
Università degli Studi di Milano

Dipartimento di Matematica F. Enriques

Scuola di Dottorato in Scienze Matematiche
Corso di Dottorato di Ricerca in Matematica

XXVI Ciclo

Tesi di Dottorato di Ricerca

On the Birch and Swinnerton-Dyer conjecture for
elliptic curves of analytic rank one

Candidato Relatore
Andrea Berti Prof. Massimo Bertolini
Matricola Coordinatore del Dottorato
R08961 Prof. Lambertus Van Geemen

Anno Accademico 2013/2014



to my family
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Introduction

The main result of this Thesis is to prove the p-part of the Birch and Swinnerton-Dyer con-
jecture for semistable elliptic curve of analytic rank one. Our main result is the following
arithmetic relation:

Theorem A Let E/Q be a semistable elliptic curve of analytic rank one (i.e. the Hasse-
Weil L-series L(E/Q, s) has a simple zero at s = 1). Then there exists a finite set of primes
ΣE ⊃ {2, 3, 5, 7} such that: for every prime p 6∈ ΣE of good ordinary reduction for E/Q

“ p divides
L′(E/Q, 1)

ΩE · hE(PE)
” ⇐⇒ “ p divides #III(E/Q) · CN”,

where the notations are as follows: PE is a generator of the Mordell-Weil group E(Q) modulo
torsion, ΩE is the real period of E/Q, and hE(PE) is the Néron-tate height of PE −so that the
ratio L′(E/Q)

/
ΩE ·hE(PE) is a non-zero integer. Moreover, III(E/Q) is the Tate-Shafaravivh

group of E/Q, and CN :=
∏
`|cond(E/Q) c`, with c` := c`(E/Q) the `-th Tamagawa factor of E

for every prime ` dividing the conductor cond(E/Q) of E/Q.

In [SU] Skinner and Urban proved (under some hypotheses verified in our setting), the va-
lidity of the p-part of the Birch and Swinnerton-Dyer conjecture for semistable elliptic curves
of analytic rank zero. Their result is a consequence of the Iwasawa Main Conjecture for GL2.
Our strategy adapts the techiniques of the work of Bertolini and Darmon and deduces the
result for elliptic curves of analytic rank one from the result of [SU]. The idea is to explicitely
construct a modular form g by rasing the level of the modular form f attached by Wiles result
[Wi] to the elliptic curve E, and to relate the special value of the L-function attached to g to
the the index in E(K) of a Heegner point PK , where K is a suitable imaginary quadratic field.
Assuming the existence of a lift to characteristic zero of an eigenform obtained by raising the
level from a p-isolated eigenform (see the Lifting Hypothesis 2.3.2) we prove the following
result:

Theorem B Let E/Q be an elliptic curve of squarefree conductor N . Assume that E has
analytic rank one. Let PE be a generator of the Mordell-Weil group modulo torsion and denote
by hE(PE) its canonical Néron-Tate height. Let p ≥ 11 be a prime of good ordinary reduction
for E and suppose that p does not divide the minimal degree dE of a modular parametrization
ϕE : X0(N)→ E. Assume furthermore the Lifting Hypothesis 2.3.2. The equality

ordp

(
L′(E/Q, 1)

ΩE · hE(PE)

)
= ordp(#III(E/Q) · CN )

holds (i.e. the p-part of the Birch and Swinnerton-Dyer formula holds for L(E/Q, s)).

This Thesis is divided into two parts. The first part is essentially expository: we introduce
the definitions of the objects we use in this work and state the Birch and Swinnerton-Dyer
conjecture. We discuss in detail the evidence and the known partial results. We discuss in
particular the work of Skinner and Urban [SU], and the equivalence between classical and
quaterinionic modular forms, via the Jacquet-Langlands correspondence.

The second part is devoted to the proof of Theorem A. We start giving the main steps
of the proof, then first we give a simplification of the statement, that, after our reduction,
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is equivalent to a relation between the p-orders of the Shafarevich-Tate group of E/Q and
the index of the above-mentioned Heegner point. Then we give the explicit construction of
an eigenform obtained by raising the level from the modular form attached to E, borrowing
techniques from [BD].

All the constructions work modulo pn, and one is left with the technical problem to show
the existence of a lift to characteristic zero of the mod-pn modular form obtained. This is
known in the case n = 1 and gives Theorem A. Following Vatsal [Va] we state a special value
formula, which combined with the result of Skinner and Urban [SU] on the validity of the
p-part of the Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic rank zero,
allows us to conclude our proof. Theorem B follows from a similar argument, assuming the
Lifting Hypothesis 2.3.2.



Chapter 1

Elliptic curves: results and open
problems

In this first Chapter we introduce the definitions and the results we use in Chapters II.

1.1 The Mordell-Weil theorem

Main Reference: [B]

Let E be an elliptic curve defined over a number field K. One important result, and in
some sense, the starting point for the study of the arithmetic of the K-rational points of E
is the Mordell-Weil theorem.

Theorem 1.1.1 (Mordell-Weil). The Mordell-Weil group E(K) is finitely generated, i.e. it
is of the form

E(K) = Zr ⊕ E(K)tors,

where r ≥ 0 and E(K)tors is the finite torsion subgroup of E(K).

Remark 1.1.2. The torsion subgroup E(K)tors can be easily calculated for a given E, and its
order is bounded in terms of the degree [K : Q], thanks to the works of Mazur [Ma1] and
Merel [Me].
The integer r := rnkZ(E) is called the algebraic rank of E. The proof of the Mordell-Weil
theorem does not provide an effective algorithm to determine r and no algorithm in general
is known.

We omit a complete proof of this fact, that is very common in literature, see for example
[Si]. We just give the outline of the main steps for fixing the notations.

The proof is divided into two steps. The first step provides the existence of a function
h : E(K)→ R, called height, such that:

• fixed one point Q ∈ E(K) there exists a constant C depending on Q (and on E) and a
constant C ′ depending only on the curve E, giving the following bounds

h(P +Q) ≤ 2h(P ) + C, h(mP ) ≥ m2h(P ) + C ′,

for an arbitrary P ∈ E(K) and any positive integer m.

6
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• for each x > 0 we have that

#{P ∈ E(K) : h(P ) < x} <∞.

The second step is known as the weak Mordell-Weil theorem and states the finiteness of
the quotient E(K)/nE(K) for every n.

The link between the two steps is given by the so-called descent lemma of Fermat, that
ensures that every abelian group G with a finite quotient G/nG and equipped with an height
function as above is finitely generated.

If we take K = Q, then we can define a height function of a point P ∈ E(Q) as

h(P ) =

{
0 if P = OE

log(max{|r|, |s|}) if P = (r/s, y) with (r, s) = 1.

The height function h can be turned into a quadratic function, called the canonical Néron-Tate
height, by the formula

ĥNT (P ) :=
1

2
lim
n→∞

4−nh(2nP ),

that satisfies the following properties:

i 2ĥNT (P )− h(P ) = O(1),

ii ĥNT (P ) ≥ 0 for all P, and the equality holds if and only if P is a torsion point,

iii ĥNT (mP ) = m2ĥNT (P ).

We fix the notation for the associated bilinear symmetric pairing:

〈P,Q〉NT = ĥNT (P +Q)− ĥNT (P )− ĥNT (Q).

Remark 1.1.3. The above discussion generalises to any number field K, and gives rise to a
canonical Néron-Tate non-degenerate pairing

〈, 〉NT : E(K)/E(K)tors × E(K)/E(K)tors → R

To simplify notations, if it does not generate confusion, we denote ĥNT by hE .
The point of the proof which is more relevant for our argument is the second step, i.e. the

weak Mordell-Weil theorem.
The result is trivial on an algebraic closure K̄ of K. Denoting by [n] the multiplication-

by-n map, we have an exact sequence

0→ E [n]→ E
(
K̄
) [n]→ E

(
K̄
)
→ 0

of modules with a natural continuous action of the absolute Galois group GK = Gal
(
K̄/K

)
.

Taking Galois cohomology on the sequence, we get a new exact sequence

0→ E [n]→ E
(
K̄
) [n]→ E

(
K̄
)
→

→ H1 (GK , E [n])→ H1 (GK , E)
[n]→ H1 (GK , E)
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from which we can extract the so called Kummer sequence

0→ E (K) /nE(K)
δ→ H1 (GK , E [n])→ H1 (GK , E) [n]→ 0.

Actually nothing changes if we take an arbitrary isogeny φ : E → E instead of [n], so we
have, more in general, a sequence of GK-modules

0→ E [φ]→ E
(
K̄
) [φ]→ E

(
K̄
)
→ 0

that again gives the Kummer sequence

(1.1) 0→ E (K) /φ (E(K))
δ→ H1 (GK , E [φ])→ H1 (GK , E) [φ]→ 0.

We are interested in Im δ, therefore we look for local informations.
Let v be any place of K and denote by Kv the completion of K at v. We fix the embeddings

K ↪→ K̄
↓ ↓
Kv ↪→ K̄v

and obtain an inclusion on absolute Galois groups

GKv ⊂ GK .

Turning back to the exact sequence (1.1) we have the diagram

0 → E(K)
φ(E(K))

δ→ H1 (GK , E [φ]) → H1 (GK , E) [φ] → 0

↓ ↓ ↘ ↓
0 →

∏
v

E(Kv)
φ(E(Kv))

δ→
∏
v H1 (GKv , E [φ]) →

∏
v H1 (GKv , E) [φ] → 0.

Computing
ker
{

H1 (GK , E [φ])→ H1 (GK , E) [φ]
}

is again a hard problem, but in the local case

ker
{

H1 (GKv , E [φ])→ H1 (GKv , E) [φ]
}

the computation is straightforward thanks to Hensel’s Lemma.
This leads to the following definitions.

Definition 1.1.4. Let φ : E → E be a K-rational isogeny.

The φ-Selmer group of E/K is

Selφ (E/K) = ker

{
H1 (GK , E [φ])→

∏
v

H1 (GKv , E) [φ]

}
and the Shafarevich-Tate group of E/K is

III (E/K) = ker

{
H1 (GK , E)→

∏
v

H1 (GKv , E)

}
.

The conclusion of the proof of the theorem is given by the following result (for details see [Si],
X, 4.2).
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Theorem 1.1.5. There is an exact sequence

0→ E (K) /φ (E(K))→ Selφ (E/K)→ III (E/K) [φ]→ 0.

Furthermore the Selmer group is finite.

The last assertion in particular implies the weak Mordell-Weil theorem.

Remark 1.1.6. The group Selφ(E/K) is effectively calculable, hence it is natural to investigate
how good it is as an approximation of E(K)/φ(E(K)), in other words, how large III(E/K)φ
can be.

1.1.1 Selmer groups of abelian varieties

Following [GP] we define the Selmer group of an abelian variety as follows. Let A/Q be an
abelian variety. Assume that A has multiplication by a totally real field F i.e. there is a
morphism from the ring of integers of F and the ring of rational endomorphisms of A. Let p
be an ideal of OF . There is an exact sequence

0→ A[pn]→ A→ p−n ⊗OF
A→ 0.

Taking Galois cohomology, we define the Kummer map as the morphims

p−n ⊗OF
A(F )→ H1(F,A[pn]).

The kernel of the Kummer map is the ideal

(OF /pn)⊗OF
A(Q),

and so the image of the Kummer map is

(p−n)⊗OF
((OF /pn)⊗OF

A(Q)).

The pn-Selmer group of A is the group

Selpn(A/F ) ⊂ H1(F,A[pn])

of classes x ∈ H1(F,A[pn]) such that the restrictions xv ∈ H1(Fv, A[pn]) lie in the image of
HomOF

(pn, A(Fv)), under the local Kummer map for all the places v of K.

1.2 The L-series of an elliptic curve

Let E be an elliptic curve definite over Q and let N be the arithmetic conductor of E. Let
p be a rational prime, and denote by Ep the minimal model of E over Zp, write Ēp for the
special fiber of Ep. By the definition of the conductor we have:

1. Ēp is smooth if and only if p does not divide N and we say that E has good reduction
at p

2. if p divides N exactly then Ēp has a unique singular point that is a node, in this case
we say that E has multiplicative reduction. If the tangent lines have rational slopes
over Fp we say that the reduction is split multiplicative, if they are only definite over a
quadratic extension of Fp we say that the reduction is non-split multiplicative
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3. if p2 divides N then the singular point of Ēp is a cusp, and in this case we say that the
reduction of E at p is additive.

Let

ap =


p+ 1−#Ēp(Fp) if p is a prime of good reduction,

0 if the reduction of E at p is additive,

1 if the reduction of E at p is split multiplicative,

−1 if the reduction of E at p is non-split multiplicative.

Definition 1.2.1. The L-series of E is the function of the complex variable s defined by

L(E/Q, s) =
∏
p-N

1

1− app−s + p1−2s

∏
p|N

1

1− app−s
.

The above definition generalises to the case of an elliptic curve E defined over a number
field K. Let v be a non-archimedean prime of K and denote by NK/Qv the norm of v. Let
N denotes the arithmetic conductor of E over K, that is an ideal of the ring of integer OK
of K. Define

av =


NK/Qv + 1−#Ēp(Fv) if v is a prime of good reduction,

0 if the reduction of E at v is additive,

1 if the reduction of E at v is split multiplicative,

−1 if the reduction of E at v is non-split multiplicative.

In this case the L-series of E over K is defined by the formula

L(E/K, s) =
∏
v-N

1

1− avNK/Qv−s + NK/Qv1−2s

∏
v|N

1

1− avNK/Qv−s
.

We give an example relating the values of the L-series of E over Q and its quadratic twist
over a quadratic number field K and the value of the L-series of E over K.

Example 1.2.2. Let E/Q be an elliptic curve of conductor N and let write its Weirstrass
equation E : y2 = x3 + ax + b for some a, b ∈ Z. Let K be a quadratic extension of Q of
squarefree discriminant D. Assume that all the primes dividing N are split in K. Denote by
EK the quadratic twist of E, and recall that EK is defined by the equation Dy2 = x3 +ax+b.
The arithmetic conductor of EK is D2N . Write εK for the quadratic Dirichlet character. It
can be checked that the L-series of L(EK/Q, s) is given by the formula

L(EK/Q, s) =
∏
p-N

1

1− apεK(p)p−s + εK(p)p1−2s

∏
p|N

1

1− apεK(p)p−s
.

Now, write the product:
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L(E/Q, s)L(EK/Q, s) =

=
∏
p-N

1

(1− app−s + p1−2s)(1− apεK(p)p−s + εK(p)p1−2s)

∏
p|N

1

(1− apεK(p)p−s)(1− app−s)

=
∏
v-ND

1

1− avNK/Qv−s + NK/Qv1−2s

∏
v|ND

1

1− avNK/Qv−s

= L(E/K, s).

i.e. we have a factorization

(1.2) L(E/Q, s)L(EK/Q, s) = L(E/K, s).

The following property of the L-series of an elliptic curve definite over Q was proved by
Wiles [Wi] and Taylor-Wiles [TW] for semistable elliptic curves; the full result is contained
in [BCDT].

Theorem 1.2.3 ([Wi], [TW],[BCDT]). The L-series L(E/Q, s) extends to an entire function
over C and has a functional equation of the form

Λ(E/Q, s) = (−1)sgnE/QΛ(E/Q, 2− s)

where
Λ(E/Q, s) = (2π)−sΓ(s)N s/2L(E/Q, s).

Remark 1.2.4. Note that for the twisted elliptic curve EK we have:

Λ(EK/Q, s) = (2π)−sΓ(s)N s/2DsL(EK/Q, s).

The sign of the functional equation for EK is given by

(1.3) sgn(EK/Q) = sgn(E/Q)εK(−N).

In this way we can define also the sign of the L-function of E/K by using equation (1.2)

sgn(E/K) = sgn(E/Q)sgn(EK/Q)

= sgn(E/Q)2εK(−N)

= εK(−N)

= εK(N)εK(−1)

= −1.

1.3 The Birch and Swinnerton-Dyer conjecture

The (conjectural) link between the Mordell-Weil group and the L-series associated to an
elliptic curve is given by the Birch and Swinnerton-Dyer conjecture. In this section we define
the invariants we need to state the conjecture. We start by stating the conjecture for elliptic
curves defined over the rationals. Given an elliptic curve E/Q we associate to it the following
invariants.
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• The real period of E is defined as

ΩE :=

∫
E(R)
|ωE |.

where ωE is an invariant differential on a global minimal Weierstrass equation for E.

• The Tamagawa number at p is

cp(E) := # (E(Qp)/E0(Qp)) ,

where E0(Qp) is the subgroup of E(Qp) consisting of points which reduces to nonsingular
points of Ēp. Note in particular that cp(E) = 1 if p is a prime of good reduction for E.
Denote by CN (E) the product of all the Tamagawa numbers

CN (E) =
∏
p|N

cp(E).

In our work, we also need the definition of the Tamagawa numbers of an abelian variety
A. Let A be an abelian variety over a local field K with residue class field k. Let A be
the Néron model of A over the ring of integer of K. Denote by Ak the closed special
fiber of A that, in general, is not connected. Let A0

k denote the geometric component
of A containing the identity. The group ΦA(k) := Ak/A0

k of connected components,
is a finite group scheme over k. The Tamagawa number of A is cA = #ΦA(k). If A
is defined over a global field K, define the local Tamagawa number at a place v of K
as cv(A) := #ΦA(Kv) where Kv denotes the completion of K at v. Note that for an
elliptic curve E the two definitions agree.

• The regulator Reg(E/Q) is the discriminant of the canonical Néron-Tate height pairing.
To be more precise, Let P1, . . . , Pr be a Z-basis for E(Q)/E(Q)tors , then

(1.4) Reg(E/Q) := det(〈Pi, Pj〉NT ).

We are now ready to state the following conjecture.

Conjecture 1.3.1 (Birch and Swinnerton-Dyer). Let E/Q be an elliptic curve of conductor
N .

i) The equality
ords=1L(E/Q, s) = rnkZ(E)

holds.

ii) Let

BSDr(E/Q) :=
Reg(E/Q) · ΩE · CN (E) ·#III(E/Q)

#E(Q)2
tors

and note that the dependence by r of the right side of the equation is hidden in the
regulator. If ords=1L(E/Q, s) = r then

lim
s→1

L(E/Q, s)
(s− 1)r

= BSDr(E/Q).
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For our work, it is interesting to give a version of the Birch and Swinnerton-Dyer conjecture
for elliptic curves defined over a quadratic imaginary number field K. In this case we need
to extend some definitions. First the period ΩE/K is defined as follows: let ω be a Néron
differential on E, then

ΩE/K :=

∫
E(C)

ω ∧ ω̄.

The regulator Reg(E/K) is defined again by the equation (1.4), with clear meaning of nota-
tions, in light of Remark 1.1.3.

Conjecture 1.3.2 (Birch and Swinnerton-Dyer over a quadratic number field.). Let E/K be
an elliptic curve defined over a quadratic number field K of discriminant discK. Then:

1. the equality
ords=1L(E/K, s) = rnkZ(E)

holds

2. Define

(1.5) BSDr(E/K) :=
Reg(E/K) · ΩE/K · CN (E)2 ·#III(E/K)√

|discK| ·#E(K)2
tors

.

If ords=1L(E/K, s) = r then

lim
s→1

L(E/K, s)

(s− 1)r
= BSDr(E/K).

1.4 Modularity

Let H denotes the Poincarè complex upper plane, i.e. H = {z ∈ C : =(z) > 0}. Let

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N divides c

}
be the Hecke congruence subgroup. Γ0(N) acts on H by Moebius transformations, i.e. ac-
cording to the rule (

a b
c d

)
τ =

aτ + b

cτ + d
.

To the quotient Γ0(N)\H it is possible to give a natual structure of Riemann surface.

Definition 1.4.1. A cusp form of weight k on Γ0(N) is a holomorphic function f : H → C
such that

• f(γτ) = (cτ + d)kf(τ) for all γ =

(
a b
c d

)
∈ Γ0(N)

• for any γ ∈ SL2(Z) there exists an integer h such that f admit a so-called Fourier
expansion

(cτ + d)−kf(γτ) =
∑
n≥0

ane
2πiτ(n/h) =

∑
n≥0

anq
n/h
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Denote by Sk(Γ0(N)) the (finite-dimensional) C-vector space of modular forms. We refer to
N as the level of f .

The only case we are interested in is the case of k = 2.
Let Y0(N) denotes the moduli space of pairs (E,C) where E is an elliptic curve and C is a
cyclic subgroup of E of order N .

It holds that Y0(N)(C) is isomorphic to H/Γ0(N).

Definition 1.4.2. The modular curve X0(N) is the algebraic curve over Q obtained as
compactification of Y0(N). In other words

X0(N)(C) ∼= Γ0(N)\H∗

where H∗ = H ∪ P1(Q), and the action of Γ0(N) on P1(Q) = Q ∪∞ is given by:(
a b
c d

)
s

r
=
as+ br

cs+ dr

and (
a b
c d

)
∞ =

a

c

It is possible to show that X0(N)(C) is a compact Riemann surface.
The vector space S2(Γ0(N)) is equipped with a nondegenerate Hermitian inner product

known as Petersson scalar product defined as

(1.6) (f1, f2) =

∫
Γ0(N)\H

f1(τ)f2(τ)dxdy.

It is also equipped with the action of the Hecke operators Tp indexed by the rational primes
and defined by the formula

Tpf =


1
p

p−1∑
i=0

f
(
τ+i
p

)
+ pf(pτ) if p - N

1
p

p−1∑
i=0

f
(
τ+i
p

)
if p | N.

The Hecke operators act linearly on S2(Γ0(N)) and their effect on a q-expansion of a modular
form f =

∑
n≥1 anq

n is given by

Tpf =



∑
p|n
anq

n/p + p
∑
anq

pn if p - N

∑
p|n
anq

n/p if p | N.

It is useful to define the Hecke operators Tn for all the integers n, by equating the coefficients
in the following formal identity:∑

n≥1

Tnn
−s :=

∏
p-N

(1− Tpp−s + p1−2s)−1
∏
p|N

(1− Tpp−s)−1.

We denote by T the algebra generated over Z by the Hecke operators, and write T0 for the
subalgebra generated by Hecke operators Tn with n prime to N .
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Proposition 1.4.3. The Hecke algebras T and T0 are finitely generated Z−modules. Fur-
thermore the rank of T is exactly the genus of X0(N).

The operators in T0 are self-adjoint with respect to the Petersson scalar product. The
space S2(Γ0(N)) decomposes as an orthogonal direct sum

S2(Γ0(N)) =
⊕
λ

S0
λ

taken over all C-algebra homomorphisms λ : T0 → C where S0
λ denotes the corresponding

eigenspace in S2(Γ0(N)). Now, given a ring homomorphism λ : T → C defined on the full
Hecke algebra T denote by Sλ its associate eigenspace. It holds the following.

Theorem 1.4.4 (Multiplicity one). The eigenspace Sλ attached to λ : T → C is one-
dimensional.

A modular form in S2(Γ0(N)) is said to be an oldform if it is a linear combination of
functions of the form f(d′z) with f ∈ S2(Γ0(N/d)) and d divides d′ > 1. The newspace
S2(Γ0(N))new if it is in the orthogonal complement of the space of oldforms, with respect to
Petersson scalar product.

Theorem 1.4.5 (Atkin-Lehner). The Hecke algebra T acts semi-simply on S2(Γ0(N))new

with one-dimensional eigenspaces. We have the decomposition

S2(Γ0(N)) = Sold
2 (Γ0(N))

⊕
λ

fλ.

Here the sum is taken over all algebra homomorphisms λ : T→ C corresponding to eigenvec-
tors in S2(Γ0(N))new and fλ(τ) =

∑
n≥1 λ(Tn)e2πτin.

A simultaneous eigenvector fλ is is called a normalized eigenform or simply a newform of
level N .

To a newform of level N is attached the L-series

L(f, s) =
∑
n≥1

ann
−s,

where an = an(f) = Tnf. Note that by definition of the Hecke operators the L-series of f
enjoys properties similar to those of the L-series attached to an elliptic curve.

Definition 1.4.6. An elliptic curve E defined over Q is modular if there is a nonconstant
morphism defined over Q, from X0(N) to E for some N .

The following results provide a link between elliptic curves and modular forms.

Theorem 1.4.7 (Faltings). Let E and E′ be elliptic curves over Q. Then the L-series
L(E/Q, s) and L(E′/Q) are equal if and only if E and E′ are isogenous over Q.

Theorem 1.4.8 (Eichler-Shimura). Let f be a normalized eigenform of weight 2 for Γ0(N)
with rational Fourier coefficients. There exists an elliptic curve Ef defined over Q such that:

• there is a nonconstant morphism X0(N)→ Ef defined over Q
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• L(Ef/Q, s) = L(f, s) up to finitely many Euler factors.

Conversely, given a modular elliptic curve over Q such that for some N there is a nonconstant
morphism X0(N)→ E defined over Q, then there is a weight 2 newform f as above and E is
isogenous to Ef over Q.

Theorem 1.4.9 (Carayol). If f satysfies the hypotheses of the first part of Theorem 1.4.8,
then thet L-series L(Ef/Q, s) and L(f, s) are equal. Furthermore N is equal to NEf

, the
conductor of the curve Ef .

Corollary 1.4.10. If E is an elliptic curve over Q, of conductor NE. Then the following
are equivalent:

i. E is modular;

ii. for some N there exists a newform f of weight 2 and level N , with rational Fourier
coefficients, such that Ef is isogenous to E over Q.

iii. for some N there exists a newform f of weight 2 and level N such that

L(E/Q, s) = L(f, s);

Furthermore, in any of the above statement, N can be choosen to be the conductor NE.

Theorem 1.4.11 (Wiles [Wi], Taylor-Wiles [TW], Breuil-Conrad-Diamond-Taylor [BCDT]).
Every elliptic curve E defined over Q is modular.

Remark 1.4.12. The map ϕE : X0(N) → E is called modular parametrization. The proof of
the modularity theorem is quite involved. The main step consists in constructing a morphism

f : T→ Z

with kernel If such that the elliptic curve E is isogenous to the quotient J0(N)/IfJ0(N),
where J0(N) is the Jacobian variety of X0(N). The relations between the L-series follows
from the existence of integral models for X0(N), combined with the Eichler-Shimura relations,
stating that over the Jacobian J0(N)/Fp

Tp = Frobp + Frob∨p

where Frobp is the Frobenius morphism in characteristic p and Frob∨p its transpose.

We briefly recall the construction of Eichler and Shimura in a more general setting. Given
an eigenform f the Fourier coefficients of f are not in general rational numbers, but it can
be shown that they are algebraic integers.

The proof of this fact relies ont the fact that the Hecke algebra T can be viewed as a subset
of the endomorphisms of the Jacobian of X0(N). Let Kf be the totally real field Q(an(f))
generated by the Fourier coefficients of f . Since the Hecke algebra T is a finitely generated
Z-module, it is a finite extension of Q. Consider the map associating to each Hecke operator
Tn the eigenvalue of an of Tn acting on f . Denote by If the kernel of the map induced by f
on the Hecke algebra, i.e.

If := {Tn ∈ T : Tnf = 0}.
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The kernel If is a Z-module and we have the isomorphism

T/If ∼= Z[an(f)].

It is possible to associate to a cuspidal eigenform f the abelian variety Af := J0(N)/IfJ0(N).
Note that the definition makes sense since the Hecke algebra acts on the Jacobian of the
modular curve. This construction furthermore holds on every number field K. It is not in
general true that Af is an elliptic curve, although it is true if we take K = Q. Indeed the
dimension of Af is exactly the index of Kf in Q. We summarize the results in the following
theorem.

Theorem 1.4.13. Let f be an eigenform of level N . Let Kf be as above. There exists a pair
(A,ψ) that satisfies the following properties.

i. The abelian variety A is defined over Q and has dimension [Kf : Q]. Furthermore the
map

J0(N)→ A

is a surjective morphism defined over Q.

ii. the map ψ is an isomorphism of Kf into End(A) ⊗ Q. For every n the Hecke operator
Tn act on A as multiplication by an, in other words, ψ(an) is the restriction to A of the
Hecke operator acting on the Jacobian J0(N).

iii. There is an equality between the L functions

L(A/Q, s) = L(f, s).

1.5 Heegner points

Let E be an elliptic curve over Q of conductor N and let K = Q(
√
−D) for where D > 0

Assume for semplicity that D 6= 3, 4. We choose K such that all prime factors of N are split
in K. Let OK be the ring of integers of K. It follows that NOK = NN̄ for an ideal N of
OK with OK/N ' Z/NZ.

By the modularity theorem, there exists a modular parameterization ϕE : X0(N)→ E of
minimal degree. Let N−1 be the fractional ideal of OK for which NN−1 = OK . OK and N
can be viewed as Z-lattices of rank two in C. The map

C/OK → C/N−1

is a cyclic isogeny of degree N between the elliptic curves C/OK and C/N−1. This isogeny
corresponds to a complex point x1 ∈ X0(N)(C). According to the theory of complex multi-
plication, the point x1 is defined over the Hilbert class field H of K.

More generally, for an integer c prime to N , let Oc = Z+ cOK be the order of conductor c
in OK and let Nc = N ∩Oc, which is an invertible ideal of Oc. Then Oc/Nc ' Z/NZ and the
map C/Oc → C/N−1

c is a cyclic isogeny of degree N . Thus, it defines a point xc ∈ X0(N)(C).
By the theory of complex multiplication, this point is defined over the ring class field K[c] of
conductor c over K. Note in particular that if we take c = 1 then K[1] = H.

The modular parametrization ϕE : X0(N)→ E allows us to obtain points on the elliptic
curve as follows: let

Pc = ϕE(xc) ∈ E(K[c]).
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Let PK = TrH/K(x1). PK is called the Heegner point for the discriminant D. The Heegner
point PK is only well defined up to sign and torsion, namely if N ′ is another ideal with
O/N ′ ' Z/NZ then the new Heegner point differs from PK by a sign change and a rational
torsion point.

1.6 The Gross-Zagier formula

Let E be an elliptic curve of conductor N , associated via the Eichler-Shimura construction
to a newform of weight 2 of level N . Let ϕE : X0(N)→ E be a modular parametrization of
minimal degree. Let ω be a Néron differential. Its pullback has the form

(1.7) ϕ∗(ω) = m̃ · πif(τ)dτ.

The Manin constant m is the absolute value of the constant m̃ appearing in equation (1.7).
The Manin constant satisfies the properties stated in the next proposition

Proposition 1.6.1. Let m be the Manin constant of an elliptic curve E of conductor N , and
let p denotes a prime Then:

• the Manin constant is an integer (Edixhoven, [Ed], Prop.2);

• if p divides the Manin constant, then p2 divides 4N (Mazur, [Ma1], Cor. 4.1);

• if the Manin constant is a multiple of 4, then 4 divides N (Raynaud, see [AU], Prop.
3.1);

• if p divides the Manin constan, then p also divide N (Abbes-Ullmo [AU], Theorem A).

Let K be a quadratic imaginary field as above. Let x1 be a Heegner point of discriminant
D on X0(N). The point

PK :=
∑

σ∈Gal(H/K)

ϕ(xσ1 ) =
∑

σ∈Gal(H/K)

ϕ(x1)σ

belongs to E(K).

Theorem 1.6.2 (Gross-Zagier). The equality

L′(E/K, 1) =
ΩE/K · hE(PK)

m2 ·
√

discK

holds. In particular L′(E/K, s) is zero if and only if PK is a torsion point in E(K).

Remark 1.6.3. The result of Gross-Zagier has been generalized by Zhang [Zh] to the case of
Shimura curves.
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1.7 The result of Kolyvagin

An evidence in the direction of the validity of the Birch and Swinnerton-Dyer conjecture is
due to Kolyvagin [Ko]. Let K be a quadratic imaginary field, and E as above an elliptic curve
defined over Q of discriminant N .

Hypothesis 1.7.1. We say that the field K satisfies the Heegner hypothesis if all primes `
dividing N are split in the extension K/Q.

Theorem 1.7.2 (Kolyvagin). If the Heegner point PK has infinite order in E(K) then

i. the group E(K) has rank 1;

ii. the group III(E/K) is finite and its order divides t[E(K) : ZPK ]2 for some integer t ≥ 1.

Combining the results of Gross-Zagier and Kolyvagin we obtain the following result.

Theorem 1.7.3 (Gross-Zagier-Kolyvagin). Let E/Q be an elliptic curve definite over Q and
such that ords=1L(E/Q, s) ≤ 1. Then the Shafarevich group III(E/Q) is finite and the rank
of the elliptic curve coincide with the order of vanishing of the associated L-function, i.e. the
equality

rnk(E(Q)) = ords=1L(E/Q, s)

holds.

Sketch of the proof. Recall that sgn(E/Q) denotes the sign in the functional equation of
L(E/Q, s), given in Theorem 1.4.11. We have two different cases to consider: the first is
when sgn(E/Q) is 1 while in the second case it is equal to 1.

Case 1. Assume that sgn(E/Q) = −1 By a result of Waldspurger [Wa] (but see also Murty-
Murty [MM]) there exist infinitely many quadratic imaginary fields K having Dirich-
let character ε such that:

(a) ε(`) = 1 if ` divides N ;

(b) ε(−1) = −1;

(c) L(EK/Q, 1) is nonzero.

The first two properties in particular implies that L(EK/Q, s) vanishes at to even
order at s = 1. Indeed, the existence of the factorisation given in equation (1.2)

L(E/K, 1) = L(E/Q, 1)L(EK/Q, 1)

combined with the Heegner hypothesis, together imply that L(E/K, s) vanishes at
odd order at s = 1.

Case 2. Assume that sgn(E/Q) = 1. For all quadratic extensions having Dirichlet character
satisfying conditions (a) and (b), L(EK/Q, 1) vanishes, for parity reasons. In this
case by the results of Murty-Murty [MM], there exists a quadratic imaginary field we
denote again by K (with a little abuse of notations), such that

L′(EK/Q, 1) = 0.
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In both cases, we have that

• K satisfies the Heegner hypothesis with respect to E;

• the order of L(E/K, s) at s = 1 is 1, so by definition the derivative of the L-function,
L′(E/K, 1) is nonzero.

Theorem 1.6.2 implies the existence of a non-torsion Heegner point PK . By the result of
Kolyvagin (Theorem 1.7.2) E(K) has rank one, hence the index [E(K) : ZPK ] and the
Shafarevich group III(E/K) are finite. It is possible to show that, up to torsion, PK belongs
to E(Q) if and only if sgn(E/Q) = −1 (For details see [Gr]). It follows that the rank of E(Q)
is equal to the order of vanishing of L(E/Q, s) at s = 1. By a general fact of cohomology, the
natural map from III(E/Q) to III(E/K) induced by restriction has finite kernel (See [Ko],
Corollary B). Thus the finiteness of III(E/K) implies the finiteness of III(E/Q).

Remark 1.7.4. The proof of the above-mentioned Corollary B of [Ko] is based the following
general fact of cohomology. The kernels of the maps sending

III(E/Q)→ III(E/K)

and
III(EK/Q)→ III(E/K)

are contained respectively in H1(K/Q, E(Q)) and H1(K/Q, EK(Q)), that are 2-torsion groups.
In particular note that

#III(E/K)

#III(E/Q) ·#III(EK/Q)
= 2α

for some α ∈ Z.

1.8 An equivalent statement of the Birch and Swinnerton-
Dyer for analytic rank one

The following result, stated in [MC] provides an equivalent version of the Birch and Swinnerton-
Dyer conjecture for elliptic curves with analityc rank one. We write a detailed proof for
completeness. Let E/Q be an elliptic curve of squarefree conductor N . Assume that E has
analytic rank one, and let PE be a generator for its Mordell-Weil group modulo torsion. Let
K be a quadratic imaginary field satisfying the Heegner hypothesis. From the factorization
(1.2):

L(E/K, s) = L(E/Q, s)L(EK/Q, s)

we have that:

• L(EK/Q, s) does not vanish at s = 1;

• the equality

(1.8) L′(E/K, 1) = L′(E/Q, 1)L(EK/Q, 1)

holds.
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In particular, combining the Birch and Swinnerton-Dyer conjecture for E/Q and EK/Q, we
have:

(1.9) BSD1(E/K) := BSD1(E/Q) BSD0(EK/Q).

Writing explicitely the right hand side of the equation we have the conjectural equality:

(1.10) BSD1(E/K) =
hE(PE) · ΩE ·#III(E/Q) · CN (E)

#E(Q)2
tors

· ΩEK ·#III(EK/Q) · CN (EK)

#EK(Q)2
tors

.

The Heegner hypothesis implies that CN (E/K)=CN (E)2, since all primes dividing N are
split in K. Furthermore, it is possible to show that:

ΩE/K =
ΩE · ΩEK√
|discK|

.

Remark 1.8.1. Comparing equation (1.10) with the formula (1.11) (that we write again for
ease of the reader)

(1.11) BSD1(E/K) =
Reg(E/K) · ΩE/K · CN (E)2 ·#III(E/K)√

| discK| ·#E(K)2
tors

one can observe that the statement is compatible with the equation (1.8) and the properties
of all the invariants.

See [GZ] pages 310-311 for details.

Theorem 1.8.2. Let E/Q be an elliptic curve of analytic rank one, and let K be an imag-
inary quadratic field as above. Then the Birch and Swinnerton-Dyer conjecture for E/K is
equivalent to the conjectural equality

#III(E/K) · CN (E)2 ·m2 = [E(K) : ZPK ]2.

Proof. Let Pi’s be a basis for E(K) modulo torsion. The following equality

Reg(E/K)

#E(K)2
tors

=
disc〈Pi, Pj〉NT

#E(K)2
tors

=
det〈Pi, Pj〉NT

[E(K) :
∑

ZPi]2

holds. Since the analytic rank of E is equal to one, by definition

〈PK , PK〉NT = hE(PK).

Hence the equality (1.11) can be written as:

BSD1(E/K) =
hE(PK) · ΩE/K · CN (E)2 ·m2 ·#III(E/K)√

|discK| · [E(K) : ZPK ]2
.

The Gross-Zagier formula for elliptic curves of analytic rank one, implies that

L′(E/K, 1) =
hE(PK) · ΩE/K

m2
√
| discK|

.
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The Birch and Swinnerton-Dyer conjecture predicts the equality

BSD1(E/K) = L′(E/K, 1),

that reduces to

(1.12) #III(E/K) · CN (E)2 ·m2 = [E(K) : ZPK ]2.

Remark 1.8.3. As can be easily seen by writing equation (1.17) in the form

#III(E/K) =

(
[E(K) : ZPK ]

CN (E) ·m

)2

,

the order of III(E/K) is a square. This fact is known in general under the hypotesis of fineness
of the Shafarevich-Tate group, by a result of Cassels [Ca]. In our setting III(E/K) is finite
by the above-mentioned result of Kolyvagin. The comparison of these assertions provides an
evidence of the validity of the Birch and Swinnerton-Dyer conjecture.

Kolyavagin in [Ko] has proved the validity of the following result.

Theorem 1.8.4. Let E/Q be an elliptic curve and K/Q an imaginary quadratic field satis-
fying the Heegner hypothesis for E. Let PK be an Heegner point in E(K). If PK has finite
order, or equivalently L′(E/K, 1) does not vanish, then the following quality

#III(E/K) | t · [E(K) : ZPK ]2

holds, where t is an integer such that a prime p divides t if and only if one of the following
condition holds:

• p = 2;

• the representation ρ̄E,p of the absolute Galois group GQ attached to E[p] is not surjective.

1.9 A theorem of Skinner and Urban

In their recent paper [SU] Skinner and Urban have proved, under suitable hypotheses, the
validity of the p-part of the Birch and Swinnerton-Dyer formula for elliptic curves. In this
section we briefly recall their results. The result of [SU] is consequence of a result of Morel
and Shin asserting the existence of four-dimensional p-adic representations associated with
certain cuspidal automorphic representations of the unitary group U(2, 2), for details see [SU]
page 99.

The result we need is a consequence of the so-called Iwasawa main Conjecture. We start
fixing notations and recalling definitions, that are given in details in [SU]. The first object
we need to define is the characteristic ideal.

Definition 1.9.1. A divisorial ideal is an ideal that is equal to the intersection of all principal
ideals containing it.
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For example, any principal ideal is divisorial. Let A be a noetherial normal domain. Of
Q ⊂ A is a prime ideal of height one, denote by ordQ(A) the essential valuation attached to
Q. Any divisorial ideal is hence of the form

I = {x ∈ A : ordQ(x) ≥ mQ, for all Q ideal of height one},

where mQ are non-negative integer and only finitely many of them are positive. T he integers
mQ are well defined and uniquely determined. Let ordQ(I) := mQ. In this case, we observe
that AQ is a discrete valuation ring and that ordQ(I) is exactly the valuation of any generator
of IAQ. If I and J are two divisorial ideal, then ordQ(J) is greater of equal to ordQ(J) for
all primes ideal Q of height one if and only if I contains J . In particular if I is divisorial an
x belongs to A, then the ideal (x) generated by x contains I if and only if ordQ(I) ≥ ordQ(I)
for all prime ideals Q of heigth one.

Definition 1.9.2. Let A be a Noetherian normal domain and X a finite A-module. The
characteristic ideal of X is

ChA(X) = {x ∈ A : ordQ(x) ≥ lenghtAQ
(XQ), for all prime ideals Q of height one}

Note that it possible that lenghtAQ
(XQ) is infinite.

In what follows:

• p is an odd prime;

• ι : C ∼= Cp is a fixed isomorphism;

• GQ = Gal(Q̄/Q) ;

• Q∞ ⊂ Q(µp∞) is the cyclotomic Zp-extension of Q;

• ΓQ = Gal(Q∞/Q) ;

• ΛQ = Zp[[ΓQ]] is the Iwasawa algebra;

• for any Zp- algebra A define ΛA = ΛA,Q = ΛQ ⊗Zp A ;

• Ψ = ΨQ : GQ → Λ×Q is the composition GQ → ΓQ → Λ×Q (where the first map is
surjective and the second is injective);

• εQ is a character of Q×\A×Q that is the normalization, using the (geometric) Frobenius
elements, of the compositum of ΨQ with the reciprocity map of class field theory (see
page 15 of [SU] for details);

• ε is the cyclotomic character giving the (canonical) isomorphism Gal(Q(µ∞)/Q) ∼= Z×p ;

• γ ∈ Γ is the topological generator such that ε(γ) = 1 + p ;

• for any ζ ∈ µp∞ and integer k, ψk,ζ is the finite order character of Q×\A×Q that is the

composition of ΨQ with the map Λ×Q → C×p , mapping γ to ζ(p+ 1);

• ω is the Teichmuller character;
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• f =
∑

n≥1 anq
n ∈ Sk(N,ψ0) for k ≥ 2 is a cuspidal eigenform with character ψ0 of

(Z/NZ)×;

• L is a finite extension of Qp containing all the Fourier coefficients of f and OL is its
ring of integers.

Assume that f is ordinary at p, i.e. ap is invertible in the ring of integer of L. Denote by
ρf : GQ → AutL Vf the two dimensional Galois representation attached to f . There exists
a L-line V +

f ⊂ Vf , stable under the action of the Galois group GQp and such that Vf/V
+
f

is unramified. Let Tf ⊂ Vf be a OL lattice, stable for the action of ΓQ and denote by T+
f

the intersection of Tf with V +
f . We define the Selmer group and the associated characteristic

ideal.

Definition 1.9.3. Denote by Λ∗OL
= HomZp(ΛOL

,Qp/Zp) the Pontryagin dual and use the

notation Λ∗OL
(Ψ−1) to mean that the Galois action is given by the character Ψ−1.

SelL(Tf ) = ker{H1(Q, Tf ⊗OL
Λ∗OL

(Ψ−1))→(1.13)

→ H1(Ip, (Tf/T
+
f )⊗OL

Λ∗OL
(Ψ−1))×

∏
`6=p

H1(I`, Tf ⊗OL
Λ∗OL

(Ψ−1)}.(1.14)

Let
XL(Tf ) = HomZp(SelL(Tf ),Qp/Zp)

and
Chf,Q = ChΛQ,OL

(XL(Tf )).

Let 0 < p < k − 2 be an integer, fix a pt−1-th root of unity. We assume, to simplify our
exposition, that ζ is different from 1, but the result stated in [SU] holds also in that case.
Define the algebraic part of a special value for f as:

Lalg(f, ψ−1
ζ ωn, n+ 1) := ap(f)−1

pt(n−1)n!L(f, ψ−1
ζ , ωn, n+ 1)

(−2πi)nτ(ψ−1
ζ ωn)Ω

(sgn(−1)m)
f

where:

• ap(f) is the p-adic root of the polynomial x2 − apx+ pk+1ψ0;

• τ(ψ) is the Gauss sum for ψ;

• Ω± are Hida canonical periods.

The p-adic L-function is an element Lf,Q of ΛQ,OL
defined by the following interpolation

property. If
φn,ζ : ΛOL

→ OL(ζ),

is the OL homomorphism sending γ to ζ(p+ 1) then

φn,ζ(Lf,Q) = Lalg(f, ψ−1
ζ ωn, n+ 1)

for 0 < n < k − 2.
We can state the Iwasawa Main Conjecture for f .
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Conjecture 1.9.4 (Iwasawa Main Conjecture). The module XL(Tf ) is a finite ΛQ,OL
-module

and Chf,Q is generated by Lf,Q.

Skinner and Urban in [SU], using a previuos result of Kato [Ka] proved the following
result.

Theorem 1.9.5 (Skinner-Urban). Let f be a newform of level N . Suppose that

i. f has weight 2 and trivial character;

ii. f has good ordinary reduction at p;

iii. the residual representation ρ̄f is irreducible;

iv. for some ` different from p and dividing N exactly ρ̄f is ramified at `.

Then the Iwasawa Main Conjecture holds in ΛQ,OL
⊗Zp Qp. Suppose furthermore that Tf

admits an OL basis such that the image of ρf contains SL2(Zp). Then the Iwasawa Main
Conjecture is true in ΛQOL

.

This result has interesting application to the Birch and Swinnerton-Dyer Conjecture, in
particular Skinner and Urban, following an idea of Mazur, proved the following result:

Theorem 1.9.6 (Skinner-Urban). Let E be an elliptic curve over Q of conductor N . Denote
by ρ̄E,p the representation of the absolute Galois group Gal(Q̄/Q) on E[p]. Suppose that

1. E has good ordinary reduction at p > 7;

2. there exists a prime q 6= p such that q || N and ρ̄E,p is ramified at q;

3. the image of the representation ρ̄E,p contains SL2(Fp);

4. L(E/Q, 1) 6= 0;

then the equality

ordp

(
L(E/Q, 1)

ΩE

)
= ordp(#III(E/Q) · CN )

holds.

The assumption on f are satisfied, for example, by semistable elliptic curves E/Q , for
any prime p ≥ 11 of good ordinary reduction for E.

The result of Skinner and Urban is actually stronger. Let g be a modular form of level
N , and suppose that there is a maximal ideal p of the ring Og of Fourier coefficients of g such
that the completion of Og at p is isomorphic to Zp. Let K be an imaginary quadratic number
field of of discriminant prime to N such that all the prime divisors of N are split in K.

Let Ag/K be the abelian variety attached to g by the Eichler-Shimura construction. Fix
an integer n and consider the Selmer group Selpn(Ag/K) defined in Section 1.1.1. Let

Selp∞(Ag/K) = lim
−→k

Selpk(Ag/K).

As discussed by Skinner in [Sk] the definition of the Selmer groups Selpn(Ag/K) and the def-
inition given by equation (1.13) coincides, since both coincide with the Bloch-Kato definition
of the Selmer groups.
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Theorem 1.9.7. Let g ∈ S2(Γ0(N)) be a weight-two newform. Assume that g satisfies all the
assumption of Theorem 1.9.5 and that there is a maximal ideal p of the ring Og of Fourier
coefficients of g such that the completion of Og at p is isomorphic to Zp. If L(g/K, 1) is
different from zero, then

ordp (L(g/K, 1)/Ωg) = lenghtOp
Selp∞(Ag/K) +

∏
`|N

tg(`)

where tg(`) is an integer called Tamagawa exponent at ` attached to g.1

1.10 Reduction of the Birch and Swinnerton-Dyer conjecture
for elliptic curves of analytic rank one

Let E/Q be an elliptic curve of squarefree conductor N . Let p ≥ 11 be a prime of ordinary
good reduction for E. Assume that E has analytic rank one.

Theorem 1.10.1 (Mazur, [Ma2], Theorem 4). Let E/Q be a semi-stable elliptic curve and
p ≥ 11 be a prime number. Then the representation ρ̄E,p : GQ → GL2(Z/pZ) is surjective.

The following result is a reformulation of Lemma 2.2 of [BD], the second part of the
statement, as pointed out by Bertolini and Darmon, is a consequence of Ribet level-lowering
theorem [Ri2].

Lemma 1.10.2. Assume that p does not divide the minimal degree of a modular parametriza-
tion ϕE : X0(N)→ E. The cuspform associated with E is not congruent modulo p to modular
forms of lower level. Furthermore p does not divide the Tamagawa numbers of E.

Theorem 1.10.3. Let E/Q be an elliptic curve of squarefree conductor N . Assume that E
has analytic rank one, and write PE for a generator of the Mordell-Weil group of E modulo
torsion. Let p ≥ 11 a prime of good ordinary reduction for E and assume that p does not divide
the minimal degree of a modular parametrization ϕE : X0(N) → E. Let K be a quadratic
imaginary field satisfying the Heegner hypothesis, and let PK be a generator of E(K) modulo
torsion. Assume the following equality:

(1.15) 2ordp[E(K) : ZPK ] = ordp#III(E/K).

Then the equality

(1.16) ordp

(
L′(E/Q, 1)

ΩE · hE(PE)

)
= ordp (III(E/Q) · CN (E))

holds.

Proof. In Theorem 1.8.2 we showed that the Birch and Swinnerton-Dyer conjecture for E/K
is equivalent to the equality:

(1.17) #III(E/K) · CN (E)2 ·m2 = [E(K) : ZPK ]2.

1We postpone a detailed definition of the Tamagawa exponent to the Section 2.5.4
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By equation (1.8)
L′(E/K, 1) = L′(E/Q, 1)L(EK/Q, 1).

the validity of the p-part of the Birch and Swinnerton-Dyer conjecture for E/Q follows
from the validity of the p-part of equation (1.17) combined with the p-part of the Birch
and Swinnerton-Dyer conjecture for EK/Q. First, note that EK/Q, in light of Theorem
1.10.1 statisfies the assumption of Theorem [SU], in particular the p-part of the Birch and
Swinnerton-Dyer conjectrure holds for EK/Q. By Lemma 1.10.2 p does not divide CN (E).
Furthermore by Proposition 1.6.1 p does not divide the Manin constant m. Hence our as-
sumptions implies the p-part of the Birch and Swinnerton-Dyer conjecture for E/Q.

Remark 1.10.4. Theorem 1.8.4 combined with the Theorem 1.10.1 imply that we only have
to show that

2ordp([E(K) : ZPK ]) ≤ ordp(#III(E/K)).

1.11 Modular forms on quaternion algebras and the Jacquet-
Langlands correspondence

1.11.1 Quaternion algebras and Eichler orders

A quaternion algebra B over a field F is a 4-dimensional central simple algebra over F .
Assuming that the characteristic of F is not 2, then any quaterion algebra is isomorphic to(

a, b

F

)
:= F ⊕ Fi⊕ Fj ⊕ Fk, where i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ F×. B is split over F is said to be split if it is isomorphic to M2(F ). Similarly
if K is an extension field of F then B is split over K if B ⊗F K is a split quaternion algebra
over K.

Over the reals and Qp or more in general any local field L, there are (up to isomorphism)
exactly two quaterion algebras: M2(L) and the algebra of Hamilton quaternions.

More interesting is the classification of quaternions algebras over number fields. For any
place v of F let Fv denote the completion of F at v and define Bv := B ⊗F Fv. Again if Bv
is a split quaternion algebra we say that B splits at v, otherwise we say it is ramified.

Consider a finite set S of places of Q. It can be proved that there exists a unique (up to
isomorphism) quaternion algebra ramified only at the places of S if and only if the cardinality
of S is even.

Let Z be a finitely generated subring of F .

Definition 1.11.1. A Z-order in B is a subring of B that is a free Z-module of rank 4. It is
maximal if it is not contained in any larger Z-order. An Eichler Z-order R is the intersection
of two maximal Z orders. Writing R := R1∩R2, the level of R is the index of R as Z-module
in either R1 or R2.

It is possibile to show that the above notion of level does not depend to the choice of the
orders R1 and R2 defining R. Any conjugate of a maximal order is also a maximal order,
hence the best situation is when a maximal order is unique up to conjugation by elements of
B×.
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Definition 1.11.2. We say that B and Z satisfy the Eichler condition if there is at least one
archimedean prime or one prime invertible in Z at which Z is split.

Proposition 1.11.3. If B and Z satisfy the Eichler condition then any two maximal Z-orders
of B are conjugate, and similarly any two Eichler Z-orders of the same level are conjugate.

A good reference for an explaination of the proof is [Vi]. We recall the main steps in order
to fix the notation for the following sections. Denote by Ẑ the profinite completion of Z and
by Q̂ := Ẑ ⊗ Q the ring of finite rational adèles. If R is an Eichler order of level N in B
denote by

R̂ := R⊗ Ẑ; B̂ := B ⊗ Q̂ = R̂⊗Q;

the adelizations of R and B respectively. There is a natural correspondence

{Eichler Z-orders of level N in B} ←→ B̂×/Q̂×R̂× ,

given by sending the coset definite by an idèle (b`) indexed by the rational prime ` to the
order

(b`)R̂(b−1
` ) ∩B.

It can be proved that this is an Eichler Z-order of level N , that the map is well defined and
that all Eichler Z-orders of level N can be obtained in this way. In other words we have the
bijection:

{conjugacy classes of Eichler Z-orders of level N in B} ←→ B×\B̂×/R̂×.

If p is a rational prime, let Bp := B ⊗Qp and Rp := R ⊗ Zp. Strong approximation yields a
p-adic description of the above double coset space.

Theorem 1.11.4. Let p be a prime such that B is split at p. Then the natural map

R[1/p]×\B×p /R×p → B×\B̂×/R̂×

sending the class represented by bp to the class of the idèle (. . . , 1, bp, 1, . . . ) is a bijection.

If B is a quaterion algebra over Q we say that B is an indefinite quaternion algebra if it
is split at ∞. Otherwise we say it is definite.

1.11.2 Modular forms on quaterion algebras

In the remaining part of the exposition of this section we follow closely Section 1 of [BD]. The
setting of this section is slightly different from the setting of the other parts of this thesis. To
simplify our armuments we assume that p is in the level, hence we look at forms defined of
the edges of the so-called Bruhat-Tits tree (cf definition below). We are actually interested
in working on vertices, but up to p-stabilize our forms, it makes not difference to work on
vertices or on edges.

Let N− be an arbitrary squarefree integer which is the product of an even number of
primes, and let N+ be an arbitrary integer prime to N−. Let p be a prime that does not
divide the product N0 = N+N−. Let N be the product N = pN0 = pN+N−.

Let B be the definite quaternion algebra ramified at all the primes dividing N− and let
R be an Eichler Z[1/p]-order of level N+ in B.
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We start by defining the Bruhat-Tits tree of a local field.
Let K be a local field, complete with respect to a valuation v, and denote by | · |v the

associated absolute value . Let OK be its ring of integer, and recall that

OK = {x ∈ K : v(x) ≥ 0}.

Denote by m its maximal ideal and by π an uniformizer. Let k = OK/πOK be the residue
field of K. Define V := K2. Let L and L′ be two complete OK-lattices in V . By the
invariant factor theorem, there exists an OK basis {e1, e2} of L and twi integers a, b such that
{πae1, π

be2} is an OK-basis for L′

Remark 1.11.5. 1. It is possibile to show that the integers a and b are independent of the
choiche of bases for L and L′.

2. L is a sublattice of L′ if and only if both a and b are non-negative. In this case:

L/L′ ∼=
(
OK/πa OK

)
⊕
(
OK/πbOK

)
.

Let x and y be nonzero elements of K, and denote by c := v(y/x). Replacing L (resp.
L′) by xL (resp. yL′), has the effect of replacing a and b by a+ c and b+ c. Then | a− b |v
depends only in the homothety classes Λ and Λ′ of resp. L and L′. We refer to | a − b |v as
the distance betweem Λ and Λ′ and write

| a− b |v= d(Λ,Λ′).

The homothety classes of complete OK-lattices of V corresponds bijectively to the maximal
orders of M2(K). From now on we adopt this point of view. The distance d(Λ,Λ′) can
be calculated as follows. Fix a representative L of Λ. Then define L′ to be the unique
representative of Λ′ such that L′ ⊂ L and L is not contained in πL. For such L′ it holds:

L/L′ ∼= OK/πd(Λ,Λ′)OK .

Note that:

1. d(Λ,Λ′) = 0 if and only if Λ = Λ′;

2. d(Λ,Λ′) = 1 if and only if there exists L and L′ such that L/L′ ∼= k.

By this notion of distance, we can endow the set of classes of lattices in V with the structure
of a combinatorial graph T where two homothety classes of lattices are adjacent if they have
distance equal to one. It is known that, furthermore, TK have the structure of a tree.

Definition 1.11.6. The tree TK is called the Bruhat-Tits tree of PGL2(K), and we use the
notation V(TK) for the set of its vertices and E(TK) for the set of its edges.

Let us turn our attention to the case of K = Qp. Denote simply by T the Bruhat-Tits
tree of B×p /Q×p , keeping the notation of the previous section. The set V(T ) of vertices of T
is indexed by the maximal Zp-orders in Bp.

Two vertices are adjacent if their intersection is an Eichler order of level p. Let
−→
E (T )

denotes the set of ordered edges of T , i.e. the set of ordered pairs (s, t) of adjacent vertex of
T . Any vertex e can be written as

e = (s = source(e), t = target(e)).
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The tree T is endowed by a natural left transitive action of B×p /Q×p by isometries that
corresponds to conjugation of maximal orders by elements of B×p . The group Γ := R×/Z[1/p]×

is a discrete subgroup of B×p /Q×p with respect to the p-adic topology and it acts naturally on
T . In particular the quotient T /Γ is a finite graph.

Definition 1.11.7. A modular form of weight two on T /Γ is a Zp-value function f on
−→
E (T )

invariant under the action of Γ. Denote by S2(T /Γ) the space of such modular functions,
that is a free Zp-module .

For any ring Z denote by S2(T /Γ, Z) the space of Γ-invariant functions on
−→
E (T ) with

values in Z.
Similarly define the space S2(V/Γ, Z) of Γ-invariant Z-valued functions on V(T ).

The space S2(T /Γ) is endowed with a nondegenerate Zp bilinear pairing that identifies
S2(T /Γ) with its Qp-dual. It is defined as

(1.18) 〈f1, f2〉 =

s∑
i=1

# StabΓ(ei)f1(ei)f2(ei)

where ei for i = 1...s are representatives of the orbits of the action of Γ on the edges of
the Bruhat-Tits tree T . Replacing the edges with the vertex we have a similar pairing on
S2(V/Γ).

1.11.3 Hecke operators

Let ` be a prime that does not divide p. An element M` of reduced norm ` in the Z[1/p] order
R admit a decomposition as

ΓM`Γ = γ1Γ ∪ . . . γtΓ.

The integer t depends on the prime ` and is given by

t =


`+ 1 if ` - N0

` if ` | N+

1 if ` | N−.

The Hecke operators are then defined as the linear endomorphism of S2(T /Γ) given by
the rule

f` 7→
t∑
i=1

f(γ−1e).

They are well defined since the above assignment does not depend on the choice of M` and
the representatives γi. If ` does not divides N0 we denote by T` the so called Hecke operators,
otherwise we use the notation U` We can also define a Hecke operator at p, denoted by Up, as

(Upf)(e) =
∑

s(e′)=t(e)

f(e′)

where the sum is taken over the p edges e′ with source equal to the target of e, not including
the edge obtained from e by reversing orientation. The good Hecke operator are self-adjoint
for the pairing defined in (1.18), i.e.

〈T`f1, f2〉 = 〈f1, T`f2〉.
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We will denote by T the Hecke algebra acting on the space S2(T /Γ).
The classical notions of oldform and newform have a counterpart in these settings. As

explained in the previous section the modular curves X0(N) and X0(Nq) for a prime q not
dividing N are related by the two degeneracy maps. Similarly, we can define the degeneracy
maps

s∗, t∗ : S2(V/Γ)→ S2(T /Γ)

defined as
s∗(f)(e) = f(s(e)), t∗(f)(e) = f(t(e))

A form f in S2(T /Γ, Z) is p-old if it is can be written as

f = s∗(f1) + t∗(f2)

for f1, f2 ∈ S2(V/Γ) and it is p-new if it is orthogonal to the oldform.

Definition 1.11.8. A form f ∈ S2(T /Γ) is an eigenform if it is a simultaneous eigenvector
for all the Hecke operators, to be more precise, and clarify the notation:

T`(f) = a`(f)f, for all l - N,
U`(f) = α`(f)f, for all ` | N,

with a`, α` ∈ Zp.

An eigenform detemines a maximal ideal

mf := 〈p, T` − a`(f), U` − α`(f)〉.

The following property of some modular forms will be crucial in Chapter II.

Definition 1.11.9. A modular form is p-isolated if the completion of S2(T /Γ) at mf is a
free Zp module of rank one.

Remark 1.11.10. 1. The previous definition is equivalent to say that, avoiding the trivial
cases, the form f is not congruent to any other form in S2(T /Γ).

2. Being p-isolated is actually a property of the mod p eigenform in S2(T /Γ,Fp) associated
to f or of the maximal ideal mf itself.

3. As observed in Lemma 2.2 of [BD], in the settings of Chapter II we can deduce that if
a modular form f is attached to an elliptic curve E/Q, under some technical hypotesis,
the form is p isolated. We will explain in details how this can be used to obtain some
divibility relations between a prime p, the degree of the modular parametrization and
the Tamagawa numbers of E.

1.11.4 The Jacquet-Langlands correspondence

Denote by S2(Γ0(N) the complex vector space of classical modular forms of weight 2 on
H/Γ0(N). It is endowed with an action of Hecke operators that we denote, by abuse of
notation as T`, U`, Up. We say that φ is an eigenform on Γ0(N) that arises from a newform
φ0 of level N0, if it is a simultaneous eigenfunction for the good Hecke operator, and let denote
by a` the eigenvalue of T`. Assume that φ is also an eigenfunction for Up, and denote by αp
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the eigenvalue of Up. As remarked in [BD] it is possible to give an explicit description of αp.
Indeed if p does not divide N0 then αp is a root of the polynomial x2 − apx + p where ap is
the eigenvalue of Tp acting on φ0. Conversely if p divides N0 i.e. φ0 = φ, denote by Aφ the
abelian variety attached to φ by the Eichler-Shimura construction, then

αp =

{
1 if Aφ has split multiplicative reduction at p

−1 if Aφ has nonsplit multiplicative reduction at p

The following proposition that is Proposition 1.3 in [BD] relates, via the Jacquet-Langlands
correspondence, classical and quaternionic modular forms.

Proposition 1.11.11. Let φ as above. Then there exists an eigenform f in S2(T /Γ) satis-
fying:

(1.19)
T`f = a`(φ)f for all ` - N,
U`f = α`(φ)f for all ` | N+,
Upf = αp(φ)f

Furthermore the form f defined by above properties is unique up to multiplication by a
nonzero complex number. Conversely, given an eigenform f ∈ S2(T /Γ,C) there exists an
eigenform φ ∈ S2(Γ0(N)) satisfying (1.19)

The above proposition has the following corollary concerning the case of elliptic curves.

Corollary 1.11.12. Let E be an elliptic curve over Q of conductor N and p a prime of good
ordinary reduction for E. If ` is a prime that does not divide N , set

a` = `+ 1−#E(F`).

Let αp ∈ Z×p be the unique root of the polynomial x2−apx+p. Then there exists an eigenform
f ∈ S2(T /Γ) satisfying:

T`f = a`f for all ` - N,
Upf = αp(φ)f
f /∈ pS2(T /Γ)

Remark 1.11.13. The previous corollary also works without the assumption that p is a prime
of good ordinary reduction. In this case, set

αp =

{
1 if E has split multiplicative reduction at p

−1 if E has nonsplit multiplicative reduction at p

according with the description of αp above.



Chapter 2

On the Birch and Swinnerton-Dyer
conjecture for elliptic curves of
analytic rank one

2.1 Statement of the main results

Let E/Q be an elliptic curve of conductor N . Let ϕE : X0(N)→ E be a modular parametri-
sation of minimal degree dE := deg(ϕE), and let p be a rational prime. We will assume from
now that the following hypothesis is satisfied.

Hypothesis 2.1.1. 1. E/Q has analytic rank one, i.e. ords=1L(E/Q, s) = 1.

2. E/Q is semistable, i.e. N is square-free.

Thanks to part 1 of our Hypothesis, the theorem of Gross-Zagier and Kolyvagin tells us
that E(Q) has rank one, and that the Tate-Shafarevich group III(E/Q) is finite. Let PE be
a generator of E(Q) modulo torsion. Our goal in this chapter is to prove the following result
(cf. Chapter I for the relevant definitions).

Theorem 2.1.2. There exists a finite set of primes ΣE ⊃ {2, 3, 5, 7} (depending only on
E/Q) with the following property. For every prime p 6∈ ΣE of good ordinary reduction for
E/Q: p divides L′(E/Q, 1)

/(
ΩE ·hE(PE)

)
if and only if p divides #III(E/Q) ·CN . (We note

that, under our assumptions, the ratio L′(E/Q, 1)
/(

ΩE · hE(PE)
)

is an integer.)

Under a suitable additional Lifting Hypothesis 2.3.2, we also prove the following theorem.

Theorem 2.1.3. Let p > 7 be a prime of good ordinary reduction for E/Q, which does not
divide dE. Assume moreover that the Lifting Hypothesis 2.3.2 is satisfied. Then the equality:

ordp

(
L′(E/Q, 1)

ΩE · hE(PE)

)
= ordp(#III(E/Q) · CN )

holds. In other words, the p-part of the Birch and Swinnerton-Dyer formula for E/Q holds.

Remark 2.1.4. We would like to make a few comments about the hypotheses of our results.
Regarding Hypothesis 2.1.1: the assumption that E/Q has analytic rank one is of course

crucial in all that follows, and the fact that p is a prime of ordinary reduction for E/Q is also

33
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fundamental for our method, which relies crucially on the work Bertolini-Darmon [BD] and
Skinner-Urban [SU]. The other assumptions, namely the semistability of E/Q and the fact
that p does not divides the minimal degree of a modular parametrisation, can be considerably
weakened (cf. hypothesis CR in [PW]). They are assumed in order to avoid some technical
complications that could have shaded the presentation of the main ideas of our method.

Regarding the Lifting Hypothesis mentioned in the statement of Theorem 2.1.3: referring
to the following Sections for more details, we remark here that we believe it is always satisfied
(and should be possible to verify it following some ideas appearing in [BD]).

2.2 First reduction

Fix an imaginary quadratic field K = Q(
√
−d), where d is a square-free positive integer

greater then 3 (so that O∗K = {±1}), satisfying the following assumptions:

• (Heegner Hypothesis) every prime divisor of N splits in K.

• (Non-vanishing Hypothesis) ords=1L(E/K, s) = 1.

Since E/Q has analytic rank one by Hypothesis 2.1.1, the existence of infinitely many
quadratic imaginary fields K/Q satisfying these assumptions follows by a well-known result
of Waldspurger [Wa] (cf. proof of Theorem 1.7.3). Let

PK ∈ E(K)

be the Heegner point attached in Section 1.5 to K and ϕE . The theorem of Gross-Zagier-
Kolyvagin then tells us: E(K)⊗Q is a 1-dimensional vector space generated by PK , and the
Tate-Shafarevich group III(E/K) is finite. Let us write for simplicity:

I(PK) := [E(K) : ZPK ].

What we will actually prove in this Chapter are the following results.

Theorem 2.2.1. Let p > 7 be a prime of good ordinary reduction for E/Q, which does not
divide dE. Then: p divides the cardinality of III(E/K) if and only if it divides I(PK).

Theorem 2.2.2. Let p > 7 be a prime of good ordinary reduction for E/Q, which does not
divide dE. Assume that the Lifting Hypothesis 2.3.2 is satisfied. Then

2ordp
(
I(PK)

)
= ordp

(
#III(E/K)

)
.

In the rest of this Section, we will show how Theorem 2.2.1 (resp., 2.2.2) imply Theorem
2.1.2 (resp., Theorem 2.1.3). More precisely, we have the results.

Theorem 2.2.3. Theorem 2.2.1 implies Theorem 2.1.2.

Proof. Let p > 7 be a prime of good ordinary reduction, which does not divides the degree dE .
Let K/Q be a quadratic imaginary field of discriminant coprime with 2Np. Let us consider
the following rational quantities:

L′(E/K, 1)alg :=
L′(E/K, 1)

ΩE/K · hE(PE)
;
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L′(E/Q, 1)alg :=
L′(E/Q, 1)

ΩE · hE(PE)
;

L(EK/Q, 1)alg :=
L(EK/Q)

ΩEK

,

where EK/Q is the quadratic twist of E/Q by K. With these notations, we have the equality
(under our assumptions):

(2.1) L′(E/K, 1)alg = L′(E/Q, 1)alg · L(EK/Q, 1)alg.

Given two rational numbers α and β, we will write α ∼p β if α = u·β, where u is a p-adic unit.
As explained in Lemma 2.2 of [BD], the fact that p - dE implies that CN (E/Q) ∼p 1 (where
we write more precisely CN (E/Q) for the product of the Tamagawa numbers of E/Q), i.e.
that E[p] is ramified at every prime q|N . Since the conductor of EK/Q is ND2

K (where DK is
the absolute discriminant of K), since the Tamagawa factor of an elliptic curve at a prime of
additive reduction is coprime with p (since p > 7), and since EK [p] is the twist of E[p] by the
quadratic character attached to K/Q and the latter is unramified at p (so EK [p] is ramified if
E[p] is), this also implies CND2

K
(EK/Q) ∼p 1. Moreover, by a theorem of Mazur, the mod-p

representation ρE of GQ on E[p] is surjective (since p > 7 and E/Q is semistable), so that
E/Q satisfies the assumptions of Theorem 1.9.6. This implies that EK/Q also satisfies the
hypothesis of loc. cit., and applying Skinner-Urban Theorem we obtain the formula:

(2.2) L(EK/Q, 1)alg ∼p #III(EK/Q).

By Corollary 2 of [OS], there exists a finite of primes ΣE , depending only on E/Q, with
the following property: let q 6∈ SE be a prime. Then there exists infinitely many quadratic
imaginary fields K/Q of discriminant coprime with 2qN , such that every prime divisor of N
splits in K/Q, and such that

ordq

(
L(EK/Q, 1)alg

)
= 0.

With this result at hand: let ΣE := SE ∪ {q|dE}, assume from now on that p := q 6∈ ΣE , and
assume that K/Q is chosen satisfying the properties above. In particular, p and K satisfy
the assumptions of Theorem 2.2.1, and we have:

(2.3) L(EK/Q, 1)alg ∼p 1; #III(EK/Q) ∼p 1,

the second equation coming from (2.2). Moreover, by the Gross-Zagier Theorem:

L′(E/K, 1)alg ·= I(PK).

This follows combining Theorem 1.6.2 with Proposition 1.6.1. Appealing now to Theorem
2.2.1 (which is assumed here to hold), we deduce from the preceding equation:

(2.4) p|L′(E/K, 1)alg ⇐⇒ p|#III(E/K).

Since #III(E/K)
·

= #III(E/Q) ·#III(EK/Q) (as p 6= 2), we then obtain:

p|L′(E/Q, 1)alg (2.1) and (2.3)⇐⇒ p|L′(E/K, 1)alg (2.4)⇐⇒ p|#III(E/K)
(2.3)⇐⇒ p|#III(E/Q).

Since (as noted above) CN ∼p 1 under our assumption, this conclude the proof.
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Theorem 2.2.4. Theorem 2.2.2 implies Theorem 2.1.3.

Proof. The proof proceeds as in the preceding Theorem, but is much simpler, since we need
not appeal to the results of Ono-Skinner mentioned above. The details were already given in
Theorem 1.10.3.

Thanks to the preceding two results, we will concentrate in the rest of this Thesis to the
proofs of Theorem 2.2.1 and Theorem 2.2.2. In the rest of this Section we give a sketch of
the proofs, referring to the rest of the chapter for more details.

2.3 Outline of the proof

In this Section we outline the proof of Theorem 2.2.1 and Theorem 2.2.2, referring to the
following Sections for more details and missing definitions.

The main idea behind the proofs is to use the theory of congruences between modular
forms in order to reduce the p-part of the BSD conjecture in analytic rank one to the p-part
of the BSD conjecture in analytic rank zero, the latter being now a consequence of the work
of Skinner-Urban and Kato on the cyclotomic Iwasawa main conjecture.

Let f =
∑∞

k=1 ak(E)qk ∈ S2(Γ0(N),Z) be the weight-two newform attached to E/Q by
the Modularity Theorem 1.4.11. According to [BD], we give the following:

Definition 2.3.1. Let n be a positive integer, and let ` be a rational prime. We say that `
is n-admissible relative to (f,K, p) if it satisfies the following properties:

1. ` does not divide 2Np.

2. ` is inert in K.

3. p does not divide `2 − 1.

4. a`(E)2 ≡ (`+ 1)2 mod pn.

Roughly speaking, our method goes as follows. Fix, once and for all, an embedding of Q
inside Qp. Assume that we can produce, for n� 0, an n-admissible prime `, together with a
weight-two newform g =

∑∞
k=1 ak(g)qk ∈ S2(Γ0(N`),Zp) 1 congruent to f modulo pn:

am(g) ≡ am(f) mod pn

for every positive integer m coprime with `. We note that condition 4 above is necessary in
order that such an `-level raising g of f exists. Let L(g/K, s) be the Hecke L-series of g/K,
and let sgn(g/K) be the sign in its functional equation. As ` is inert in K by assumption 2:

sgn(g/K) = +1,

so that L(g/K, s) is not forced to vanish at s = 1 by parity conditions. Indeed, as explained
in [BD1], [BD], a suitable Jochnowitz congruence would give in this setting a precise relation

1By this notation we mean that g is a weight-two newform of level N`, such that ak(g) ∈ Zp for every
integer k, under our fixed embedding Q ↪→ Qp.
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between the p-adic order of the algebraic part Lalg(g/K, 1) ∈ Zp of the special value L(g/K, 1),
and the p-adic order of the index I(PK) of the Heegner point PK in E(K):

(2.5) ordp
(
I(PK)

) Jochnowitz congruence←→ ordp

(
Lalg(g/K, 1)

)
.

In this way, we can recover the p-part of I(PK) from the p-part of Lalg(g/K, 1). Using the
p-part of the BSD formula in rank zero, the latter is related to the cardinality of a suitable
p-primary Selmer group attached to g/K, which in turn can be related to the cardinality of
the p-primary part of the Tate-Shafarevich group of E/K.

The technical problem with the above strategy comes from the fact that, given n� 0 and
an n-admissible prime `, a newform g ∈ S2(Γ0(N`),Zp) congruent to f modulo pn does not
necessarily exist. More precisely: following the approach of Bertolini and Darmon in [BD],
we can use the work of Ribet on raising the level to construct an `-new, mod-pn modular form
g of level Γ0(N`) which is congruent to f modulo pn (see Section 2.4.4 for the details), but
in general g cannot be lifted to a true modular from (in characteristic zero). For this reason,
we will make use in our argument of the following hypothesis, which we will refer to as the
Lifting Hypothesis.

Hypothesis 2.3.2 (Lifting hypothesis). There exists a triple (n, `, g), where n is a positive
integer, ` is an n-admissible prime relative to (f,K, p), and g ∈ S2(Γ0(N`),Zp) is a weight-two
newform, satisfying the following properties:

1. n > max
(

2ordp
(
I(PK)

)
,#III(E/K)[p∞]

)
.

2. g is congruent to f modulo pn, i.e.

am(g) ≡ am(f) mod pn

for every positive integer m coprime with `.

3. The natural inclusion E(K) ⊂ E(K`) induces an injective map: E(K)/pn ↪→ E(K`)/p
n.

Remark 2.3.3. 1. Let n be a ‘large’ positive integer. As mentioned above (cf. Section 2.4.4),
for every n-admissible prime `, the work of Ribet attaches to (n, `) a mod-pn modular form
g = g` of level N`, which is congruent to f mod pn. The crucial part of the preceding
hypothesis is 2, asserting that we can choose ` such that g can be lifted to a weight-two
newform g ∈ S2(Γ0(N`),Zp), congruent to f modulo pn. The ‘auxiliary request’ 3 is of a
more technical nature, albeit it will be needed in our method.

2. We remark that Ribet’s raising the level result asserts that, for every 1-admissible prime
`, there exists a weight-two newform g ∈ S2(Γ0(N`),Zp) which is congruence to f modulo p.
In other words, with the notations of the preceding remark: if n = 1, we can always lift g to
a true modular form.

Notations and assumptions. We fix for the rest of this Section a positive integer n,
and a n-admissible prime `, such that the natural ‘mod-pn localisation at `’:

(2.6) ι` : E(K)⊗ Z/pnZ ↪→ E(K`)⊗ Z/pnZ

is injective. We note that, under our assumptions, E(K) ⊗ Z/pnZ ∼= Z/pnZ, generated by
the reduction modulo pn of a generator P of E(K)/E(K)tors

∼= Z (since E(K)[p] = 0 under
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our hypotheses). As explained in Theorem 3.2 of [BD], we can then use the Chebotarev
density theorem to show that there exist infinitely many pairs (n, `) satisfying these properties.
Moreover, in order to simplify the exposition, we will assume for the rest of this Section
that K/Q has class number one .

Step 1: Raising the level in the quaternionic setting

By a slight abuse of notation, let us write again

f : T −→ Z/pnZ

for the morphism modulo pn attached to f , where T is the Hecke algebra of level N introduced
in Section 1.4. Let If ⊂ T denotes the kernel of f .

Recall our fixed n-admissible prime `. Working on results and ideas of Ribet and Bertolini-
Darmon (cf. Sections 5 and 9 of [BD], and Section 2.4 below), we will prove in Section 2.4.4
that there exists a mod-pn modular form g = g` of level N` which is congruent to f modulo
pn. More precisely: let T` ⊂ End(S2(Γ0(N`),C)) be the Hecke ring generated over Z by the
Hecke operators Tq, for primes q - N`, and Uq, for primes q|N`, acting on the space of cusp
forms S2(Γ0(N`),C). Write T` for the `-new quotient of T`, i.e. for the quotient of T` acting
on the subspace S`-new

2 (Γ0(N`),C) of S2(Γ0(N`),C) made of cusp-forms which are new at `.
Then there exists a surjective morphism:

g : T` → Z/pnZ,

such that g(TN`q ) = f(TNq ) for every prime q - N and g(UN`q ) = f(UNq ) for every prime

q|N , where we write for clarity here TMq for the q-th Hecke operator of level M acting on

S2(Γ0(M),C), and similarly for UMq .
The Jacquet-Langlands correspondence allows us to view g as a mod-pn modular form on

the definite quaternion algebra B = B(`∞) ramified at ` and ∞. Precisely: fix an Eichler
Z-order R of level N in B, and consider the adelic double coset space

XN,` := R̂×\B̂×/B×,

where we write M̂ := M ⊗ Ẑ, with Ẑ =
∏
q prime Zq the profinite completion of Z. As

explained in [BD3], XN,` is a finite set, and its divisor group Pic(XN,`) is equipped with an
action of the Hecke algebra T`. The modular form g alluded to above then corresponds, by
Jacquet-Langlands, to a surjective morphism

φ` : Pic(XN,`) −→ Z/pnZ,

which is a common eigenfunction for the Hecke operators in T`, with associated system
of Hecke eigenvalues given by g. Moreover, φ` is characterised by these properties up to
multiplication by a unit modulo pn.

Let V = Vp := PGL2(Qp)/PGL2(Zp) be the set of vertices of the Bruhat-Tits tree of
PGL2(Qp). Let us fix an isomorphism ιp : Bp := B ⊗Z Qp

∼= M2(Qp), and let us write
Γ := ιp (R[1/p]×). Strong approximation [Vi] provides us with a natural identification:

V/Γ = XN,`,
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defined sending the class of ιp(b) in V/Γ to the class of the idéle (. . . , 1, b, 1, . . . ) in XN,`. We
can then view φ` as an element of the space of quaternionic modular forms S2(V/Γ,Z/pnZ)
introduced in Section 1.11.4, i.e. as a function

φ` : V/Γ −→ Z/pnZ,

such that φ` /∈ p · S2(V/Γ,Z/pnZ).
It is crucial for our method to give an explicit, geometric description of φ` : V/Γ→ Z/pnZ.

This is possible thanks to Ribet’s description of XN,` = V/Γ in term of enhanced supersingular
elliptic curves in characteristic ` [Ri], generalising Deuring’s classification of endomorphism
algebras of elliptic curves over finite fields. Precisely: recall that a point in the reduction
X0(N)/F`

of X0(N) modulo ` is represented by a pair (E , C), where E is an elliptic curve

defined over F`, “enhanced by” a cyclic subgroup C ⊂ E of order N . Write S` for the subset
of points of X0(N)/F`

which are represented by a pair as above, with E a supersingular elliptic
curve. Proposition 3.3 of [Ri] shows that there exists a bijection

(2.7) V/Γ = XN,` ∼= S`,

which is compatible, ‘outside `’, with the actions of the Hecke algebras T and T` on S` and
XN,` respectively (see Proposition 2.4.11 for a precise statement).

Since the j-invariant of a supersingular elliptic curve defined over F` lives in the quadratic
extension F`2/F`, it follows that S` ⊂ X0(N)(F`2). Write J := J0(N) for the Jacobian of
X0(N)/Q. In Section 2.4 below we will prove that, under the identification (2.7), the mod-pn

modular form φ` corresponds to a composition:

(2.8) γ : S` → J(F`2)/If
red−1

`∼= J(K`)/If
κ`→ H1

fin(K`, E[pn]) ∼= Z/pnZ,

where the notations are as follows. Write Div(S`) := Z[S`] and Div0(S) ⊂ J(F`2) for the
subgroup of degree zero divisors. Since If is not an Eisenstein ideal, we have a natural
isomorphism Div0(S)/If ∼= Div(S)/If . This allows us to define the first arrow above as the
composition S` ⊂ Div(S`) � Div(S`)/If ∼= Div0(S`)/If → J(F`2)/If . Writing K` for the
completion of K at the unique prime above `, the reduction map J(K`)→ J(F`2) induces the
isomorphism denoted red−1

` above (recall that ` is inert in K). Writing H1
fin(K`, E[pn]) for

the unramified cohomology of the GK`
-module E(K`)[p

n], the map κ` is induced by the local
Kummer map for J/K`

, using the isomorphism Tap(J)/If ∼= E[pn] arising from the modular
parametrisation ϕE : X0(N) → E. Finally: we will prove below that for every n-admissible
prime `, the finite cohomology H1

fin(K`, E[pn]) is free of rank one over Z/pnZ, and the last
map in the composition above refers to a fixed choice of an isomorphism. (We remark once
more that the modular form g, and then its Jacquet-Langlands lift φ`, is uniquely determined
only up to multiplication by a unit in Z/pnZ.)

Step 2: Heegner points and a special value formula

As explained in Section 1.5, the Heegner point PK ∈ E(K) is the image under the modular
parametrisation ϕE : X0(N)→ E of a CM point P ∈ X0(N)(K) (recall that we are assuming
for simplicity that K has class number 1 in this Section). More precisely: P can be represented
by an enhanced elliptic curve (A,C), where A is an elliptic curve defined over K, with CM
by OK , and having good reduction at (the unique prime of K) above `. It follows that the
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reduction A/F`2 of A modulo ` is a supersingular elliptic curve, so that (A,C) represents
a point in S` (with the notations of the preceding Section). In other words, writing red` :
J(K) → J(F`2) for the natural reduction map: P := red`(P) ∈ S`. Under the isomorphism
(2.7), P then corresponds to an element

v(P) ∈ V/Γ

(i.e. to a vertex of the finite graph T /Γ, where T = Tp is the Bruhat-Tits tree of PGL2(Qp)).
Recall the mod-pn modular form g = g` of level N`, and congruent to f modulo pn,

mentioned in the preceding Step. We assume here that g can be lifted to a weight-two
newform g = g` ∈ S2(Γ0(N`),Zp) (i.e. g is a weight-two newform of level Γ0(N`), with Fourier
coefficients in Zp, and such that the reduction modulo pn of the corresponding morphism
g : T` → Zp equals g). As in the preceding Section, the Jacquet-Langlands correspondence
attaches to g an eigenform φ` : Pic(XN,`) → Zp, with the same Hecke eigenvalues as g, and
uniquely characterised by these properties up to multiplication by a p-adic unit. Using the
identification XN,` = V/Γ, we can consider φ as a function

φ` ∈ S2(V/Γ,Zp),

whose reduction modulo pn equals the mod-pn modular form φ`.
The seminal Gross formula expresses the special value of the Hecke L-function of g/K in

terms of the value of φ` at v(P). Precisely, let L(g/K, s) be the Hecke complex L-series of
g/K, and define the algebraic part of L(g/K, 1) by:

Lalg(g/K, 1) :=
L(g/K, 1)

Ωcan
g

∈ Zp,

where Ωcan
g is the canonical Shimura period of g/K, as defined in Section 2.2 of [PW] (where

it is denoted simply Ωg). Then we have:

(2.9) Lalg(g/K, 1)
·

= φ`
(
v(P)

)2 · ptg(`).

Here
·

= denotes equality up to multiplication by a p-adic unit, and tg(`) is a certain Tamagawa
exponent at ` attached to g (see Section 2.5.4 for detailed definitions).

Let ∞ ∈ X0(N)(Q) be a fixed rational point such that ϕE(∞) = OE . Using the explicit
description (2.8) of φ` = φ` mod pn explained in the Step I, we will easily deduce the formula:

φ`(v(P))
·

= γ
(
red`(P)

)
= κ`

(
P− {∞}

)
= PK(`) mod pn,

where
·

= denotes equality in Z/pnZ up to multiplication by a unit modulo pn, and κ` is
as in (2.8). Recall that we fixed above an isomorphism H1

fin(K`, E[pn]) ∼= Z/pnZ. Then
we write PK(`) ∈ Z/pnZ for the image of PK under the composition of the local Kummer
map on E(K`)/p

n with the natural restriction map ι` : E(K)/pn → E(K`)/p
n. Since ι` is

injective by assumption (2.6) (and since E(K)[p] = 0), restriction at ` induces an isomorphism
Z/pnZ·P̃ = E(K)⊗Z/pnZ ∼= H1

fin(K`, E[pn]) ∼= Z/pnZ, sending the reduction P̃ of a generator
P ∈ E(K)/E(K)tors modulo pn to 1. As PK = I(PK) · P, we then obtain the identity

PK(`)
·≡ I(PK) mod pn, and the last equation can be reformulated as:

(2.10) φ`(v(P))
·≡ I(PK) mod pn.
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(Here
·≡ denotes equality in Z/pnZ up to multiplication by units.)

In particular: assume further that

n > ordp
(
I(PK)

)
.

Then equation (2.10) and equation (2.9) combine to give the identity:

(2.11) ordp

(
Lalg(g/K, 1)

)
= 2ordp

(
I(PK)

)
+ tg(`).

This is the Jochnowitz congruence mentioned in equation (2.5) (cf. [BD1], Section 6 of [Va],
and Section 9 of [BD] for closely related results).

Step 3: Shafarevich-Tate groups

In this Step, we continue to assume , as in Step II, that there exists a weight-two newform
g = g` ∈ S2(Γ0(N`),Zp) lifting the mod-pn modular form g = g` appearing in Step I.

Let Ag be the abelian variety over Q attached to the newform g ∈ S2(Γ0(N`),Zp) by the
Eichler-Shimura construction, so that Ag is a quotient of the modular Jacobian J0(N`) of
level N` (see Theorem 1.4.13 for more details). Let Kg = Q({an(g) : n ∈ N}) be the totally
real field generated over Q by the Fourier coefficients of g, and let Og = OKg be its ring of
integers. Then Og acts as a ring of Q-rational endomorphisms on Ag/Q, i.e. there exists a
morphism Og → End(Ag/Q). In particular, for every field extension L/Q, the group Ag(L)
is an Og-module. Since the Fourier coefficients of g live in Zp, there exists a prime ideal
p ∈ Spec(Og) such that the completion Kg,p of Kg at p is isomorphic to Qp. Write Op

∼= Zp
for the completion of Og at p. We then have an isomorphism of Z/pnZ[GQ]-modules:

Ag[p
n] ∼= E[pn].

Fixing such an isomorphism, we can consider both the pn-Selmer group Selpn(E/K) attached
to E/K, and the pn-Selmer group Selpn(Ag/K) attached to Ag/K (cf. Section 1.1) as sub-
modules of H1(K,E[pn]). By the results of [GP], we know that the local conditions defining
Selpn(E/K) and Selpn(Ag/K) as subgroups of H1(K,E[pn]) match at all primes of K different
from `, while they are ‘complementary’ at ` 2. Since ι` : E(K)/pn ↪→ E(K`)/p

n is injective
by assumption (2.6), a simple argument based on Poitou-Tate duality allows us to show that
there is an exact sequence

0→ Selpn(Ag/K)→ Selpn(E/K)
κ`→ Z/pnZ→ 0,

where we write here κ` to denote the composition of restriction at ` with the local Kummer
map E(K`)/p

n → H1
fin(K`, E[pn]) ∼= Z/pnZ (see Step I for the last isomorphism). Since E(K)

is a semistable elliptic curve of analytic rank one and p > 7, we have E(K)/pn ∼= Z/pnZ, so
that Kummer theory and the preceding equation give the equality:

(2.12) #Selpn(Ag/K) = #III(E/K)[pn].

2More precisely: the local cohomology H1(K`, E[pn]) at an n-admissible prime ` decomposes as a direct
sum of its finite part H1

fin(K`, E[pn]) ∼= Z/pnZ and its ordinary part H1
ord(K`, E[pn]). Moreover, H1

fin is in
perfect duality with H1

ord under the local Tate duality attached to the Weil pairing on E[pn]. Since E has
good reduction at `, the local condition at ` defining Selpn(E/K) is the finite one H1

fin(K`, E[pn]). On the
other hand, Ag has purely toric reduction at `, and Tate’s theory tells us that the local condition at ` defining
Selpn(Ag/K) is the ordinary one H1

ord(K`, E[pn]).



CHAPTER 2. BSD IN RANK ONE 42

Step 4: End of the proofs

Thanks to the work of Kato and Skinner-Urban on the cyclotomic Iwasawa main conjecture
for GL2, we have the equality (cf. Theorem 1.9.7):

(2.13) ordp

(
Lalg(g/K, 1)

)
= ordp

(
#Selp∞(Ag/K)

)
+ tg(`).

With this last equation at our disposal, we are now ready to conclude our proofs.

Proof of Theorem 2.2.1. Let us take n = 1. As recalled in Remark 2.3.3, Ribet’s raising the
level theorem guarantees the existence of a weigth-two newform g ∈ S2(Γ0(N`),Zp) congruent
to f modulo p. In particular, with the exception of equation (2.11), the results outlined in
Step II and Step III hold (unconditionally) for n = 1. Then

III(E/K)[p] = 0 ⇐⇒ Selp(Ag/K) = 0

by equation (2.12), while equation (2.13) gives us the equivalence:

Selp(Ag/K) = 0 ⇐⇒ ordp

(
Lalg(g/K, 1)

)
= tg(`)

3.

Appealing now to Gross’s formula (2.9) we have (cf. Step II):

ordp

(
Lalg(g/K, 1)

)
= tg(`) ⇐⇒ ordp

(
φ`
(
v(P)

))
= 0.

Finally: equation (2.10) gives the equivalence:

ordp

(
φ`
(
v(P)

))
= 0 ⇐⇒ ordp

(
I(PK)

)
= 0.

Putting everything together, we conclude our outline of the proof of Theorem 2.2.1.

Proof of Theorem 2.2.2 Assume that the Lifting Hypothesis 2.3.2 is satisfied. Then we
can complete our fixed pair (n, `) to a triple (n, `, g) satisfying the conclusion of the Lifting
Hypothesis. Then n > ordp

(
I(PK)

)
(by 1 of the Lifting Hypothesis), and all the formulas

appearing in Step II are true. We then have:

ordp

(
#Selp∞(Ag/K)

)
+ tg(`)

Eq. (2.30)
= ordp

(
Lalg(g/K, 1)

)
Eq. (2.11)

= ordp
(
I(PK)

)
+ tg(`),

giving us in particular:

(2.14) ordp

(
#Selp∞(Ag/K)

)
= ordp

(
I(PK)

)
.

Since n > 2ordp
(
I(PK)

)
by part 1 of Hypothesis 2.3.2, we deduce in particular that pn kills

the p∞-Selmer group of Ag/K, which implies: Selp∞(Ag/K) = Selpn(Ag/K) 4. On the other
hand, equation (2.12) tells us that the latter has the same cardinality as III(E/K)[pn], which
in turn equals III(E/K)[p∞], again by part 1 of the Lifting Hypothesis 2.3.2. Then equation
(2.14) can be finally translated as:

ordp

(
#III(E/K)[p∞]

)
= ordp

(
I(PK)

)
.

3To derive this from equation (2.13), we note that the natural surjection Selp(Ag/K) � Selp∞(Ag/K)[p]
is an isomorphism. Indeed its kernel is Ag(K)[p] ∼= E(K)[p], which is zero (e.g. by Mazur’s Theorem, since
p > 7). In particular, we have: Selp∞(Ag/K) = 0 if and only if Selp(Ag/K) = 0, as desired.

4The natural map Selpn(Ag/K) → Selp∞(Ag/K)[pn] = Selp∞(Ag/K)[pn] is always surjective, and since
0 = E(K)[pn] = Ag(K)[pn] in our case (as p > 7 and E[p] is irreducible by assumption), it is also injective.
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2.4 Raising the level in the quaternionic setting

2.4.1 n-admissible primes and finite cohomology

Let us fix for the rest of this Section a positive integer n, and an n-admissible prime ` relative
to (f,K, n); see Definition 2.3.1. Let K` denotes the completion of K at the unique prime
dividing `. Define the finite/singular cohomology at ` as:

H1
fin(K`, E[pn]) := ker(H1(K`, E[pn])→ H1(Kunr

` , E[pn]));

H1
sing(K`, E[pn]) :=

H1(K`, E[pn])

H1
fin(K`, E[pn])

,

where Kunr
` /K` is the maximal unramified extension of K`. The following result is essentially

Lemma 2.6 of [BD]. We recall its proof in order to fix notations and for later reference.

Lemma 2.4.1. We have a decomposition of Z/pnZ[GK`
]-modules

E[pn] ∼= µpn ⊕ Z/pnZ,

where µpn := µpn(K`) (and Z/pnZ is considered as a GK`
-module with trivial action). More-

over, under this decomposition, we have isomorphisms:

H1
fin(K`, E[pn]) ∼= H1(K`,Z/pnZ) ∼= Z/pnZ; H1

sing(K`, E[pn]) ∼= H1(K`, µpn) ∼= Z/pnZ.

Proof. Since ` does not divides the conductor of E/Q, the Galois representation E[pn] is
unramified at `, i.e. the action of GK`

on E[pn] factors through an action of the quotient
group GK`

/IK`
, where IK`

is the inertia subgroup ([Si, Chapter VII]). By condition 2 in the
Definition 2.3.1, the latter quotient is isomorphic to Gal(Kunr

` /K`) ∼= GF`2
:= Gal(F`/F`2) ∼= Ẑ

(with F`k denoting the field with `k elements), and is topologically generated by Frob2
` (where

Frob` ∈ GF`
is the usual Frobenius). As explained in Chapter V and Chapter VII of [Si],

the trace (resp., determinant) of the Frobenius Frob` acting on E[pn] is a`(E) (resp., `). By
condition 4 in Definition 2.3.1, we then obtain: the characteristic polynomial of Frob` acting
on E[pn] is

X2 ∓ (`+ 1) ·X + ` ∈ Z/pnZ[X].

In other words: Frob` acts on E[pn] with eigenvalues ±1 and ±`, so that Frob2
` acts on E[pn]

with eigenvalues 1 and `2. In addiction: by condition 3 in Definition 2.3.1, `2 is different from
1 (in Z/pnZ). Since Frob2

` acts on the unramified GK`
-module µpn with eigenvalue `2, this

gives us the claimed decomposition of Z/pnZ[GK`
]-modules:

E[pn] ∼= µpn ⊕ Z/pnZ.

In particular, applying cohomology to this decomposition, we deduce the decomposition:

(2.15) H1(K`, E[pn]) ∼= H1(K`, µpn)⊕H1(K`,Z/pnZ).

Using Hensel’s Lemma and the `-adic logarithm, we have

K∗` = `Z × µ`2−1 × 1 + `O` ∼= Z× µ`2−1 × Z2
`
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where O` is the ring of integers of K`. By Kummer theory, we then deduce

H1(K`, µpn) ∼= K∗` ⊗ Z/pnZ ∼= Z/pnZ,

since by property 3 in Definition 2.3.1, p - `2 − 1. By Tate local duality [Da, Theorem 10.9]:

H1(K`,Z/pnZ) ∼= HomZ

(
H1(K`, µpn),Z/pnZ

) ∼= Z/pnZ.

In order to conclude the proof of the Lemma, it remains to prove:

(2.16) H1
fin(K`, E[pn]) = H1(K`,Z/pnZ)

(under the decomposition (2.15)). By [Se, Proposition 1, Chapter XIII], we have

ρ` : H1
fin(K`, E[pn]) ∼= E[pn]/(Frob2

` −1)E[pn].

More precisely: let ξ ∈ H1
fin(K`, E[pn]), and let ξo : GK`

→ E[pn] be 1-cocycle representing ξ.
By definition, there exists P ∈ E[pn] such that ξo(h) = P h−P for every h ∈ IK`

. Subtracting
to ξo the 1-coboundary GK → E[pn]; g 7→ P g − P , we see that ξ = [ξo] is represented by a
1-cocycle ξo which factors through a 1-cocycle ξo : GK`

/IK`
∼= GF`2

→ E[pn]. With these
notations:

ρ`(ξ) := ξo
(
Frob2

`

)
mod

(
Frob2

` − 1
)
· E[pn].

Using the decomposition E[pn] ∼= µpn ⊕ Z/pnZ, let P ∈ E[pn] (resp., Q ∈ E[pn]) be a basis
for the 1-eigenspace (resp., `2-eigenspace) for the action of Frob2

` on E[pn]. Then

E[pn]/(Frob2
` −1)E[pn] ∼= Z/pnZ ·P ∼= Z/pnZ

as Frob2
` -modules (using again that p - `2 − 1). Moreover, with the notations above, write

ξo = ξoP ⊕ ξoQ, for 1-cocycles ξo? : GF`2
→ Z/pnZ · ?, and accordingly ξ = ξP ⊕ ξQ. By the

preceding discussion, we then obtain an isomorphism:

θ` : H1
fin(K`, E[pn]) ∼= Z/pnZ ·P; θ`(ξ) = ξo

(
Frob2

`

)
= ξoP

(
Frob2

`

)
= θ`(ξP).

Since θ` is an isomorphism, this shows in particular that ξQ = 0, i.e. ξ = ξP. In other
words: H1

fin(K`, E[pn]) ⊂ H1(K`,Z/pnZ ·P), and the latter cohomology module is identified
by construction with H1(K`,Z/pnZ) under the decomposition (2.15). Since both cohomology
groups have the same cardinality pn, they have to be equal, thus proving the claim (2.16),
and with it the Lemma.

2.4.2 The map γ

Recall that f =
∑

n≥1 anq
n denotes the newform attached to E/Q by the result of [Wi] and

[TW], and T denotes be the Hecke algebra of level N acting on the Jacobian of X0(N). More
precisely: write J := J0(N)/Q for the Jacobian variety of X0(N)/Q. There are indeed two
natural actions of T on J , the Albanese and the Picard one (arising from viewing J as an
Albanese of Picard variety respectively). Equip the Jacobian with the action of T induced by
Picard (contravariant) functoriality. The form f determines an algebra homomorphism

f : T→ Z/pnZ, Tn 7→ an (mod pn),
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denoted in the same way by an abuse of notation. Write If for its kernel. We are now
interested in constructing a modular form of level N` congruent to f modulo pn. As discussed
in Chapter I, the existence of a similar form in a result due to Ribet. We are moreover giving
an explicit description of the form we are constructing. Most of the ideas and the techiniques
are borrowed from Bertolini and Darmon work [BD], in particular section 9. There are some
difference in between their work and the present. The first is that Bertolini and Darmon
results are written in the setting of Shimura curves, while we are working only with modular
curve. The second difference is in the fact that the raising the level result of [BD] is in two
n-admissible primes. In our setting we are raising the level just in one prime.

The assumption that p does not divide the degree dE of the modular parametrization
implies that f is p-isolated, as remarked in Lemma 2.2 of [BD](but see also Theorem 2.2 of
[ARS2] for details). Since E[p] is an irreducible Fp[GQ]-module, the modular parametrisation
ϕE induces an isomorphism

Tap(J)/If ∼= E[pn].

Let us fix, once an and for all, such an isomorphism, under which we identify the modules
involved. Then, the map

J(K`)/If → H1(K`,Tap(J)/If )

arising form Kummer theory yields a map

(2.17) J(K`)/If → H1(K`, E[pn]).

The image of (2.17) is equal to the group of unramified classes, since E[pn] is unramified at
` and ` is a prime of good reduction for J .

Since ` - Np (so in particular the modular Jacobian J has good reduction at `), and
since ` is inert in K, we have a natural reduction map red` : J(K`) → J(F`), inducing an
isomorphism

(2.18) J(K`)/If → J(F`2)/If .

By composing the inverse of (2.18) with (2.17), and fixing an identification of H1
fin(K`, E[pn])

and Z/pnZ as in the Lemma (2.4.1), we then get a surjective map

(2.19) J(F`2)/If → Z/pnZ.

Let S` ⊂ X0(N)(F`2) denotes the set of supersingular points of X0(N) in characteristic
`, and let Div(S`), resp. Div0(S`) be the module of formal divisor, resp. degree zero divisors
with Z-coefficients supported on S`.

We make convention that T acts on the supersingular points by Albanese (covariant)
functoriality instead of Picard’s one, since it makes no difference in establishing the Hecke
equivariance of the maps defined below. In fact a Hecke correspondence induces two different
morphisms T and ξ via Picard and Albanese functoriality. The reader is referred to [Ri] for
details of definitions. Denoting by wN the Fricke involution, the relation

wNTwN = ξ

holds. In particular the Hecke operators induce the same endomorphism via Picard and
Albanese functiorality. This is clear for Hecke operators corresponding to the primes not
dividing the level. For the other primes, observe that the corresponding Hecke operators are
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involutions and then, by a general property of curves, the two functoriality induces the same
endomorphism. A complete exposition is contained in [Ri].

We note that the ideal If is not eisenstain (since by assumption E[p] is irreducible, so
that f cannot by cannot be congruent to an Eisenstein series modulo pn). This implies easily
that the natural inclusion of Div0(S`) in Div(S`) induces an identification of the quotients
Div0(S`)/If and Div(S`)/If . One then obtains a natural map

(2.20) Div(S`)→ J(F`2)/If

that composed with the map (2.19) yields a map

γ : Div(S`)→ Z/pnZ.

As above denote by T be the Hecke algebra acting on X0(N). Write Tq (q - N) and Uq (q | N)
for the q-th Hecke operator in T and T̄q and Ūq for the natural image of Tq and Uq resp. in
T/If = Z/pnZ. Thus the following equalities modulo pn hold: T̄q ≡ aq for q - N Ūq ≡ aq for
q|N , and, since the prime ` is n-admissible T̄` ≡ ε(`+ 1).

The following proposition states the Hecke equivariance of the maps.

Proposition 2.4.2. Let x ∈ Div(S`), the relations

i. γ(Tqx) = T̄qγ(x) (q - N)

ii. γ(Uqx) = Ūqγ(x) (q | N)

iii. γ(Frob` x) = εγ(x)

holds.

Proof. The proof follows quite closely the proof of Proposition 9.1 of [BD]. In Lemma 2.4.1
we obtained an identification

H1
fin(K`, E[pn]) ∼=

E[pn]

(Frob2
` −1)E[pn]

.

This provides an explicit description of γ sending a point x to the image of (Frob2
` −1)/pn)x

in E[pn]/(Frob2
` −1)E[pn]. It follows the equivariance of γ for the action of the operators

Tq and Uq. As for iii. and iv., recall that by the Eichler-Shimura relations the operator T`
acts the correspondence Frob` + Frob∨` , Frob∨` being the transpose of the Frobenius at `. For
points x defined over F`2 we have the relation Frob∨` x = `Frob` x and hence

T`x = (Frob` + Frob∨` )x = (`+ 1) Frob` x.

By definition of n-admissible prime, note that (` + 1) is invertible in Z/pnZ. The Frobe-
nius at ` acts on the module E[pn] with eigenvalues ε and ε` hence it acts on the quotient
E[pn]/(Frob2

` −1)E[pn] by ε.
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2.4.3 The surjectivity of γ

In order to give an explicit description of a modular form obtained from f by raising the
level, we need to show the surjectivity of the map γ that, up to some identifications, coincide
with the sought-for modular form. In order to estabilish the surjectivity of the map γ defined
above we need to fix notations and recall some results. First, let F be a field, we will denote
by GF the absolute Galois group Gal(F̄ /F ). Let us begin with a general fact of cohomology,
whose proof is contained in Chapter VI of [Se].

Theorem 2.4.3 (Lang triviality lemma). Let A be a connected algebraic group over a finite
field k. Then

H1(k,A) = 0.

Consider the covering X1(N) → X0(N). By Picard functoriality on the Jacobians, we
have a map

π∗ : J0(N)→ J1(N)

whose kernel ShN := kerπ∗ is called the Shimura subgroup. Similarly, using Albanese func-
toriality we have

π∗ : J1(N)→ J0(N)

and denote ΣN := kerπ∗.

Definition 2.4.4. A µ-type group is a finite flat group scheme whose Cartier dual is a
constant group.

Proposition 2.4.5 (Mazur, [Ma1], Prop.11.6). There is a natural isomorphism between the
group of connected components of ΣN and the Cartier dual of the Shimura subgroup ShDN .
Furthermore the Shimura subgroup is a µ-type group and in partirular it is finite and flat over
F`.

Proposition 2.4.6. The map γ defined above is surjective.

Proof. The map
J0(F`2)/If → Z/pnZ

is surjective, so it suffices to show the surjectivity of the natural map

J0(F`2)ss → J0(F`2)/If .

The group ΣN is defined by the exact sequence

0→ ΣN → J1(N)→ J0(N);

taking Galois cohomology over F`2 and using Lang’s triviality lemma, we have the following
exact sequence

(2.21) J1(N)(F`2)→ J0(N)(F`2)→ H1(GF`2
,ΣN )→ 0.

Applying the result of Mazur stated in Proposition2.4.5, with another application of Lang’s
result, we have the isomorphism
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H1(GFl2
,ΣN ) ∼= ShDN (F`2).

The sequence (2.21) is equivariant under the action of the Galois group Gal(F`2/F`). Since
the action of Gal(F`2/F`) on H1(GFl2

,ΣN ) is trivial, we have the following isomorphism of
group schemes

J0(N)(F`2)/π∗(J1(N)(F`2)) ∼= ShDN (F`2).

All the supersingular points of X1(N) in characteristic ` are defined over F`2 hence the image
of J1(N)(F`2) in J0(N)(F`2) contains J1(N)(F`2)ss.

We claim, that

(2.22) J0(N)(F`2)/J0(N)(F`2)ss ∼= ShDN (F`2).

Assume the claim, and denote by mf the maximal ideal of T containing If . By a result
of Ribet, more precisely Theorem 1 of [Ri5] the group ShN is Eisenstein. As a consequence:

ShDN (F`2)[mf ] = HomF`2
(ShN ,F`2)[mf ] = 0.

By duality, also the quotient ShN /mf = 0. Nakayama’s lemma implies the triviality of
ShN /If that combined with the isomorphism (2.22) yields the surjectivity of γ. For the
proof of the claim see the lemma below.

Lemma 2.4.7. Using the same notation of Proposition 2.4.6, there is an isomorphism

J0(N)(F`2)/J0(N)(F`2)ss ∼= ShDN (F`2).

Proof. First note that it is enough to show that

#(J0(N)(F`2)/J0(N)(F`2)ss ≤ #(ShDN (F`2))

Indeed, all the supersingular points of X1(N) are defined over F`2 and the image of J1(N)(F`2)
in J0(N)(F`2) contains the subgroup J0(N)(F`2)ss. We will show that J0(N)(F`2)/J0(N)(F`2)ss

is a quotient of ShDN . This combined with the isomorphism

J0(N)(F`2)/π∗(J1(N)(F`2)) ∼= ShDN (F`2),

proves our claim. We need some results on coverings of modular curve, most of them are
borrowed from Ihara’s work [Ih]. First, the modular curve X(N) corresponding to the full
congruence subgroup Γ(N) has no unramified coverings over F`2 which are completely split at
supersingular points of X(N). By base change, all the unramified coverings of X0(N) that are
completely split at supersingular points, are contained in X(N) over F`2 . In particular there
is an identification between X1(N) and the maximal abelian cover of X0(N) in X(N). Fur-
thermore, the Galois group of the maximal unramified covering of X0(N) which is contained
in X1(N) is identified with J0(N)(F`2)ss.

Now, let G be a subgroup of J0(N)(F`2). G gives rise to an unramified abelian cover of
X0(N) over F`2 with Galois group J0(N)(F`2)/G. Taking G = J0(N)(F`2)ss, we get a covering
of J0(N)(F`2)/J0(N)(F`2)ss in which all supersingular points of X0(N) are split.
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2.4.4 Modular forms on quaternion algebras

Our aim in this section is to obtain an explicit raising the level. In particular we will show
that γ can be identified with a certain quaternionic modular form.

Recall the algebras T` � T` introduced in Section 2.3, Step I. Then T` is the Z-module
generated by all the Hecke operators of level N` acting on the space S`-new

2 (Γ0(N`),C) of cusp
forms of level Γ0(N`) which are new at `. To avoid any confusions between the generators of
T and T`, we denote by Tq, for primes q - N (resp., tq, for primes q - N`), and Uq, for primes
q|N (resp., uq, for primes q|N`) the generators of the Z-algebra T (resp., T`). We will prove
the following Theorem, analogue in our setting to Theorem 5.18 of [BD].

Theorem 2.4.8. There exists a surjective homomorphism

g := g` : T` → Z/pnZ,

satisfying g(tq) = f(Tq) for primes q - N`, g(uq) = f(Uq) for primes q | N , and g(u`) = ε.

Using the Jacquet-Langlands correspondence, we can rephrase this Theorem in terms of
modular forms on a suitable quaternion algebra. More precisely: let B = B(`∞) be the
definite quaternion algebra ramified precisely at ` and ∞, and let R be an Eichler Z-order of
level N in B. In Section 2.3, Step I, we have associated to this data the double coset space

XN,` := R̂×\B̂×/B× = V/Γ,

where V is the set of vertices of the Bruhat-Tits tree of PGL2(Qp) and Γ ∼= R[1/p]× (and
the last identification comes from strong approximation). The group Pic(XN,`) = Pic(V/Γ)
of divisors on XN,` = V/Γ is equipped with a natural action of the Hecke algebra T` (see
[BD3] for more details) 5. For every ring A, this induces an action of T` on the A-module
S2(V/Γ, A) of A-valued modular forms on V/Γ. The Jacquet-Langlands correspondence gives
us the following result.

Proposition 2.4.9 (Jacquet-Langlands correspondence). Let A be a ring. Write S`2(N`,A)
for the set of surjective ring morphisms ψ : T` → A, and write S2(V/Γ;A) for the set of
A-valued T`-eigenforms φ such that φ 6∈ pS2(V/Γ;A). Then there is a bijection:

S`2(N`;A) ∼= S2(V/Γ;A).

If ψ ∈ S`2(N`;A) corresponds to φ ∈ S2(V/Γ;A) under this bijection, then tq(φ) = ψ(tq) · φ
for every prime q - N`, and uq(φ) = ψ(uq) · φ for every prime q|N`.

Thanks to the preceding Proposition, Theorem 2.4.8 is then equivalent to the following:

Theorem 2.4.10. There exists a T`-eigenform φ` ∈ S2(V/Γ,Z/pnZ) such that:

tq
(
φ`
)

= aq · φ`; uq′
(
φ`
)

= aq′ · φ`; u`
(
φ`
)

= ε · φ`

for every prime q - N` and every prime q′|N , and such that φ` /∈ p · S2(V/Γ,Z/pnZ).

5The notation Pic(XN,`) for the group of divisors on the finite set XN,` comes from the work of Gross.
Indeed, Gross showed that Pic(XN,`) can be naturally described as the Picard group of a certain finite union
of genus-zero curves defined over Q.
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We will indeed construct the searched modular form φ` by using our map γ discussed
in the preceding Sections. In order to do this, we need the following result of Ribet [Ri].
Recall that S` ⊂ X0(N)(F`2) denotes the set of supersingular points in the modular curve
X0(N)/F`

in characteristic `. In particular, by general principles, the group of divisors Div(S`)
is equipped with an action of the level-N Hecke algebra T.

Proposition 2.4.11. There exists an isomorphism

ξ` : Pic(XN,`) ∼= Div(S`),

satisfying the following properties: let x ∈ XN,`. Then

1. ξ`
(
tq(x)

)
= Tq

(
ξ`(x)

)
, for every prime q - N`;

2 ξ`
(
uq(x)

)
= Uq

(
ξ`(x)

)
, for every prime q - N ;

3 ξ`
(
u`(x)

)
= Frob`

(
ξ`(x)

)
.

Identifying V/Γ with XN,` as above, we write again

ξ` : V/Γ ∼= S`

for a bijection induced by an isomorphism ξ` as in the preceding Proposition.

Proof of Theorem 2.4.10. Let γ : Div(S`) → Z/pnZ be the map constructed in the Section
2.4.2. Combining Proposition 2.4.2 with Proposition 2.4.11, we deduce that

φ` := γ ◦ ξ`

is a common eigenform for all the Hecke operators in T`, with Hecke eigenvalues as in the
statement of the Theorem. By the surjectivity of γ established in Proposition 2.4.6, φ` is not
contained in p · S2(V/Γ,Z/pnZ).

The following is a Corollary of our method of proof.

Corollary 2.4.12. Under the bijection ξ` : V/Γ ∼= S`, the map γ : V/Γ→ Z/pnZ defines an
eigenform φ` ∈ S2(V/Γ,Z/pnZ) satisfying the conclusions of Theorem 2.4.10.

2.5 Heegner points and a special value formula

We now exploit the computations of the preceding Section to prove a Jochnowitz congruence
in the spirit of the work of Bertolini-Darmon [BD1] and [Va].

2.5.1 Gross points on definite quaternion algebras

In this Section we briefly recall the notion of Heegner, or Gross, points on our definite quater-
nion algebra B = B(`∞) ramified at ` and ∞. We refer to [BD3], [BD4] and [Va] for a much
more detailed and general discussion.

Let R be an Eichler order of level N in B. An orientation on R is the choice of a collection
of morphisms vq : R ⊗Z Fq → Fq, for every q|N`, where Fq := Fq for q|N and F` := F`2 . An
oriented Eichler order of level N is a pair (R, {vq}q|N`), where R is an Eichler order of level
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N , and {vq}q|N` is an orientation. In the notations, we will often omit the reference to the
orientation {vq}q|N`. Given b ∈ B∗, the order Rb := bRb−1 is again an Eichler order of level
N , and an orientation on R induces naturally an orientation of Rb. We can thus consider
the finite set CN (B) of conjugacy classes of oriented Eichler orders of level N in B. This is
indeed an object we already know, thanks to the following:

Lemma 2.5.1. There is a natural bijection: XN,` ∼= CN .

Proof. Let us fix an oriented Eichelr order R of level N . Given σ ∈ B̂×, it is easily verified
that Rσ := B ∩ σ · R̂ · σ−1 is again an Eichler order of level N , with a natural orientation
(induced by that on R). It is also not difficult to show that the association σ 7→ Rσ induces
the claimed bijection. We refer to [Vi] for details.

Let us fix an orientation on O := OK , i.e. the choice, for every prime q|N`, of a morphism
O → Fq. Given an oriented Eichler order R of level N , this gives us a natural notion of
oriented embedding f : O → R.

Definition 2.5.2. A Gross point of level N (and conductor 1) is a pair (f,R), where R is
an oriented Eichler order of level N in B, and where f : K → B is an embedding such that
f(K) ∩R = f(O), taken up to conjugation by B×. We write

GN := GN (1)

for the set of Gross points of level N .

Let Pic(O) be the class group of K, described in terms of finite ideles by:

Pic(O) = Ô×\K̂×/K×,

where we write again M̂ = M ⊗Z Ẑ. This allows us to define an action of Pic(O) on GN
as follows. Let P ∈ GN be represented by a pair (f,R), and let σ ∈ K̂×. The embedding
f : K → B induces a morphism f̂ : K̂ → B̂. Let

P σ = (f,Rσ),

where Rσ := B ∩ f̂(σ)R̂f̂(σ)−1. It is easily verified that P σ is again a Gross point of level N ,
and that we defined in this way an action of Pic(O) on GN . We have the following:

Proposition 2.5.3. The action of Pic(O) on GN already defined is simply transitive. In
particular: there are exactly hK := #Pic(O) Gross points of level N .

Proof. See [BD3] and the references listed there.

We close this Section by pointing out that every M -valued form ψ ∈ S2(V/Γ,M) gives
rise to a map (denoted by the same symbol with a slight abuse of notation)

ψ : GN −→M.

Indeed, as recalled in Section 2.4.4, strong approximation provides us with a canonical iden-
tification V/Γ = XN,`, and by Lemma 2.5.1 we have a natural identification of XN,` with the
set CN of conjugacy classes of oriented Eichler orders of level N in B. We can then view ψ as
an M -valued function on CN . Finally, we have a natural ‘forgetful map’ GN → CN , sending
the Gross points represented by a pair (f,R) to the class in CN of the oriented Eichler order
R. Summing up, we define the map above as the composition:

ψ : GN → CN ∼= XN,` ∼= V/Γ
ψ→M.
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2.5.2 Reduction of Heegner points

Let H/K be the Hilbert class field of K. We recall that a point x ∈ X0(N)(C) is an Heegner
point of conductor 1 if x is represented by an enhanced elliptic curve (A,C), where A/C is
an elliptic curve with CM by the maximal order O of K, and C ⊂ A is a cyclic subgroup of
order N , stable under the action of O. By the theory of complex multiplication, any such x
is indeed rational over the Hilbert class field H/K of K, i.e. x ∈ X0(N)(H). Let us write
HN := HN (1) ⊂ X0(N)(H) for the set of such Heegner points and conductor 1. The set
HN is equipped with a natural simply transitive action of Gal(H/K), and the latter group
is identified by class field theory with the class group Pic(O) of K. Our aim in this Section
is to explain how reduction modulo ` establishes a Pic(O)-equivariant map from the set of
Heegner points HN to the set of Gross points GN .

Let is fix an ideal N ⊂ O such that O/N ∼= Z/NZ, which exists since we are assuming the
Heegner hypothesis (i.e. every prime q|N splits in K). We also fix a Heegner point P ∈HN ,
represented by a pair (A,C), where A/H is an elliptic curve defined over H with CM by
O, and C := A[N] is its N-torsion submodule. Since ` is inert in K (by the definition of
admissible prime), the elliptic curve A has good supersingular reduction modulo every prime
of H dividing `. More precisely: note that ` splits completely in H (as it is principal in K),
and fix a prime l|` of H. We will denote by · every operations of reduction modulo l. Then
the pair (A,C) is a supersingular enhanced elliptic curve over F`2 , and its endomorphism ring
End(A) is a maximal order in the quaternion algebra

End(A)Q := End(A)⊗Z Q ∼= B.

Let us fix such an isomorphism, which we consider as an equality. Let π : A→ A/C := A be
the natural isogeny. Then A/F`2 is again a supersingular elliptic curve, and its endomorphism
ring End(A) is again isomorphic to a maximal order inB. The isogeny π induces an embedding
End(A) ↪→ End(A)Q = B, defined by α 7→ π−1 ◦ α ◦ π. It can be checked that

RA := End(A) ∩ End(A)

is an Eichler order of level N in B. We have moreover a natural embedding

fA : O −→ RA,

arising from the reduction modulo l of endomorphisms: O ∼= End(A) → End(A). (Note
that fA indeed maps O ∼= End(A) into RA, as follows easily by considering the embedding
End(A/C) ↪→ End(A)Q arising as above by the natural isogeny A → A/C.) After fixing
an orientations of O, we can put on RA the orientation required to make fA an oriented
embedding. Then the pair (fA, RA) represents a Gross point g(P) ∈ GN of level N on B,
which is easily seen to depend only on P ∈HK . In other words, we have defined a map

HN → GN ; P 7→ g(P).

We have the following Proposition; for a proof see [BD3] or [BD4].

Proposition 2.5.4. Let P ∈ HN be a Heegner point, and let g(P) ∈ GN the corresponding
Gross point. For every σ ∈ Pic(O) we have

g
(
Pσ
)

= g(P)σ,

where σ acts on P ∈ X0(N)(H) via the reciprocity isomorphism Pic(O) ∼= Gal(H/K), while
it acts on g(P) via the isomorphism Pic(O) ∼= Ô×\K̂×/K× (cf. Section 2.5.1).
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2.5.3 Special values of quaternionic modular forms

Let φ` ∈ S2(V/Γ,Z/pnZ) be a mod-pn eigenform satisfying then conclusions of Corollary
2.4.10. As in Section 2.5.1, we write again

φ` : GN −→ Z/pnZ

for the associated ‘restriction to Gross points’. Recall our Heegner point

PK := TraceH/K
(
ϕE(P)

)
,

where P ∈ HN is a fixed Heegner point of conductor one in X0(N)(H). Let us fix an
isomorphism H1

fin(K`, E[pn]) ∼= Z/pnZ, and let us write

PK(`) ∈ Z/pnZ

for the image of PK under the composition E(K)/pn → E(K`)/p
n → H1

fin(K`, E[pn]) arising
from the local Kummer map. Thanks to the explicit description of φ` provided by Theorem
2.4.12, we can now prove the following:

Theorem 2.5.5. Let P ∈ HN be a Heegner point of conductor one in X0(N)(H), and let
g(P) ∈ GN be the corresponding Gross point of level N on B (cf. Section 2.5.1). Then∑

σ∈Pic(OK)

φ`

(
g(P)σ

)
·

= PK(`),

where
·

= denotes equality in Z/pnZ up to multiplication by a unit.

Proof. Write for simplicity J := J0(N) for the modular Jacobian of level N , and let

κJ` : J(K`)/If −→ H1
fin(K`,Tap(J)/If ) ∼= H1

fin(K`, E[pn]) ∼= Z/pnZ

be the morphism arising from the local Kummer map on J(K`), recalling that the modular
parametrisation ϕE induces an isomorphism Tap(J)/If ∼= E[pn]. Similarly write

κE` : E(K`)⊗Z Z/pnZ −→ H1
fin(K`, E[pn]) ∼= Z/pnZ

for the morphism induced by the local Kummer map on E(K`). As we will prove in Lemma
2.5.6 below, (multiplying eventually the fixed isomorphism H1

fin(K`, E[pn]) ∼= Z/pnZ by a p-
adic unit) we have: κE` ◦ϕE = κJ` , where we write again ϕE : J(K`)/If → E(K`)/p

n. Letting
P := ϕE(P), and letting ∞ ∈ X0(N)(Q) be a point such that ϕE(∞) = 0, this implies:

(2.23) PK(`) =
∑

σ∈Gal(H/K)

κE`
(
P σ
)

=
∑

σ∈Gal(H/K)

κJ`
(
Pσ − {∞}

)
On the other hand: let P denotes any one of the Heegner points Pσ, for σ ∈ Gal(H/K),
and let P := red`(P) ∈ X0(N)(F`2) be the image of P under the reduction at ` map. As
explained in the preceding Section, P ∈ S` is a supersingular point. By the very definition of
the morphism γ (see Section 2.3, Step I), we have

(2.24) γ
(
P
)

= κJ`
(
P− {∞}

)
.
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After identifying V/Γ = XN,` with S` under Proposition 2.4.11, Theorem (2.4.12) tells us that
γ
(
P
)

= φ`
(
P
)
, so that (with a slight abuse of notations), equation (2.24) becomes:

(2.25) φ`
(
P) = κJ`

(
P− {∞}

)
.

Recall now that we consider φ` : XN,` = S` → Z/pnZ as a function on Gross points via the
following composition: GN → CN ∼= XN,`, the first map being the ‘forgetful (the oriented
embedding) map’. Since the Gross point g(P) maps to the reduction P under this last map
(by definition!), we have (again by construction) φ`

(
g(P)

)
= φ`(P). Turning back to our old

notations P = Pσ, equation (2.25) then becomes: φ`

(
g
(
Pσ
))

= κJ`
(
Pσ − {∞}

)
. Identifying

now Pic(OK) with Gal(H/K) under the reciprocity map of class field theory, we can now
appeal to Proposition 2.5.4 to obtain the identity:

φ`

(
g(P)σ

)
= φ`

(
g
(
Pσ
))

= κJ`
(
Pσ − {∞}

)
.

In tandem with equation (2.23), this equation allows to finally compute:

PK(`) =
∑

σ∈Gal(H/K)

κJ`
(
Pσ − {∞}

)
=

∑
σ∈Pic(OK)

φ`

(
g(P)σ

)
,

thus concluding the proof of the Theorem.

Lemma 2.5.6. We have a commutative diagram

J(K)/If
ϕE

��

δJ // H1
fin(K`, E[pn]) ∼= Z/pnZ

d
��

E(K)/pnE(K)
δE // H1

fin(K`, E[pn]) ∼= Z/pnZ

where the vertical arrow is given by a p-adic unit d.

Proof. The modular parametrization induces by functoriality the maps:

ϕ∗ : E(K)→ J(K)

ϕ∗ : J(K)→ E(K).

By ptoperties of degree we have:

E(K)
deg(ϕE)

//

ϕ∗ $$

E(K)

J(K).

ϕ∗

::

The composition ϕ∗ ◦ ϕ∗ is a bijection, since p does not divide the degree of the modular
parametrization. In particular ϕ∗ is injective and ϕ∗ is surjective.
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We have the following diagram

E(K) //

ϕ∗

��

E(K)/pnE(K) //

��

0

J(K) //

ϕ∗
��

J(K)/If //

��

0

E(K) // E(K)/pnE(K) // 0.

Now taking cohomology, we have

E(K)/pnE(K) //

��

H1
fin(K`, E[pn]) ∼= Z/pnZ

ψ∗

��

J(K)/If //

��

H1
fin(K`,Tap(J)/If ) ∼= Z/pnZ

ψ∗
��

E(K)/pnE(K) // H1
fin(K`, E[pn]) ∼= Z/pnZ.

The map ϕ∗ commutes with Kummer map, hence provides an identification between E[pn]
and Tap(J)/If induced this time by contravariant functoriality. Since the composition ψ∗◦ψ∗
is bijective the diagram commutes.

2.5.4 Gross special value formula

In this Section we state Gross’s special value formula, using in an essential a certain ‘lifting
assumption’ and the results proved in [PW].

Notations and the ‘lifting assumption’

Let n be a positive integer, and let ` be an n-admissible prime. Recall the f : T → Zp is
the morphism associated to E/Q by the Modularity Theorem. The results recalled in Section
2.4.4 attached to f and ` a surjective morphism g := g` : T` � T` → Z/pnZ congruent
to f modulo pn. Moreover, via the Jacquet-Langlands correspondence, the mod-pn form g
corresponds to an eigenform φ` ∈ S2(V/Γ,Z/pnZ) (see Section 2.4.4). In this Section we will
assume that g can be lifted to a true weight-two newform g ∈ S2(Γ0(N`),Zp). More precisely,
we will work under the following assumption: fix an embedding Q ↪→ Qp, under which we
will view algebraic numbers inside Qp.

(Lift) There exists a morphism g : T` → Zp, arising from a weight-two newfrom
g ∈ S2(Γ0(N`),C) of level Γ0(N`), s.t.: for every prime q - N` and every prime q′|N

g(tq) = f(Tq); g(uq′) = f(Uq′).

(Recall that tq and uq denotes the Hecke operators of level N` in T`.)
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As briefly explained in Section 2.4.4: via the Jacquet-Langlands correspondence, the form g
corresponds to an eigenform

φ` ∈ S2(V/Γ,Zp),

uniquely determined up to p-adic units, and whose reduction modulo pn satisfies the conclu-
sions of Corollary 2.4.10.

Statement (cf. [PW])

Before stating Gross formula we still need a couple of definitions.

Definition 2.5.7. Let L(g/K, s) := L(g, s) · L(g, εK , s) be the Hecke L-series of g/K, where
εK : (Z/DKZ)∗ → {±1} is the quadratic character attached to K/Q. The algebraic part of
the special value L(g/K, 1) is defined as:

Lalg(g/K, 1) :=
L(g/K, 1)

Ωcan
g

,

where the canonical Shimura period Ωcan
g is defined by

Ωcan
g :=

〈g, g〉
ηg(N`)

.

Here 〈g, g〉 is the Petersson norm of g, and ηg(N`) is the congruence number associated to
g (see Section 2.2 of [PW] for a precise definition). Thanks to a result of Shimura, we know
that Lalg(g/K, 1) lives both in Kg and (under our fixed embedding Q ↪→ Qp) in Zp.

We now defined the Tamagawa exponent of g at `, following [PW]. As discussed in Section
2.3, Step III, attached to g we have an abelian variety Ag/Q with real multiplication by the
maximal order Og of Kg/Q, and a prime p of Kg such that the completion Op

∼= Zp, and such
that Ag[p

n] ∼= E[pn] as GQ-modules.

Definition 2.5.8. (cf. Definition 3.3 of [PW]) The Tamagawa exponent tg(`) of g at ` is
greatest integer m such that the Gal(Q`/Q`)-representation Ag[p

m] is unramified.

We are now ready to state the version of Gross formula we will need in what follows. We
note that the Theorem below makes use of some of the results proved in the article [PW], to
which we refer for more details and precise references. As in Section 2.5.1, we write again

φ` : GN −→ Zp

for the map on Gross points attached to the eigenform φ` ∈ S2(V/Γ,Zp).

Theorem 2.5.9. Let P ∈ HN be a Heegner point of conductor one in X0(N)(H), and let
g(P) ∈ GN be the associated Gross points of level N on B (cf. Section 2.5.2). Then

Lalg(g/K, 1)
·

= ptg(`) ·

 ∑
σ∈Pic(OK)

φ`

(
g(P)σ

)2

,

where
·

= denotes equality in Zp up to multiplication by p-adic units.

Proof. This follows combining Lemma 2.2 and Theorem 6.8 of [PW].
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2.5.5 Jochnowitz congruence

We continue to assume in this Section that hypothesis (Lift) holds. Moreover, consider the
following assumptions: recall that I(PK) := [E(K) : PK ] denotes the index of the Heegner
point PK in E(K).

(Big) n > ordp
(
I(PK)

)
.

(Loc) The natural map ι` : E(K)⊗Z Z/pnZ→ E(K`)⊗Z Z/pnZ is injective.

We can now state the Jochnowitz congruence alluded to at the beginning of this Section.

Theorem 2.5.10. Assume that Hypotheses (Lift), (Big) and (Loc) are satisfied. Then:

ordp

(
Lalg(g/K, 1)

)
= ordp

(
I(PK)

)
+ tg(`).

Proof. Note that E(K)/pn ∼= Z/pnZ, since E(K) has rank one and E(K)[p] = 0. It follows
by Hypotheses (Big) and (Loc) that 0 6= PK(`) = I(PK) mod pn, up to multiplication by
units modulo pn. The result then follows combining Theorem 2.5.5 and Theorem 2.5.9.

2.6 Shafarevich-Tate groups

We assume in this Section that Hypothesis (Lift), and we retain the notations introduced in
Section 2.3, Step III.

Proposition 2.6.1. Assume that Hypotheses (Lift) and (Loc) are satisfied. Then we have
the equality:

# Selpn(Ag/K) = #III(E/K)[pn].

Proof. By Lemma 2.4.1 we have:

H1(K`, E[pm]) = H1
fin(K`, E[pn])⊕ H1

ord(K`, E[pn]),

and each of the direct summand is free of rank one over Z/pnZ. Define v∗ : H1(K`, E[pn])→
H1
∗(K`, E[pn]) by composing the restriction map at ` with the projection to H1

∗.
By Lemma 5 of [GP], the local conditions defining Selpn(E/K) and Selpn(Ag/K) as sub-

groups of H1(K,E[pn]) match at all primes of K different from `. In other words both

the Selmer group live inside the Selmer group Sel
(`)
pn (E/K) of E/K relaxed at `. More-

over, Lemma 8 of loc. cit. tells us that the local condition defining Selpn(E/K) (resp.,
Selp(Ag/K)) at ` is the unramified (resp., singular, or ordinary) one, i.e. H1

fin(K`, E[pn])
(resp., H1

ord(K`, E[pn]) := H1
sing(K`, E[pn])). This is a consequence of the fact that E (resp.,

Ag) has good reduction (resp., purely toric reduction) at `. 6 In particular, we have an exact
sequence:

0→ Selpn(Ag/K)→ Sel
(`)
pn (E/K)

vfin−→ H1
fin(K`, E[pn]) ∼= Z/pnZ.

By Hypothesis (Loc), E(K)/pnE(K) injects into H1
fin(K`, E[pn]). Since E(K)/E(K)tors =

Z · P̃ ∼= Z and E(K)[p] = 0 under our assumptions (as E[p] is irreducible and p > 7),

6Note that in [GP] the authors works ‘modulo p’, i.e. they consider the case n = 1. On the other hand,
their proof of Lemma 5 and Lemma 8 works (as written) in our more general situation, taking I = pn instead
of I = p with the notations of loc. cit.
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E(K)/pn ∼= Z/pnZ · P̃ is a free Z/pnZ-module, generated by the reduction P̃ of P. Moreover,
vord(P̃) = 0 (where we write again P̃ ∈ Selpn(E/K) for the image of P̃ ∈ E(K)/pn under the
injective Kummer map E(K)/pn ↪→ H1(K,E[pn])). This allows us to conclude that the map
vfin in the last equation is surjective, giving us the exact sequence:

(2.26) 0→ Selpn(Ag/K)→ Sel
(`)
pn (E/K)

vfin→ Z/pnZ→ 0.

In particular this gives

(2.27) #(Selpn(Ag/K)) · pn = #(Sel
(`)
pn (E/K)).

We claim that

(2.28) Selpn(E/K) = Sel
(`)
pn (E/K).

Assume the claim: by Kummer theory we have and exact sequence:

0→ E(K)/pnE(K)→ Selpn(E/K)→ III(E/K)pn → 0.

Recalling that (by assumption) E(K)/E(K)tors is isomorphic to Z, and that E(K) has trivial
p-torsion (as already noted above): combining the last equation with (2.27) we finally obtain:

#(III(E/K)pn) = p−n#(Selpn(E/K)) = #(Selpn(Ag/K)).

We are then left to prove the validity of (2.28). By the discussion above, this amount to show

that for every x ∈ Sel
(`)
pn (E/K) we have vord(x) = 0 (or equivalently res`(x) ∈ H1

fin(K`, E[pn])).

Let x and let y be an arbitrary element of Sel
(`)
pn (E/K). By Poitou-Tate duality we have

(2.29)
∑
v

〈resv(x), resv(y)〉v = 0,

where
〈−,−〉v : H1(Kv, E[pn])×H1(Kv, E[pn])→ H2(Kv, µpn) ∼= Z/pnZ

is the local Tate pairing induced by the Weil pairing on E[pn] × E[pn] → µpn (see, e.g.
Chapter 10 of [Da]). This is a perfect, symmetric pairing, such that H1

fin(Kv, E[pn]) and
H1

sing(Kv, E[pn]) are maximal isotropic subspaces. Since resv(ξ) ∈ H1
fin(Kv, E[pn]) for every

v 6= ` and every ξ ∈ Sel
(`)
pn (E/K), equation (2.29) then reduce to the equality:

〈res`(x), res`(y)〉` = 0,

valid for every x, y ∈ Sel
(`)
pn (E/K). Take now y = P̃ (with the notations introduced above), so

that res`(P̃) = vfin(P̃) ∈ H1
fin(K`, E[pn]) ∼= Z/pnZ is a unit modulo pn. Then the last equation

becomes: 〈res`(x), vfin(P̃)〉` = 0, and recalling the properties of the Tate pairing mentioned
above, this gives:

〈vord(x), vfin(P̃)〉` = 0.

Since vfin(P̃) is a unit (i.e. generates H1
fin(K`, E[pn])) and the local Tate pairing is perfect,

this implies that vord(x) = 0, as was to be shown. This proves the claim (2.28), and with it
the Proposition.
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2.7 End of the proof

We state Skinner and Urban result in our settings.

Theorem 2.7.1 (Skinner-Urban). Assume that Hypothesis (Lift) holds. Then the equality

(2.30) ordp

(
Lalg(g/K, 1)

)
= ordp

(
#Selp∞(Ag/K)

)
+ tg(`).

holds.

Proof. Note first that the weight-two newform g ∈ S2(Γ0(N`),Zp) satisfies all the assumptions
of Theorem 1.9.7 (cf. Theorem 1.9.5). Indeed, we have ρg

∼= ρf : by assumption ρf (i.e. E[p])
is irreducible, p - N`, and as explained in the proof of [BD, Lemma 2.2], ρf is ramified at
every prime divisor of N (under the assumption that p does not divide the minimal degree
of a modular parametrisation). Finally, by the very definition of the Tamagawa exponents,
tq(g) = 0 for every prime such that ρg

∼= ρf is ramified, so that tq(g) = 0 for every prime
divisor of N . (On the other hand, again by the definition, t`(g) ≥ 1.) The statement then
follows by Theorem 1.9.7.

With this result at our disposal, we can then conclude the proof of Theorem 2.2.1 and
Theorem 2.2.2 exactly as explained in the last paragraph of Section 2.3. To be completely
precise, let us state explicitly Ribet’s ‘lifting result’ in the case n = 1, which was needed in
our proof in Section 2.3.

Proposition 2.7.2. Let g : T` → Fp be the mod-p modular form appearing in the statement
of Theorem 2.4.8. Then g can be lifted to a weight-two newform g ∈ S2(Γ0(N`),Z), i.e. such
that g is the reduction modulo p of the morphism g : T` � T` → Zp attached to g.

Proof. Ribet proved in [Ri3] that g can be lifted to weight-two eigenform g ∈ S2(Γ0(N`),Zp)
which is new at `. On the other hand, let q be a prime divisor of N . As we already observed,
under our assumptions, the residual representation ρf is ramified at every prime q|N . Since
ρf
∼= ρg, this implies that q divides the conductor of g, i.e. that g is q-new. In other words:

g is a weight-two newform in S2(Γ0(N`),Zp), as claimed.

2.7.1 Lifting modular forms to characteristic zero

In this final Section we discuss the possibility of lifting pn-modular forms to characteristic
zero, and describe the method used by Bertolini-Darmon in [BD] to prove ‘lifting results’ in
their setting.

Let ` be an n-admissible prime, for some positive integer n. The main result of the Section
2.4 provides an explicit characterization of a mod pn modular form ḡ ∈ S2(V/Γ,Z/pnZ), see
for details Theorem 2.4.8 and the subsequent Corollary. We expect that it is often possibile to
obtain a lift of ḡ to a p-isolated eigenform with coefficients in Zp. More precisely, we propose
the following conjecture.

Conjecture 2.7.3. Let n be a positive integer. Then there exist infinitely many n-admissible
primes such that ḡ lifts to a p-isolated modular form g ∈ S2(V/Γ,Zp).

More precisely, there is a maximal ideal p of the ring Og of Fourier coefficients of g such
that:
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1. the completion of Og at p is isomorphic to Zp;

2. g is determined by a form g ∈ S2(T /Γ,Og) (denoted in the same way by an abuse of
notation) via the inclusion Og ⊂ (Og)p = Zp.

Remark 2.7.4. It is in general not possible to lift an arbitrary mod pn form to a true modular
form. If we assume n = 1 the previous result is well known by a works of Ribet [Ri2]. In
this case we obtain an arithmetic relation, that is weaker than Theorem 2.1.3. We are giving
the exact statement at the end of this Chapter. All the other statements are, instead, proved
directly with n arbitrary, so the possibility of the lifting will be enough to conclude.

We summarize the previous remak in the following proposition.

Proposition 2.7.5. Assume n = 1. Then the form ḡ ∈ S2(V/Γ,Z/pnZ) can be lifted to a
form g ∈ S2(V/Γ).

Remark 2.7.6. It is not in general true that the form g obtaine is p-isolated.

The above conjecture is the analogue of Proposition 3.12 of [BD]. Their setting is a little
bit different here.

Let `1 and `2 be two n-admissible prime relative to f such that pn divides a`1 + 1 − ε1
and a`2(f) `2 + ε1 − a`2(f). Let B be the definite quaterion algebra of discriminant −D`1`2,
R be an Eichler Z[1/p]-order of level N in B, and set Γ := R×/Z[1/p]×.

Theorem 2.7.7 (Bertolini-Darmon). With the notations as above, there exists an eigenform
g ∈ S2(T /Γ,Z/pnZ) such that the following equality modulo pn holds

i Tqg ≡ aq(f)g for q - N`1`2;

ii Uqg ≡ aq(f)g for q | N ;

iii U`1 ≡ ε1g;

iv U`2 ≡ ε2g.

Furthermore, fixed an n-admissible prime `1, there are infinitely many n-admissible primes `2
such that g can be lifted to an eigenform with coefficients in Zp satysfing the above congruences.
The form obtained in this way is p-isolated.

Outline of the proof. There are several steps in the proof.

Step 1: Theorem 9.3 of [BD] gives the existence of the pn modular form g that corresponds
to a surjective algebra homomorphism

f`1`2 : T`1`2 → Z/pnZ

where T`1`2 is the Hecke algebra acting on a certain Shimura curves, defined by a factorization
N`1`2 = N+`1 ·N−`2 in Theorem 9.3 loc. cit.

Step 2: By Proposition 3.6 of [BD] the property of being p-isolated can be translated as a
condition of triviality the so-called S-Selmer group attached to the adjoint Wf of the Galois
p-adic representation of f (here S is a squarefree product of n-admissible primes). The precise
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definition of this Selmer group, that we denote by SelS(Q,Wf ) is given in Definition 3.5 of
[BD].

Let R denote the universal ring attached to deformations ρ of the Galois representation
having the following properties:

• The determinant of ρ is the cyclotomic character describing the action of GQ on the
p-powers roots of unity;

• ρ is ordinary at p;

• for q dividing NS the restriction of ρ to Ip is ordinary;

• ρ is unramified outside NS.

The ring R is a complete local Noetherian Zp-algebra with residue field Fp. Let m denote
the maximal ideal of R. Deformation theory provides an identification between

m/(p,m2) = SelS(Q,Wf )∗,

where SelS(Q,Wf )∗ is the Pontrjagin dual of SelS(Q,Wf ). As a clear consequence R = Zp if
and only if SelS(Q,Wf ) is trivial. For S = 1 a well known result of Wiles , [Wi] Section 3
shows the existence of an isomorphism between R and the ring Tf of Hecke operators acting
on S2(T /Γ) completed at the maximal ideal attached to f . Hence since R = Zp = Tf the
form f is p-isolated.

Step 3: a pair of primes (`1, `2) is a rigid pair if Sel`1,`2(Q,Wf ) is trivial. By Theorem
3.10 and Theorem 3.11 of [BD] for every `1 admissible prime, there exist infinitely many
n-admissible primes `2 such that (`1, `2) is a rigid pair

Step 4: since (`1, `2) is a rigid pair then the algebra T`1`2 is isomorphic to Zp therefore
the morphism f`1,`2 lifts to characteristic zero, hence also g can be lifted to a true modular
form in S2(T /Γ). Finally, the fact that g is p-isolated follows from the observations in Step
2.

Remark 2.7.8. The goal of [BD] is to obtain a version of the so called Iwasawa Main Conjec-
ture in the antyciclotomic settings. Their argument is inductive and consists in the explicit
construction of an Euler system (to be more precise, a Kolyvagin system) controlling some
Selmer groups in the anticyclotomic tower. For this fact, Bertolini and Darmon needed to
produce a large supply of rigid pairs. For our interests we need just to show the existence of
a single auxiliary n-admissible prime `.

Remark 2.7.9. There is another possibility for concluding our argument, circumventing the
need of a lift of the modular form. As pointed out by Pollack-Weston in [PW] one could work
directly with mod pn modular forms, their Selmer groups and their p-adic L-functions. All
the arguments of [BD] go through in this more general settings, so we expect that also the
results of Skinner-Urban admit a mod pn-version.
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