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Introduction

Fourier-Mukai functors cover almost the entire examples of geometric functors that are known,
and this is the main reason why they are so investigated. Unlike the smooth case, in which much
has been already said, the singular case still raises many questions. Along this thesis we face
two different situations that highlight the difficulties arising when the smoothness hypothesis is
taken off.

The first chapter is dedicated to basic definitions of those objects that we will use all along
the thesis.

In the second chapter we deal with the first situation. Orlov proved that every exact fully
faithful functor F : X −→ Y between the bounded derived categories of smooth projective
schemes is of Fourier-Mukai and the kernel is unique up to isomorphisms ([26]). But what can
be said when X is singular? The most relevant result in this sense found in literature is due to
Lunts and Orlov:

Theorem 0.0.1. Let X be a projective variety and Y be a noetherian separated scheme. Denote
by T0(OX) the maximal torsion subsheaf of dimension zero of OX . If T0(OX) = 0 then every
exact fully faithful functor F : Perf(X) −→ Db(Y ) is such that there exists a unique object
E ∈ Db(X × Y ) with F ∼= ΦE .

This highly non-trivial result shows immediately that removing the smoothness hypothesis
brings complications, because the assumption about the triviality of T0(OX) is all but natural.
We decided then to take in consideration an example of a singular projective scheme X in which
the maximal torsion subsheaf of dimension zero of OX is not trivial: in chapter 2 we show that
the results mentioned in Theorem 0.0.1 still hold at least in a case, which is the "double point
scheme", that is the spectrum of the ring of dual numbers A := k[ε]/(ε2). The main result of
this thesis, which is a joint work with Riccardo Moschetti ([1]) is the following:

Theorem 0.0.2. Let:
F : Perf(A) // Dqcoh(Y )
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be a fully faithful functor, then there is an object E ∈ Dqcoh(SpecA× Y ) such that:

ΦE |Perf(A)
∼= F.

Furthermore, if Y is noetherian and F sends Perf(A) to Db(Y ), then:

E ∈ Db(SpecA× Y ).

This could suggest that the assumption T0(OX) = 0 may be avoidable.

Using the description of indecomposable objects in the derived category of the double point,
we classify all the stability conditions on the category Db(A). We prove that Stab(Db(A)) is
isomorphic to C, the universal covering of C∗.

In the third chapter we study the case of G-equivariant sheaves, where G is a finite group
acting on a smooth projective variety X.
If the action of G is free then the geometrical quotient is smooth and everything is easy and
well-known: the derived category of G-equivariant sheaves on X is equivalent to the derived
category of the geometrical quotient X/G. But what happens when the action of the group is
not free, and the quotient is singular? In this situation the category of G-equivariant coher-
ent sheaves on X is isomorphic to the category Coh[X/G] of coherent sheaves on the smooth
stack [X/G], which is different from the quotient variety in general. Kawamata proved Orlov’s
representability theorem for smooth stacks [19]:

Theorem 0.0.3. Let X and Y be normal projective varieties with only quotient singularities
and denote by X and Y the smooth stacks naturally associated to them. Let:

Db(X ) −→ Db(Y)

be an exact functor which is fully faithful and has a left adjoint. Then there exists a unique
object E ∈ Db(X × Y) with F ∼= ΦE .

This suggested us to consider if there is some relationship between Aut(Perf(X/G)), the
group of autoequivalences of the category of perfect complexes on the quotient variety, and
Aut(Db

G(X)), the group of autoequivalences of the derived category of G-equivariant sheaves
on X.

We prove the following:

Theorem 0.0.4. Let X be a smooth projective variety and take F• ∈ Db
G(X). Then there
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exists an object V• ∈ Perf(X/G) such that F• is quasi-isomorphic to Lπ∗(V•) if and only if
the stabilizer Gx acts trivially on the OX-modules Hj(F• ⊗L k(x)) for every point x ∈ X.

The result above implies that, given an autoequivalence ΦP of Db
G(X), it is possible to

obtain an autoequivalence of Perf(X/G) if the stabilizer Gx acts trivially on the OX -modules
Hj(ΦP(Lπ∗(A•))⊗k(x)) for every x ∈ X and j ∈ Z, where A• ∈ Perf(X/G). This is a starting
point that we believe can be further developed in terms of a deeper criterion which involves
only the kernel P.
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Chapter 1

Derived Categories

Along this chapter we give basics definitions for those objects that we will use throughout the
thesis.

1.1 Categories and functors

Definition 1.1.1. A category A is called additive if, for every pair of objects X and Y , the set
Hom(X,Y ) is equipped with an abelian group structure such that the following conditions hold:

• The compositions Hom(X,Y )×Hom(Y, Z) −→ Hom(X,Z) are bilinear.

• There exists an object 0 ∈ A such that Hom(0, 0) is a trivial group.

• A admits finite coproducts.

Recall that for an indexed family of object {Xj}j∈J , a coproduct is an object X togheter
with a collection of morphisms ij : Xj −→ X such that for any other object Y and collection
of morphisms fj : Xj −→ Y there exists a unique morphism f : X −→ Y with fj = f ◦ ij .

Usually, the finite coproduct of the family {Xj}j=1,...,n is called direct sum and indicated with
⊕nj=1Xj .

A functor F between two additive categories is always supposed to be additive too, that is
the induced maps Hom(X,Y ) −→ Hom(F (X), F (Y )) are group homomorphisms.

Definition 1.1.2. An additive category is called an abelian category if every morphism has
kernel and cokernel. Furthermore every monomorphism and every epimorphism is normal: in
other words, every monomorphism is a kernel of some morphism, and every epimorphism is a
cokernel of some morphism.
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The categorymod−R of modules over a commutative ring is an example of abelian category.
Another example is given by Sh(X), the category of abelian group sheaves over a topological
spaceX. The categoriesQCoh(X) andCoh(X) of quasi-coherent sheaves and coherent sheaves
over a projective variety X are abelian.

Definition 1.1.3. A functor F : A −→ B is called right-exact (left-exact) if for every short
exact sequence:

0 −→ X −→ Y −→ Z −→ 0

the following short sequence:

0 −→ F (X) −→ F (Y ) −→ F (Z) −→ 0

is exact except possibly in F (Z) (respectively in F (X)). F is said exact if it is both right-exact
and left-exact.

Notice that a functor F : A −→ B is left-exact if and only if for every short exact sequence
of the form:

0 −→ X
f−→ Y

g−→ Z

the following sequence is exact:

0 // F (X)
F (f) // F (Y )

F (g) // F (Z).

Infact, if F is exact then the conclusion is immediate. Viceversa, the following sequence is
exact:

0 −→ X
f−→ Y

g−→ Im(g) −→ 0.

The functor F is supposed to be left exact and then the following sequence is exact:

0 // F (X)
F (f) // F (Y )

F (g) // F (im((g)).

But F (im((g)) ⊂ F (Z).

In other words, in order to show left-exactness of a functor it is enough to work with short
left-exact sequences.
Similarly, a functor F : A −→ B is right-exact if and only if for every short exact sequence of
the form:

X
f−→ Y

g−→ Z −→ 0
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the following sequence is exact:

F (X)
F (f) // F (Y )

F (g) // F (Z) // 0.

Definition 1.1.4. Consider a functor F : A −→ B. A functor H : B −→ A is right-adjoint for
F if for every X ∈ A and Y ∈ B there exists a functorial isomorphism:

Hom(F (X), Y ) ∼= Hom(X,H(Y )). (∗)

Similarly a functor G : B −→ A is left-adjoint for F if there exists a functorial isomorphism:

Hom(Y, F (X)) ∼= Hom(G(Y ), X). (∗∗)

Suppose F admits a right-adjoint. Then for every X ∈ A we have:

Hom(F (X), F (X)) ∼= Hom(X,H(F (X))).

Therefore the identity morphism 1F (X) defines uniquely a morphism hX : X −→ H(F (X)).
Thus we can describe the isomorphism (∗). Take f ∈ Hom(F (X), Y ), then f goes to:

X
hX // H(F (X))

H(f) // H(Y )

A similar description holds for (∗∗).

1.2 Triangulated categories

Let A be an additive category, and consider an equivalence:

T : A −→ A.

For every object X ∈ A we call X[1] := T (X). A triangle is given by a collection of objects X,
Y and Z and morphisms:

X −→ Y −→ Z −→ X[1].
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Let f ∈ Hom(X,Y ). We write X[n] := Tn(X) and f [n] := Tn(f) for n ∈ Z.
A morphism between two triangles is given by a commutative diagram:

X //

��

Y //

��

Z //

��

X[1]

��
X ′ // Y ′ // Z ′ // X ′[1].

An isomorphism of triangles is a morphism such that the first three vertical maps above are
isomorphisms.

We now want to define the set of distinguished triangles. We need four axioms:

1. • Every triangle of the following form:

X −→ X −→ 0 −→ X[1]

is a distinguished triangle.

• Every triangle isomorphic to a distinguished triangle is a distinguished triangle.

• Every morphism f : X −→ Y defines a distinguished triangle:

X −→ Y −→ Z −→ X[1].

2. The triangle:

X
f // Y

g // Z
h // X[1]

is a distinguished triangle if and only if the following:

Y
g // Z

h // X[1]
−f [1] // Y [1]

is a distinguished triangle.
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3. Suppose there exists a commutative diagram of distinguished triangles of the form:

X //

��

Y //

��

Z // X[1]

��
X ′ // Y ′ // Z ′ // X ′[1].

Then the diagram can be completed to become a morphism of distinguished triangles.
That is, it is always possible to find a morphism (not necessarily unique) between Z and
Z ′.

4. Suppose are given the following distinguished triangles:

X
f // Y // Z ′ // X[1]

Y
g // Z // X ′ // Y [1]

X
gf // Z // Y ′ // X[1]

Then there exists a distinguished triangle:

Z ′ // Y ′ // X ′ // Z ′[1]
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such that the following diagram commutes:

X
f //

��

Y //

g

��

Z ′ //

��

X[1]

��
X

gf //

f

��

Z //

��

Y ′ //

��

X[1]

f [1]

��
Y

g //

��

Z //

��

X ′ //

��

Y [1]

��
Z ′ // Y ′ // X ′ // Z ′[1]

Definition 1.2.1. A triangulated category A is an additive category together with an equivalence
T : A −→ A and a set of distinguished triangles satisfying the previous four axioms.

Let:
X // Y // Z // X[1]

be a distinguished triangle in a triangulated category A. Then for every object W ∈ A the
following sequences are exact:

Hom(W,X) // Hom(W,Y ) // Hom(W,Z)

Hom(Z,W ) // Hom(Y,W ) // Hom(X,W ).

As a corollary, we have the following (five lemma for triangulated categories):

Lemma 1.2.2. Consider a commutative diagram of distinguished triangles:

X //

��

Y //

��

Z //

��

X[1]

��
X ′ // Y ′ // Z ′ // X ′[1].
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If two among the first three vertical maps are isomorphism, then so is the third.

1.3 Localization

Given a category A, a localization of A by a class of morphism S is, basically, another category
S−1A in which morphisms of S become isomorphisms. Usually some conditions on the class S
are required:

Definition 1.3.1. A multiplicative system in a category C is a class of morphisms S satisfying
the following restrictions:

• IdX ∈ S for any object X.

• For any pair of morphisms f and g in S, their composition g ◦ f is still in S.

• For X f−→ Y and Z g−→ Y there exist U t−→ X and U s−→ Z such that the following
diagram commutes:

U
t //

s

��

X

f

��
Z

g // Y.

• Suppose f, g ∈ Hom(X,Y ). Then there exists t : Y −→ Z such that t ◦ f = t ◦ g if and
only if there exists s : W −→ X such that f ◦ w = g ◦ w.

Given a triangulated category A and a multiplicative system S, we construct a triangulated
category S−1A and a functor Q : A −→ S−1A such that:

• If f ∈ S then Q(f) is an isomorphism.

• The functor Q is universal. If there exists another category B and a functor G : A −→
B taking elements of S to isomorphisms in B, then there exists a unique functor H :

S−1A −→ B such that Q ◦H is isomorphic to G.

We can also start from a class of objects instead of a class of morphisms. Given a triangulated
category A, a subclass N of objects of A is called a null system if:

• 0 ∈ N.

• X ∈ N if and only if X[1] ∈ N.
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• if X and Y are in N and X −→ Y −→ Z −→ X[1] is a distinguished triangle, then also
Z is in N .

Given a triangulated category A and a null system N , we can define a multiplicative system
associated to N :

S := {f : X −→ Y such that there exists a distinguished triangle X −→ Y −→ Z −→ X[1]

with Z ∈ N}.

The localized category S−1A := A/N is triangulated and it is called the Verdier quotient
of A by N . The localization functor Q is a functor of triangulated categories such that Q(X)

is isomorphic to the zero object for every X ∈ N . Furthermore Q is universal among those
functors which have the above property.

1.4 Derived categories

Given an abelian category A we consider the category Kom(A) whose objects are complexes
of the form:

X• : { . . . di−1
// Xi−1 di // Xi di+1

// Xi+1 di+2
// . . . }

where Xi are objects of A for every i ∈ Z and di are morphisms such that im(di−1) ⊂ ker(di)

for every i.
A morphism f : X• −→ Y • between two complexes is given by a commutative diagram:

. . .
di−1
X // Xi−1

diX //

f i−1

��

Xi
di+1
X //

f i

��

Xi+1
di+2
X //

f i+1

��

. . .

. . .
di−1
Y // Y i−1

diY // Y i
di+1
Y // Y i+1

di+2
Y // . . .

The category Kom(A) is abelian: the zero object is given by the trivial complex and the kernel
of a morphism f : A• −→ B• is the complex of the kernels of f i for every i ∈ Z.

Definition 1.4.1. Given an object X• ∈ Kom(A), the stupid truncation σ≤iX
• ∈ Kom(A)

of X• is the complex defined by (σ≤iX
•)j = 0 if j > i and (σ≤iX

•)j = Xj if j ≤ i.

Given a complex X•, for every k ∈ Z we define the complex X•[k] such that Xi[k] = Xk+i

13



and diX[k] = (−1)kdi+kX . The functor:

T : Kom(A) −→ Kom(A), X• 7−→ X•[1]

defines an equivalence of categories. However, Kom(A) together with T does not in general
determine a triangulated category. Then, in order to obtain a triangulated category we need to
introduce a new object:

Definition 1.4.2. The category K(A) is the category whose objects are the same of Kom(A)

and morphisms are defined up to homotopy equivalence.

Remark 1.4.3. Recall that two morphisms f, g : X• −→ Y • are homotopy equivalent if there
exist morphisms hi : Xi −→ Y i−1 such that f i − gi = hi+1 ◦ diX + di−1

Y ◦ hi.

Definition 1.4.4. Let f : X• −→ Y • be a morphism of complex in Kom(A). The mapping
cone M(f) is the complex defined by:

M(f)i = Xi−1 ⊕ Y i and diM(f) = (−di+1
X , f i+1 + diY ).

Notice there exist two natural morphisms: τ : Y • −→M(f) and π : M(f) −→ X•[1].

Definition 1.4.5. A distinguished triangle in K(A) is a triangle that is isomorphic to a triangle
of the following form:

X•
f // Y •

τ //M(f)
π // X•[1].

Remark 1.4.6. The category K(A) together with the functor T and the set of distinguished
triangles defined above is a triangulated category.

Let f : X• −→ Y • be a morphism of complexes. It induces naturally a morphism of
cohomologies:

Hi(f) : Hi(X•) −→ Hi(Y •).

We say that f is a quasi-isomorphism (often abbreviated with qis) if Hi(f) is an isomorphism
for all i.
The idea which underlies the construction of derived categories is to start from quasi-isomorphic
complexes and to make them become isomorphic into the derived category:

Theorem 1.4.7. Let A be an abelian category. There exists a category D(A) and a functor:

Q : Kom(A) −→ D(A)
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such that:

• If f : X• −→ Y • is a quasi-isomorphism, then Q(f) is an isomorphism in D(A).

• Every functor F : Kom(A) −→ D satisfying the previous property factors uniquely over
Q. That is, there exists a unique functor (up to isomorphisms) G : D(A) −→ D such that
F ∼= G ◦Q.

Proof. See [16], Theorem 2.7 for a reference.

The category D(A) is called the derived category associated to the abelian category A. No-
tice that D(A) is the localization of K(A) by the class of quasi-isomorphisms.

In the following we will show what kind of objects are in this category and how morphisms
are made.

By the set theory point of view, objects of D(A) are the same of Kom(A). Thus they are
complexes made by objects of A.
With regard to morphisms, notice that if Z• −→ X• is a quasi-isomorphism and Z• −→ Y •

is any other morphism, then X• and Z• are isomorphic in the derived category and therefore
there exists a morphism (in D(A)) X• −→ Y •.
Thus we define morphisms of the derived category as the set made by diagrams of the form:

Z•
qis //

��

X•

Y •

Two such diagrams are equivalent if they are dominated in K(A) by a third commutative
diagram of the same form:

15



Z•

~~   
Z•1

qis

~~ **

Z•2

qis

  tt
X• Y •

Therefore, morphisms are defined up to homotopy equivalence and in particular Z• −→ Z•1 −→
X• and Z• −→ Z•2 −→ X• are quasi-isomorphisms.

Now take two morphisms:

Z•1
qis //

��

X•

Y •

and
Z•2

qis //

��

Y •

Z•.
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Their composition is a commutative diagram of the form:

Z•

qis

~~   
Z•1

qis

~~   

Z•2

  

qis

~~
X• Y • Z•

Such a diagram always exists and it is unique up to equivalence (see [16], chapter 2 for further
explanations).

Last, notice that D(A) is a triangulated category. The functor T : K(A) −→ K(A) natu-
rally extends to an equivalence of D(A) and the set of distinguished triangle is made by those
triangles:

P •1
// P •2

// P •3
// P •1 [1]

which are isomorphic in D(A) to a triangle of the form:

X•
f // Y •

τ //M(f)
π // X•[1].

Denote by Kom∗(A) (with ∗ = +,− and b) the category of complexes X• with Xi = 0 for,
respectively, i << 0, i >> 0 and |i| >> 0.
Similarly, we define the categories K∗(A) and D∗(A).

We give now some examples.

Example 1.4.8. Consider a commutative noetherian ringR and the abelian category associated
modfg−R of finitely generated R-modules. The objects ofDb(modfg−R), the bounded derived
category of modfg −R, are chain complexes:

P • := {. . . −→ P i−1 −→ P i −→ P i+1 −→ . . .}

of projective R-modules such that Hi(P •) = 0 for |i| >> 0. Given two objects P • and Q• of
Db(modfg − R), a morphism P • −→ Q• is given by the equivalence class f̃ of morphisms of
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complexes f : P • −→ Q• modulo the homotopy relation.

Example 1.4.9. Let k be a field. The spectrum X := Spec k can be viewed as a smooth
point. The bounded derived category Db(Coh(X)) := Db(X) of coherent sheaves on X is the
bounded derived category associated tomodfg−k. Every object of Db(modfg−k) is isomorphic
to a direct sum of M i[i] where M i is a finitely generated module over k and i ∈ Z. Moreover
there are no non trivial morphisms from M i[i] to N j [j] unless i = j. Therefore we conclude
that Db(X) is equivalent to the category of k-graded vector spaces with finitely many non-zero
components.

Example 1.4.10. LetX be a smooth curve. Then every object in the bounded derived category
Db(Coh(X)) := Db(X) is isomorphic to a direct sum of E i[i] where E i are coherent sheaves on
X and i ∈ Z. Notice that the smoothness hypothesis here is crucial; infact, in the singular case,
the structure of the derived category is harder to obtain. Moreover, a lot of properties fail, for
example: the homological dimension of the category is infinite and Serre duality does not hold
anymore in general.

Example 1.4.11. The bounded derived category of Pn is generated by:

{O(−n),O(−n+ 1), . . . ,O(1),O}.

Remember that in the derived category we have only two operations: shifts and cones. There-
fore, when we say ’generated’ we mean that the smallest subcategory ofDb(Coh(Pn)) := Db(Pn)

which contains {O(−n),O(−n+ 1), . . . ,O(1),O} is Db(Pn) itself.
This result comes from the Beilinson’s resolution of coherent sheaves on Pn. In the singular
case, i.e. weighted projective spaces, things are much harder mainly because it is no longer true
that any coherent sheaf admits a finite resolution by locally free sheaves of finite type. Anyway,
a similar result was given in [7].

1.5 Derived functors and perfect complexes

1.5.1 Derived functors

Let F : A −→ B a functor between abelian categories. The natural extension of F to D(A)

does not have any sense (the image of an exact complex, that is the zero complex, could be
non-zero if F is not exact).
Thus, if we want to extend F at the level of derived category we must proceed in a different
way. Basically, starting from a left-exact functor F : A −→ B it is possible to construct an
associated functor D+(A) −→ D+(B). Similarly, for a right-exact functor, one construct a
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functor D−(A) −→ D−(B). Both procedures are analogous, thus we will only show the case of
a left-exact functor.

Definition 1.5.1. Given an abelian category A, an object X ∈ A is called injective if, for
every morphism g : Y −→ X and every monomorphism h : Y −→ Z, there exists a morphism
f : Z −→ X such that f ◦ h = g.

Denote by I the subcategory of A made by injective objects. An abelian category A has
enough injectives if for every object Y ∈ A there exists a monomorphism Y −→ X where
X ∈ I.

The natural inclusion I ⊂ A and the functor QA : K∗(A) −→ D∗(A) (defined in 1.4.7) in-
duce a natural functor K∗(I) −→ D∗(A).

Proposition 1.5.2. Suppose A has enough injectives. Then the natural functor i : K+(I) −→
D+(A) is an equivalence.

Proof. [16], Proposition 2.26.

Let F : A −→ B a left-exact functor of abelian categories. Suppose A has enough injectives.
Then we have a commutative diagram:

K+(I) //

i

��

K+(A)
K(F ) //

QA

��

K+(B)

QB

��
D+(A)

i−1

TT

D+(B)

where K(F ) is the natural extension of F at the level of homotopy categories.

The right derived functor associated to F is the functor:

RF : QB ◦K(F ) ◦ i−1 : D+(A) −→ D+(B).

Notice that RF is an exact functor of triangulated categories because it is obtained by compo-
sitions of three exact functors.

The construction of the left derived functor LF for a right-exact functor F is pretty much
similar, what really changes is just the use of projective objects instead of injective objects.
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Let now consider some geometrical examples. Recall that for a projective variety X we have
the associated abelian categories Qcoh(X) and Coh(X) of, respectively, quasi-coherent and co-
herent sheaves on X. We will denote by Dqcoh(X) and D(X) the derived categories associated
to Qcoh(X) and Coh(X). Notice that Qcoh(X) has always enough injectives (this is not in
general true also for Coh(X)).
Let f : X −→ Y be a morphism of projective varieties. We have a left exact functor (the direct
image):

f∗ : Qcoh(X) −→ Qcoh(Y ).

Hence we can construct a right derived functor:

Rf∗ : D+
qcoh(X) −→ D+

qcoh(Y ).

For F• ∈ D+
qcoh(X), the higher direct images Rif∗(F

•) are the cohomology sheavesHi(Rf∗(F •)).
By [13], Proposition 8.1, Rif∗(F

•) = 0 for i > dim(X), hence Rf∗ may actually be seen as a
functor between the bounded derived categories:

Rf∗ : Db
qcoh(X) −→ Db

qcoh(Y ).

Now, notice that Db(X) is equivalent to the full triangulated subcategory of Dqcoh(X) of
bounded complexes of quasi-coherent sheaves with coherent cohomology ([16], Proposition 2.49).
Also, by [13], Theorem 8.8 it follows that the higher direct images of a complex F• ∈ Coh(X) is
again a complex of coherent sheaves. Combining these two facts we obtain that the composition:

Db(X) −→ Db
qcoh(X) −→ Db

qcoh(Y )

defines an exact functor of triangulated categories:

Rf∗ : Db(X) −→ Db(Y ).

Another example of derived functor is given by tensor products. Take a sheaf F ∈ Coh(X).
Then we have a right-exact functor:

F ⊗ (−) : Coh(X) −→ Coh(X).

The left derived functor associated is:

F ⊗L (−) : D−(X) −→ D−(X).
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If X is smooth it is possible to show (see [16]) that F ⊗L (−) defines a functor at the level of
bounded derived categories:

F ⊗L (−) : Db(X) −→ Db(X).

As a final example we give the case of the inverse image associated to a morphism f : X −→ Y

of projective varieties. The inverse image is the functor f∗ obtained by composition of the exact
functor:

f−1 : Sh(Y ) −→ Shf−1(OY )(X)

with the right exact functor:

OX ⊗f−1(OY ) (−) : Shf−1(OY )(X) −→ Sh(X).

The inverse image is a right-exact functor and then we have a left derived functor:

Lf∗ = (OX ⊗L
f−1(OY ) (−)) ◦ f−1 : D−(Y ) −→ D−(X).

1.5.2 The singular case

Let X be a projective variety not necessarily smooth, and take the derived category Dqoch(X)

of quasi coherent sheaves on X. We define the full subcategory of perfect complexes: an object
F• ∈ Dqoch(X) is called perfect if it is quasi isomorphic to a bounded complex of locally free
sheaves of finite type on X. We denote by Perf(X) the category of perfect complexes.
Notice that Perf(X) is a thick subcategory of Db(X). Furthermore, if X is smooth then
Perf(X) is equivalent to Db(X) (this follows by the fact that on a smooth projective variety X
every coherent sheaf admits a finite resolution by locally free sheaves). Actually, X is smooth
if and only if Perf(X) = Db(X).

Given a triangulated category A, then an object C ∈ A is compact if for every family Eii∈I
of objects of A, the canonical map:⊕

i∈I
Hom(C,Ei) −→ Hom(C,⊕iEi)

is an isomorphism.
Denote by Ac the thick subcategory of A made by compact objects.

Lemma 1.5.3. Let F• ∈ Dqoch(X). Then F• is perfect if and only if it is compact.

See [32], Lemma 3.5.
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Let X be a projective variety and Y be a noetherian scheme. Denote by:

q : X × Y −→ X and p : X × Y −→ Y

the projections.

Let P• be an object in the derived category of the product Db(X × Y ).

We have derived functors:

Rp∗ : Db(X × Y ) −→ Db(Y ) and P• ⊗L (−) : Db(X × Y ) −→ Db(X × Y ).

The projection q is flat, hence we do not need to derive it, since it will sufficient to consider the
naive extension.

We say a functor F : Perf(X) −→ Db(Y ) to be of Fourier-Mukai type if there exists an
object P• ∈ Db(X × Y ) called kernel of the functor, such that F ∼= ΦP• , with:

ΦP• : Perf(X) −→ Db(Y ), ΦP•(−) := R(p)∗(P•
L
⊗ q∗(−))

where p : X × Y −→ Y and q : X × Y −→ X are the projections.

It is an open question to determine whenever a functor F : Perf(X) −→ Db(Y ) is of Fourier-
Mukai type or not. For X projective and Y noetherian separated, every exact fully faithful
functor F : Perf(X) −→ Db(Y ) is such that there exists an object P• ∈ Db(X × Y ) with
F (A•) ∼= ΦP•(A•) for every A• ∈ Perf(X). In other words, under certain assumptions, it
always possible to find a Fourier-Mukai functor which is isomorphic on the objects to F . Un-
fortunately this isomorphism does not turn out, in general, to be an isomorphism of functors.
In order to obtain a global isomorphism we have to put some more hypothesis. The following
theorem is due to Lunts and Orlov:

Theorem 1.5.4. Let X be a projective variety and Y be a noetherian separated scheme. Denote
by T0(OX) the maximal torsion subsheaf of dimension zero of OX . If T0(OX) = 0 then every
exact fully faithful functor F : Perf(X) −→ Db(Y ) is such that there exists a unique object
E ∈ Db(X × Y ) with F ∼= ΦE .

The fully faithful assumption here is essential: infact, it was proven in a recent paper (see
[30]) by Rizzardo and Van den Bergh that the result above is false without the fully faithfulness
hypothesis.
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1.5.3 The G-equivariant case

A representability theorem was also proved in the case of projective orbifolds by Kawamata in
[19]. In other words, every exact fully faithful functor, which has a left adjoint, between the
bounded derived categories of smooth stacks naturally associated to normal projective varieties
is of Fourier-Mukai type. This suggest us to try to investigate in chapter 3 if there is some
relationship between the category of autoequivalences of perfect complexes on the (singular)
quotient variety X/G and the bounded derived category of G-equivariant sheaves on X. Infact,
those are exactly the kind of sheaves on X which have a good behavior with respect to the
action of G.

Let X be a smooth projective variety of dimension n over an algebraic closed field k = C
and G be a finite group with an action on X.

Definition 1.5.5. A geometric quotient of X is a (singular) projective variety X/G togheter
with a map π : X −→ X/G such that:

• π is affine and G-equivariant.

• π is surjective and U ∈ X/G is open if and only if π−1(U) ⊂ X.

• The natural homomorphism OX/G −→ (π∗(OX))G is an isomorphism.

• If W is an invariant closed subset of X, then π(W ) is a closed subset of X/G. If W1 and
W2 are disjoint invariant closed subsets of X, then π(W1) ∩ π(W2) = �.

Remark 1.5.6. In the case in which the group G is finite, a geometrical quotient always exists.

We allow the action of G to be not free, although we require the points of X associated with
non-trivial stabilizers to be isolated.

Take a coherent sheaf F on X. A G-linearization of F is given by isomorphisms λg : F −→ g∗F
for all g ∈ G satisfying the cocycle condition: λ1 = Id and λgh = h∗λg ◦ λh for all g, h ∈ G. A
morphism f between two G-linearized coherent sheaves is G-invariant if f = g∗f for all g ∈ G.

Definition 1.5.7. The category CohG(X) is the category of G-equivariant sheaves whose objects
are G-linearized sheaves with G-invariant morphisms.

Notice that CohG(X) is an abelian category, hence we can consider the bounded derived
category Db

G(X) := Db(CohG(X)) associated.
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Remark 1.5.8. More generally, given an additive category A with an arbitrary action of a finite
group G we can associate to A the category AG of G-equivariant objects, i.e. the category made
by pairs (F, λg) where F is an object of A and λg are isomorphisms F −→ g∗F satisfying the
cocycle condition: λ1 = Id and λgh = h∗λg ◦ λh for all g, h ∈ G. A morphism between two G-
equivariant objects (F 1, λ1

g) and (F 2, λ2
g) is a morphism F 1 −→ F 2 compatible with λg, which

means that all the diagrams:

F 1
λ1g //

f

��

g∗F

g∗f

��
F 2

λ2g // g∗F 2

are commutative.
If A is triangulated, then it is natural to ask if AG is triangulated as well. It was proven by
Elagin in [12] that if A := D(C) is a derived category of an abelian category C, then AG has a
natural structure of triangulated category.
Furthermore, if C := Coh(X) is the category of coherent sheaves over an algebraic G-variety,
then the category of G-equivariant objects D(X)G is equivalent to Db(CohG(X)), the derived
category of G-equivariant sheaves on X. In other words, there is no difference in passing first
to the equivariant category and then to the derived category or viceversa.

Let X1 and X2 be two smooth projective varieties. Let G1 and G2 be two finite groups
acting on X1 and X2 respectively. Suppose there exists a surjective group homomorphism
φ : G1 −→ G2. Let α : X1 −→ X2 be a φ-map.
We have a canonical pull-back:

α∗ : CohG2(X2) −→ CohG1(X1).

Let K be the kernel of φ. Then we also have a push-forward:

αK∗ : CohG1(X1) −→ CohG2(X2)

defined as follow: notice that G1 acts naturally on X2 by φ, thus the kernel K acts trivially
on X2; for F ∈ CohG1(X1) the direct image φ∗(F) is canonically G1-linearized. Further, if we
take K-invariants:

αK∗ (F) := [α∗(F)]K

we get a G2-linearization because φ is surjective. The functors (α∗, αK∗ ) form an adjoint pair.
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A G1×G2-linearized complex P• ∈ Db
G1×G2

(X1×X2) gives rise to a Fourier-Mukai transform:

ΦP• : Db
G1

(X1) −→ Db
G2

(X2), F• 7−→ RpK2∗(P
• ⊗L p∗1F•)

where p1 : X1 ×X2 −→ X1 and p2 : X1 ×X2 −→ X2 is compatible with the surjective homo-
morphism G1 ×G2 −→ G2.

In the case in which X1 = X2 = X and G1 = G2 = G, we define G × G := G2; then the
definition of Fourier-Mukai transform becomes as follow:

ΦP• : Db
G(X) −→ Db

G(X), F• 7−→ RpG2∗(P
• ⊗L p∗1F•)

where P• ∈ Db
G2(X ×X) with p1 and p2 being the canonical projections.

Consider the natural direct image functor:

π∗ : Coh(X) −→ Coh(X/G).

Let {0} be the trivial group. The category Coh(X/G) can be viewed as the category of {0}-
equivariant sheaves over X/G. The zero map G −→ {0} induces a push-forward as above:

Definition 1.5.9. The equivariant direct image functor is the exact functor:

πG∗ : CohG(X) −→ Coh(X/G)

defined as:
πG∗ (F) := (π∗F)G

where (π∗F)G is the G-invariant subsheaf of (π∗F).

Notice that the functors (π∗, πG∗ ) form an adjoint pair, where π∗ is the usual pull-back
functor:

π∗ : Coh(X/G) −→ CohG(X).

Furthermore, πG∗ ◦ π∗ = Id.
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1.6 t-structures and stability conditions

1.6.1 t-structures

Definition 1.6.1. Let T be a triangulated category. A t-structure on T is given by a full
additive subcategory F such that:

• F [1] ⊂ F

• For all objects E in T , there exists a distinguished triangle:

F → E → G→ F [1]

where F ∈ F and G ∈ F⊥.

The heart of a t-structure is the subcategory A := F ∩F⊥[1].

A t-structure is said to be bounded if every object E ∈ T belongs to F [i] ∩F⊥[j] for some
i and j. The trivial t-structures on T are given by F = 0 or F = T .
We might ask if a specific heart identifies a unique t-structure associated. An answer to this
question has been given in [5]:

Proposition 1.6.2. Let A be a full additive subcategory of a triangulated category T . A is the
heart of a bounded t-structure if and only if the following properties hold:

1. For every objects A and B of A and for every integer h1 > h2, then Hom(A[h1], B[h2]) = 0.

2. For every object E of T , there exist a finite sequence of integers h1 > h2 > . . . > hn and
a collection of distinguished triangles:

0 // E1
//

��

E2
//

��

· · · // En−1
// En = E

~~
A1

ZZ

A2

[[

An

^^

with Aj ∈ A[hj ] for all j.

The subcategory F is then generated by extension of the subcategories A[h], h ≥ 0.

The following remark gives some well known properties about t-structures and hearts. See
[2], [17] and [5] for more details.

Remark 1.6.3. Given a heart of a bounded t-structure, the filtration provided by the property
(2) of Proposition 1.6.2 has the following properties:
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1. The heart of a t-structure is an abelian subcategory closed by extensions.

2. The filtration is unique up to isomorphisms. In particular, the shifts kj are fixed.

3. The filtration of the object X[h] can be deduced from the filtration of X.

4. The filtration of the object X ⊕ Y can be deduced from the filtrations of X and of Y .

Example 1.6.4. Let k = C be a field and consider the ring A = k[ε]/(ε2)={a+εb s.t. a, b ∈ k}.
The spectrum of A consists of a single singular point, which corresponds to the maximal ideal
(ε). Holm, Jørgensen and Yang proved, in the context of spherical objects ([14]), that there are
no non-trivial t-structures on the subcategory Perf(SpecA) ⊂ Db(SpecA). The proof of this
fact follows easily by a direct calculation.

Example 1.6.5. A torsion pair in an abelian category A is a pair of full subcategories (T ,F)

of A such that HomA(T ,F) = 0 for all T ∈ T , F ∈ F , and such that every object E ∈ A fits
into a short exact sequence:

0 −→ T −→ E −→ F −→ 0

for some T ∈ T and F ∈ F .
To a torsion pair (T ,F) is it possible to associate a t-structure on the bounded derived category
Db(A) by setting:

F≤0 := {F• ∈ Db(A) such that Hi(F•) = 0 for i > 0 and H0(F•) ∈ T }

F≥0 := {F• ∈ Db(A) such that Hi(F•) = 0 for i < −1 and H−1(F•) ∈ F}.

Its heart is called tilt and it is the category F≤0 ∩F≥0.

1.6.2 Stability conditions

Definition 1.6.6. Let A be an abelian category. A stability function on A is a group homo-
morphism Z : K(A)→ C such that for every non zero object E of A, the number Z(E) belongs
to:

H = {z ∈ C s.t. z = ρ exp(iπφ), ρ ≥ 0, 0 < φ ≤ 1} .

The phase of E ∈ A is the real number (1/π) arg (Z(E)) ∈ (0, 1].
A non zero object E ∈ A is called semi-stable if every non zero sub-object S ↪→ E has the phase
less or equal to the phase of E.

Let T be a triangulated category. Let K(T ) be the Grothendieck group of T . We define a
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bilinear form on K(T ), known as the Euler form, via the formula:

χ(E,F ) =
∑
i

(−1)idimC(HomT (E,F [i])).

The numerical Grothendieck group of T is the free abelian group N(T ) = K(T )/K(T )⊥.

Definition 1.6.7. Let T be a triangulated category. A stability condition on T consists of a
pair (Z,A), where:

1. Z : N(T ) −→ C.

2. A is a heart of a bounded t-structure on T .

satisfying the following compatibilities:

1. For every non zero object E of A, the number Z(E) belongs to:

H = {z ∈ C∗ s.t. z = ρ exp(iπφ), ρ ≥ 0, 0 < φ ≤ 1} .

2. Any non zero object E ∈ A admits a Harder-Narasimhan filtration, that is a finite number
of inclusion in A :

0 = E0 ↪→ E1 ↪→ · · · ↪→ En−1 ↪→ En = E

such that Fj = Cone(Ej−1 ↪→ Ej) are semistable objects with phase:

φ(F1) > · · · > φ(Fn−1) > φ(Fn).

3. The support property holds: there exists a constant C > 0 such that, for every semistable
object E:

||E|| ≤ C|Z(E)|.

where || || is an arbitrary norm on N(T )⊗ C.

Remark 1.6.8. || || is arbitrary since all the norms on N(T )⊗ C are equivalent.

Notice however that, in those examples that we will consider in the future, the Grothendieck
group if finitely generated torsion free, hence the support property is automatically fulfilled.
Also, the numerical Grothendieck group coincides with the usual Grothendieck group.

Remark 1.6.9. If A −→ B is a morphism of semistable objects, calling by N the image we
see that φ(A) ≤ φ(N) ≤ φ(B). This in particular means that the fltration is unique if it exists.
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Proposition 1.6.10. To give a stability condition is the same as to give a stability function on
its heart satisfying the Harder-Narasimhan property.

Proof. See Proposition 5.3 in [5].

Thus, given a stability function, we would like to have a way to check easily the Harder-
Narasimhan property. This is provided by the following:

Proposition 1.6.11. Suppose an abelian category A is given with a stability function such that:

• Any chain of monomorphisms . . . −→ A2 −→ A1, with φ(A1) < φ(A2) < . . ., stabilizes.

• Any chain of epimorphisms A1 −→ A2 −→ . . ., with φ(A1) > φ(A2) > . . ., stabilizes.

Then the stability function has the Harder-Narasimhan property.

Proof. See Proposition 5.1.6 in [15].

Example 1.6.12. Consider X a smooth curve and let Db(X) the bounded derived category
associated. There are two natural morphisms K(Db(X)) −→ C, the degree and the rank (the
alternating sum of the degree and the rank of the complex). We get then the map:

Z(E) = −deg(E) + irank(E).

which gives a stability function on Coh(X). It is not hard to see that any chain of subsheaves
. . . −→ F2 −→ F1, with φ(F1) < φ(F2) < . . ., stabilizes. In the same way, any chain of
quotients F1 −→ F2 −→ . . ., with φ(F1) > φ(F2) > . . ., stabilizes. Therefore the Harder-
Narasimhan property holds and thus we find a stability condition on Db(X). Actually, stability
conditions on curves are completely classified. In particular, for smooth projective curves of
positive genus, the space of stability conditions is isomorphic to C × H where H denote the
complex upper half plane (see [24]).

1.7 DG categories

Here we give some definitions and tools that will be used strongly in chapter 2.

Definition 1.7.1. A DG category is a k-linear category A such that:

• Hom(X,Y ) is a Z-graded k-module for every X,Y ∈ Ob(A).

• There is a differential d : Hom(X,Y ) −→ Hom(X,Y ) of degree one, such that for every
X,Y, Z ∈ Ob(A) the composition Hom(X,Y )⊗Hom(Y,Z) −→ Hom(X,Z) is a morphism
of DG k-modules.
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A DG functor F : A −→ B between two DG categories is given by a map on the objects
F : Ob(A) −→ Ob(B) and maps on the spaces of morphisms:

F(X,Y ) : HomA(X,Y ) −→ HomB(F(X),F(Y ))

which are morphisms of DG k-modules and are compatible with the compositions and the units.
Given a DG category A, we denote by H0(A) the homotopy category associated to A, which
has the same objects of the DG category A and its morphisms are defined by taking the zeroth
cohomology H0(HomA(X,Y )).

Definition 1.7.2. A DG functor F : A −→ B is called a quasi-equivalence if F(X,Y ) is a
quasi-isomorphism for all objects X,Y ∈ A and the induced functor H0(F) : H0(A) −→ H0(B)

is an equivalence. We say that two objects X,Y ∈ A are homotopy equivalent if they are
isomorphic in H0(A).

Definition 1.7.3. Let dgMod-k be the DG category of DG k-modules. Given a small DG
category A, every DG functor:

M : Aop −→ dgMod-k

is called a right DG A-module.

We denote by dgMod-A the DG category of right DG A-modules. Let Ac(A) be the sub-
category of Mod-A consisting of all acyclic DG modules.

Definition 1.7.4. The derived category D(A) is the Verdier quotient between the homotopy
category associated with Mod-A and the subcategory of acyclic DG modules:

D(A) :=
H0(Mod-A)

H0(Ac(A))
.

Every object X ∈ A defines a representable DG module:

hX(−) := Hom(−, X).

The functor h• is called the Yoneda functor, and it is fully faithful.

Definition 1.7.5. A DG A-moduleM is called free if it isomorphic to a direct sum of shift of
representable DG modules of the form hX [n], where X ∈ A, n ∈ Z.

Definition 1.7.6. A DG A-module P is called semi-free if has a filtration:

0 = φ0 ⊂ φ1 ⊂ φ2 ⊂ . . . = P

30



such that each quotient φi/φi−1 is free.

If φm = P for some m and φi/φi−1 is a finite direct sum of DG modules of the form
hY [n], then we call P a finitely generated semi-free DG module. Denote by SF(A) the full DG
subcategory of semi-free DG modules.

Definition 1.7.7. Given a small DG category A we denote by Perf(A) the DG category of
perfect DG modules, that is the full DG subcategory of SF(A) consisting of all DG modules which
are homotopy equivalent to a direct summand of a finitely generated semi-free DG module.

Recall that, given two DG categories A and B, their tensor product A ⊗ B is again a DG
category. See [3] for references.

Let A and B be two DG categories, a A-B-bimodule is a DG Aop ⊗B-module. A quasi-functor
from A to B is a A-B-bimodule X ∈ D(Aop ⊗ B) such that the tensor functor:

(−)⊗A X : D(A) −→ D(B)

takes every representable A-module to an object which is isomorphic to a representable B-
module.

Definition 1.7.8. Let T be a triangulated category. An enhancement of T is a pair (B, ε),
where B is a pretriangulated DG category and ε : H0(B) −→ T is an equivalence of triangulated
categories.

Example 1.7.9. Let X be a quasi-projective scheme. Consider the triangulated category
Dqcoh(X). LetC(X) be the pretriangulated DG category of unbounded complexes overQCoh(X).
Denote by A(X) the full subcategory of C(X) consisting of acyclic complexes. The Drinfeld
quotient ([11]) of DG categories C(X)/A(X) is a pretriangulated category and:

H0(C(X)/A(X))
∼=−→ Dqcoh(X) (∗)

Therefore we get an enhancement of Dqcoh(X).

Example 1.7.10. Let X be a smooth projective variety. Let P(X) be the full DG subcategory
of C(X)/A(X) whose objects are sento to Perf(X) under the equivalence (∗) above. Then
P(X) is an enhancement of Perf(X).

Example 1.7.11. Let X be a smooth projective variety. Consider the triangulated cate-
gory Db(X). Let C+(X) be the pretriangulated DG category of bounded below complexes
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of OX -modules with bounded coherent cohomology, and let I(X) be the full pretriangulated
subcategory of C+(X) consisting of complexes of injective OX -modules. Then the functor:

H0(I(X)) −→ H0(C+(X)) −→ Db(X)

is an equivalence, and thus we get an enhancement of Db(X).

Definition 1.7.12. A triangulated category T has a unique enhancement if it has one and for
any two enhancements (B, ε) and (B′, ε′) of T the DG categories B and B′ are quasi-equivalent,
i.e. there exists a quasi-functor φ : B −→ B′ which induces an equivalence:

H0(φ) : H0(B)
∼=−→ H0(B′).

In this case the enhancements (B, ε) and (B′, ε′) are called equivalent.

Let X be a a quasi-compact and quasi-separated scheme over k. We say that the scheme
X has enough locally free sheaves if for any finitely presented sheaf F there is an epimorphism
E −→ F with a locally free sheaf E of finite type. Lunts and Orlov proved in [22] that:

Theorem 1.7.13. Let X be a quasi-compact and separated scheme that has enough locally free
sheaves. Then the derived category of quasi-coherent sheaves Dqcoh(X) has a unique enhance-
ment.

And as a corollary:

Corollary 1.7.14. Let X be a quasi-projective scheme over k.

• The derived category of quasi-coherent sheaves Dqcoh(X) has a unique enhancement.

• The triangulated category of perfect complexes Perf(X) = Dc
qcoh(X) has a unique en-

hancement.

• The bounded derived category of coherent sheaves Db(X) has a unique enhancement.
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Chapter 2

The double point

2.1 Background

As we mentioned in previous chapter, a highly non-trivial result by Lunts and Orlov in [22]
shows, by the use of DG categories, that if X is projective such that the maximal torsion sub-
sheaf of dimension zero T0(OX) ⊂ OX is trivial, Y is noetherian separated and F : Perf(X) −→
Db(Y ) is an exact fully faithful functor, then F is of Fourier-Mukai type.

The hypothesis T0(OX) = 0 is related with the use of ample sequences and it seems not to
be a very natural assumption. What happens if we consider a projective scheme X such that
T0(OX) 6= 0? The simplest example of such scheme is given by Spec k. Here the result is trivial
(see [8] Remark 2.2) in view of the simple description of Db(Spec k). Thus, we could take in
consideration a zero dimensional non-smooth scheme. In such way, the maximal torsion sub-
sheaf of dimension zero is certainly not trivial. A basic model of such type of objects is given by
the "double point scheme", which is the spectrum of the ring of dual numbers A := k[ε]/(ε2).
Along the chapter we prove that, if:

F : Perf(A) // Dqcoh(Y )

is a fully faithful functor, then there is an object E ∈ Dqcoh(SpecA× Y ) such that:

ΦE |Perf(A)
∼= F.

Furthermore, if Y is noetherian and F sends Perf(A) to Db(Y ), then

E ∈ Db(SpecA× Y ).

33



Thus we show that the main result in [22] still holds in a case in which the maximal torsion
subsheaf of dimension zero T0(OX) is not trivial, hence we do expect it is possible to avoid this
hypothesis and prove the same result in a more general case.

We also deal with the problem of classifying all the stability conditions on the category Db(A).
Basically we prove that Stab(Db(A)) is isomorphic to C, the universal covering of C∗.
In order to prove the results concerning such a classification, we will exploit the study on the
category Db(A) following an argument originally used by Jørgensen and Pauksztello in [18],
Holm, Jørgensen and Yang in [14] for the category Perf(A).

2.2 Indecomposable complexes of Db(A)

Let k = C be a field and consider the ring A = k[ε]/(ε2)={a+ εb s.t. a, b ∈ k}. The spectrum
of A consists of a single point, which corresponds to the maximal ideal (ε). We are interested
in studying the subcategory Perf(SpecA) ⊂ Db(SpecA).

Recall that Db(SpecA) is the bounded derived category of coherent sheaves on SpecA, and it
is equivalent to Db(modfg−A), the bounded derived category of finitely generated A-modules.
On the other hand, the categoryPerf(SpecA) is by definition the full subcategory ofDb(SpecA)

made by compact objects. Then, as we mentioned in previous chapter, Perf(SpecA) is equiv-
alent to Perf(A), the full subcategory of Db(SpecA) = Db(modfg−A) =: Db(A) consisting of
bounded complexes of finitely generated projective modules modulo the homotopy relation.

We want to study in details objects and mophisms of Db(A) and therefore we focus on indecom-
posable complexes: in an additive category, an object X is called indecomposable if X ∼= Y ⊕Z
implies Y ∼= 0 or Z ∼= 0.
A good context to study indecomposable objects is provided by Krull-Schmidt categories, which
are explained in [24].

Definition 2.2.1. Let C be an additive category such that EndC(X) is a semiperfect ring for
all X ∈ C (in that case C is called a pre-Krull-Schmidt category). C is called a Krull-Schmidt
category if every idempotent splits, i.e. for every X in C and for every e ∈ EndC(X) such that
e2 = e, there exist Y in C and two morphisms p : X → Y and q : Y → X such that qp = e and
pq = 1Y .

An additive category in which every idempotent splits is also called Karoubian, hence a
Krull-Schmidt category is a pre-Krull-Schmidt category that is also Karubian. Note that every
abelian category is Karoubian.
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In [34] one can find another definition of the split property: an idempotent e : X → X splits
if and only if there exists a non trivial decomposition X ∼= Y ⊕ Z with e corresponding to the
projection on Y . These two definitions are equivalent in a triangulated category, which is our
case. Thanks to the following result, proven in [24], we can limit ourselves to consider only
indecomposable objects:

Theorem 2.2.2. In a Krull-Schmidt category every object can be decomposed into a finite direct
sum of indecomposable objects. Moreover this decomposition is unique up to isomorphism.

Infact:

Proposition 2.2.3. Let X be a projective variety. Then Perf(X) and Db(X) are Krull-
Schmidt categories.

Proof. Since X is projective, the endomorphism ring of every object of Perf(X) and of Db(X)

is a finitely generated k−algebra of finite dimension, and then it is semiperfect. Moreover,
Dqcoh(X) is Karoubian, because it is a triangulated category with countably many direct sums.
The subcategories Perf(X) and Db(X) are thick and then Karoubian.

Proposition 2.2.4. Let C be a Karoubian triangulated category, D an additive category and
F : C // D a fully faithful additive functor. Then F sends indecomposable objects of C to
indecomposable objects of D.

Proof. Let X• be an indecomposable object of C. Since C is Karoubian, Hom(X•, X•) does not
contain any idempotent except the identity and zero. Suppose F (X•) ∼= Y •⊕Z•, with Y • and
Z• non zero. Since F is fully faithful and additive we have an isomorphism of rings:

Hom(X•, X•) ∼= Hom(F (X•), F (X•)) ∼= Hom(Y • ⊕ Z•, Y • ⊕ Z•).

The last space contains the projection Y • ⊕ Z• // Y • , which is an idempotent different
from the identity and zero, giving a contraddiction.

Definition 2.2.5. For every i ∈ N, i > 0 let:

Xi := { 0 // A(−i)
ε // A(−i+1)

ε // · · · ε // A(−1)
// 0 }.

X∞ := { · · · ε // A(−i)
ε // A(−i+1)

ε // · · · ε // A(−1)
// 0 }.

Where A(l) stands for the module A in the position l ∈ Z.
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We have that {Xi[h], with i > 0, and h ∈ Z} are the indecomposable objects of Perf(A).
Moreover, {X∞[h], with h ∈ Z} are the indecomposable objects of Db(A) rPerf(A) (see [21],
Section 3 or [20], example 3.7).

2.3 Maps between indecomposable complexes

In this section we will study in details the morphisms in the category Perf(A), which re-
call it is equivalent to the homotopy bounded category of complexes of finitely generated free
A−modules.

Notice that for every complexes Xi, Xj and for every integers α, β:

Hom(Xi[α], Xj [β]) ∼= Hom(Xi, Xj [β − α]).

Infact, morphisms between two indecomposable objects depend only on the mutual position of
the two complexes.

We start with morphisms in Perf(A) by considering the space:

V := Hom(Xi, Xj [α])

with i, j 6=∞.
If i > j, there are five cases, which go from α ≤ −j to α ≥ i.

1. α ≤ −j. A morphism Xi −→ Xj [α] can be represented by such a diagram:

0 //

��

A //

��

· · · //

��

A //

��

0 //

��

· · · //

��

· · · //

��

· · · //

��

· · · //

��

0

��
0 // · · · // · · · // · · · // · · · // 0 // A // · · · // A // 0

Where the vertical arrows are automorphisms of A, and therefore they must be of the
form a+εb where a, b ∈ A. However, it is clear that in this case all the vertical morphisms
are zero and thus V = 0.

2. −j < α ≤ 0. In this case the vertical arrows must be of the form εb with b ∈ A, because
of the commutativity of the squares:
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0 //

��

A //

��

· · · //

��

A //

εb1��

· · · // A //

εbk��

0 //

��

· · · //

��

0

��
0 // · · · // 0 // A // · · · // A // · · · // A // 0

with k = j + α. Define:

B :=
k∑
l=1

(−1)l+1bk−l+1.

Up to homotopy we can reduce the diagram to be the following one:

0 //

��

A //

��

· · · //

��

A //

0��

· · · // A //

εB��

0 //

��

· · · //

��

0

��
0 // · · · // 0 // A // · · · // A // · · · // A // 0

This shows that in this case the space of morphisms V is isomorphic to k.

3. 0 < α < i− j. Again, by the commutativity of the squares we have:

0 //

��

A //

��

· · · //

��

A //

εb1��

· · · // A //

εbk��

· · · //

��

A //

��

0

��
0 // · · · // 0 // A // · · · // A // 0 // · · · // 0

Up to homotopy all the vertical morphisms become zero, hence V = 0.

4. i − j ≤ α < i and α 6= 0. This case is similar to (2). The commutativity of the squares
implies that all the vertical morphisms must have the first same component:

0 //

��

· · · //

��

0 //

��

A //

a+εb1��

· · · // A //

a+εbk��

· · · //

��

A //

��

0

��
0 // A // · · · // A // · · · // A // 0 // · · · // 0

Up to homotopy we can reduce the diagram to be the following one:

0 //

��

· · · //

��

0 //

��

A //

a��

· · · // A //

a��

· · · //

��

A //

��

0

��
0 // A // · · · // A // · · · // A // 0 // · · · // 0

Thus V is still isomorphic to k.

37



5. i ≤ α. This case is similar to (1). Thus, V is equal to zero.

If i = j and α 6= 0, the calculations are analogous to the previous cases. Note however that
(3) can not hold in this case.
If α = 0, the commutativity of the square implies that we have a diagram of the form:

0 //

��

A //

a+εb1

��

· · · // A //

a+εbh

��

0

��
0 // A // · · · // A // 0

Define:

C :=
i∑
l=1

(−1)l+1bi−l+1.

Up to homotopy we can reduce the diagram to be the following one:

0 //

��

A //

a

��

· · · // A //

a+εC

��

0

��
0 // A // · · · // A // 0

This shows that in this case the space of morphisms V is equal to k ⊕ k.

If i < j, the results are similar to the case i > j.
We can sum up in the following:

Proposition 2.3.1. Consider the space V = Hom(Xi, Xj [α]):

• If −j < α ≤ min{0, i−j} and (i−j, α) 6= (0, 0) then V has dimension 1 and it is generated
by εij[α]. These morphisms are named of kε-type.

• If max{0, i− j} ≤ α < i and (i− j, α) 6= (0, 0) then V has dimension 1 and it is generated
by 1ij[α]. These morphisms are named of k1-type.

• If i = j and α = 0 then V has dimension 2 and it is generated by both εii[0] and 1ii[0].
These morphisms are named of k2-type

• V = {0} for all the remaining cases.

Remark 2.3.2. A morphism between two indecomposable objects can be described by a pair
(a, b) of elements of k, where a is the coefficient of the generator 1 and b is the coefficient of the
generator ε.

38



Remark 2.3.3. The results of this proposition can be extended to Db(A); one can easily prove
that:

• Hom(X∞, X∞[h]) is generated by 1 if h ≥ 0 and it is 0 otherwise.

• Hom(X∞, Xi[h]) is generated by ε if −i < h ≤ 0 and it is 0 otherwise.

• Hom(Xi, X∞[h]) is generated by 1 if 0 ≤ h < i and it is 0 otherwise.

As a consequence of the previous theorem, for all X• and Y • in Perf(A) there is the
following isomorphism:

HomPerf(A)(X
•, Y •) ∼= HomPerf(A)(Y

•, X•).

More generally, Serre duality holds in Perf(A). This is a particular case of [13], Theorem 6.7.

2.4 Compositions

We now want to describe compositions of morphisms in Perf(A). That is, given two morphisms
between indecomposable objects:

f : Xi
// Xj [α] and g : Xj [α] // Xk[β],

we want to find out what type of morphism is g ◦ f . We proceed by studying compositions of
generators of the morphisms described in Proposition 2.3.1. The situation is summed up in the
following table. Clearly, if either f or g is the zero morphism, then also the composition g ◦ f
is zero.

◦ 0 1ij[α] εij[α]

0 0 0 0

1
j[α]
k[β] 0 (i) (ii)

ε
j[α]
k[β] 0 (iii) (iv)

Proposition 2.3.1 gives the conditions for the generators to be well defined:

(i) holds when max{0, i− j} ≤ α < i and max{0, j − k} ≤ β − α < j.
(ii) holds when −j < α ≤ min{0, i− j} and max{0, j − k} ≤ β − α < j.
(iii) holds when max{0, i− j} ≤ α < i and −k < β − α ≤ min{0, j − k}.
(iv) holds when −j < α ≤ min{0, i− j} and −k < β − α ≤ min{0, j − k}.
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(i) The composition of 1
j[α]
k[β] ◦ 1ij[α] is a morphism from Xi to Xk[β]. If max{0, i− k} ≤ β < i

holds, that is the condition of having a morphism of k1-type between Xi and Xk[β], then
1
j[α]
k[β] ◦ 1ij[α] = 1ik[β]:

A //

1��

· · · //

1
��

· · · //

1
��

· · · //

1��

A

A //

1
��

· · · //

1
��

A //

1��

· · ·
1
��

// · · ·
1��

// A

A // · · · // · · · // A // · · · // A.

Otherwise 1
j[α]
k[β] ◦ 1ij[α] = 0

(ii) The composition 1
j[α]
k[β] ◦ ε

i
j[α] is a morphism from Xi to Xk[β]. If −k < β ≤ min{0, i− k}

holds, that is the condition of having a morphism of kε-type between Xi and Xk[β], then
1
j[α]
k[β] ◦ ε

i
j[α] = εik[β]:

A // · · · // · · · //

0��

· · · //

0
��

A
ε��

A //

1
��

· · · //

1
��

A //

1��

· · · //

1
��

· · · //

1��

A

A // · · · // · · · // A // · · · // A.

Otherwise 1
j[α]
k[β] ◦ ε

i
j[α] = 0.

(iii) The composition of εj[α]
k[β] ◦1ij[α] is a morphism from Xi to Xk[β]. If −k < β ≤ min{0, i−k}

holds, that is the condition of having a morphism of kε-type between Xi and Xk[β], then
ε
j[α]
k[β] ◦ 1ij[α] = εik[β]:

A //

1��

· · · //

1
��

· · · //

1��

· · · // A

A // · · · // A //

ε��

· · · //

0
��

A

0
��

A // · · · // · · · // · · · // · · · // A.
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Otherwise εj[α]
k[β] ◦ 1ij[α] = 0.

(iv) The composition of two morphisms of kε-type is always zero.

As in Remark 2.3.3, the above results hold, with the same inequalities, also in Db(A).

2.5 Fully Faithful endofunctors of Perf(A)

In this section we will deal with k−linear functors F : Perf(A) // Perf(A) that commute
with the shifts. For example, obviously the shift [n] itself. Also the push forward Rf∗ along a
proper morphism f of projective varieties gives such a type of functor. Furthermore these two
functors are exact and of Fourier-Mukai type; see [16] for a deeper discussion.

For a more general analisys, in this section we will suppose F to be fully faithful but we
will not require the functor to be exact.

Proposition 2.5.1. Let F : Perf(A) // Perf(A) be a fully faithful functor. On the objects,
F is isomorphic to the shift functor [n] for some integer n.

Proof. F commutes with the shifts, so we can focus on the image of an indecomposable objectXi

for any integer i > 0. By Proposition 2.2.4, F sends indecomposable objects to indecomposable
objects, so F (Xi) ∼= Xj [α] for some integer j > 0 and some α. F is also fully faithful, thus:

Hom(Xi, Xi[β]) ∼= Hom(F (Xi), F (Xi)[β]) ∼=

∼= Hom(Xj [α], Xj [α+ β]) ∼= Hom(Xj , Xj [β]).

It follows from Proposition 2.3.1 that i = j, and this proves that F (Xi) ∼= Xi[hi] for some
integer hi. Actually hi does not depend on i:

Hom(Xi, Xj) ∼= Hom(F (Xi), F (Xj)) ∼=

∼= Hom(Xi[hi], Xj [hj ]) ∼= Hom(Xi, Xj [hj − hi]).

Again, by Proposition 2.3.1, hj − hi = 0.

Corollary 2.5.2. Every fully faithful functor F : Perf(A) // Perf(A) is an equivalence.

Proof. It is clear from Proposition 2.5.1 that every fully faithful functor:

Perf(A) −→ Perf(A)
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is also essentially surjective, hence it is an equivalence.

With similar arguments, and by including the indecomposable objectsX∞, Proposition 2.5.1
and Corollary 2.5.2 can be extended to a fully faithful functor F : Db(A) −→ Db(A).

Remark 2.5.3. Due to Proposition 2.5.1, F (Xi) is isomorphic to Xi[h] for a fixed h ∈ Z. Up
to composition with a shift [−h], we can assume that F is isomorphic to the identity functor
on the objects.

We now want to study the action of F on the morphisms between indecomposable elements.

Proposition 2.5.4. Consider a morphism (a, b) as described in Remark 2.3.3 from an inde-
composable object Xi to itself, that is:

0 //

��

A //

a
��

A //

a
��

//

��

· · · //

��

A //

a
��

A //

a+ε·b
��

0

��
0 // A // A // · · · // A // A // 0

with a, b ∈ k. The action of the functor on the morphism (a, b) is given by an invertible
matrix: (

1 0

0 δi

)
.

with δi ∈ k.

Proof. Since F is a functor, it preserves compositions and the identity. By imposing these two
conditions to a generic 2× 2 matrix with coefficients in k, the result is straightforward.

This shows that if (a, b) is a morphism of k2-type from Xi to itself, then F acts only on its
second component, which is the one generated by kε. It is also immediate to see that F can
only act on the second component of a morphism of kε-type, as well as F can only act on the
first component of a morphism of k1-type. Hence we give the following definition:

Definition 2.5.5. For all i, j ∈ N and α ∈ Z we define kij[α] ∈ k such that:

• if (a, b) is a morphism of k2-type from Xi to Xi, then F (a, b) = (a, kii[0]b).

• if (a, 0) is a morphism of k1-type from Xi to Xj [α], then F (a, 0) = (kij[α]a, 0).

• if (0, b) is a morphism of kε-type from Xi to Xj [α], then F (0, b) = (0, kij[α]b).

Note that the element kii[0] corresponds to δi in Proposition 2.5.4. Furthermore, the functor
F is fully faithful, hence all the coefficients kij[α] are non zero.
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Proposition 2.5.6. kii[0] does not depend on i ∈ Nr {0}.

Proof. We prove that kii[0] = k1
1[0] for i > 1. Consider the following morphisms from Xi to X1

and from X1 to Xi:

Xi :

εi
1[0]

��

0 // A // · · · // A //

ε

��

0

X1 :

11
i[0]

��

0 // 0 // 0 // A //

1
��

0

Xi : 0 // A // · · · // A // 0.

The functor F sends εi1[0] to k
i
1[0]ε

i
1[0] and 11

i[0] to k
1
i[0]1

1
i[0]; moreover, the composition:

11
i[0] ◦ ε

i
1[0] = 1ii[0]

is a morphism between Xi and Xi and then it is sent by F to kii[0]1
i
i[0]. As F preserves compo-

sitions:
F (11

i[0] ◦ ε
i
1[0]) = F (11

i[0]) ◦ F (εi1[0]),

which means kii[0]1
i
i[0] = k1

i[0]k
i
1[0]1

i
i[0].

It follows kii[0] = k1
i[0]k

i
1[0]. By composing these morphisms in the inverse order we get εi1[0]◦1

1
i[0] =

11
1[0], a morphism between X1 and X1. It is sent by F to (0, k1

1[0]1
1
1[0]). Again, F preserves

compositions, hence k1
1[0] = k1

i[0]k
i
1[0], that is k

i
i[0] = k1

1[0].

Proposition 2.5.7. Up to composing with a shift and a push forward along an automorphism
of Spec(A), the functor F is isomorphic to a functor which is the identity on the objects and
has coefficients kii[0] equal to 1.

Proof. Assume, as in Remark 2.5.3, that F is isomorphic to the identity on the objects. More-
over, it acts as multiplication by µ := kii[0] on the morphisms of k2-type, which is constant by
Proposition 2.5.6. Now consider the map φµ : A // A defined as follow:

a+ εb 7−→ a+ εµb.

The induced push forward functor (φµ)∗ on Perf(A) is isomorphic to the identity on the objects
and it acts as multiplication by µ−1 on morphism of k2-type. Up to isomorphisms of functors,
the composition (φµ)∗ ◦ F is the identity on the objects and acts as the identity on morphisms
of k2-type.
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From now on, in view of Proposition 2.5.7, we can assume that the functor F satisfies the
following condition:

(C1) F is the identity on the objects of Perf(A) and the coefficients kii[0] of F are equal to 1.

Lemma 2.5.8. Let kij[α] be the coefficient of a functor F satisfying (C1). The following relations
hold:

(R1) kji[α]k
i
j[−α] = 1 if −i < α ≤ min{0, j − i}

or max{0, j − i} ≤ α < j.

(R2) kji[α] = kji−1[α]k
i−1
i[0] 0 ≤ α < j ≤ i, (i− j, α) 6= (0, 0), (1, 0).

(R3) kji[α] = kji−1[0]k
i−1
i[α] j < i− 1 and −i < α ≤ j − i.

(R4) ki−1
i[α] = ki−1

i−1[α]k
i−1
i[0] 1− i < α < 0.

(R5) ki−1
i[2−i] = ki−1

i−1[1]k
i−1
i[1−i] i > 2.

Proof. (R1) For i = j and α = 0 the statement is trivial. In the other cases note that, when
the first inequality holds, kji[α] is related to a morphism of kε-type and kij[−α] is related to a
morphism of k1-type. Also, the composition is a non zero morphism of kε-type between Xj and
Xj . When the second inequality holds, the types are swapped and the composition is still non
zero. So we have:

kji[α]k
i
j[−α] = kjj[0] = 1.

(R2) The morphisms from Xj to Xi[α], from Xj to Xi−1[α] and from Xi−1 to Xi[0] are of
k1-type, hence case (i) of Section 4 implies that the composition:

1ji[α] = 1i−1
i[0] ◦ 1ji−1[α]

is non zero.

(R3) The morphism from Xj to Xi−1[0] is of k1-type, whilst the morphisms from Xj to
Xi[α] and from Xi−1 to Xi[α] are both of kε-type, hence case C of Section 4 implies that the
composition:

εji[α] = εi−1
i[α] ◦ 1ji−1[0]

is non zero.

(R4) The morphism from Xi−1 to Xi[0] is of k1-type. The morphisms from Xi−1 to Xi[α]

and from Xi−1 to Xi−1[α] are both of kε-type, hence case (ii) of Section 4 implies that the
composition:

εi−1
i[α] = 1i−1

i[0] ◦ ε
i−1
i−1[α]
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is non zero.

(R5) The morphism from Xi−1 to Xi−1[1] is of k1-type. Again, the morphisms from Xi−1

to Xi[1− i] and from Xi−1 to Xi[2− i] are both of kε-type, hence case (iii) of Section 4 implies
that the composition:

εi−1
i[1−i] ◦ 1i−1

i−1[1] = εi−1
i[2−i]

is non zero.

Lemma 2.5.9. Let F be a functor satisfying (C1). The functor F is isomorphic to a functor
F ′ such that the coefficients k′i−1

i[0] of F ′, are equal to 1 for all i > 1.

Proof. The isomorphism of functors between F and F ′ is given by the coefficients:

φ1 = 1 φi =

i−1∏
h=1

(kh−1
h[0] )−1 : Xi

// Xi

The following diagram is commutative, and shows that k′i−1
i[0] = 1 concluding the proof of

the lemma.

Xi−1

∏i−2
h=1 (kh−1

h[0]
)−1

//

fki−1
i[0]

��

Xi−1

f ·k′i−1
i[0]

��
Xi

∏i−1
h=1 (kh−1

h[0]
)−1

// Xi.

From now on we suppose that the functor F satisfies both (C1) and, because of Lemma
2.5.9, the condition:

(C2) The coefficients ki−1
i[0] of F are equal to 1 for all i > 1.

Given a set of objects E ⊂ Ob(Perf(A)) we denote by add {E } the smallest full subcategory
of Perf(A) containing E and closed under shifts and finite direct sums.

Theorem 2.5.10. Let F be a functor satisfying (C1) and (C2). The action of F on the
morphisms is completely determined by its coefficient k2

1[1] = λ. In particular:

kij[α] = λα (2.1)
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for −j < α ≤ min{0, i− j} or max{0, i− j} ≤ α < i.

Proof. We proceed by induction on the number of the indecomposable objects generating the
subcategory add {X1, . . . , Xi}. On the subcategory add {X1, X2} we have:

k1
2[0]k

2
1[0]

(R1)
= 1 and k2

1[1]k
1
2[−1]

(R1)
= 1,

k2
2[1]

(R2)
= k2

1[1]k
1
2[0]

(C2)
= λ,

k2
2[−1]

(R1)
= (k2

2[1])
−1 = λ−1.

Note that, by Proposition 2.3.1, these equalities determine the behaviour of F on all the coef-
ficients and prove (2.1) for the subcategory add {X1, X2}.
Now assume that (2.1) holds true for the subcategory add {X1, . . . , Xi−1}. We prove it for
the subcategory add {X1, . . . , Xi}. By assumption kii[0] = 1. The description of morphisms in
Proposition 2.3.1, implies that the following steps cover all the remaining coefficients of the
functor on add {X1, . . . , Xi}.

(i) kji[0] for all j < i (deducing the case of kij[0] by (R1)).

(ii) kji[α] for all 0 < α < j, j < i (deducing the case of kij[−α] by (R1)).

(iii) kji[α] for all −i < α ≤ j − i, j < i (deducing the case kij[−α] by (R1)).

(iv) kii[α] for all 0 < α < i (deducing the case kii[−α] by (R1)).

As for the proof:

(i) If j = i− 1 one obtains ki−1
i[0] = 1 by (C2).

For j < i− 1, by induction kji−1[0] = 1. We have:

kji[0]

(R2)
= kji−1[0]k

i−1
i[0]

(C1)
= 1.

(ii) By induction kji−1[α] = λα. The claim is true because:

kji[α]

(R2)
= kji−1[α]k

i−1
i[0] = λα.

(iii) If j 6= i− 1, by induction kji−1[0] = 1, then:

kji[α]

(R3)
= kji−1[0]k

i−1
i[α] = ki−1

i[α] .
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Therefore we have to prove the claim only for ki−1
i[α] . In this case 1− i ≤ α < 0.

• If 1− i < α < 0, by induction ki−1
i−1[α] = λα, then:

ki−1
i[α]

(R4)
= ki−1

i−1[α]k
i−1
i[0]

(C2)
= λα

• If α = 1− i, it is sufficient to note that ki−1
i[α+1] = ki−1

i[2−i] belongs to the previous case
and by induction ki−1

i−1[1] = λ. Hence:

ki−1
i[1−i]

(R5)
= ki−1

i[2−i](k
i−1
i−1[1])

−1 = λα+1λ−1 = λα.

(iv) We have:

kii[α]

(R2)
= kii−1[α]k

i−1
i[0] = kii−1[α]

(iii)
= λα.

Corollary 2.5.11. Let F be a functor satisfying (C1) and (C2). If F is exact, then it is
isomorphic to the identity functor.

Proof. It suffices to show that, if F is exact, then λ = k2
1[1] = 1. Consider the following

distinguished triangle:

X1

ε1
1[0] // X1

i // C(ε11[0])
p // X1[1],

since the cone C(ε11[0]) on the morphism ε11[0] is isomorphic to X2, the triangle becomes:

X1

ε1
1[0] // X1

11
2[0] // X2

12
1[1] // X1[1]. (2.2)

Now F sends the previous triangle in to the following one:

X1

ε1
1[0] // X1

11
2[0] // X2

12
1[1]

λ
// X1[1]. (2.3)

Since F is exact, the triangle (2.3) is distinguished, hence it is isomorphic to the distinguished
triangle (2.2). So we have:

X1

ε1
1[0] //

id
��

X1

11
2[0] //

id
��

X2

λ12
1[1]//

a+εb

��

X1[1]

id
��

X1

ε1
1[0] // X1

11
2[0] // X2

12
1[1] // X1[1].
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The diagram is commutative up to homotopy, hence:{
a = λ

a = 1

Thus λ = 1 and, by Theorem 2.5.10, the functor F is the identity.

Corollary 2.5.12. Every exact autoequivalence of Perf(A) is of Fourier-Mukai type.

Proof. [16], Proposition 5.10 shows that the composition of Fourier-Mukai functor is again of
Fourier-Mukai type. Now, F is the identity up to shifts and push forwards functors, which are
both of Fourier-Mukai type. Hence F itself is a Fourier-Mukai functor.

Corollary 2.5.13. If k 6= Z2, then there exists an autoequivalence Perf(A) that is not exact.

Proof. Choose the coefficient k1
2[1] 6= 0, 1, set all the coefficients as described in Theorem 2.5.10.

The functor F is well defined since all the compositions are well posed:

kij[α]k
j[α]
l[β] = kij[α]k

j
l[β−α] = λα+β−α = λβ = kil[β].

By Corollary 2.5.11, F is not exact.

2.6 Fourier-Mukai functors on Perf(A)

In the following we give a slight different version of [22], Corollary 9.13, which extends the
results in 2.5.12.

Theorem 2.6.1. Let Y be a quasi-compact and separated scheme. Let:

F : Perf(A) // Dqcoh(Y )

be a fully faithful functor. Then there is an object E ∈ Dqcoh(SpecA× Y )) such that:

ΦE |Perf(A)
∼= F.

Furthermore, if Y is noetherian and F sends Perf(A) to Db(Y ), then

E ∈ Db(SpecA× Y ).

Proof. We know by ([22]) that there exist enhancements of the derived categoriesDqcoh(SpecA))

and Dqcoh(Y )), we call them Ddg(Qcoh(SpecA)) and Ddg(Qcoh(Y )) respectively. Also, by [22]
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Proposition 1.17, these enhancements are quasi equivalent to the DG categories SF(Perf(A))

and SF(Perf(Y )). Denote by:

φA : Ddg(QcohA) // SF(Perf(A))

φY : Ddg(QcohY ) // SF(Perf(Y ))

the corresponding quasi-functors. The functor F induces an equivalence:

F̃ : Perf(A)
∼ // H0(C)

where C is the full DG subcategory in SF(Perf(Y )) consisting of all objects in the essential
image of H0(φY ) ◦ F . By [22], Theorem 6.4, there is a quasi-equivalence:

F : Perf(A) // C

which induces a quasi-equivalence:

F∗ : SF(Perf(A)) // SF(C) .

Let D ⊂ SF(Perf(Y )) be a DG subcategory that contains Perf(Y ) and C. Denote by J :

C // D and I : Perf(Y ) // D the respective embeddings. Let:

H := φ−1
Y ◦ I∗ ◦ J

∗ ◦ F∗ ◦ φA : Ddg(QcohA) // Ddg(QcohY )

be the functor that makes the following diagram commutative:

Ddg(QcohA)
H //

φA
��

Ddg(QcohY )

φY
��

SF(Perf(A))
F∗ // SF(C) J ∗ // SF(D)

I∗ // SF(Perf(Y ))

Notice that H0(H) commutes with direct sums, hence ([22], Theorem 9.10) the functor H0(H)

is isomorphic to ΦE with E ∈ D(Qcoh(SpecA× Y )).
As observed in the proof of [22], the restriction of I∗ ◦ J ∗ on C is isomorphic to the inclusion
C // SF(Perf(Y )) , hence the restriction ΦE |Perf(A) is fully faithful.

Let A be the full subcategory of Perf(A) whose object is only A, and let j : A→ Perf(A)

be the natural embedding.
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Define:
G := H0(F)−1 ◦ F̃ : Perf(A) // Perf(A)

By [22], Theorem 6.4, there is an isomorphism of functors:

j
∼ // G ◦ j

on the category A. Hence, by Corollary 2.5.11, the functor G is the identity on the whole
Perf(A). Therefore, the functors H0(F) and F̃ are isomorphic, that is:

(H0(φY ) ◦H0(H))|Perf(A)
∼= (H0(φY ) ◦ F )⇒ ΦE |Perf(A)

∼= F.

Finally if Y is noetherian and F sends Perf(A) to Db(Y ), then [22], Corollary 9.13, implies:

E ∈ Db(Coh(SpecA× Y )).

Corollary 2.6.2. Let Y be a quasi-compact and separated scheme. Let:

F : Db(SpecA) // Dqcoh(Y )

be a fully faithful functor that commutes with homotopy colimits. Then there is an object E ∈
Dqcoh(X × Y )) such that:

ΦE |Db(A)
∼= F.

Proof. Corollary 9.14 in [22] shows a similar result: if X is a projective scheme such that
T0(OX) = 0 and Y is a quasi-compact separated scheme, then for every fully faithful functor
that commutes with homotopy colimits:

F : Db(X) −→ Dqcoh(Y )

there is an object E ∈ Dqcoh(X × Y )) such that:

ΦE |Db(X)
∼= F.

The authors assume T0(OX) = 0 in order to prove that the restriction of the functor F to
the subcategory of perfect complexes Perf(X) is of Fourier-Mukai type. In our case we have
actually T0(OA) 6= 0, but we have already shown in Theorem 2.6.1 that the restriction of F
to Perf(A) is a Fourier-Mukai functor. Hence we do not need this hypothesis and the proof

50



follows as in Corollary 9.14, [22].

2.7 t-structures on Db(A)

This section is devoted to the study of all the possible t-structures on Db(A).

The first case we are interested in is the case of Perf(A). As we mentioned in previous chapter,
all the t-structures on Perf(A) are trivial. Infact, similar arguments of those in Proposition
2.7.2 allow us to consider only the subcategory add {X1[h]} as heart, and it is easy to verify
that such a subcategory can not satisfy the property (2) of Proposition 1.6.2.

Let us turn to analyze the case of the category Db(A) instead.

Remark 2.7.1. The subcategory A = {X ∈ Db(A) s.t. H i(X) = 0 for every i ≥ 0} is the
standard t-structure on Db(A). Its heart is the subcategory add {X1, X∞} .

Proposition 2.7.2. Up to shift, the unique t-structure on Db(A) is the standard one.

Proof. We look for all possible hearts satisfying the two properties of Proposition 1.6.2. Since
the heart A is abelian, it is sufficient to check which indecomposable objects does A contain.
Thanks to the first part of Proposition 1.6.2 it is easy to verify that, up to shifts, the only
admissible candidates for hearts are A = add {X1}, A = add {X∞} and A = add {X1, X∞}.
The first case is not possible, since X1 does not generate the whole category Db(A). The
distinguished triangle:

X∞
ε−→ X1

1−→ X∞

is an extension of X1 by elements of add {X∞}, and so if X∞ is an element of A, then X1 is
such. It follows that the unique possibility is A = add {X1, X∞}.

It could be interesting to look at the explicit construction of the filtration for the objects of
Db(A). The first step is to write the filtration of the indecomposable objects of Db(A).

The filtration of X1, X∞ and all the other elements of the heart is provided by the distin-
guished triangle 0→ �→ �.
As for other indecomposables, by taking the cone one has the following exact triangle, for
1 < i <∞:

X∞
ε−→ Xi[−i+ 1]→ X∞[−i+ 1].
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The filtration of the indecomposable object Xi[−i+ 1] is the following:

0 // X∞
ε //

��

Xi[−i+ 1]

xx
X∞

ZZ

X∞[−i+ 1]

cc

By Remark 1.6.3, the filtration of other indecomposable objects can be obtained by shifting
these ones above. Moreover, the filtration of every object X of Db(A) can be constructed by
taking direct sums of the filtration of indecomposable objects that generate X.

2.8 Stability conditions on Db(A)

In this section we will describe the space Stab(Db(A)) of stability conditions on Db(A). Thanks
to the results of previous section, we know that all the t-structures on Db(A) are given by shifts
of the standard one. In particular all the possible hearts are Ah = add {X1[h], X∞[h]}.

The exact sequence:
0→ X∞

ε−→ X1
1−→ X∞ → 0

gives a relation in the Grothendieck group [X1[h]] = 2 [X∞[h]]. It follows that the Grothendieck
group is the free abelian group generated by X∞[h].
In order to give the stability function, it suffices then to choose a vector v in H as the image of
X∞[h].

All objects of the hearts Ah are semi-stable.

Let T be a triangulated category. Stab(T ) denotes the set of stability conditions which are
locally finite. Note that, if K(T ) is discrete, as in the case we are dealing with, all the stability
conditions are locally finite. Bridgeland proved that this space has a natural topology defined
by a generalized metric. Stab(T ) endowed with this topology, turns out to be a complex man-
ifold. If the Grothendieck group is finitely generated, as in our case, this manifold is of finite
dimension.

Proposition 2.8.1. A stability condition on Db(A) is given by an integer h and a vector v ∈ H.

Proof. By Proposition 5.3 of [5], it is sufficient to provide a heart of a bounded t-structure and
a stability function with the Harder-Narashiman property, but this property is already assured
since the heart is artinian and noetherian. The integer h specifies the heart Ah as described
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above, and v describes the stability function Z(X∞[h]) = v. The Grothendieck group K(Ah)

is, for every h, isomorphic to the Grothendieck group of the whole category Db(A) (see [31]
for details). The data (h, v) correspond to the stability condition σ = (Z,P) where the group
homomorphism Z is given by the stability function as observed above. Let φ be the phase of
v; P is given by:

P(φ) = add {X1[h], X∞[h]}

and it is zero for all the other φ ∈ (0, 1]. These data extend to all φ ∈ R.

There are two group actions on the space Stab(T ) (See [5], Lemma 8.2): a right action of
G̃L+(2,R) and a left action by isometries of the group of auto-equivalences of the category D .

Remark 2.8.2. The elements of G̃L+(2,R) (the universal covering of GL+(2,R)) are pairs
(G, f) where G ∈ GL+(2,R) and f : R→ R such that:

• f is an increasing map with f(x+ 1) = f(x) + 1 for every x ∈ R.

• G exp iπφ
|G exp iπφ| = exp iπf(φ).

Let S be the subgroup of G̃L+(2,R) generated by rotations (exp iπθ, f(x) = x + θ), θ ∈ R
and scalings (k, f(x) = x), k ∈ R+. We have:

S = {(k exp iπθ, f(x) = x+ θ) ∀θ ∈ R, k ∈ R+}.

The action on Stab(T ) is given by:

(G, f) � (Z,P(φ)) = (G−1 ◦ Z,P(f(φ)).

Lemma 2.8.3. The action of S on Stab(Db(A)) is free and transitive, hence Stab(Db(A)) ∼= S.

Proof. Let (Z,P) be the given stability condition, as in Proposition 2.8.1, by the pair (h, v).
Note that v = |v| exp iπφv. P(φv) = add {X1[h], X∞[h]} thus P(φv − h) = add {X1, X∞}.
Let θ = −h − φv and k = (|v|)−1. By the element (k exp iπθ, f(x) = x + θ) of S one can see
that (Z,P) belongs to the same orbit of the stability condition (0,−1). Then the action is
transitive. Moreover it is straightforward to verify that the action is also free.

Theorem 2.8.4. Stab(Db(A)) is isomorphic to C.

Proof. By Lemma 2.8.3, it is sufficient to verify the claim for the subgroup S. But S is the
universal covering of the subgroup of GL+(2,R) given by {k exp(iπθ), k ∈ R+, θ ∈ R}, which is
isomorphic to C∗.
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In [4] and [27], Bondarko and Pauksztello introduced the notion of co-t-structure. The
definition is similar to Definition 1.6.1.

Definition 2.8.5. Let T be a triangulated category. A co-t-structure on T is given by a full
additive subcategory F such that:

• F [−1] ⊂ F

• For all objects E in T , there exists a distinguished triangle:

F → E → G

where F ∈ F and G ∈ F⊥.

The co-heart of a co-t-structure is the subcategory A := F ∩F⊥[−1].

There are important differences between t-structures and co-t-structures. One example is
provided by the properties (1) and (2) of Remark 1.6.3: there are examples of co-hearts of a co-
t-structures that are not abelian and in general the filtration (2) is not unique. Proposition 1.3.3
of [4] makes clear that the proof of Proposition 2.7.2 still works in the context of co-t-structures.
The notion of co-stability conditions is also rather similar to the one of stability condition given
in Definition 1.6.7. Note that the inequalities involving the shifts in the Harder-Narasimhan
filtration are reversed:

• Any non zero object E admits a Harder-Narasimhan filtration, that is a finite number of
inclusion:

0 = E0 ↪→ E1 ↪→ · · · ↪→ En−1 ↪→ En = E

such that Fj = Cone(Ej−1 ↪→ Ej) are semistable object with phase:

φ(F1) < · · · < φ(Fn−1) < φ(Fn)

The space co-Stab(Db(A)) consisting of all the co-stability condition on a triangulated
category T is a topological manifold. By following [18] and following the proof of Theorem
2.8.4 one obtains:

Proposition 2.8.6. co-Stab(Db(A)) is isomorphic to C.
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Chapter 3

Equivariant Sheaves

3.1 Motivations

The aim of this chapter is the study of the relationships between the categoryDb
G(X), whereX is

a smooth projective variety over which acts a finite group G, and the category Perf(X/G) where
X/G is the geomtrical quotient of X by G. The inspiration of this chapter is [19], where Kawa-
mata proved Orlov’s representability theorem also for derived categories of smooth stacks. More
precisely the question is: is it possible to obtain an autoequivalence Perf(X/G) −→ Perf(X/G)

starting from an autoequivalence Db
G(X) −→ Db

G(X)?

Recall that we have a natural equivariant direct image functor:

πG∗ : CohG(X) −→ Coh(X/G)

defined as:
πG∗ (F) := (π∗F)G.

where π : X −→ X/G and F ∈ CohG(X).

Since πG∗ is an exact functor, it extends naturally to an exact functor of triangulated cate-
gories:

ΠG
∗ : Db

G(X) −→ Db(X/G).

Also, we have a left derived functor:

Lπ∗ := Lπ∗|Perf(X/G) : Perf(X/G) −→ Db
G(X).
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where π∗ is the usual pull-back functor:

π∗ : Coh(X/G) −→ CohG(X).

Remark 3.1.1. If we restrict ΠG
∗ to the essential image of Lπ∗, then (Lπ∗,ΠG

∗ ) form an adjoint
pair and ΠG

∗ ◦Lπ∗ is isomorphic to the identity functor on Perf(X/G). The functor Lπ∗ defines
an equivalence between its essential image in Db

G(X) and Perf(X/G).

Remark 3.1.2. Every autoequivalence of the equivariant derived categoryDb
G(X) is of Fourier-

Mukai type. That is, if Ω ∈ Aut(Db
G(X)), then there exists P ∈ Db

G2(X × X) such that
Ω ∼ ΦP . This is because the results proven by Kawamata in [19], and the fact that, if [X/G]

is the smooth stack associated to the normal projective variety X with quotient singularities,
then Coh[X/G] ∼= CohG(X).

Thus if φP : Db
G(X) −→ Db

G(X), is an autoequivalence, the more natural idea in order to
get an autoequivalence of Perf(X/G) is to define the functor:

Ω := ΠG
∗ ◦ ΦP ◦ Lπ∗.

For example, if we take P = ∆∗(OX [d]) = O∆[d]), d ∈ Z, where O∆[d] is the structure sheaf of
the diagonal ∆(X) ⊂ X×X and ∆ : X −→ X×X, then the functor Ω constructed as above is
just a shift and consequently it defines an autoequivalence of the category of perfect complexes
on the singular quotient. Unfortunately this is not true in general, because it may happen that
Ω does not takes value in Perf(X/G) and thus it cannot gives us a desired autoequivalence.
We shall give an example of this situation:

Remark 3.1.3. Consider the projective plane P2(C) =: X. There is an action by the finite
group G := Z2 generated by the automorphism:

[z0 : z1 : z2] −→ [z0 : z1 : −z2].

Clearly this action is not free and the geometrical quotient P2/Z2 is the weighted projective
plane P2(1, 1, 2) that is isomorphic to the quadratic cone in P3 defined by:

{[w0 : w1 : w2 : w3] ∈ P3 such that w0w1 = w2
1}

which is a surface with a unique singular point. The isomorphism is given by the map: w0 = z2
0 ,

w1 = z0z1, w2 = z2
2 , w3 = z2

2 .
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The fixed locus for the action of G is given by the set:

{[z0 : z1 : z2] ∈ P2 such that z2 = 0}
⋃

{[0 : 0 : 1]}.

The G-equivariant derived category Db
Z2

(P2) has a nice description: it may be seen as the
category of all bounded complexes of Z2-k[x, y]-free modules of finite type with generators
having bounded degree, up to homotopy equivalence. See [33] for further details.
Consider the inclusion map ∆ : X 7−→ X ×X. Let O(1) be the twisting sheaf of Serre on P2

and define P := ∆∗(O(1)). The Fourier-Mukai functor associated to P is an autoequivalence
of Db

Z2
(P2) and in particular:

ΦP(E•) = E• ⊗O(1)

for every E• ∈ Db
Z2

(P2).
Then, it is easy to see that the functor Ω := ΠG

∗ ◦ΦP ◦Lπ∗ sends the structure sheaf OX/G into
the twisting sheaf OX/G(1) which is not a perfect object. Indeed it was shown in [9] that, on
P(1, 1, 2), the sheaves OX/G(d) are perfect if and only if d is an even number. Hence Ω is not
an autoequivalence of the category of perfect complexes on the weighted projective plane.

Remark 3.1.4. The example above shows that if we choose P = ∆∗(OX(d)), with d being an
even integer, then the functor Ω takes value into Perf(X/G). Infact, if E• ∈ Perf(X/G), then:

Ω(E•) = ΠG
∗ (OX(d)⊗ Lπ∗(E•)) = ΠG

∗ (Lπ∗(OX/G(d)⊗ Lπ∗(E•)) = OX/G(d)⊗ E•.

Hence, in this case, Ω defines an autoequivalence of Perf(X/G).

We see therefore that, in order to reach our goal, first of all we have to give some ‘descend’
criteria for a G-locally free sheaf on X to descend to a locally free sheaf on the quotient X/G,
and, consequently, for a complex of G-equivariant sheaves to descend to the category of perfect
objects on X/G. Similar criteria were given in [33] in the case of a smooth quotient, and in [25]
in a more general situation; we adapted those criteria to our case and proved that F• ∈ Db

G(X)

descends to Perf(X/G) if and only if the the stabilizer Gx acts trivially on the OX -modules
Hj(F• ⊗L k(x)) for every point x ∈ X.

3.2 Descent criteria

Definition 3.2.1. Let X be a smooth projective variety. We say that a G-equivariant locally
free sheaf of finite type F ∈ CohG(X) descends to Coh(X/G) if there exists a locally free sheaf
V ∈ Coh(X/G) such that π∗(V) is isomorphic to F .
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Definition 3.2.2. Let X be a smooth projective variety. A G-equivariant complex of sheaves
F• ∈ Db

G(X) descends to Perf(X/G) if there exists a complex V• ∈ Perf(X/G) such that
Lπ∗(V•) is quasi-isomorphic to F•.

Remark 3.2.3. Notice that a G-equivariant locally free sheaf of finite type F descends if and
only if the canonical map:

π∗(πG∗ (F)) −→ F

is an isomorphism.
Similarly, a G-equivariant complex of sheaves F• descends if and only if the canonical map:

Lπ∗(ΠG
∗ (F)) −→ F

is a quasi-isomorphism.

The following result gives us a starting point to investigate when a G-equivariant vector
bundle descends.

Theorem 3.2.4. Let E be a G-equivariant vector bundle on a smooth projective variety X.
Then there exists a vector bundle B on X/G such that π∗(B) = E if and only if for every x ∈ X
the stabilizer Gx acts trivially on the fiber Ex for every x ∈ X.

Proof. See [10], Theorem 2.3.

Notice that if the action of G is free, then every G-bundle descends to the quotient because
all stabilizers are trivial. Also, there is an equivalence of categories:

Db
G(X)

∼−→ Db(X/G).

In our situation G does not act freely. However, in case we are dealing with invertible sheaves,
things are much easier:

Lemma 3.2.5. Let L be a G-line bundle on X. If n is a multiple of the order of G, then L⊗n

descends to the quotient.

Proof. The stabilizer is finite and its action on the fibers is represented by a one-dimensional
homomorphism whose values must be roots of unity, hence after taking tensor powers for any
multiple of the order of the group the action of Gx on fibers of L becomes trivial.

Lemma 3.2.6. If X is a smooth projective variety of dimension n and G is a finite group
acting on X, then the category CohG(X) has homological dimension smaller than n. That is,
for every pair of G-equivariant coherent sheaves F and G, Exti(F ,G) = 0 for every i > n.
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Proof. See [33], Lemma 1.1.

Lemma 3.2.7. Let X be a smooth projective variety. Let G be a finite group acting on X.
Then every G-equivariant coherent sheaf admits a finite resolution of G-equivariant locally free
sheaves of finite type.

Proof. See [33], Lemma 1.2.

Let Db
G(X) be the bounded derived category of CohG(X). The results mentioned above

lead to the following:

Corollary 3.2.8. If F• ∈ Db
G(X) is a bounded complex of G-equivariant sheaves, then there

exists a complex G• ∈ Db
G(X) such that F• is quasi-isomorphic to G• and Gi is a G-equivariant

locally free sheaf of finite type for every integer i.

We now give a descent criterion at the level of derived categories:

Proposition 3.2.9. Let F• ∈ Db
G(X). Then there exists a complex B• ∈ Perf(X/G) such that

Lπ∗(B•) = F• if and only if there exists a finite locally free G-resolution E• of F• such that for
every x ∈ X the stabilizer Gx acts trivially on the fiber E ix for every integer i.

Proof. Suppose there exists a finite locally free G-resolution E• of F• such that for every x ∈ X
the stabilizer Gx acts trivially on the fiber E ix for every integer i. The functor πG∗ is exact
and, since every E i descends to a vector bundle on the quotient (see Theorem 3.2.4), it follows
immediately that ΠG

∗ (E•) is a complex of vector bundles on X/G.
Viceversa, suppose there exists a complex B• ∈ Perf(X/G) such that Lπ∗(B•) = F•. Take a
finite locally free G-resolution E• of F•. The identity ΠG

∗ ◦Lπ∗ = Id implies that B• = ΠG
∗ (F•).

Take a resolution of B• by some vector bundles on X/G and denote it by V• = {0 −→ V1 −→
. . . −→ Vn −→ 0}. We have the following quasi-isomorphisms:

F• = Lπ∗(B•) = Lπ∗(V•) = π∗(V•) = {0 −→ π∗(V1) −→ . . . −→ π∗(Vn) −→ 0}.

Notice that π∗ preserves locally freeness hence π∗(V•) is a complex of vector bundles which
is quasi-isomorphic to F•. Furthermore Gx acts trivially on the fibers of π∗(Vi) for every
i = 1, . . . , n since πG∗ (π∗(Vi)) = Vi is a vector bundle on X/G.

In the future we will make strong use of the following result:

Lemma 3.2.10. Let X be affine. For every G-equivariant coherent sheaf F on X, such that the
action of the stabilizer Gx on the vector space F ⊗ k(x) is trivial for every x ∈ X, there exists
a G-equivariant locally free sheaf E on X with a surjective map E −→ F such that E descends
to the quotient.
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Proof. See [25], Lemma 2.14.

Remark 3.2.11. Let Vi be C-vector spaces for i = 1, . . . , 3 and let H be a finite group acting
on Vi for all i. Suppose there is an exact sequence:

V1
α−→ V2

β−→ V3

where β and α are H-maps of vector spaces. Also, suppose the action of H is trivial on V1 and
on V3. Then the action of H on V2 is trivial as well.
Infact, take x ∈ V2. If β(x) = 0 then there exists y ∈ V1 such that α(y) = x. But then
hx = hα(y) = α(hy) = α(y) = x for every h ∈ H.

Suppose now β(x) = z 6= 0 and take h ∈ H. Notice that there exists an integer n such
that hn = Id because the group H is finite. Now, β(hx) = hβ(x) = hz = z, therefore
β(hx−x) = 0 and then there exists y ∈ V1 such that x = hx+α(y). Multiplicating by h we get
hx = h2x + α(y) and then x = h2x + 2α(y). Iterating the same process we eventually obtain
x = hnx+ nα(y) = x+ nα(y), which implies α(y) = 0, that is hx = x.

The following result is an adaptation to our case of the replacement tool found in [25],
Proposition 4.1.

Lemma 3.2.12. Let X be a smooth projective variety. Let F• ∈ Db
G(X). Suppose E• is a

G-equivariant resolution of F• such that:

E• : {0 −→ E1 α1−→ E2 α2−→ . . .
αn−2−→ En−1 αn−1−→ En −→ 0}

and the action of the stabilizer Gx is trivial on the OX-modules Hn(E• ⊗ k(x)) for every point
x ∈ X. Then there is a complex:

V• := {0 −→ V−m −→ V−m+1 −→ . . . −→ V0 −→ V1 −→ . . . −→ Vn −→ 0}

of G-equivariant locally free sheaves such that V• is quasi-isomorphic to F• and Vn descends to
the quotient. In particular Hj(V•) = 0 for j = −m, . . . , 0.

Proof. The existence of a complex V• of G-equivariant locally free sheaves which is quasi-
isomorphic to F• is trivial. We only need to prove that Vn descends but Remark 3.2.3 implies
immediately that the descending properties must be checked locally, hence we can suppose that
our variety X is affine.
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We have a surjection πn : En −→ coker(αn−1), which induces another surjection:

En ⊗ k(x) −→ coker(αn−1)⊗ k(x)

for all x ∈ X.
We know that Hn(F• ⊗L k(x)) = Hn(E• ⊗ k(x)) = coker(αn−1) ⊗ k(x) is Gx-invariant, then
Lemma 3.2.10 implies that there is a G-equivariant locally free sheaf Vn with a surjective
morphism γn : Vn −→ coker(αn−1) and a morphism fn : Vn −→ En such that πn ◦ fn = γn.
We now consider the subsheaf Gn ⊂ En−1⊕Vn made by those sections (e, v) such that αn−1(e) =

fn(v). We have a natural morphism β′n−1 : Gn −→ Vn. Now take a G-equivariant locally free
sheaf Vn−1 which surjects onto Gn. Then projecting on to the left, we obtain a map fn−1 :

Vn−1 −→ En−1, and composing with β′n−1 we obtain a morphism βn−1 : Vn−1 −→ Vn.

. . . // En−1 αn−1 // En // 0

Gn
β′n−1 //

OO

Vn //

fn

OO

0

Vn−1

fn−1

<<

OO

βn−1

<<

Notice that the map: Vn/im(βn−1) −→ coker(αn−1) induced by fn is an isomorphism. In-
fact, γn is surjective and ker(γn) = im(βn−1): if a section v of V n is such that γn(v) = 0

then there exist a section e of En−1 such that αn−1(e) = fn(v), and thus β′n−1(e, v) = v;
now it is sufficient to take a section v′ of Vn−1 such that βn−1(v′) = e. Furthermore, if
v = βn−1(v′) = βn−1(e, v) then γn(v) = πn(αn−1(e)) = 0.

Notice that the map: γn−1 : ker(βn−1) −→ ker(αn−1)/im(αn−2) is surjective. If e′ is a sec-
tion of ker(αn−1)/im(αn−2) then first we lift it to a section e of ker(αn−1), then (e, 0) is a
section of ker(β′n−1) which maps to e, and thus it suffices to lift (e, 0) to a section of ker(βn−1).

We now iterate the process described above. Consider the subsheaf Gn−1 ⊂ En−2 ⊕ Vn−1

made by those sections (e, v) such that αn−2(e) = fn−1(v). Again we have a natural morphism
β′n−2 : Gn−1 −→ Vn−1. Now take a G-equivariant locally free sheaf Vn−2 which surjects onto
Gn−1. Then we obtain a map fn−2 : Vn−2 −→ En−2, and composing with β′n−2 we obtain a
morphism βn−2 : Vn−2 −→ Vn−1. We just need to prove now that the kernel of γn−1 corre-
sponds to the image of βn−2. If a section v of V n−1 is such that γn−1(v) = 0 then there exists
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a section e of En−2 such that αn−2(e) = fn−1(v), and thus β′n−2(e, v) = v; now it is sufficient
to take a section v′ of Vn−2 such that βn−2(v′) = e. Furthermore, if v = βn−2(v′) = β′n−2(e, v)

then γn−1(v) = πn−1(αn−2(e)) = 0.

. . . // En−2 αn−2 // En−1 αn−1 // En // 0

Gn
β′n−1 //

OO

Vn //

fn

OO

0

Gn−1

OO

β′n−2 // Vn−1

fn−1

<<

OO

βn−1

==

Vn−2

fn−2

==

OO

βn−2

<<

It is clear then that we can iterate this construction until we get a complex of G-equivariant
vector bundles:

V• : {0 −→ V1 β1−→ V2 β2−→ . . .
βn−2−→ Vn−1 βn−1−→ Vn −→ 0}

such that γj : Hj(V•) ∼−→ Hj(E•) is an isomorphism for 2 ≤ j ≤ n and γ1 is surjective.

Furthermore Vn descends to the quotient. Thus, if we consider the sheaf ker(γ1)
i
↪→ V1 and a

resolution:

0 −→W−m −→W−m+1 −→ . . . −→W−1 −→W0 ω−→ ker(γ1) −→ 0

then the following complex:

0 −→W−m −→ . . . −→W0 i◦ω−→ V1 β1−→ V2 β2−→ . . .
βn−2−→ Vn−1 βn−1−→ Vn −→ 0

is a complex of G-equivariant vector bundles quasi-isomorphic to E• such that Vn descends to
the quotient.

We are now ready to give the general descent criterion:

Theorem 3.2.13. Let X be a smooth projective variety and take F• ∈ Db
G(X). Then F•

descends to Perf(X/G) if and only if the the stabilizer Gx acts trivially on the OX-modules
Hj(F• ⊗L k(x)) for every point x ∈ X.
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Proof. Suppose F• descends. Let E• be a finite resolution of G-locally free sheaves of finite
type of F . We have the following:

Hj(F• ⊗L k(x))
∼−→ Hj(E• ⊗ k(x)).

Since Gx acts trivially on Ej ⊗ k(x) for all j, then it must act trivially also on Hj(E• ⊗ k(x)),
because the action of the group commutes with cohomology.

Viceversa, suppose that the stabilizer Gx acts trivially on the OX -modules Hj(F• ⊗L k(x))

for every point x ∈ X and for every j. We divide the proof in two steps:

• Suppose F• = F is just a coherent sheaf (i.e. a complex concentrated in degree zero).

We want to prove that F descends. Remember that we can suppose X to be affine because
Remark 3.2.3 tells that descending property are local.

If the stabilizer Gx acts trivially on Hj(F•⊗L k(x)) for every point x ∈ X, then in particular it
acts trivially on F ⊗k(x) for every x ∈ X. Infact, if E• is a G-equivariant locally free resolution
of F , then H0(E•⊗k(x)) = H0(F ⊗k(x)) = F ⊗k(x). Thus there exists a G-equivariant locally
free sheaf V1 which descends to the quotient, and a surjective morphism: V1 −→ F . Now, let
K1 be the kernel of this morphism and consider the following exact sequence:

0 −→ K1 −→ V1 −→ F −→ 0.

We now take the long exact cohomology sequence:

. . . −→ Torj(F , k(x)) −→ Torj−1(K1, k(x)) −→ 0 −→ Torj−1(F , k(x)) −→

−→ Torj−2(K1, k(x)) −→ 0 −→ Torj−2(F , k(x)) −→ . . .

. . . −→ 0 −→ Tor2(F , k(x)) −→ Tor1(K1, k(x)) −→ 0 −→

−→ Tor1(F , k(x)) −→ K1 ⊗ k(x) −→ V1 ⊗ k(x) −→ F ⊗ k(x) −→ 0.

The vector space Hj(K1⊗L k(x)) is always in between two Gx-invariant vector spaces and then
Remark 3.2.11 implies that it is Gx-invariant as well. We now iterate the process: consider a
G-equivariant locally free sheaf V2 which descends to the quotient, and a surjective morphism:
V2 −→ K1 and let K2 be the kernel of this morphism. From the long exact cohomology se-
quence associated to the following exact sequence 0 −→ K2 −→ V2 −→ K1 −→ 0 we deduce
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that Hj(K2 ⊗L k(x)) is Gx-invariant, and in particular there exists a G-equivariant locally free
sheaf V3 which descends to the quotient, and a surjective morphism: V3 −→ K2.

The process must end within a finite number of iterations, say m ∈ Z≥0, since the homo-
logical dimension of CohG(X) is finite. That is, at some point we obtain a kernel Km which is a
locally free sheaf such that the action of the stabilizer on the vector spaces Km⊗ k(x) is trivial
for every x ∈ X, and therefore (see Theorem 3.2.4) Km descends. In other words, we obtain a
finite G-equivariant locally free resolution of F :

0 −→ Vm −→ . . . −→ V2 −→ V1 −→ F −→ 0

such that every Vi descends to the quotient for i = 1, . . .m.

• Suppose now that F• is a complex of G-equivariant sheaves.

We proceed by induction on the number n of non-zero cohomology groups of the complex F•.
More precisely, the induction statement is the following:

Let F• ∈ Db
G(X) be such that Hj(F•) 6= 0 for j = 1, . . . , n and such that the action of the

stabilizer Gx is trivial on the OX-modules Hj(F• ⊗L k(x)) for every point x ∈ X. Then F•

descends Perf(X/G).

If n = 1 the statement is true since it means that F• is just a sheaf, and therefore we go
back to the previous case. Suppose now the statement is true for n − 1. Take a resolution
E• := {0 −→ E1 −→ . . . −→ En −→ 0} of F•. By Lemma 3.2.12 there exists a complex:

V• := {0 −→ V−m −→ V−m+1 −→ . . . −→ V0 −→ V1 −→ . . . −→ Vn −→ 0}

which is quasi-isomorphic to E and such that Vn descends to the quotient.

Now, we have the following exact triangle:

Vn[−n]⊗ k(x) −→ V• ⊗ k(x) −→ σ≤n−1V• ⊗ k(x)
[1]−→ .

where σ≤n−1V• is the stupid truncation of V• (see Definition 1.4.1).

From the long exact cohomology sequence:

0 −→ Hn−1(V• ⊗ k(x)) −→ Hn−1(σ≤n−1V• ⊗ k(x)) −→
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−→ Vn[−n]⊗ k(x) −→ Hn(V• ⊗ k(x)) −→ 0

and from Remark 3.2.11 we see that Hn−1(σ≤n−1V•) ⊗ k(x) = Hn−1(σ≤n−1V• ⊗ k(x)) is Gx-
invariant. Also notice that Hj(σ≤n−1V• ⊗ k(x)) = Hj(V• ⊗ k(x)) for j = 1, . . . , n − 2. Hence
σ≤n−1V• is a complex such that Hj(σ≤n−1V• ⊗ k(x)) is Gx invariant for all j. Furthermore,
Hj(σ≤n−1V•) 6= 0 for j = 1, . . . , n−1, hence we can apply the induction hypothesis and conclude
that σ≤n−1V• descends to Perf(X/G). We have then a commutative diagram:

Vn[−n] //

��

V• //

��

σ≤n−1V•

��
Lπ∗ ◦ΠG

∗ (Vn[−n]) // Lπ∗ ◦ΠG
∗ (V•) // Lπ∗ ◦ΠG

∗ (σ≤n−1V•)

The first and third vertical map are quasi-isomorphism, and this implies that also the second
vertical map is a quasi-isomorphism, that is V• descends to Perf(X/G).

3.3 Equivariant Fourier-Mukai transforms

In this section we give an example which shows how to build an autoequivalence of Perf(X/G)

starting from a Fourier-Mukai autoequivalence of Db
G(X). We deal with the case of projective

varieties with ample canonical sheaf or ample anticanonical sheaf, since all the autoequivalences
of the bounded G-equivariant derived category are classified:

Theorem 3.3.1. Let X be a smooth normal projective variety with ample canonical sheaf or
ample anticanonical sheaf. Then the group of isomorphism classes of exact autoequivalence
Db
G(X) is generated by automorphisms, tensor products with invertible sheaves and shifts.

Proof. See [19], Theorem 7.2.

Let X be projective with KX or −KX ample. Then, if we want to study whenever an
autoequivalence ΦP of Db

G(X) induces and autoequivalence of Perf(X/G), it suffices to study
what happens when ΦP is a generator of the group of exact autoequivalences of Db

G(X).

If ΦP is a shift, that is P = ∆∗(OX [d]) for a certain integer d ∈ Z, where ∆ : X −→ X ×X,
then it is straightforward to see that ΦP always induces an autoequivalence of Perf(X/G).

Suppose now ΦP is a tensor product with an invertible sheaf L on X, that is P = ∆∗(L)

where ∆ : X −→ X ×X. Hence the Fourier-Mukai transform associated to the kernel ∆∗(L)
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gives rise to a functor:

Ω := ΠG
∗ ◦ ΦP ◦ Lπ∗ : Perf(X/G) −→ Perf(X/G)

Ω(A•) = ΠG
∗ (L ⊗ Lπ∗(A•)).

If L descends to the quotient, i.e. the stabilizer Gx acts trivially on L ⊗ k(x) for every x ∈ X,
then Ω defines an autoequivalence of Perf(X/G).
If L does not descends, then it suffices to take the tensor product of L to the order of the group
G. Infact, according to Lemma 3.2.5, the stabilizer Gx acts trivially on every fiber of L⊗|G|.

If ΦP is such that P = OΓf
for an automorphism f : X −→ X then:

Ω := ΠG
∗ ◦ ΦP ◦ Lπ∗ : Perf(X/G) −→ Perf(X/G)

Ω(A•) = ΠG
∗ (f∗(Lπ∗(A•))).

Then, in this case Ω defines always an autoequivalence, because automorphisms of X preserve
the descending property, infact:

Hj(f∗(Lπ∗(A•))⊗L k(x)) = Hj(f∗(Lπ∗(A•)⊗L k(f−1(x))))

because of the projection formula.

In the more general situation we have the following:

Theorem 3.3.2. Let X be a smooth projective variety and let ΦP be an autoequivalence of
Db
G(X). Then the functor:

Ω := ΠG
∗ ◦ ΦP ◦ Lπ∗ : Perf(X/G) −→ Perf(X/G)

is an autoequivalence of Perf(X/G) if and only if the stabilizer Gx acts trivially on the OX-
modules Hj(ΦP(Lπ∗(A•))⊗ k(x)) for every x ∈ X and j ∈ Z, where A• ∈ Perf(X/G).

This result comes from the descending criterion that we proved previously. Infact, Ω defines
an equivalence if and only if ΦP(Lπ∗(A•) descends to the quotient, and this happens, by The-
orem 3.2.13, if and only if the stabilizer Gx acts trivially on Hj(ΦP(Lπ∗(A•))⊗ k(x)) for every
x ∈ X and j ∈ Z.

We believe that is it possible to find a deeper description for those autoequivalences ΦP of
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Db
G(X) such that the induced functor Ω becomes an autoequivalence of Perf(X/G). In par-

ticular, we hope that it is achievable to find a descent criterion involving only the kernel P
associated to such autoequivalences ΦP . This is still an open problem on which we want to
dedicate ourselves in the future.
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