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INFLAMMATION 

Inflammation is a defense mechanism of innate immunity that protect higher organisms from 

infections and injury. Its purpose is to localize and eliminate the injurious agent removing damaged 

tissue components to promote the healing process. The inflammatory response consists of changes 

in permeability of blood vessels, and the migration of fluid, proteins, and white blood cells 

(leukocytes) from the circulation to the site of tissue damage. The classical signs of acute 

inflammation are pain, heat, redness, swelling, and loss of function. An inflammatory response 

during only a few days is called acute inflammation, while a response of longer duration is referred 

to as chronic inflammation. Chronic inflammation leads to a progressive shift in the type of cells 

occurring at the site of inflammation and is characterized by simultaneous destruction and healing 

of the tissue from the inflammatory process.  

1.1 GASTRIC INFLAMMATION 

The gastrointestinal tract represents an important barrier between the human hosts and microbial 

populations. One potential consequence of host-microbial interactions is the development of 

mucosal inflammation, which can lead to gastritis and ulcer. Gastritis has been considered a normal 

process of aging for different years, until the discover of the leading causative agent in 1982 [1], 

Helicobacter pylori (H. pylori). This turned the most common type of gastritis into a potentially 

curable disease. Gastric inflammation may occur with different characteristics, divided into five 

variables: chronic inflammation (presence of mononuclear cells), activity of gastritis (presence of 

neutrophils), atrophy defined as loss of specialized glands, intestinal metaplasia and H. pylori 

infection[2]. Based on etiology gastritis can be divided into three main categories: chemical, 

autoimmune gastritis and H. pylori-induced [3].  

1.1.1 Chemical gastritis 

Gastric mucosal damage caused by various drugs is variable, depending on the causative agents, but 

it is usually characterized by a low-grade inflammation[4]. For this reason this condition is currently 

defined as chemical gastritis or gastropathy. Exposure of the gastric mucosa to a noxious chemical 

environment accelerates the turnover of the gastric epithelium, and a concomitant histamine-

mediated vascular response associated with the release of pro-inflammatory cytokines. Most 

chemical gastropathies are asymptomatic, but erosions and ulcers may develop, even with 

bleeding[3]. Among the main causes of gastropathy there are duodenal reflux, drugs including 

acetylsalicylic acid and alcohol consumption.  
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• Bile reflux, often as a consequence of partial gastrectomy, dysmotility or due to incompetent 

pyloric sphincter, induce inflammation and glandular atrophy at gastric level[5-7].   

• Nonsteroidal anti-inflammatory drugs (NSAIDs), especially in cases of chronic 

administration, cause damage to the gastric mucosa by different mechanisms: they inhibit 

prostaglandin synthesis[8], enhance gastric motility[9], resulting in an increase in mucosal 

permeability, induce neutrophil infiltration[10] and oxyradical production[11]. All these 

mechanisms could bring to the formation of ulcers[12] and interfere with the healing of 

preexisting ones[13]. Acetylsalicylic acid[14] and indomethacin[15], two typical anti-

inflammatory drugs, inhibit the secretion of mucus; acetylsalicylic acid can increase the 

pepsin-mediated proteolysis of the mucus, reducing its viscosity and increasing the 

permeability to hydrogen ions[16]. Indomethacin also inhibits the secretion of bicarbonate 

from the gastric mucosa[17], damaging the epithelial surface and causing necrosis in the 

gastric glands regions[18].  

• Ethanol increases the risk of gastric mucosa erosion and ulcer formation[19], mainly by the 

generation of free radicals[20]. In vivo studies show that radicals induced by ethanol 

consumption influence lipid peroxidation and the activity of antioxidant enzymes, such as 

catalase and superoxide dismutase[21, 22]. Acetaldehyde formed by the gastric metabolism of 

ethanol could be responsible for the pathogenesis of chronic pathology of the stomach[23]. 

Pathology and symptomatology of gastritis induced by chronic consumption of ethanol are 

similar to those caused by H. pylori infection, alcoholic patients could also have higher 

incidence of chronic gastritis of the antrum[24], a lesion commonly associated with H. pylori. 

A prospective study revealed a statistically significant relationship between high alcohol 

consumption and the presence of H. pylori [25]. 

1.1.2 Autoimmune gastritis 

Autoimmune gastritis is a chronic inflammatory gastric disease limited to the fundus and body of 

the stomach[26, 27], in which an immune response is directed against parietal cells and intrinsic 

factors. Parietal cell destruction results in hypochlorhydria or achlorhydria, hypergastrinemia and 

loss of pepsin activity[28]. The progression of this disease may eventually lead to vitamin B12 

malabsorption followed by pernicious anaemia[29, 30] or iron-deficiency anaemia[31]. Some studies 

have shown a possible association between H. pylori infection and autoimmune gastritis [32, 33].  

Other typologies of gastritis caused by virus, fungi, bacteria (with the exception of that caused by H. 

pylori) or parasites are associated with immunodeficiency[28] and are not significantly involved in 

the pathway of gastric cancer development. 
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1.1.3 H. pylori gastritis 

H. pylori is a flagellated gram-negative bacterium (see Fig. 1), isolated for the first time in 1983 by 

Warren and Marshall[34], that can be converted in coccoid form under a hostile environment[35]. This 

bacterium colonizes the gastric mucosa of over 80% of human population in developing 

countries[36] and at least 50% of the world’s human population[3], percentages which make it the 

leading cause of gastritis. In Western countries the prevalence of H. pylori infection decreased over 

the years to below 40%, probably as a result of sanitation and the use of antibiotics [37]. H. pylori 

infection is usually contracted during childhood and can be strongly influenced by the country of 

origin and socio-economic conditions[38]. The children living in developing countries are usually 

infected before 10 years old and the infection reflected the rate of acquisition in childhood[39]. H. 

pylori is a non-invasive bacterium, but it could induce a robust immune response [40]. Recently, this 

bacterium has been classified as type I carcinogen by the World Health Organization[41]. H. pylori 

influences early stages in gastric carcinogenesis and its eradication in infected individuals 

significantly decreases the risk of developing gastric adenocarcinoma[42]. The mode of transmission 

of infection still remains to be clarified, the most likely route of transmission is fecal-oral, while 

oral-oral transmission seems to be unlikely[43]. Despite the high prevalence of H. pylori infection, 

the majority of infected individuals (80-90%) appears to be completely asymptomatic (with a 

moderate inflammation detectable only by histological analysis), while only the remaining 10-20% 

goes towards the development of certain diseases such as atrophic gastritis, peptic ulcer, gastric 

adenocarcinoma and mucosa-associated lymphoma (MALT)[44]. Approximately 3% of patients also 

develop gastric cancer[45], characterized by disruption of the mucous layer, leading to exposition of 

gastric mucosa to the content of the stomach, like acid peptic.  

1.2 H. PYLORI PATHOGENESIS 

The steps of H. pylori colonization are the 

following: crossing the layer of gastric mucus, 

adhesion to the epithelium and the 

development of inflammation, tissue 

destruction and ulceration. The bacterium is 

able to establish a persistent infection leading 

to innate immune response that generates 

inflammation at gastric level, but the 

mechanisms are not fully elucidated[46]. H. 

Fig. 1   Image of H. pylori. Image taken 
from Prof. D.J. Kelly at www.shef.ac.uk 
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pylori cell division-related gene A (cdrA) has a repressive role on cell division and is involved in 

the survival and antibiotics resistance of the bacterium[47]. CdrA-negative strains resulted in lower 

levels of IL-8 production by gastric epithelial cells in vitro and in vivo thus suggesting the 

mechanism by which the bacterium evade immune clearance[46]. 

To survive in the host, H. pylori should be able to tolerate the acidic environment of the stomach 

and evade the immune mechanisms of defense; its adaptability to the gastric mucosa is due to the 

production of urease. This enzyme converts urea into ammonia and CO2 and this allows bacterium  

survival at low pH[48]. Urease also alters the viscosity of the gastric mucosa and this promotes 

bacterial motility[49]. Other features like the spiral shape and flagella help this bacterium to resist in 

the mucosa during gastric peristalsis[50]. In order to evade the defense mechanisms of the host 

organism, represented by the innate immune response, H. pylori antigens change, as the bacterial 

endotoxin lipopolysaccharide (LPS) present on the cell wall and flagella, making them relatively 

anergic[36, 50]. The genome of this bacterium encoding a variety of factors that facilitate the 

colonization expresses a number of membrane proteins, collectively known as H. pylori outer 

membrane porin (Hop), which mediate binding to gastric epithelial cells, the vacuolating cytotoxin 

VacA, a protein of 95 kDa responsible of the vacuolation of the mucosal cells, and the cytotoxin 

associated antigen CagA. CagA gene encodes a protein of 120-140 kDa responsible for alterations 

in the cytoskeleton of the affected cells. In addition to these exotoxins, H. pylori is provided with 

endotoxins with cytotoxic properties, like the lipopolysaccharide capsular, capable of inducing the 

release of toxins and the subsequent release of inflammatory cytokines such as IL-1β, IL-2, IL-6, 

IL-8 and TNFα[51-54]. The presence of these molecules causes the recall of polymorphonuclear cells, 

eosinophils, T and B lymphocytes leading to the formation of lymphoid aggregates[55].   

1.2.1 Role of cytokines in H. pylory pathology – IL-8 

H. pylori is able to induce an inflammatory response through the contact with the surface of 

epithelial cells, the mechanism of action is shown in Fig. 2. The local production of chemokines, a 

group of cytokines with chemoattractive activity, represents an important step for the recruitment 

and activation of inflammatory cells[56]; many chemokines have been identified, but the number is 

constantly growing. IL-8 is a potent pro-inflammatory chemokine, which promotes neutrophil 

infiltration in the gastric mucosa and is released through the signaling pathway of nuclear factor-

kappa B (NF-κB). IL-8 secretion is induced by H. pylori in vitro and in vivo [57, 58]. Increased levels 

of IL-8 have been reported in various inflammatory conditions, including inflammatory bowel 

disease, psoriasis, rheumatoid arthritis, septic shock and cystic fibrosis[59]. IL-8 appears as a key 

point of H. pylori gastritis and epithelial cells are probably the main producers of this chemokine in 
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gastric mucosa[55]. In addition to IL-8, during H. pylori infection the expression of other pro-

inflammatory cytokines like TNFα, IL-1β, interferon-γ (IFN-γ) and IL-6 also occurs[60, 61]. LPS and 

release of bacterial proteins stimulate production of IL-1β and TNFα by mononuclear cells in the 

lamina propria[62]; these cytokines are potent inducers of IL-8 expression in many cell type, 

including gastric epithelial cells[63]. TNFα is considered a key molecule in inflammation of the 

gastric mucosa; studies have shown that this cytokine is able to induce pro-inflammatory signals in 

gastric adenocarcinoma cells (AGS)[64]. AGS cell treated with TNFα in a concentration ranging 

between 0.1-10 ng/mL showed a marked induction of IL-8 and CCL20 (ligand Chemokine-20) 

secretion[65]. Gastric epithelial cells secrete increased amounts of IL-8 in response to strains of H. 

pylori CagA-positive compared to CagA-negative strains[66], therefore the infection with CagA-

positive strains is related to more serious inflammation of the gastric mucosa[53]. The deletion of the 

gene PicB, located upstream CagA gene, leads to reduction of IL-8 production in gastric epithelial 

cells[67]. A pathogenicity island, which contains several genes (including CagA), has been 

identified; this set of genes is fundamental for the induction of expression of IL-8[68]. NF-κB, NF-

Fig. 2 Scheme of the gastric 
mucosa infection by H. pylori. 
During the infection, the bacterium 
gets into the gastric lumen and 
urease allows its survival in acid 
environment through the 
production of ammonia, creating a 
neutral layer around the bacterial 
surface. Use of flagellum allows 
the bacterium to move into the 
gastric lumen and pass through the 
mucus layer. Once reached gastric 
epithelium, H. pylori injects the 
CagA protein within the host cells 
through type IV secretion 
mechanism, also releases other 
toxic factors such as the HP-NAP 
(protein activating neutrophil) and 
VacA. VacA toxin induces the 
formation of alterations at the level 
of the tight junctions and the 
formation of vacuoles. HP-NAP 
protein crosses the epithelial cells 
causing tissue damage through the 
release of ROS. The CagA protein 
induces alterations of cytoskeleton 
and causes the release of pro-
inflammatory cytokines. (Image 
from Montecucco C., 2001). 
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IL6 (a nuclear factor involved in the IL-6 gene expression) and activator protein-1 (AP-1) are 

involved in the regulation of IL-8 gene transcription [69], in particular both NF-κB and NF-IL6 are 

required for IL-8 promoter activity induction in human gastric epithelial AGS cells (AGS), in 

response to stimuli like TNFα and H. pylori. Another cytokine involved in H. pylori gastritis is IL-

21, in fact bacterium eradication reduces the expression of this cytokine[70]. Treatment of AGS cell 

line with IL-21 increases the synthesis of MMP-9 and MMP-2, whereas MMP-1, MMP-3 and 

MMP-7 (present in the mucosa infected by H. pylori) are not affected[70].  

1.3 NF-κB 

NF-κB, firstly discovered in 1986[71] by 

Sen R. and Baltimore D., is a 

transcription factor involved in different 

physiological processes, including 

inflammation, cell growth and 

proliferation[72-74]. This dimeric 

transcription factor is formed by the 

combination of five members divided in 

two main groups (see Fig. 3): NF-κB1 

(p50) and NF-κB2 (p52) belong to Class 

I proteins (or NF-κB) and are produced 

by proteolytic processing from their 

precursors (p105 and p100 respectively); 

c-Rel, RelB e RelA (p65) belong to 

Class II proteins (or Rel)[75]. All the 

members of the family possess a 300 

amino acid long N-terminal Rel 

homology domain (RHD) responsible for 

DNA binding and dimerization[76, 77], 

while RelB can only form heterodimers, 

all the other proteins are also capable of 

homodimerization. Only Class II 

proteins have a C-terminal transcription 

activation domain (TAD) able to induce 

gene expression. NF-κB dimers bind 

Fig. 3   Diagram of the protein family involved in 
NF-κB pathway in mammals. The class of Rel/NF-κB 
consists of five members: p65 (or RelA), RelB, and c-
Rel (Rel), and proteins p100 (NF-κB2) and p105 (NF-
κB1), precursors of mature forms p50 and p52, 
respectively. The IκB family consists of eight 
members, IκBa, IκBb, IκBe, IκBz, BCL-3, IκBNS, 
P100 and P105, characterized by the presence of 
multiple domains of ankyrin repeats. The IKK complex 
consists of IKKα (IKK1) and IKKβ (IKK2) and NEMO 
(IKKg). Image from Hayden and Ghosh, 2012 
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DNA in a specific region named κB in the promoters of different genes, whose possess the 

consensus sequence 5’GGGRXWYYCC3’ (X: any base; R: purine; W: adenine or thymine; and Y: 

pyrimidine). Class I proteins p50 and p52 are characterized by the lack of TAD domains, and 

repress transcription unless associated, as heterodimers, with a member of Class II group[78]. In 

resting cells, most NF-κB/Rel dimers are held in the cytoplasm linked to a group of inhibitory 

proteins called IκBs. The IκBs is a gene family including seven members, IκBα, IκBβ, IκBε, IκBγ, 

Bcl-3, Class I precursor proteins p100 and p105[79]; all of them are characterized by multiple copies 

of ankyrin repeats, which interact with the RHD, thereby covering their nuclear localization 

sequence (NLS). 

1.3.1 NF-κB activation 

Three different mechanisms of NF-κB activation are known at present: classical (or canonical), 

atypical and alternative pathway[76, 80] as showed in Fig. 4. In the classical pathway IκBα, the most 

studied member of IκBs family, is rapidly degraded leading to the release of NF-κB dimers, 

especially p65:p50 heterodimers that are the primary targets of IκBα. Degradation depends upon the 

activation of the IκB kinase (IKK), a complex consisting of three different subunits: two highly 

homologous kinases (IKKα and IKKβ) and a regulatory subunit called IKKγ (or NEMO). The 

classical pathway is activated in response to several stimuli, including pro-inflammatory cytokines 

(TNFα, IL-1β), bacterial lipopolysaccharide (LPS), DNA damaging agents (camptothecin, 

daunomycin), Toll-like receptor (TLR) agonists, antigen receptor engagement (TCR or BCR) and, 

in some cell types, reactive oxygen species (ROS). Activation of IKK leads to the phosphorylation 

of IκBα on serine 32 (Ser 32) and 36 (Ser 36), which is followed by ubiquitination on a lysine 

residue. IκBα degradation by proteasome is required to allow nuclear translocation of p65:p50 

heterodimers[81]. NF-κB activation promotes the transcription of IκBα and IκBε genes therefore 

establishing a negative feedback loop[77]. The newly synthesized IκBα is able to enter the nucleus, 

remove NF-κB from its DNA-binding sites[82, 83], and, thanks to the leucine-rich nuclear-export 

sequences (NES), transport it back to the cytoplasm[84, 85]. The complex IκBα-p65:p50 is constantly 

moved between the nucleus and the cytoplasm because IκBα protein masks only the nuclear 

localization sequence (NLS) of p65, whereas the NLS of p50 remains exposed. The crystal structure 

of IκBα bound to the p65:p50 heterodimer reveals that the IκBα protein masks only the nuclear 

localization sequence (NLS) of p65, whereas the NLS of p50 remains exposed[86]. The exposed 

NLS of p50 coupled with nuclear export sequences (NES) in IκBα and p65 leads to constant 

shuttling of IκBα/NF-κB complexes between the nucleus and the cytoplasm; however, the default 

location of this complex is the cytoplasm because the effect of the NES is dominant over that of the 
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NLS[87]. The atypical pathway is IKK-independent and is activated by hypoxia/reoxygenation, 

stimulation of tyrosine kinase receptor, pervanadate, UV irradiation and by H2O2
[88, 89]. The 

activation of NF-κB is induced by phosphorylation of IκBα on Tyr 42 or on serine residues in the 

IκBα PEST domain which causes detachment of IκBα and its subsequent degradation[76]. In the 

alternative pathway the IKKα protein plays a pivotal role, and this type of activation is completely 

independent of IKKβ and IKKγ. This pathway is activated by a subset of tumor necrosis factor 

superfamily receptors (TNFSFRs) such as lymphotoxin β receptor (LTβR), B-cell activating factor 

receptor (BAFF) or CD40, and is dependent upon activation of IKKα homodimers by NF-κB-

inducing kinase (NIK). NIK is continuously synthesized, but in resting cells it is continuously 

degraded by TRAF3 [90], ligand stimulation induces TRAF3 degradation resulting in NIK 

stabilization. TRAF3 potently suppresses canonical NF-κB activation[91]. Activation of NF-κB 

through the alternative pathway is generally slower than the activation of the classical pathway, but 

is important for secondary lymphoid organ development, B cell survival and homeostasis, adaptive 

immunity, and osteoclastogenesis[92]. 

	  

Fig. 4 Classical, atypical, and alternative pathways of NF-κB activation. The classical NF-κB 
pathway relies on IKK-mediated IκBα phosphorylation on Ser32 and 36, leading to its ubiquitination and 
degradation through the proteasome, which allows NF-κB nuclear translocation. Atypical pathways target 
IκBα Tyr42 or Ser and Thr in IκBα PEST region. The alternative pathway relies on NIK and IKKα-
mediated p100 phosphorylation and processing to p52, which translocates into the nucleus with RelB. 
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1.3.2 Pathophysiological role of NF-κB 

In humans, NF-κB participates in the transcription of more than 150 target genes, in particular it 

regulates the expression of genes involved in pivotal physiological processes such as: immune 

response, inflammatory response, cell adhesion, oxidative stress response and apoptosis. Thanks to 

the large variety of bacteria and viruses that are able to activate NF-κB and to its ability in 

regulating the expression of pro-inflammatory cytokines, chemokines, immunoreceptors and 

adhesion molecules, this transcription factor is generally indicated as "The central mediator of the 

immune response in humans"[93]. There are different activators of NF-κB, its activity can be induced 

by various physiological stress conditions as ischemia or bleeding. Under these conditions, a large 

number of stress response genes are activated by NF-κB, such as cyclooxygenase-2 and nitric oxide 

synthase. In patients infected by H. pylori the activity of NF-κB reaches very high levels, probably 

due to the severity of the inflammation[94]. In gastric epithelial cells TNFα and IL-1β induce the 

expression of IL-8 and this mechanism is associated with the activation of NF-κB[95]. 

1.3.3 Inhibition of NF-κB pathway 

NF-κB regulates inflammatory and immune responses, by increasing the expression of specific 

genes coding for different cytokines, chemokines, proteins involved in antigen presentation and 

receptor adhesion. This transcription factor also stimulates the expression of enzymes that may 

contribute to the pathogenesis of inflammatory processes, including nitric oxide synthase (iNOS), 

and cyclooxygenase 2 (COX-2). The mechanisms leading to the activation of NF-κB can be 

controlled at multiple levels: 

• regulating IκB complex: increasing of the expression of inhibitory proteins IκB; reducing 

IKK-mediated phosphorylation or reducing IκB proteasomal degradation; 

• blocking translocation of NF-κB at nuclear level; 

• inhibiting NF-κB-DNA binding; 

• controlling NF-κB gene transcription. 

There are several types of inhibitors that are used to target NF-κB: biomolecular inhibitors, natural 

products (and their derivatives), and synthetic compounds. 

Glucocorticoids 

Glucorticoids, as dexamethasone and prednisone, are widely used for their anti-inflammatory and 

immunosuppressive properties, as they interact with the receptor of steroids to reduce the 

expression of genes involved in the inflammatory processes. The mechanisms proposed to explain 
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the inhibitory effects of these drugs on the NF-κB pathway are different. Firstly 

glucocorticosteroids could induce the expression of IκBα, which increases cytosolic permanence of 

NF-κB[96, 97]. Dexamethasone stimulates the synthesis of IκBα mRNA in Jurkat cells and in 

monocytes, resulting in cytoplasmic permanence of p65. Secondly dexamethasone could decreases 

transcriptional activity of NF-κB in the endothelial cells, without affecting the levels of IκB or NF-

κB nuclear translocation. 

Non-steroidal anti-inflammatory drugs (NSAIDs) 

NF-κB regulates the expression of several genes involved in inflammatory responses, including 

cyclooxygenase 1 (COX-1) and 2 (COX-2). While COX-1 is constitutively expressed, COX-2 is an 

inducible enzyme, whose expression increases in response to inflammatory stimuli. COX-2 induces 

the synthesis of cyclopentenone prostaglandins (cyPGs), key mediators of inflammation in the late 

stages of the inflammatory response. cyPGs are capable of inhibiting NF-κB probably due to the 

activation of the PPAR-γ receptor, that can in turn antagonize the transcriptional activity of NF-κB. 

Pathway of NF-κB can be directly inhibited by cyPGs, by blocking the activity of IKKβ[98]. 

NSAIDs may block the pathway of NF-κB at different levels. Salicylic acid and sodium salicylate 

are examples of anti-inflammatory drugs whose molecular target is NF-κB. These agents suppress 

the synthesis of adhesion molecules VCAM-1 and ICAM-1 in endothelial cells; this inhibition 

prevents the trans-endothelial migration of neutrophils and the inflammatory process[99]. The 

inhibitory effect of sodium salicylate and aspirin is due to the specific inhibition of ATP- IKKβ 

binding[100]. Indomethacin and its derivatives are able to bind IKKβ, inhibit the catalytic activity 

and prevent the activation of NF-κB in response to stimulation with TNFα[101]. 

Immunosuppressive agents 

cyclosporine and tacrolimus are immunosuppressants drugs used after organ transplantation to 

prevent rejection crisis. These drugs inhibit calcineurin activity, a calcium-calmodulin-dependent 

phosphatase, able to prevent degradation of IKBα thus promoting NF-κB activation[102]. 

Cyclosporine prevents proteasomal degradation of IκBα; however, tacrolimus blocks specifically 

translocation of c-Rel from the cytoplasm to the nucleus[103]. 

Proteasome inhibitors 

Peptides and aldehydes, as MG101, MG132 and MG115, are able to inhibit proteasome activity by 

acylation of a threonine residue in the proteasomal subunit, and others act at IKK level blocking the 

nuclear transclocation of NF-κB[104-106]. 
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Natural inhibitors 

Several studies have suggested that the beneficial effects of polyphenols may result by inhibition of 

NF-κB pathway[107]. Antioxidants, including vitamin C, inhibit the phosphorylation of IκBα 

induced by TNFα and IL1β in endothelial cells DNA[108]. Several studies suggest that some 

flavonoids, like quercetin and myricetin, could mediate an inhibition in the signal transduction 

pathway of NF-κB[109, 110]. Resveratrol inhibits the activity of NF-κB, thus leading to apoptosis and 

inhibition of iNOS expression in a variety of cell lines. Treatment of macrophages with resveratrol 

blocks phosphorylation and degradation of IκBα reducing the activity of IKK [111]. 

1.4 Reactive oxygen species (ROS) 

Molecular oxygen is essential for aerobic organisms, but in spite of its necessity for living, the 

respiration process could be harmful due to formation of reactive oxygen species (ROS). ROS are 

produced in living cells not only by normal metabolism, but also from pathophysiological processes 

and extracellular sources. Cells have developed a series of antioxidant mechanisms, which include 

non-enzymatic and enzymatic antioxidants[76] to counteract ROS damage. Several types of 

intracellular antioxidant molecules, such as glutathione (GSH), catalase (CAT), superoxide 

dismutases (SODs), thioredoxin (TRX) and thio-redoxin reductase protect cells from oxidative 

damage[112]. High levels of ROS are toxic for cells and could bring cells to apoptosis, when ROS 

production overcome the antioxidative defense and oxidative stress occurs[113].  

1.4.1 ROS and NF-κB  

The basis of the involvement of ROS in NF-κB pathway has been suggested when antioxidant 

dithiocarbamates have been shown to inhibit IκB phosphorylation at Ser 32 and Ser 36[114]. Since 

NF-κB can be activated in many cells by agents with redox regulation properties, ROS have been 

proposed to be involved in the activation of NF-κB pathway[115]. The relation between NF-κB 

activation and generation of intracellular reactive oxygen species seems to be highly cell type-

dependent[116]. Although there are evidence that ROS do not mediate NF-κB activation[117], ROS are 

considered second messengers, implicated in NF-κB pathway modulation[89, 118-120]; however, NF-

κB activation causes in turn the transcription of target genes that could affect ROS levels, such as 

SOD and CAT[78]. The mechanism by which ROS regulates NF-κB is still unclear, it seems that 

ROS are involved in phosphorylation/dephosphorylation, processes that are crucial for NF-κB 

pathway. Other studies have shown that H2O2 could act on IKK inducing or inhibiting this kinase 

depending on cell type[118, 121]. Antioxidants such as N-acetylcysteine (NAC), and vitamin E have 

been shown to block NF-κB activation[122]. A general consideration is that oxidative stress at low 
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levels can stimulate NF-κB activation, while at higher levels may lead to the inhibition of 

activation[123].  

1.4.2 Endogenous antioxidant enzymes 

Superoxide dismutases (SODs) are enzymes deeply involved in the first line of defense aimed to 

detoxify ROS[124]. SODs are a family of enzymes that catalyze the dismutation of superoxide radical 

anion to hydrogen peroxide and molecular oxygen. There are three distinct families of SOD, which 

differ in the metal ions complexed with the enzyme (Cu/Zn-SOD; Ni-SOD; Mn/Fe-SOD) and 

protein folding. In mammals, the classification is based on enzyme localization: SOD-1 (Cu/Zn-

SOD) cytosolic, SOD-2 (Mn-SOD) mitochondrial and SOD-3 (Cu/Zn-SOD) extracellular. SOD 1 

was the first to be characterized, it is a homodimer containing copper and zinc localized in the 

cytoplasm and in intracellular spaces, with a molecular weight approximately 32,000 Da[125-127]. 

SOD-2 contains manganese as cofactor and it localizes in mitochondria of aerobic cells[128], and 

possesses a tetrameric structure of approximately 23,000 Da. The most recently discovered isoform 

is SOD-3, a homotetramer of 135,000 Da, containing copper and zinc, which is located exclusively 

in the extracellular space. The three isoforms are able to catalyze the same reaction, converting two 

superoxide molecules to oxygen and hydrogen peroxide. In a recent study it was demonstrated a 

statistically significant increase in the DNA-binding activity of NF-κB in CuZn-SOD-deficient 

mice kidney[129]. A deficiency in various forms of SOD promotes oxidative damage in a wide range 

of organisms[130]. The SOD2 gene promoter is under the control of nuclear factor κB (NF-κB)[131]. 

Protein kinase D (PKD) plays an important role in the regulation of intracellular oxidative stress 

responses and under exposure to ROS this protein is highly phosphorylated and activated. 

Subsequently, PKD may dissociate from mitochondria and, through phosphorylation, can activate 

the IKK complex, resulting in NF-κB activation and SOD2 expression[131]. Hydrogen peroxide 

generated by the conversion of the superoxide anion by SODs is mostly degraded to H2O and O2 by 

CAT. CAT is a ubiquitous heme-protein, located at perossisomal level, belonging to the class of 

oxidoreductase; it has a tetrameric structure that confers resistance to changes of pH, temperature 

and proteolysis. Its catalytic activity is responsible for the conversion of two molecules of hydrogen 

peroxide to molecular oxygen and two molecules of water[132]. Catalase gene is controlled by 

nuclear factor-erythroid-2-related factor 2 (Nrf2), a member of the NF-E2 family of the basic 

leucine zipper transcription factors. Cross-talk between NF-κB and Nrf2 pathways seems to be 

possible because their upstream signaling pathways, such as MAPK, PI3K and PKC, are closely 

related[133], even if further studies are needed to better clarify this interaction. 



INTRODUCTION 

	   14	  

1.4.3 Nutrition and health 

Proper nutrition is essential for the maintenance of health status. In recent years the interest for the 

study of the composition in macro and micro nutrients contained in foods has grown more and more. 

Diet could now be used as a preventive strategy in the development of chronic pathologies. As 

reported by the Italian Ministry of Health, nutritionists recommend a daily intake from three to five 

portions of vegetables and two to three portions of fruits to maintain a good physical fitness and 

good health. Fruits and vegetables have demonstrated to exert multiple biological effects on the 

mucosa of the gastrointestinal tract due to their antioxidant content[134] and play a crucial role in 

maintaining gastric mucosa homeostasis by counteracting potential damage exerted by ROS[18]. 

Studies in vitro and in vivo demonstrate that the antioxidant and anti-inflammatory activities of 

some foods are due to their polyphenol content[18, 135]. Polyphenols provide protection against 

different diseases such as diabetes, obesity and stroke[136]. Among the natural sources rich in 

polyphenols there are wild berries. The aim of research included in the present thesis is to provide 

new insights on the protective role of these fruits against inflammatory and oxidative conditions 

occurring at gastric level. 
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WILD BERRIES 

 

The term "wild berries" identifies some edible berries, with high organoleptic properties, distributed 

mainly in temperate areas and widely used both in cooking and in pharmacy (Fig. 5). Fruits 

belonging to this group are for example blackberry, raspberry, commercial and wild strawberry, 

bilberry, cranberry, lingonberry, black currant and alpine currant. Dietary guidelines recommend 

the increased consumption of fruits and vegetables, 

as good sources of dietary fiber, essential nutrients, 

and beneficial phytochemicals, to improve overall 

health and reduce chronic disease risk[137, 138]. 

Berries hold an important position among the fruits 

for their highly antioxidant phytochemicals[139]. 

Wild berries share, besides the organoleptic 

properties, the presence of two classes of 

molecules of particular interest for biological 

activities: flavonoids and tannins.  

• Flavonoids are molecules with more than 4000 different structures, they are present in plants 

and consumed in high amount, in order of several grams, in diets providing adequate 

consumption of fruit and vegetables. From the chemical point of view flavonoids are 

flavone derivatives (2-phenyl-γ-benzopyrone). Depending on the structure, flavonoids are 

divided in several sub-classes and may have a variety of biological properties in humans, 

including antioxidant, anti-inflammatory, vasorelaxant (mostly anthocyanins), and 

phytoestrogenic activities. Anthocyanins are flavonoids very common in berries[140]. 

• Tannins are polyphenols, with a strongly bitter flavour, that possess astringent and tanning 

activities. They are used for processing the skin into leather, precipitating proteins and 

forming, with them, insoluble aggregates. The leather making activity of tannins is 

attributed to their capacity to form multiple hydrogen bonds to collagen in hide. From the 

chemical point of view, tannins can be classified into two main groups: hydrolysable tannins 

and condensed tannins. Hydrolysable tannins can be divided in two subgroups: gallotannins, 

if they release mainly gallic acid during hydrolysis, and ellagitannins, if they release mainly 

ellagic acid (EA). Proanthocyanidins, that are considered condensed tannins. are oligomers 

and polymers of flavonoids, mainly catechins or anthocyanins. Berry fruits contain two 

major types of proanthocyanidins: procyanidins and propelargonidins. 

Fig. 5   Image of different berries 
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1.5 Rubus fruticosus L.   

The fruit of Rubus fruticosus L. (Fig. 6) consists of a set of small red drupes, dark or black, called 

blackberry. Blackberries are characterized by a high content of anthocyanins, ellagitannins (1080 

mg/kg; range: 704-1556 mg/kg) and ellagic acid conjugates (200 mg/kg; range: 112 − 346 

mg/kg)[141]. Another study evaluating ellagitannins content in blackberries found a range between 

80 and 700 mg/kg of fresh fruit[142]. The study identified 11 ellagitannins mainly in the seed and 

torus of blackberries: isomeric forms of pedunculagin, castalagin/vescalagin, galloyl-HHDP glucose, 

lambertianin C, lambertianin D, and galloyl-bis-HHDP glucose, sanguiin H-6/lambertianin A, and 

EA. This study also proposed that 

blackberry fruit may contain 

sanguiin H-10[142]. In addition to the 

high content of ellagitannins 

blackberries are also a rich source 

of anthocyanins, natural pigments 

with important antioxidant 

capacity[143-145]. A recent research 

focused on the content of 

anthocyanins in blackberries, 

revealing the presence of five 

anthocyanin: cyanidin-3-O-

glucoside, the principal anthocyanin 

(constituting 80-90% of total 

content) and four secondary 

anthocianins: cyanidin-3-rutinoside, 

cyanidin-3-xyloside, cyanidin-3-O-

β-(6''-malonilglucoside) and 

cyanidin-3-(6''-(3-Hydroxy-3-

methylglutaryl) glucoside[146]. 

 

1.5.1 Biological activities of blackberry 

Antioxidant activities 

Blackberries ranked at third position compared to 4 different berries (marionberries, boysenberries, 

Fig. 6   Botanic table of Rubus fruticosus L. 
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red raspberries and black raspberries) in a study that evaluate the antioxidant activity by Oxygen 

Radical Absorbance Capacity (ORAC) assay[147], this result can be attributed to the high amounts of 

acylated anthocyanins and cyanidin 3-glucoside. Berry phenolic compounds have shown protective 

effects against cardiovascular disease by inhibiting oxidation of LDL and by protecting LDL from 

hydrogen peroxide-induced oxidative stress in human endothelial cells in vitro[148]. A recent work 

has shown that the anthocyanin-enriched blackberries extract is able to reduce free radicals 

production and oxidative damage induced by UV radiation in keratinocytes; this extract is also able 

to regulate the expression of some antioxidant enzymes such as CAT, MnSOD, Gpx1/2 and 

Gstal[149]. 

 

Antitumoral activities 

Blackberry extracts from eight varieties suppressed UV-induced mutagenesis in Salmonella 

typhimurium[150]. Blackberry plays a protective role against peroxynitrite-induced DNA strand 

breakage in cultured human vascular endothelial cells[151]. Blackberry juice showed a weak 

inhibition of proliferation of several tumor cell lines, including AGS[152], and anthocyanin-enriched 

blackberries extract was able to inhibit in a concentration-dependent manner the growth of HT-29 

colon cancer cells[153]. Blackberry extracts have also demonstrated inhibitory properties in cancer-

induced AP-1 and NF-κB activations and suppressed the expression of vascular endothelial growth 

factor and COX-2, two proteins involved in tumour promotion and progression. 

 

Antiviral activities 

An in vitro research showed that the ethanolic extract of blackberry, at concentrations ≥ 56 µg/mL 

is able to inhibit, by a percentage greater than 99%, the replication of the herpes simplex virus 

(HSV-1) in oral epithelial cells[154], but despite this result there are no in vivo study evaluating 

antiviral activity.  

 

1.6 Rubus idaeus L. 

The fruit of Rubus idaeus L. (Fig. 7) consists of a set of small red drupes called raspberry. 

Raspberries are characterized by a high content of ellagitannins (1041 mg/kg; range: 2175 − 662 

mg/kg) and ellagic acid conjugates (242 mg/kg; range: 82-530 mg/kg)[141]. Sanguiin H-6 and 

lambertianin C constitute 81% (range: 73 – 86%) of total content of ellagitannins in these fruits [141]. 

The characterization of ellagitannins in raspberries was conducted also in another study reporting 

that ellagitannins ranged between 2600-3260 mg/kg and 37 mg/kg of ellagic acid of fresh fruit[155]. 
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A third study reported 760 mg/kg for sanguiin H-6, 310 mg/kg for lambertianin C and 1.10 mg/kg 

for ellagic acid[156]. Raspberries have also a high content of fibers (6.5 g/100 g), minerals and 

vitamins and the fruit contains high levels of water-soluble vitamin C (26.2 mg/100 g of fresh 

weight) [157]. 

1.6.1 Biological activities of 

raspberry 

Antioxidant activities 

Raspberries obtained the highest 

antioxidant capacity compared to 

strawberries, kiwi, broccoli, leek, 

apple, and tomato[158]. This fruit was 

able to reduce oxidized-LDL 

formation via its antioxidant 

activity[159]. Red raspberry juice 

improved levels of glutathione and 

reduced DNA oxidative damage in 

healthy adult males[160]. 

Antitumoral activities 

In vitro studies have found 

raspberry phytochemicals effective 

in reducing vascular endothelial 

growth factor (VEGF) expression[161, 162], a promoter of angiogenesis, which is a critical step for 

tumour metastasis. Raspberry juice inhibited the cell proliferation of PC-3 (prostate 

adenocarcinoma cells) and MDA-MB-231 (mammary gland adenocarcinoma) with an IC50 of 20 

µL/mL on PC-3 cells and 32 µL/mL on MDA-MB-231[152]. Raspberries inhibited in a 

concentration-dependent manner the growth of several cancer cell lines, including KB cells, CAL-

27, MCF-7, HT-29, HCT116 and LNCaP[163]. Freeze-dried raspberry extract, used in concentrations 

between 25 and 200 µg/mL was able to significantly inhibit the growth of cancer cells (HeLa, SiHa 

and C33A) in a concentration and time-dependent mechanism[164]. Freeze-dried blackberries given 

to patients diagnosed with Barrett’s esophagus, a precancer condition, were able to significantly 

decrease oxidative DNA damage[165]. Raspberry gel applied on premalignant oral lesions 

Fig. 7   Botanic table of Rubus idaeus L. 
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significantly reduced COX-2 protein levels and suppressed genes associated with RNA processing 

and growth factor recycling[166]. 

Antihyperglicemic activity 

Raspberry components have shown to improve glucose control in diabetic by inhibiting 

carbohydrate digestion, and anthocyanins have been found to interact with α-amylases whereas 

ellagitannins with α-glucosidase[167, 168]. 

Antibacterial activities 

Raspberry juice was found to significantly reduce the growth of several species of bacteria, 

including Salmonella, Shigella and E. coli[169]. The study of the antimicrobial activity of 12 berries 

against some human pathogens found that H. pylori and Bacillus cereus are sensible to raspberry 

acetone-water extracts[170]. The growth of H. pylori 

was significantly reduced by the incubation with a 

commercial extract of raspberries[171], while a 

polyphenolic enriched fraction of raspberries, 

obtained by solution of acetonitrile and water, 

inhibited the growth of Giardia intestinalis[172]. 

 

1.7 Fragaria X ananassa Duch. 

Fragaria X ananassa Duch. (Fig. 8) is a hybrid 

species cultivated worldwide for its fruits, used in 

large quantities in both fresh food preparations such 

as fruit juices and smoothies. The plant is an hybrid 

originated from Fragaria virginiana Duch., native to 

North America, and Fragaria chiloensis L., native to 

Chile and Argentina. The fruit of this plant, the 

common strawberry, represents an important source 

of vitamin C and other bioactive compounds able to 

determine pharmacological effects[173,174]. Polyhenols 

are one of the main groups of molecules present in 

strawberries, which affect the organoleptic and 

nutritional qualities of this fruit. Polyphenols present 

in strawberries include anthocyanins (responsible for 
Fig. 8   Image of Fragaria X ananassa Duch. 
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the red colour of fruits), flavonols, flavanols, hydroxycinnamic acid derivatives, ellagic acid, ellagic 

acid glycosides, ellagitannins and proanthocyanidins[163, 175-178]. In a study[178] the phenolic 

compounds of strawberries (Fragaria X ananassa Duch.) were analyzed and quantified from 15 

different cultivars; the results showed that strawberries are an important source of polyphenols; in 

particular, proanthocyanidins are the predominant class of compounds, as shown in Tab. 1.  

Phenolic compounds mg/100 g of fresh fruits 

Anthocyanins 20.2 – 47.4 

Flavonols 1.5 – 3.4 

Proanthocyanidins 53.9 – 163.2 

Ellagitannins 9.67 – 22.86 

Ellagic acid glycosides 

0.88 – 2.06 

0.88 – 2.06 

 

Tab. 1  Composition of phenolic compounds in strawberries (Fragaria X ananassa Duch.) 

 

The contents of ellagitannins found in another study is higher, 77.1 mg/100 g of fresh fruit, 

probably due to the different extraction method used by the two studies[155]. Polyphenolic 

composition of strawberries varies during the growth phase and the phase of maturation of the fruit, 

in most cases the pulp of unripe fruit has higher levels of phenolic compounds and antioxidant 

capacity compared to pulp of ripe fruit[179-181]. The profile of anthocyanins of strawberry also varies 

during maturation but with an opposite trend: in all cultivars considered in the study by Kosar et al. 

it was observed that anthocyanins accumulate in the red fruit, while smaller amounts were found in 

the earlier maturity stages[181]. Another study shows that during different phases of ripeness there is 

a strong decrease of the total concentration of ellagitannins and ellagic acid conjugates, this 

reduction is common in all the cultivars taken into consideration[182]. The genetic and 

environmental conditions play an important role in determining the characteristics of strawberry, in 

fact the content of micronutrients and phytochemicals can vary from cultivar to cultivar[177, 179, 183, 

184]. The conditions in which the fruit is stored can affect the micronutrient and phytochemical 

profile, the storage temperature seems to be one among the key factors capable of influencing the 

stability of phenolic antioxidants[185, 186]. The content of flavonoids seems to be significantly higher 

as a result of the storage[187, 188], this result could be attributed to the phenolic post-harvest 

metabolism of the fruit. The antioxidant capacity increases during storage[186] or as a result of a long 

exposure to high temperature storage[187, 188] or remains stable during storage [189, 190]. It is important 

to underline that the information relating to the composition in literature are variable; the variability 

is due to many factors including genetic differences of cultivars, environmental factors (place of 
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cultivation, growth conditions, storage) as well as the methodology used for the extraction and 

quantification. 

1.7.1 Biological activities of common strawberry 

The beneficial effects on human health related to consumption of strawberries (Fragaria X 

ananassa Duch.) include the prevention of inflammation, oxidative stress, cardiovascular disease, 

cancers, diabetes mellitus type 2, obesity and neurodegeneration. 

Antioxidant activities 

Ellagitannins possess antioxidant properties; these molecules have shown effects comparable to that 

of phenols and other natural antioxidants such as ascorbic acid or α-tocopherol[191]. A study 

demonstrates the hypothesis that supplementation with strawberries leads to a reduction of 

oxidative stress caused by a diet rich in polyunsaturated fatty acids in pigs. In this study was 

observed a reduction of the formation of malondialdehyde, greater protection of blood mononuclear 

cells against DNA damage, increased total antioxidant status of plasma and a reduction of 

glutathione peroxidase in erythrocytes[192]. Another study noted a significant increase in red blood 

cell resistance to oxidative damage, following a prolonged intake of strawberries (2-3 weeks)[193]. In 

a recent study, rats were fed with 40 mg/Kg/day of strawberry extract for 10 days, then gastric 

damage was induced in animals by ethanol administration; strawberry extract had a significant 

antioxidant capacity. The results obtained in this study showed that strawberries are responsible for 

a gastroprotective effect against gastric damage caused by ethanol, reducing lipid peroxidation and 

preserving/activating some endogenous antioxidant enzymes (mainly SOD and CAT). The 

antioxidant activity shown in this study is probably related to polyphenolic content, and in 

particular to anthocyanins[135]. It has also been demonstrated in vitro that extracts of strawberry, 

from three different cultivars are able to prevent lipid peroxidation [194]. 

Antitumoral activities 

One study evaluated the potential inhibitory effect of extracts from strawberry on the activation of 

AP-1 and NF-κB induced by tetradecanoilforbol-13-acetate (TPA) and UVB rays and assessed the 

inhibitory effect on proliferation and transformation of cancer cells. The results obtained are the 

following:  

• • Fragaria extract inhibits the proliferation of A549 cell line (lung cancer epithelial cells) 

and reduces the neoplastic transformation of mouse epidermal cells (JB6 P +). 

• • Pretreatment of mouse epidermal cells (JB6 P +) with strawberry extract, determine the 

inhibition of activation of AP-1 and NF-κB induced by TPA and UVB rays. 
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• • Extracts block the phosphorylation of ERKs induced by TPA and the phosphorylation of 

ERKs and JNK kinase induced by UVB, in JB6 cells P +. 

Strawberries had effects on the reduction of AP-1 and NF-κB, the block of MAPK signal and the 

suppression of proliferation and transformation of cancer cells[195]. In another study an extract of 

strawberry was able to inhibit in a concentration-dependent manner the growth of several cancer 

cell lines, including KB cells, CAL-27, MCF-7, HT-29, HCT116 and LNCaP[163]. An extract of 

Fragaria X ananassa Duch. showed anti-proliferative activity against human cancer cells in 

vitro[196]. Extracts of strawberries showed photoprotective activity in human fibroblasts exposed to 

UVA irradiation[197]. 

Antimicrobial activity 

A study demonstrates that a commercial strawberry extract was able to significantly reduce the 

growth of H. pylori in vitro; the combination of extract with clarithromycin was able to increase the 

susceptibility of H. pylori to clarithromycin[171]. An acetonitrile-water strawberry extract enriched in 

polyphenolic fraction was able to inhibit the growth of Giardia intestinalis, a parasite of the human 

intestine; the efficiency of strawberry extract was equal to the reference drug metronidazole[172].  

Anti-hyperglicemic activity 

Strawberry was recently investigated by in vitro studies, for its potential contribution to control 

hyperglycemia, linked to type 2 diabetes. Comparison between different cultivars of strawberry 

showed a high inhibitory activity towards α-glucosidase enzyme, this result might suggest a 

potential anti-hyperglycemic effect of strawberries[198]. In a subsequent study it was shown that 

ellagitannins from Fragaria X ananassa Duch. possess a high inhibitory activity against the ACE 

and α-amylase enzymes, suggesting that these compounds could be able to control hyperglycemia 

and hypertension related to type 2 diabetes[199]. 

Anti-inflammatory activity 

The daily consumption, for 8 weeks, of a drink containing 50 g of freeze-dried strawberries, is able 

to reduce atherosclerotic risk factors, like total cholesterol, LDL and circulating levels of adhesion 

molecules VCAM-1[200]. Also ellagic acid has the ability to reduce the endothelial expression of 

adhesion molecules like ICAM-1, VCAM-1 and E-selectin, induced by TNFα[201]. A cross-over 

study of dietary intervention, conducted on 14 women and 10 men (average age: 50.9 ± 15 years; 

BMI: 29.2 ± 2.3) for 6 weeks, showed that subjects who consumed a strawberry drink before a meal 

rich in carbohydrates and fats, had a statistically significant reduction of postprandial concentrations 

of IL-1β and PAI-1[202]. In an in vivo study was evaluated the anti-inflammatory capability and the 
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ability to regulate blood glucose, by strawberries, in a mouse model of diet-induced obesity. The 

results showed a lower concentration of glucose in the blood of mice supplemented with 

strawberries, compared to mice receiving low or high fat diet, and a lower plasma concentration of 

C-reactive protein in relation to other groups. These results mark the possible role of strawberry in 

reducing the risks associated with obesity and diabetes, in non-obese subjects[203].  

1.8 Fragaria vesca L. 

The fruits of Fragaria vesca L. (Fig. 9), 

named wild straberries, received less 

attention by scientific studies compared to 

common strawberries. A recent study 

published in 2012 analyzed the variety of 

phenolic compounds present in four 

genotypes of Fragaria vesca L., providing 

for the first time a complete view of the 

polyphenolic composition of this species of 

Fragaria[204]. Another work discovered that 

fruits of Fragaria vesca L. are rich in 

ellagitannins and ellagic acid conjugates 

(658 – 1636 mg/Kg of fresh fruit)[182] and 

in the same study the authors noted a 

substantial drop in total concentration of 

these compounds to the increase of degree 

of ripeness. 

1.8.1 Biological activities of wild 

straberry 

Anti-inflammatory activity 

Ethanolic extract of Fragaria vesca L. (500 mg/kg) administered orally, in albino rats, was able to 

prevent the increase of markers commonly associated to colitis, at tissue level. The affected 

parameters were: myeloperoxidase (MPO), tissue catalase (CAT), glutathione and superoxide 

dismutase (GSH and SOD) and the reduction of microscopic and macroscopic lesions at intestinal 

Fig. 9  Botanic table of Fragaria vesca L. 
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level[205]. A preparation rich in procyanidins derived from fermentation of tannins of Fragaria 

vesca L. improves the solubility of cimetidine and prevents adverse drug reactions such as the 

formation of nitrosamines.[206]. 

1.9 Hydrolizable tannins 

1.9.1 Ellagitannins 

Ellagitannins are a group of bioactive polyphenols belonging to the category of hydrolysable 

tannins. Compared to condensed tannins (proanthocyanidins) ellagitannins are more stable at gastric 

level. From the chemical point of view they are hexahydroxydiphenoyl esters of carbohydrates or 

cyclitols, while the definition of ellagitannins in a wider sense also cover compounds derived from 

further oxidative transformations, including oligomerization processes[207]. Ellagitannins are present 

especially in red fruits of the genus Rubus (blackberry, raspberry, cranberry, cloudberry) and 

Fragaria (strawberry)[208], as previously mentioned, and in other fruits such as pomegranate and 

walnuts[209-211]. In these foods, as well as ellagitannins, the presence of ellagic acid free was also 

assessed[209]. The hydrolysis of ellagitannins leads to the release of ellagic acid (or subsequent gallic 

acid) and the corresponding sugar molecules (see Fig. 10). This reaction is used for the 

quantification of ellagitannins, measured as ellagic acid equivalents, after acid hydrolysis of 

samples[212-214]. Information regarding the contents of ellagitannins and ellagic acid in foods are still 

scarce, although in recent years the attention and the interest towards these compounds is increased 

Fig. 10 Chemical formulas of hexahydroxydiphenic acid, ellagic acid and gallic acid. When  
ellagitannins are exposed to acids, bases or specific enzymes (tannase) ester bonds are hydrolized 
and hexahydroxydiphenic group spontaneously rearrange to form ellagic acid. Ellagic acid is a 
dimer that can be further hydrolyzed to gallic acid, a derivative of benzoic acid. 

Hexahydroxydiphenic acid	   Ellagic acid	   Gallic acid	  
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and various research teams have studies in deep the content in various foods commonly consumed 

and the biological activities of these compounds. A study conducted in the United States, has 

evaluated the contents of ellagic acid in various vegetable products: most relevant quantities are 

present in blackberries and raspberries (21.4 mg/100 g), followed by strawberries (9.0 mg/100 g), 

walnuts (8.4 mg/100 g) and cranberry (1.7 mg/100 g)[212]. A Finnish research group has investigated 

33 food and the higher content of ellagitannins was found in some berries, specifically 315.1 

mg/100 g in arctic cloudberries, 297.3 mg/100 g in raspberry, 109.6 mg/100 g in wild rose, 

followed by 77.1 mg/100 g in strawberries[155]. The most common ellagitannins in raspberries and 

blackberries are sanguiin H-6 and lambertianin C, whose chemical structures are shown in Fig. 11 

and Fig. 12, while the most abundant ellagitannin found in strawberries is agrimoniin, Fig. 13. 

One of the most notable activities of tannins and related polyphenols is their potent antioxidant 

activity [156, 215, 216]. In recent years ellagitannins and their derivatives have received increasing 

attention because of their large biological properties such as anti-inflammatory activities [217, 218], 

antitumoral activities[217, 219-223], antiviral activities[224, 225] and antiplasmodial activities[226]. 

  
 

 

 

  
 

 

 

 

Fig. 12   Structure of lambertianin C.  MW: 2804.0  g/mol 

Fig. 11   Structure of sanguiin H-6. MW: 1871.3 g/mol 
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1.9.2 Absorption and metabolism of 

ellagitannins 

The understanding of the mechanisms 

related to absorption and metabolism of 

ellagitannins and ellagic acid is essential 

in order to assess their potential beneficial 

effects in the gastrointestinal tract. The 

information concerning the intake of these 

compounds in the diet is limited, mainly 

because of the great variability in the 

content of ellagitannins and ellagic acid in 

foods and the different amount consumed 

by different populations, according to the 

availability of the products. In vitro 

studies have shown that ellagitannins are 

fairly stable at the physiological 

conditions of the stomach: gastric pH, 

between 1.8 and 2.0, and digestive 

enzymes are not able to hydrolyse or modify ellagitannins, and they are not absorbed in this 

district[227]. It is assumed therefore that, given the limited absorption, the action of ellagitannins 

takes place mainly in situ at gastric level. Ellagic acid that is introduced with the diet can be 

absorbed in the stomach, although concentrations reached in the bloodstream are small; the stomach 

is the first important site of absorption of this molecule.  

On the contrary, under physiological conditions, ellagitannins are hydrolyzed to ellagic acid in the 

intestine and this seems to be due to the different pH, between 7.0 and 7.1[228]. Ellagic acid 

absorption remains limited: in vivo studies conducted on rats and mice have revealed the presence 

of this molecule in the faeces, urine, bile, blood and tissues, but in very low quantity[229]. Human 

studies (currently scarce and with a limited number of subjects) have confirmed the limited 

absorption of ellagic acid, derived from different food sources, by assessing plasma concentration 

Fig. 13   Structure of agrimoniin. MW: 1871.3 g/mol 



INTRODUCTION 

	   27	  

and urinary excretion, and emphasized a high degree of inter-individual variations[230-232]. If the 

bioavailability of ellagitannins and ellagic acid is very limited, however these compounds are 

extensively metabolized by the intestinal microbiota in related compounds with potential 

therapeutic activity, named urolithins (see Fig. 14)[141, 233]. The synthesis of urolithins begins in the 

small intestine with the release of urolithin D and urolithin C and ends in the distal part of the 

colon, with release of urolithin-A and urolithin-B[234]. Urolithins, once absorbed by intestinal cells, 

undergo a process of glucuronation, before entering the portal circulation. It has been estimated that 

these metabolites are present in significant concentrations in plasma and urine, reaching the 

maximum concentration after 24-48 hours after ingestion, being detected in the urine up to 48-72 

hours[232, 235-237]. The composition of the intestinal microflora varies greatly between individuals and 

this means that each microbial community gives rise to different metabolic profiles[238, 239]. 

  

1.9.3 Biological activities of ellagic acid 

Antioxidant activities 

The antioxidant activity of ellagic acid has been evaluated in vitro, in several studies, on various 

cellular populations, like mammalian cells (KB), oral cells (CAL2A), colon (HT-29, HCT116, 

SW480, SW620), prostate (RWPE1, 22Rv1), keratinocytes, fibroblasts, and lung cells (V79-4)[240-

243]. Ellagic acid was able to reduce levels of ROS and MDA and increase the levels of SOD on the 

Fig. 14   Structures of urolithins 
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human cell line of bladder cancer T24; after treatment with H2O2 100 mM, it is observed a 

significant reduction of ROS and MDA of 53.3% and 42.2%, respectively, and a significant 

increase in SOD equal to 180%, relative to the control, in bladder cancer T24 cells treated with the 

compound[244]. The antioxidant activity of ellagic acid has been evaluated also in human 

keratinocytes (HaCaT) in a state of oxidative stress induced by exposure to ultraviolet radiation, 

ellagic acid increased intracellular levels of antioxidant enzyme, such as HO-1 and SOD, through 

the induction of Nrf2 pathway[245]. It was reported that ellagic acid has protective properties on 

A549 cells (human alveolar cells), through the activation of Nrf2 pathway which leads to the 

expression of HO-1 and NQO1 (Quinone Oxidoreductase 1); this activation causes a reduction in 

ROS levels and an increase of glutathione levels, which both reduce lipid peroxidation[246]. An in 

vivo study demonstrated a reduction of oxidative stress in brain and sciatic nerve tissues in diabetic 

rats treated with ellagic acid; the pure compound was able to decrease levels of MDA, nitric oxide 

and, in general, the oxidative status[247]. 

Anti-inflammatory activities 

Ellagic acid, at 50 µM, was able to inhibit the activity of NF-κB, increase the phosphorylation of 

IκB and reduce the secretion of IL-8 induced by IL-1β, TNFα and LPS in intestinal Caco-2 

cells[248]. Ellagic acid inhibited the release of PGE2 induced by inflammatory stimuli (LPS followed 

by treatment with PMA), with an IC50 of 10 – 15 µM; the treatment with the compound reduce the 

expression of COX-2, mPGEs-1 and cPLA2, but not COX-1[249]. A study showed that components 

of an extract obtained from the peel of Punica granatum L., containing ellagic acid, were able to 

inhibit the inflammatory response in the early stages of malaria; ellagic acid inhibited MMP-9 

release from THP-1 cells treated with hemozoin[218]. Ellagic acid (from walnut) was able to inhibit 

the activation and expression of adhesion molecules ICAM-1 and VCAM-1 induced by TNFα at 

endothelial level[201], this effect was probably due to the modulation of NF-κB activity, in particular 

through inhibition of nuclear translocation of p65 and p50 subunits[250]. In a recent study the ellagic 

acid-enriched extract from Punica granatum L. reduced the severity and extent of the damage of 

intestinal mucosa due to chronic inflammation induced by TNBS, in rats[251]. Ellagic acid reduced 

the effect of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS), in rat; 

there was a reduction in levels of TNFα, IL-6 and IFN-γ and a significant inhibition of COX-2 and 

iNOS expression[252]. Ellagic acid reduced acute lung injury induced by acid in mice, by reduction 

of the activity of COX-2 and levels of IL-6 and increase of IL-10 levels[253]. Ellagic acid prevented 

the inflammatory response and the destruction of collagen in nude mice exposed to UVB radiation, 

reducing the levels of pro-inflammatory cytokines (IL-1β and IL-6) and macrophage infiltration[241]. 
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Antitumoral activities 

The antitumor activity of ellagic acid is well known and has been investigated in different cellular 

models, including esophagus, colon, skin, breast and prostate cell lines[228, 254-256], but the number of 

in vivo study is poor. Ellagic acid had effects on cell proliferation, induction of apoptosis and 

inhibition of tumour formation and growth[255, 257-259]. The treatment with ellagic acid reduced the 

proliferation of human prostate cancer (PC-3) and rats (PLS-10) cell lines, significantly affecting 

the proteolytic activity of collagenase and gelatinase secreted by PLS-10 and inhibiting in a 

concentration-dependent manner the activity of collagenase IV[260]. Anti-tumour activity of ellagic 

acid occurs also in Caco-2 cells by inhibition of proliferation (in a concentration- and time-

dependent mechanism) and induction of apoptosis. Ellagic acid treatment increased the release of 

cytochrome c from mitochondria, the activation of procaspase-9 and procaspase-3, and reduced 

levels of bcl-XL protein[228]. Ellagic acid was able to reduce the accumulation of ROS by enhancing 

tissue antioxidant capacity in a model of colon neoplastic lesions induced by 1,2-dimethilhydrazine 

in rat, the activity was related to a chemopreventive action against colon cancer[261]. Ellagic acid 

exerted a concentration-dependent effect on metabolism of carcinogens acting on the enzymes 

involved in activation and detoxification of xenobiotics (phase I,II enzymes and antioxidant 

enzymes) in rat[262]. The results of clinical study revealed that ellagic acid may be an effective 

adjuvant therapy to chemotherapy in patients with hormone-refractory prostate cancer, reducing 

side effects and toxicity of classical therapy, particularly neuropathic pain[263]. 

 

1.10 Condensed tannins 

1.10.1 Procyanidins 

Proanthocyanidins, also named condensed tannins, are the result of flavanols condensation. 

Oligomers and polymers of proanthocyanidins can widely be found in the plant kingdom, as in 

fruits and berries, seeds, flowers, and leaves. Proanthocyanidins that consist exclusively of 

(epi)catechin units are called procyanidins and are the most abundant type in plants, see Fig. 15. In 

recent years, the role of dietary procyanidins as health protective agents has become an important 

area of human nutrition research[264-266]. Procyanidins are present as bioactive compounds in a wide 

range of foods, such as fruits, legume seeds, cereal grains, beverages such as red wine, tea, or 

cocoa; cocoa has the highest procyanidin content among all foods[267]. Epidemiological studies have 

indicated that the consumption of procyanidin-rich foods takes to lower incidence of inflammatory 

diseases and has beneficial effects on diseases of multifactorial pathogenesis, including metabolic 

syndrome, atherosclerosis, and cancer[268, 269]. 
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1.10.2 Absorption and metabolism of procyanidins 

The bioavailability of procyanidins depends on their 

absorption and metabolism at the gastrointestinal tract. 

An in vitro study demonstrated that procyanidins with 

high levels of polymerization are degraded to mixtures 

of epicatechin monomers and dimers under conditions 

similar to those in gastric juices[270], but an in vivo 

study demonstrated that procyanidins are stable during 

gastric transit in humans[271]. A second in vivo study on 

rats found that, after consumption of grapeseed, the 

small and large intestines contained (-)-epicatechin 

dimers, trimers, tetramers, and higher molecular 

weight procyanidins[272] and these molecules can be 

absorbed intact in the gastrointestinal tract of this 

animal[273]. Epicatechin dimer, trimer, and polymer are 

able to cross monolayers of human intestinal epithelial 

Caco-2 cells[274]. Once absorbed, procyanidins are 

conjugated to glucuronide, sulfate, and methyl groups, 

mainly in the gut mucosa and liver. In the plasma, 

monomers are present extensively as conjugated 

metabolites[275] .  

1.10.3 Biological activities of procyanidins 

Anti-inflammatory activities 

Several in vitro and in vivo studies have shown that procyanidins (extracts as well as monomers, 

dimers, or trimers) downregulate the transcription and secretion of proinflammatory cytokines, 

including IL-1β, IL-2, IL-6, and IL-8, TNFα and interferon-γ, and upregulate the secretion of anti-

inflammatory cytokines such as IL-10, IL-4, also in in vivo models of inflammation[276-279]. 

Procyanidins were able to inhibit eicosanoid-generating enzymes, including phospholipase A2, 

cyclooxygenases, and lipoxygenases (LOXs), thereby reducing the secretion of prostanoids and 

leukotrienes (LTs)[280-282]. Procyanidins have been found to inhibit COX2; pre-treatment of mouse 

or human macrophages with procyanidin-rich extracts or with pure procyanidins inhibited the 

transcription of COX2 mRNA and the effect was mediated by regulation of COX2 transcription 

factors[283, 284]. Procyanidin-rich extracts and B2 procyanidin dimer are also inhibitors of COX2 

Fig. 15   Structure of epicatechin and 
example of dimer. 
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protein expression in a dose dependent fashion in different cell inflammation models in both mice 

and humans[285, 286].  
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Gastritis and ulcers are very common inflammatory based diseases which can be caused by H. 

pylori infection, chemical factors or immunological disorders[3]. H. pylori is the leading cause of 

gastritis[1], it colonizes the gastric mucosa of over 80% of human population in developing 

countries[36] and at least 50% of the world’s human population[3]. Recently, this bacterium has been 

classified as type I carcinogen by the World Health Organization[41], its eradication in infected 

individuals significantly decreases the risk of developing gastric adenocarcinoma[42]. H. pylori 

infection induces the release of several inflammatory cytokines in the gastric mucosa, such as IL-1β, 

IL-2, IL-6, IL-8 and TNFα[51-54]. In gastric epithelial cells TNFα and IL-1β induce the expression of 

IL-8, a potent chemokine which promotes neutrophil infiltration, and this mechanism is associated 

with the activation of NF-κB[57, 58, 95]. IL-8 appears as a key point of H. pylori-induced gastritis and 

epithelial cells are among the main producers of this chemokine in gastric mucosa[55]. Current 

therapies against H. pylori eradication involve the administration of proton pump inhibitors in 

combination with antibiotics; however, the development of resistant strains and poor compliance of 

patients have made the process of eradication complicated[287]; furthermore the use of gastric acid 

suppressors in H. pylori therapies has shown to increases the risk of pneumonia and hip fractures[288, 

289]. For all these reasons it is very important to find new strategies for the treatment of gastric 

diseases. 

Fruits and vegetables demonstrated to exert multiple biological effects on the mucosa of the 

gastrointestinal tract due to their antioxidant content[134] and they play a crucial role in the 

maintaining of gastric mucosa homeostasis by counteracting potential damage exerted by ROS[18]. 

ROS play an important role of second messengers in the NF-κB pathway modulation[89, 118-120]. In 

vivo and in vitro studies show that the antioxidant and anti-inflammatory activity of some foods is 

due to their polyphenols content[18, 135]. At this regard, among fruits, wild berries (blackberry, 

raspberry, common and wild strawberry) possess phytochemical contents with high antioxidant 

activity[139]. Berries contain two classes of molecules of particular interest for biological activities: 

flavonoids and tannins. Plants rich in tannins have a traditional use for treating gastric ulcer and 

tannins showed anti-bacterial activity against H. pylori[290, 291]. These molecules also revealed anti-

inflammatory activity both in vitro and in vivo[217, 218, 220, 292, 293], but the anti-inflammatory activity 

of tannins derived from fruits of genus Rubus (blackberry, raspberry) and Fragaria (strawberry) has 

been poorly investigated[158]. Furthermore tannins are not absorbed and metabolized in the gastric 

district, therefore their biological activities can occur predominantly in situ[227, 271]. 

On this basis, the aim of this thesis was to clarify the anti-inflammatory effect of the extracts 

enriched in tannins from blackberry, raspberry (rich in ellagitannins) and strawberries (rich in 

ellagitannins and procyanidins) at gastric level.  
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For this purpose, the efficacy of tannins was evaluated in a rat model of ethanol-induced gastric 

ulcer. Tannins were also investigated in vitro in a model of gastric inflammation. AGS cells were 

stimulated by cytokines involved in H. pylori infection, TNFα and IL-1β, and then was evaluated: 

• the inhibition of NF-κB translocation and driven transcription activity;  

• the effect on IL-8 release; 

• the effect on IL-8 promoter activity. 

Furthermore the ability of tannins to inhibit pro-oxidant stimuli, like H2O2 and ethanol, was also 

evaluated in vitro on IL-8 secretion. 

 



	  

	   35	  

 

 

 

 

 

 

3. MATERIALS AND METHODS



MATERIALS AND METHODS 

	   36	  

3.1 Chemicals  

All chemicals and solvents were of analytical ultra-pure grade. All the chromatographic solvents 

were HPLC grade or LC-MS grade for the MS experiments. Acetonitrile, acetone, methanol and 

diethyl ether were purchased from Sigma Aldrich (Milan, Italy). Hexane and formic acid were 

purchased from Carlo Erba (Milan, Italy). Ellagic acid standard (purity >98%) was purchased from 

Fluka (Steinheim, Germany). Sanguiin H-6, lambertianin C and agrimoniin were isolated as 

described in Gasperotti et al. 2010[141]. Quercetin and polyethylene glycol 400 (PEG 400) were 

purchased from Sigma-Aldrich (Milan, Italy).  

3.2 Plant material and preparation of tannins enriched fraction (TEs)  

The preparation of TEs and the isolation of single ellagitannins were conducted by the research 

group of Dr. Fulvio Mattivi, at “Fondazione Edmund Mach-Istituto Agrario di San Michele 

all'Adige” (Trento). Blackberry (cv. Lochness), raspberry (cv Tulameen), strawberry (cv Darselect) 

and wild strawberry were grown in an experimental field in Vigalzano (Trento, Italy). No specific 

permissions were required for these locations, since the experimental field belongs to Fondazione 

Edmund Mach, San Michele all’Adige (TN, Italy). Berries were harvested at maturity and 

transported to the laboratory for the extraction. Before the extraction the samples were maintained 

at -22°C. Fruits were extracted with a mixture acetone/water (70/30 v/v), as reported in Mattivi F. et 

al.[294]; the ratio fruit/solvent was 60 g/250 mL. Berries were homogenized with an 847-86 model 

Osterizer blender and centrifuged. Polyphenol-rich extracts were evaporated until dryness in a pear-

shaped flask, using rotary evaporation under reduced pressure at 37 °C. The sample was diluted to 1 

L with mixture methanol/water (30/70 v/v) and filtered using a Durapore 0.45 mm filter (Millipore, 

Vimodrone, Italy). The purification was carried out using an established method[141] with minor 

changes due to the high volume of the samples. Briefly, a column cartridge (1064 cm), connected to 

a vacuum line, was packed with Sephadex LH-20 resin, pre-washed with 50 mL methanol and then 

equilibrated with 100 ml methanol/water (30/70 v/v). The aqueous methanol extract (50 mL) was 

loaded and polyphenols, such as anthocyanins, were washed off with 500 mL methanol/water 

(30/70 v/v). The fraction containing the ellagitannins was eluted using 350 mL acetone/water 

(70/30 v/v). The tannin-rich extracts (TEs) were dried using rotary evaporation under reduced 

pressure at 37°C and reconstituted in 5 mL methanol, added to 350 mL diethyl ether and 

precipitated with hexane (700 ml). The TE fraction was recovered by filtration and dried. An 

aliquot of the precipitate was further quantified by UPLC-PDA-MS to determine the amount of the 

main ellagitannins present in the extract. The quantification method applied detected ellagitannins 
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at 260 nm[141].  

3.3 Cell culture   

Human adenocarcinoma cells (AGS, CRL-1739, LGC Standard S.r.l., Milano, Italy) were grown at 

37°C in DMEM F12 (Gibco-Invitrogen) supplemented with 100 units penicillin/mL, 100 mg 

streptomycin/mL, and 10% heat-inactivated foetal calf serum (Euroclone S.p.A, Pero, Italy) 

(complete medium), in a humidified atmosphere containing 5% CO2. For cell maintenance AGS 

were treated with tripsin 0.105 mM and EDTA 0.25% (Sigma-Aldrich, Milan, Italy). 

3.4 Cytotoxicity assay  

The integrity of the cell morphology before and after treatment was assessed by light microscope 

inspection. Cell viability of AGS was measured by MTT method[295]. Cells were plated in 24-well 

plates (BD FalconTM) at concentration of 30000 cells/well; after 36 hours, cells were treated with 

compounds and incubated for 6 hours. Medium was removed and cells were incubated with MTT 

solution (0.1 mg/mL) for 1 hour at 37°C. At the end of the incubation period, MTT solution was 

removed, and 200 µL of extraction solution (90% isopropanol; 10% DMSO) were added to the 

wells. 100 µL of the contents of each well were transferred to a 96 plate and the absorbance of each 

well was read at 550 nm using a microplate reader (Microplate Reader iMarkTM, Bio-Rad 

Laboratories S.r.l., Segrate, Italy).  

For the trypan blue test, once the incubation with compounds was completed, medium was removed 

and cells were detached with 500 µL trypsin-EDTA solution. Trypsin activity was stopped with the 

addiction of complete medium (500 µL). The volume (20 µL) of cell suspension was added to 180 

µL of trypan blue solution (Sigma-Aldrich, Milan, Italy). Ethanol 2% (342,5 mM) and H2O2 (500 

µM) were not toxic to AGS cells at the concentration used in the experiments.  

3.5 Evaluation of NF-κB driven transcription 

To evaluate the NF-κB driven transcription, cells were plated in 24-well plates (BD FalconTM) at 

concentration of 30000 cells/well; after 48 hours, cells were transfected by calcium-phosphate 

method with a plasmid containing the luciferase reporter gene under the control of NF-κB promoter 

(NF-κBluc). Cells received a change with new complete medium one hour before transfection. 

Transfecting solution for one 24-well plate was prepared with the following procedure: 650 µL 

Hepes buffered saline 2X (NaCl 280 mM; HEPES 50 mM, Na2HPO4 1.5 mM; pH 7.0) were mixed 

in constant agitation with 650 µL of a solution containing CaCl2 (250 mM) and 1300 ng of NF-κB 

luc plasmid in sterile H2O. When complete 50 µL of transfecting solution (50 ng NF-kBluc per 
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well) were added to each well and incubated overnight before treatments with compounds. After 16 

hours, cells were placed in a medium deprived of FCS, and stimulated with TNFα or IL-1β at 10 

ng/ml. TEs were tested at 1–10 µg/ml; individual compounds at 0.5–10 µM. After 6 hours cells 

were harvested and luciferase assays were performed using BriteliteTM Plus reagent (PerkinElmer 

Inc. Massachusetts, USA) according to manufacturer’s instructions, and signal was read with 

VictorTM X3 (Perkin Elmer, Walthman MA, USA). Data were expressed considering 100% the 

luciferase activity related to the cytokine-induced NF-κB driven transcription. Parthenolide at 5 µM 

was used as reference inhibitor. Results are the mean ± s.d. of at least three experiments in triplicate.  

3.6 Evaluation of IL-8 promoter activity 

To evaluate the IL-8 promoter activity, cells were plated in 24-well plates (BD FalconTM) at 

concentration of 30000 cells/well; after 48 hours, cells were transfected by calcium-phosphate 

method with a plasmid containing the luciferase reporter gene under the control of IL-8 promoter 

(IL-8luc, containing one NF-κB responsive element) using the procedure described above, using a 

different amount of plasmid per well, 100 ng. The experiments with IL-8luc mutated in κB site 

were performed at the same conditions of native promoter. 

3.7 Evaluation of NF-κB nuclear translocation 

For the NF-κB (p65) nuclear translocation assay, AGS cells were plated at the concentration of 1.5 

x 106 cells/mL in 60-mm plates. After 48 hours, cells were treated for 1 hour with the pro-

inflammatory mediators and the extracts/compounds under study. Nuclear extracts were prepared 

using Nuclear Extraction Kit from Cayman Chemical Company (Michigan, USA) and stored at -

80°C until assayed. The same quantity of total nuclear proteins, measured by the method of 

Bradford[296], was used to assess NF-κB nuclear translocation using the NF-κB (p65) transcription 

factor assay kit (Cayman) followed by spectroscopy at 450 nm, 0.1 s (VictorTM X3, Perkin Elmer, 

Walthman MA, USA). Data were expressed considering 100% the absorbance related to the 

cytokine-induced NF-kB nuclear translocation. Parthenolide at 5 µM was used as reference 

inhibitor of NF-κB translocation. Results are the mean ± sd of three experiments in triplicate.  

3.8 Evaluation of IL-8 release by cytokines  

Cells were grown in 24-well plates for 48 hours (30000 cells/well) before the cytokine treatment, 

TNFα or IL-1β for 6 hours. IL-8 was quantified by using Interleukin-8 High Sensitivity Human 

ELISA Set (Immunotools, Germany) using the method described below. Briefly, Corning 96 well 

EIA/RIA plates from Sigma-Aldrich (Milan, Italy), were coated with the antibody provided in the 
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ELISA Set, overnight at 4°C. After blocking phase, 100 ml of samples in duplicate, were 

transferred into wells at room temperature for 1 hour. The amount of IL-8 in the samples was 

detected by spectroscopy (signal read 450 nm, 0.1 s, by VictorTM X3) by the use of biotinylated and 

streptavidin-HRP conjugate antibodies, evaluating 3,5,3,59-tetramethylbenzidine (TMB) substrate 

reaction. The quantification of IL-8 was done using an optimized standard curve supplied with the 

ELISA Set (1.0–240.0 pg/ml). Parthenolide (5 µM) was used as reference inhibitor of IL-8 secretion. 

Results are the mean ± s.d. of three experiments in triplicate.  

3.9 Evaluation of IL-8 release by H2O2 and ethanol  

Cells were grown in 24-well plates for 48 hours (30000 cells/well) and then incubated for 24 hours 

in the presence of 2% ethanol, or for 12 hrs in the presence of 500 µM H2O2, following the 

procedure described by Kim et al. 2011[297], with slight modifications. IL-8 was quantified as 

described above. Quercetin (10 µM) was used as reference inhibitor of IL-8 secretion. Results are 

the mean ± s.d. of three experiments in triplicate.  

3.10 Protocol of in vitro gastric digestion  

To evaluate the effect of in vitro digestion on the activity of the strawberry extract the following 

protocol was performed. First saliva and gastric juice solution were prepared according to the list of 

components in the following Tab. 2.  

Saliva (pH 6.5 ± 0.1) Gastric Juice (pH 1.1 ± 0.1) 
896 mg KCl 2752 mg NaCl 

200 mg KSCN 306 mg NaH2PO4×H2O 
1021 mg NaH2PO4×H2O 824 mg KCl 

570 mg Na2SO4 302 mg CaCl2 

298 mg NaCl 306 mg NH4Cl 
1.8 ml 1M NaOH 8.3 ml HCl (37%) 

200 mg urea 650 mg glucose 
145 mg amylase 20 mg glucuronic acid 
15 mg uric acid 85 mg urea 
50 mg mucin 330 mg glucosaminehydrochloride 

nano pure H2O 1 g BSA 
 1 g pepsin 
 3 g mucin 
 nano pure H2O 

Tab. 2   Composition of juices from the in vitro fasted digestion model. Final amounts are based on 1000 
mL juice. Adjustments to correct pH are made with NaOH (1M) or HCl (37%). Adapted from Oomen et al., 
2003; Versantvoort et al., 2005; Hagens et al., 2007; Walczak et al., 2012. 
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The amount of 600 mg of dried strawberry extract was weighted in a glass vial at room temperature, 

then 6 mL was added and incubated for 5 min in constant shaking at 37°C. After this first step 12 

ml of gastric juice were added and incubated for 2 hours at 37°C in constant agitation. The solution 

obtained was dried and frozen at -80°C until analyses. The digested extract obtained was referred to 

600 mg of the original extract and tested on different biological activities comparing the effect to 

non-treated control adjusted with a mixture of saliva and gastric juice. 

3.11 Animals  

Thirty male Wistar rats (Charles River Laboratories, Calco, Lecco, Italy), weighing 175–200 g, 

were used. 3 Rats per cage were housed under constant environmental conditions (22 ± 1°C, 50 ± 

5% relative humidity, 12-h light/12-h dark cycle), with free access to standard laboratory rat chow 

(014RF21C; Mucedola, Settimo Milanese, Milan, Italy) and tap water. Animals were acclimatized 

for a period of at least 7 days before the use. The study was approved (protocol number 16/2010) by 

the Animal Ethics Committee of University of Milan (Italy), and communicated to the Italian 

Ministry of Health, having regard to the article 7 of the D.L. 116/92. In addition, the study was 

carried out in strict accordance with the recommendations in the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, 

revised 1996). All efforts were made to minimize animal suffering.  

3.12 In vivo protocol  

Before the experiment, the animals were randomly divided in 5 groups (6 rats in each group) and 

treated intragastrically (i.g.) by gavage. The dose of TEs was calculated on the basis of a daily 

consumption of 125 g of fresh fruit by a human healthy adult of 70 kg[135]. The day before the 

induction of gastric lesions, rats were placed in individual metabolic cages and deprived of food, 

with free access to tap water for 20 hours. The last administration of TEs extracts, quercetin (as 

positive control) or vehicle was given 120 minutes before ethanol treatment.  

3.13 Assessment of gastric mucosal damage  

One hour after the administration of 1 mL of ethanol, rats were sacrificed under ether anesthesia by 

cervical dislocation; the stomach was removed and opened along the greater curvature. The 

stomach was rinsed with water, pinned open for microscopic examination by a microscope (Opmi 

6; Carl Zeiss S.p.A., Arese, MI, Italy) and for photo-documentation by a digital camera (EOS 

1100D, Canon Italia S.p.A., Cernusco Sul Naviglio, MI, Italy). Gastric hemorrhagic lesions in the 

glandular part were examined under a dissecting microscope (X10). Gastric damage was assessed in 
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a blind manner. The Ulcer Index (UI) was obtained by a 0–3 scoring system based on the number 

and severity of the lesions[298, 299]. Severity was defined according to the length of the lesions: 0, no 

lesions; 1, lesions 1–2 mm; 2, lesions 2–3 mm; 3, lesions >3 mm. UI was calculated as the total 

number of lesions multiplied by their respective severity score.  

3.14 Preparation of gastric mucosa homogenates  

Samples of 50 mg from normal and ulcerated rat gastric mucosa were homogenized in buffer A [10 

mM TRIS-HCl (pH 8), 150 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF), 

2 µg/ml aprotinin, 2 µg/ml leupeptin, and 1% Triton X-100] using Tissue Lyser II (Qiagen) for 2 

minutes at the highest frequency 30/s. The homogenates were centrifuged at 12,000 g for 10 min at 

4°C and the supernatants collected, and stored at -80°C until use. Protein concentration was 

determined using Bradford protein assay (Bio-Rad) with bovine serum albumin (Sigma-Aldrich, 

Milan, Italy) as a standard.  

3.15 Cinc-1 (rat IL-8) release from gastric mucosa  

The quantity of 40 µg total proteins was used to assess Cinc-1 release using GRO/CINC-1 (rat) EIA 

kit (Enzo Life Sciences International, Inc., Plymouth Meeting, PA, USA). This kit uses a polyclonal 

antibody to rat GRO/CINC-1 labelled with the enzyme horseradish peroxidase. After a short 

incubation (10 minutes) the enzyme reaction was followed by spectroscopy (signal read 450 nm, 

0.1 s). The concentration of rat GRO/CINC-1 in the samples was determined by interpolation with a 

GRO/CINC- 1 standard curve. The results are expressed as pg of CINC-1 per mL of sample.  

3.16 Measurement of oxidative stress in rat gastric mucosa  

The antioxidant capacity of the gastric mucosa homogenates was assessed by Oxygen Radical 

Absorbance Capacity (ORAC) assay. This method measures the oxidative degradation of 

fluorescein (Sigma-Aldrich Spa, Milan, Italy), after the addition of the free radical generator AAPH 

(2,29-azobis(2-methylpropanimidamide)-dihydrochloride) (Sigma-Aldrich S.p.a., Milan, Italy). The 

oxidation of fluorescein by free radicals leads to a decrease in fluorescence, prevented by the 

presence of antioxidant compounds. All reagents were prepared in 75 mM phosphate buffer, pH 7.4 

and Trolox (4–160 µM) was used as the reference compound. Samples from gastric mucosa were 

suitably diluted in the phosphate buffer. Each well of a 96-well microplate contained 120 µL of 

fluorescein (0.07 µM) and 20 µL of the samples (corresponding to 5 µg protein) in a final volume of 

200 µL assay solution. After the addition of AAPH (60 µL, 12 mM), the plate was shaken 

automatically for 2 seconds and the fluorescence was measured at 37°C every 2 min for 60 min 
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with emission and excitation wavelengths of 528 and 485 nm, respectively, by using a microplate 

fluorescence reader (VictorTM X3, Perkin Elmer, Walthman MA, USA). The ORAC values were 

calculated as area under the curve and expressed as micromole of Trolox equivalent (TE) per gram 

of gastric mucosa sample (mmol TE/g of gastric mucosa sample).  

3.17 Evaluation of CAT activity in rat gastric mucosa  

CAT activity in gastric mucosa homogenates was determined by Catalase Assay Kit (Cayman 

Chemical, Ann Arbor, MI, USA), which utilizes the peroxidative function of CAT for the 

determination of the enzyme activity. The method is based on the reaction of the enzyme with 

methanol in the presence of an optimal concentration of H2O2. The formaldehyde produced is 

measured colorimetrically with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole as the chromogen 

compound, using a microplate reader (Microplate Reader iMarkTM, Bio-Rad Laboratories S.r.l., 

Segrate, Italy) at 540 nm absorbance. Before starting the reaction, each well of a 96 well microplate 

contained 100 µL of diluted assay buffer, 30 µL of methanol and 20 µL of diluted gastric mucosa 

homogenates (2.5 µg/well). The amount of formaldehyde was calculated by means of a calibration 

curve of formaldehyde standard. CAT activity is expressed as units (U) of CAT per mg of proteins. 

One unit of CAT is defined as the amount of enzyme that will cause the formation of 1.0 nmol of 

formaldehyde per minute at 25°C.  

3.18 Evaluation of SOD activity in rat gastric mucosa  

SOD activity was measured by using a SOD activity kit (Enzo Life Sciences International, Inc., 

Plymouth Meeting, PA, USA). This colorimetric assay evaluates the ability of SOD to reduce the 

superoxide ion concentration generated from the conversion of xanthine and oxygen to uric acid 

and hydrogen peroxide by xanthine oxidase. SOD activity was determined from percent inhibition 

of the rate of WST-1-formazan formation, a coloured product absorbing light at 450 nm. Each 

sample was loaded in a 96 well microplate to the final amount of 6.25 µg/well. Immediately after 

the addition of xanthine, the plate was transferred to a microtiter plate reader (VictorTM X3, Perkin 

Elmer, Walthman MA, USA) and absorbance was read at 450 nm every minute for 10 minutes at 

room temperature, under 10 seconds orbital shake before each reading. The amount of SOD in the 

samples was calculated by correlating the inhibition percentage of WST-1-formazan formation with 

the logarithm of the SOD units in a standard calibration curve. SOD activity is expressed as U/mg 

of proteins.  
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3.19 Statistical analysis  

All data are expressed as mean ± s.d., with the exception of the in vivo experiments expressed as 

mean ± s.e.. Differences between means were calculated using the unpaired t test or one-way 

analysis of variance (ANOVA) followed by Tukey’s post-hoc test for multiple group comparisons. 

Statistical analysis was done using GraphPad Prism 5.00 software (GraphPad Software Inc., San 

Diego, CA, USA); p<0.05 was considered statistically significant. IC50 was calculated using 

GraphPad Prism 5.00.  
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Fig. 16  Composition of blackberry (TE-black) and raspberry (TE-rasp) extracts. Berries tannins were 
extracted with acetone/water 70:30, isolated by Sephadex LH 20 column chromatography, precipitated with 
hexane and quantified by UPLC-PDA-MS. Tannins were detected at 260 nm.  

Blackberry (TE-black) Raspberry (TE-rasp) 

Rubus fruticosus L. and Rubus idaeus L.  
(Blackberry and raspberry) 

In vitro studies 

4.1 Extracts composition 

The quantification of tannins present in the extracts was performed by UPLC-PDA-MS. To 

determine the content of the main compounds, the analysis was performed at 260 nm according to 

the protocol of Gasperotti et al.[141]. In enriched fractions, tannins from blackberry (TE-black) 

corresponded to 343 mg/100 g of fresh fruits, while tannins from raspberry (TE-rasp) were 155 

mg/100 g. The composition of TEs was as follows: in TE-black sanguiin H-6 represented 12%, 

lambertianin C 56%, and ellagic acid 1% of the precipitate, while in TE-Rasp sanguiin H-6 

represented 19%, lambertianin C 35%, and ellagic acid 1% (Fig. 16). Sanguiin H-6 and lambertianin 

C, compounds belonging to the class of ellagitannins, account for more than 50% of both the 

extracts. 

 

 

 

 

 

 

 

  

4.2 Effect of cytokines on NF-κB driven transcription 

Several experiments were conducted in AGS cell line in order to evaluate the effect on NF-κB 

driven transcription of the main pro-inflammatory cytokines involved in gastric inflammation 

(TNFα, IL-1β, IL-6, IL-21 and IL-8). The experiments of time-course were conducted at 3, 6, 24 

and 30 hours, using cytokines at a concentration of 10 ng/mL. The transcription mediated by NF-κB 

was evaluated, in cells transiently transfected with NF-κBluc plasmid, by quantifying the luciferase 

activity as described in materials and methods. IL-6, IL-21 and IL-8 were not able to increase 
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significantly the transcription of luciferase compared to not stimulated cells (Data not shown). 

TNFα and IL-1β stimulated significantly the transcription of luciferase as shown in Fig. 17; the 

effect already appeared after 3 hours of stimulus with an increase of approximately 3 times 

compared to  control. Both TNFα and IL-1β had the maximal effect after 6 hours treatment with an 

increase of 5.6 times for TNFα and 7.2 times for IL-1β. After 6 hours the stimulatory effect induced 

by TNFα decreased significantly, while the stimulus induced by IL-1β remains relatively constant 

up to 30 hours (maximum time considered). 

4.3 Evaluation of cytotoxicity of blackberry and raspberry extracts and pure compounds.  

The cytotoxic effect exerted by extracts on cell viability was assessed by quantifying the activity of 

mitochondrial succinate dehydrogenase (MTT test) and by the Trypan blue test. The results have 

shown that TE-black and TE-rasp had no cytotoxic effects on AGS cells in the range of 

concentrations of 0.05 –25 µg/mL. Isolated compounds sanguiin H-6, lambertianin C and ellagic 

acid were not cytotoxic at all the concentrations used in this study. 

4.4 Effect of extracts and compounds on NF-κB driven transcription 

TE-black and TE-rasp were able to inhibit significantly, in a concentration-dependent manner, the 

transcription driven by NF-κB in AGS cells subjected to stimulation with TNFα (panel A) and IL-

1β (panel B) at 10 ng/mL as shown in Fig. 18. The inhibitory effect of TE-black was found to be 

slightly higher than that obtained by TE-rasp, as shown by the comparison between IC50 values, 

0.52 and 0.95 µg/mL for TE-black and TE-rasp, respectively. In cells subjected to stimulation with 

IL-1β the inhibitory effect of the extracts was less pronounced and statistically significant starting 

from concentration of 5 µg/mL, TE-black IC50 was 6.83 µg/mL whereas for TE-rasp was 8.80 

µg/mL. Lambertianin C and sanguiin H-6 inhibited NF-κB driven transcription stimulated by TNFα 
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Fig. 17   Timecourse of NF-κB driven 
transcription. Effect of TNFα (black line) 
and IL-1β (red line) at 10 ng/mL on NF-κB 
driven transcription in AGS cells transfected 
with NF-κBluc plasmid. The analysis was 
performed using a luciferase assay and data 
are expressed in percentage, relative to the 
unstimulated control, which was arbitrarily 
assigned to the value of 100%. 
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with IC50 of 1.86 and 1.35 µM, respectively, however when the transcription was stimulated by IL-

1β, the concentrations required for obtaining 50% inhibition were 5.89 µM and 2.52 µM for 

lambertianin C and sanguiin H-6, respectively (Fig. 19). Ellagic acid (0.25 µM) inhibited TNFα-

induced transcription by 40%, while at the highest concentration tested (5 µM), the inhibitory effect 

was 80% (panel A, Fig. 20). The inhibitory effect of ellagic acid, following stimulation by IL-1β, 

was much less marked in comparison to TNFα, and the lowest concentration showing a significant 

reduction was 25 µM (about 20% inhibition, panel B, Fig. 20).     
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Fig. 19   Effect of sanguiin H-6 and lambertianin C on NF-κB driven transcription induced by TNFα 
and IL-1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. Compounds were 
tested at 0.5–10 µM. Data are expressed as a relative percentage to the stimulated control, which is set to 
100%. Inhibition by 5 µM parthenolide, used as reference inhibitor, was 72% on TNFα and 71% on IL-1β 
stimulus. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001.  
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Fig. 18  Effect of TEs from blackberry and raspberry on NF-κB driven transcription induced by TNFα 
and IL-1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. TEs were tested at 
1–10 µg/ml. Data are expressed as a relative percentage to the stimulated control, which is set to 100%. 
Inhibition by 5 µM parthenolide, used as reference inhibitor, was 72% on TNFα and 71% on IL-1β stimulus. 
Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001.  
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4.5 Effect of cytokines on NF-κB nuclear translocation 

In order to evaluate the effect of pro-inflammatory cytokines on the NF-κB nuclear translocation, 

AGS cells were treated with TNFα and IL-1β at 10 ng/mL for 1, 2, 3 and 6 hours; cells where then 

subjected to the nuclear extraction and a fixed quantity of nuclear proteins (10 µg protein/well) 

were loaded into an ELISA plate, as described in materials and methods. The effects of the 

cytokines on translocation are reported in Fig. 21. As can be seen from the figure TNFα and IL-1β 

were both able to induce the NF-κB translocation from the cytoplasm into the nucleus. The 

maximal effect was obtained after 1 hour treatment since the effect was increased about 7 times for 
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Fig. 20   Effect of ellagic acid on NF-κB driven transcription induced by TNFα and IL-1β. AGS cells 
were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. Ellagic acid was tested at 0.1–50 µM. 
Data are expressed as a relative percentage to the stimulated control, which is set to 100%. Inhibition by 5 
µM parthenolide, used as reference inhibitor, was 72% on TNFα and 71% on IL-1β stimulus. Results are the 
mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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Fig. 21   Timecourse of NF-κB nuclear 
translocation. Effect of TNFα (black 
line) and IL-1β (red line) at 10 ng/mL on 
NF-κB nuclear translocation in AGS 
cells. The analysis was obtained by 
loading a fixed amount of nuclear lysates 
(10 µg protein/well) on an ELISA assay. 
Data are expressed in percentage, relative 
to the unstimulated control, which was 
arbitrarily assigned to the value of 100%. 
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TNFα and about 6 times for IL-1β. All the following experiments on nuclear translocation were 

therefore carried out in AGS cells after 1 hour treatment.  

4.6 Effect of extracts and pure compounds on the NF-κB nuclear translocation 

In order to better clarify the role of NF-κB, the ability of the extracts to interfere with nuclear 

translocation was also investigated. As shown in Fig. 22 the extracts from blackberry and raspberry 

were able to inhibit TNFα-induced translocation, in a concentration-dependent manner (panel A). In 

particular TE-black and TE-rasp (0.5 µg/mL) inhibited nuclear translocation by 20.7% and 28.1%, 

respectively: the inhibitory effect reached 67% and 57% at the highest concentration tested (2 

µg/mL). The inhibitory effect of the extracts on translocation induced by IL-1β (10 ng/mL) was 

much lower if compared to TNFα (panel B), as previously shown on the NF-κB driven transcription. 

The effect was statistically significant starting from 2 µg/mL (37% and 22.1% inhibition for TE-

black and TE-rasp, respectively).  

Pure compounds lambertianin C (5 µM) and sanguiin H-6 (2.5 µM) reduced NF-κB translocation 

induced by TNFα at the basal levels (control without stimulus), the effect was found to be 

concentration dependent (Fig. 23, panel A). IC50s were 0.94 and 1.18 µM for lambertianin C and 

sanguiin H-6, respectively. When cells were treated with IL-1β, IC50s were 1.51 and 1.06 µM for 

lambertianin C and sanguiin H-6, respectively (panel B). To evaluate the effect of ellagic acid, AGS 

cells were treated for 1 hour and the compound was tested at concentrations ranging between 0.5 – 

2.5 µM. The data obtained are shown in Fig. 24. Ellagic acid inhibited the nuclear translocation of 
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Fig. 22   Effect of TEs from blackberry and raspberry on NF-κB nuclear translocation induced by 
TNFα and IL-1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 1 hour. NF- κB 
nuclear translocation was assessed by ELISA assay followed by spectrophotometric analysis (signal read 450 
nm, 0.1 s). Inhibition by parthenolide at 5 µM, used as reference inhibitor, was 37% on TNFα and 40% on IL-
1β stimulus. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001.  
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NF-κB in AGS cells stimulated with TNFα, with a significant inhibition of approximately 50%, at 

the concentration of 2.5 µM. When IL-1β was used as pro-inflammatory stimulus ellagic acid 

showed a significant inhibition at concentration ten times higher tan that obtained with TNFα (2.5 

vs 25 µM).   
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Fig. 24   Effect of ellagic acid on NF-κB nuclear translocation induced by TNFα and IL-1β. AGS cells 
were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 1 hour. NF- κB nuclear translocation was assessed 
by ELISA assay followed by spectrophotometric analysis (signal read 450 nm, 0.1 s). Inhibition by 
parthenolide at 5 µM, used as reference inhibitor, was 37% on TNFα and 40% on IL-1β stimulus. Results are 
the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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Fig. 23   Effect of sanguiin H-6 and lambertianin C on NF-κB nuclear translocation induced by TNFα 
and IL-1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 1 hour. NF- kB nuclear 
translocation was assessed by ELISA assay followed by spectrophotometric analysis (signal read 450 nm, 
0.1 s). Inhibition by parthenolide at 5 µM, used as reference inhibitor, was 37% on TNFα and 40% on IL-1β 
stimulus. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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4.7 Effect of cytokines on IL-8 secretion 

It is known that gastric inflammation is characterized by the release of IL-8 from the gastric 

epithelium. With the aim to characterize the release of IL-8 from AGS cell line, a time-course 

experiment was conducted at 3, 6, 24 and 48 hours, after induction with TNFα or IL-1β (both at 10 

ng/mL). The results are shown in Fig. 25. The stimulation reached the highest effect after 6 hours of 

treatment (8 fold increase for TNFα; 15 fold increase for IL-1β); all the following experiments were 

conducted after 6 hours treatments.  
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Fig. 25   Timecourse of IL-8 
secretion. Effect of TNFα (black 
line) and IL-1β (red line) at 10 
ng/mL on IL-8 secretion in AGS 
cells. The procedure has been 
described in materials and methods 
section. Data are expressed in 
percentage, relative to the 
unstimulated control, which was 
arbitrarily assigned to the value of 
100%. 
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Fig. 26   Effect of TEs from blackberry and raspberry on IL-8 release induced by TNFα and IL-1β. 
AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. IL-8 secretion was assessd by 
ELISA assay. Inhibition by 5 µM parthenolide, used as reference inhibitor, was 70% for both TNFα and 
IL-1β induced IL-8 secretion. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** 
p≤0.01, ***p≤0.001. 
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4.8 Effect of extracts and pure compounds on IL-8 secretion 

Tannin enriched extracts from blackberry and raspberry were able to reduce the IL-8 secretion in 

AGS cells, as shown in Fig. 26. Both the extracts inhibited the increase of IL-8 release induced by 

TNFα in a concentration dependent manner (panel A). IC50s were 0.69 and 0.71 µg/ml for TE-black 

and TE-rasp, respectively. When IL-8 release was stimulated by IL-1β, inhibition of the extracts 

was lower and IC50s were 3.62 µg/ml and 4.13 µg/ml for TE-black and TE-rasp, respectively. 

Ellagitannins showed greater inhibitory effect after treatment with TNFα than IL-1β, according to 

the effect showed by the extracts (Fig. 27). Lambertianin C and sanguiin H-6 started to produce a 
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Fig. 28   Effect of ellagic acid on IL-8 release induced by TNFα and IL-1β. AGS cells were stimulated 
with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. IL-8 secretion was assessd by ELISA assay. Inhibition by 
5 µM parthenolide, used as reference inhibitor, was 70% for both TNFα and IL-1β induced IL-8 secretion. 
Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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Fig. 27   Effect of sanguiin H-6 and lambertianin C on IL-8 release induced by TNFα and IL-1β. AGS 
cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. IL-8 secretion was assessd by 
ELISA assay. Inhibition by 5 µM parthenolide, used as reference inhibitor, was 70% for both TNFα and IL-
1β induced IL-8 secretion. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, 
***p≤0.001. 
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significant inhibition of TNFα induced IL-8 secretion at 0.25 µM. IC50s calculated were 0.29 and 

0.59 µM, respectively. According to the effect showed on the previous parameters, both 

ellagitannins needed higher concentrations to inhibit IL-1β-induced IL-8 secretion (IC50:0.6 µM and 

and 1.04 µM for lambertianin C sanguiin H-6, respectively). Ellagic acid treatment was able to 

reduce IL-8 secretion in a concentration-dependent fashion (Fig. 28). Ellagic acid significantly 

inhibited TNFα –induced IL-8 secretion already at 2.5 µM; the inhibitory effect reached 80% at the 

highest concentration tested (10 µM). When cells were challenged with IL-1β, ellagic acid showed 

a statistically significant inhibition starting from 5 µM and the highest inhibitory effect was found 

to be at 50 µM (90%). 

4.9 Antioxidant effect of the extracts 

In order to assess whether the extracts were able to modulate IL-8 secretion, even in response to a 

pro-oxidant stimulus, AGS cells were treated with the pro-oxidant molecules H2O2 and EtOH (Fig. 

29). It has been widely reported in the literature that H2O2 (500 µM) causes a strong increase in IL-8 

release after 12 hours in AGS cells[300], without cytotoxicity. According to these studies, cells have 

been treated with 500 µM H2O2 and IL-8 measured 12 hours after. When cells were treated with 

H2O2, IL-8 secretion increased ten folds with respect to control cells and secretion was inhibited by 

the extracts (IC50s were 7.0 and 8.2 µg/mL for TE-black and TE-rasp, respectively, Fig. 29, panel A). 

Timecourse of IL-8 secretion induced by EtOH (2%, corresponding to 342,5 mM) revealed that 24 

hours was the best treatment time to induce IL-8 release. This concentration was found to be 
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Fig. 29   Effect of TEs from blackberry and raspberry on IL-8 release induced by H2O2 and EtOH. 
AGS cells were stimulated with 2% EtOH (A) for 24h or 500 µM H2O2 (B) for 12 hours. IL-8 secretion was 
assessd by ELISA assay. Quercetin 10 µM, used as reference inhibitor, completely inhibited EtOH and H2O2 
induced IL-8 secretion. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, 
***p≤0.001. 
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without cytotoxicity in our cellular model. In cells treated with ethanol IL-8 secretion was twice 

higher than in control cells. Treatment with the extracts reduced the release of IL-8, although the 

effect was lower than that observed in cells challenged with TNFα. IC50s were 11.5 and 9.8 µg/mL, 

respectively for TE-black and TE-rasp. 

In vivo study 

4.10 Protective effect of ETs on gastric injury in rats  

The in vivo study aimed to demonstrate the protective effects of TE-black and TE-rasp was carried 

out on 30 Wistar rats, divided into 5 groups according to the different type of treatment, as follows: 

• Group A: animals pre-treated for 10 days with only vehicle (10% polyethylene glycol 400) 

without administration of pure ethanol. 

• Group B: animals pre-treated for 10 days with only vehicle (10% polyethylene glycol 400) 

followed by administration of pure ethanol for 1 hour. 

• Group C: pre-treatment for 10 days with 100 mg/kg/day of quercetin dissolved in 10% 

polyethylene glycol 400, followed by administration of pure ethanol for 1 hour. 

• Group D: pre-treatment for 10 days with 20 mg/kg/day of TE-black dissolved in 10% 

polyethylene glycol 400, followed by administration of pure ethanol for 1 hour. 

• Group E: pre-treatment for 10 days with 20 mg/kg/day of TE-black dissolved in 10% 

polyethylene glycol 400, followed by administration of pure ethanol for 1 hour. 

No difference in weight gain was observed in control and treated animals as shown in Tab. 3.  

 

 

 

 

Results are shown in Fig. 30: group 1 animals showed intact gastric mucosa without ulcerations, 

thus demonstrating that animals were healthy and not subjected to excessive stress during the 

treatment period. Group 2 animals showed a marked damage to gastric mucosa, visible also at 

Group Initial weight (g) 

(g) 

Final weight (g) 

(g) 
A 185.3 ± 6.7 214.8 ± 4.9 
B 191.4 ± 5.3 221.3 ± 7.9 
C 180.6 ± 8,2 211.7 ± 6.5 
D 183.0 ±7.4 215.3 ± 5.3 
E 190.2 ± 5.8 222.5 ± 8.4 

Tab. 3   Effect of the treatment with the extracts on rat weight. No difference in weight gain was 
observed in the 4 groups of rats (group 2–5), as compared with controls animals (group 1) receiving 
only the chronic administration of vehicle (PEG 400). 
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Tab. 4 Ulcer Index measured in all animal groups. Gastric damage was assessed in a blind manner by a 
scoring system based on the number and severity of the lesions: 0, no lesions; 1, lesions 1–2 mm; 2, lesions 
2–3 mm; 3, lesions 3 mm. Ulcer Index was calculated as the total number of lesions multiplied by their 
respective severity score.  

 

 

ULCER 

(A) Vehicle (B) Vehicle 
 

(C) Quercetin (D) TE-black 
 

(E) TE-rasp 
INDEX - Ethanol + Ethanol + Ethanol + Ethanol + Ethanol 
Animal 1 0,0 16 4,0 5,0 9,0 

Animal 2 0,5 19 1,5 7,0 3,0 

Animal 3 0,0 20 1,0 2,5 9,5 

Animal 4 0,0 18 3,5 2,0 3,5 

Animal 5 0,0 15 1,0 4,0 2,5 

Animal 6 0,5 19 1,5 6,0 2,5 

Mean 0,2 17,8 2,1 4,4 5,0 

Standard error 0,1 0,8 0,5 0,8 1,4 

Fig. 30   Protective effect of TEs from blackberry and raspberry against ethanol induced gastric 
injury. Wistar rats were randomly divided in 5 groups (6 rats in each group). Controls were treated daily 
with vehicle (10% polyethylene glycol 400; PEG 400) for 10 days (A). Ethanol group received the vehicle 
(10% PEG 400) daily for 10 days, and then 1 ml of ethanol (B). TE-black group received 20 mg/kg of 
blackberry TEs dissolved in 10% PEG 400 for 10 days, and then 1 ml of ethanol (D). TE-rasp group 
received 20 mg/kg of raspberry TEs dissolved in 10% PEG 400 for 10 days, and then 1 ml of ethanol (E). 
Quercetin group (positive control) received 100 mg/kg of quercetin dissolved in 10% PEG 400 for 10 
days, and then 1 ml of ethanol (C). The last administration of TEs, quercetin or vehicle was given 120 min 
before ethanol. Treatment was performed intragastrically by gavage.  

A. Ctrl B. EtOH C. Quercetin 100 mg/kg/day 

E. TE-rasp 20 mg/kg/day 

 

D. TE-black 20 mg/kg/day 
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macroscopic level as elongated bands usually parallel to the long axis of the stomach. Pure ethanol 

induced the formation of gastric ulcers, measured by Ulcer Index (Tab. 4 and Fig. 31), and caused 

signs of necrosis, with marked infiltration of blood cells. Ulcers were located mostly in the corpus, 

the portion of stomach secreting acid and pepsin. No visible lesions were developed in the non-

secretory part of the stomach. Pre-treatment with quercetin, a flavonoid used as reference inhibitor 

according to Alvarez-Suarez et al.[135], was able to prevent the damage to the gastric mucosa, 

reducing UI by 70%. TE-black and TE-rasp showed a high protective effect against ethanol injury: 

in fact, both the extracts were able to significantly reduced gastric lesions (88% and 75%, for TE-

black and TE-rasp, respectively). Notably, a significant difference (p≤0.05) was found between the 

effect of TE-black and TE-rasp and between TE-black and quercetin. 

 

4.11 Effect of TEs on biochemical parameters 

The gastric mucosa antioxidant capacity, which reflects the oxidation state of the mucosa, was 

evaluated using ORAC assay. Treatment with ethanol reduced in a statistically significant manner 

the anti-oxidant capacity of the tissue, compared to the control animals: reduction was probably due 

Fig. 32   Effect of ETs from blackberry and 
raspberry on antioxidant capacity of gastric 
mucosa. The antioxidant capacity was 
assessed by Oxygen Radical Absorbance 
Capacity (ORAC) assay and Trolox (4–160 
µM) was used as the reference compound. 
ORAC values were calculated as area under 
the curve and expressed as micromole of 
Trolox equivalent (TE) per gram of gastric 
mucosa sample (µmol TE/g of gastric mucosa 
sample). *p≤0.05, **p≤0.01 vs EtOH, #p≤0.05 
vs Unstimulated ctrl 
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Fig. 31   Effect of ETs from blackberry and 
raspberry on prevention of EtOH-induced gastric 
lesions. Gastric damage was assessed in a blind manner 
by a scoring system based on the number and severity 
of the lesions: 0, no lesions; 1, lesions 1–2 mm; 2, 
lesions 2–3 mm; 3, lesions 3 mm. Ulcer Index was 
calculated as the total number of lesions multiplied by 
their respective severity score. Results are the mean ± 
s.e., n = 6. ***p≤0.001 vs EtOH, #p≤0.05 vs TE-black. 
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to the increased production of ROS. Both quercetin and TE extracts were able to prevent oxidative 

stress in gastric mucosa, reporting the anti-oxidant capacity to values close to those obtained in 

control animals, as shown in Fig. 32. TE-black was more efficient in preventing damage caused by 

ethanol. Measurement of enzymatic activitiy of SOD in rat gastric mucosa after treatment with the 

extracts showed that both TE-black and TE-rasp were both able to preserve the activity of the 

enzyme in a statistically significant manner compared to ethanol treated group (Fig. 33, panel A), 

but TE-black was more efficient than TE-rasp. CAT activity was protected only by pre-treatment 

with TE-black (Fig. 33, panel B). 

 

 

The administration of ethanol caused a higher release of CINC- 1 (the rat homologue of human IL-

8) from 12.8 pg/ml in the tissue from control animals to 28 pg/ml in ethanol treated rats, Fig. 34. In 

animals treated with TE-black and TE-rasp the amount of CINC-1 was significantly lower with 

respect to ethanol (16.5±1.9 and 22.2±2.3 pg/ml, respectively). In rats treated with quercetin as 

positive control CINC-1 levels were 15.9±0.72 pg/ml. The effect of TEs on CINC-1 was associated 

to a decrease of NF-κB translocation in TE-black and TE-rasp animals in comparison with control 

and ethanol treated animals. In the tissue of TE-black and TE-rasp animals, NF-κB translocation 

was inhibited by 38±0.11% (mean ± sd, n= 6, p≤0.001) and 72±1.6% (n= 6, p≤0.0001) respectively, 

with respect to ethanol. No difference was observed between control and ethanol group. No data are 

present in the literature as regards NF-κB nuclear translocation in vivo in the animal model of 
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Fig. 33   Effect of TEs from blackberry and raspberry on enzymes activity ex vivo. The amount of 
SOD (A) in the samples was calculated by correlating the inhibition percentage of WST-1-formazan 
formation with the logarithm of the SOD units in a standard calibration curve. SOD activity is expressed as 
U/mg of proteins. CAT activity (B) was determined by the reaction of the enzyme with methanol in the 
presence of an optimal concentration of H2O2. The formaldehyde produced is measured colorimetrically at 
540 nm with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole as the chromogen using a microplate reader. 
CAT activity is expressed as units (U) of CAT per mg of proteins. One unit of CAT is defined as the 
amount of enzyme causing the formation of 1.0 nmol of formaldehyde per minute at 25°C. Results are the 
mean±se, n = 6. * p≤0.05, ** p≤0.01 vs EtOH, #p≤0.05 vs Unstimulated ctrl 
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ethanol-induced ulcer. An explanation is that the damage of the tissue does not allow properly 

isolation of the nuclear fraction. 
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Fig. 34   Effect of TEs from blackberry and 
raspberry on CINC- 1 (IL-8 homologue) ex 
vivo. CINC-1 release was evaluated using GRO/ 
CINC-1 (rat) EIA kit. After a short incubation (10 
minutes) the enzyme reaction was followed by 
spectroscopy (signal read 450 nm, 0.1 s). The 
concentration of rat GRO/CINC-1 in the samples 
was determined by interpolation with a 
GRO/CINC-1 standard curve. The results (mean ± 
se, n = 6) are expressed as pg of CINC-1 per mL 
of sample. * p≤0.05, ** p≤0.01 vs EtOH, #p≤0.05 
vs Unstimulated ctrl QU   TE-black  TE-rasp 
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Fragaria X ananassa Duch. and Fragaria vesca L.  
(Strawberry and wild strawberry) 

In vitro studies 

4.12 Extracts composition 

The quantification of tannins present in Fragaria extracts was conducted by UPLC-PDA-MS as 

previously described[141]. The composition of TEs is shown in Fig. 35: in TE-straw agrimoniin 

represented 6% of the whole composition of the extract, whereas ellagic acid was 0.4%. 

Compounds belonging to the class of flavan-3-ols constituted 3.6% of the extract, while 

procyanidins represented 35%. In TE-wild agrimoniin was 8%, ellagic acid 2%, flavan-3-ols 2% 

and procyanidins 22%. More than 50% of compounds of both the extracts are actually unknown. 

For a detailed analysis of  the compounds identified, see Tab. 5. 

4.13 Evaluation of cytotoxicity of strawberry extracts and agrimoniin.  

The cytotoxic effect exerted by extracts on cell viability was assessed by quantifying the activity of 

mitochondrial succinate dehydrogenase (MTT test) and by the Trypan blue test. The results have 

shown that TE-straw and TE-wild had no cytotoxic effects on AGS cells after 6 hours treatment in 

the concentration range of 0.05 –25 µg/mL after 6 hours treatment. Agrimoniin was not cytotoxic at 

all the concentrations used in this study. 

4.14 Effect of extracts and pure compounds on NF-κB driven transcription 

Strawberry extracts inhibited significantly, in a concentration-dependent fashion, the transcription 

6% 
3.6% 

0.4% 

35% 
55% 

Agrimonin	  
Ellagic	  acid	  derivatives	  
Flavan-‐3-‐ols	  
Procianidins	  
Unknown	  

8% 2% 
2% 

22% 

66% 

Agrimoniin	  
Ellagic	  acid	  
Flavan-‐3-‐ols	  
Procianidins	  
Unknown	  

Fig. 35   Composition of strawberry (TE-straw) and wild strawberry (TE-wild) extracts. 
Berries TEs were extracted with acetone/water 70:30, isolated by Sephadex LH 20 column 
chromatography, precipitated with hexane and quantified by UPLC-PDA-MS. Tannins were detected 
at 260 nm.  

Wild strawberry (TE-wild) Strawberry (TE-straw) 
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mediated by NF-κB in AGS cells, subjected to stimulation with TNFα and IL-1β at 10 ng/mL, Fig. 

36. The inhibitory effect was greater for Fragaria extracts in comparison to Rubus extracts, IC50s 

were 0.23 and 0.42 µg/mL under TNFα stimulus for TE-straw and TE-wild, respectively (panel A). 

Method Compounds  TE-straw TE-wild 
   % % 

ellagitannins 
analysis 

(PDA 260 nm) 

agrimoniin  5,5 7,6 
methyl ellagic acid rhamoniside  0,2 1,15 

ellagic acid  0,2 0,8 
sanguiin H-6  0,02 0,02 

lambertianin C  0 0,1 
total ellagitannins %   5,92 9,67 

M
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s (

TQ
 M
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gallic acid  0,0004 0,0008 
methyl gallate  0,0000 0,0000 
t-coutaric acid  0,0000 0,0000 

luteolin-7-O-Glc  0,0011 0,0003 
epigallocatechin  0,0001  

gallocatechin  0,0001 0,0001 
catechin gallate + epicatechin gallate  0,0000 0,0004 

procyanidin B3  1,4309 0,7799 
taxifolin   1,8156 

kaempferol-3-Glc  0,0584 0,0265 
quercetin-3-glucuronide  0,0930 0,0068 

kaempferol-3-glucuronide  0,0935 0,0005 
chlorogenic acid  0,0003  

t-piceide  0,0004 0,0001 
cis-piceide  0,0015 0,0002 
phlorizin  0,0111 0,0013 
catechin  1,6251 1,2022 

epicatechin  0,0068 0,0042 
procyanidin B1  0,5040 0,4489 

procyanidin B2 + B4  0,0166 0,0173 
quercetin-3-Glc + que3gal  0,0047 0,0456 

isorhamnetin-3-Glc  0,0001 0,0284 
fraxin   0,0000 

caffeic acid+catechin condensation  0,0022 0,0008 
phloretin  0,0000  
trilobatin  0,0022 0,0002 
luteolin  0,0042 0,0050 

naringenin  0,0000 0,0001 
naringenin-7-glucoside  0,9382 0,1025 

procyanidin A2  0,0001 0,0001 
kaempferol pos  0,0011 0,0004 

total benzoic acid %  0,0004 0,0008 
total coumarins & phenylpropanoids %  0,0003 0,0000 

total stilbenes %  0,0042 0,0011 
total dihydrochalcones %  0,0133 0,0015 

total flavones & flavanones %  0,9436 0,1076 
total flavonols %  0,2507 1,9238 

total flavan-3-ols %  3,5837 2,4530 
total MRM polyphenols %   4,7960 4,4881 

Vanillin 500 
nm) 

Total procianidins %   35,17 22,5 

 Known compounds %  45,89 36,66 
 

Tab. 5   Table of compounds analyzed in Fragaria extracts. The analysis reveals that the most abundant 
single compound in both the extracts is agrimoniin, which represents 5.5% of TE-straw and 7.6% of TE-wild. 
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Both the extracts showed a marked activity, bringing values to basal level at 1 µg/mL. In cells 

subjected to stimulation with IL-1β, however, the effect of extracts from strawberries on 

transcription mediated by NF-κB was less pronounced and statistically significant only from 

concentration above 5 µg/mL (panel B). The inhibitory effect of agrimoniin, the main ellagitannin 

identified in the extracts, on the TNFα-induced NF-κB driven transcription was statistically 

significant from 0.5 µM as shown in Fig. 37. IC50 of agrimoniin under TNFα stimulus was 0.50 µM 

(panel A), significantly lower with respect of IC50 obtained under IL-1β stimulus (13.34 µM, panel 

B). 
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Fig. 37    Effect of agrimoniin on NF-κB driven transcription induced by TNFα and IL-1β. AGS cells 
were stimulated with 10 ng/mL TNFα (A) or IL-1β (B) for 6 hours. Agrimoniin were tested at 0.25–25 µM. 
Inhibition by 5 µM parthenolide, used as reference inhibitor, was 72% on TNFα and 71% on IL-1β induced 
NF-κB driven transcription. Results are the mean .± s.d. of three experiments in triplicate. * p≤0.05, ** 
p≤0.01, ***p≤0.001. 
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Fig. 36   Effect of TEs from strawberry and wild strawberry on NF-κB driven transcription 
induced by TNFα and IL-1β. AGS cells were stimulated with 10 ng/mL TNFα (A) or IL-1β (B) for 6 
hours. TEs were tested at 0.1–10 µg/mL. Inhibition by 5 µM parthenolide, used as reference inhibitor, 
was 72% on TNFα and 71% on IL-1β induced NF-κB driven transcription. Results are the mean ± sd of 
three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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4.15 Effect of extracts and pure compounds on NF-κB nuclear translocation 

The extracts were tested in a concentration range between 0.5-2.5 µg/mL after stimulation with 

TNFα and IL-1β. The results on translocation are shown in Fig. 38. TE-straw inhibited in a 

concentration-dependent way the nuclear translocation of NF-κB induced by TNFα, with a 

statistically significant inhibition already starting from 0.5 µg/mL; TE-straw activity was higher 

compared to TE-wild at each concentration tested (panel A). TE-wild showed statistically 

significant inhibition at concentrations below 1 µg/mL. Agrimoniin at concentrations ranging 
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Fig. 39   Effect of agrimoniin on NF-κB nuclear translocation induced by TNFα and IL-1β. AGS cells 
were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 1 hour. NF- κB nuclear translocation was assessed 
by ELISA assay followed by spectrophotometric analysis (signal read 450 nm, 0.1 s). Inhibition by 
parthenolide at 5 µM, used as reference inhibitor, was 37% on TNFα and 40% on IL-1β stimulus. Results are 
the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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Fig. 38   Effect of TEs from strawberry and wild strawberry on NF-κB nuclear translocation induced 
by TNFα and IL-1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 1 hour. NF- kB 
nuclear translocation was assessed by ELISA assay followed by spectrophotometric analysis (signal read 
450 nm, 0.1 s). parthenolide at 5 µM, used as reference inhibitor, was 37% on TNFα and 40% on IL-1β 
stimulus. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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between 0.5-2.5 µM (TNFα) and 2.5-10 µM (IL-1β), Fig. 39. showed a statistically significant 

inhibition at concentrations from 1 µM to 2.5 µM.  

4.16 Effect of extracts and pure compounds on IL-8 secretion 

Extracts were tested at concentrations ranging between 0.1-10 µg/mL after stimulation with TNFα 

(10 ng/mL) or IL-1β (10 ng/mL). Both cytokines led to a significant increase of IL-8 secretion by 

AGS cells compared to non-stimulated control, Fig. 40. The inhibitory effect on TNFα was 

statistically significant starting at concentrations of 0.25 µg/mL and 0.5 µg/mL, for TE-straw and 
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Fig. 40   Effect of TEs from strawberry and wild strawberry on IL-8 release induced by TNFα and IL-
1β. AGS cells were stimulated with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. IL-8 secretion was assessd 
by ELISA assay. Parthenolide (5 µM), used as reference inhibitor, showed 70% inhibition for both TNFα and 
IL-1β induced IL-8 secretion. Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, 
***p≤0.001. 
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Fig. 41    Effect of agrimoniin on IL-8 release induced by TNFα and IL-1β. AGS cells were stimulated 
with 10 ng/ml TNFα (A) or IL-1β (B) for 6 hours. IL-8 secretion was assessd by ELISA assay. Inhibition by 
5 µM parthenolide, used as reference inhibitor, was 70% for both TNFα and IL-1β induced IL-8 secretion. 
Results are the mean±sd of three experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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TE-wild, respectively (panel A). The extracts inhibited the secretion of IL-8 induced by IL-1β in 

statistically significant way at 2.5 µg/mL (panel B). Both the extracts were able to restore the 

secretion of IL-8 to the basal level when used at higher concentrations (10 µg/mL). Agrimoniin 

inhibited in a concentration-dependent manner IL-8 secretion with statistically significant values 

starting from 0.1 µM under TNFα stimulus (Fig. 41, panel A). 

 4.17 Effect of in vitro gastric digestion on strawberry extract activity 

In order to evaluate the effect of gastric digestion on the activity of extracts, TE-straw was 

subjected to an in vitro gastric digestion. The results obtained by the digested extract were 

compared under TNFα stimuls to the unprocessed one. Results are shown in Fig. 42. In all the 

conditions, digestion decreased the activiy of TE-straw by approximately 50%. In case of NF-κB 

driven transcription (panel A), digested extract needed a concentration of 5 µg/mL to abolish the 

effect of TNFα stimulus, effect that was obtained at the concentration of 2.5 µg/mL by TE-straw. 

The concentration used to inhibit NF-κB nuclear transolcation induced by TNFα to basal level was 

5 and 2.5 µg/mL for digested extract and TE-straw, respectively (panel B). Also the effect of TNFα 
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Fig. 42   Effect of gastric digestion on strawberry 
extract. TE-straw underwent to in vitro gastric 
digestion and the activity of the digested extract was 
compared to the original one in NF-κB driven 
transcription (A), NF-κB nuclear translocation (B) 
and IL-8 secretion (C). Results are the mean±sd of 
three experiments in triplicate. * p≤0.05, ** p≤0.01, 
***p≤0.001. 
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on IL-8 secretion was completely inhibited at 2.5 µg/mL by the digested extract, approximately a 

concentration double if compared to TE-straw (panel C). 

4.18 Effect of extracts and pure compounds on IL-8 promoter activity 

On the basis of previously results in IL-8 secretion the effect of TE-straw and digested extract were 

assessed on the inhibitory effect on IL-8 promoter activity, using TNFα (10 ng/mL) as pro 

inflammatory stimulus; furthermore, in order to ensure the effective involvement of NF-κB, the 

activity of TE-straw was also evaluated on the promoter of IL-8 mutated in the binding site for NF-

κB, results are shown in Fig. 43. The pro-inflammatory stimulus increased the activity of the IL-8 

promoter approximately 6 times compared to non-stimulated control cells (panel A). TE-straw and 

Dig-TE-straw had a significant inhibition of IL-8 promoter activity already at 0.25 µg/mL. Even in 

the evaluation of this parameter Dig-TE-straw required approximately a concentration double 

compared to TE-straw to obtain the same inhibitory effect. TNFα did not increased activity of IL-8 

mutated promoter compared to non-stimulated cells; in addition, also TE-straw and Dig-TE-straw, 

at each concentration tested, did not induce the mutated promoter activity (panel B). Agrimoniin 

was tested on IL-8 promoter activity in a concentration range between 0.1-2.5 µM, using TNFα as 

pro-inflammatory stimulus. Results are shown in Fig. 44. Agrimoniin inhibited the activity of IL-8 

promoter in a concentration-dependent manner; the effect was statistically significant starting at the 

concentration of 0.25 µM (panel A). The inhibition of 50% was obtained from agrimoniin at 1 µM. 

As previously reported, TNFα did not caused any increased activity of the promoter mutated in NF-

κB binding site, with respect to non-stimulated control, and agrimoniin did not change the activity 

at any concentration tested (panel B). 
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Fig. 43   Effect of TEs extracts from strawberry on IL-8 promoter activity induced by TNFα. AGS cells 
were stimulated with TNFα 10 ng/mL for 6 hours. TEs were tested at 0.25-2.5 µg/mL on IL-8 promoter 
activity (A) and on IL-8 promoter mutated at the NF-κB binding site (B). Results are the mean ± sd of three 
experiments in triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 
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4.19 Summary of in vitro biological activity of berries extracts and pure compounds 

The following tables summarized the inhibitory concentrations obtained by extracts and individual 

compounds on TNFα (Tab. 6) and IL-1β (Tab. 7). 

 

Stimulus: TNFα  
10 ng/mL 

NF-κB driven 
trascription 

6h 

NF-κB (p65) translocation 
1h 

IL-8 secretion 
6h 

Extracts IC50 values (µg/ml) IC50 values (µg/ml) IC50 values (µg/ml) 
TE-black 0.52 1.11 0.69 
TE-rasp 0.95 1.26 0.71 

TE-straw 0.23 0.37 0.25 
TE-wild 0.42 0.79 0.29 

Dig-TE-straw 1.07 2.17 0.31 
Compounds IC50 values (µM) IC50 values (µM) IC50 values (µM) 
LAMB-C 1.86 0.94 0.29 

SANG-H-6 1.35 1.18 0.59 
AGRI 0.50 0.81 0.09 

EA 0.44 1.68 2.56 
 

Tab. 6   Summary of results obtained after treatment with the extracts/pure compounds (TNFα 
stimulus). Values on NF-κB transcription, translocation and IL-8 secretion are expressed as IC50. 
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Fig. 44   Effect of agrimoniin on IL-8 promoter activity induced by TNFα. AGS cells were stimulated 
with TNFα 10 ng/mL for 6 hours. Agrimoniin was tested at 0.1-2.5 µM on IL-8 promoter activity (A) and on 
IL-8 promoter mutated at the NF-κB binding site (B). Results are the mean ± sd of three experiments in 
triplicate. * p≤0.05, ** p≤0.01, ***p≤0.001. 

 

A B 



RESULTS 

	   67	  

Stimulus: IL-1β  
10 ng/mL 

NF-κB driven 
trascription 

6h 

NF-κB (p65) translocation 
1h 

IL-8 secretion 
6h 

Extracts IC50 values (µg/ml) IC50 values (µg/ml) IC50 values (µg/ml) 
TE-black 6.83 2.14 3.62 
TE-rasp 8.80 2.79 4.13 

TE-straw 3.26 No inhibition till 2.5 µg/ml 3.59 
TE-wild 7.31 2.62 1.69 

Compounds IC50 values (µM) IC50 values (µM) IC50 values (µM) 
LAMB-C 5.89 1.51 0.60 

SANG-H-6 2.52 1.06 1.04 
AGRI 13.34 2.94 0.82 

EA (-28% at 25 µM) 24.00 7.21 
  

Tab. 7   Summary of results obtained after treatment with the extracts/pure compounds (IL-1β 
stimulus). Values on NF-κB transcription, translocation and IL-8 secretion are expressed as IC50. 
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Gastritis are very common inflammatory based diseases which are mostly caused by H. pylori 

infection [1]. This bacterium colonizes the gastric mucosa of over 80% of human population in 

developing countries [36] and at least 50% of the world’s human population[3]. H. pylori has been 

classified as type I carcinogen by the World Health Organization [41]; it is able to influence early 

stages in gastric carcinogenesis and its eradication in infected individuals significantly decreases the 

risk of developing gastric adenocarcinoma [42]. H. pylori infection induce a strong immune response 

in the host [40], which is characterized by the release of several inflammatory cytokines in the gastric 

mucosa, such as IL-1β, IL-2, IL-6, IL-8 and TNFα[51-54]. Gastric epithelial cells stimulated by 

cytokines, such as TNFα and IL-1β, induce the expression of IL-8, a potent chemokine which 

promotes neutrophil infiltration [57, 58, 95]. IL-8 secretion is strictly associated with the activation of 

NF-κB pathway in gastric epithelial cells [95, 301]; increased levels of IL-8 have been reported to be 

associated to several inflammatory conditions, including inflammatory bowel disease, psoriasis, 

rheumatoid arthritis, septic shock and cystic fibrosis, and gastric inflammation [59]. Gastric epithelial 

cells are probably the main producers of IL-8 during gastric inflammation [55].  

In recent years, the study of medicinal and edible plants able to treat or prevent the development of 

various chronic diseases is attracting more and more interest. It has been demonstrated that fruits 

and vegetables occurring in the human diet, including berries, may exert a variety of health benefits 

mainly due to their antioxidants content [134]. The anti-oxidant and anti-inflammatory activity of 

these fruits can be attributed to their polyphenols content [18, 135]. Several works in the literature 

suggested the importance of the consumption of products rich in polyphenols in relation to gastritis 

induced by H. pylori [170, 302-306]. Recent studies have established that the intake of berries has a 

positive effect on human health, and this ability has been ascribed to the high phenolic content [174]. 

Among polyphenols, in the last few years anthocyanins and, to a lesser extent, condensed tannins, 

received more attention, whereas the biological effects of ellagitannins have been poorly 

investigated. Plant rich in tannins have a traditional use for treating gastric ulcer, and tannins 

showed anti-bacterial activity against H. pylori [290, 291]. The chemical composition of tannins 

depend on the fruit source, sanguiin H-6 and lambertianin C representing the main compounds in 

blackberry and raspberry [141], while procyanidins and agrimoniin are the main compounds in 

strawberries [307]. Different studies have demonstrated that tannins are stable at the physiological 

conditions of the stomach: gastric pH, between 1.8 and 2.0, and digestive enzymes are not able to 

hydrolyse or metabolize this class of molecules, and they are not absorbed in this district [227, 271]. 

Metabolism of tannins takes place in the intestine where the physiological pH of the small intestine 

causes the hydrolysis of ellagitannins and the release of ellagic acid. The latter is then metabolized 

by the gut microflora to urolithins [308], while procyanidins could be absorbed intact in the intestinal 
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tract [272, 273] although other studies are necessary to confirm this observation. Therefore the 

biological activities of tannins at the gastric level are fully associated to the unmodified structures, 

and are not related to the metabolic transformation. 

This study reports for the first time that ellagitannins from blackberries and raspberries are able to 

protect the stomach against the gastric lesions caused by ethanol, whereas only one in vivo study  

previously demonstrated that a strawberry extract was able to inhibit gastric damage in the same 

animal model [135].  

In the present study, TE-black and TE-rasp reduced the formation of gastric ulcers by 88% and 75%, 

respectively, in ethanol-treated rats. The anti-ulcer effect of blackberry, measured as UI, was higher 

compared to raspberry. This difference could be explained by the ellagitannins content of the two 

extracts; TE-black contained a higher amount of ellagitannins (343 mg/100 g of fresh fruits) than 

TE-rasp (155 mg/100 g of fresh fruit). Extracts were able to protect the antioxidant capacity of 

gastric mucosa, measured by ORAC, and preserve the activity of constitutive antioxidant enzymes 

such as SOD and CAT. In addition, the reduction of the severity of the lesions in ellagitannins-

treated rats was also associated to a concomitant reduction of the release of CINC-1, the rat 

homologue of human IL-8. Since the IL-8 expression and secretion in gastric epithelial cells are 

mainly regulated by redox-sensitive transcription of NF-κB [300], it was proposed that NF-κB could 

be also modulated by anti-oxidant effect of tannins. To verify this theory in vitro experiments were 

performed on gastric epithelial cells (AGS). The anti-oxidant activity of TE-black and TE-rasp 

extracts was assessed in cells stimulated with H2O2 and ethanol, measuring IL-8 secretion, to mimic 

the condition used in the animal model. TE-black and TE-rasp inhibited IL-8 secretion induced by 

pro-oxidant stimuli confirming the supposed mechanism. 

Since tannins have demonstrated to possess anti-inflammatory activities [201-203, 279, 283, 309], extracts 

enriched in tannins from blackberries, raspberries and strawberries were assayed evaluating anti-

inflammatory activity in vitro at gastric level. The activity was tested in AGS cells exposed to 

TNFα and IL-1β since these cytokines are closely related to H.pylori infection. The results showed 

that TEs interfere with the metabolic cascade deriving from NF-κB activation. All the extracts 

inhibited IL-8 release from gastric epithelial cells induced by pro-inflammatory stimuli in a 

concentration dependent manner. In all cases the inhibitory effect of TE was higher when TNFα 

was used as stimulus. An explanation may reside in the role of ROS in the NF-κB activation 

induced by TNFα, thus suggesting also an involvement of the antioxidant mechanism of extracts [78, 

310]. The signaling pathways of TNFα and IL-1β for the activation of NF-κB are different [311], and 

tannins could interact at different steps modulating different signaling cascades. Rubus extracts 

required more than double concentrations to produce the same inhibition on TNFα -induced IL-8 
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release exerted by Fragaria extracts; however IC50 were below 1 µg/mL for all the extracts (TE-

black 0.69 µg/mL, TE-rasp 0.77 µg/mL, TE-straw 0.25 µg/mL and TE-wild 0.29 µg/mL). TEs were 

also able to interfere with NF-κB pathway, by inhibiting the NF-κB driven transcription and the 

nuclear translocation of this transcription factor. When TNFα was used as stimulus TEs inhibited 

NF-κB driven transcription with IC50 below 1 µg/mL, while at 2 µg/mL all the extract inhibited the 

translocation of this factor by more than 50%. Since NF-κB translocation is an upstream event 

compared to NF-κB driven transcription, the inhibitory effect of extracts could be explained mostly 

by reduced translocation.  

The analysis of anti-inflammatory activity was also performed to the main individual compounds 

occurring in TEs. The main ellagitannins, sanguiin H-6, lambertianin C and agrimoniin, in addition 

to their hydrolysis product, ellagic acid, were tested on the previous inflammation parameters. All 

these compounds showed a strong inhibition of NF-κB activation (i.e. nuclear translocation and 

transcription), and IL-8 secretion thus confirming that these compounds contribute to the overall 

effect of the extracts. Individual procyanidins identified in the strawberry extract by UPLC-PDA-

MS were present at low amount thus making impossible to associate biological activity of the 

extract to one of them. However, quantitative analysis of the extract is still under investigation.  

To clarify the contribution of NF-κB on IL-8 secretion TE-straw, deriving from the most widely 

consumed strawberry fruit, was also assayed on IL-8 promoter activity. IL-8 promoter is 

characterized by having one site of NF-κB binding. TE-straw inhibited the activity of this promoter, 

induced by TNFα, with an IC50 of 0.17 µg/mL, comparable to that obtained on IL-8 secretion (0.25 

µg/mL), thus indicating that the mechanism of IL-8 secretion is mainly regulated at transcriptional 

level. The role of NF-κB was also investigated by using cells transfected with the promoter of IL-8 

mutate in the κB binding site. In this case TNFα was not able to induce a significant activity of the 

promoter and the use of TE-straw did not cause significant variations. Also agrimoniin, the main 

ellagitannin identified in the extract, did not influence the activity of the mutated promoter. These 

results confirmed that inhibition of the NF-κB pathway is the mechanism of action underlying 

inhibition of IL-8 secretion by the extracts under study. 

Despite tannins are stable at the physiological conditions of the stomach, there were no studies 

related to the stability of tannins from Rubus and Fragaria spp at gastric level; for this reason the 

contribution of gastric digestion on the anti-inflammatory activity of extracts was also evaluated. 

The previous in vivo study on TE-black and TE-rasp already showed the anti-inflammatory effect of 

digested extracts: in fact, TE-black and TE-rasp were administered orally by gavage. For this 

reason the effect of an in vitro digestion was evaluated on TE-straw, the most widely consumed 

fruit containing tannins[307]. In vitro digestion halved the anti-inflammatory activity of TE-straw, 
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however the effect on NF-κB transcription, translocation, IL-8 secretion and IL-8 promoter activity 

remained significant at low concentrations. Digestion performed on TE-straw probably influenced 

concentrations of other class of compounds with biological activities present in the extract. Mucus 

and food in vivo could also affect the achievement of epithelial cells from the active molecules, but 

in pathological conditions epithelial cells could also be exposed directly to the gastric content. 

This is the first study showing the anti-inflammatory activity of agrimoniin, which recent works 

have decribed as the main ellagitannin consumed in western diet, whose concentration could 

potentially reach high level in the stomach [307]. 

In conclusion, the anti-inflammatory activity exerted by tannins of blackberry, raspberry and 

strawberry occurs at extremely low concentrations, in many cases even less than 1 µg / mL, values 

that are considered easy to reach at gastric level as a result of the ingestion of a normal serving 

portion of berries (about 50 grams), considering a relative quantity of tannins: 100 mg for 

blackberry and raspberry [141] and 80 mg for strawberry [155, 178]. Considering a volume of human 

gastric juice of 20 mL, the consumption of 50 g of fresh berries by an human adult allows to reach a 

concentration of tannins in the stomach approximately around 2.6 mg/mL, which is 103 higher than 

the concentration required to inhibit NF-κB nuclear translocation and activation of gene 

transcription. Despite the effect of extracts was greater when pro-inflammatory was used, an 

antioxidant activity is also involved, since it occurred after pro-oxidant stimula.  

Ellagitannins from Rubus berries efficiently protect against the onset of gastric ulcer in a rat animal 

model. TEs act through the inhibition of the NF-κB signaling cascade in response to pro-

inflammatory or antioxidant agents. The effect of these fruits is not attributable only to 

anthocyanosides, whose effect on gastric inflammation has already been demonstrated for 

strawberry, but also to tannins. The effect in vivo might be higher consuming berries, which 

contains both classes of molecules. For these reasons, tannins deserve more attention; further 

studies could evaluate the effects of these extracts on inflammation directly induced by the presence 

of H. pylori, considering also the anti-bacterial properties of this class of compounds[169-171]. 

Tannins could also act in the intestine, but there are no in vivo studies to support this hypothesis, 

however, urolithins deriving from berries could be active in this district. Ellagic acid is an active 

molecule that is also present in the extracts, thus suggesting the possibility to have anti-

inflammatory activity in the first part of the gut.  

The outcome of this research will allow to draw the attention of the clinical/dietology community 

towards the benefits of fruits of Rubus and Fragaria spp. as integration in dietary regimens 

designed for inflammatory gastrointestinal diseases. Moreover, tannins could be used in association 

with drug therapy to treat gastric inflammatory diseases.  
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