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L’inferno dei viventi non è qualcosa che sarà; se ce n’è uno, è 

quello che è già qui, l’inferno che abitiamo tutti i giorni, che 

formiamo stando insieme. Due modi ci sono per non soffrirne. 

Il primo riesce facile a molti: accettare l’inferno e diventarne parte 

fino al punto di non vederlo più. Il secondo è rischioso ed esige 

attenzione e apprendimento continui: cercare e saper riconoscere 

chi e cosa, in mezzo all’inferno, non è inferno, e farlo durare, 

e dargli spazio. 

 

    Italo Calvino, LE CITTA’ INVISIBILI 
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ABSTRACT 
 

Bovine mastitis is one of the most significant causes of economic losses for the dairy 

industry. On the other hand, public health authorities advise prudent use of antibiotics 

because they could promote bacterial resistance and leave residues in food chain. The 

dairy industry could benefit from the development of safe antimicrobial agents and 

bacteriocins could be attractive alternatives to antibiotics. Due to the safety of Lactic acid 

bacteria (LAB), their bacteriocins have the potential to be used as antimicrobials in 

veterinary clinical application. We analyzed the efficacy of antibacterial substances 

produced by bacteriocinogenic Lactococcus lactis subsp. lactis strains against contagious 

and environmental mastitis pathogens. Thereafter, we investigated how lactococcal 

strains or their bacteriocins could influence mammary gland innate immune response in 

vitro. Out of 65 LAB strains tested, 3 were active against mastitis pathogens: 2 strains 

produced Nisin, one Lacticin 481 and in addition a novel molecule with likely antibacterial 

activity. To analyze the immune response of mammary epithelial cells when stimulated 

with lactococcal strains or bacteriocins, a stabilized epithelial cell line, BME-UV1, was 

used. Both lactococcal live cultures and their antibacterial products were shown to 

modulate the non-specific immune response of BME-UV1 cells: Lysozyme and N-acetil-β-

D-glucosaminidase excretion were overall enhanced by bacteriocins and live-culture 

treatments, while intracellular amounts were unaffected by treatments. Proinflammatory 

cytokine expression of treated BME-UV1 was similar to that observed in control cells, 

except for Lactococcus lactis subsp. lactis SL153. Such strain induced a significant 

reduction of TNFα transcriptional level. 

The stimulation of enzyme secretion due to the administration of lactococci or of their 

antibacterial products, with potential enhancement of pathogens cleaning, can be of 

interest for the prevention of intra mammary infections. In addition, Lactococcus lactis 

subsp. lactis SL153 strain could be advantageous for its potential anti-inflammatory 

properties and could be of interest for the development of intra-mammary probiotic 

treatments. 

Key words: mastitis, bacteriocins, Lactococcus lactis subsp. lactis, antibacterial 

treatments, non-specific immunity. 
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STATE OF THE ART 

 

1. LACTIC ACID BACTERIA (LAB): NOVEL APPLICATIONS IN MASTITIS 

FIELD 
 

1.1. LAB bacteriocins 

The finding of bacteriocin production in several bacterial species has increased 

researchers’ interest to study these new antibacterial molecules. Due to their efficacy 

they are investigated as alternatives to traditional antibiotic treatments both in human 

and veterinary clinical application. 

Bacteriocins are termostable, ribosomally synthesized peptides secreted by many 

varieties of Gram-positive and Gram-negative bacteria, to kill other bacteria. They can be 

active either in the same species (narrow spectrum) or across the genera (broad 

spectrum). Producer organisms are resistant to their own bacteriocin activity, producing 

specific proteins which provide to sequestration or competition for bacterial receptors or 

to pump bacteriocins from the producer membrane (Cotter et al., 2005). It has been 

proposed that 99% of all bacteria may produce at least one bacteriocin; the only reason 

we haven’t isolated more is that few researchers have looked for them (Riley and Wertz, 

2002). In addition to ribosomally synthesized antimicrobial peptides, bacteria also 

produce antibiotic molecules through the activity of some enzymes called nonribosomal-

peptide synthetases wich provide to modify peptides through ring formation, 

glycosylation or acylation. Among this type of antimicrobial peptides polymyxin B and 

gramicidin S have found an application in topical treatment of infections, while 

vancomycin and daptomycin have become important for their efficacy against multiple 

resistant strains of Gram-positive bacteria (Hancock et Sahl, 2006). 

Bacteriocin production provides bacteria a competitive advantage in the environment, 

eliminating competitors, thus gaining resources (Lohans and Vederas, 2012). 

Among producer strains, lactic acid bacteria (LAB) are the mostly investigated because 

they are approved as Generally Recognized As Safe (GRAS) organisms by Food and Drug 

Administration and they are permitted as additives in food. LAB are often found in foods 

and used to manufacture fermented foods, they are known not only to contribute 

improvement of taste, but also to prevent contamination by spoilage bacteria. Especially 
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bacteriocins-producing LAB, which have antibacterial activity, are considered suitable in 

food preservation. On the basis of the safety of LAB, their bacteriocins have the potential 

to be used as antimicrobial in all fields in which safety and absence of residues are 

required. Although pollution of antibiotics in the environment is an emerging problem, 

bacteriocins have proteinaceous nature and they are degraded easily in our body and in 

the environment (Zendo et al., 2010). 

1.1.1. Production and classification 

Bacteriocins are produced as inactive pre-peptides with an N-terminal sequence guide 

(Macwana and Muriana, 2012). These precursors are transported through specific carriers 

at the cell surface during the exponential growth fase and enzymatically converted into 

their active form. Bacteriocin production is managed by a three-component regulation 

system: an inducing peptide (or pheromone-activating factor), the transmembrane 

histidine kinase (pheromone receptor) and a response regulator protein. The inducing 

peptide is the pre-peptide synthesized in the ribosome in small amount. When the 

inducing peptide concentration reaches a threshold level, it activates the trasmembrane 

histidine kinase, which leads to autophosphorylation of the histidine residue, thus 

transferring phosphate to the response regulator protein. The phosphorylated regulator 

activates the transcription of the bacteriocin in addition to the elements that form the 

regulatory system, initiating a positive feedback. In some cases, such as in Nisin, the 

bacteriocins itself exert the induction function, leading an exponential increasing in 

bacteriocin synthesis (Balciunas et al., 2013) 

The classification scheme of LAB bacteriocins has been subjected to ongoing revision, 

Klaenhammer (1993) proposed four classification groups, but recently a new scheme of 

classification was proposed. Class I bacteriocins are the lantibiotics, which are highly post-

translationally modified peptides thermostable and with very low molecular weight (<5 

kDa). Class II consists of small thermostable peptides (<10 kDa) which are free of modified 

residues. A third class (class III bacteriocins) includes non-bacteriocin lytic proteins, 

termed bacteriolysins which are large (>30 kDa) and heat-labile proteins with a distinct 

mechanism of action (Cotter et al., 2005). 
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Class I bacteriocins 

The lantibiotics (lanthionine-containing antibiotics) are small peptides (19–38 amino acids 

in length) containing lanthionine or β-methyllanthionine residues. These unusual residues 

form covalent bridges between amino acids, resulting in internal ‘rings’ and giving 

lantibiotics their characteristic structural features. The lantibiotics carry out their 

antibacterial activity with two different modes of action: either forming pores in the 

membrane of sensitive cells and/or binding lipide II and preventing the formation of 

peptidoglycan (Jung G, 1991). Generally they are active against Gram-positive bacteria, 

but their activity can be extended to Gram-negatives if the integrity of outer membrane 

have been affected (Cotter et al., 2005). 

Among the LAB bacteriocins identified to date, Nisin has been the most investigated. It is 

approved for use as a food preservative since 1969 (Balciunas et al., 2013) and remains 

the only bacteriocin approved for use by the European Union and Food and Drug 

Administration. Several variants of Nisin, which is a 34 amino acids, are produced by 

Lactococcus lactis subsp. lactis. Nisin has a broad-spectrum of activity against strains of 

Gram+ bacteria and exert its activity forming pores in cell membranes even if a secondary 

antimicrobial mechanism has been observed consisting in the inhibition of peptidoglycan 

biosynthesis after Nisin-lipid II binding (Wiedemann et al., 2001). Nisin and Lacticin 3147 

need a docking molecule as initial receptor: the N-terminal binds to a peptidoglycan 

precursor, lipid II, while the C-terminal penetrates cytoplasmic membrane resulting in 

pore formation with the consequent leak of ions and ATP from the cells. Although Nisin is 

primarily active against gram-positive bacteria, some strains can become nisin resistant 

(Mantovani et Russell, 2001). It is thought that there are at least four processes involved 

in nisin resistance: preventing the bacteriocin from reaching the cytoplasmatic 

membrane, reducing the acidity of the extracellular medium thereby stimulating binding 

of bacteriocin to the cell wall, preventing the insertion of the bacteriocin into the cell 

membrane and transporting the peptide out of the membrane (Kramer et al., 2006). It 

should be noted that bacteria differ greatly in their sensitivity to bacteriocins activity, due 

to the differences in cell envelope composition. Alterations within the envelope are 

repeatedly seen in bacteria with altered resistance to Nisin. Kaur et al. (2011) observed 

after repeated exposure to Nisin, changes in cell membrane or cell wall and a nisin-

degrading protease. The cell-wall thickening appears beneficial to nisin-resistance: this 
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thickening seems to protect membrane and lipid II against the Nisin effect (Kramer et al., 

2006). The development of resistance can interestingly bring to negative consequence; 

for example a L. monocytogenes nisin-resistant variant results in an acid -sensitive 

phenotype (McEntire et al., 2004). Naghmouchi et al. (2007) noted that the development 

of bacteriocin resistance can be associated with a cross-resistance among different class 

of bacteriocins. Nevertheless, to several bacteriocins, such as Lacticin 3147, bacteria do 

not readily develop resistance and, when it occurs, it happens at low frequency (Guinane 

et al., 2006). 

 

 

Table 1. Classification of LAB bacteriocins produced by strains belonging to Lactococcus 

spp. (Zendo et al., 2010) 

Class Remark Bacteriocin 
Molecular 

weight         
(amino acids) 

I 

Lanthionine-containing bacteriocins, 
lantibiotics. Includes both single- and two-

peptide lantibiotics 
Nisin A  3,354 (34) 

  Nisin Z  3,331 (34) 

  Nisin Q  3,327 (34) 

  Nisin F  3,317 (34) 

  Lacticin 481  2,901 (27) 

 
 Lacticin 3147  

A1, 3,306 (30)  
A2, 2,847 (29) 

    

    

    

II  

Non-lanthionine-containing bacteriocins. 
Heterogeneous class of small peptides 

  

    

IIa 
 Listeria-active bacteriocins with a consensus 

sequence in the N-terminal of YGNGVXC 
Lactococcin MMFII  4,143 (37) 

    

    

IIb   
Two-peptide bacteriocins Lactococcin G 

α, 4,346 (39)     
β, 4,110 (35) 

 

 Lactococcin MN 
LcnM, 4,325 
(48) LcnN, 
4,377 (47) 
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 Lactococcin Q 

α, 4,260 (39)     
β, 4,018 (35) 

IIc  Cyclic bacteriocins Lactocyclicin Q 6,063 (61) 

IId   Other class II bacteriocins Lactococcin A 5,778 (54) 

  Lactococcin B  5,327 (47) 

  Lactococcin 972  7,381 (66) 

  Lacticin Q  5,926 (53)  

    Lacticin Z 5,971 (53)  

 

Class II bacteriocins 

The class II are small, heat stable, non-lanthionine-containing peptides, not subjected to 

extensive posttranslational modification. Many class II bacteriocins are active in the 

nanomolar range and pore formation is the most common mode of action. Due to their 

amphiphilic helical structure, these bacteriocins can exert an antibacterial activity through 

the insertion in the cytoplasmic membrane of the target cell, thereby promoting 

membrane depolarization and cell death. Cotter et al. (2005) suggested to divide class II 

bacteriocins into three subclasses: subclass IIa (pediocin-like bacteriocins), subclass IIb 

(two-peptide bacteriocins), subclass IIc (circular bacteriocins) and subclass IId, non-

pediocin single peptide linear bacteriocins. Even though up to 8% of wild type L. 

monocytogenes strains appear to be naturally resistant (Collins et al., 2010), the subclass 

IIa show high specificity against L. monocytogenes: Pediocin PA-1 is the only bacteriocin 

produced not only by different species, but also by different genera of LAB (Pediococcus 

spp. and Lactobacillus spp.). Enterocin (a bacteriocin from Enterococcus spp.) is another 

bacteriocin that firstly belonged to class IIa, but several bacteriocins from E. faecalis 

subsequently found and characterized, were classified in more than one class of 

bacteriocin (Balla et al., 2000). Into the class IIb are gathered those bacteriocins whose 

the foundamental characteristic is to be formed by two peptides, such as Lactococcin G 

and Enterocin 1071 (Balla et al., 2000). Since the activity of both units is crucial to exert 

their antimicrobial effect, the encoding genes are located on the same operon and 

expressed simultaneously. Indeed it is common for one or both peptides to lack activity 

when they are assessed separately, while their combination demonstrate an important 

synergic action and a potent activity (Balciunas et al., 2013). The remaining groups of 

class II bacteriocins are subclass IIc, which is characterized by a covalent binding among 

the N and C-terminii resulting in a circular structure, such as Lactocyclicin Q (Sawa et al., 
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2009) and Lactococcin B (Venema et al., 1993). In the subclass IId are grouped lactococcal 

bacteriocin, such as Lacticin Q, which forms particular, very large pores into the 

membranes, inducing high membrane permeabilization without the need of docking 

molecules (Zendo et al., 2010). Resistance to class II bacteriocins has been frequently 

investigated in relation to the mannose-phosphotransferase systems (man-PTS) that is 

the target receptor for subclass IIa. The lack of a component of man-TPS was sufficient to 

determine the resistance for both Leucocin A and Pediocin PA-1, two pediocin-like 

bacteriocins (Collins et al., 2010). 

1.1.2. Application fields 

The research on the antibacterial activity of bacteriocins has been addressing two 

practical applications: a) food production and preservation and b) use in medical and 

veterinary medicine. In food production, only Nisin and Pediocin PA-1 have found 

widespread use (Cotter et al., 2005). They have shown a potential in preservation of 

meat, dairy products, eggs products, beverage, bakery products and fermented 

vegetables. They can be produced in situ from producers cells added instead of traditional 

starter culture, or added in purified or semi-purified form. The presence of bacteriocins in 

milk seems to have no negative impact on human health, because they are degraded by 

the proteolytic enzymes of the stomach, so they don’t have any detrimental effect on the 

intestinal bacterial flora (EFSA, 2005). Moreover, these molecules do not affect dairy 

transformations, rather they could promote technological improvement, for example by 

controlling adventitious non-starter flora (Cotter et al., 2005). 

Even though investigations about LAB bacteriocins have been mainly driven by food 

industry, the non-toxicity conjugated with the activity of these molecules against Gram-

positive human and animal pathogens has led to investigate potential clinical 

applications. With the widespread development of antibiotic resistant strains, the 

importance of alternative antimicrobials is becoming increasingly urgent (Dicks et al., 

2011) and bacteriocin-producing organisms could be considered as important source of 

antimicrobial agents in the medical and veterinary fields (Pieterse and Todorov, 2010). 

1.1.3. Bacteriocins as alternatives in mastitis prevention and therapy 

Bovine mastitis is one of the most significant causes of economic losses for the dairy 

industry, due to reduction of milk quality and production, discarded milk, early culling of 
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cows, drug costs and enhance of labor for farmers (Coelho et al., 2007). The widespread 

of post-dipping adoption and the antibiotic treatment at drying-off has led to a significant 

progress in mastitis control (Gruet et al., 2001). Antibiotics still represent the election 

treatment for mastitis. Nevertheless, the biggest challenge in the modern dairy industry is 

the reduction of the antibiotics use in food production animals (Bradley, 2002): public 

health authorities advise prudent use of antibiotics because they could promote bacterial 

resistance and leave residues in food chain (Coelho et al., 2007). Since starter cultures for 

cheese and yoghurt manufacture are inhibited by these substances (Miles et al., 1992), 

the dairy industry could benefit from the development of safe antimicrobial agents and 

bacteriocins could be an attractive alternatives to antibiotics (Pieterse and Todorov, 

2010). Furthermore, the dramatic increase in organic production still requires an effective 

alternative against mastitis: the dry period remains difficult to manage in the absence of 

antibiotic dry cow therapy, with significantly more new affected quarters (Berry and 

Hillerton, 2000). In addition to improved environmental management and optimal 

nutrition, Bradley (2002) recognizes the pivotal role of the development of new 

therapeutic agents coming from ‘mammary probiotics’ as an area of possible future 

research that may yield novel approaches to the control of bovine mastitis. 

The lantibiotic Nisin was recently assayed in experimental trials and tested as treatment 

of clinical and subclinical mastitis. The papers highlighted the possibility to achieve a cure 

rate similar to antibiotic treatments avoiding milk withdrawal. The use of antibiotics is 

often inadvisable in subclinical mastitis because of the low cure-rate and the withdrawal 

period for milk (Gruet et al., 2001). 

Two nisin-based products namely Mast Out® (intrammary treatment) and Wipe-Out® 

(dairy wipes) were developed by ImmuCell Corporation (Maine, USA) (Cotter et al., 2005). 

Although Mast Out® showed a significant cure rate in an initial field trial and was licensed 

by Pfizer Animal Healt, the product was not made available on the market and no trial 

was further reported. In two recent studies, the efficacy of Nisin in the treatment of 

clinical and subclinical mastitis was compared with that obtained with antibiotic 

administration. Clinical mastitis caused by Staphylococcus aureus or Streptococcus 

agalactiae (Cao et al., 2007) and subclinical mastitis by Staphylococcus aureus, Coagulase-

Negative Staphylococci, Streptococcus agalactiae, Streptococcus dysgalactiae or 

Streptococcus uberis were considered (Wu et al, 2007). Both studies concluded that 
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administration of Nisin was effective in the treatment of mastitis caused by several 

mastitis pathogens in lactating dairy cows. 

Nisin was also tested for its efficacy in a post-dipping formulation: Ambicin® N showed a 

significant reduction of several pathogens in experimentally challenged teat surfaces after 

1 minute exposure to the germicidal formulation. Furthermore the formulation 

containing Nisin showed a lower potential for skin irritation after repeated exposure in 

contrast to 1% iodophore or 5% chlorexidine digluconate (Sears et al., 1992). Using 

bacteriocin-based products would be advantageous because the complete removal at 

milking time is not required, contrarily to chemical products. 

Also Lacticin 3147 produced by Lactococcus lactis subsp lactis was investigated for use as 

antimicrobial agent in a teat sealant formulation. The results demonstrated Lacticin 

efficacy against mastitis pathogens and stability in teat environment (Ryan et al., 1998). 

Moreover, Pieterse et al. (2010) showed the in vitro susceptibility of mastitis pathogens to 

the new bacteriocin macedocin ST91KM added to a sealing formulation. Traditional teat 

seal formulations are recommended during dry period as a prophylactic measure to 

reduce the number of new infections (Berry and Hillerton, 2002). The inert property of 

the seals formulation has no antimicrobial effect and treatment efficacy relies on good 

udder hygiene practices, therefore the addiction of bacteriocins could improve the 

efficacy of teat sealants. 

Antibiotics administration is recommended at drying-off to improve mastitis control 

programs. However prolonged exposure to low levels of antibiotics could stimulate 

antibiotic resistance development, so bacteriocins could replace antibiotics in these 

formulations (Twomey et al., 2000). The protection given by a teat sealant plus Lacticin 

3147 was tested against experimental challenge with Streptococcus agalactiae and the 

results indicated higher percentage of quarters free from infections when treated with 

the bacteriocin-added teat sealant (Ryan et al., 1998). Similar results were observed by 

Twomey et al. (2000) against Staphylococcus aureus, with the conclusion that Lacticin 

concentration was determinant for the teat sealant to be effective against the pathogen.  

In contrast to antibiotics, bacteriocins are considered as safe because they have been 

always present in various foods since ancient times. Furthermore their proteic nature 

ensures the inactivation by enzymes (such as trypsin and pepsin) during the passage 

through the digestive tract, avoiding the destruction of the gastrointestinal tract 
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microbiota. This means that bacteriocins do not remain in the environment, thus they do 

not promote the development of resistance among bacterial strains into the 

environment. In addition, while antibiotics generally need micromolar level for their 

activity, bacteriocins exert their antibacterial effect at nanomolar level. They act 

specifically on target cell membrane through quick pores formation at extremely low 

concentration. This rapid action is one of the reason for which the development of 

resistant strains was not evidenced as problematic in the practical application of these 

molecules (Zendo et al., 2010, Pieterse and Todorov, 2010).). Although resistance could 

become an issue in the future, especially if bacteriocins will be applied in clinical field, it 

should be considered that Nisin has a 50 years of safe usage in food industry and in more 

than 50 countries without the emergence of acquired resistance (Zendo et al., 2010). On 

the other hand, in the last years the interest on the study of the basis for bacteriocin 

resistance has increased. Also, even if no development of resistance has been reported in 

the practical usage, further insights into resistance development allow us to build up 

strategies to minimize the possibility of such happening. The lowest minimum inhibitory 

concentration (MIC) of the bacteriocin should be established, to reduce the amount of 

bacteriocin in treatment products. Due to the risk of resistance development following 

antibiotic treatments, milk with antibiotic residues cannot be sold. To the contrary, 

bacteriocin residues in milk are accepted and no withholding period would be required if 

bacteriocin therapy were used instead of antibiotics, avoiding economic losses due to 

wastage (Pieterse and Todorov, 2010).  

Furthermore the presence of antibiotic residues in milk can affect cheese and yoghurt 

manufacture because LAB used as bacterial starter cultures are inhibited, thus the quality 

of products compromising (Pieterse, 2009). For these reasons, the implementation of 

new antibacterial molecules, which are safe for human consumption and do not affect 

milk transformations, can be recommended in mastitis prevention and therapy (Pieterse 

and Todorov, 2010). 

1.2. Lactic acid bacteria and mammary immune response against pathogens  

As previously described, an effective, non-antibiotic treatments for mastitis could reduce 

the costs of the depletion of milk during therapy and relieve some of the pressure of 

agricultural and veterinary sectors to limit the use of antibiotics. Several alternatives to 
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antibiotics have been explored and proposed, including milking quarters many times at 

day, hydrotherapy, ultrasonic therapy, topically applied liniment, intramammary infusions 

of glucose solution, lysotaphin and Nisin (Klostermann et al., 2008). The use of probiotic 

bacteria has been proposed as a novel approach to prevent and cure several infections in 

humans and animals, especially in vaginal and in the gastrointestinal tracts (Frola et al., 

2012). In particular, LAB with a GRAS status and an inhibitory activity against pathogens 

are still under investigation. Probiotic LAB may exert their beneficial actions through 

different mechanisms such as adhesion to epithelial cells, colonization, biofilm formation, 

production of antagonistic metabolites, competition for nutrients and immune system 

modulation (Beecher et al., 2009). In recent studies, the efficacy of treatments using 

different genera of LAB (Lactobacillus spp and Lactococcus spp.) and the response of 

mammary gland were evaluated. A first study (Klostermann et al., 2008) was performed 

using the best characterized strain of the lactococcal species, Lactococcus lactis DPC 3147 

producer of Lacticin 3147. A live culture of the microorganism was tested for its efficacy 

in the treatment of clinical and subclinical mastitis, demonstrating similar results when 

compared to antibiotic therapy, with the advantage of no cost for milk withdrawal. 

Furthermore, in the first two days after infusion an increase in SCC was noted, due to the 

influx of PMN into the mammary gland, followed by a rapid decrease and the 

achievement of normal levels to a pre-treatment level. These two observations indicate 

the enhancement of local defenses induced by the infusion of Lactococcus lactis and the 

safety of the treatment, since this microorganism is unable to colonized the treated 

quarters. Such alternative treatments, would also be of interest in organic dairy farms 

where the use of antibiotics is restricted or even prohibited. The application of the same 

Lactococcus strain was subsequently used to study the stimulation of mammary immune 

response through the evaluation of cytokine gene expression. Beecher at al. (2009) 

concluded that infusion with live culture of Lactococcus lactis caused a rapid and 

considerable response with the highest expression levels observed for IL-1β and IL-8 

corresponding to peaks in SCC values. A different LAB, belonging to the genus 

Lactobacillus, was under investigation for its characteristics of mastitis pathogen 

inhibition and co-aggregation, and for its ability to adhere to bovine teat canal epithelial 

cells: the inoculation with Lactobacillus perolens CRL 1724 in non-lactating bovine udders 

was performed providing important information for further studies in the development of 
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probiotic products for bovine mastitis prevention (Frola et al., 2012). This histological 

study highlighted the adherence of LAB on the epithelial cells of cistern accompanied with 

a mild inflammation and the absence of morphological modifications, lesions or necrosis 

indicating that no damage occurred after the inoculation (Frola et al., 2013). This novel 

control strategy was proposed against the major pathogen Staphylococcus aureus by 

Bouchard et al. (2013), demonstrating the protective effect of Lactobacillus strains in the 

preventing adhesion and internalization of the pathogen into bovine mammary epithelial 

cells. 

 

2. MAMMARY INNATE IMMUNE DEFENSES 

 

The mammary gland is open to the environment and therefore is subjected to the 

invasion of pathogen microorganisms. For this reason, an effective immune defense play 

a pivotal role in preventing infection establishment (Ganz, 2004). The overall impact of 

mastitis disease on the quality and quantity of milk produced for human consumption has 

provided the impetus to study the mechanisms of mammary immune response and how 

to prevent disease through immune modulation. Innate immunity is a non-specific 

function, quickly activated at the site of infection by numerous stimuli, but not increased 

by repeated exposure to the same agent (Sordillo and Streicher, 2002). This immune 

reaction is mediated by physical barrier of the teat end, macrophages, neutrophils, 

natural killer cells and certain soluble factors. If non-specific defense mechanisms work 

adequately, most of the pathogens are eliminated within a short period of time and 

before the activation of the specific immune response. To the contrary, the acquired 

immune system is activated when pathogens evaded the innate defense or is not 

completely eliminated: the recognition of specific pathogen antigens results in an 

immunological memory which provides a faster and a stronger response in clearing the 

pathogen. The innate immune response is mediated by macrophages, lymphoid 

populations and immunoglobulins. In the mammary gland both innate and acquired 

immunity are required in order to provide an optimal defense from mastitis, but here we 

consider only innate immunity, since it is the predominant protection of the mammary 

gland during the first stage of infection (Bannerman, 2009). 
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2.1. Anatomical defenses 

The teat canal is the first line of defence against mastitis, since this is the route by which 

invading pathogens can gain entrance to the mammary gland. In the distal part of the teat 

sphincter muscle maintains tight closure between milkings and hinders bacterial 

penetration. Increased opening of the sphincter is directly correlated to increased 

incidence of mastitis (Rainard et al., 2005). 

This canal is locked between milkings and in the dry period by a keratin plug derived from 

the stratified epithelial lining. The role of the plug is creating a physical barrier preventing 

the penetration of bacteria in the gland cistern. Indeed, keratin is able to bind and 

immobilized most strains of non-encapsulated mastitis-causing bacteria (Rainard et al. 

2005). Some components of keratin have antimicrobial activity: esterified and not 

esterified fatty acids, such as myristic acid, palmitoleic acid and linoleic acid, are 

bacteriostatic. Furthermore, keratin cationic proteins can bind electrostatically to the 

mastitis-causing bacteria, altering their cell wall and affecting their resistance to osmotic 

pressure (Hogan et al., 1987). The bactericidal efficiency of keratin may be limited by 

different factors, above all inadequate milking procedures. Close to the parturition, a high 

accumulation of fluid occurs within the udder, , causing increased intramammary 

pressure. Thus, the leakage of mammary secretions and dilatation of the teat canal 

increase susceptibility to mammary infections (Sordillo and Streicher, 2002). 

 

2.2. Soluble defenses  

Cytokines 

This group of small soluble proteins (less than 50kDa) has a crucial role in cell signalling, in 

the mammary gland they provide the balance between humoral and cell-based immune 

responses. Although cytokines play an essential role in the host response to infection, 

they can have deleterious effects. Thus, there is a fine balance between the positive and 

negative effects of cytokines on the host that is dictated by the duration, amount, and 

location of their expression (Bannerman, 2009). Some cytokines clearly promote 

inflammation, while others suppress the production of inflammatory mediators. They 
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comprise interleukins (IL), chemokines, interferons (IFN), tumor necrosis factors (TNF) and 

colony stimulating factors (CSF) (table 1). 

 

Pro-inflammatory cytokines 

Tumor necrosis factor- 

Tumor necrosis factor- (TNF) is produced very early in inflammation stimulating 

the acute phase reaction. TNFα is an essential mediator of inflammation because 

in combination with IL-1 it triggers changes in the vascular endothelial cells that 

line small blood vessels. A local increase in TNFα causes the classic signs of 

inflammation, including heat, swelling, pain, and redness The massive 

inflammatory response observed during coliform mastitis is accompanied by 

elevation of TNF levels causing such severe symptoms. In coliform mastitis, TNF 

induces plasma haptoglobin, promotes recruitment and activation of neutrophils 

and raises intra-mammary and systemic nitrite and nitrate (Tizard, 2013). In 

contrast to the continuous and sustained release of TNF in coliform mastitis, in S. 

aureus infected glands, TNF transcriptional activity has only a short episodic 

elevation at 24 h post infection (Alluwaimi, 2004), sustaining the 

immunosuppressive nature of S. aureus infections (Allowaimi et al., 2003). To the 

contrary, in vitro studies using bMEC, showed a significant increment of TNF one 

hour after S. aureus experimental challenge, demonstrating the increase of 

cytokine production in the early phase of infection (Griesbeck-Zilch et al., 2008). 

Despite this early increment, S. aureus challenge results overall in lower 

production of TNF if compared with E. coli. These results can explain the 

undetectable level of TNF in mastitic milk during the in-vivo S. aureus challenge 

(Lahouassa et al., 2007). Despite its pro-inflammatory activity, TNF has been 

detected not only in infected bovine mammary gland but also in normal quarters 

during periparturient period, lactation and involution, demonstrating its essential 

role in regulating and maintaining immunological function during physiological 

changes of mammary gland (Alluwaimi, 2004). 
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Interleukin-1 

Interleukin-1 (IL-1) includes the secreted IL-1 and the cytoplasmatic IL-1; 10- to 

50-fold more IL-1β is produced than IL-1α. They are produced by macrophages 

and epithelial cells and are mediator of local and systemic immune response: it 

can regulate cells proliferation and apoptosis, and the expression of other 

cytokines, acute phase proteins and enzymes for the eicosanoid synthesis 

(Schukken et al. 2011). During severe infections, IL-1β circulates in the 

bloodstream where, in association with TNF-α, it is responsible for sickness 

behaviour (Tizard, 2013) and signs of acute septic shock (Ohtsuka et al., 2001). 

Due to the influx of neutrophils in association with the increase in IL-1 level 

observed in E. coli mastitis, it has been postulated that IL-1 is indirectly involved in 

chemo-attraction of neutrophils (Schuster et al. 1997). To the contrary, in S. 

aureus mastitis the role of IL-1 is negligible or transient, indicating the minor role 

in S. aureus mastitis (Riollet et al., 2001). Despite its pro-inflammatory nature, the 

immunotherapeutic properties of IL-1 have been investigated: IL-1 has been 

proposed as adjuvant in the S. aureus mastitis, demonstrating its efficacy in 

neutrophils influx enhancement, in the oxygen radical upregulation and in the 

increase of intracellular potency of some antibiotics (Alluwaimi, 2004). 

Interleukin-6 

Interleukin-6 (IL-6) is a pro-inflammatory cytokine with additional anti-

inflammatory properties. It promotes some aspects of inflammation, especially in 

response to tissue damage and severe infections, since it is a major mediator of 

acute-phase reaction and of septic shock (Tizard, 2013). Macrophages, T 

lymphocytes and epithelial cells produce IL-6 (Okada et al., 1997). In the 

mammary gland IL-6 regulates the acute phase protein synthesis and promotes a 

shift from neutrophils to monocytes influx, essential to prevent the detrimental 

effect of neutrophils allowing a suitable immune response (Allowaimi, 2004). It is 

expressed both in infected mammary glands and in healthy ones. Hagiwara et al. 

(2001), in an in vivo study of naturally infected cows, observed the highest 

concentration of IL-6 during E. coli mastitis, when compared with other 

pathogens. In contrast to its active presence in coliform mastitis IL-6 activity was 

confirmed to be negligible in S. aureus infection (Alluwaimi et al., 2003). 
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Chemokines 

Chemokines are a family of at least 50 small (8 to 10-kDa) chemotactic cytokines. 

They coordinate the migration of cells and hence dictate the course of many 

inflammatory and immune responses. Chemokines act predominantly on 

macrophages and dendritic cells (Tizard, 2013). 

Interleukin-2  

Interleukin-2 (IL-2) is produced mainly by T-lymphocyte, it is involved in the 

growth and activation of B-lymphocytes, activation of NK cells and induction of 

cytotoxic T-cells activation. Bovine IL-2 has been detected in epithelial cells of 

both normal and mastitic mammary gland (Alluwaimi, 2004). It has been 

demonstrated that decreased IL-2 endogenous production contributes to reduce 

immune capabilities, with the consequent development of disease. In some 

studies, a correlation between low amount of IL-2 in colostrums and increased 

susceptibility to mastitis was observed and the possibility to enhance mammary 

gland defences with IL-2 has received considerable attention (Sordillo and 

Streicher, 2002). IL-2 was investigated for its therapeutic use in the treatment of S. 

aureus mastitis. The infusion of IL-2 in infected quarters caused a significant 

immunopotentiation by overwhelming recruitment of lymphocytes, neutrophils, 

macrophages and eosinophils (Alluwaimi, 2003). Nevertheless, apparent enhanced 

immunomodulation in the IL-2 infused normal and/or mastitic mammary glands 

did not result in prevention or cure of the infection (Alluwaimi, 2004). 

Interleukin-8 

Interleukin-8 (IL-8) is produced by macrophages, monocytes, mast cells, T-

lymphocytes, as well as epithelial and endothelial cells. It has the function to 

attract and activate neutrophils, stimulating their respiratory burst and the release 

of their granule contents (Tizard, 2013). In the mammary gland IL-8 plays a crucial 

role in neutrophil recruitment (Sordillo and Streicher, 2002). Barber and Yang 

(1998), demonstrated the biological role of IL-8 in attracting neutrophils into 

infected bovine udder, showing lower neutrophil chemotactic activity in the 

presence of anti-IL-8 antibodies in mastitic mammary secretion. The main source 

of IL-8 in udder has been further investigated by measuring its level in milk and in 
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lymph from afferent and efferent lymphatic vessels of the supra-mammary lymph 

node. The level of IL-8 was higher in milk than in lymph, indicating that mammary 

epithelium rather than sub-epithelial tissue is a major source of the cytokyne 

(Waller et al., 2003). Mammary epithelial cell lines stimulated with LPS, IL-1, S. 

aureus and/or E. coli showed a copious production of IL-8 (Alluwaimi, 2004). IL-8 is 

actively produced in E. coli mastitis, whereas it is present in lower concentration in 

mastitis caused by S. aureus both in in vitro (Griesbeck-Zilch et al., 2008) and in in 

vivo studies (Bannerman et al., 2004). The increase of IL-8 concentration is 

associated with higher somatic cell count, highlighting the crucial role of IL-8 in the 

recruitment of leukocytes into the mammary gland, which is essential for the 

elimination of invading pathogens. Furthermore, in contrast to the more transient 

effects of other chemoattractants, IL-8 is able to exert a longer lasting effect, 

presumably because of its resistance to proteolytic degradation and slower 

clearance from tissues (Bannerman, 2009).  

 

Anti-inflammatory cytokines 

Interleukin 10 

Interleukin-10 (IL-10) is one of the best characterized anti-inflammatory 

interleukins in udder immune response. IL-10 has two main functions, the 

inhibition of cytokine synthesis and the reduction of factors of the MHC-II complex 

(Schukken et al. 2011). A significant increase in the amount of IL-10 in milk after 

infection with E. coli was observed, while S. uberis infection showed a delayed 

response (Bannerman, 2009). Natural S. aureus infected quarters showed a 

limited IL-10 response (Bannerman et al., 2004), but IL-10 had been previously 

detected in milk somatic cells from chronic infected quarters, supporting the 

lower inflammatory status that characterized S. aureus chronic mastitis (Riollet et 

al., 2001). Interestingly, IL-10 secretion is subsequent to TNF increasing, but 

differently to what observed for TNF, the response seems not to be related to 

the bacterial cell wall type. For instance, S. uberis has been shown to evoke milk 

IL-10 concentrations similar to E. coli. However increases in IL-10 production are 
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detected earlier in response to gram-negative bacteria than to gram-positive or 

wall-less bacteria, similarly to TNF (Bannerman, 2009). 

Interleukin 12 

Interleukin-12 (IL-12) is a key cytokine that determines Th1/Th2 polarization. IL-12 

is produced by macrophages, dendritic cells, B cells, and neutrophils (Tizard, 

2013). Similarly to IFN-γ, IL-12 acts to link the innate and adaptive arms of the 

immune system, and plays an essential role in modulating the host immune 

response to bacterial and parasitic intracellular pathogens (Bannerman, 2009). In 

mammary cells isolated from cows experimentally infected with E. coli or S. aureus 

an increase in IL-12 mRNA was detected (Alluwaimi et al., 2003), as well as in 

naturally occurred S. aureus mastitis (Riollet et al., 2001). 

Interferon-γ 

Interferon-γ(IFN-γ) plays a key role in the immunity against intracellular pathogens 

and is the most extensively studied interferon in udder immunity (Schukken et al. 

2011). Increasing abundance of IFN-γ mRNAs was detected in milk cells as well as 

increasing protein amounts in milk isolated in the course of mastitis (Bannerman, 

2009; Riollet et al., 2001). Cellular sources of IFN-γ include lymphocytes, natural 

killer cells, and cells of monocyte lineage. The influence of IFN-γ on the innate 

immune system is most evident from its effects on macrophages and neutrophils. 

IFN-γ enhances the microbial activity of these cells by increasing receptor-

mediated phagocytosis, inducing respiratory burst activity, and priming nitric 

oxide production (Bannerman, 2009). Furthermore, IFN-γ links innate with 

acquired immunity inducing the production of IL-12 (Alluwaimi, 2004). 

Complement system 

The complement system is is a set of proteins that help the lysis of bacteria through pore-

formation, the opsonization and attraction of phagocytes, after a cascade of events, in 

which each step leads to the next. The components of complement complex are 

synthetized mainly by epathocytes but also by monocytes and tissue macrophages 

(Sordillo and Streicher, 2002). In milk, the highest concentrations of complement complex 

proteins (C) were observed for colostrum, mastitic milk and in the mammary secretions 
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during involution, while they were lower in healthy glands during lactation (Sordillo and 

Streicher, 2002). Although the overall function of complement system in mammary gland 

defence has yet to be fully determined, available knowledge supports its predominant 

pro-inflammatory role in intramammary infections (Riollet et al., 2000; Bannerman, 

2009). It has been postulated that the classical pathway of complement activation is 

impossible in milk from healthy quarters due to the lack of the component C1q (Reinard 

et al., 2003). Nevertheless the alternative pathway can operate with a double outcome: 

deposition of opsonic C3b and iC3b on bacteria, and generation of the pro-inflammatory 

fragment C5a. The C5a fragment is among the most potent chemoattractants for 

neutrophils and for cells of monocytic lineage inducing the migration of these cell types 

through the mammary epithelium. The fragment C5a is also a potent stimulator of the 

phagocytic function and respiratory burst activity of neutrophils (Alluwaimi, 2004). 

N-acetil-β-D-glucosaminidase and Lysozyme  

During mastitis, while the enzymes related with the synthesis of milk decrease, the 

enzymes associated to inflammation increase, such as N-acetil-β-D-glucosaminidase 

(NAGase; Pyörälä, 2003) and Lysozyme (LZ; Osman et al., 2010). They are lysosomal 

enzymes, considered as reliable indicators of inflammation (Pyörälä, 2003).  

NAGase is mainly released from the polymorphonuclear leucocytes during phagocytosis 

and cell lysis (Åkerstedt et al., 2011) and to some degree from damaged epithelial cells. It 

plays a role in mammary gland immune response (Torben and Karen, 2012) and its 

amount in the milk is related to pathogen strain (Kitchen et al., 1981; Ebling et al., 2001). 

The enzyme activity in milk was shown to increase in subclinical mastitis (Åkerstedt et al., 

2011). NAGase activity was also found in clinically healthy cows (Åkerstedt et al., 2011) 

with the highest levels in the first 20 days post-parturition, followed by a decline and a 

stabilization after 160 days of lactation (Piccinini et al., 2007). Despite the increase of this 

enzyme in mastitic milk, in the absence of inflammation the inconsistency between 

somatic cell count mean values and NAGase activity suggests that tissue factors may 

contribute to the release of some immune components (Piccinini et al., 2007). Recently, 

mammary epithelial cells of a continuous cell line, BME-UV1, were shown to produce 

NAGase when infected with S. aureus strains, as well as in the absence of stimuli (Mazzilli 

and Zecconi, 2010). NAGase distribution in a variety of tissue and in extracellular 
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compartments has led some studies to investigate the suitability of this enzyme as a 

marker of tissue damage. Recent studies demonstrated a correlation between high level 

of extracellular NAGase and tubular damage: Forman et al. (1996) published the first 

paper regarding NAGase in the urinary excretion of hens, concluding that this enzyme 

could be successfully used as a marker of kidney damage in hens. Later, Sato et al. (2002) 

showed the clinical usefulness of measuring NAGase in urinary tract diseases of cats. 

While NAGase is considered a marker of inflammation and tissue damage, LZ, with its 

antibacterial properties, is an indicator of mammary gland immune response. 

LZ is one of the most extensively studied antibacterial milk proteins. It has a well-

recognized bactericidal effect against both Gram-positive and Gram-negative bacteria 

(Lopez et al., 2006) and represents one of the components of mammary gland innate 

immune defenses, fundamental in preventing pathogen invasion. Indeed, together with 

lactoferrin, LZ is one of the most abundant proteins contained in neutrophils-specific 

granules (Ganz, 2004). It plays an antibacterial activity killing ingested bacteria in the 

phagolysosomes and preventing colonization through exocytosis of polymorphonuclear 

leucocytes secondary granules (Zecconi and Smith, 2003). The mode of action of LZ is not 

yet completely understood: while it is well known for its catalytic function related to the 

damage of bacterial cell walls (it cleaves the bond between N-acetyl muraminic acid and 

N-acetyl glucosamine and destroys cell wall peptidoglycans in Gram-positive bacteria; 

Tizard, 2013), a non-enzymatic mechanism exhibiting antibacterial activity against Gram-

negative microorganisms has been proposed (Ibrahim et al., 1996). As a matter of fact, LZ 

is highly active against many Gram-positive species but it can synergize with antibodies, 

complement or lactoferrin, allowing the disruption of the outer membrane of Gram-

negative bacteria and the access to peptidoglycan (Ganz, 2004). Due to a small 

concentration of IgA in ruminant milk and to a low amount of LZ, it is unknown if this 

mechanism is active in the bovine mammary gland (Sordillo and Streicher, 2002). 

Furthermore, a recent study provides a different mode of action of LZ, demonstrating the 

antimicrobial activity of LZ-deriving peptides. These peptides, isolated from proteolytic 

digests of hen egg white LZ, were internalized in both E. coli and S. aureus after the 

interaction with membrane phospholipids. These internalized peptides did not only affect 

the membrane permeability, but affected intracellular functions (Hunter et al., 2005). As 

for NAGase, LZ was secreted in the milk also in the absence of inflammatory reaction. 
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Furthermore the higher levels of enzyme in latent infections in comparison with 

subclinical and healthy mammary quarters, showed a role of this molecule in the control 

of invading pathogens (Piccinini et al., 2007). 

Lactoferrin 

Lactoferrin (Lf) is an iron-binding protein produced by leukocytes and epithelial cells. It is 

first known for its iron-chelating functions, which are the basis of two activities: a non-

specific bacteriostatic activity and protection against oxygen radicals. These properties 

depend on Lf capability to bind free ferric ion in milk, avoiding the growth of iron-

depending bacteria and blocking the reactions of free radicals, which are catalysed by 

free iron. On the other hand, bovine mammary epithelial cells secrete citrate in milk and 

this secretion creates an ideal buffer that chelates iron and makes it available to bacteria, 

abolishing the bacteriostatic activity of lactoferrin (Sordillo and Streicher, 2002). Bovine 

milk contains small amount of Lf (20-200 µg/mL) in comparison to bovine colostrum (2-5 

mg/mL) and to the secretions of non-lactating mammary gland, which can contain very 

high concentration of Lf (20-100 mg/mL). Thus, the secretion of Lf is inversely related to 

alveolar development and Lf bacteriostatic and bactericidal activities are likely to be more 

important when the mammary gland is fully involuted (Molenaar et al. 1996). 

Transferrin  

Transferrin (Tf) is similar to lactoferrin for its iron-binding functions, and is found in milk. 

This protein comes from blood, by transcytosis in the normal gland and through 

exudation of plasma during mastitis. Bovine milk contains low amounts of transferrin (20-

40 µg /mL); higher amounts are present in colostrum (1mg/mL), but the highest Tf 

amounts are in the blood (4-5mg/mL). Transferrin may allow a first iron-chelating 

bacteriostatic effect, before the increase of Lf concentration (Alluwaimi, 2004). 

Xanthine oxidase 

This enzyme is located in the membrane of milk fat globules. It catalyses the formation of 

nitric oxide from inorganic nitrite, which under aerobic condition leads to generation of 

peroxynitrite, a powerful bactericidal agent (Alluwaimi, 2004). 
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Antibodies 

“Natural” antibodies circulate in normal healthy individuals without the need of antigenic 

stimulation: they are mostly the IgM antibody isotype (Boes, 2000). Two types are 

distinguished, the one directed against exogenous antigens and the other against self-

antigens (Baumgarth et al., 2005). IgM are polyreactive and mostly directed against 

bacterial antigens, such as lipopolysaccharide, lipoteichoic acid and peptidoglycan and 

opsonize efficiently S. aureus and E. coli in rather low concentrations (less than 1%; Wijga 

et al., 2013). They are components of innate immunity and can cooperate with 

complement system in the first line of defence. Van Knegsel et al. (2007) suggested that 

concentration of IgM in both plasma and milk of dairy cows in early lactation was 

negatively influenced by compromised metabolic health in the periparturient period with 

consequent reduce immune functions. 

The primary isotype found in healthy mammary secretion are IgG, produced by antigen-

activated B lymphocytes and components of specific immune response. Togheter with 

IgG, IgM act opsonising bacteria and thus enhancing the phagocitic activity of neutrophils 

and macrophages (Sordillo and Streicher, 2002). 

 

2.3. Cellular defenses 

Leucocytes are the most representative cells of innate immunity of the mammary gland, 

including neutrophils, macrophages and lymphocytes. Other cell types such as dendritic 

cells and mammary epithelial cells should be added as components of milk somatic cells 

(SC). Mammary epiyhelial cells (MEC) are the interface between udder and invading 

microorganisms, thus they have a crucial role for an efficient immune response. Even 

though the amount of MEC depend on the lactation phase, milk from healthy bovine 

mammary gland contains a small number of epithelial cells and leukocytes. Recently a 

count of somatic cells (SCC) of 100.000 cells/mL was suggested in absence of 

inflammation (Hillerton, 1999). Lactation stage affects the SCC so that immediately after 

parturition SCC is high, but , but in healthy quarters decrease within 3 days after calving 

(Barkema et al., 1999). Towards the end of the lactation period, SCC increases slightly 

until drying-off, when udder tissues undergoes several physiological changes. 
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Nevertheless, according to more recent studies, the physiological effects affect very little 

the SCC of truly healthy cows (Leavens et al., 1997). 

Neutrophils are non specific leukocytes that are recruited actively in the infection site. 

While they are in low number in the healthy mammary gland, they increase to 90% of 

total mammary cell population in mastitic quarter milk (Sordillo and Streicher, 2002). 

During infection, the neutrophils are recruited by chemotactic stimuli from blood into 

the milk and they play an efficient phagocytosis and killing of pathogens (Schukken et 

al., 2011), exploiting their crucial role in the elimination of invading bacteria. 

Macrophages represent the major cell type in the secretion of involuted udder and in 

the tissues of a healthy mammary gland, but not in the milk (Pilla et al., 2013). The 

nonspecific function of these cells is to phagocytise bacteria and destroy them with 

proteases and reactive oxygen species. The phagocyte activity of these cells is lower if 

compared with neutrophils, but it can increase in the presence of opsonic antibodies 

against particular pathogens. Furthermore, they can secrete substances that promote 

both migration and bactericidal activity of neutrophils. Indeed, activated 

macrophages are triggered to release prostaglandins, leukotrienes, and cytokines that 

can augment local inflammatory processes. Therefore, the ability of macrophages to 

secrete substances that mediate the migration and bactericidal activity of neutrophils 

is considered of higher importance to the non-specific mammary gland defense, than 

their phagocytic activity. Macrophages also play a role in the development of specific 

immune response, through antigen processing and presentation (Sordillo and 

Streicher, 2002). 

Lymphocytes are able to recognize antigens through specific membrane receptors, 

which give the immunological characteristics of specificity, diversity, memory, and 

self/non-self recognition. In healthy mammary gland T lymphocytes represent the 

major lymphocyte subset, including CD4+ (T helper) and CD8+ (T cytotoxic or T 

suppressor) lymphocytes. Even though the specific leukocyte populations mediating 

the immune response during IMI are not well defined (Schukken et al., 2011), it is 

known that lymphocyte subset which prevail after staphylococcal infections is CD4+ T 

cells, while with streptococcal mastitis there is a parallel increase in both CD4+ and 

CD8+ T-cells (Sordillo, 2005). Mehrzad et al. (2008) studied the T-cell dynamics after 
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an experimental E. coli challenge infection. They observed there was a significant 

decline in the CD4+/CD8+ ratio at 6–24 h after challenge due to greater CD8+ cell 

concentrations in milk. CD8+ T lymphocytes has a scavenger activity, eliminating old 

or damaged secretory cells (Schukken at al., 2011). Furthermore, they are thought to 

modulate immune response during bacterial infections through their suppressor 

function. This phenomenon is dependent on stage of lactation and is observed in 

particular in the early stage of lactation (Sordillo and Streicher, 2002). The primary 

role of B lymphocytes is to produce antibodies against pathogens. They use specific 

surface receptor molecules to recognise specific antigens and similarly to 

macrophages and dendritic cells they function also as antigen-presenting cells. 

Natural killer (NK) cells are a lymphocyte subpopulation with an antibody-dependent 

cytotoxic activity, which is independent from MHC. NK cells are capable to eliminate 

tumoral and virus-infected cells, but NK cells has also potent bactericidal activity 

against both Gram+ and Gram- bacteria (Sordillo and Streicher, 2002). 

Bovine mammary epithelial cells (bMEC) have shown to be highly immune competent 

(Strandberg et al., 2005; Lahouassa et al., 2007; Gunther et al., 2010). bMEC are able 

to release a variety of inflammatory mediators such as cytokines, antimicrobial 

peptides, and arachidonic acid metabolites. The role of these messenger molecules is 

not completely understood, but they may be involved in the recruitment of 

neutrophils and lymphocytes into milk (Günther et al., 2010). The epithelial cells have 

both a sentinel and an effector role and they are well suited to exert these functions 

due to their abundance and exposed position to invading microorganisms (Günther et 

al., 2010). A burst of cytokines synthesis follows the contact between bMEC and 

pathogens: the reaction is stronger after E. coli challenge in comparison with S. aureus 

experimental infection (Günther et al., 2010). These cells are the first to come in 

contact with invading pathogens, thus activation of immune response of bMEC is 

involved in the evolution of infection. In vitro studies using a continuous cell line 

(MAC-T) showed that the cells secreted IL-8 under stimulation with LPS, in a time and 

dose-dependent manner (Boudjellab et al., 1998). Analogously, primary cultures of 

bMEC showed enhanced expression of chemokines, when stimulated by LPS 

(Strandberg et al., 2005). The secretion of pro-inflammatory cytokines by bMEC has 

been investigated after S. aureus challenge, with different results, however TNFα was 
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secreted after stimulation in all of the studies (Wellnitz et al., 2004; Strandberg et al., 

2005, Lahouassa et al., 2007). In the latter study, IL-1β and IL-8 increased, but less 

than in E. coli bMEC infection. To the contrary, the two major anti-inflammatory 

cytokines IL-10 and TGF-β were not affected by the presence of both pathogens, 

indicating that bMEC are not the source of the high IL-10 levels observed during cronic 

S.aureus mastitis that is characterised by moderate inflammatory response 

(Lahouassa et al., 2007). 

 

3. IN VITRO STUDY OF BOVINE MAMMARY GLAND 
 

In vitro models provide a useful system for the analysis of bovine mammary gland 

response. They take advantage from the growth of udder secretory cells in a controlled 

environment, in relatively short time and at low costs. 

In recent years, considerable progress has been made in understanding the molecular 

mechanisms driving the different functions of the ruminant mammary gland and in-vitro 

experimental models based on mammary epithelial cells culture have been applied for 

this proposal (Matitashvili et al., 1997). These models are currently used to investigate 

the mechanisms involved in milk production, cellular proliferation and differentiation, or 

to study mammary gland metabolisms or again the interactions between mammary tissue 

and pathogens and/or their products (Matitashvili et al., 1997). Nowadays two 

immortalized cell lines derived from bovine mammary epithelium are available: MAC-T 

cells and BME-UV1 cells (Zhao et al., 2010). 

BME-UV1 are established from primary bovine mammary epithelial cells by stable 

transfection with a plasmid encoding the SV40 large T-antigen, a viral oncogene that 

prevent the senescence upon continuous passage and not affects metabolic activity. 

BME-UV1 cells are able to synthesize -lactoalbumin ands1-casein (Zavizion et al., 

1994). Moreover they are the only known bovine mammary epithelial cell line showing 

enhanced proliferation in the presence of epidermal growth factor (EGF) (Zavizion et al., 

1996). Based on these characteristics this continuous cell line has been used as a valid 

model for the investigations on bovine mammary epithelium. In comparison with primary 

cell cultures, the established ones show a reduced possibility of alteration of their original 
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characteristics caused by genetic drift, which is the major limitation of primary cultures 

(Matitashvili et al., 1997). Furthermore the researcher can avoid both the biological 

variability associated with the natural differences between individual organisms and some 

of the complexity inherent for freshly isolated cells, which may contain cells at different 

stages of differentiation. Additionally, immortalized cells are available at different 

passages and the use of the same cell lines in different laboratories makes the results 

more comparable (Matitashvili et al., 1997). BME-UV1 cells express immunological and 

inflammatory molecules (Mazzilli and Zecconi, 2010) and therefore can be successfully 

applied to test the interactions of mammary gland epithelial cells with bacteria and 

antimicrobials (Didier and Kessel, 2004; Fitzgerald et al. 2007). 
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AIM OF THE STUDY 

 

The use of antibiotics for prophylactic treatment is being subjected to considerable 

debate all over the world for its connection with the emergence of antimicrobial 

resistance in pathogens (Frola et al., 2013). Moreover, the use of antibiotic treatment 

during lactation causes the presence of antibiotic residues in milk. For these reasons a 

pressure for the reduction of the use of antibiotics in veterinary field is ongoing, and the 

researchers are interested in finding novel molecules and in the development of new 

alternative approaches. The current use of lactic acid bacteria (LAB) as probiotic cultures 

and their ability to produce antimicrobial molecules encourage investigations of the 

employment of their bacteriocins or viable cell cultures into the mammary gland with the 

subsequent in situ production of antimicrobial molecules. In recent studies, the efficacy of 

treatments using different genera of LAB or their antibacterial products was evaluated 

(Frola et al., 2012;  Wu et al., 2007; Cao et al., 2007). Furthermore, there is the evidence 

that some probiotics can stimulate a protective immune response enhancing resistance to 

invading pathogens (Klostermann et al., 2008; Beecher et al., 2009). However, the 

information regarding this subject is still scarce. Either, the antimicrobial proteins 

(bacteriocins) or viable bacteriocin-producing Lactococcus spp. cultures, applied into the 

mammary gland come in contact with both invading pathogens and epithelial cells, which 

are involved in the activation of immune response and thus in the evolution of infections. 

The stabilized line of bovine mammary epithelial cells (BME-UV1) produces 

proinflammatory cytokines upon stimulation with antimicrobial peptides (Tomasinsig et 

al., 2010). Therefore, it is a suitable in vitro model to assess the response of bovine 

mammary epithelial tissue to bacteriocins and to evaluate the interaction between 

epithelial cells and viable Lactococcus spp. cultures. 

The aim of the present study was to evaluate the potential use of LAB bacteriocins against 

mastitis pathogens and the role of both LAB live cultures and their bacteriocins in 

modulating the response of mammary epithelial cells. 
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Most specifically, the tasks were: 

1. To set up the optimal culture conditions for improvement of the growth of LAB 

and for optimization of bacteriocin production and extraction. 

2. To establish the best antibacterial assays to screen large numbers of producer 

strains. 

3. To evaluate the bacteriocin efficacy against mastitis pathogens. 

4. To characterize the antibacterial proteins in the extracts of selected LAB 

producers. 

5. To assess the immune response of mammary epithelial cells to the challenge with 

both antibacterial extracts and live producer bacterial strains. 
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MATERIALS AND METHODS 
 

1. SCREENING OF LAB STRAINS 

1.1. Preparation of cell-free culture supernatants 

Overall 65 strains of LAB come from Centro Sperimentale del Latte (CSL, Zelo Buon 

Persico, Lodi) collection were tested: Lactococcus lactis subsp. lactis (25 strains), 

Lactococcus lactis subsp. cremoris (16 strains), Lactococcus lactis subsp. lactis bv. 

diacetylactis (11 strains), Lactobacillus plantarum (one strain), Lactobacillus rhamnosus (2 

strains) Lactobacillus paracasei (one strain), Lactobacillus acidophilus (2 strains), 

Lactobacillus fermentum (one strain), Lactobacillus helveticus (4 strains), Lactobacillus 

rheuteri (one strain) and Bifidobacterium spp. (one strain). 

Six different media were used to grow Lactococcus lactis subsp. lactis (LL11), in order to 

investigate which medium could allow the highest antibacterial activity: TGE1 (1% 

Tripticase, 1% Glucose, 1% Yeast extract), TGE2 (TGE broth additioned with 0,5% sodium 

citrate, 0,1% sodium acetate and 0,05% dipotassium phosphate, Yang et al., 1992), GYB1 

(1% Glucose, 0,5% Yeats extract), GYB2 (2% Glucose, 1% Yeast extract), SG (3% milk whey, 

1% glucose), MRS (DeMan, Rogosa, Sharpe broth; Oxoid, UK). One colony of a 24h-culture 

was picked from MRS plate and inoculated in 15 mL of each medium. After 18h 

incubation at 30°C, the culture broth was plated on MRS agar (DifcoTM) and counted, 

while the cell-free supernatants (CFS) were tested with spot-on-lawn assay  and MIC test 

against S. agalactiae MB386 (see below). 

Cell-free supernatants (CFS) of all screened strains were obtained directly from the 

cultures in deMan, Rogosa and Sharpe broth (MRS), by acid extraction method following a 

previously described protocol (Yang et al., 1992). Briefly, after incubation for 18-24 h at 

30°C for Lactococcus spp. or at 37°C for Lactobacillus spp., culture broths were acidified at 

pH 2. After the release of bacteriocins, the broths were centrifuged at 29.000 x g for 15 

min and adjusted to pH 7. Finally CFSs were sterilized by filtration through 0,22 µm filter 

and stored at -20°C until use. 

1.2. Antimicrobial activity test: spot-on-lawn assay 

Antibacterial activity of supernatants was screened with the spot-on-lawn assay 

(Saavendra et Sesma, 2011). All LAB supernatants extracted with the method described 

above from all strains of LAB were tested. LAB strains were maintained on MRS agar at 
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4°C until use. For this test Brain Heart Infusion (BHI) agar plates supplemented with 5% of 

Foetal Calf Serum (FCS) were applied. S. agalactiae MB386 was used as indicator strain 

for CFS activity. A suspension containing 106 UFC/mL S. agalactiae MB386 was prepared 

and spread onto the plate surface. Five µL of each LAB CFS was spotted on the plate and 

then incubated at 37°C for 18-24h. The presence of a clear zone of growth inhibition 

indicated bacteriocin activity. 

 

2. ANTIBACTERIAL ACTIVITY AGAINST MASTITIS PATHOGENS  

2.1. Bacterial strains 

Antibacterial activity of bacteriocin-producing strains was tested against six different 

species of mastitis pathogens, including methicillin resistant strains of Staphylococcus 

aureus.  Except for one S. aureus strain obtained from American Type Culture Collection 

(ATCC, Manassas, VI, USA) all bacterial strains had been isolated from clinical and 

subclinical mastitis. All tested strains are listed in the table 1. 

 

Table 1. Bacterial strains used in the antimicrobial activity tests and their origin. 

 Species Strain Source 

Streptococcus agalactiae MB90 mastitic milk 

 MB98 mastitic milk 

 MB386 subclinical mastitis 

Streptococcus uberis MB705 clinical mastitis 

 MB707 post-treatment mastitis 

 MB300 subclinical mastitis 

Streptococcus dysgalactiae MB280 mastitic milk 

 MB324 subclinical mastitis 

Enterococcus faecalis MB330 subclinical mastitis 

 MB561 subclinical mastitis 

 MB562 subclinical mastitis 

 MB706 subclinical mastitis 

Staphylococcus aureus 29213 ATCC 29213 

 MB221 subclinical mastitis 

 MB254 subclinical mastitis 

 MB351 subclinical mastitis 

 MB390 subclinical mastitis 

 MB439 subclinical mastitis 

 MB501 subclinical mastitis 

 MB512 subclinical mastitis 

 MB535 clinical mastitis 

 MB543 subclinical mastitis 
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 MB781 subclinical mastitis 

 MB786 subclinical mastitis 

 MB798 clinical mastitis 

Methicillin-resistant Staphylococcus aureus 
(MRSA) 

MB508 subclinical mastitis 

 MB628 subclinical mastitis 

Coagulase-negative staphylococci (CNS) 
MB307 subclinical mastitis 

 MB309 subclinical mastitis 

  MB316 subclinical mastitis 

 

 

For bacteriological analysis of milk, 10 mL of quarter milk was aseptically collected from 

the teats previously cleaned and disinfected and after the discard of first squirts. Samples 

were refrigerated until arrival at laboratory facilities. Ten μL of each sample was spread 

onto blood agar plates (5% bovine blood) and incubated at 37°C for the bacteriological 

analysis as previously described (Oliver et al., 2004). Plates were evaluated after 24 and 

48 h, and colonies were isolated and identified by biochemical tests following Hogan et al. 

(1999) and confirmed by API System (Rapid ID 32 Strep, Biomérieux City, Country). The 

somatic cell count of each sample was performed with Bentley Somacount 150 (Bentley 

Instruments City, Country). All isolates were stored at -80°C in Microbank Bacterial 

Preservation System (Thermo Fisher, City, Country). Immediately after thawing, the 

isolates were subcultured on blood agar plate (5% of blood, Oxoid) and thereafter grown 

in BHI broth for 24 h at 37°C. Antibiotic sensitivity of each strain was tested by Kirby-

Bauer disk diffusion method. The drugs most widely used in the treatment of bovine 

mastitis (penicillin, ampicillin, amoxicillin/clavulanic acid, oxacillin, 1st, 3rd and 4th 

generation cephalosporins, norfloxacin, nafcillin/penicillin/streptomicin, rifaximin, tylosin, 

kanamicin, tiamphenicol, sulfamethoxazole/trimethoprim) were tested. 

2.2. Minimum inhibitory concentration (MIC) assay 

Bacteriostatic activity of cell-free supernatants (CFS) containing bacteriocins (sample A) 

was tested using MIC assay against each pathogen strain, according to Clinical and 

Laboratory Standards Institute (CLSI) guidelines. Serial two-fold dilutions of each 

supernatant were performed in 100µL of BHI broth supplemented with 5% Fetal Calf 

Serum (FCS), in 96-well microplates. For each pathogen, a 106 cfu/mL inoculum was 

prepared, then 10 µL of bacterial inoculum was added to each well and the plates were 
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incubated for 24h at 37°C. In addition, for each test a sterility control was performed in a 

separate well and checked for any growth after incubation. The antimicrobial activity of 

each supernatant was expressed as arbitrary units/mL (AU/mL). One AU was defined as 

the reciprocal of the highest serial twofold dilution that completely inhibited bacterial 

growth (Todorov et al., 2011). 

The sensitivity of three strains (S. agalactiae MB386, S.uberis MB707 and S.dysgalactiae 

MB280) to a nisin solution containing 150 µg/mL of pure nisin was also evaluated and 

compared to the results obtained with CFS, in order to estimate the amount of 

bacteriocin in the supernatants. 

2.3. Minimum bactericidal concentration (MBC) assay 

To test bactericidal effect of bacteriocins, minimum bactericidal concentration (MBC) was 

assayed for each bacteriocin against each pathogen strain. Ten µL of each dilution 

representing the MIC endpoint of two more concentrated dilutions were plated onto 

blood agar plates (5% bovine blood) and incubated overnight at 37°C. Each dilution was 

plated in duplicate and colonies of growth were counted. The MBC was defined as the 

lowest concentration showing ≥99% killing (CLSI, 1999) and the minimum dilution of 

bacteriocins that killed the pathogens was expressed in AU/mL (see above). 

 

3. IDENTIFICATION OF ANTIBACTERIAL MOLECULES 

3.1. Partial purification of antibacterial molecules 

Partial purification of antibacterial molecules produced by active strains of Lactococcus 

spp. was performed by the adsorption-desorption method as described by Yang et al. 

(1992) and Baljinder et al. (2013). Briefly, after growth, the culture broths were adjusted 

to pH 6.5, the cells were deactivated by heating at 70°C for 25 min, and left for for 3h at 

4°C to allow the adsorption of bacteriocins onto the bacterial cell walls. Subsequently, 

bacterial cells were harvested by centrifugation at 15,000g for 15 min at 4°C, washed with 

5 mM sodium phosphate buffer (pH 6.5) and resuspended in 100 mM NaCl at pH 2.0 to 

allow the bacteriocins to be desorbed. After 1h incubation at 4°C, cell suspensions were 

centrifuged at 29,000g for 20 min and then the obtained pre-purified extracts (sample B) 

were filter-sterilized by passing through a 0.2 m pore size cellulose acetate membrane. 

The extracts were subsequently fractionated by ultrafiltration through a 1 kDa molecular 
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weight cut-off (MWCO) ultrafiltration membrane (Millipore, Darmstadt, Germany) and 

tested for antibacterial activity against the indicator strain by spot-on-lawn test as 

indicated above (see chapter 1.2). 

3.2. Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis (SDS–PAGE) 

and antibacterial activity test in gel 

Cell-free supernatant (sample A) and partially purified bacteriocin extract (sample B) 

ultrafiltration (1 kDa) permeates and retentates were mixed with SDS–PAGE native 

sample buffer. Separation was performed on a 15 % polyacrylamide (PAA) resolving gel in 

TRIS–glycine–SDS buffer on SE 250 mini-vertical gel electrophoresis system (Hoefer Inc., 

Holliston, MA, USA). PageRulerTM Plus Prestained Protein Ladder (mol wt 10–250 kDa; 

Thermo Fisher Scientific Baltics; Vilnius, Lithuania)  and Spectra Multicolor Low Range 

Protein Ladder (mol wt 1,7-40 kDa; Thermo Fisher Scientific Baltics; Vilnius, Lithuania) 

were used as a protein molecular weight markers. The electrophoresis was run at 23°C 

and 50 V for the first 0.5 h and then at 100 V for another 2 h. Gels were stained with 

Coomassie brilliant blue G-250. The molecular weights of obtained protein bands were 

estimated by calculating the relative migration distance (rf) values (Hames, 1998). For 

antibacterial activity test PAA gel was fixed with 50% methanol and 10% acetic acid in 

milliQ-treated water for 15 min at 25°C, washed in milliQ-treated water for 2 h at 25°C 

changing water every 15 minutes, then aseptically placed on S. agalactiae soft agar (BHI 

agar (1%) supplemented with 5% of FCS) and overlaid with the same soft agar, but  

inoculated with 106 cfu/mL of the indicator strain. The plates were incubated at 37°C for 

18–24 h and the inhibition zone of growth was observed. 

3.3. Ultra Performance Liquid Chromatography/Electrospray Ionization-High 

Resolution-Mass Spectrometry (UPLC/ESI-HR-MS) analysis  

Partially purified bacteriocin extract (sample B) ultrafiltration (1 kDa) retentates were 

fractionated by ultra-performance liquid chromatography (UPLC) carried out on an 

Acquity UPLC separation module (Waters, Milford, MA, USA) and analyzed with a photo 

diode array (PDA) eLambda detector (Waters) and a high resolution Q Exactive hybrid 

quadrupole-Orbitrap mass spectrometer (HR-MS, Thermo Scientific, San Jose, CA, USA) 

interfaced through an electrospray ionization (ESI) source. Samples were separated on an 

Aeris WIDEPORE XB-C4 column (2.1 × 150 mm, 3.6 μm) (Phenomenex, Torrance, CA, USA) 

kept at 40 °C. The eluents were: 0.1% trifluoroacetic acid (TFA) in milliQ-treated water 
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(solvent A) and 0.1% TFA in acetonitrile (solvent B). The UPLC separation was performed 

by using a linear elution gradient (10% to 55% of solvent B in 13.7 min) at a flow rate of 

0.2 mL/min. Proteins in the eluate were detected with a PDA detector at 210 nm and 

subsequently analyzed by MS using full scan analysis in the range 300–2000 m/z. The 

resolution was set at 140K. The AGC target was 5e5. The maximum ion injection time was 

100 ms. The MS data were automatically processed using Xcalibur software (Thermo 

Scientific), and protein mass deconvolution was performed using Xtract software (Thermo 

Scientific). 

3.4. Lactococcus lactis subsp. lactis SL208 genome sequencing  

Whole DNA of L. lactis subsp. lactis SL208 was extracted using the DNeasy blood and 

tissue kit (Qiagen, I) following the manufacturer instructions and was subjected to quality 

control. After library preparation with the Nextera XT sample preparation kit (Illumina), 

sequencing was performed using the Illumina MiSeq platform with a 2 × 250 paired-end 

run. Reads were analyzed and quality checked using FastQC (Andrews, 2010) and a 

specifically designed python script. Genome assembly was performed using Mira4 

(Chevreux et al., 1999), while genome annotation was performed using the PROKKA 

software (version 1.1). NCBI Protein Basic Local Alignment Search Tool (BLAST) was used 

to identify protein amino acids sequences, while the alignment of Lactococcin G, 

Enterocin C2 and SL208 Lactococcin-like protein was performed using the ClustalW 

software alignment tool (version 2.1). 

 

4. INTERACTION OF BACTERIOCINS OR LIVE LACTOCOCCAL CULTURES 

WITH MAMMARY EPITHELIAL CELLS 

4.1. Bovine mammary epithelial cell culture 

BME-UV1 cells were cultured at 37°C with 5% CO2 in the following medium: 50% 

Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 Ham (DM/F12, Gibco), 30% 

RPMI 1640 (Gibco), 20% NCTC 135 (Gibco), containing 0.1% lactose, 0.1% lactalbumin 

hydrolysate, 1.2 mM glutathione, 10 μg/ml L-ascorbic acid, 1 μg/ml hydrocortisone, 1 

μg/ml insulin, 5 μg/ml transferrin, and 0.5 μg/ml progesterone. The cells were grown to 

confluence in 6-wells plates for 58 h in complete medium supplemented with 10% Fetal 

Calf Serum (FCS). To evaluate the role of serum addiction, the cells were grown to 

confluence and maintained for 4, 8, 24, 34 and 58 h with 10%, 5% or without FCS; at each 
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time point both culture medium and cells were collected and tested for enzymes 

production. To test the effect of the treatments, the 58h old cells were washed twice with 

Hanks' Balanced Salts Solution (HBSS) and maintained in the complete medium without 

FCS until the addiction of CFSs or live lactococcal cultures (see below). Trypan blue 

solution (0.4%, Sigma-Aldrich) was used to assess cell viability: 20 μL of cells were 

suspended in 80 μL of diluted solution (Trypan blue/PBS, 1/5) and the rate of viable cells 

was calculated using a Burker cell counting chamber.  

4.2. Challenge with bacteriocins and live cultures of Lactococcus lactis subsp. 

lactis 

Each preparation containing LL11 or SL153 bacteriocin was obtained after 48h incubation 

of lattococci in RPMI medium. Antibacterial activity of such CFSs was assayed with the 

MIC test to measure the antibacterial activity. For the evaluation of enzymes and 

cytokines production by epithelial cells, CFSs were added to 6-wells cell culture plate to a 

final concentration of 10% in FCS-free medium. Moreover, to test the stimulation of 

epithelial cells by lactococcal live cultures , 30 μL of a suspension (104 cfu/mL) of each 

bacteriocin producing-lactococcus strain (LL11 or SL153 or SL208) were added to distinct 

wells and after 4h, 8h, 15h, 24h of stimulation both culture medium and cells were 

collected separately and stored at -20°C. Bacterial growth and antimicrobial activity of 

extracellular compound were also assayed at such time points. Aliquots of 150 μL 

containing 3 x 106 BME-UV1 cells were suspended in 750 μL of RNAlater (Sigma-Aldrich) 

and stored at -80 °C until RNA extraction. Production of antibacterial enzymes was tested 

on both epithelial cells and culture medium, while pro-inflammatory cytokine expression 

was assayed on the cells of each well. 

4.3. N-acetil-β-D-glucosaminidase and Lysozyme assays 

The amount of N-acetil-β-D-glucosaminidase (NAGase) and Lysozyme (LZ) were assayed in 

both supernatants and cells using a fluorescence-based procedure. In order to disrupt the 

cell membrane and allow the complete release of enzymes, the cells were shaken with 

150-212 μm glass beads (Sigma-Aldrich) and then harvested by centrifugation. Trypan 

blue solution (0.4%, Sigma-Aldrich) was used to assess cell viability according to the 

manufacturer's instructions. 

NAGase activity was assessed in duplicate by a fluorometric assays according to Kitchen et 

al. (1984), on a microplate fluorometer (Fluoroskan Ascent, Thermo Labsystem, FL). Each 
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sample was incubated with 4-methylumbelliferyl-N-acetyl--D-glucosamidine (MUAG, 

Sigma-Aldrich) as a substrate. NAGase activity was measured as fluorescence increment 

on a microplate florimeter (Fluoroskan Ascent, Thermo Labsystem, FL) using 355 nm 

excitation and 460 nm emission. The concentration was calculated against a standard 

curve with a range of 0-200 μM of 4-methylubelliferone (4-MU, Sigma-Aldrich). Activity 

was expressed as pmol 4-methylubelliferone released/min at 25 °C catalysed by 1 µl of 

solution. 

LZ was assessed in duplicate by (EnzChek Lysozyme Kit, Invitrogen, CarlsbadCA, USA), 

which is based on the lysis of Micrococcus lysodeycticus labelled with fluorescine. LZ 

activity was assayed by measuring fluorescence increment after 30 min of incubation at 

37°C on a microplate fluorimeter at 494nm excitation and 518 nm emission 

(FluoroskanAscent, Thermo Labsystem, FL, USA), against a standard curve with a range of 

8-500 units. One unit of LZ is defined as the quantity of enzyme that produces a decrease 

in turbidity of 0.0001 OD units per min at 450 nm measured at pH 7.0 (25 °C) using 0.3 

mg/mL. 

4.4. Real-time RT-PCR for mRNA quantification 

After thawing, cells were centrifuged at 5000 x g for 18 min, to remove RNAlater and then 

washed once with PBS. Total RNA was extracted using Illustra Mini RNA isolation kit (GE 

healthcare Europe) according to manufacturer’s instructions, and stored at -20°C. RNA 

quantification and purity was estimated using spectrophotometer ND-100 (Nanodrop 

Technologies inc. USA). For RNA retrotranscription, QuantiTect Reverse Transcription Kit 

(Qiagen, I) was used and 0,1 µg of RNA was reverse transcribed following the 

recommended procedure in a final volume of 20 μL. A negative control without enzyme 

was added to exclude DNA contaminations in RNA. Quantitative real-time PCR (qPCR) was 

performed using EvaGreen fluorescent detection system and the Eco Real-Time PCR 

System (Illumina Inc., USA). In each reaction, 3 μL of cDNA equivalent to 3 ng of total RNA 

were amplified in a 15 μL mixture containing 100nM reverse and forward primer each 

(GAPDH and TNFα) or 200nM each (IL-8). In each plate, GAPDH was run as housekeeping 

gene and a negative and positive control were included. Each sample was processed in 

triplicate. 
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The primers for GAPDH, TNFα and IL-8 are listed in the table 2. 

 

Table 2. Primer sequences with respective melting temperature (Tm) and product size. 

Target cDNA Primer (5’-3’) Tm 

(°C) 

Product size  Source 

TNFα F:CTGGTTCAGACACTCAGGTCCT 

R:GAGGTAAAGCCCGTCAGCA 

62.1  

58.8 

183 bp Tomasinsig et al. (2010) 

IL-8 F:CCTCTTGTTCAATATGACTTCCA 

R:GGCCCACTCTCAATAACTCTC 

56.26 

57.81 

189 bp Günter et al. (2010). 

GAPDH F:CCTGGAGAAACCTGCCAAGT 

R:GCCAAATTCATTGTCGTACCA 

59.4 

55.9 

214 bp Tomasinsig et al. (2010) 

 

 

The thermal-cycling program was different for TNFα or IL-8 in the annealing/extension 

step: initial denaturation/activation (95°C for 3min), 45 cycles of denaturation (95°C for 

10 s), annealing/extension (62°C for 15 s for TNFα, or 59°C for 15 s for IL-8) and melting 

curve analysis. 

At the cycle number at witch fluorescence signal intersected with the threshold, the Cq 

value of a sample was set and used for quantification. The specificity of the reaction was 

checked post-amplification by melt curve analysis using high resolution melting analysis 

(HRMA). In the Eco Real-Time PCR System (Illumina Inc., USA) fluorescence data were 

registered every 0,1°C, from 55°C to complete denaturation of DNA at 95°C.  

 

4.4.1 Data Analysys of Real-Time RT-PCR 

For relative quantification of mRNA, the Cq values of the target gene transcripts were 

normalized against the reference gene GAPDH, and the results were expressed as 

normalized fold expression relative to the control (not stimulated cells). 

Because the amplification efficiencies of the target and the reference genes were not 

equal the normalization of the samples to a single reference gene was made with the 

Pfaffl method (Pfaffl, 2001) that does not assume equal or 100% amplification efficiency 
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and incorporates the experimentally determined efficiencies of the target and reference 

genes to correct for any differences.  

The calculations for this method are shown below: 

 

 

 

 

 

5. STATISTICAL ANALYSIS 

The analysis of data has been performed with the software SPSS Statistics version 21.0 

(IBM, USA). Means were compared by Two-way ANOVA (Analysis of Variance) and Scheffè 

post-hoc test. Time and treatment variables were used as main effects and the NAGase, 

Lysozyme and cytokine expression as the dependent variables. One-way ANOVA was 

applied when the time variable was not significant and also to highlight differences 

among intracellular and extracellular localization of enzymes. Results were considered as 

statistically significant at P values <0.05. 

  



45 
 

RESULTS AND DISCUSSION 
 

1. SCREENING OF LAB STRAINS FOR ANTIBACTERIAL ACTIVITY 
 

Sixty-five strains from the collection of Centro Sperimentale del Latte were tested for 

their antibacterial activity against Streptococcus agalactiae MB386 by spot-on-lawn assay. 

This pathogen was used as indicator strain, because S. agalactiae is known to exhibit high 

sensitivity to bacteriocins (Wu et al., 2007) and the 3 strains tested (MB386, MB90, 

MB98) showed high and comparable sensitivity. As bacteriocin production by LAB is a 

growth-associated process (Cintas et al., 2011) starting at early stationary phase, and 

reaching its peak toward the end of this phase (De Vuyst and Vandamme, 1991), the 

selection of the best medium to grow the bacteria allowed the optimisation of CFS 

antibacterial activity (Table 1.1). The acid-extraction method was found to maximize the 

amount of bacteriocins released in the CFSs allowing the release of peptide from 

producer cell surfaces as suggested by Yang et al. (1992) and thus the potency of CFSs. 

MRS medium allowed the highest bacterial proliferation and exerted high antibacterial 

activity, which was enhanced after the acidification method. Furthermore a commercial 

medium assured a more constant and better characterized composition. Cell-free culture 

supernatants (CFS) obtained by bacteriocin producers cultivated in acidified MRS medium 

were used to screen the LAB strains for antibacterial activity. Among the 65 strains, only 

3, belonging to the species Lactococcus lactis subsp. lactis (LL11, SL153 and SL208), 

showed antibacterial activity against S. agalactiae MB386. Lactococcus lactis subsp. lactis 

LL11 strain had been isolated from bovine milk, while SL153 and SL208 came from natural 

starter for dairy processing. This result is in disagreement with a previous paper (Riley and 

Wertz, 2002) which proposed that 99% of all bacteria may produce at least one 

bacteriocin. Even though different culture conditions, pH, temperature and stress factors 

could interfere with bacteriocin production (Drider et al., 2006). Biosynthesis of 

bacteriocins occurs in bacterial cells when anti-competitors activity is necessary (e.g. 

against invasion of other strains or species into a niche) and these proteins have also a 

role in quorum sensing process, mediating microbial interaction (Drider et al., 2006). 

These characteristics, together with the three-component regulation of genes activation 

that needs a threshold level requirement for the auto-induction activation (Balciunas et 
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al., 2013), make hard the comprehension of basic mechanisms of bacteriocin production 

or failure. 

 

Table 1.1 MIC values of cell-free culture supernatants extracted from different media and 

from acidified MRS medium against reference strain Streptococcus agalactiae MB386. 

 

Medium 

(broth) 

Lactococcus lactis subsp. lactis LL11 

UFC/mL 

 Diameter of inhibition zone 

(mm) Spot-on-lawn assay 
MIC (AU/mL) 

TGE1  1x109 UFC/mL 10.0 128 

TGE2  / 0.0 1.5 

GYB2  1x108 UFC/mL 2.0 6 

GYB1 2x107 UFC/mL 0.0 1.5 

SG  1x109 UFC/mL 11.5 128 

MRS 2x109 UFC/mL 14.0 128 

Acidified MRS 2x109 UFC/mL 15.0 256 

 

2. ANTIBACTERIAL ACTIVITY AGAINST MASTITIS PATHOGENS  
 

Antibiotic sensitivity patterns of mastitis isolates, determined by plate diffusion method, 

showed that all strains were resistant to at least one of antibiotics tested. E. faecalis 

evidenced a particular resistant pattern: three strains were resistant to oxacillin and 

demonstrated intermediate susceptibility to fluoroquinolones. In addiction 2 out of 4 

were also resistant to penicillin, macrolides and tiamphenicol and one of them also 

showed no sensitivity to first generation cephalosporin.  

All S. agalactiae strains were resistant to oxacillin and 2 out of 3 strains were also 

resistant to rifaximin and macrolides. In addition, macrolides  were not effective on one S. 

uberis and both S. dysgalactiae strains.  

A clear resistance to penicillin and ampicillin was evidenced by S. aureus with overall 8 

resistant strains, 2 of them also resistant to amoxicillin/clavulanic acid. Two strains were 

MRSA and showed also resistance to fourth generation cephalosporin (Table 2.1). 
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Antimicrobial activity of the 3 active CFSs was evaluated against the pathogens. Among 

streptococcal strains, the most sensitive species to antibacterial activity of CFS were S. 

agalactiae, E. faecalis and S. uberis which showed the highest MIC values reaching 384 

and 256 AU/mL. While the 3 S. agalactie strains (MB90, MB98, MB386) demonstrated an 

identical sensitivity to all CFS, the different strains of E. faecalis and S. uberis showed an 

evident difference in their antimicrobial susceptibility to the same bacteriocin. In 

particular E. faecalis strains displayed up to 7-fold higher sensitivity in the MIC assay 

when tested against  SL153 CFS with the values ranging  2-256 AU/mL. E. faecalis strain 

MB330 demonstrated a marked resistance to all bacteriocins tested showing a MIC of 2 

AU/mL when tested with LL11 CFS and SL153 CFS, and no sensitivity against SL208 CFS. S. 

uberis reached 5 dilution differences among strains when tested against SL153 CFS. The 

two S. dysgalactiae strains were the most resistant to LL11 and SL153 CFSs, and showed 

MIC values of 32 and 4 AU/mL when  tested against SL208 CFS. 

Among staphylococcal strains high sensitivity was showed by S. aureus MB390 that 

reached a MIC value of 256 AU/mL in the presence of SL153 CFS. The lower inhibition 

levels was observed for S. aureus ATCC29213, MB221, MB254 and MB786 strains and for 

the two MRSA strains tested. Overall, no resistant strains were evidenced with the MIC 

test aainst LL11 and SL153 CFSs. To the contrary 53% of S. aureus and one of the 3 

coagulase negative staphylococci (CNS) strains were resistant to SL208 CFS. As well as S. 

uberis and E. faecalis, S. aureus and CNS demonstrated a large variability in the sensitivity 

to lactococcal bacteriocins (see tables 2.2 and 2.3). 

Lactococcus lactis subsp. lactis SL153 showed the highest inhibitory activity against the 

pathogens in the MIC test, while SL208 CFS displayed the lowest antibacterial activity 

since 10 pathogens were resistant. Only S. aureus MB290 and both S. dysgalactiae strains 

(MB280 and MB324) were equally or even more sensitive to SL208 CFS compared to 

SL153 CFS. To the contrary, SL153 and LL11 CFSs were always active. The MBC values 

overlapped the respective MIC values or differed by a maximum of a dilution for all 

strains (Tables 2.2 and 2.3). 

Although antibiotics still represent the election treatment for mastitis, the biggest 

challenge in the modern dairy industry is the reduction of the antibiotics use in food 

production animals (Bradley, 2002). Furthermore, the dairy industry could benefit from 

the development of safe antimicrobial agents and bacteriocins could be an attractive 
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alternatives to antibiotics (Pieterse and Todorov, 2010) avoiding withdrawal period and 

residues in milk. 

A considerable variability of bacteriocin sensitivity was observed among both bacterial 

species and different strains belonging to the same species. It should be noticed that the 

antibacterial activity was observed also against tose species which are well known to 

develop antimicrobial resistance, such as E. faecalis and S. aureus (Piper et al., 2009). 

Nevertheless, E. faecalis together with S. agalactiae showed the highest MIC values, 

indicating a noticeable sensitivity to bacteriocins. It should be pointed out that, despite 

the differences in sensitivity, bacteriocins were able to inhibit and to kill the pathogens at 

the same concentration, confirming bactericidal activity of bacteriocins. 

Sensitivity of 3 different Streptococcus spp. strains to nisin was also tested. The pathogen 

strains were selected among those showing no resistance to any bacteriocin preparation 

and belonged to 3 different species, S. agalactiae MB386, S. uberis MB707, S. 

dysgalactiae MB280. They were used to evaluate the antibacterial activity of pure nisin 

(150 µg/mL). The potency of this preparation was 16-64 times higher than that of 

bacteriocin extracts against S. agalactiae; 8-32 times against S. uberis and the same for 

SL208. For LL11 and SL153, it was 64 times higher against S. dysgalactiae (Table 2.4). The 

comparison of the inhibitory activity of nisin solution with the three active CFSs suggested 

that a small amount of bacteriocin was contained in our preparations. Nevertheless, their 

antibacterial activity confirmed the well-known efficacy of bacteriocins even at very low 

amounts, which characteristic could be advantageous in therapeutic use. 
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Table 2.1 Antibiotic susceptibility pattern of strains tested: the number of resistant (R) or 

sensitive (S) strains are indicated in the corresponding columns. 

Antibiotic  

S. 
agalactiae 

(n=3) 

S. 
dysgalactiae 

(n=2) 

E. 
faecalis 

(n=4) 

S. uberis 
 (n=3) 

S. 
aureus 
(n=13) 

CNS 
(n=3) 

R S R S R S R S R S R S 

Penicillin    3   2 2 2   3 8 5 1 2 
Ampicillin   3   2 1 3   3 8 5 1 2 
Amoxicillin/clavulanic acid   3   2   4   3 2 11   3 
Oxacillin 3     2 3 1   3 2 11   3 
1st generation cephalosporin   3   2 1 3   3   13   3 
3rd generation cephalosporin   3   2   4   3   13   3 
4th generation cephalosporin   3   2   4   3 2 11   3 
Norfloxacin    3   2   4   3 1 12   3 
Rifaximin 2 1   2 2 2   3   13   3 
Nafcillin/Penicillin/Streptomycin    3   2   4   3   13   3 
Tylosin 2 1 2   2 2 1 2 1 12 1 2 
Spiramycin 2 1 2   2 2 1 2   13 1 2 
Tiamphenicol   3   2 2 2   3 1 12   3 
Sulfamethoxazole/trimethoprim   3   2 4   3   2 11   3 

 

 

Table 2.2 MIC and MBC values of LL11, SL153, SL208 CFSs against streptococcal strains 

expressed as AU/mL. 

2.2 LL11 

Microorganism MIC values  MBC values 

S. agal. (MB386, MB90, MB98) 256.0 256.0 

E. faec. MB330 2.0 2.0 

E. faec. MB561 64.0 32.0 

E. faec. MB562 128.0 64.0 

E. faec. MB706 64.0 32.0 

S. uberis MB705 64.0 64.0 

S. uberis MB707 16.0 8.0 

S. uberis MB300 8.0 4.0 

S. dysgal. MB280 1.5 not killed 

S. dysgal. MB324 1.0 not killed 
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2.2 SL153 

Microorganism MIC values MBC values 

S. agal. (MB386, MB90, MB98) 384.0 384.0 

E. faec. MB330 2.0 2.0 

E. faec. MB561 128.0 128.0 

E. faec. MB562 128.0 128.0 

E. faec. MB706 256.0 256.0 

S. uberis MB705 256.0 128.0 

S. uberis MB707 32.0 32.0 

S. uberis MB300 8.0 8.0 

S. dysgal. MB280 1.0 1.0 

S. dysgal. MB324 2.0 2.0 

   

 

2.2 SL208 

Microorganism MIC values  MBC values 

S. agal. (MB386, MB90, MB98) 64.0 64.0 

E. faec. MB330 res not killed 

E. faec. MB561 8.0 4.0 

E. faec. MB562 16.0 16.0 

E. faec. MB706 8.0 4.0 

S. uberis MB705 64.0 64.0 

S. uberis MB707 4.0 2.0 

S. uberis MB300 4.0 4.0 

S. dysgal. MB280 32.0 16.0 

S. dysgal. MB324 4.0 4.0 
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Table 2.3 MIC and MBC values of LL11, SL153, SL208 CFSs against staphylococcal strains 

expressed as AU/mL. 

2.3 LL11 

Microorganism MIC values  MBC values 

S. aureus (ATCC 29213) 2.0 not killed 

S. aureus MB221 1.0 1.0 

S. aureus MB254 2.0 1.0 

S. aureus MB351 16.0 8.0 

S. aureus MB390 64.0 24.0 

S. aureus MB439 24.0 16.0 

S. aureus MB501 16.0 12.0 

S. aureus MB512 24.0 16.0 

S. aureus MB535 6.0 6.0 

S. aureus MB543 32.0 16.0 

S. aureus MB781 64.0 32.0 

S. aureus MB786 4.0 2.0 

S. aureus MB798 32.0 16.0 

MRSA MB508 1.0 not killed 

MRSA MB628 2.0 1.0 

CNS MB307 8.0 8.0 

CNS MB309 48.0 24.0 

CNS MB316 12.0 12.0 

 

2.3 SL153 

Microorganism MIC values MBC values 

S. aureus (ATCC 29213) 8.0 8.0 

S. aureus MB221 8.0 4.0 

S. aureus MB254 12.0 8.0 

S. aureus MB351 24.0 24.0 

S. aureus MB390 256.0 256.0 

S. aureus MB439 64.0 64.0 

S. aureus MB501 96.0 96.0 

S. aureus MB512 64.0 64.0 

S. aureus MB535 12.0 12.0 

S. aureus MB543 64.0 64.0 

S. aureus MB781 64.0 32.0 

S. aureus MB786 12.0 12.0 

S. aureus MB798 48.0 48.0 

MRSA MB508 2.0 1.0 

MRSA MB628 4.0 4.0 

CNS MB307 16.0 16.0 

CNS MB309 64.0 64.0 

CNS MB316 48.0 48.0 
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2.3 SL208 

Microorganism MIC values  MBC values 

S. aureus (ATCC 29213) res not killed 

S. aureus MB221 res not killed 

S. aureus MB254 res not killed 

S. aureus MB351 2.0 1.0 

S. aureus MB390 256.0 128.0 

S. aureus MB439 2.0 1.0 

S. aureus MB501 2.0 1.0 

S. aureus MB512 2.0 2.0 

S. aureus MB535 res not killed 

S. aureus MB543 6.0 6.0 

S. aureus MB781 1.0 1.0 

S. aureus MB786 res not killed 

S. aureus MB798 res not killed 

MRSA MB508 res not killed 

MRSA MB628 res not killed 

CNS MB307 res not killed 

CNS MB309 2.0 not killed 

CNS MB316 2.0 not killed 

 

 

 

Table 2.4 MIC expressed as arbitrary units (AU/mL) of cell-free supernatants and pure 

nisin solution (150 µg/mL) against three sensitive Streptococcus spp. strains. 

 

Strain 
LL11 SL153 SL208 Nisin 

S. agalactiae MB386 256.0 384.0 64.0 4096.0 

S. uberis MB707 16.0 32.0 4.0 256.0 

S. dysgalactiae MB280 1.5 1.0 32.0 32.0 
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3. IDENTIFICATION OF ANTIBACTERIAL MOLECULES 

 

Identification of antibacterial molecules produced by L. lactis subsp. lactis strains LL11, 

SL153 and SL208 was performed in partially purified bacteriocin extracts obtained by the 

adsorption-desorption method (sample B). First, the activity of these extracts was verified 

by the spot-on-lawn test. It gave positive results indicating that the antimicrobial 

compound was successfully extracted and purified applying this method. Subsequently, 

the purified bacteriocin extracts were fractionated by ultrafiltration through 1 kDa 

molecular weight cut-off (MWCO) ultrafiltration membrane. The partially purified extract 

1 kDa ultrafiltration permeates of Lactococcus lactis subsp. lactis strains LL11, SL153 and 

SL208 did not show any antibacterial activity against the indicator strain (S. agalactiae 

MB386) as elucidated by spot-on-lawn test (Figure 3.1 A,B,C). To the contrary, the 

retentates A and B of all three strains maintained their antimicrobial activity indicating 

that the molecules, conferring antibacterial activity to these strains, are larger than 1 kDa 

(Figure 3.1). Ultra-filtered (1 kDa) retentates were further subjected to the SDS–PAGE 

analysis. 

Separation of retentates A by SDS–PAGE highlighted two protein bands for each of the 

three samples: the smaller one of approximate molecular mass of 4 kDa and the large 

over-loaded spot with the approximately double lower mass limit (Figure 3.2). Retentates 

B did not evidentiate any band on SDS–PAGE probably due to the low concentrations of 

purified molecules, not detectable by Coomassie staining. Nevertheless both, sample A 

retentates and, to a lesser extent, sample B retentates showed the corresponding zones 

of inhibition after separation by the SDS–PAGE (under non-reducing conditions) when 

overlaid with S. agalactiae indicator strain in soft agar (Figure 3.2) confirming the 

presence of antibacterial molecules larger than 1 kDa. 

Partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentates were 

subsequently fractionated by ultra-performance liquid chromatography (UPLC) and 

analyzed with photo diode array (PDA) detector and a high resolution mass spectrometer 

(HR-MS). Analysis of LL11 and SL153 sample B 1 kDa ultrafiltration retentates highlighted 

the presence of a major peak at 11.8th min in PDA (at 210 nm) chromatogram (Figure 3.3). 

The exact masses of the molecules corresponding to those peaks of LL11 and SL153 
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extracts were found to be 3353.55 Da (Figure 3.4). It is interesting to note that other two 

forms, differing in 16 Da and 32 Da from the main form, were present (Fig. 3.4 B and 

Supplementary material Figure S2), which could be attributed to the protein with one or 

two oxidized methionines, respectively. According the exact mass, these molecules were 

attributed to the Nisin A (Piper et al., 2011) and its two forms with oxidized Met17 and 

Met21. L. lactis subsp. lactis strain SL208 Sample B 1 kDa ultrafiltration retentate 

highlighted the presence of two major peaks: at 11.8th min (peak 1) and at 6.1th min (peak 

2) (Figure 3.3). The exact mass of the molecule corresponding to the strain SL208 partially 

purified extract 1 kDa ultrafiltration retentate chromatographic peak 1 was found to be 

2900.25 Da (Supplementary material Figure S3), while the SL208-peak 2 indicated a 

molecule with the exact mass of 3867.13 (Supplementary material Figure S4). The exact 

masses of the molecules corresponding to the peak 1 and peak 2 were as those reported 

for Lacticin 481 (Piard et al., 1993) and Enterocin C2 (Maldonado-Barragán et al., 2009), 

respectively. 

 

 

3.1 A     B   C  

Figure 3.1 Spot-on-lawn test of bacteriocin extracts of Lactococcus lactis subsp. lactis 

strains: LL11 (A), SL153 (B) and SL208 (C) against S. agalactiae MB386. APERM, sample A 

(CFS) 1 kDa ultrafiltration permeate; ARET, sample A 1 kDa ultrafiltration retentate; BPERM, 

sample B (pre-purified bacteriocin extract) 1 kDa ultrafiltration permeate; BRET, sample B 1 

kDa ultrafiltration retentate. 
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BRET BRET BPERM BPERM 
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A)   

 

 B)  

 

 C)  

Figure 3.2 SDS–PAGE separation of fractionated (UF 1 kDa) bacteriocin extracts (left) and 

their inhibitory activity against S. agalactiae MB386 (right). Lactococcus lactis subsp. lactis 

strains: A) LL11; B) SL153; C) SL208. Lanes: 1, protein molecular weight ladder; 2, 

retentate A; 3, retentate B; 4, permeate A; 5, permeate B. 
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Figure 3.3 PDA (210 nm) chromatograms of L. lactis subsp. lactis strain LL11, SL153 and 

SL208 partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentates 

fractionated by UPLC. 
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Figure 3.4 HR-MS spectrum (A) and deconvoluted MS spectrum (B) of L. lactis subsp. lactis 

LL11 partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentate peak 

eluting at 11.8 min. 
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In two recent studies, the efficacy of nisin in the treatment of clinical and subclinical 

mastitis was compared with that obtained with antibiotic administration. Clinical mastitis 

caused by S. aureus or S. agalactiae (Cao et al., 2007) and subclinical mastitis by S. aureus, 

coagulase-negative staphylococci, S. agalactiae, S. dysgalactiae or S. uberis were 

considered (Wu et al, 2007). Both studies concluded that administration of nisin was 

effective in the treatment of mastitis caused by several mastitis pathogens in lactating 

dairy cows. Nisin was also tested for its efficacy in a post-dipping formulation: Ambicin® N 

showed a reduction of S. aureus (62%), S. agalactiae (99%) and S. uberis (67%) in 

experimentally challenged teat surfaces (Sears et al., 1992). In our study, a considerable 

variability of bacteriocin sensitivity was observed both among the species and in the 

different strains belonging to the same species. According to results obtained by Cao et 

al. (2007) none of the strains tested were resistant to nisin-containing CFS. Nevertheless, 

of 13 S. aureus strains, 60% were resistant to β-lactams, 15% showed resistance to fourth 

generation cephalosporin and 15% were MRSA and were also resistant to amoxicillin 

enhanced by clavulanic acid. Our results are also in agreement with Wu et al. (2007), who 

observed the same high variability in the MIC of S. aureus after nisin treatment. 

Furthermore, we confirmed the sensitivity of MRSA strains to nisin (Piper et al., 2009) in 

bovine isolates. Despite variability of sensitivity intra species, the high MIC values reached 

against S. agalactiae, E. faecalis and S. uberis confirmed the marked sensitivity of 

streptococci to nisin (Klostermann et al., 2009). Considering the antibacterial activity of 

the two nisin producer strains LL11 and SL153, a general higher activity could be observed 

for the SL153 CFS, indicating higher amount of nisin produced. The comparison of 

sensitivity observed for both streptococcal and staphylococcal strains suggested a dose-

dependent sensitivity for the pathogens. Nevertheless, Streptococcus dysgalactiae MB280 

and MB324 strains had surprisingly the capability to resist to nisin activity. To the 

contrary, due to the higher sensitivity to SL208 CFS, we hypothesized  the presence of 

Enterocin C2, which is a class II bacteriocin with a different mode of action. Thus, it could 

be explained why a completely different pattern of susceptibility was shown for all the 

pathogens when exposed to SL208 CFS. Sparo et al. (2006) observed a sensitivity of 

mastitis isolates to enterocin MR99 and concluded that this bacteriocin could offer a 

therapeutic alternative to antibiotics in mastitis treatment. 
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3.1. L. lactis subsp. lactis SL208 genome sequencing, identification and analysis of 

bacteriocin-related genes 

As demonstrated above, L. lactis subsp. lactis SL208 antibacterial extract analysis showed 

the presence of two potentially antibacterial proteins with exact masses corresponding to 

those of already known bacteriocins: Lacticin 481 and Enterocin C2. In order to verify the 

presence or the absence of Lacticin 481 and Enterocin C2-encoding genes in L. lactis 

subsp. lactis SL208, a complete genome sequencing was performed: 1,533,479 paired 

sequences were generated with a mean length of 184 bases per read. Genome was 

assembled resulting in 113 large contigs (>1000 nt), a statistic value associated with 

contig lengths (N50) of 133,223 and an average coverage of 64.53×, for a total of 

2,657,411 bp, with a G+C content of 64.17%. After genome annotation, 2,657 protein-

coding genes were obtained. 

The presence of bacteriocin-encoding genes was further investigated (Table 3.1.1). DNA 

sequence analysis revealed the presence of Lacticin 481 (Lactococcin-DR)-encoding gene 

(PROKKA_01892; Table 3.1.1). The calculated exact mass of the protein encoded by this 

gene, corresponded to the protein peak (Peak 1) exact mass identified by UPLC/HR-MS 

analysis (2900 Da) and was attributable to the previously observed average mass of 

Lacticin 481 (Piard et al., 1993; Uguen et al., 2005). 

  

http://en.wikipedia.org/wiki/Contig
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Table 3.1.1 Bacteriocin-encoding genes (and corresponding proteins with calculated 

monoisotopic masses) found after genome sequencing of L. lactis subsp. lactis SL208. 

Signal peptides (SP) are indicated in red and putative SP in grey. 

No. Contig Proteins and their amino acid sequences Calculated 
monoisoto-
pic mass 

1 C4 >PROKKA_01529 Lactococcin-like family Pfam:PF04369.7 protein 

= hypothetical protein [Lactococcus lactis], WP_021214955, 
/note="Lactococcin-like family; pfam04369" 

MKNQLNFEVV SDEELLTTSG GQNSQQGEGG GYGSSNDTWG G 

4277 Da 

2 C4 >PROKKA_01535 Lactococcin-like family Pfam:PF04369.7 protein 

= hypothetical protein [Lactococcus lactis], WP_021214958, 
/note="Lactococcin-like family; pfam04369" 

MKNQLNFEVV SDEELMTING GQNMSMTDGG FEWVYAGGKP WFRIV 

5124 Da  

3 C4 >PROKKA_01540 Lactococcin-like family Pfam:PF04369.7 protein 

= hypothetical protein [Lactococcus lactis], WP_023163574, 
/note="Lactococcin-like family; pfam04369" 

MENQLNFEVI IDEELEKISG GYLPIPDMPG WRGQSTPWWW SLKQSNFSDA 
YSSFYNATH 

3937 Da 
(without 
predicted SP) 

4 C4 >PROKKA_01547 Lactococcin-like family Pfam:PF04369.7 protein 

= hypothetical protein [Lactococcus lactis], WP_003132257, 
/note="Lactococcin-like family; pfam04369" 

MENRLNFEAI SDDELAKIVG GGYPNNQSMN DVLHWLNGHN DGNPKQLPKW 
MGGLG 

3788 Da 
(without 
predicted 
SP) 

5 C8 >PROKKA_02390 bacteriocin, lactococcin 972 family 

= bacteriocin [Lactococcus lactis], WP_025016835, /note="Bacteriocin 
(Lactococcin_972)" 

MQTKKLLVST LILATLGGTL LQVSPVFAIN RSTYSQGSTN DKKYGMGAYA 
AYWNSYGNHW AEVTYGDKYG GRVVSVHANQ QAYAWLNTRW 
AEPATFYHSN GWVGTRSW 

 

Similar to: bacteriocin lactococcin 972 family Lactococcin 972, lcn972, 
O86283: 
MKTKSLVLAL SAVTLFSAGG IVAQAEGTWQ HGYGVSSAYS NYHHGSKTHS 
ATVVNNNTGR QGKDTQRAGV WAKATVGRNL TEKASFYYNF W 

9474 Da 
(without 
predicted 
SP) 

 

 

 

7377 Da 
(without  SP) 

6 C43 >PROKKA_01892 Lactococcin-DR (= Lacticin 481, lctA, P36499) 

MKEQNSFNLL QEVTESELDL ILGAKGGSGV IHAbuIAHEANM 
NAWQFVFDhbAA S 

2900 Da 
(without SP; 
post-
translationally 
modified) 
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Five other bacteriocin-encoding genes were found in the genome of the L. lactis subsp. 

lactis strain SL208. Surprisingly, none of these genes showed annotation similarity to 

Enterocin C2 encoding gene (entC2). Enterocin C2 (Acc. No. ACJ54160: region_name= 

"LcnG-beta", note= "Lactococcin G-beta; pfam11632"; part of Enterococcus faecalis strain 

C9901 plasmid pENTC, EU862242) is a non-modified plasmid-encoded protein synthetized 

as pre-bacteriocin with a consensus double-glycine leader sequence (Table 3.1.2). Pre-

protein (consisting of a signal peptide of 24 amino acids and a mature protein of 35 amino 

acids) monoisotopic mass was calculated to be 6447 Da, while mature bacteriocin 

Enterocin C2 (the length of 35 amino acids) calculated monoisotopic mass was 3867 Da. 

Experimentally measured exact mass of Enterocin C2 was found to be 3867 Da 

(Maldonado-Barrágan et al., 2009) which corresponded to the exact mass measured for a 

L. lactis subsp. lactis SL208 sample B UF 1 kDa retentate peak 2 protein. 

 

Table 3.1.2 Amino acid sequence of Lactococcin G- β subunit, Enterocin C2 and L. lactis 

subsp. lactis SL208 PROKKA_01540 pre-peptides deduced from their coding DNA 

sequences (signal peptides are indicated in red and putative predicted signal peptide in 

grey). Molecular weights of mature proteins (MW mp) are indicated. 

 

Protein Amino acid sequence MW mp Accession 

number 

Lactococcin G 

β subunit 

MKNNNNFFKGMEIIEDQELVSITGGKKWGWLAWVDPAYEFIKGFGKGAIKEGNKDKWKNI 4110 Da ACR43770 

Enterocin C2 MKNIKNASNIKVIEDNELKAITGGGPGKWLPWLQPAYDFVAGLAKGIGKEGNKNKWKNV 3867 Da WP_ 

032492334 

Lactococcin-like 

protein 

(PROKKA_01540) 

MENQLNFEVI IDEELEKISGGYLPIPDMPGWRGQSTPWWWSLKQSNFSDAYSSFYNATH 3937 Da WP_ 

023163574 

 

 

In addition, none of the other five bacteriocin-related genes, identified after genome 

sequencing of L. lactis subsp. lactis SL208, had a similar calculated mass corresponding to 

that measured for the protein of peak 2 by UPLC/HR-MS (3867 Da). Due to entC2 

plasmidic localization, the possibility that incomplete sequencing of plasmid and thus the 
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lack of matching with the reference gene should be considered. However, the 

examination of the bacteriocin-encoding genes highlighted the presence of a gene 

(PROKKA_01540; Table 3.1.1) belonging to lactococcin-like family, which putatively 

encodes a protein with a calculated mass of 3937 Da. Detailed analysis of this sequence 

showed that PROKKA_01540 gene potentially encodes a peptide of 59 amino acids, 

containing the double-glycine leader sequence that probably, after processing, could give 

a mature peptide of 33 amino acids. Summing up, after the potential cleavage of the 

leader peptide (calculated with provisional models) the mature protein would be of 3937 

Da, thus 70 Da larger than that corresponding to SL208 peak 2. Post-translational 

modifications or amino acid replacements could explain the difference of molecular 

weight found through UPLC/HR-MS analysis and only then the 3867 Da protein identified 

in the antibacterial extract of L. lactis subsp. lactis SL208 peak 2 could be potentially 

attributed to the PROKKA_01540 mature transcript but not to any other SL208-encoded 

protein (taking into account that the genome sequencing coverage was sufficient to reject 

the hypothesis of an incomplete coverage). Furthermore, the bacteriocin Enterocin C2 is 

highly homologous to the other lactococcin-like family proteins (Balla et al., 1999) and, as 

demonstrated in this study, also to the protein encoded by PROKKA_01540 (Figure 3.1.1). 

 

 

Figure 3.1.1 Amino acids sequence alignment of Lactococcin G, Enterocin C2 and SL208 

Lactococcin-like protein (ClustalW 2.1 multiple sequence alignment). *, identical amino 

acids. 

 

Lactococcin G ACR43770         MKNNNNFFKGMEIIEDQELVSITGGKKWGWLAWVDPAYEFIKGFGKGAIKEGNKDKWKNI 60 

Enterocin C2 WP_032492334      MKNIKNASN-IKVIEDNELKAITGGGPGKWLPWLQPAYDFVAGLAKGIGKEGNKNKWKNV 59 

                               *** :*  : :::***:** :****    **.*::***:*: *:.**  *****:****: 

 

Lactococcin G ACR43770          MKNNNNFFKGMEIIEDQELVSITGG--KKWGWLAWVDPAYEFIKGFGKGAIKEGNKDKWKNI- 60 

SL208 Lactococcin-like protein  MENQLNF----EVIIDEELEKISGGYLPIPDMPGWRGQSTPWWWSLKQSNFSDAYSSFYNATH 59  

WP_023163574                    *:*: **    *:* *:** .*:**     .  .* . :  :  .: :. :.:. .. ::     

 

Enterocin C2 WP_032492334      MKNIKNASNIKVIEDNELKAITGG-GPGKWLP-WLQPAYDFVAGLAKGIGKEGNKNKWKNV- 59 

SL208 Lactococcin-like protein ---MENQLNFEVIIDEELEKISGGYLPIPDMPGWRGQSTPWWWSLKQSNFSDAYSSFYNATH 59 

WP_023163574                      ::*  *::** *:**: *:**  *   :* *   :  :  .* :.  .:. .. :: . 

 

 

 

They are a class II bacteriocins, and many of these bacteriocins had shown to share part 

of their sequences, indicating the fundamental role of these regions for bacteriocin 

activity (Nissen-Meyer et al., 1992). Finally, peak 2 purification, confirmation of its 
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antibacterial activity and a detailed proteomic analyses are further necessary in order to 

attribute it to any of the L. lactis bacteriocins. 

Summing up, the investigation of bacteriocin-related genes of L. lactis subsp. lactis SL208 

genome demonstrated the presence of genes encoding Lacticin 481 and one more 

protein with likely antibacterial properties not yet characterized among the species L. 

lactis antibacterial molecules. The emergence of antibiotic resistant strains make the 

discovery of new antibacterial molecules very attractive for researchers (Dicks et al., 

2011). Furthermore, due to the safety and use in food grade products, the species L. lactis 

is considered advantageous to harbor bacteriocin-encoding genes (Rodriguez et al., 

2003). On the other hand, despite the activity of SL208 CFS against streptococcal strains, 

the lower activity against S. aureus and CNS made the SL208 bacteriocins less attractive 

for further application in bovine mastitis. 

 

4. INTERACTION OF BACTERIOCINS OR LIVE LACTOCOCCAL CULTURES 

WITH MAMMARY EPITHELIAL CELLS 
 

Before to stimulate BME-UV1 cells, the influence of fetal calf serum (FCS) on N-acetil-β-D-

glucosaminidase (NAGase) and Lysozyme (LZ) activity was analyzed: the monolayers were 

maintained for 24h in the medium with or without FCS and then intracellular and 

extracellular activity of both enzymes were measured. The results showed that FCS acted 

as stimulus for enzymes production, in particular NAGase release was higher with 

increasing FCS concentrations (data not shown). On the other hand, active cellular 

metabolism was shown in the cells cultured without FCS, as confirmed by the comparison 

with intracellular levels obtained from cells cultured with FCS: similar intracellular 

amounts could be observed in all cultures with or without FCS. When lysozyme was 

considered, enzyme activity was stable in the course of observation period, 

demonstrating a basal LZ production by mammary epithelial cells in the presence or 

absence of FCS.  

The production of NAGase and LZ by BME-UV1 demonstrated the capability of these cells 

to respond to an inflammatory stimulus, as it happens in the in vivo contest. In order to 

prevent any stimulation by medium components, we decided to add CFSs or live 

lattococci to BME-UV1 in the culture medium without FCS. SL208 strain was used only as 
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live culture, due to the lack of CFS activity against pathogens when the LAB was cultured 

in the cell medium. Before the addiction of LL11 and SL153 CFSs to the cells, their 

antimicrobial activity was assayed with the MIC test and the production of bacteriocins 

was confirmed by the growth inhibition of the S. agalactiaeMB386 reference strain: LL11 

and SL153 bacteriocins showed 128 and 256 AU/mL respectively. 

4.1. N-acetil-β-D-glucosaminidase and Lysozyme assays 

To observe the differences in enzymes production and release, NAGase and LZ activity 

were investigated in the intracellular and extracellular compartment. Figure 4.1 shows 

the comparison of extracellular release and intracellular storage of NAGase and LZ in 

untreated and treated cells. A statistically significant difference was observed for both 

enzymes between the intracellular and extracellular compartment, with higher amounts 

of enzymes stored in the cells. As expected, extracellular amounts of enzymes were never 

higher than intracellular ones, since the enzymes are produced and contained into the 

cells and secreted if an inflammatory stimulus occurs (Kitchen et al., 1981; Ebling et al., 

2001, Zecconi and Smith, 2003). Furthermore, the higher activity of lysosomal enzymes in 

the intracellular compartment of treated cells suggested that cell integrity was 

uninfluenced by treatments.  
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B)  

Figure 4.1 Intracellular enzymes production and extracellular release in untreated (k-) 

CFS-treated (btc treat) and live lactococcal cultures-treated (lc treat) cells. Mean values 

and standard deviations of: A) NAGase (expressed in pmol 4MU/min/Μl) and B) LZ 

(expressed in Units/mL). 

*P<0.05; **P<0.01; ***P<0.001 

 

For the statistical analysis, the first two time points (4h and 8h) were gathered, as well as 

the last two (15h and 24h) in early and late observations respectively. Figure 4.2 shows 

the intracellular NAGase activity: the lack of statistical significance indicated that the 

enzyme activity remained unchanged over the time and unaffected by the treatments. 

Although lower amount for LL11 treated cells and a noticeable standard deviations 

especially in the late time of the study, mean intracellular NAGase remained always 

higher than the extracellular one (Figures 4.2 and 4.3). These results suggested that an 

active cellular metabolism was maintained by the cells during the trial. 
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Figure 4.2 Intracellular NAGase activity in BME-UV1 cells treated with nisin containing-

CFSs (LL11btc and SL153btc) or Lactococcus live cultures (LL11, SL153 and SL208), in the 

A) early observations (t1) and B) late observations (t2) of experiment. 

 

To the contrary, excretion of NAGase was influenced by time (P<0,001) and treatments 

(P<0,001). Due to the statistically significant difference between the two observations, 

the post-hoc test was performed separately for each observation time: in the early 

observation no statistically significant difference was observed when treated cells were 

compared with the control, but a difference was demonstrated among the treatments 

with live culture lactococci (LL11, SL153 and SL208) and the treatments with nisin-

containing CFS (LL11btc and SL153btc). In particular, the secretion of NAGase was higher 

when the cells were treated with the live LL11 strain, rather than with its CFS (P=0,048). 

SL208 live strain-treated cells showed higher amount of extracellular NAGase when 

compared with LL11 and SL153 CFS treatments (P=0,021 and 0,046 respectively), 

indicating an early stimulus for NAGase secretion by live cells but not by nisin-containing 

CFSs. This result was more evident after 15-24h of incubation, when the cells treated with 

LL11 and SL153 showed a 5-fold increment in the release of NAGase (P=0,013 and 

P=0,007 respectively) in comparison with both untreated cells and bacteriocin-treated 

cells (Figure 4.3). 
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Figure 4.3 Extracellular NAGase concentration in BME-UV1 cells treated with nisin 

containing-CFSs (LL11btc and SL153btc) or Lactococcus live cultures (LL11, SL153 and 

SL208), in the A) early observations (t1) and B) late observations of experiment (t2). 

a, b, c Different letters indicate significant difference in enzyme production between 

treatments. 

 

These data suggested a slight inflammatory response of epithelial cells induced by live 

lactococcal cultures, in particular LL11 and SL153 strains. 

NAGase is mainly released from neutrophils during phagocytosis and cell lysis, it is 

considered a marker of tissue damage (Forman et al., 1996) but its increment is also 

associated to an increased lysosomal activity (Bosomworth et al., 1999). Some studies 

demonstrated that NAGase activity in milk increased both in clinical and subclinical 

mastitis (Akerstedt et al.,2012), thus this enzyme can be used as an indicator of mammary 

inflammation and immunity response activation. 

Similarly to NAGase, LZ intracellular accumulation was not influenced by the treatments 

or time: as showed in figure 4.4, similar amounts of intracellular enzyme were detected in 

the treatments and over the time. These results confirmed that cellular metabolism and 

lysosomal activity were maintained by the cells during the trial. 
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Figure 4.4 Intracellular LZ in BME-UV1 cells treated with nisin containing-CFSs (LL11btc 

and SL153btc) or Lactococcus live cultures (LL11, SL153 and SL208), in the A) early 

observations (t1) and B) late observations (t2) of experiment (t2). 

 

A completely different pattern was observed for extracellular LZ, which activity was 

statistically significant influenced by time (P<0,001) and treatments (P<0,001). Due to the 

statistically significant difference between the two observations, the post-hoc test was 

performed separately for each observation time. In the early times (4h and 8h) of the 

experiment, LZ showed similar amounts among the cells treated with live lactococcal 

strains; unexpectedly, LZ activity incremented significantly when cells were treated with 

the nisin-containing CFSs. This increase respect to the control was statistically significant 

(P=0,021 and P=0,005 respectively). To the contrary, after 15h, the extracellular activity of 

this enzyme was higher in the cells treated with SL208 and LL11 live cultures. In particular, 

LL11 treated cells evidenced a statistically significant increment (P<0,001) in LZ activity 

that was almost duplicated (Figure 4.5). 
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Figure 4.5 Extracellular LZ in BME-UV1 cells treated with nisin containing-CFSs (LL11btc 

and SL153btc) or Lactococcus live cultures (LL11, SL153 and SL208), in the A) early 

observations (t1) and B) late observations (t2) of experiment. 

a, b, c Different letters indicate significant difference in enzyme production between 

treatments. 

 

These results confirmed the stimulation of lysosomal activity by lctococcal strains and, to 

a lesser extent by nisin-containing CFSs, sustained by unaltered amount of both enzymes 

in the intracellular compartment. Although these enzymes increase their activity when an 

inflammation occurs (Sarikaya et al., 2006), it has been shown that in the absence of an 

inflammatory stimulus, the somatic cell count (SCC) is not correlated with NAGase and LZ 

amounts (Piccinnini et al., 2007). Thus, when SCC levels are low, the primary source of 

innate immunity factors could be udder tissues (Bruckmaier, 2005). Therefore, the role of 

epithelial cells should be considered in a preventive approach of mastitis. The stimulation 

of enzymes secretion due to the administration of lactococci or their antibacterial 

products, with consequently potential enhancement of pathogens cleaning, can be of 

interest for the prevention of intramammary infections. 
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4.2. Cytokine expression 

The epithelial cells have both a sentinel and an effector role and they are well suited to 

exert these functions due to their abundance and exposed position to invading 

microorganisms (Günther et al., 2010). BME-UV1 cells express immunological and 

inflammatory molecules (Mazzilli and Zecconi, 2010), furthermore it has been 

demonstrated that they produce proinflammatory cytokines upon stimulation with 

antimicrobial peptides (Tomasinsig et al., 2010). TNFα is long known to elicit both local 

and systemic immune response (Pfeffer, 2003), while IL-8 is a key factor for recruiting 

effector cells of immune defense (polymorphonuclear granulocytes, PMN) into the udder 

(Toshihide, 2003). We examined the effect of bacteriocinogenic lactococcal-strains (LL11, 

SL153 and SL208) and the two nisin-containing CFS on transcriptional levels of those 

cytokines in BME-UV1 cells. 

Figure 4.6 shows the expression of TNFα as a result of the five different treatments. BME-

UV1 response to nisin-containing CFS (LL11btc and SL153btc) was different: cells treated 

with LL11 CFS had a negative expression in comparison with the control at all the time-

points, while cells treated with SL153 CFS showed lower levels of TNFα until 15h and a 

positive expression at 24h of exposure. The increment of TNFα transcription levels in 

epithelial cells after antimicrobial peptide stimulus was previously observed in a study by 

Tomasinsig et al. (2010), which concluded that enhanced TNFα expression triggered the 

activation of other immune system components. Indeed, the moderate increment 

induced by SL153 CFS is more similar to modulation of immune response, than to 

activation of acute phase response. The differences of TNFα stimulation observed 

between SL153 and LL11 CFSs could be attributed to the different amount of nisin 

contained in the CFSs, as elucidated during pathogens sensitivity tests. For the 3 live 

culture treatments, a decreasing tendency was overall demonstrated, with lower levels of 

expression compared to the control. 
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Figure 4.6 TNFα expression (normalized fold expression relative to the control) in BME-

UV1 cells treated with nisin containing-CFSs (LL11btc and SL153btc) or Lactococcus live 

cultures (LL11, SL153 and SL208). The data are the means of two independent 

experiments displayed as difference to the control. 

 

Since the statistical analysis did not show any significant effect of time on TNFα 

expression, the data were analysed grouping all time points (Figure 4.7), to observe the 

effect of the single treatment on the expression levels. That analysis highlighted that 

SL153 live culture treated cells reduced significantly the expression of TNFα in comparison 

with untreated cells, independently of treatment time. 

These results are in agreement with Luerce et al. (2014), who showed the ability of live 

Lactococcus lactis culture to reduce TNFα response in stimulated intestinal epithelial cells 

and also to inhibit IL-8 production when the culture supernatant was applied. They 

observed also that the immunomodulatory response was strain-dependent. Moreover, 

Jensen et al. (2014) observed the strain-specific induction of pro-inflammatory cytokines 

by Lactobacillus species. They also suggested that live culture LABs have the ability to 

secrete  pro-inflammatory and anti-inflammatory mediators. 
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Figure 4.7 Expression levels of the TNFα gene in BME-UV1 untreated (k-) and treated 

cells. Data are showed as means ± standard deviations (SD) of all time point-measures. 

 

IL-8 expression (Figure 4.8) showed a negative, but not significant trend in the cells 

treated with SL153 or LL11 CFSs. 

Also live culture treatments demonstrated negative levels of IL-8 expression, indicating a 

lower expression in comparison with the control. Only LL11 treated cells showed a 

positive relative expression at 15h with 7 fold-changes over the untreated cells, followed 

by a drastic drop in the last time point measurement. 
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Figure 4.8 IL-8 expression (normalized fold expression relative to the control) in BME-UV1 

cells treated with nisin containing-CFSs (LL11btc and SL153btc) or Lactococcus live 

cultures (LL11, SL153 and SL208). The data are the means of two independent 

experiments displayed as difference to the control. 

 

When the four time points were grouped, no statistically significant differences were 

observed between treatments and control, with obvious high standard deviation 

observed in the expression of LL11 live culture-treated cells (Figure 4.9). 
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Figure 4.9 Expression levels of the IL-8 gene in BME-UV1 untreated (k-) and treated cells. 

Data are showed as means ± standard deviations (SD) of all time point-measures. 

 

TNFα is a proinflammatory cytokine stimulating the acute phase reaction and the local 

immune response. Although these local and systemic effects are beneficial to stimulate 

the host innate immune defense against infections (Bannerman, 2014), TNFα causes the 

classical signs of inflammation and is associated with severe symptoms which characterize  

E. coli mastitis (Alluwaimi, 2004). Thus, on one hand TNFα increment could be desirable 

to ensure the activation of immune response, but on the other hand the control of TNFα 

release could be an interesting approach to reduce the symptoms linked to clinical 

intramammary infections. Furthermore, it was demonstrated the capability of TNFα to 

suppress lactogenic function of the glands after infusion (Alluwaimi, 2004). Indeed, it may 

be essential for the mammary gland to keep the expression of TNFα under rigid control, 

because it has an autocrine effect inhibiting the synthesis of caseins by MEC (Shea-Eaton 

et al., 2001). There is also the evidence that both bacterial and host immune factors 

contribute to tissue damage during mastitis with consequent epithelial cells apoptosis 

and decreased milk production (Zhao and Lacasse, 2008). The role of cytokines in tissue 

damage is under investigation and while the therapeutic potential of certain cytokines 

has been proposed (Alluwaimi, 2004) it has been also demonstrated that TNFα and IL-1 

induce apoptosis in different  cell types (Zhao and Lacasse, 2008). TNFα infusion was also 

evaluated to enhance intracellular killing of S. aureus by mammary gland-derived 
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neutrophils and macrophages, but this approach failed its purpose (Sanchez et al., 1994). 

The cytokine-mediated recruitment of neutrophils could be of interest to enhance 

phagocytosis, but PMN also release factors which are responsible for tissue damages. 

Therefore, to protect mammary tissues from oxidative stress due to PMN recruitment 

during mastitis, intramammary treatments often contain anti-inflammatory components 

(Klostermann et al., 2008). 

Due to their high antibacterial activity and their ability to stimulate lysosomal 

metabolism, SL153 and LL11 Lactococcus lactis strains could be of interest for the 

development of intrammary probiotic treatments. In addition, SL153 strain could be 

advantageous for its potential anti-inflammatory properties. Furthermore nisin-

containing CFSs should be considered as alternative treatments to achieve bacterial 

cleaning and stimulate LZ secretion without any cell damage or pro-inflammatory action. 
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CONCLUSIONS 
 

Since bacteriocins produced by LAB display antimicrobial activity against a broad range of 

Gram-positive bacteria and, to a lesser extent, against Gram-negative bacteria, they are 

attracting considerable interest for their potential use as natural and non-toxic 

antimicrobial molecules (Cotter et al., 2005; Deegan et al., 2006). Bacteriocins may be 

useful in human and veterinary applications, therefore they could have an interesting 

development in those preparations requiring safety, residual absence and antimicrobial 

efficacy combination. From a clinical perspective, the emergence of drug-resistant 

pathogens, both in medical treatments and animal production makes the identification of 

novel antimicrobial tools even more important (Cintas et al., 2011). A considerable 

number of bacteriocins have already been described in literature but few studies have 

been performed concerning application of bacteriocins produced by Lactococcus spp. in 

veterinary medicine. Safety and efficacy of molecules produced by Lactococcus spp. 

encourage the efforts in the development of new formulations for mastitis prevention 

and therapy. Moreover, the absence of residues in the milk of treated cows meets the 

increasing request for reduced use of antibiotics and safety and natural food. 

Accordingly to the proposed tasks of this study the following conclusions can be drawn: 

1. The best culture conditions to optimize LAB bacteriocin production were defined 

and the acid-extraction method was shown to efficiently extract their antibacterial 

proteins. 

2. Antibacterial spot-on-lawn is an optimal test to screen large numbers of strains, 

and to select bacteriocinogenic strains, while MIC assay can be successfully 

applied to determine their antibacterial potency. 

3. The efficacy of Lactococcus lactis subsp. lactis LL11, SL153 and SL208 strains was 

demonstrated against mastitis pathogens. 

4. Lactococcus lactis subsp. lactis LL11 and SL153 were found to produce an 

antibacterial protein attributable to Nisin A according its exact mass. The strain 

SL208 potentially produced Lacticin 481 and a novel molecule with likely 

antibacterial activity. Detailed proteomic analyses are further necessary to 

definitely identify this molecules. 
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5. Both live culture strains and their CFSs, displayed the capability to interact in vitro 

with bovine epithelial cells, demonstrating their ability to contribute to immune 

response modulation. 

To our knowledge, this is the first study demonstrating the interaction between lactococci 

or bacteriocins and epithelial cells. 

Further investigations focusing possible resistance development are necessary. 

Antibacterial peptides from Lactococcus spp. are likely to find a niche in the antibiotics 

market. Likewise the effectiveness of live culture treatments against mastitis pathogens  

and their interactions with the innate response open the way for the development of 

probiotic products for mastitis cure and prevention.  
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Attachment B –Supplementary material 

 

Figure S1. HR-MS spectrum (A) and deconvoluted MS spectrum (B) of L. lactis subsp. lactis 

SL153 partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentate peak 

eluting at 11.8 min. 
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Figure S2. HR-MS spectrum and deconvoluted MS spectrum of L. lactis subsp. lactis SL153 

partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentate peak eluting 

at 11.5 min. 
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Figure S3. HR-MS spectrum (A) and deconvoluted MS spectrum (B) of L. lactis subsp. lactis 

SL208 partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentate peak 

eluting at 11.8 min. 
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Figure S4. HR-MS spectrum (A) and deconvoluted MS spectrum (B) of L. lactis subsp. lactis 

SL208 partially purified bacteriocin extract (sample B) 1 kDa ultrafiltration retentate peak 

eluting at 6.1 min. 

 

 


