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Introduction

According to the fundamental Stone-Weierstrass theorem, if X is a finite
dimensional real Banach space, then every continuous function on the unit
ball Bx can be uniformly approximated by polynomials.

Before venturing out into infinite-dimensional Banach spaces, let us touch

upon what polynomials on such spaces are like.

Definition. Let X,Y be Banach spaces,! n € N and let £ ("X;Y) be the

space of n-linear Y-valued mappings on X.

e A mapping P: X — Y is called an n-homogeneous polynomial
if there exists M € L ("X;Y) such that P(z) = M(x,...,x) for all
x € X. For convenience, we also define 0-homogeneous polynomials as
constant mappings from X to Y. We denote by P ("X;Y), n € Ny,
the space of all n-homogeneous polynomials from X into Y. When the
target space is the scalar field, we use a shortened notation P ("X) =
P(XY).

e A mapping P: X — Y is called a polynomial of degree at most
n if there exist P, € P (kX; Y), k=0,...,n,such that P = _, Px.
If P, # 0 we say that P has degree n. We denote by P"(X;Y") the

space of all polynomials of degree at most n.
e We denote by P(X;Y) = J,_, P"(X;Y) the space of all polynomials.

e We say that P € P("X;Y) (resp. P*"(X;Y), P(X;Y)) is bounded
whenever |P| = sup,cp, |[P(z)| < +00. We denote by (P ("X;Y), | - |)

!Some among the following definitions hold for vector spaces. For the sake of concise-
ness, let us consider Banach spaces in this introduction, as the main results we hint at

concern Banach spaces.
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(resp. (P™(X;Y), |- ]), (P(X;Y),]|-|)) the normed linear space of all
continuous? n-homogeneous polynomials (resp. all continuous polyno-

mials of degree at most n, all continuous polynomials).
e We denote by A, (X) the algebra generated by P"(X).

For infinite dimensional Banach spaces the statement of the Stone-Weierstrass
Theorem is false, even if we replace continuous functions by the uniformly
continuous ones (which is a natural condition that coincides with continu-
ity in the finite dimensional setting): in fact, on every infinite-dimensional
Banach space X there exists a uniformly continuous real function not ap-
proximable by continuous polynomials (see [53]).

The natural problem of the proper generalization of the result for infi-
nite dimensional spaces was posed by Shilov [59] (in the case of a Hilbert
space). Aron [2] (see also Aron and Prolla [8]) observed that the uni-
form closure on By of the space of all polynomials of the finite type,
denoted by P;(X), which consists of all polynomials admitting a formula
P(x) =>"_1{p;j,x)",¢; € X* ,nj €N, is precisely the space of all functions

which are weakly uniformly continuous on Bx (Theorem 3.1.1):
Theorem ([2], [8]). Let X, Y be Banach spaces. Then P¢(X;Y) = Cuu(Bx;Y).

Since there exist infinite dimensional Banach spaces such that all bounded
polynomials are weakly uniformly continuous on Bx (e.g. ¢y or more gener-
ally all Banach spaces not containing a copy of £; and such that all bounded
polynomials are weakly sequentially continuous on By), this result gives a
very satisfactory solution to the problem.

Unfortunately, most Banach spaces, including L,, p € [1, ), do not have the
special property used in [8]. In this case, no characterization of the uniform
limits of polynomials is known.

But the problem has a more subtle formulation as well. Let us consider
the algebras A, (X)) consisting of all polynomials which can be generated by
finitely many algebraic operations of addition and multiplication, starting
from polynomials on X of degree not exceeding n € N. Of course, such

polynomials can have arbitrarily high degree. The first mentioned result can

2Boundedness and continuity are equivalent.
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now be formulated as stating that A;(X) consists precisely of all functions
which are weakly uniformly continuous on Bx. It is clear that, if n is the
lowest degree such that there exists a polynomial P in P("X) which is not

weakly uniformly continuous, then

.Al(X> = AQ(X) == An_l(X) e An(X>

The problem of what happens from n on has been studied in several papers,
notably [53], [41] and [29]. The natural conjecture appears to be that once
the chain of equalities has been broken, it is going to be broken at each
subsequent step.

The proof of this latter statement given in [41], for all classical Banach
spaces, based on the theory of algebraic bases, is unfortunately not entirely
correct, as was pointed out by our colleague Michal Johanis. It is not clear
to us if the theory of algebraic bases developed therein can be salvaged.
Fortunately, the main statement of this theory, Lemma 1.5.4, can be proved
using another approach. The complete proof, which will appear in [22], can
be found in Chapter 2. Most of the results in this area which used [41] are
therefore safe.

The aforementioned statement coincides with the following

Lemma. For every n € N, there exists an € > 0 such that, for every m >
M(n),
sup  [p(21,. .o Tm) — Snt1(T1, .o Tm)| = €,
S jail<t
i=1
for every p from the algebra S,, (R™) generated by subsymmetric polynomials

of degree at most n.
The above quantitative lemma implies the following

Theorem. Let X be an infinite dimensional Banach space, and P € P("X)
be a polynomial with the following property: for every N € N and ¢ > 0,
there exists a normalized finite basic sequence {ej}é-vzl such that
N N
P (Z ajej> — Z aj
j=1 j=1

sup < e

N
2o lajl<t

Then P ¢ Ap,_1(X).
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This fundamental criterion, in combination with some new results on the
asymptotic behaviour of polynomials on infinite dimensional spaces, is one
of the keys to prove our main result (see [21]), dealt with in Chapter 3
(Theorem 3.2.1).

Theorem. Let X be a Banach space and m be the minimal integer such
that there is a non-compact P € P("™X;¥41). Then n = m implies P("X) &
An—1(X).

Theorem 3.2.1 implies, together with the positive results of [2] and [8] (see
the first theorem mentioned above), plus the corollary below (see [6]), all
previously known results in this area (all confirming the above conjecture)

as special cases.

Corollary ([6]). Let X, Y be Banach spaces and suppose that X does not
contain a subspace isomorphic to 1. Then Py ("X;Y) = Puse("X;Y).

For example, in the following cases it can be easily inferred that the algebra
chain is broken, from a certain point (which we can determine) onward, at
each subsequent step: if X is a Banach space admitting a non-compact linear
operator T' € L(X;¢,), p € [1,00) (see [41]); if X = L,([0,1]), 1 < p < o0,
or X =/, or X = C(K), where K is a non-scattered compact; if {1 — X
([41]); if X = £, 1 < p < o0; if X* has type ¢; if X has an unconditional
FDD, ¢; 4> X and there exists a P € P("X) which is not weakly sequentially

continuous. ..

In Chapter 4 we also give solutions to three other problems posed in the
literature, which are concerning smooth functions rather than polynomials,
but which belong to the same field of study of smooth mappings on a Banach
space.

The first result is a construction of a non-equivalent C*-smooth norm on
every Banach space admitting a C*-smooth norm, answering a problem

posed in several places in the literature, e.g. in [12].

Theorem. Let X be an infinite dimensional Banach space admitting a C*-

smooth norm, k = 2. Then X admits a decomposition X =Y @ Z, where
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Y is infinite dimensional and separable. In particular, X admits a non-

complete C*-smooth renorming.

We solve a question in [11] by proving that a real Banach space admitting a
separating real analytic function whose holomorphic extension is Lipschitz

in some strip around X admits a separating polynomial.

Theorem. Let X be a real Banach space which admits a real analytic sep-
arating function whose complex extension exists and is Lipschitz on some
strip around X, i.e. on X + 2rByc C XC, for some r > 0. Then X is

superreflexive and admits a separating polynomial.

Eventually, we solve a problem posed by Benyamini and Lindenstrauss in
[14], concerning the extensions of uniformly differentiable functions from the
unit ball into a larger set, preserving the values in some neighbourhood of the
origin. More precisely, we construct an example of a uniformly differentiable
real-valued function f on the unit ball of a certain Banach space X, such
that there exists no uniformly differentiable function g on ABx, for any
A > 1, which coincides with f in some neighbourhood of the origin. To do

S0, we construct suitable renormings of ¢g, based on the theory of W-spaces.

Example. There exist countably many norms {| - ||, }m_, on cp such that, if
we set X = @, Yoo _o(co, ||+ |m), then there exists a uniformly differentiable
function f : Bx — R which cannot be extended to a uniformly differen-
tiable function on any ABx, A > 1, preserving its original values in some

neighbourhood of 0.
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Chapter 1

Background and preliminary

results

In this chapter we collect some background results concerning polynomials
in Banach spaces, which will be used in the sequel. We refer to [36] for the
standard notation concerning Banach spaces and to [30] for the standard
notation concerning polynomials. For the sake of conciseness we will omit
the proofs that are not directly involved in the papers [21] and [22], which
the reader can find (along with further references) in the comprehensive

monograph on smoothness in Banach spaces [44].

We also employ numerous classic tools and results in Banach Space The-
ory (such as Gateaux and Fréchet differentiability, Tsirelson’s space, James-
Gurarii theorem, Bessaga-Petczynski theorem, Dunford-Pettis property, Rosen-
thal’s #1 theorem, biorthogonal systems, lifting properties, Asplund and
weak-Asplund spaces, projectional resolutions of the identity, Weakly Lin-
deldf Determined (WLD) spaces, finite-dimensional decompositions (FDD),
type and cotype, superreflexivity, Lipschitz mappings, holomorphy. .. ): should
the reader need to delve into these topics, we suggest consulting [35], [46],

[36] and [44], where they are widely treated.

1



Chapter 1

1.1 Polynomials

By Ny we denote the set N U {0}, i.e. the non-negative integers. The

N

canonical basis of RY will be denoted by {e;} i1

Definition 1.1.1. Let X1, Xo,...,X,,Y be vector spaces.

e We say that a mapping M : X; x--- X,, — Y is n-linear if it is linear
in each coordinate, that is © — M(x1,...,Tk—1, %, T41,--.,Tn) IS &
linear mapping from X}, into Y for each x1 € X1,...x, € X,, and each
ke{l,...,n}.

e By L(Xy,...X,;Y) we denote the vector space of all n-linear map-
pings from X x --- x X;, to Y. Whenever X, = X, 1 < k < n, we use
the short notation L ("X;Y).

e A map is called multilinear if it is n-linear for some n € N. A 2-linear

mapping will also be called bilinear.

e We say that M € L ("X;Y) is symmetric if M (zy,...,2,) =
M (ajﬂ(l), .. .,J:W(n)) for every permutation m of {1,...,n} and every

xl,...,mneX.

e By L°("X;Y) we denote the vector space of all n-linear symmetric

mappings from X" to Y.
Definition 1.1.2. Let X1, Xs,...,X,,Y be normed linear spaces.

e Wesay that M € L (Xy,...,X,;Y) is a bounded n-linear mapping
if
|M| = sup IM(z1,...,2,)|| < +o0.!
931€BX1 ,...,(EHEBXn
e By (£ (X1,..., Xp;Y) 5| - [}), resp. (£ ("X5Y) 5[ - ), resp. (£° ("X5Y) 5] ),
we denote the normed linear space of all respective n-linear bounded
mappings. For bounded n-linear forms, we use the shortened notation
L("X)=L("X;K).

Tt is straightforward that | - || defines a norm on the subspace of L (X1,...,X,;Y)

consisting of bounded multilinear mappings.



1.1 Polynomials

Remark 1.1.3. Let M € £ (X;,...,X,;Y). Then by homogeneity we have
MGz, < IM] 1]+ [l for z5€ X,j = 1,...,n.

It turns out that for multilinear mappings an analogous result to that of con-
tinuity of linear functionals holds, i.e. polynomials are continuous mappings

whenever they have at least one point of continuity.

Proposition 1.1.4. Let X;1,...,X,,,Y be normed linear spaces and M €
L(X1,...,Xn;Y). The following are equivalent:

(i) M is bounded;
(ii) M is Lipschitz on bounded sets;
(iii) M is continuous;
(iv) M is bounded on a neighbourhood of some point.

A particular property comes in handy: homogeneous polynomials are in a
canonical one-to-one correspondence with the symmetric multilinear forms

via the Polarization formula, as the following proposition states.

Proposition 1.1.5 (Polarization formula). Let X,Y be vector spaces and
MeL("X;Y). Then

1 n n
Ms(azl,...,xn)=2nn' Z 61"’5nM(CL"‘ZE]\TJ‘,...,CL‘FZEJ‘IEJ‘)
' j=1 j=1

6.7'=i1
for every a,x1,...,x, € X. In particular, if M is symmetric, then it is
uniquely determined by its values M(x,...,x), x € X, along the diagonal.

Definition 1.1.6. Let X,Y be vector spaces and n € N.

e A mapping P: X — Y is said to be an n-homogeneous polyno-
mial if there exists an n-linear mapping M € L ("X,Y) such that
P(z) = M(x,...,x). We use the notation P = M. For the sake of
convenience, we also define 0-homogeneous polynomials as constant

mappings from X to Y.

e We denote by P ("X;Y'), n € Ny, the vector space of all n-homogeneous

polynomials from X into Y.
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Suppose X, Y are normed linear spaces, n € Ny.

e We say that Pe P ("X;Y) is a bounded polynomial if

[P = sup [P(z)] < +o0.
xeBx
e Wedenote by (P ("X;Y),| - |) the normed linear space of all n-homogeneous
bounded polynomials from X into Y. When the target space is the
scalar field, we use the shortened notation P ("X) = P ("X; K).

For a given n-homogeneous polynomial P, the n-linear mapping M that
gives rise to P is not uniquely determined. In particular, the symmetrized
n-linear mapping leads to the same polynomial: for every M € L ("X;Y),

we have M = M>. However, the following fundamental result holds.

Proposition 1.1.7 (Polarization formula, [17], [51]). Let X,Y be vector
spaces and n € N. For every P € P ("X;Y), there exists a unique symmetric
n-linear mapping PelLs ("X;Y) such that P(z) = ]5(38, ..., x). It satisfies

the formula

o 1 "
P(xy,...,xpn) = S Z €1 -enP (a—i— Z Eja:j> ,
! =

5j=i1

where a € X can be chosen arbitrarily. Moreover, if X,Y are normed linear

spaces and P is bounded, then P is also bounded and we have
~ nm
1Pl < |B| < % 1Pl

On the other hand, for every m > n and a,x1,...,x, € X, the following

holds:
ijj) = 0.
1

Most of the time we will be concerned with the restrictions of the polynomi-

NgE

Z €1 -emP (a—i—
Ej:il ]

J

als whose domain is a Banach space X to a suitable subspace Y «— X with
a Schauder basis {e;}52; (resp. a finite-dimensional Banach space). In this
case it is possible, and very useful, to rely on the concrete representation of
(the restriction of) the polynomial using the monomial expansion in terms

of the vector coordinates.



1.1 Polynomials

Definition 1.1.8. Let n € N. For a multi-index o € Nj we denote its order

by |a| = 3)7_; ;. We denote the set of multi-indices of order d € Ng by
I(n,d) = {aef0,....,d}" : |a| =d}.

In order to treat infinite dimensional Banach spaces, we extend the definition

also to the case when n = o0, setting

3(oo,d):{ae{o,..., : ol = Zoz]—d}

For n,d € N we denote J*(n,d) = {a€J(n,d):a; >0,j=1,...,n} and
TH(d) = U=y 9" (n,d).

For n € N we denote
N(n)={peN":p <py<--- <pp}.

For n € N we have |J(n,d)| = ("+d_1).2

n—1
A given (kj);l:l e {1,...,n}? determines a unique a € J(n, d) by the relation
a=({j:kj =1Lk =2}, [{7: ks =n}]). (1.1)
Conversely, a given « € I(n, d) determines a unique k(«) = (k1 (@), ..., kq(a)),
k(o) < -+ < kg(a), such that (1.1) holds.
Given = = (z1,...,z,) € K" and a = (ay,...,a,) € IJ(n,d) we use the

standard multi-index notation

n d
H ot = H Lkj(a)-
=1 j=1

The case n = o0 is similar and corresponds to multi-indices whose domain

is N. More precisely, for a fixed Schauder basis {e;}72; of X, with a dual

basis {z7}52, © X*, a€J(o0,d) and z = Z;Ozl xje;j,
“= [T = [Taatiom.

a;#0 ay#0

Note that z — z® € P(YK") for any « € I(n, d).

2Tt represents the number of distributions of d identical balls into n distinct boxes.
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Given a = (ai,...,an) € I(n,d), we denote a! = ag! x --- x ap!. We also

use the corresponding multinomial coefficient by

AN (4 N a4 a
a)  \ai,...,0n) oqlap! al

We also put a partial ordering on multiindices defined as follows. If a =
(a1,...,00) € I(n,d), B = (B1,...,Bn) € In,p), p < d, and a; > f;
holds for all j € {1,...,n} then we say that a« > (3, and we also denote
a—pf=(a1—P1,y. ., an — Bn) €I(n,d—p).

Proposition 1.1.9 (Multinomial formula). Let X,Y be vector spaces, d €
N, P e P(dX;Y) and x1,...,x, € X. Then

d\
Play+-+an) = ), ()P(alxl,...,a"xn).
a€d(n,d) @

The next proposition asserts that the abstract definition of homogeneous
polynomials coincides on K™ with the classical definition that uses coordi-
nates. Note that in this case all homogeneous polynomials are automatically
bounded.

Proposition 1.1.10. Let n,d € N and Y be a vector space over K. A
mapping P: K" — Y is a d-homogeneous polynomial if and only if there
ezist {Yataci(n,a) © Y such that P(z) = Zae:}(n,d) xYo. Moreover, each y,

is uniquely determined by

d\ ~
Yo = (Q)P(alelv'-'7an en)v

where {e;}7_; is the canonical basis of K".

In the special case Y = K, this reduces to the familiar formula

a€l(n,d)

where the coefficients a,, € K.

Proposition 1.1.11. Let X be a normed linear space with a Schauder ba-
sis {ej}gozl, Y a wvector space, d € N and P € P (dX;Y). Denote Xy =



1.2 Differentiability

spanfe;};2,. Then there is a unique collection of vectors {ya}tacina) Y

such that the formula

Px)= > a%%a (1.2)

a€d(n,d)

holds for every x € Xg. The coefficients y, are given by

Conversely, any {Yataeing) © Y uniquely determines a polynomial P €

P (X¢;Y) by formula (1.2).
Definition 1.1.12. Let X, Y be vector spaces and n € Np.

e A mapping P: X — Y is called a polynomial of degree at most
n if there are P, € P (*X;Y), k=0,...,n, such that P = Y} P;. If
P, # 0, we say that P has degree n and we use the notation degP = n.3

e We denote by P™(X;Y) the space of all polynomials of degree at
most n. We denote by P(X;Y) = |J", P"(X;Y) the space of all

polynomials.
Suppose X, Y are normed linear spaces, n € Np.

e A mapping P: X — Y is called a bounded polynomial of degree
at most n if there are P € fP(kX;Y), k =0,...,n, such that P =

ZZ:O By.

e We denote by P" (X;Y") the space of all bounded polynomials of degree
at most n. We denote by P(X;Y) = (J_,P*(X;Y) the space of all

bounded polynomials.

1.2 Differentiability

In this section we briefly list some facts concerning the derivative of poly-

nomials.

3Note that degP is well-defined, as the homogeneous summands of a polynomial are

uniquely determined.
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Fact 1.2.1. Let P e P(?X;Y), v e X. The directional derivative

oP . P(zx+ \v) — P(x)
ov A—0 A

is easily shown to be a polynomial in z which satisfies the formula

g—];(:v) —d-Pv,*'2) e P 1X;Y).

By induction, for a fixed « € J(o0,p), p < d, where o; = 0 (i > k) and

Y1, ..., Yr € X, we get

oPP (2) d!
_oF
0y ... 0%y (d—p)!

P(*iyr, . gt r) € PEPX;Y). (1.3)

Fact 1.2.2. Let X be a Banach space with a Schauder basis {e;};2;, ¥ be
a Banach space, P € P(?X;Y). There is a unique set of vectors y5 € Y, =
(Qla"'vak’)EJ(oo>d)7 pjeNa I<pr<p2<-<pg
1 oip
Yo = (0), (1.4)

arl--ag! 0%ey, ... 0%ep,

such that the formula

0
P (Z wj%‘) = > D, Tplaphyl (1.5)
=1

aed(o0,d) 1<p1<-<pg
holds for every finitely supported vector x € X. In the special case Y = R

the coefficients are just real numbers af4.

1.3 Symmetric and sub-symmetric polynomials

This section is motivated by the following fact: the concept of sub-symmetric
polynomials on RY can be used to capture the essential information on the

behaviour of a given general polynomial.

Definition 1.3.1. A Schauder basis {e;};2; of a Banach space X is called
symmetric if there exists K > 0 such that for any bijection o: N — N, the
formal linear operator I, (Z;’;l aje;) = 23021 g (j)€j is an isomorphism of X
such that | I, | |I;1] < K.



1.3 Symmetric and sub-symmetric polynomials

A Schauder basis {e;}72; of a Banach space X is called spreading invari-
ant if there exists K > 0 such that for any increasing mapping o: N — N,
the formal linear operator L,(Z;O:l ajej) = Z;Ozl ajeq(j) is an isomorphism
into a subspace of X such that |I,| [I;!] < K.

A spreading invariant and unconditional basis is called sub-symmetric.

We remark that a symmetric basis is automatically unconditional.
A subset U of a Banach space X with a Schauder basis {ej};ozl is called
symmetric (resp. spreading invariant) if for any bijection o: N — N (resp.

for any increasing mapping o: N - N), I,(U) c U.

Definition 1.3.2. Let {e; ;O:I be a Schauder basis of a Banach space X,
U < X be symmetric (resp. spreading invariant) and f : U — Y be a
function. If
ee} [ee} [oe}
f (Z ajej> =f (Z ajeg(j)> , Z aje; e U,
j=1 j=1 J=1
for any bijection o: N — N (resp. for any increasing mapping o: N — N),

then we say that f is symmetric (resp. sub-symmetric) on U.

These notions will typically be applied to functions whose domain is a Ba-
nach space with a symmetric (resp. spreading invariant) basis or a subspace
of a space with a Schauder basis consisting of finitely supported vectors.
We use the same terminology also for functions acting on X = R", with
the fixed and linearly ordered linear basis {e; }?:1. In this case the notion
of subsymmetric is reduced to the identity f(x) = f(y) being valid for
every pair x = (z1,...,%n), ¥ = (y1,...,yn) of elements of R™ such that
the sequences formed by all non-zero coordinates of x and y coincide (e.g.
x=(2,0,0,1.5,7,0) y =(0,2,1.5,0,0,7)).

Definition 1.3.3.

e For a given d € N denote

k
H(d):{a:(al,...,ak): keN,aje{l,...,d},Zaj=d}.4
j=1

“For the sake of completeness, we also set J(0) = {&}.
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e Given o = (aq,..., o) € J(d) we let

0
. (z xjej) - Y e (16)

Jj=1 1<pr<-<pi

for all finitely supported Z;OZI xjej € coo, and set Py = 1. Clearly,
P, is a subsymmetric polynomial. Polynomials which satisfy (1.6) are

called standard or elementary.’

e Further, we denote sq = Pg), i.e.
0
_ d
- Z L
j=1

for all finitely-supported vectors x = >,z e;. Each sq4 is a symmetric

polynomial and it is called a power sum symmetric polynomial.

Remark 1.3.4. The standard polynomials form a linear basis of the fi-
nite dimensional linear space of all d-homogeneous subsymmetric (and not

necessarily bounded) polynomials on span{e;}.
More precisely, we have the following well-known fact.

Fact 1.3.5. Let X be the linear span of a Schauder basis {e;}7; (resp. X =
R™) and Y a vector space. If a polynomial P € P4(X;Y) is subsymmetric,
then, for fixed a = (a1,...,ax), the constants y5 do not depend on the

choice of p = p1 < -+ < pg. In particular, the following equality holds

P(jixjej> Z Z P, (ixje]> (1.7)

k=0 aed(k

for all finitely supported Z;Ozl zje; € X (resp. for all z € R").6

We will also rely on a finite dimensional version of the above result.

5This terminology applies also to the case when X = R™.
5The coefficients y,, are given by y, = (d)f’ (“*e1,...,*" en), where a € I(d).

@
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1.4 Spreading models

Definition 1.4.1. Given a set X, we let X(™ be the set of all subsets of
X of cardinality n. We say that a system of k disjoint sets {S;}¥_, forms a
partitioning of X whenever X — Ule Si.

Proposition 1.4.2 (Ramsey). Let k,n € N. Then for every partitioning
{Si}e_, of N there exists i € {1,...,k} and an infinite set M < N such
that M™ < ;.

This result can be reformulated in the following ways:

e Let n be a natural number. Let ¢ be a mapping from N™ to some
finite set C'. Then there is an infinite subset M of N such that ¢ is

constant on M (™),

e If a coloring (with a finite number of colors) of sets of natural numbers
of a given length n is defined, then there is an infinite subset M of N

such that all subsets of M of length n have the same color.

Proposition 1.4.3 (Ramsey). Let k,n,m € N. Then there exists M =
M (k,n,m) such that, for every partitioning {S;}¥_, of {1,..., M} there
existsi € {1,...,k} and a subset A < {1,...,m}, |A| = m, such that A" c
S;.

We will now list some basic facts concerning the spreading model construc-
tion for a Banach space X, which leads to a Banach space with a sub-
symmetric basis which captures the asymptotic behaviour of infinite se-

quences in X.

Definition 1.4.4. Let K > 1. We say that a sequence {z,}*_; in a normed

linear space is K-spreading if

k k
Z a5 %m,; Z ajTn;
j=1 Jj=1

whenever k£ € N, ay,...,a, are any scalars and mj,n; € N are such that

<K

mp <mao < -+ <Mk, N1 <nNg < -+ < Ng.
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Remark 1.4.5. From Rosenthal’s £1-theorem it follows that any K-spreading
sequence in a Banach space X is either equivalent to the canonical basis of ¢1
or it is weakly Cauchy: indeed, the linear operator T': span{x,; } —span{z;}

such that T’ (:Un]) = x; is bounded and hence w — w uniformly continuous.

Proposition 1.4.6 ([13]). Let {e,} be a K-spreading sequence in a Banach
space X. Then {e,} is a basic sequence if and only if it is not weakly con-
vergent to a non-zero element of X. If moreover {e,} is weakly null, then

{en} is an unconditional basic sequence.

Remark 1.4.7.

e A symmetric basis is automatically unconditional and in fact sub-

symmetric (see [60]).

o If {e,} © X is a sub-symmetric basis that is K-spreading, then the
sequence {f,} < X™*, biorthogonal to {e,}, is a sub-symmetric basic
sequence that is 2C'K-spreading, where C is the unconditional basis

constant of {e,}.

Definition 1.4.8. Let {z,,} be a sequence in a Banach space X. We say
that a sequence {e,} in a Banach space Y is a spreading model of the

sequence {x,} if for every € > 0 and k € N there is N € N such that

k k k
(1 — E) Z aje; < AT, < (1 + 6) Z a;€;
Jj=1 Jj=1 Jj=1
for all N <nj; <ng < --- <nyg and all scalars aq,...,a.
If ¢, = 2%, N, = 2% we call {a:nj };‘-’;1 a characteristic subsequence of
a0
{xn}nzl‘

Theorem 1.4.9 (Brunel, Sucheston, [19]). Let X be a Banach space and
suppose that {x,} < X is a bounded sequence such that {x,}nen is not

relatively compact. Then {x,} has a subsequence with a spreading model.

The proof is based on a repeated use of the finite Ramsey theorem, and can
be found in e.g. in [36], p. 294.
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Proposition 1.4.10. Let X be a Banach space and {x,} < X a weakly null
sequence with a spreading model {e,}. Then {e,} is a sub-symmetric basic

sequence with the unconditional basis constant at most 2.

The relation (1.8) below is the fundamental result of the theory of spreading
models. It can be obtained from the previous results by passing to subse-

quences and diagonalizing.

Proposition 1.4.11 (Brunel, Sucheston, see [13]). Let {e,}°_; be a se-
quence of positive real numbers decreasing to zero, {N(k)};~_, be an increas-
ing sequence of natural numbers and {x,}>_, be a normalised basic sequence

in a Banach space X. Then there exists a subsequence {yn}_, of {xn}ny

and a Banach space (Y, |||-|||) with a spreading invariant basis {en}_;, such
that, for all k € N and all scalars aj, j =1,...,N(k),
N(k)
(1 —eg) Z ajej||| < Z ajYn; (1+eg) Z aje;l|l, (1.8)
j=1

whenever k <ni < -+ <nyg)-

The following additional result will be made use of later on. We prefer
to omit the standard proof of the estimate (1.9) concerning sub-symmetric
polynomials, which can be obtained by modifying the proof of Theorem
1.4.9, by working simultaneously with the original norm |-| and P, and
keeping in mind that d-homogeneous polynomials form a closed set in the

topology of uniform convergence on the unit ball.

Theorem 1.4.12. Let X be a Banach space, P € P(¢X) and let Y be the
Banach space whose existence is guaranteed by Proposition 1.4.11. Then
there exists a sub-symmetric polynomial R € P(?Y) such that, for all k € N,

we have

N(k) N(k) N(k)
Z —e, <P Z ajyn; | <R Z aje;j | + €k, (1.9)
o1 i=1 j=1

whenever k <np < --- < N(k),ij:('f) ajyn; € Bx.
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It is clear that in general a basic sequence may admit many non-isomorphic
spreading models. We say that Y is a spreading model of X provided Y
results as a spreading model built on some normalised basic sequence in X.
The Ramsey theorems and the theory of spreading models allow us to infer

the following useful result.

Theorem 1.4.13. Letd,n € N ande > 0. There exists N = N(d,n,e) such
that, for every P e P(UY), |P| < 1, there exists A < {1,...,N}, |A| = n,
and a subsymmetric polynomial Q € P (dY) such that |Ply — Q| < &, where

Y = span{eg}rea and {ek}szl is the canonical basis of E{V.

Proof. Given P € P (%}Y) with |P| < 1, there are an, € R such that
P = Zaej+(d) Ra, where

Ro(x)= D aapahl a0k (1.10)
peEN(E,N)

for a € 7t (k,d). By combining formulas (1.3), (1.4), (1.5) and the Polariza-
tion formula, we see that each aq , is such that |aq ,| < (g) H]—Y’H < dl.
We show that, for any n € N, ¢ > 0, K > 0 and a € J*(d), there is
N = N,(n,e,K) such that, for any polynomial R € P (dﬁv) of the form
(1.10), with |aqa,,| < K, and for all p € N(k, N), there is A < {1,..., N},
|A| = n, and c € R such that |Rly — cP}|| < e, where Y =span{ey}xeca.

It is clear that we may take

N(n,d, &) = Nyo ( N (Nal (n %,dd) ,;,dd> ...,f,dd) ,

1

where o', ..., a" is an enumeration of I*(d).

So fix a € J*(k,d), n € N, e > 0and K > 0. Let § = 55 and M =
[%] By Ramsey’s theorem there is N € N such that, for every 2(M + 1)-
colouring of k-subsets (i.e. subsets of cardinality k) of {1,..., N}, there is
Ac{l,...,N}, |A| = n, such that all k-subsets of A have the same colour.
Now, given R € P (%) of the form (1.10) with |aq,| < K for all p €
N(k,N), we put m(p) = [*52] e {-M —1,—M,...,M}.

Note that |aq, —dm(p)| < 6. Each p € N(k,N) uniquely determines a
k-subset of {1,..., N} and vice versa, therefore the function m induces a

2(M + 1)-colouring of the k-subsets of {1,...,N}. Let A < {1,...,N},
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|A| = n, be such that there is mg € N satisfying m(p) = mg for all p < A.
Then

R (Z xjej> — dmo P (Z a:jej)

n
ar ., %k
<5Z |xp1 L p <6(k> <é€
JEA JEA

pcA

whenever HZjeA xjejH < 1. =

1.5 Algebras

In this thesis we are going to work with algebras A of polynomials on a Ba-
nach space X, i.e. subsets of P(X) that are closed with respect to addition,

pointwise multiplication, and scalar multiplication.

Definition 1.5.1. Given an algebra A c P(X), we say that the set B < A
generates the algebra A if A is the smallest algebra containing B, i.e. it is
the intersection of all algebras containing B.

It is easy to see that B generates A if and only if for every p € A there
is a finite set {b1,...,b;} < B and a polynomial P € ‘.P(Rl) such that
p=P(by,...,b).

Definition 1.5.2. Let X be a Banach space.

e We denote by A,,(X) the algebra generated by polynomials from (] P, (X).

=0
e The space of subsymmetric d-homogeneous polynomials on R will be
denoted by Hy (RN )
e We denote by Sk (RN ) the algebra of subsymmetric polynomials gen-

k
erated by the set of polynomials | J H; (]RN )
1=0
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Remark 1.5.3.

e Given a = (o, ...,a) € I(d) and N = k, we let

N
N
Jj=1 l<pr<--<pg

and set Pg = 1. For N > d, the polynomials P, for a € J(d), form
a linear basis of Hy (]RN).

e As we pointed out, if £ < N, then Hj, (RN ) has a linear basis consisting
of PN « e J(k) (see (1.11)). In other words, P € Hj(R") has the

unique standard form

P(z1,...,zN) = 2 aa PN (21,...,2N), aq€R. (1.12)
aed(k)

e The spaces of subsymmetric polynomials Hy,(R¥) and Hy(RY), N > k,
are canonically isomorphic, as their linear bases can be indexed with

the same set J(k).

The following result is the key lemma for proving plenty of results in [41].
Unfortunately, as we mentioned in the introduction, the theory of algebraic
bases developed there is not entirely correct. Fortunately, the core of this
theory, Lemma 1.5.4, can be proved otherwise. Its proof is treated in Chap-

ter 2.

Lemma 1.5.4. For every n € N, there exists an € > 0 such that, for every
m > M(n),

sup |p($17"'7'1:m)_5n+1($1,...,$m)| =€,

m
S Jal<t
=1

for every p in the algebra S, (R™), generated by subsymmetric polynomials

of degree at most n.

The above quantitative lemma implies the following fundamental criterion.
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Theorem 1.5.5. Let X be an infinite dimensional Banach space, n € N and
P e P("X) be a polynomial with the following property: for every N € N

and € > 0 there exists a normalized finite basic sequence {ej}j-vzl such that

N N
P (Z ajej> — Z a?
i=1 =

7j=1

sup < e

N
Yo lajI<1

Then P ¢ A,_1(X).

Proof. Denote by S™ (¢1") the algebra generated by all sub-symmetric poly-
nomials on /7" of degree at most n. By Lemma 1.5.4, there are m € N and
e > 0 such that |Q — s,| = 3¢ for all Q € S™1 (¢7*). Let P € P("X)
be the polynomial whose existence is guaranteed by the assumptions of the
theorem. We claim that P ¢ A,,_1(X).

By contradiction, suppose that there exist Py,..., P, € P*"1(X) and r €
P (R¥) such that, for R = ro (Py,...,P), we have [P — R| < e. Put
K =1+ max;|P;| and let 0 < 7 < 1 be such that |r(u) — r(v)| < e,
whenever u,v € KBy , |u — v[p < n. Using Theorem 1.4.13 recursively
kn times, we find N € N such that, for any linearly independent {e; };V: 1 C
Sx, there exist A < {1,...,N}, |A|] = m, and sub-symmetric polynomials
Q1,...,Qr € P"HY) such that |Pjly —Qj| < n, 5 = 1,...,k, where
Y =span{e;}jea with ¢;-norm.

Let {ej}j-v: 1 be the linearly independent set from the assumptions of the
theorem and A < {1,...,N}, Q1,...,Qk € P*}(Y) as above. Note that
since {e;} is normalized, |Rly — Ply|y < |Rly — Ply|yx <e. Put Q =
ro Q... Q). Then Q € S™L(") and |Q — su < Q- Rly| +
IRy — Ply| + | Ply — sn| < 3e, which is a contradiction.

1.6 Tensor products

This section is aimed at collecting basic definitions and elementary facts
concerning tensor products. Tensor products offer an important point of

view on polynomials and multilinear mappings.

Definition 1.6.1. Let X1,..., X,, be vector spaces over K.
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e By A we denote the vector space of all formal linear combinations

o (Ph @ ®@ak) ap e K 2k e X;.
e By Ay we denote the linear subspace of A spanned by the vectors
W@ Qap) — (11 ® - Qarp @ - Qxp)
and
where ke {1,...,n},z;,y; € Xj,ac K.

e The quotient space AAO is called tensor product of Xi,..., X, and
will be denoted by

X1®®X, =X X;."
j=1

Remark 1.6.2.

e By the definition of Ag, each z € X1 ® - - - ® X,, has a representation
k . .
z= Zx{@@xﬁl
j=1

An element of X7 ®---® X,, that admits a representation 1 ®:--Qx,

is called elementary tensor.

e Given ¢; € X7, 8 the function
Yiai (e @ @ah) = Y aon(a]) - dulad) (1.13)
j=1

=1

is a linear form on the vector space A.

We can infer a useful criterion for distinguishing vectors in a tensor product.

"This definition is motivated by the will to linearize multilinear mappings.
8This denotes the algebraic dual of X;.
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Proposition 1.6.3. Let X1,...,X,, be vector spaces and Aj Xj/- be subsets
that separate the points of X;, j =1,...,k. Then 2?21 ajx{ ®--- @)mgZ =0
m X1 ® - ® X, if and only if
k

2, ai61(aq) - gn(a3) =0

j=1
for every choice of ¢p; € A;.
Definition 1.6.4. By ® we define the n-linear mapping ® : X1 x---xX,, —>
@?:1 X; such that ®(z1,...,2n) =21 ® - @ Tp.

Theorem 1.6.5 (Universality of tensor products — algebraic setting). Let
X1,...,Xpn, Y bevector spaces. For every n-linear mapping M € L (Xy,...,X,;Y)
there exists a unique linear operator Ly € L (X1 ® -+ ® X3 Y) such that
M = Ly o®:

X% x X —2 Y

®i L
X1® X,
The operator Ly satisfies

Lat(m1® -+ @) = M(z1, .., ). (1.14)
Ly is therefore called the linearization of M.

Theorem 1.6.6. Let X1,..., X, be vector spaces. For M € L (Xy,...,Xp;K)
andz=Z?le{@)---@w%eXl@'--@Xn put

<M,z>:jiM<x{,...,x%> :]ZZLM (x{@@x%) = Ly (2).

Then {L(X1,..., X;K), X1 ® - ® X,,) forms a dual pair.

We will now introduce an important example of natural norm on tensor

products of Banach spaces (see [57]).
Definition 1.6.7. Let X1,..., X, be normed linear spaces.

e The projective tensor norm 7 on X; ® --- ® X,, is defined by the

formula

w(z) =sup{|(M,z)| : M € L(X1,...,Xn;K), M| <1}, z€ X1® - -®X,.
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e The projective tensor product, denoted by X ®; - - - ®,; X,,, is the

completion of the normed linear space (X1 ® - ® X, 7).

Proposition 1.6.8. Let X1, ..., X, be normed linear spaces. Then, for any

. QO
z€ X1®r- - -Qr X, there exist bounded sequences {x{} cX,l=1,...,n,

. 4 j=1
such that z = 23021 :Ujl ® - @z is an absolute convergent series and

0 o0
m(z) =inf{2 HI{HHSE%” tz = ijl®®$%}
j=1 J=1
Furthermore, m(x1®- - -®xy) = |21 - - - [|zn| for every zj € X;,5 =1,...,n.

This implies that ®: X1 x -+ x X;;, — X1 ®r - Qr X, is a bounded n-
linear mapping of norm 1. It follows that the projective norm is defined so
that the universality property of the tensor product remains valid also in

the topological sense:

Theorem 1.6.9 (Universality of the tensor product — topological setting).
Let X4, ..., X,,Y be normed linear spaces. For every M € L (X1,...,Xn;Y)
there exists a unique Ly € L (X1 ®r +++ ®r X3 Y) such that M = Ly o ®:

Xlx---xXn4M>Y

®\L L
Xl YRR ®7r Xn

The operator Ly satisfies (1.14) and the mapping M — Ly is an isometry
of the spaces L (X1,...,Xn;Y) and L (X1 ®r -+ ®r Xp;Y).

Note that, if Y = K, we obtain the following (simple but important) duality

relation.
Theorem 1.6.10. Let X4,...,X,, be normed linear spaces. Then
(X1 ®r -+ ®n Xn; V)" = L (X1,..., X5 K).

Whenever n = 2, observe that £ (X, X9;K) = £(X1; X5). This leads to

an equivalent dual representation.
Fact 1.6.11. Let X,Y be normed linear spaces. Then
(X ®rY)" =L (X;Y7),

where the evaluation is given by (L,z ® y) = L(z)(y).
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We conclude this section by introducing symmetric tensor products, which

turn out to have a close relationship with polynomials.
Definition 1.6.12. Let X be a normed linear space.

e The symmetrization ®;: X x---x X — X®---®X is a symmetric

n-linear mapping given by

®s(21,- 0, 2n) = Z (@) - Tny) = o Z ()& BTy ()
neSn NESH

where S, is the set of all permutations of {1,...,n}.

We also use the notation ®s(z1,...,2,) = 1 Qs - - s Ty, and "z =

RMr)=r® - .

The Polarization formula yields that ®?X =span{®"z : x € X}.

e The space ®7X is called symmetric tensor product and the ele-

ments of ®?X are called symmetric tensors.

When ®7 X is equipped with the projective norm inherited from its super-
space @z X, its completion becomes a closed subspace ®7 ;X of ®X. Then
the linearization o'y : @7 X — ®’;75X of ®; is a projection of norm 1. Thus

the following result holds.

Theorem 1.6.13 (Universality of the symmetric tensor product). Let X,Y
be normed linear spaces. For every symmetric M € L° ("X;Y') there exists

a unique Ly € £ (®Q7SX;Y) such that M = Ly o ®s = Ly 0 0% 0 ®.

/\

"X T X —

Yol o
M
X

The mapping M — Ly is an isometry of the spaces £° ("X;Y) and £ (®ﬁ75X; Y).

Corollary 1.6.14. Let X,Y be normed linear spaces. Then the spaces
P(X;Y) and £ (®Q7SX; Y) are canonically isomorphic.
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In particular,

(®FX)" =P ("X)

in the isomorphic sense, where the evaluation is given by (P,Q"z) = P(x).

More generally,
((®7,X) @ Y)" = £ (&7, X;Y") = P("X;Y™)

in the isomorphic sense, where the evaluation is given by (P,®@"x ® y) =

P(x)(y)-

1.7 Weak continuity and polynomials into /;

We will now provide the reader with a list of various notions of weak conti-
nuity, which play a key role in our investigations, some of which have been
introduced and studied by R. M. Aron and his co-authors, e.g. in [3], [6]
and [8]; see also [30].

Definition 1.7.1. Let X be a normed linear space, Y a Banach space and

U < X a convex set.

e By C(U;Y) we denote the space C (U;Y) endowed with the locally

convex topology 7, of uniform convergence on CCB? subsets of U.'°

e By €, (U;Y) we denote the linear subspace of C(U;Y') consisting of

all mappings that are w — || continuous on CCB subsets of U.

o By Cuy (U;Y) we denote the linear subspace of € (U;Y') consisting of

all mappings that are w — |-| uniformly continuous on CCB subsets of
U.ll

e By Cuse (U;Y) we denote the linear subspace of € (U;Y") consisting of

all mappings that are w — || sequentially continuous on CCB subsets

9A CCB set is a closed, convex and bounded subset of a normed linear space X.
"Note that if U is closed (for instance U = X), then the topology on € (U;Y) is the

topology of uniform convergence on bounded subsets of U.
1§ € Cuyu (U;Y) if and only if for any CCB set V and any € > 0 there are § > 0

and ¢1,...,0r € Bxx such that |f(z) — f(y)|| < € whenever z,y € V are such that
|pj(x —y)| <dforj=1,... k.
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of U, i.e. that map weakly convergent sequences in CCB subsets of U

to convergent sequences in Y.

e By Cyusc (U;Y) we denote the linear subspace of € (U;Y) consisting of
all mappings that are w — ||-|| sequentially Cauchy-continuous on CCB
subsets of U, i.e. that map weakly Cauchy sequences in CCB subsets

of U to convergent sequences in Y.

e By Cx (U;Y) we denote the linear subspace of C(U;Y") consisting of
all mappings that map CCB subsets of U to relatively compact sets in
Y.

e By Cux (U;Y) we denote the linear subspace of € (U;Y") consisting of
all mappings that map CCB subsets of U to relatively weakly compact

setsin Y.

Remark 1.7.2.

e When the range space is the scalar field, we simply omit it, e.g.
Cuwse (U) = Cusc (U7 K)

e If we substitute CCB sets in the above definitions with bounded sets,
Cuwse (U3Y) (resp. Cusc (U;Y)) are just w— || sequentially continuous

(resp. w — ||| sequentially Cauchy-continuous) mappings on U.

e If X* is separable, it is well-known that (Bx,w) is metrizable, thus
Cuse (U3 Y) = Cop (U3 Y) and Cosc (U;Y) = Cou (U Y).

o Cyu(U;Y), Coun (U;Y), Cusc (U;Y), Cusc (U;Y) and Cx (U;Y) are
closed subspaces of C(U;Y).

e If YV is any Banach space and U is any convex subset of a normed

linear space X, the following inclusions hold true:

cCx (UY) c Cur (UY)
Cuu (U;Y) < Cyu (UY) C Cuse (UY)
QCusc (U; Y) C
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Corollary 1.7.3 ([6]). Let X be a normed linear space, Y a Banach space
and n € N. Then

Lo ("X5Y) = Ly ("X;Y),
Lwse (nX7 Y) = Luwsc (nX’ Y) )
Puw ("X5Y) = Puu ("X;Y),

Puwse (nX7 Y) = Pusc (nX7 Y) .
From this and the relations shown earlier we obtain the following inclusions:

cPr (X,Y) < Puk (X,Y)
Pun (X5Y) =Py (X5Y) € Puse (X;Y) = Puse (X5Y)

OLwK (X7Y>
Lowu (X;Y)=Lg (X5Y) =Ly € Lyse (X;Y) = Lyse (X;Y)

Remark 1.7.4. It is not sufficient to check the w — || continuity of poly-
nomials only at the origin,'? as shown by the following example by Aron in
[4].13

Let P € P (3(5) be defined as P(z) = 1 >, _,x2. Then the restriction of P
to any bounded set is weakly continuos at the origin, but P is not weakly
sequentially continuous. Indeed, e; + e; 2 ey but P(e; + e,) = 1 and
P(e;) = 0.

Let X,Y be Banach spaces. Recall the duality relationship treated in the

previous section:
(®7,:X) @ Y)* = L(Q7 X;Y7) = P("X;Y™). (1.15)

As special cases, we of course have (®} X)* = P("X), (X ®; Y)* =
L(X;Y*). Recall a result by Bessaga and Pelczyniski ([36] p. 206). Let
X be a Banach space, ¢y — X*. Then X contains a complemented copy of
¢1 (and hence X* actually contains a complemented copy of ¢y). Applying
this result to the duality relation (1.15) we get the next (probably known)

result.

12Unlike the |-| — |-| continuity.
13See also [5].
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Theorem 1.7.5. Let X be a Banach space. The following are equivalent
forn e N.

1. P ("X b)) = P("X;4),

2. co b P("X).

Proof. Suppose 2 fails. Since (®p ;X)* = P("X), {1 is complemented in
®7 sX by the Bessaga- Pelczyniski theorem. Hence /1 is a range of a bounded
linear operator from ®7 ;X and 1 fails by the universality of the projective
symmetric tensor product. On the other hand, if 1 fails, then there is a
non-compact bounded linear operator 7" : ®7 (X — /.

Setting B = T'(Bgy ,x), we claim that B contains By, (up to isomorphism).
Indeed, since B is not relatively compact, B is not weakly compact ([36] p.
277). By the Eberlein-Smulyan theorem, there exists a bounded sequence
{x,} © B with no weakly convergent subsequences, which cannot be weakly
Cauchy either (Schur). Thus, by Rosenthal’s ¢;-theorem, {z,} admits a
subsequence equivalent to the usual ¢;1-basis, which proves the claim.
Finally, using the lifting property of ¢; ([36] p. 238), ¢; is a complemented
subspace of ®7 , X, whence 2 fails by duality. =

We will need two principles for passing to suitable sequences in the domain.
The first one is based on an improvement of the classical result that /5 is a

linear quotient of any Banach space containing a copy of ¢;.

Lemma 1.7.6. Let X be a Banach space, {1 — X, p = 2. Then there exists
T e L(X;4p) and a basic sequence {f;} in X equivalent to {1 basis such that

T(fj) = €j is the unit basis in ly.

Proof. 1t suffices to prove the result for p = 2, since then we can compose
T with the formal identity Id : fo — £,, which is a bounded linear operator.
Let L : ¢3 — Lq be an isomorphic embedding, {e;} be the basis of ¢». By
Pelczynski-Hagler, [46] p. 253, there is an isomorphic embedding M : L; —
X*. So{y; = MoL(ej)} is a weakly null sequence in X*, which is equivalent
to the ¢ basis. There is a normalized sequence { fj} e X** biorthogonal
to M o L(ej). By Goldstine’s theorem we replace f] by f; € Bx so that
{fjruey = 0, k < j, {fj,y;) = 1. Since {y;} is weakly null, we can pass
to subsequences so that {f;,y;} is a biorthogonal system. Since M*(X) <
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Lo and {L(ej), M*(f;)} is a biorthogonal system in L1, Ly, by the DPP
property of L1, {M*(f;)} does not contain a weakly Cauchy subsequence.
By Rosenthal’s £;-theorem, we may assume without loss of generality that
it is an ¢;-basis. By the lifting property of ¢1, {f;} is an ¢;-basis. Finally,
R = L*o M* : X* — /5 is a quotient mapping such that R(f;) = e;. So
T =R x: X — {3 is the desired operator. ]

In particular, let X be a Banach space, {1 — X. Then there is a P €
P(2X; 1) such that it takes a sequence {f;} in X, equivalent to an £;-basis,

into {e;} a unit basis in the range ¢;.

Proposition 1.7.7. Let X be a Banach space, {1 — X, k € Nk = 2.
Then there exists a polynomial P € P(*X) and a basic sequence {f;} in X

equivalent to an £1-basis such that

P (Z ajfj) = > ak. (1.16)
j=1

j=1
In particular, P is not weakly continuous at the origin and
P <kX) £ P <kX) .
Proof. Let T and {f;} be as above and let {g;} be the sequence of the coor-
dinate functionals on /. Letting P(x) = 230:1 (95 (T(x)))* proves (1.16).
Assume by contradiction that P is weakly continuous, so given € > 0 there
exist ¢1,...,¢n € X* and 6 > 0 such that |¢;(x)| <6, j =1,...,n, implies

|P(z)| < e. We have that ¢; [[f;€ fx. By a simple argument there exist

pairwise distinct indices m, [, r such that

0 (fmn) — 05 (S|, |0 (fm) — @i (fr)| <9, G=1,...,n.

So choosing € > 0 small enough and letting = = f,, — % fi — % fr clearly

witnesses the contradiction. O

We will need a modification of a well-known principle for dealing with non-
weakly sequentially continuous polynomials of minimal degree, which has
been used many times in the literature (see e.g. [20] for its most general
formulation). In our case, we replace the non-wsc property by the non-

compactness and add the assumption ¢; > X.
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Lemma 1.7.8. Let X,Y be Banach spaces, {1 4> X, P(*X;Y) = Pr(FX;Y)
for allk <mn and P € P("X;Y)\Pr("X;Y). Then there is a weakly null

sequence {yr} i, such that {P(yx)}{_, is not relatively compact.

Proof. By Rosenthal’s ¢1-theorem, there is a § > 0 and a weakly Cauchy

sequence {x}; such that
|P(zy) — P(z;)| > 6, k+#1eN. (1.17)

By a simple application of the multilinearity of ]5,

n—1
fw$k—gn)=}%xw—#25 (Z)(1yi3@x“%vxk)+(1yf%m)
j=1

By assumption, all polynomials of degree less than n are compact, so for
any fixed k, passing to a subset of indices N © Np_1, Ng = N, there exist
the limits

7= lim P (Jay," =1,...,n— L
Y. lellr\%c ( Z, .’L'k) y J ) y

Let M be the diagonal set of N,k € N. Next, fix for each k € M, an my
such that for all j € {1,...,n —1}

e )
Hyi—P(th J:L‘k)H<W7 lka,ZEM
Then
n—1 n o
Pz —xy) — (P(xk) + Z ( ) (—1)Yy] + (—1)"P(xl)) <59’
j=1 \J
whenever | = my,l e M.
Whence,
n—1 n o B
P(zy —x1) — Pxg) — (=1)"P(2) — (Z < ) (—1)]%)) <35
j=1 \J

for [ = my,le M.
Thus

[P — x1) = Plap — )| 2 [Par) = (=1)"P(x) = P(xp)+(=1)"P(z,) |- °

Ev
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whenever k,pe N, [,r € M, [ > my, and r > m,,.

Suppose that k,[,p € N are given and denote
z=(=1)"P(x) + P(x;) — (=1)"P(zp).
Using (1.17), there is an 741, € N such that | P(z,) — z| = $ for all 7 > 7.

Whence

9_0 ¢
2 10 4’
whenever k,pe N, [,r e M, [ > my, and 7 > max{mp, "k}

|1P(zg — 1) — Py — )| =

Now it suffices to find [}, € M such that I, = max{my, 714, ks, Tk—1,1,_1 k}
and put y; = zr—x,. Then {y;} is weakly null and {P(yx)} is a g—separated

sequence. O

Proposition 1.7.9 ([44]). Let X be a Banach space, Y = {£p, 1 < p < o,
or'Y = ¢y and suppose there is a non-compact operator T € L(X;Y). Then
there are S € L(X;Y) and a normalized basic sequence {x,} < X such that
S(zyp) = en, n € N, where {e,} is the canonical basis of Y. If X does not
contain £1, then {x,} may be chosen to be weakly null. If X = {1, then S is

in fact onto.

Definition 1.7.10. Let 1 < p,q < o0. We say that a sequence {z;}}2, in a

Banach space over K has an upper p-estimate (resp. lower g-estimate)

if there exists C' > 0 such that for every n € N and every aj,...,a, € K
1
n n P
Z ajzj| < C (Z |aj]p> , (1.18)
J=1 Jj=1

respectively

n n
D x| =C (Z Iaj|q> :
j=1 j=1

where the right-hand side is replaced by max;_; __, |a;| if p = 0 or g = 0.

Fact 1.7.11. Let X be a Banach space and 1 < p,q < 0. A sequence
{:cj}?ozl c X has an upper p-estimate if and only if the linear operator
T:t, — X,T(ej) = zj is bounded. A sequence {z;}}2; < X has a lower
g-estimate if and only if the linear operator T': span{z;} — {4, T(x;) = e,

is bounded. In case p = o0 we replace ¢, by ¢y and analogously for ¢ = 0.
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Corollary 1.7.12 ([38]). Let X be a Banach space such that X* is of type
p>1, 119 + % =1 and let {x}}}_; < X be a semi-normalized basic sequence.
Then for each s > q there is a subsequence {xy, };-_ | such that there exists
a bounded linear operator T': X — {5 satisfying T (xy,) = ek, where {ex}
is the canonical basis of Ls. Furthermore, there is a subsequence {n, }{>,
such that for each n € N, n > ¢, there is P € P("X) such that P (xy,) =1
for all k e N.

Definition 1.7.13 ([47]). Let 1 < p < 0. We say that a Banach space X
has the Sy-property (resp. the T,-property) if every normalized weakly
null sequence has a subsequence with an upper p-estimate (resp. lower g-
estimate).

The S, property is equivalent to saying that every normalized weakly null

sequence contains a subsequence equivalent to the basis of cg.

Theorem 1.7.14 ([54]). Let X,Y be Banach spaces and P € P ("X;Y). If
n < p < o, then P takes sequences with an upper p-estimate into sequences

with an upper %—estimate.

Corollary 1.7.15 ([40]). Let X be a Banach space which enjoys the S,-
property, 1 <p < oo. Ifn < p, then

P (X) = Pl (X).

The next result holds true, as £, and ¢y have properties S, and Sy respec-

tively.

Corollary 1.7.16 ([16], [54]). Let T’ be any set, 1 < p < o and n € N,
n <p. Then

pr (fp) = P (gp) )

P (o) = Pwu (co) -

Conversely, if n = p, then Z;O:I 2 € P (") \Pusc ().

Theorem 1.7.17 ([56]). Let X be a normed linear space. The following are

equivalent:

(i) X has the Dunford-Pettis property.
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(i) Lwr(X;Y) C Lysc(X;Y) for every Banach space Y .

(iii) Lowrx("X;Y) < Lyso("X;Y) for every Banach space Y and every n €
N.

(iv) Pur(X;Y) € Pusc(X;Y) for every Banach space Y .

The following result is a generalization of a well-known result (due to Aron

and co-authors), which holds true for polynomials.

Theorem 1.7.18 ([20]). Let X,Y be Banach spaces, {1 > X and U ¢ X
be a convex subset with non-empty interior. Then Cu(U;Y) = Cyusc(U;Y).

Theorem 1.7.19 ([20]). Let X,Y be Banach spaces, {1 4 X and U c X
be a conver subset with non-empty interior. Then Cyuy(U;Y) = Cusc(U;Y).



Chapter 2

A corrigendum in the

finite-dimensional setting

2.1 Contextualization

The main result of this thesis relies on [41], more precisely on the finite-
dimensional quantitative Lemma 1.5.4 (Lemma 2 in the paper), which is also
the principal tool for obtaining the results in [41] and which was obtained as
a by-product of a new theory of algebraic bases for algebras of sub-symmetric
polynomials on R".

Unfortunately, the arguments in [41] contain a serious gap, which was re-
cently spotted by our colleague Michal Johanis. More precisely, the power
series on top of page 213 should have been correctly centered at the point
(:c(l), .. ,x%), rather than at the origin. It is not clear to us at the present
moment if this problem can be fixed, so the theory of algebraic bases devel-
oped in [41] remains to be only a conjecture.

In this chapter we give a different proof of the above-mentioned lemma.
As a result, all the infinite dimensional applications stated in [41], as well
as in several papers by various authors which have relied on our previous
work (e.g. [28], [29]), remain valid. In fact, the strongest results concerning
polynomial algebras are contained in the paper [21], which is also based on

the lemma in question.

Let us now proceed with the corrected proof of Lemma 1.5.4.

31
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2.2  Sub-symmetric polynomials on R"
Given k,ne N, k < N and a € J*(k,d), we define P € P (dRN) by

PN(z) = Z R (2.1)

P1 Pk *
1<p1<--<pp<N

For N > d, the polynomials PC]YV, for a« € J*(d), form a linear basis of the
space of subsymmetric d-homogeneous polynomials on RY. An important
special case of these polynomials are the power sum symmetric polynomials
sN(z) = P(]x)(x) =l + -+ Y.

Our main result concerns the properties of subsymmetric polynomials. How-
ever in its proof we need to work also with partial derivatives of the poly-
nomials P(iv and for this reason we consider also the polynomials Pév given
by the formula (2.1), where o € J(k,d), k < N, using the convention that
20 = 1 for every z € R.

We denote by H™X (RN ) the subspace of P (RN ) generated by the poly-
nomials P, o e Ji_, Ui, I(k, d).

For formal reasons, we also put PY = 0 if k > N and Pg = 1, both even
for N = 0, further 3(0,0) = {&} and R® = {0}. Note that these definitions
are consistent with (2.1), using the convention that a sum over an empty
set is zero and a product over an empty set is equal to 1.

The following fact describes an important relation between the restriction of
PM to the first N coordinates and P2 . Note that for M > N we consider

canonically RV as a subspace of RM.

Fact 2.2.1. Let M,N,k,d € No, N < M and « € J(k,d) be such that

am >0 and apy1 = -+ = ag = 0 for some 0 < m < k. Then

(M -N
R = 3 ()

j=m
for every x € RV. Conversely
k .
[ M-N+k—j—-1
PY(x) = ) (- < . )P(%l,...,aj)(fﬁ)
j=m

for every z € RV,
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Proof. The first relation follows from the following (recall that z € RV, i.e.

xn4+1 = -+ =xp = 0 as per the aforementioned convention):

M
PM(z) = > age g

1<p1<---<kaM

[l
o
I
~~
=~ =
| |
=
~
=
£

&

The second relation can be proved by induction on kK —m. For k —m =0
it follows immediately from the first one. For the induction step we use the

first relation together with the inductive hypothesis to obtain

k-1 B
PY@) = PY@)- Y (M J.V) Py, @)

k—1 J .
M-N (M =N+j—i—1
M l M

I
)
s
o
|
=
AN
El
nali
T
=
T
/\ 3
<
|
=
N~
N
=
|
=
_l_
<
|
[S—y
~—
B
&

and the result now follows from the identity

(M —-N M-N+j—-1-1
—1)! = 0.
e ()

Adding or removing a couple of zero summands, this is equivalent to
MZN( l)k_l_p M—N M—-N+k—-Il—-p-—1 0
= p M—N-1 ’

which is the Fréchet formula for the polynomial

; M-N+k-Il-t-1
M—-N-1

of degree M — N — 1 (see [39] or [45] for a more recent proof). =
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It is very important to notice that the previous fact covers all the special
cases like N <k < M,k > M, N=0,m=0or k=0. Observe also that in
particular in the subsymmetric case (i.e. a € J7(d)) we have PM pn = PN,
Hence for sub-symmetric polynomials the superscript N can be dropped.
We will use this simplification for the polynomials sY = s,,.

The next fact deals with the situation when we fix the first N coordinates
of PM.

Fact 2.2.2. Let N,de No, Mk e N, N < M, k< M, a € I(k,d) and y €

RN . Then the polynomial (z1, ...,z n) — PM(y1, ..., yn,21,..., Ty N)
belongs to H&min{k,M—N} (RM_N).
Proof.
Pé\/[(yl,-..,y]\[,l'l,...,.’EM_N)
k
Qi Qi
= DX eyt
J=0 1<p1<---<pp <M
pi < N <pj1
N M—N
- Z P(alw"aj)(y)P(Oéj+1,...,o¢k)(‘r17 R xM—N)-

0<j<

O
Let k,de N, a € J(k,d), k < N,zeRY and 1 <1 < N. Then
N k
I3 DY Y
ox; oz = P Pk
J=L 1<pi<---<pp <N
pj =1
k
_ ar Q-1 05— oy ag
- Z Z xpl Lpj_1T) Pj+1 xpk
j=1 1<p1< <pj—1 <l
a; >0 1<pjpr < <pr <N
k
_ pl—1 oj—1 5 N—I
= Z O‘Jp(al,...,aj,l)(xl’ T P(aj+1’..‘,ak)(xl+17 Ce TN
ji=1
aj >0

These partial derivatives have the following useful property:

Fact 2.2.3. Let k,d, N € N, a € I(k,d), k < N. Then Zl]\il % belongs to
del,k (RN)
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Proof.
N N k
&PC]YV a aj—1 oj—1 ajy1 a
= xlxj xj wj xk
&$l P1 Pi—1 %] Pji+1 Pk
=1 =1 j=1 1<p1<---<pj_1<l
a;j >0 l<pjp1 <. <pg <N
k N
_ ar 051 051 g ag
= Z R Z Tpy " Tpj_1 Xy pit1 " oy
j=1 =1 1<p1<---<p, <N
aj; >0 pj =1
k
_ .pN
o Z a]P(al,---7Otj—176¥j—170tj+1 ----- Oék)(x)'
i=1
aj; >0

We note that this fact does not hold with J*(k,d) and the space of sub-
symmetric polynomials in place of J(k,d) and H d—1,k (RN ): this is the sole
reason for considering the larger spaces H™% (RN )

For each x € RY we naturally identify DPY (z) with the vector

opPN () opPN
5%1 o

(x)) e RN,

,...,axN

Fact 2.2.4. Let M,N,k,de N, M > N, a € I(k,d), k < N and z € RV,

Then DPX(z) is a linear combination of vectors

5PM §PM
M _ B B N
DPy () gy = ( P (z),..., P, (x)) e RV,

where 8 € UF _ I(m,d).
Proof. Let 1 < m < k be such that a,;, > 0 and oy, 01 = -+ = ag = 0. Fix

1<I<N. If oj >0, then m > j and hence, by Fact 2.2.1:

k

N—l M-I

Pt 1) = D PG (@, 0, 0)
s=m

M—-N+k-s—1
where ¢, = (—1)k5< " § )
—$
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Therefore, using Fact 2.2.2 and the fact that agy1 = - = a = 0, if

m < s < k we obtain

k

N

aPa = E ({El RN ] 1).’1]011.7
axl a17 QG — 1) ’ ’ - l

ji=1
a; >0

1

O‘]+17-~7a9

- ch “1” ) (),

s§=

k
Z PMZ ($l+177a?N,O,,0)
k

from which the statement follows. O

We will also make use of the following version of the Lagrange multipliers

theorem.

Theorem 2.2.5. Let G € R™ be an open set, f e C1(G), F e C! (G;RM)
and assume that F has a constant rank. If the function f has a local ex-
tremum with respect to M = {x e G: F(x)=0} at a € M, then Df(a)
is a linear combination of DFy(a),...,DF,(a), where Fy,..., F, are the

components of the mapping F.

Proof. Let k = rank F(z) for z € G. Since DF is continuous, we may
without loss of generality assume that DF(x),..., DFy(x) are linearly in-
dependent for each x € G. From the Rank theorem it follows that there
are C'-smooth functions g; of k variables, j = k + 1,...,m and a neigh-
bourhood U of a such that Fj(z) = g¢; (Fi(x),...,Fi(z)) for each = €
U, j =k+1,...,m (see eg. [62], Proposition 8.6.3.1). Notice that
9j(0,...,0) = g; (Fi(a),..., Fy(a)) = Fj(a) =0, j = k+1,...,m. Therefore
M~nU={zxeU:Fi(zr)=0,...,Fy(r) =0} and we may use the classical

version of the Lagrange multipliers theorem. ]

Now we are ready to prove the key lemma.

Lemma 2.2.6. For every n, K € N there are N € N and u,v € RN such
that P(u) = P(v) for every P e H™K (RN) but s,41(u) # spt1(v).
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Proof. The proof is based on the observation that

N
0Sn+1

2] Gart@) = (4 Do),

which, together with Fact 2.2.3, leads to an inductive proof.

For each fixed k € N we prove the statement by induction on n.
So fix K € N and denote

Mn)= |J U 9.

1<d<n 1<k<K

The space H™ (RN ) is generated by a constant function and polynomials
PN aeM(n).
For n = 1 the functions PY, o € M(n) are linear, so there is N € N large
enough such that ﬂaeM(n) ker PV contains a non-zero element u. Then it
suffices to take v = 2u.
The inductive step from n — 1 to n will be proven by contradiction. So
assume that for each N > K and each u,v € RY satisfying PY (u) = PY (v)
for all & € M(n) we have sp,1+1(u) = $p+1(v).
Now let

FN. RN . pIM®)]

be the mapping whose components are the polynomials PY, a € M(n), in
some fixed order and let Ay (x) be its Jacobi matrix at z € RV, i.e.
oPYN

Av(z) = ( oz ($)>< e )

Note that the number of rows of the matrix of functions Ay does not depend
on N. Thus there is N > K and y € R such that

rank Ay (y) =r = max rank Ay (x).
M= K
z e RM

By the inductive hypothesis, there are M > N and g, h € RM~ such that
P(g) = P(h) for all P € H" LK (RM=N) but s,,(g) # sn(h). If we denote by
Aps(z) ! v the matrix consisting of the first NV columns of the matrix A,/ (x),
then

r =rank Ay (y) < rank Ap/(y) v < rank Ay(y) <,
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where the first inequality follows from Fact 2.2.4.

Let w}’,...wM be the rows of Ay such that wil |y (y),...wM | y(y) are
linearly independent. Using the continuity of the entries of A,y it is easy to
see that there is a neighbourhood U < RM of y such that, for each = € U,

M M

the vectors wi’ | (), ... w;" | n(x) are linearly independent: therefore they

form a basis of the space spanned by the rows of Ay, |n. Clearly the same
holds for wM (z),...,wM (x) and Ay (z).

Fix an arbitrary z € U and put
S={zeU: PM(z) = PM(2),a € M(n)}.

By our assumption, s, 1 is constant on S and so Theorem 2.2.5 implies that

Dsp11(z) is a linear combination of the rows of Aps(z). It follows that, for

each z € U, the vector Ds,,11(2) is a linear combination of w}(z),...,wM(2).
Next, we put
M-N M-N
u=y+c Y, gienty, v= Y, hjeny;
j=1 J=1

for some suitable ¢ # 0 so that u,v € U. Notice that, since H"~ LK (RM_N)
is generated by homogeneous polynomials, we still have P(cg) = P(ch) for
all P e H" B (RM=N) but s,,(cg) # sn(ch). For a fixed a € M(n) and
1 <1 < N consider the polynomial

i

P(x) 22,

(Y1 s YN X1y s TM—N)-

Then, by Fact 2.2.2, we have P € H" 15 (RM=V) and so P(cg) = P(ch).

Therefore

wj\/[(u)[Nzw]M(v)[N, j=1,...,7 (2.2)
We have Dspi1(u) = 204 )\jwé\/l(u) and Dspi1(v) = 354 ,ujwéw(v) for
some Aj, i; € R and of course the same holds when we restrict to the first
N coordinates of all of these vectors.
But since Dsyq1(u)Inv = (n+1)(y7, ..., y%) = Dspy1(v) [ N, combined with
(2.2) and the fact that w}! (u) !y, ..., wM (u) |y are linearly independent, we

obtain pu; = A;, j=1,...,7.
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Eventually, from Fact 2.2.3 and Fact 2.2.2 it follows that

M M—-N
T — 2 wé\/[ (y + Z -TjeN-i-j) e g LK (RM_N) , J=1,...,m
=1 j=1 .

Therefore

T

aS 1 M

n+ _ M

(9331 - ;)\j;wj
J J 0s n+1

T Aj Z Z 5361

1 =1

(n+ 1)sp(u)

I
M=

—_

Since sp(u) = sp(y) + sn(cg) and s, (v) = s,(y) + sp(ch), we get s,(cg) =

sp(ch), which is a contradiction. =

2.3 The corrected proof

Corollary 2.3.1. For every n € N there exist N € N and € > 0 such that
for every M = N

sup [p(z) — sn+1(z)] =€
IGBZ{VI

for every p from the algebra generated by the sub-symmetric polynomials on
RM of degree at most N.

Proof. Applying Lemma 2.2.6 to K = n we obtain N € N and u,v € Bf{v
such that P(u) = P(v) for every P € H™™ (RY) but sp41(u) # spt+1(v).
We put € = % [sp11(u) — sp41(v)|. Let M > N. Since all sub-symmetric
polynomials from P" (]RN ) are contained in H™" (RN ), from the remark
after Fact 2.2.1 it follows that in particular P(u) = P(v) for every sub-
symmetric P € P" (RM). We conclude that p(u) = p(v) for every p from the
algebra generated by the sub-symmetric polynomials from P" (RM ) The

statement now easily follows. ]
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The main theorem

3.1 Introduction

Generally speaking, with a single exception when P(X) = Py, (X), there
are no results giving a characterization of the uniform closure P(X )Tb in
any infinite-dimensional space. The refinement of the problem is finding

the characterization of A, (X) and this is wide open as well. The results

in this section focus on the natural question when A, (X) = Ap+1(X) (the
inclusion ¢ always holds). We are going to use the theory of sub-symmetric
polynomials previously developed together with the asymptotic approach
to polynomial behaviour to obtain rather general results showing that the
inclusion > is almost never satisfied.

We begin by formulating a positive result.

Theorem 3.1.1 ([2], [8]). Let X, Y be Banach spaces, Then P;(X;Y)" =
Cun(Bx;Y).

Proposition 3.1.2. Let X be a Banach space such that it does not contain
0y and P ("X) = Pysc ("X). Then

A1(X) = A(X) = -+ = Ap(X).
Proof. The following chain of equalities holds true:
Tw ( X) Cori4743 :Pwu ( X) TCO.?TlS TMSC( X) h;x .:P( X) )

41
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Thus

P("X) = Py ("X) € Copp, ("X) = PpX;Y)" < A1(X).

Teo. 3.1.1 easy

Since A;(X) is an algebra, A, (X) < A;(X), from which the result follows.

O

All our results, which we are now going to present, go in the opposite direc-

tion and rely on the useful criterion investigated in Theorem 1.5.5.

3.2 The proof

Theorem 3.2.1. Let X be a Banach space, and m be the minimal integer

such that there is a mnon-compact P € P("X;{l1). Then n > m implies

P("X) ¢ Ap1(X).

Proof. If /1 — X then it suffices to combine Theorem 1.5.5 and Proposition
1.7.7. For the rest of the proof we assume that {1 4> X. Denote {f;}52; the
canonical basis in {1, P = (Py){2, € P("X;l1), P, € P("X).

We claim that by performing some adjustments to P, we may assume in
addition that there exists a weakly null normalized basic sequence {z, }_;
X such that P(z;) = f; for each j.

To this end, note that by Lemma 1.7.8 there exists a weakly null sequence
{yr}r_, in X such that {P(yx)}7~, is not relatively compact, i.e. it contains
a separated subsequence, which we call again {P(yx)}{_,. By [1] p. 22, by
passing to a subsequence, we may assume that {yx} is a normalized basic
sequence. As ¢ is a Schur space, {P(yx)}{_, contains no weakly null sub-
sequences. By Rosenthal’s ¢; theorem, {P(yx)};~, contains a subsequence,
again { P(yx)}, equivalent to the ¢;-basis. By a well-known result (according
to Bill Johnson, who has pointed out to us some very closely related other
results), every sequence in ¢1, which is equivalent to the ¢-basis, contains a
further subsequence which spans a complemented subspace. Since we have
been unable to find this result explicitly in the literature, let us indicate
the idea of proof. Supposing that {z;} is the ¢;-basic sequence in ¢, we
may assume, by passing to a subsequence, that z; is pointwise convergent

to ug € ¢1 and that there exists a sequence of disjoint block vectors {uy}
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such that Y, |21 — up — ux| < 0. The case when ug = 0 is well-known [36]
Prop. 4.45, so let us assume the contrary. Moreover, we may assume that
the the norms of wug restricted to the supports of u; form a fast decreasing
sequence. Then, by the classical results [36] Thm. 4.23, Prop. 4.45, we have
that the sequence {uy}{, is equivalent to the ¢;-basis, which is moreover
complemented in /1. Hence, ug, 21 — ug, 22 — ug ... is also equivalent to a
complemented ¢ basis in £1. To finish, it suffices to find a suitable projection
in this latter space, which takes (ag,a1,...) = (Xprq ar, a1, az,...).

Hence there exists a weakly null and normalized basic sequence {zy} =
{Yn,} < {yn} such that P(xy) = gi, where {g;} is a equivalent to an ¢; basis
which spans a complemented subspace in ¢;. Hence, composing P with
the appropriate projection in £1, we substitute ¢; with its complemented
subspace [gx]7~_;, and the claim follows.

Let {¢;}72; be a bounded sequence in X*, biorthogonal to {z;}72,. We
are mostly going to be interested in the behaviour of P restricted to Y =
span{z; : j € N} — X. For the sake of convenience, set Y >ps1} =
span{z; : j = k + 1}. Note that we have P(Az;) = A" f;. Formula (1.5)
for the restriction of P to Y can be rewritten, by collecting the appropriate
finitely many terms, into the following formula, which holds for all finitely

supported vectors = > a;r; €Y:

0 Q0
Py (Z ajxj> = Z (at,. .. ap—1)%alSy " Z ajxj |, (3.1)
j=1

ptg+r=m j=k+1
aed(k—1,p)

where S;°*" € P("Y{;.j>k+1})- Note that, by the minimality assumption on
m, for a fixed 0 # 8 = (B1,...) € I(00,t), t < p < m where §; =0,i > k—1,

we have that

ot ot
P = Pl X/
ﬁﬂll‘l ...aﬂk*1$k_1 (651x1 ...65k71xk_1 J) !

is a compact (m — t)-homogeneous polynomial with range in ¢;. So, for a

fixed 8 of the aforementioned type,

j—0o0 561.%'1 . 651@—1:%,1

gt

lim H
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For y = Zf;ll a;z; € [x1,...,2—1] and | > k — 1,

at
5611'1 R aﬁk—lwk,1

o]
Py + ) a;))
j=1

a! _ =
=X o @S| 2 e
ptagt+r=m ' Jj=l+1

a=p
aed(k—1,p)

We claim that for a fixed 0 # 8 = (B1,...) € I(0,t), t < m where 5; = 0,
1>k —1, q,r such that ¢t + ¢ + r = m, we have that

lim HSlﬁ’q’T

l—o0

— 0. (3.2)

Yijizi+1)

For the proof of the claim by contradiction, choose a maximal 5 € J(k —1, )
which fails (3.2). Hence, for any (if it exists) a € J(k — 1,p), p > t, ¢, such
that p+qg+r =m,

= 0. (3.3)

lh:g) s Yiggziey
Passing to a suitable subsequence of [ — oo (for simplicity assuming it is
still indexed by N) we conclude that there exists a normalized sequence of
vy € Y{jjsi41y such that 64" = limy_, S;"%" (v;) exist for all a,q,r, and
there is at least one non-zero term (with o = ) among them. Moreover, if

a€IJ(k—1,p), where p > t, then b*?" = 0. That means that, for a suitably

chosen y = Zf;ll a;z; € [x1,...,75—1] and a; € R, we have
ot Z 3
. — | q g7
lli]f?o Py ... 0Bk—12,_4 Ay +aw + ) Plagh *0

g+r=m—t

which contradicts the minimality of m.

Fix an arbitrary sequence d; N\, 0. By passing to a fast enough growing
subsequence of {z;} we can disregard in (3.1) all terms with p > 1, so that

(using the short notation S¥" = §%")

0 0
sup Py (Z ajx]) — Z alSE" Z ajxj || < 0. (3.4)
j=1

2521 ajes]|<1 g+r=m o1
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Let {€¥1%_ ek N\, 0, be decreasing sequences of real numbers and { Ny (5)

j=1
be an increasing sequence of natural numbers. To start with, by applying
Theorem 1.4.11, we may assume that {x,},_; is a characteristic sequence
of its spreading model E with a sub-symmetric basis {e,}o_;.

By a repeated application of Theorem 1.4.11, there are nested subsequences

N o My o My o --- of index sets so that the following holds: for a

0
n=1»

Rl e P("E), r and ¢ such that, for all scalars a;, j = 1,..., Np(K),

subsequence {xy}nenr, of {x,} there is a sub-symmetric polynomial

Ny (K) Ny (K) Ni(K)
q7’rl k q?r q7’rl k
R, Z ajej | —ex < S Z ajn; | < Ry Z aje; | + €k,
Jj=1 J=1 Jj=1

<L

provided K <nj < -+ <np, k), nj € My and HZﬁ“fK) ajTn,
By (1.7),

Ry" (i %‘6;’) = D, al" P <i ajej) (3.6)
i=1 7=

aed(r)
for all finitely supported vectors.

By passing to a suitable diagonal sequence M = {m;}?2; of the system
{My}72 , and keeping in mind that the set {R}"}j 4 in P(E) is uniformly
bounded, we may also assume that there exist finite limits

be" = lim ad™*, ke M. (3.7)

k—o0

We consider the sub-symmetric polynomial W?" € P("E) defined by

j=1 =1

aed(r)
We claim that W%" = 0, unless » = 0. Assuming the contrary, there is a

finitely supported vector v = ZZT:1 v;e; such that
Y W) =6 #0.
qg+r=m,r=1

We may assume without loss of generality that 6 > 0. Hence, for a sliding

finitely supported block vector w; = Z;TF:I VigjTm;,;» by (3.5), (3.6), and
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(3.7), we get that
)
liminf Y1 SP(w;) > (3.9)
J 2
qt+r=m,r=1
holds for all [ € M large enough. But this contradicts again the minimality
assumption on m. Indeed, we denote by U a w*-cluster point of { P(x+wy) :
k € N} in the dual Banach space P™(X;/¢). In particular, for every x there
is a subsequence L < N such that

U(z)= lim P ).
() = _lim | Pz +w;)

Let U =U+U' 4+« + U™ = (U) + Ul + -+ + UM, be the unique

splitting of U into a sum of j-homogeneous summands U7. Then by (3.9)

m—1
7 T 0
i;) Ui (agxy) = Z alWwer(v) = 2

g+r=m,r=1
a contradiction with the minimality of m.
This verifies the claim that W™ = 0, unless r = 0.
Combining all the previous results, we conclude that there is an infinite
increasing sequence M < N and ¢ # 0, such that the following holds: for
any p > 0 and N € N, there is a finite set {t1,...,tny} © M such that

N
Py, Zajxti —cayp’
i=1

It is now clear that the polynomial Q € P(™*'X), I > 0, defined as

<p, ]{}E{tl,...,t]v}.

0
Qz) = ), ¢(x)Pi(2),
j=1
satisfies the condition laid out in Theorem 1.5.5, whence

Q€ P X )\ Apsi—1(X).

3.3 Corollaries

In this section we present several previously known results in this area, all
implied by Theorem 3.2.1 together with the positive results of [2], [8] and
[6] below.
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Corollary 3.3.1 ([6], see Theorem 3.1.1). Let X, Y be Banach spaces
and suppose that X does not contain a subspace isomorphic to ¢1. Then
Pun("X5Y) = Puse ("X Y).

The next result was first formulated in [41].

Theorem 3.3.2. Let X be a Banach space, /1 — X. Then

A1(X) & A(X) & -+
Proof. Combine Proposition 1.7.7 and Theorem 1.5.5. |

Corollary 3.3.3 ([41]). Let X be a Banach space admitting a non-compact
linear operator T € L(X;4p), pe [1,00). Then, letting n = [p], we obtain

An(X) G Ana(X) & - (3.10)

Proof. By Proposition 1.7.9, we may assume that T'(Bx) contains the unit
vectors in £,. It then suffices to compose T' with the polynomial P €
P("p; £1), given by formula (z;) — (z}), to obtain a non-compact n-
homogeneous polynomial from X into ¢;. It remains to apply Theorem
3.2.1. |

Corollary 3.3.4. Let X = L,([0,1]), 1 <p < 0, or X = ly, or X = C(K),

where K is a non-scattered compact. Then

Ar(X) & A(X) & -+

Proof. If 1 < p < o0, {5 is isomorphic to a complemented subspace of
L,([0,1]) ([36] p.- 210), therefore we may use Corollary 3.3.3. The spaces
Li([0,1]), €0, Lop([0,1]) and C(K), K non-scattered, contain ¢; ([36]), there-
fore Theorem 3.3.2 applies. m|

Corollary 3.3.5. Given 1 < p < o0, we have the following:

Ar(lp) = -+ = An1(lp) S Anllp) S Ant1(lp) & - -

wheren —1 <p < n.
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Proof. By [6] we know that P"(¢,) = Py, (¢,) whenever n < p. So, using
Theorem 3.1.1, we obtain that A,_1(¢p) = A1({p). The rest follows readily
from Corollary 3.3.3. m|

Corollary 3.3.6. Let X be a Banach space, ¢ > 1, %—i— = 1. Assume that

1
q
X* has type q. Then for n > p we have

AX) S AX) S Ap i (X) S -

Proof. By Corollary 1.7.12, there is a normalized basic sequence {yx};~
in X* which has the upper g-estimate. Thus, T: ¢, — X*, T(ex) = Yk,
is a non-compact bounded linear operator. Since T is weakly compact,
T*: X — {, is a non-compact operator. An appeal to Lemma 3.3.3 finishes

the argument. ]

Corollary 3.3.7 ([29]). Let X be a Banach space with an unconditional
FDD, {1 4 X, and suppose that n is the least integer such that there exists

a P e P("X) which is not weakly sequentially continuous. Then

A(X) =+ = Aot (X) G An(X) G At () S ...

Proof. Tt was shown in [29], by using the averaging technique from [9] as in

[28], that under these assumptions ¢y — P("X). O

3.4 Some open problems

In this section we list the main remaining open problems, which we have so

far failed to solve, in spite of trying several approaches.

Problem 3.4.1. Give a description of P(X) for a general separable Banach
space X.

This problem is open even for X = /5!

Problem 3.4.2. Suppose that X does not contain {1 and P(X) # Prysc(X).
Is there a non-compact bounded linear operator from X into £, for some

1<p<w?

An important remaining problem is the following.
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Problem 3.4.3. Let X be a separable Banach space not containing {1 and
let n € N be the smallest integer such that P ("X) # Pysc ("X). Is then

A(X)==Ap1(X) S A X)) S A1 (X) & -7

The answer to this problem is positive provided the following problem has

a positive answer (see [44]).

Problem 3.4.4. Let X be a separable Banach space not containing ¢1 and
let n = 2 be an integer such that P ("X) # Pusc ("X). Does then the space
P("X) contain co?

Note that the opposite implication follows from Theorem 1.7.5.

Observe that if the dual X* contains a subspace isomorphic to ¢y or a
superreflexive space, then we can conclude that (3.10) holds for some n.
Indeed, in this case either ¢; — X or, by using the James-Gurarii theorem
([36] p. 450), X admits a non-compact linear operator into some ¢,. This
leaves us with two possibilities. If X fails (3.10) for every n € N, then either
X™* is f1-saturated or it contains a Tsirelson-like subspace Y, in the sense

that Y contains no copy of £1, ¢y or a superreflexive space.

Problem 3.4.5. Let X be a Banach space such that X* is {1-saturated. Is
then P(X) = Pysc(X)?
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Chapter 4

Some results on smooth

functions

In this chapter we solve several open problems from the literature regarding

the behavior of smooth functions on Banach spaces.

4.1 Non-complete C*-smooth renormings

We begin with a problem posed in various papers, e.g. in [12] or [10], con-
cerning the existence of a non-complete C*-smooth renorming of a Banach
space which admits a C*-smooth equivalent norm, where k > 2. The non-
complete C*-smooth renorming plays an important role in some applications
regarding the so-called smooth negligibility and the existence of C*-smooth
diffeomorphisms between certain subsets of the given Banach space X, see
e.g. [31]. Our result can be used to simplify some parts of the theory of
these mappings, in particular the techniques which bypass the use of the
non-complete norm, used in [10], are no longer needed. We begin with an

auxiliary result.

Theorem 4.1.1. Let X be a Banach space with w*-sequentially compact
dual ball. If co =Y — X then Y contains a further subspace ¢ =~ Z — Y

such that Z is complemented in X.

Proof. If ¢g — X then X* has a quotient /1. By the lifting property, we

also have /1 — X™ is a complemented subspace, and moreover, the basis

o1
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{e;j} of co and {f;} of ¢1 in X* form a biorthogonal system. Since Bxx is
w*-sequentially compact, by passing to a subsequence we get that f; — fin
w*-topology. So {g2j} = {f2j — f2j+1} is w*-null, and also equivalent to an
¢1-basis, which is still biorthogonal to {eg;}, again a ¢y basis sequence. Thus
T:X — X, T(xz) =) g25(z)ea; is a projection, and ¢ is a complemented

subspace of X. ]

In fact, a more general version of the above result was shown by Schlumprecht
in his PhD thesis [58]. The condition on X is quite common, e.g. all weak
Asplund spaces or WLD spaces have it ([26], [35], [36]).

Theorem 4.1.2. Let X be an infinite dimensional Banach space admitting
a C*-smooth norm, k = 2. Then X admits a decomposition X =Y ® Z
where Y is infinite dimensional and separable. In particular, X admits a

non-complete C*-smooth renorming.

Proof. By Corollary 3.3 in [24] we have that either ¢y < X or X is super-
reflexive. Either way, using the previous Theorem 4.1.1 (or the existence
of PRI on superreflexive spaces), X = Y @ Z where Y is infinite dimen-
sional and separable. But since every separable Banach space injects into
co, it admits a non-complete C®-smooth norm. It follows that X admits a

C*-smooth noncomplete norm. ]

We point out that for k& = 1 the existence of a (nonequivalent) C'-smooth
norm on a given C''-smooth Banach space (or even any Asplund space) X

remains open.

4.2 Separating polynomials

In this section we present a theorem which solves a problem posed in [11],
concerning an assumption used by these authors in the proof of their main
result. Before we pass to the description of our result, let us recall that
for every real Banach space X one may construct its complexified version
XC, which is (as a real Banach space) isomorphic to X @ X. The complex
norm on XC is not uniquely determined, but this fact plays no role in our

argument. We refer to the paper [52] for details.
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Theorem 4.2.1. Let X be a real Banach space which admits a real analytic
separating function whose complex extension exists and is Lipschitz on some
strip around X, i.e. on X + 2rByc < X, for some r > 0. Then X is

superreflexive and admits a separating polynomial.

Proof. By contradiction. Let f: Bx — R be a separating real analytic and
Lipschitz function with f(0) = 0,df(0) = 0 and infg, f > 1, and such that
the complex extension f : Bx + 1B yc — C exists and is K-Lipschitz, r > 0.
Denote S = Bx +7Byc < XC. This implies that f is bounded by K + 7 on
S.

By the Cauchy formula [55] Thm. 10.28 (for the second derivative of f)

#fin - o [ 5 (41

holds for every a,h € By, and the path v(t) = re®, t € [0, 27]. Noting that
the denominator in the Cauchy formula is in absolute value 72, we obtain
that d?f(a) is uniformly bounded on By. Hence df is Lipschitz on By.

By a result of Fabian, Whitfield and Zizler in [37], Theorem 3.2 in [24] X
is superreflexive. By a result of Deville, Thm 4.1 in [24] X has a separating

polynomial. ]

4.3 Extension of uniformly differentiable functions

In the last part of this section we give a solution to an extension problem,
posed in the monograph of Benyamini and Lindenstrauss [14] p. 278, con-
cerning uniformly differentiable functions on the unit ball of a Banach space
X. Suppose that f : Bx — R is a uniformly differentiable function in the in-
terior of the unit ball Bx. Is there a uniformly smooth extension of f whose
domain is the whole X, or at least some neighbourhood of Bx? A weaker
version of this problem (if we expect a positive solution, i.e. the existence
of some extension) would be to require that the extension coincides with f
at least in some open neighbourhood of the origin. We will show that even
the weaker version of the problem has a negative solution. Our solution is
based on the application of the theory of W-class of Banach spaces, which
was developed in a series of papers [42], [43], [25] and [20] (this class was
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denoted by C-class in the first three papers), which provides a link between

uniform smoothness and weak continuity.

Definition 4.3.1. Let X,Y be normed linear spaces, U ¢ X open, f c
CH(U;Y) and k € N. We say that f is C**-smooth on U if d* f is uniformly

continuous on U.

Definition 4.3.2. Let A € (0,1]. We say that a Banach space X is a
W) -space (or that it belongs to the class W)) if

b (Bx) < Cusc (A\Bx)

(in the sense of restriction).! We say that a Banach space is a W-space (or

that it belongs to the class W) if it is a W-space for some A € (0, 1].

Remark 4.3.3.

e Clearly, if X is a W)-space, then it is a W¢-space for every 0 < { < A.
Conversely, if X is a We-space for every 0 < £ < A, then X is a
W y-space.

e Every Schur space is trivially a Wi-space.
e If X is a W-space, then CLF(X) < Cpsc(X).

e It was shown in [20] that every C(K) (K scattered) space is a W;-
space. In particular, ¢y in the supremum norm is also a Wy-space (this

was shown in [42]).

e Being a W-space is invariant under isomorphism, but the precise value

of A may change.

Proposition 4.3.4. For every m € N,m = 2, there is an equivalent renorm-
ing of co such that (co, | - |m) belongs to W 1 -class, but it does not belong to
W

-class.

1
m—1

1X is a Wy-space if every uniformly differentiable function f : Bx — R takes weakly

Cauchy sequences in ABx to convergent sequences.
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Proof. The renorming | - ||, of ¢g is determined by its closed unit ball B,,

€o,

By, = conv{{tme;};2; U B, }.

Clearly,
B, © By, € mBy,. (4.2)

Note that if z = (z;) € By, then card{j : |z;| > 1+ 1} < m?. Indeed,

suppose

n © o n
x = Z apmey + (L(](Z bjej) = Z xje;, where Z ap =1 and a; = 0.
k=1 j=1 j=1 k=0
Letting A = {k : a; > #}, clearly card(A) < m?. Now |z;| = |agb; +
aym| < ap + ma; < 1+ %, unless j € A. Choose ¢, : R —> R a C%-
smooth even convex function, ¢, [—1 - %,1 + %] =0, ¢n(t) > 0,t >
1+ L and such that both ¢y, ¢, are —l—r-Lipschitz. Let now ®p,(z) =
Z;’;l ¢m(x;). It is clear from the previous discussion that ®,, depends on
at most m?-coordinates in a neighbourhood of any interior point in B,,.
Hence it is a uniformly differentiable symmetric function such that both
®,,,dd,, are 2,,L%—Lipschitz. But ®,,(tej) > 0 for every t > 1 + %,j e N,
hence ®,,, restricted to ﬁBm does not take weakly null sequences into null

sequences. O

Example 4.3.5. There is a Banach space X and a uniformly differentiable
function f : Bx — R which cannot be extended to a uniformly differen-
tiable function on any ABx, A > 1, preserving its original values in some

neighbourhood of 0.

Proof. Let X =@, Yoo _s(co, | - [lm)s P : X = (co, | - |m) be the canonical

m=2
Q0

projections onto the direct summands. Let f(z) = >, _, @y 0 Pp(z). The
functions f and df are 1-Lipschitz, so f is uniformly differentiable (even with
a Lipschitz derivative). It is also clear that (4.2) implies that ®,, cannot be
extended to (1 + ﬁ)Bm, preserving its values on ﬁBm. Since m can be

chosen arbitrary large, the result follows. ]



56

Chapter 4




Bibliography

1]

2]

8]

F. Albiac and N. J. Kalton, Topics in Banach Space Theory, GTM 233,
Springer, 2006.

R. M. Aron, Approzimation of differentiable functions on a Banach
space, in Infinite dimensional holomorphy and applications (M.C. Matos
editor) North Holland Math. Studies 12 (1977), 1-17.

R. M. Aron, Polynomial approzimation and a question of G.E. Shilov, in
Approximation Theory and Functional Analysis, North Holland (1979),
1-12.

R. M. Aron, Weakly uniformly continuous and weakly sequentially con-
tinuous entire functions, Advances in Holomorphy. Proceedings of the
Seminario de holomorfia, ed. by J. A. Barroso, Mathematics Studies
34, North-Holland, Amsterdam, 1979, 47-66.

R. M. Aron and V. Dimant, Sets of weak sequential continuity for poly-
nomials, Indag. Math. (N.S.) 13 (2002), no. 3, 287-299.

R. M. Aron, C. Hervés and M. Valdivia, Weakly Continuous Mappings
on Banach Spaces, J. Funct. Anal. 52 (1983), 189-204.

R. M. Aron and M. Schottenloher, Compact Holomorphic Mappings on
Banach Spaces and the Approximation Property, J. Funct. Anal. 21
(1976), 7-30.

R. M. Aron and J. B. Prolla, Polynomial approzimation of differentiable
functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195—
216.

o7



58

Bibliography

[9]

[12]

R. M. Aron, M. Lacruz, R. Ryan and A. Tonge, The generalized
Rademacher functions, Note Mat. 12 (1992), 15-25.

D. Azagra, Diffeomorphisms between spheres and hyperplanes in
infinite-dimensional Banach spaces, Studia Math. 125 (1997), 179-186.

D. Azagra, R. Fry and L. Keener, Real analytic approximation of Lip-
schitz functions on Hilbert space and other Banach spaces, J. Funct.
Anal. 262 (2012), 124-166.

D. Azagra and T. Dobrowolski, Smooth negligibility of compact sets in
infinite-dimensional Banach spaces, with applications, Math. Ann. 312

(1998), 445-463.

B. Beauzamy and J.-T. Lapresté, Modéles étalés des espaces de Banach,

Travaux en Cours 4, Hermann, Paris (1984).

Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional
analysis, Vol. 1, American Math. Soc. Colloquium Publications 48,
2000.

C. Bessaga FEvery infinite dimensional Hilbert space is diffeomorphic
with its unit sphere, Bull. Acad. Polon. Sci. 14 (1966) 27-31.

W. M Bogdanowicz, Slabaya nepreryvnost’ polinomnykh funktsionalov
na prostranstve co (Russian), Bull. Acad. Polon. Sci., CL. III 5 (1957),
no. 3, 243-246.

H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet
series, Ann. of Math. 32 (1931), no. 3, 600-622.

W. M. Boothby, An Introduction to Differentiable Manifolds and Rie-

mannian Geometry, Second Ed. Academic Press (1986).

A. Brunel and L. Sucheston, On B-conver Banach spaces, Math. Sys-
tems Theory 7 (1973).

Y. S. Choi, P. Hijek and H.J. Lee, Extensions of smooth mappings into
biduals and weak continuity, Adv. Math. 234 (2013), 453-487.



Bibliography

59

[21]

[24]

[25]

28]

[29]

[30]

[31]

32]

S. D’Alessandro and P. Hajek, Polynomial algebras and smooth func-
tions in Banach spaces, Journal of Functional Analysis 266 (3), 2014,
1627-1646.

S. D’Alessandro, P. Hajek and M. Johanis, Corrigendum to the paper
“Polynomial algebras on classical Banach spaces”, Israel J. Math. 106
(1998), 209-220, to appear in Israel J. Math.

R. Deville, Geometrical implications of the existence of very smooth
bump functions in Banach spaces, Israel J. Math. 6 (1989), 1-22.

R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in

Banach spaces, Pitman Monographs 64, London, Logman 1993.

R. Deville and P. Héjek, Smooth noncompact operators from C(K), K
scattered, Isr. J. Math. 162 (2007), 29-56.

J. Diestel, Sequences and series in Banach spaces, Graduate text in
Math., Springer-Verlag 92, 1984.

J. Diestel, H. Jarchow and A.M. Tonge, Absolutely summing operators,
Cambridge Stud. Adv. Math. 43, Cambridge University Press, 1995.

V. Dimant and S. Dineen, Banach subspaces of spaces of holomorphic
functions and related topics, Math. Scand. 83 (1998), 142-160.

V. Dimant and R. Gonzalo, Block diagonal polynomials, Trans. Amer.
Math. Soc. 353 (2000), 733-747.

S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer

Monogr. Math., Springer-Verlag, London, 1999.

T. Dobrowolski, Smooth and R-analytic neglibility of subsets and ez-
tension of homeomorphism in Banach spaces, Studia Math. 65 (1979),
115-139.

T. Dobrowolski, Extension of Bessaga’s negligibility technique to certain
infinite-dimensional groups Bull. Acad. Polon. Sci. Ser. Sci. Math. 26
(1978), 535-545.



60

Bibliography

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. Dobrowolski, FEwvery Infinite-Dimensional Hilbert Space is Real-
Analytically Isomorphic with Its Unit Sphere, J. Funct. Anal. 134
(1995), 350-362.

L. Dor, On projections in L1, Ann. Math. 102 (1975), 463-474.

M. Fabian, Differentiability of convex functions and topology—Weak As-
plund spaces, John Wiley and Sons, 1997.

M. Fabian, P. Habala, P. Hijek, V. Montesinos, and V. Zizler, Banach
Space Theory: The Basis for Linear and Nonlinear Analysis, Canadian
Math. Soc. Books in Mathematics, Springer-Verlag, New York (2011).

M. Fabian, J.H.M. Whitfield and V. Zizler, Norms with locally Lips-
chitzian derivatives, Israel J. Math. 44 (1983), 262-276.

J. Farmer and W.B. Johnson, Polynomial Schur and polynomial
Dunford-Pettis properties, Contemp. Math. 144 (1993), 95-105.

M. Fréchet, Une définition fonctionnelle des polynomes, Nouv. Ann.
Math., Sr. 4, 9 (1909), 145-162.

R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach
spaces, Proc. R. Ir. Acad., Sec. A 95A (1995), no. 2, 213-226.

P. Hajek, Polynomial algebras on classical Banach spaces, Israel J.

Math. 106 (1998), 209-220.
P. Hajek, Smooth functions on cq, Israel J. Math. 104 (1998), 89-96.

P. Héjek, Smooth functions on C(K), Israel J. Math. 107 (1998), 237
252.

P. Hajek and M. Johanis, Smooth analysis in Banach spaces, de Gruyter
(preprint).

P. Hajek and M. Kraus, Polynomials and identities on real Banach
spaces, J. Math. Anal. Appl. 385 (2012), no. 2, 1015-1026.



Bibliography

61

[46]

[54]

[55]

[56]

P. Hajek, V. Montesinos, J. Vanderwerff and V. Zizler, Biorthogonal
Systems in Banach Spaces, CMS Books Math., Canadian Mathematical
Society, Springer-Verlag (2007).

H. Knaust and E. W. Odell, Weakly null sequences with upper €,-
estimates, Functional Analysis. Proceedings of the seminar at the Uni-
versity of Texas at Austin 198789, ed. by E. W. Odell and H. P. Rosen-
thal, Lecture Notes in Math. 1470, Springer-Verlag, Berlin, Heidelberg,
1991, 85-107.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence

spaces, Springer-Verlag, 1977.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function

spaces, Springer-Verlag, 1979.

L.H. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley
Publishing Co., Reading, Mass., 1968.

N. Moulis, Approximation de fonctions différentiables sur certains es-

paces de Banach (French), Indag. Math. 30 (1968), no. 5, 497-511.

G. Munoz, Y. Sarantopoulos, and A. Tonge, Complexifications of real
Banach spaces, polynomials and multilinear maps, Studia Math. 134
(1999), 1-33.

A. M. Nemirovski and S. M. Semenov, On polynomial approximation
in function spaces, Mat. Sb. 21 (1973), 255-277.

A Pelczyniski, A property of multilinear operations, Studia Math. 16
(1957), no. 2, 173-182.

W. Rudin, Real and complex analysis, 3rd. Ed. McGraw-Hill, New York
1987.

R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci., Sér. Sci.
Math. 27 (1979), no. 5, 373-379.

R. A. Ryan, Introduction to tensor products of Banach spaces, Springer

monogr. math., Springer, New York, 2002.



62

Bibliography

[58] T. Schlumprecht, Limitierte Mengen im Banachraumen, PhD disserta-

tion, Ludwig-Maxmilian-Universitat, Miinchen 1987.

[59] G. E. Shilov, Certain solved and unsolved problems in the theory of
functions in Hilbert space, Vestnik Moskov, Univ. Ser. I 25 (1970), 66—
68.

[60] 1. Singer, Bases in Banach Spaces I, Grundlehren Math. Wiss. 154,
Springer-Verlag, Berlin, Heidelberg, 1970.

[61] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups,
Springer-Verlag, 1983.

[62] V. A. Zorich, Mathematical analysis I, Universitext, Springer-Verlag,
2004.



