M→ H be intrinsic linear. Then the second statement of
Proposition 2.3.3 takes the following form:

if M is normal in G: `(m1m2) = `(m1) `
(
`(m1)

−1 m2 `(m1)
)
,

if H is normal in G: `(m1m2) = m−1
2 `(m1) m2 `(m2),

if M and H are normal: `(m1m2) = `(m1) ∙ `(m2),

for all m1,m2 ∈ M. Hence, when G is the direct product of M and H, an intrinsic
linear function ` : M→ H is a homogeneous homomorphism from M to H.

Proof. If M is normal then (hm)M = hmh−1 and (hm)H = h. Hence the first
one is proved. If H is normal then (hm)M = m and (hm)H = m−1hm and we get
the second one. Finally the last one follows from the first two. �

Proposition 2.3.5. Let M and H be complementary subgroups in G.
(i) If ` : M → H is intrinsic linear then the homogeneous subgroups graph (`) and
H are complementary subgroups and G = graph (`) ∙H.
(ii) If V is a homogeneous subgroup such that V and H are complementary in G
then there is a unique intrinsic linear function ` : M→ H such that V = graph (`).

Proof. (i): Observe that for all g ∈ G we have g = gMgH = gM`(gM)`(gM)−1gH,
and gM`(gM) ∈ graph (`) while `(gM)−1gH ∈ H. On the other side graph (`)∩H = e.
Indeed, if g = m`(m) ∈ H then m = 0 and g = `(0). By the first statement of
Proposition 2.3.3 also `(0) = 0, hence g = 0.

(ii): We have to prove that V is a graph over M in direction H. That is we
have to prove that each coset of H intersects V in at most one point. Indeed,
if there are m ∈ M and h1, h2 ∈ H such that mh1 ∈ V and mh2 ∈ V, then
h−1

2 h1 = h−1
2 m−1mh1 ∈ V ∩ H hence h1 = h2 and mh1 = mh2. This shows that

V is a graph over M. To complete the proof we have to show that each coset
of H intersects V. Indeed, for each m ∈ M, by the assumption that V, H are
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complementary it follows that m = mVmH. Hence mm−1
H = mV ∈ m ∙ H ∩ V.

Finally the function having V as graph, is intrinsic linear by definition. �

Proposition 2.3.6. Let M and H be complementary subgroups in G and ` :
M→ H be intrinsic linear, then

` is a polynomial function;

` is intrinsic L-Lipschitz with L := sup{‖`(m)‖ : ‖m‖ = 1}.

Proof. Let P1 : M → graph (`) be the restriction to M of the projection on
the first component, related with the decomposition G = graph (`) ∙H. Then

P1(m) = m`(m), for all m ∈M.

Let P2 : graph (`) → H be the restriction to graph (`) of the projection on the
second component, related with the decomposition G = M ∙H. Then

P2(m`(m)) = `(m), for all m`(m) ∈ graph (`).

Then ` : M→ H is ` = P2◦P1. By Proposition I.4.3 both P1 and P2 are polynomial
maps, hence also ` is a polynomial map.

Observe that L is finite because ` is continuous. From the first statement of
Proposition 2.3.3 we have also that ‖`(m)‖ ≤ L ‖m‖, for all m ∈M. This inequality
can be stated geometrically as

(2.3.4) CM,H(0, α) ∩ graph (`) = {0}, for all α s.t. 0 < α < 1/L.

By definition of intrinsic linear functions,

graph (`) = p ∙ graph (`), for all p ∈ graph (`),

moreover CM,H(p, α) = p ∙ CM,H(0, α) for all p ∈ G. Hence from (2.3.4) it follows

CM,H(p, α) ∩ graph (`) = {p},

for all α with 0 < α < 1/L and for all p ∈ graph (`). Hence by (iii) of Definition
2.2.5, ` is intrinsic L-Lipschitz. �

2.3.2. Intrinsic differentiable functions. We use intrinsic linear functions
to define intrinsic differentiability in a way that is formally similar to the usual
definition of differentiability.

Definition 2.3.7. Let M and H be complementary subgroups in G and f :
A ⊂M→ H with A relatively open in M. For m̄ ∈ A let p̄ := m̄ ∙ f(m̄) ∈ graph (f)
and fp̄−1 : Ap̄−1 ⊂ M → H. We say that f is intrinsic differentiable in m̄ ∈ A
if fp̄−1 is intrinsic differentiable in e that is if there is an intrinsic linear map
df = dfm̄ : M→ H such that, for all m ∈ Ap̄−1 ,

∥
∥dfm̄(m)−1 ∙ fp̄−1(m)

∥
∥ = o(‖m‖), as ‖m‖ → 0.

The intrinsic linear map dfm̄ is called the intrinsic differential of f .

Remark 2.3.8. If a function is intrinsic differentiable it keeps being intrinsic
differentiable after a left translation of the graph. Precisely, let q1 = m1f(m1)
and q2 = m2f(m2) ∈ graph (f), then f is intrinsic differentiable in m1 if and only
if fq2∙q

−1
1

≡ (fq−1
1

)
q2

is intrinsic differentiable in m2. In particular, f is intrinsic

differentiable in m1 if and only if fq−1
1

is intrinsic differentiable in e.

Proposition 2.3.9. Let M, H be complementary subgroups in G and f : A ⊂
M→ H with A relatively open in M. If f is intrinsic differentiable in m ∈ A, then
f is continuous in m.
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Proof. As observed in Remark I.4.6, it is enough to prove the continuity of
fp−1

1
at the origin. This last fact is an immediate consequence of Definition 2.3.7

and of the continuity of intrinsic linear functions. �

Remark 2.3.10. Writing explicitly fp̄−1 in Definition 2.3.7 when G is a semidi-
rect product of M and H we obtain:
r if M is a normal subgroup then f : M→ H is differentiable in m̄ ∈M if
∥
∥dfm̄(m)−1 ∙ f(m̄)−1 ∙ f

(
m̄f(m̄)mf(m̄)−1

)∥∥ = o(‖m‖), as ‖m‖ → 0;
r if H is a normal subgroup then f : M→ H is differentiable in m̄ ∈M if
∥
∥dfm̄(m)−1 ∙ m ∙ f(m̄)−1 ∙ m−1 ∙ f (m̄m)

∥
∥ = o(‖m‖), as ‖m‖ → 0;

r if both M and H are normal subgroups then f : M→ H is differentiable
in m̄ ∈M if
∥
∥dfm̄(m)−1 ∙ f(m̄)−1 ∙ f (m̄m)

∥
∥ = o(‖m‖), as ‖m‖ → 0.

Remark 2.3.11. P. Pansu introduced in [54] a notion of differentiability for
maps between nilpotent groups, the differential being an approximating homoge-
neous homomorphisms. More precisely, a function f , acting between two nilpotent
groups G1 and G2, is Pansu differentiable in ḡ ∈ G1 if there is a homogeneous
homomorphism h : G1 → G2 such that

∥
∥h(ḡ−1g)−1 ∙ f(ḡ)−1 ∙ f(g)

∥
∥
G2

= o(
∥
∥ḡ−1g

∥
∥
G1

), as
∥
∥ḡ−1g

∥
∥
G1

→ 0.

We remark that Pansu differentiability and intrinsic differentiability, when both of
them make sense, are in general different notions.

Indeed, let V, W be the complementary subgroups of H1 defined as V = {v =
(v1, 0, 0)} and W = {w = (0, w2, w3)}. As observed before, an intrinsic linear
function ` : V→W is of the form

`(v) = (0, av1,−av2
1/2), for any fixed a ∈ R.

A homogeneous homomorphism h : V→W is of the form

h(v) = (0, av1, 0), for any fixed a ∈ R.

Obviously, ` is intrinsic differentiable in v = 0 while h is Pansu differentiable in
v = 0. On the other side, it is easy to check that neither ` is Pansu differentiable
nor h is intrinsic differentiable in v = 0.

We remark also that Pansu differentiability is not preserved after graph trans-
lations. Indeed, consider once more the function h : V → W, then graph (h) =
{(t, at, at2/2) : t ∈ R}. Let p := (0, p2, 0) ∈ H1, p 6= 0. Then p ∙ graph (h) =
{(t, at + p2, (at2 − p2t)/2) : t ∈ R} is the graph of the function hp : V → W
defined as hp(v) = (0, av1 + p2,−p2v1). It is easy to check that hp is not Pansu
differentiable in v = 0.

Finally, if G is the direct product of M and H it is easy to convince oneself that

f : M→ H is Pansu differentiable ⇐⇒ f is intrinsic differentiable.

The algebraic definition of intrinsic differentiability of Definition 2.3.7 has an
equivalent geometric formulation. Indeed intrinsic differentiability in one point is
equivalent to the existence of a tangent subgroup to the graph. We begin with the
definition of tangent subgroup.

Definition 2.3.12. LetM, H be complementary subgroups in G, f : A ⊂M→
H with A relatively open in M and let T be a homogeneous subgroup in G. Let
m ∈ A and p = mf(m) ∈ graph (f) we say that p ∙ T is a tangent (affine) subgroup
or tangent coset to graph (f) in p if for all ε > 0 there is λ = λ(ε) > 0 such that

graph (f) ∩ {q ∈ G :
∥
∥PM(p−1q)

∥
∥ < λ(ε)} ⊂ X(p,T, ε).
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Remark 2.3.13. The definition is translation invariant, that is p ∙ T is the
tangent (affine) subgroup to graph (f) in p if and only if T is the tangent subgroup
to graph (fp−1) in 0.

Theorem 2.3.14. Let M, H be complementary subgroups in G and f : A ⊂
M→ H with A relatively open in M.
(I) If f is intrinsic differentiable in m ∈ A, set T := graph (dfm). Then

(i) T is a homogeneous subgroup of G;
(ii) T and H are complementary subgroups in G;
(iii) p ∙ T is the tangent coset to graph (f) in p := mf(m).

(II) Conversely, if p := mf(m) ∈ graph (f) and if there is T such that (i), (ii), (iii)
hold, then f is intrinsic differentiable in m and the differential dfm : M→ H is the
unique intrinsic linear function such that T = graph (dfm).

Proof. By Remark 2.3.8 and Remark 2.3.13 we can assume without loss of
generality that m = 0 and f(0) = 0.

Proof of (I). Because f is intrinsic differentiable in 0 there is an intrinsic linear
function df0 : M→ H and δ : R+ → R+ such that for all ε > 0

∥
∥df0(m)−1 ∙ f(m)

∥
∥ < ε ‖m‖ , for all m ∈M with ‖m‖ < δ(ε).

Define T := graph (df0); then, for all m ∈M,

dist (mf(m),T) := inf{
∥
∥x−1mf(m)

∥
∥ : x ∈ T}

= inf{
∥
∥df0(w)−1w−1mf(m)

∥
∥ : w ∈M}

≤
∥
∥df0(m)−1f(m)

∥
∥

≤ ε c0 ‖m‖ , if ‖m‖ < δ(c0ε)

≤ ε ‖mf(m)‖ , if ‖m‖ < δ(c0ε),

where c0 is the constant in (I.4.1). Hence we proved that for all ε > 0 there is
λ(ε) := δ(c0 ε) > 0 s.t.

dist (mf(m),T) ≤ ε ‖mf(m)‖ , for all m with ‖m‖ < λ(ε),

that is
graph (f) ∩ {q ∈ G : ‖PM(q)‖ < λ(ε)} ⊂ X(0,T, ε).

Proof of (II).
By assumption, the tangent subgroup T is complementary to H; hence, from Lemma
2.3.5, there is an intrinsic linear function ` : M → H such that T = graph (`). We
have to prove that ` = df0. Because T is the tangent subgroup to graph (f) in 0,
for all ε > 0 there is δ(ε) > 0 such that

(2.3.5) dist (mf(m),T) ≤ ε ‖mf(m)‖ , for all m ∈M with ‖m‖ < δ(ε).

Observe that, for all x ∈ T,

x−1mf(m) = x−1m`(m) `(m)−1f(m)

where x−1m`(m) ∈ T and `(m)−1f(m) ∈ H. Hence, in the decomposition G = T∙H,

`(m)−1f(m) = PH(x−1mf(m)), for all x ∈ T.

Consequently, for all x ∈ T,
∥
∥`(m)−1f(m)

∥
∥ =

∥
∥PH(x−1mf(m))

∥
∥ ≤

1
c̃0

∥
∥x−1mf(m)

∥
∥ ,

where 0 < c̃0 < 1 is the constant in Proposition I.4.2, but related here to the
decomposition G = T ∙H. Eventually we have

(2.3.6)
∥
∥`(m)−1f(m)

∥
∥ ≤

1
c̃0

dist (mf(m),T),
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and from (2.3.5) and (2.3.6)

(2.3.7)
∥
∥`(m)−1f(m)

∥
∥ ≤

ε

c̃0
‖mf(m)‖ , for all m ∈M with ‖m‖ < δ(ε).

Denoting by L the Lipschitz constant of ` (remember Proposition 2.3.6), we have

‖f(m)‖ ≤ ‖`(m)‖ +
∥
∥`(m)−1f(m)

∥
∥

≤ L ‖m‖ + ε ‖mf(m)‖ , for all ‖m‖ < δ(c̃0ε)

≤ (L + ε) ‖m‖ + ε ‖f(m)‖ , for all ‖m‖ < δ(c̃0ε).

Hence ‖f(m)‖ ≤ L+ε
1−ε ‖m‖ that gives ‖mf(m)‖ ≤ 1+L

1−ε ‖m‖ and finally

‖mf(m)‖ ≤ 2(1 + L) ‖m‖ , for ε < 1/2.

Eventually, from (2.3.7) we obtain that, for all ε > 0,

∥
∥`(m)−1f(m)

∥
∥ ≤

2(L + 1)
c̃0

ε ‖m‖ ,

for all m ∈ M with ‖m‖ < δ(ε) and ε < 1/2. Hence ` is the intrinsic differential of
f in 0 and the proof is concluded. �

2.4. One codimensional intrinsic graphs

In this final section we assume that G = M ∙ V, with M and V complemen-
tary homogeneous subgroups, V one dimensional and (therefore) horizontal and
consequently M a normal subgroup. Precisely we fix V ∈ g1 such that

V = {exp(tV ) : t ∈ R, V ∈ g1}.

Since V = {exp (tV ) : t ∈ R}, it can be identified with R, it carries an order and
we can define the supremum and the infimum of families of V-valued functions.

2.4.1. Approximate tangent subgroups and intrinsic differentiability.
In this subsection we prove that intrinsic differentiability and the (weaker property
of) existence of an approximate tangent subgroup (see Definition 2.4.1) are equiva-
lent notions for 1-codimensional intrinsic Lipschitz graphs (see Theorem 2.4.4).

We will use the following notations. Let f, gn : U ⊂ M → V, for n ∈ N be
defined for m ∈ U as f(m) := exp(ϕ(m)V ) and as gn(m) := exp(ψn(m)V ) with
ϕ,ψn : U → R. We will say that gn → f uniformly in U or that gn → f locally L1

in U if ψn → ϕ uniformly or locally L1 in U (as real valued functions).
We define the supergraph E+

f and the subgraph E−
f of f as

E−
f := {m exp(tV ) : m ∈ U , t < ϕ(m)}, E+

f := {m exp(tV ) : m ∈ U , t > ϕ(m)}.

Notice that, if f : M→ V is continuous,

E−
f = {m exp(tV ) : m ∈M, t ≤ ϕ(m)}, E+

f = {m exp(tV ) : m ∈M, t ≥ ϕ(m)}.

For any subgroup T complementary to V we define the ‘half-spaces’ S+
G (T,V) and

S−
G (T,V) as

S−
G (T,V) := {g = gTgV : gV = exp(tV ), t < 0},

S+
G (T,V) := {g = gTgV : gV = exp(tV ), t > 0}.

Definition 2.4.1. Let O be relatively open in M and f : O → V. We say that
f is approximately intrinsic differentiable in m ∈ O if graph (f) has an approximate
tangent (affine) subgroup in p = mf(m), that is if there is a homogeneous subgroup
T such that

T and V are complementary subgroups in G,
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and the following convergence of characteristic functions holds

lim
r→0+

1(E−
f )

r,p

= 1S−
G (T,V) in L1

loc(G,Ln),

where, for p ∈ G and for r > 0,

(E−
f )

r,p
:= {q ∈ G : p ∙ δrq ∈ E−

f } = δ 1
r

(
p−1 ∙ E−

f

)
.

Remark 2.4.2. The notion of approximate intrinsic tangent subgroup is in-
variant by left translations. Observe also that it is given in the spirit of De Giorgi’s
approach to tangents of finite perimeter sets (see [19], [25] for Heisenberg groups
and Theorem 2.4.14 here).

Remark 2.4.3. If T = graph (`) then T is the approximate tangent subgroup
to graph (f) in p if and only if the sequence (fp−1)

λ
→ ` as λ → 0+ in L1

loc(M).
Moreover, it is clear that T = graph (`) is the tangent group of f at p (see Definition
2.3.12 and Remark 2.3.13) if and only if (fp−1)

λ
→ ` as λ → 0 uniformly on each

compact subset of M.

Theorem 2.4.4. Let M and V be complementary subgroups with V one dimen-
sional and horizontal. Let f : M → V be an intrinsic L-Lipschitz function. Then,
for all m ∈ M, f is approximately intrinsic differentiable in m if and only if f is
intrinsic differentiable in m.

Proof. Keeping in mind Remark 2.4.3, it is clear that differentiability yields
approximate differentiability. On the other side, simply observe that, being f intrin-
sic Lipschitz, the dilated functions (fp−1)

λ
, λ > 0 are a precompact family of func-

tions, being equi Hölder-continuous and equibounded (see Proposition 2.2.8). �

2.4.2. Finite perimeter sets and intrinsic Lipschitz graphs. The local
boundedness of the (Q − 1)-dimensional Hausdorff measure of intrinsic Lipschitz
graphs (Theorem 2.2.9) yields that 1-codimensional graphs of intrinsic Lipschitz
functions are locally the boundary of sets with locally finite G-perimeter (see The-
orem 2.4.10). We recall a few notions related to the perimeter of sets in G. For
more details and proofs, see [32], [25] and [66].

Let Ω ⊂ G be open, we say that f ∈ C1
G(Ω) if Xif are continuous for i =

1, . . . ,m1.
Moreover, we denote as C1

G(Ω, HG) the set of all horizontal sections

φ :=
m1∑

i=1

φiXi

of HG whose coordinates φi belong to C1
G(Ω), for i = 1, . . . ,m1. Each hori-

zontal section is identified by its coordinates with respect to this moving frame
X1(x), . . . , Xm1(x). This way, an horizontal section φ is identified with a function
φ = (φ1, . . . , φm1) : RN → Rm1 .

The horizontal gradient of a regular function f : G→ R is the horizontal section

∇Gf :=
m1∑

i=1

(Xif)Xi,

whose coordinates are (X1f, ...,Xm1f).
If φ =

∑m1
i=1 φiXi ∈ C1

G(Ω, HG) the horizontal divergence of φ is the real valued
function

divG(φ) :=
m1∑

j=1

Xjφj .
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A function f : Ω ⊂ G→ R is said to be of bounded variation in Ω if f ∈ L1(Ω)
and if

‖∇Gf‖ (Ω) := sup

{∫

Ω

f(p)divGφ(p) dp : φ ∈ C1
G,0(Ω, HG), |φ(p)|p ≤ 1

}

< ∞,

where C1
G,0(Ω, HG) denote compactly supported smooth sections of HG.

We denote by BVG(Ω) the normed space of bounded variation functions and
by BVG,loc(Ω) the vector space of functions in BVG(U) for every open set U ⊂⊂ Ω.

Theorem 2.4.5. If f ∈ BVG,loc(Ω) then ‖∇Gf‖ induces a Radon measure on
Ω, still denoted by ‖∇Gf‖. Moreover, there exists a ‖∇Gf‖-measurable horizontal
section σf : Ω → HG such that |σf (p)|p = 1 for ‖∇Gf‖-a.e. p ∈ Ω, and

∫

Ω

f(p)divGφ(p) dp =
∫

Ω

〈φ, σf 〉 d ‖∇Gf‖ , for every φ ∈ C1
0(Ω, HG).

Thus, the notion of ∇Gf can be extended to functions f ∈ BVG defining ∇Gf as
the vector valued measure

∇Gf := −σf ‖∇Gf‖ = (−(σf )1 ‖∇Gf‖ , . . . ,−(σf )m1 ∇Gf) ,

where (σf )j are the components of σf with respect to the moving frame Xj.

Definition 2.4.6. A measurable set E ⊂ G is a set with locally finite G-
perimeter in Ω if its characteristic function 1E ∈ BVG,loc(Ω). In this case we call
perimeter of E in Ω the measure

|∂E|G := ‖∇G1E‖

and we call generalized horizontal inward G-normal to ∂E in Ω the horizontal vector

νE(p) := −σ1E
(p).

As in the Euclidean setting, given E ⊂ G, we define the essential boundary or
measure theoretic boundary ∂∗,GE and, if E is a set with locally finite G-perimeter,
the reduced boundary ∂∗

GE.

Definition 2.4.7.
(I) Let E ⊂ G be a measurable set, we say that p ∈ ∂∗,GE if

lim sup
r→0+

LN (E ∩ Uc(p, r))
LN (Uc(p, r))

> 0 and lim sup
r→0+

LN (Ec ∩ Uc(p, r))
LN (Uc(p, r))

> 0.

(II) Let E be a a set with locally finite G-perimeter. We say that p ∈ ∂∗
GE if

|∂E|G(Uc(p, r)) > 0 for any r > 0;

there exists lim
r→0

1
|∂E|G(Uc(p, r))

∫

Uc(p,r)

νE d|∂E|G;

lim
r→0

1
|∂E|G(Uc(p, r))

∥
∥
∥
∥
∥

∫

Uc(p,r)

νE d|∂E|G

∥
∥
∥
∥
∥
Rm1

= 1.

Lemma 2.4.8 (Differentiation Lemma). Assume E is a set with locally finite
G-perimeter, then

lim
r→0

1
|∂E|G(Uc(p, r))

∫

Uc(p,r)

νE d|∂E|G = νE(p), for |∂E|G-a.e. p,

hence |∂E|G is concentrated on the reduced boundary ∂∗
GE. Moreover we can redefine

νE in a |∂E|G-negligible set, by assuming that νE(p) is equal to the limit of the
averages at all point p ∈ ∂∗

GE.

Lemma 2.4.9. There is c = c(G) > 0 such that |∂Uc(p,R)|G = cRQ−1, for all
p ∈ G and for a.a. R > 0.
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Proof. Because of the invariance of the G-perimeter under group translations,
we may assume p = e. Moreover, by its homogeneity with respect to group dilations,
we have but to show that |∂Uc(e, 1)|G < ∞. We notice first that ∂Uc(e, 1) = {q ∈
G ; dc(e, q) = 1}, and that |∂Uc(e, 1)| = 0.

We put uk(p) := ψk(dc(p, e)), ψk : [0,∞[→ [0, 1] is a smooth function such that
ψk ≡ 1 on [0, 1], ψk ≡ 0 on [1 + 1/k,∞[, |ψ′(t)| ≤ 2/k for t ≥ 0. Clearly, ∇Guk is
supported in the anulus Bc(e, 1+1/k)\Uc(e, 1). On the other hand, it is well known
that |∇Gdc(∙, e)| ≤ 1, so that |∇Guk| ≤ 2/k. Since |Bc(e, 1 + 1/k) \ Uc(e, 1)| ∼ k−1

as k → ∞, it follows that its total G-variation is bounded uniformly with respect to
k. Thus, we can conclude the proof because of the lower L1-semicontinuity of the
G-variation, since (uk)k∈V tends in L1 to the characteristic function of Uc(e, 1). �

The following Theorem is the group version of a (special case of a) celebrated
theorem of Federer (see [4.5.11] of [20] and also Proposition 3.6.2 of [1] and [67]).

Theorem 2.4.10. Let O be an open subset of G. If the measure SQ−1
d ∂O

is locally finite in G then also |∂O|G is locally finite in G and there is a geometric
constant c = c(G) > 0 such that

|∂O|G ≤ c SQ−1
d ∂O.

In particular, if SQ−1
d (∂O) < ∞ then |∂O|G(G) < ∞.

Proof. First we assume that O is bounded. Then, by hypothesis, SQ−1
d (∂O) <

∞ and, for each ε > 0, we can cover ∂O with a finite number of open metric balls
Uε,j , j = 1, 2, . . . , with radius rε,j < ε, such that

∑

j

rQ−1
ε,j < (1 + ε)SQ−1

d (∂O) < ∞.

Denote
Sε :=

⋃

j

Uε,j and Oε := O ∪ Sε.

It follows

(2.4.1) Oε → O in L1(G,mG), as ε → 0,

because mG(Oε4O) = mG(Oε\O) ≤ mG(Sε) ≤ ωQ
G

∑
j rQ

ε,j < (1+ε)ωQ
G εSQ−1

d (∂O).

Here ωQ
G is the geometric constant such that mG(U) = ωQ

G rQ for any metric ball U
with radius r.

Now observe that

∂Oε ∩ Ō = ∅, dist (∂Oε, Ō) > 0

and that
Oε ∩ Ōc = Sε ∩ Ōc.

From these and general properties of the perimeter we get

|∂Oε|G(G) = |∂Oε|G(Ōc) = |∂(Oε ∩ Ōc)|G(Ōc)

= |∂(Sε ∩ Ōc)|G(Ōc) = |∂Sε|G(Ōc)

≤ |∂Sε|G(G),

and

|∂Sε|G(G) ≤
∑

j

|∂Uε,j |G(G) ≤ c
∑

j

rQ−1
ε,j < (1 + ε)cSQ−1

d (∂O) < ∞,

where c = c(G) > 0 is the geometric constant such that |∂Uε,j |G(G) = c rQ−1
ε,j .

Hence eventually we have

(2.4.2) |∂Oε|G(G) < (1 + ε)cSQ−1
d (∂O) < ∞.
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From (2.4.1), (2.4.2) and the L1-lower semicontinuity of the perimeter it follows

|∂O|G(G) ≤ cSQ−1
d (∂O) < ∞.

Now we drop the assumption of the boundedness of O. Let U be any fixed open
ball such that U ∩ ∂O 6= ∅. Then, by hypothesis, SQ−1

d (U ∩ ∂O) < ∞. Notice that
∂(U ∩ O) ⊂ ∂U ∪ (∂O ∩ U). An elementary covering argument yields that

SQ−1
d (∂Uc(p, r)) = rQ−1SQ−1

d (∂Uc(p, 1)) < ∞, for all p ∈ G.

Then,
SQ−1

d (∂(U ∩ O)) < ∞.

Thus, applying the first part of the proof to the bounded set U ∩ O, we have

|∂(U ∩ O)|G(G) ≤ cSQ−1
d (∂(U ∩ O)) < ∞.

Once more by the locality of the G-perimeter,

|∂O|G(U) = |∂(U ∩ O)|G(U) = |∂(U ∩ O)|G(G) ≤ cSQ−1
d (∂(U ∩ O)) < ∞.

This achieves the proof of the first part of the theorem.
Finally, if ∂O ∩ U is an intrinsic Lipschitz graph, then its measure theoretic

boundary in U coincides with ∂O∩U and the assertion follows from [25], Theorem
7.1. �

Theorem 2.4.11. If f : M→ V is intrinsic Lipschitz then the subgraph E−
f is

a set with locally finite G-perimeter.

Proof. The proof is a consequence of Theorems 2.2.9 and 2.4.10. �

Lemma 2.4.12. Let f : M → V be an intrinsic Lipschitz function and let
Φf : M→ G be the parametrization of graph (f) given by Φf (m) = m ∙f(m). Then
there exists c(M,V) > 0 such that

(Φf )](mM) = c(M,V)〈ν, V 〉 |∂E−
f |G,

where mM is the the Haar measure of M, that is, the (N − 1)-dimensional Lebesgue
measure on M , (Φf )](mM) denotes the image of mM under the map Φf and ν :=
νE−

f
is the horizontal generalized inward normal to E−

f defined in Definition 2.4.6.

Proof. We have already fixed V ∈ g1 such that V = {exp λV : λ ∈ R}. Now
choose W2, ∙ ∙ ∙ ,WN ∈ g such that {V,W2, ∙ ∙ ∙ ,WN} is a base of g and such that

M =
{

exp(
N∑

i=2

λiWi) : λi ∈ R
}
.

Let Ψ : RN → G = RN be the linear map identified by the conditions

Ψ(ξ1, 0 . . . , 0) = exp ξ1V, Ψ(0, ξ2 . . . , ξN ) = exp
( N∑

i=2

ξiWi

)
,

Ψ(ξ1, . . . , ξN ) = Ψ(0, ξ2, . . . , ξN ) ∙ Ψ(ξ1, 0, . . . , 0).

Ψ is 1 − 1 and we denote

(2.4.3) c1(M,V) :=

∣
∣
∣
∣ det

∂Ψ
∂ξ

∣
∣
∣
∣.

Since E−
f has locally finite G-perimeter then,

(2.4.4)
∫

E−
f

divGφdmG =
∫

G
〈ν, φ〉 d|∂E−

f |G, for all φ ∈ C1
0(Ω, HG).
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Choose φ = ψV , with ψ ∈ C1
c (G). Then divGφ = V (ψ) and from (2.4.4) we get

(2.4.5)
∫

E−
f

V (ψ) dmG =
∫

G
〈ν, V 〉ψ d|∂E−

f |G, for all ψ ∈ C1
c (G).

Notice also that
∂

∂ξ1
(ψ ◦ Ψ) = V (ψ) ◦ Ψ. Denoting f(m) = exp(ϕ(m)V ) with

ϕ : M→ R, we have

(2.4.6) Ê−
f := Ψ−1(E−

f ) =
{
ξ ∈ RN : ξ1 < ϕ

(
Ψ(0, ξ2, . . . , ξn)

) }
,

and also

(2.4.7) Ψ (ϕ(Ψ(0, ∙), ∙)) = Φf ◦ Ψ(0, ∙).

By (2.4.6) and (2.4.3), we get

(2.4.8)
∫

Ê−
f

∂

∂ξ1
(ψ ◦ Ψ) dmG =

1
c1(M,V)

∫

E−
f

V (ψ) dmM .

On the other hand, by Fubini theorem, (2.4.6) and (2.4.7), it follows

(2.4.9)
∫

Ê−
f

∂

∂ξ1
(ψ ◦ Ψ) dmG =

∫

{ξ1=0}
ψ ◦ Φf ◦ Ψ dξ2, . . . , dξN .

Then, by [44], Theorem 1.19, and the area formula for linear maps, there is c2(M) >
0 such that
∫

G
ψ d
(
(Φf ◦ Ψ(0, ∙))](mM)

)
=
∫

{ξ1=0}
ψ ◦ Φf ◦ Ψ(0, ∙) dξ2, . . . , dξN

= c2(M)
∫

M
ψ ◦ Φf d(mM), for all ψ ∈ C1

c (G).

By (2.4.5), (2.4.8) and (2.4.9) we get eventually
∫

G
ψ d
(
(Φf )](mM)

)
= c(M,V)

∫

G
〈ν, V 〉ψ d|∂E−

f |G, for all ψ ∈ C1
c (G).

The proof is completed.
�

Corollary 2.4.13. Under the same assumptions of Lemma 2.4.12, we have

(mM)
(
M \ PM(∂∗E−

f )
)

= 0.

Proof. By Lemma 2.4.12,

(mM)
(
M \ PM(∂∗E−

f )
)

= c(M,V)
∫

G\∂∗E−
f

〈ν, V 〉 d|∂E−
f |G = 0,

since |∂E−
f |G(G \ ∂∗E−

f ) = 0.
�

2.4.3. A Rademacher type theorem. Let ϕ : U ⊂ M → V be an intrinsic
Lipschitz function, where U is a (relatively) open subset; we want to prove here a
Rademacher’s type result, connecting that is, if ϕ is intrinsic Lipschitz in U then
ϕ is intrinsic differentiable almost everywhere in U . Such a result was known only
inside Heisenberg groups. We will extend it here to the Carnot groups of type ?
(see Definition 2.1.1). A key role in our proof is played by the following theorem.



2.4. ONE CODIMENSIONAL INTRINSIC GRAPHS 57

Theorem 2.4.14 ([43]). Let G be a Carnot group of type ?. If E ⊂ G is a set
with locally finite G-perimeter, then

∂∗
GE is one-codimensional G-rectifiable,

that is ∂∗
GE = N ∪

⋃∞
h=1 Kh, where HQ−1

c (N) = 0 and Kh is a compact subset of a
G-regular hypersurface Sh (see Definition 2.4.16);

νE(p) is the horizontal G-normal to Sh in p, for every p ∈ Kh,

|∂E|G = θcS
Q−1
c ∂∗

GE,

where θc = θc(G, E, x) > 0.

The starting point in our proof of the Rademacher theorem is the fact, proved in
Theorem 2.4.11, that the subgraph E−

ϕ of an intrinsic Lipschitz function ϕ : M→ V
is a set with locally finite G-perimeter. From this and Theorem 2.4.14, it follows
that at |∂E−

f |G-almost every point of graph (ϕ) there is an approximate tangent
coset. This in turn, together with the intrinsic Lipschitz assumption, yields the
intrinsic differentiability of ϕ.

Theorem 2.4.15. Let M and V be complementary subgroups of a Carnot group
G of type ?, with V one-dimensional and horizontal. Let U ⊂ M be relatively open
in M and ϕ : U → V be intrinsic Lipschitz. Then ϕ is intrinsic differentiable
(mM)-almost everywhere in U . Notice that mM is the Haar measure of M.

Proof. By Theorem 2.2.10, we may assume that ϕ is intrinsic Lipschitz and
defined on all of M. Hence, by Theorem 2.4.11, we know that E−

ϕ has locally finite
G-perimeter. Then, by Theorem 2.4.14 we know that there is a subset

∂∗
GE−

ϕ ⊂ ∂E−
ϕ = graph (ϕ)

such that

|∂E−
f |G

(
graph (ϕ) \ ∂∗

GE−
ϕ

)
≡ |∂E−

ϕ |G
(
∂E−

ϕ \ ∂∗
GE−

ϕ

)
= 0,

and for all p = mϕ(m) ∈ ∂∗
GE−

ϕ , ϕ is approximately intrinsic differentiable in m
(remember Definition 2.4.1). By Proposition 2.4.4, ϕ is differentiable at any point
m ∈M such that

mϕ(m) ∈ ∂∗
GE−

ϕ .

Finally, from Corollary 2.4.13, we have

(mM)
(
PM
(
graph (ϕ) \ ∂∗

GE−
ϕ

))
= (mM)

(
M \ PM∂∗

GE−
ϕ

)
= 0,

that completes the argument. �

2.4.4. One-codimensional rectifiable sets. The results of the previous
sections can be applied to prove the equivalence of two intrinsic notions of one-
codimensional rectifiable sets in G. For a related and deeper analysis about equiv-
alence of different notions of intrinsic rectifiable sets in Hn we refer to [45].

We begin by recalling the definitions of intrinsic regular hypersurfaces (or one
codimensional surfaces), of their tangent groups or tangent cosets as well as the
related implicit function theorem and the notion of intrinsically rectifiable set.

Definition 2.4.16. S ⊂ G is a G-regular hypersurface if for every p ∈ S there
exist a neighborhood U of p and a function f ∈ C1

G(U) such that

S ∩ U = {q ∈ U : f(q) = 0};

dfq 6= 0 for all q ∈ U .

The tangent affine group or tangent coset to S at p is the coset of the kernel of dfp,
i.e.

TGS(p) := {q ∈ G : dfp(p
−1 ∙ q) = 0}.
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Theorem 2.35 of [27] can be restated as follows

Theorem 2.4.17. Let S be a G-regular hypersurface in G. Then, for all
p ∈ S there are an open U 3 p, complementary subspaces M and V, with V one-
dimensional and horizontal, a relatively open V ⊂M and an intrinsic Lipschitz and
intrinsic differentiable function ϕ : V → V such that

S ∩ U = {mϕ(m) : m ∈ V} .

Moreover, for all q = mϕ(m) ∈ S ∩ U , the tangent affine group TGS(q) coincides
with the tangent coset to graph (ϕ) in q as introduced in Definition 2.3.12.

It follows, in particular, that the definition of TGS(x) does not depend on the
particular function f defining the surface S.

Finally we recall two definitions of one codimensional intrinsic rectifiable sets.
Each of them mimics a natural definition used in Euclidean context.

Definition 2.4.18. Γ ⊂ G is said to be one codimensional G-rectifiable if there
are G-regular hypersurfaces (Sj)j∈V such that

HQ−1
c

(
Γ \

⋃

j∈V

Sj

)
= 0.

Γ ⊂ G is said to be one codimensional GL-rectifiable if there are one-codimensional
intrinsic Lipshitz graphs Gi, i = 1, 2, . . . , such that,

HQ−1
c

(
Γ \

⋃

j∈V

Gj

)
= 0.

In both definitions, HQ−1
c is the (Q − 1)-Hausdorff measure related to the

distance dc.

Proposition 2.4.19. If G is a type ? Carnot group then Γ ⊂ G is one codi-
mensional GL-rectifiable if and only if it is one codimensional G-rectifiable.

Proof. Since intrinsic regular surfaces are locally graphs of intrinsic Lipschitz
functions it follows that the scope of the second definition is larger than the first
one. On the other direction, by definition, each Gi is the graph of a one-dimensional
valued, intrinsic Lipschitz function ϕi : Ci ⊂ Mi → Vi. By the extension theorem
for one dimensional intrinsic Lipschitz functions (see [24]), we can assume that
Ci = Mi for all i. Hence, by Theorem 2.4.11, the subgraph of ϕi has locally finite
G-perimeter and, eventually, it is G-rectifiable, by the structure theorem for sets of
locally finite G-perimeter proved. This proves that all of Γ is G-rectifiable. �



Afterword

The research project undertaken in thesis is far from being concluded. Here we
mention a few points of directions for future work.

– Boundedness of the Riesz transform for Rumin’s Laplacian and the strong
Lp-decomposition of LpEk

0 on the Heisenberg group. A basic question in analysis
on Riemannian manifold is the Lp-boundedness of the Riesz transform, defined as

dΔ
− 1

2
k , where we denote by Δk the Hodge Laplacian. We define the Riesz transform

for Rumin’s Laplacian as

RR =

{
dRΔ

− 1
2

R if k ≤ n

Δ
− 1

2
R dR if k > n .

Notice that for any k = 0, . . . , 2n, RR is an operator of order 0. We are confident
that techniques and results of this current work will allow us to prove the following
statements:

(1) RR : LpEk
0 → LpEk+1

0 is bounded for 1 < p < ∞, k = 0, . . . , 2n;
(2) the space LpEk

0 admits the strong Lp-decomposition

LpEk
0 = (RR)k−1L

pEk−1
0

⊕
(RR)∗kLpEk+1

0 ,

where (RR)k denotes the Riesz transform for Rumin’s Laplacian acting
on LpEk

0 and (RR)∗k denotes its adjoint.

– Analysis of Rumin’s Laplacian on H-type groups. The extension of the
detailed spectral analysis that we have carried out in the case of the Heisenberg
group to more general groups is far from being trivial or straightforward. The role
played by the CR structure on Hn is of key importance and other tools have to
been developed. Also, the Lefschetz decomposition of horizontal forms Hn on is
rather special and does not seem to have an obvious generalization on more general
groups.

The most obvious setting on which try to extend the results of Chapter 1 are
is the case of H-type groups. We began this work and we wish to pursue it in the
near future.

– Problem of extension of Rademacher’s type theorem for one dimensional
valued intrinsic Lipschitz functions inside a general Carnot group and extension of
Rademacher’s theorem for intrinsic Lipschitz functions valued in higher dimensional
horizontal homogeneous subgroups.

59





Bibliography

[1] L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discon-

tinuity Problems, Oxford Mathematical Monographs, Oxford University Press, (2000).

[2] L. Ambrosio & B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Annalen,

318 (2000), 527–555.

[3] , Currents in metric spaces, Acta Math. 185 (2000), 1–80.

[4] L. Ambrosio, B. Kleiner & E. Le Donne, Rectifiability of sets of finite perimeter in Carnot

groups: existence of a tangent hyperplane, The Journal of Geometric Analysis, 19, (2009),

no. 3, 509–540.

[5] L. Ambrosio, F. Serra Cassano & D. Vittone, Intrinsic regular hypersurfaces in Heisen-

berg groups, J. Geom. Anal. 16, (2006), 187–232.

[6] G. Arena, Intrinsic Graphs, Convexity and Calculus on Carnot Groups, PhD Thesis, Uni-

versity of Trento, (2008).

[7] G. Arena & R. Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differ-

entiable graphs, Calc. Var. Partial Differential Equations 35 (2009), no. 4, 517–536.

[8] P. Auscher, T. Coulhon, X. T. Duong & S. Hofmann, Riesz transform on manifolds and

heat kernel regularity, Ann. Sc. E.N.S. 37 (2004) 911-957.

[9] A. Baldi, B. Franchi & M. C. Tesi, Compensated compactness in the contact complex of

Heisenberg groups, Indiana University Mathematics Journal 57, 2008.

[10] , Hypoellipticity, fundamental solution and Liouville type theorem for matrix–valued

differential operators in Carnot groups, Journal of the European Mathematical Society, 2009,

11, pp. 777–798.

[11] A. Baldi, B. Franchi, N. Tchou & M. C. Tesi, Compensated Compactness for Differential

Forms in Carnot Groups and Applications, Advances in Mathematics 223, 2010.

[12] F.Bigolin & D.Vittone, Some remarks about parametrizations of intrinsic regular surfaces

in the Heisenberg group, Publ. Mat. 54 (2010), no. 1, 159–172.

[13] F. Bigolin & F. Serra Cassano, Distributional solutions of Burgers’ equation and intrinsic

regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), no. 2.

[14] , Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-

order PDEs, Adv. Calc. Var. 3 (2010), no. 1.

[15] A. Bonfiglioli, E. Lanconelli & F. Uguzzoni, Stratified Lie Groups and Potential The-

ory for their Sub–Laplacians, Springer Monographs in Mathematics, Springer-Verlag Berlin

Heidelberg, New York (2007).

[16] V. Casarino & P. Ciatti, A restriction theorem for Métivier groups, Advances in Mathe-

matics, 2013

[17] G. Citti & M. Manfredini, Implicit function theorem in Carnot-Carathéodory spaces, Com-
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