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Introduction

According to the fundamental Stone-Weierstrass theorem, if X is a finite

dimensional real Banach space, then every continuous function on the unit

ball BX can be uniformly approximated by polynomials.

Before venturing out into infinite-dimensional Banach spaces, let us touch

upon what polynomials on such spaces are like.

Definition. Let X,Y be Banach spaces,1 n P N and let L pnX;Y q be the

space of n-linear Y -valued mappings on X.

• A mapping P : X ÝÑ Y is called an n-homogeneous polynomial

if there exists M P L pnX;Y q such that P pxq “ Mpx, . . . , xq for all

x P X. For convenience, we also define 0-homogeneous polynomials as

constant mappings from X to Y . We denote by P pnX;Y q, n P N0,

the space of all n-homogeneous polynomials from X into Y . When the

target space is the scalar field, we use a shortened notation P pnXq “

P pnX;Y q.

• A mapping P : X ÝÑ Y is called a polynomial of degree at most

n if there exist Pk P P
`

kX;Y
˘

, k “ 0, . . . , n, such that P “
řn
k“0 Pk.

If Pn ‰ 0 we say that P has degree n. We denote by PnpX;Y q the

space of all polynomials of degree at most n.

• We denote by PpX;Y q “
Ť8
n“0 P

npX;Y q the space of all polynomials.

• We say that P P P pnX;Y q (resp. PnpX;Y q, PpX;Y q) is bounded

whenever }P } “ supxPBX }P pxq} ă `8.We denote by pP pnX;Y q , } ¨ }q

1Some among the following definitions hold for vector spaces. For the sake of concise-

ness, let us consider Banach spaces in this introduction, as the main results we hint at

concern Banach spaces.

iii



iv Introduction

(resp. pPnpX;Y q, } ¨ }q, pPpX;Y q, } ¨ }q) the normed linear space of all

continuous2 n-homogeneous polynomials (resp. all continuous polyno-

mials of degree at most n, all continuous polynomials).

• We denote by AnpXq the algebra generated by PnpXq.

For infinite dimensional Banach spaces the statement of the Stone-Weierstrass

Theorem is false, even if we replace continuous functions by the uniformly

continuous ones (which is a natural condition that coincides with continu-

ity in the finite dimensional setting): in fact, on every infinite-dimensional

Banach space X there exists a uniformly continuous real function not ap-

proximable by continuous polynomials (see [53]).

The natural problem of the proper generalization of the result for infi-

nite dimensional spaces was posed by Shilov [59] (in the case of a Hilbert

space). Aron [2] (see also Aron and Prolla [8]) observed that the uni-

form closure on BX of the space of all polynomials of the finite type,

denoted by Pf pXq, which consists of all polynomials admitting a formula

P pxq “
řn
j“1 xφj , xy

nj , φj P X
˚, nj P N, is precisely the space of all functions

which are weakly uniformly continuous on BX (Theorem 3.1.1):

Theorem ([2], [8]). Let X, Y be Banach spaces. Then Pf pX;Y q “ CwupBX ;Y q.

Since there exist infinite dimensional Banach spaces such that all bounded

polynomials are weakly uniformly continuous on BX (e.g. c0 or more gener-

ally all Banach spaces not containing a copy of `1 and such that all bounded

polynomials are weakly sequentially continuous on BX), this result gives a

very satisfactory solution to the problem.

Unfortunately, most Banach spaces, including Lp, p P r1,8q, do not have the

special property used in [8]. In this case, no characterization of the uniform

limits of polynomials is known.

But the problem has a more subtle formulation as well. Let us consider

the algebras AnpXq consisting of all polynomials which can be generated by

finitely many algebraic operations of addition and multiplication, starting

from polynomials on X of degree not exceeding n P N. Of course, such

polynomials can have arbitrarily high degree. The first mentioned result can

2Boundedness and continuity are equivalent.
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now be formulated as stating that A1pXq consists precisely of all functions

which are weakly uniformly continuous on BX . It is clear that, if n is the

lowest degree such that there exists a polynomial P in PpnXq which is not

weakly uniformly continuous, then

A1pXq “ A2pXq “ ¨ ¨ ¨ “ An´1pXq Ĺ AnpXq.

The problem of what happens from n on has been studied in several papers,

notably [53], [41] and [29]. The natural conjecture appears to be that once

the chain of equalities has been broken, it is going to be broken at each

subsequent step.

The proof of this latter statement given in [41], for all classical Banach

spaces, based on the theory of algebraic bases, is unfortunately not entirely

correct, as was pointed out by our colleague Michal Johanis. It is not clear

to us if the theory of algebraic bases developed therein can be salvaged.

Fortunately, the main statement of this theory, Lemma 1.5.4, can be proved

using another approach. The complete proof, which will appear in [22], can

be found in Chapter 2. Most of the results in this area which used [41] are

therefore safe.

The aforementioned statement coincides with the following

Lemma. For every n P N, there exists an ε ą 0 such that, for every m ě

Mpnq,

sup
m
ř

i“1
|xi|ď1

|ppx1, . . . , xmq ´ sn`1px1, . . . , xmq| ě ε,

for every p from the algebra Sn pRmq generated by subsymmetric polynomials

of degree at most n.

The above quantitative lemma implies the following

Theorem. Let X be an infinite dimensional Banach space, and P P PpnXq

be a polynomial with the following property: for every N P N and ε ą 0,

there exists a normalized finite basic sequence teju
N
j“1 such that

sup
řN
j“1 |aj |ď1

ˇ

ˇ

ˇ

ˇ

ˇ

P

˜

N
ÿ

j“1

ajej

¸

´

N
ÿ

j“1

anj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

Then P R An´1pXq.
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This fundamental criterion, in combination with some new results on the

asymptotic behaviour of polynomials on infinite dimensional spaces, is one

of the keys to prove our main result (see [21]), dealt with in Chapter 3

(Theorem 3.2.1).

Theorem. Let X be a Banach space and m be the minimal integer such

that there is a non-compact P P PpmX; `1q. Then n ě m implies PpnXq Ć

An´1pXq.

Theorem 3.2.1 implies, together with the positive results of [2] and [8] (see

the first theorem mentioned above), plus the corollary below (see [6]), all

previously known results in this area (all confirming the above conjecture)

as special cases.

Corollary ([6]). Let X, Y be Banach spaces and suppose that X does not

contain a subspace isomorphic to `1. Then Pwup
nX;Y q “ Pwscp

nX;Y q.

For example, in the following cases it can be easily inferred that the algebra

chain is broken, from a certain point (which we can determine) onward, at

each subsequent step: if X is a Banach space admitting a non-compact linear

operator T P LpX; `pq, p P r1,8q (see [41]); if X “ Lppr0, 1sq, 1 ď p ď 8,

or X “ `8 or X “ CpKq, where K is a non-scattered compact; if `1 ãÑ X

([41]); if X “ `p, 1 ď p ă 8; if X˚ has type q; if X has an unconditional

FDD, `1 ­ãÑ X and there exists a P P PpnXq which is not weakly sequentially

continuous. . .

In Chapter 4 we also give solutions to three other problems posed in the

literature, which are concerning smooth functions rather than polynomials,

but which belong to the same field of study of smooth mappings on a Banach

space.

The first result is a construction of a non-equivalent Ck-smooth norm on

every Banach space admitting a Ck-smooth norm, answering a problem

posed in several places in the literature, e.g. in [12].

Theorem. Let X be an infinite dimensional Banach space admitting a Ck-

smooth norm, k ě 2. Then X admits a decomposition X “ Y ‘ Z, where



Introduction vii

Y is infinite dimensional and separable. In particular, X admits a non-

complete Ck-smooth renorming.

We solve a question in [11] by proving that a real Banach space admitting a

separating real analytic function whose holomorphic extension is Lipschitz

in some strip around X admits a separating polynomial.

Theorem. Let X be a real Banach space which admits a real analytic sep-

arating function whose complex extension exists and is Lipschitz on some

strip around X, i.e. on X ` 2rBXC Ă XC, for some r ą 0. Then X is

superreflexive and admits a separating polynomial.

Eventually, we solve a problem posed by Benyamini and Lindenstrauss in

[14], concerning the extensions of uniformly differentiable functions from the

unit ball into a larger set, preserving the values in some neighbourhood of the

origin. More precisely, we construct an example of a uniformly differentiable

real-valued function f on the unit ball of a certain Banach space X, such

that there exists no uniformly differentiable function g on λBX , for any

λ ą 1, which coincides with f in some neighbourhood of the origin. To do

so, we construct suitable renormings of c0, based on the theory of W-spaces.

Example. There exist countably many norms t}¨}mu
8
m“2 on c0 such that, if

we set X “ ‘`2
ř8
m“2pc0, } ¨ }mq, then there exists a uniformly differentiable

function f : BX Ñ R which cannot be extended to a uniformly differen-

tiable function on any λBX , λ ą 1, preserving its original values in some

neighbourhood of 0.
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Chapter 1

Background and preliminary

results

In this chapter we collect some background results concerning polynomials

in Banach spaces, which will be used in the sequel. We refer to [36] for the

standard notation concerning Banach spaces and to [30] for the standard

notation concerning polynomials. For the sake of conciseness we will omit

the proofs that are not directly involved in the papers [21] and [22], which

the reader can find (along with further references) in the comprehensive

monograph on smoothness in Banach spaces [44].

We also employ numerous classic tools and results in Banach Space The-

ory (such as Gâteaux and Fréchet differentiability, Tsirelson’s space, James-

Gurarii theorem, Bessaga-Pe lczyński theorem, Dunford-Pettis property, Rosen-

thal’s `1 theorem, biorthogonal systems, lifting properties, Asplund and

weak-Asplund spaces, projectional resolutions of the identity, Weakly Lin-

delöf Determined (WLD) spaces, finite-dimensional decompositions (FDD),

type and cotype, superreflexivity, Lipschitz mappings, holomorphy. . . ): should

the reader need to delve into these topics, we suggest consulting [35], [46],

[36] and [44], where they are widely treated.

1



2 Chapter 1

1.1 Polynomials

By N0 we denote the set N Y t0u, i.e. the non-negative integers. The

canonical basis of RN will be denoted by teju
N
j“1.

Definition 1.1.1. Let X1, X2, . . . , Xn, Y be vector spaces.

• We say that a mapping M : X1ˆ¨ ¨ ¨Xn ÝÑ Y is n-linear if it is linear

in each coordinate, that is x ÞÑ Mpx1, . . . , xk´1, x, xk`1, . . . , xnq is a

linear mapping from Xk into Y for each x1 P X1, . . . xn P Xn and each

k P t1, . . . , nu.

• By L pX1, . . . Xn;Y q we denote the vector space of all n-linear map-

pings from X1ˆ¨ ¨ ¨ˆXn to Y . Whenever Xk “ X, 1 ď k ď n, we use

the short notation L pnX;Y q.

• A map is called multilinear if it is n-linear for some n P N. A 2-linear

mapping will also be called bilinear.

• We say that M P L pnX;Y q is symmetric if Mpx1, . . . , xnq “

M
`

xπp1q, . . . , xπpnq
˘

for every permutation π of t1, . . . , nu and every

x1, . . . , xn P X.

• By Ls pnX;Y q we denote the vector space of all n-linear symmetric

mappings from Xn to Y .

Definition 1.1.2. Let X1, X2, . . . , Xn, Y be normed linear spaces.

• We say that M P L pX1, . . . , Xn;Y q is a bounded n-linear mapping

if

}M} :“ sup
x1PBX1

,...,xnPBXn

}Mpx1, . . . , xnq} ă `8.
1

• By pL pX1, . . . , Xn;Y q ; } ¨ }q, resp. pL pnX;Y q ; } ¨ }q, resp. pLs pnX;Y q ; } ¨ }q,

we denote the normed linear space of all respective n-linear bounded

mappings. For bounded n-linear forms, we use the shortened notation

L pnXq “ L pnX;Kq.
1It is straightforward that } ¨ } defines a norm on the subspace of L pX1, . . . , Xn;Y q

consisting of bounded multilinear mappings.
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Remark 1.1.3. Let M P L pX1, . . . , Xn;Y q. Then by homogeneity we have

}Mpx1, . . . , xnq} ď }M} }x1} ¨ ¨ ¨ }xn} for xj P X, j “ 1, . . . , n.

It turns out that for multilinear mappings an analogous result to that of con-

tinuity of linear functionals holds, i.e. polynomials are continuous mappings

whenever they have at least one point of continuity.

Proposition 1.1.4. Let X1, . . . , Xn, Y be normed linear spaces and M P

L pX1, . . . , Xn;Y q. The following are equivalent:

(i) M is bounded;

(ii) M is Lipschitz on bounded sets;

(iii) M is continuous;

(iv) M is bounded on a neighbourhood of some point.

A particular property comes in handy: homogeneous polynomials are in a

canonical one-to-one correspondence with the symmetric multilinear forms

via the Polarization formula, as the following proposition states.

Proposition 1.1.5 (Polarization formula). Let X,Y be vector spaces and

M P L pnX;Y q. Then

M spx1, . . . , xnq “
1

2nn!

ÿ

εj“˘1

ε1 ¨ ¨ ¨ εnM

˜

a`
n
ÿ

j“1

εjxj , . . . , a`
n
ÿ

j“1

εjxj

¸

for every a, x1, . . . , xn P X. In particular, if M is symmetric, then it is

uniquely determined by its values Mpx, . . . , xq, x P X, along the diagonal.

Definition 1.1.6. Let X,Y be vector spaces and n P N.

• A mapping P : X ÝÑ Y is said to be an n-homogeneous polyno-

mial if there exists an n-linear mapping M P L pnX,Y q such that

P pxq “ Mpx, . . . , xq. We use the notation P “ xM . For the sake of

convenience, we also define 0-homogeneous polynomials as constant

mappings from X to Y .

• We denote by P pnX;Y q, n P N0, the vector space of all n-homogeneous

polynomials from X into Y .
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Suppose X,Y are normed linear spaces, n P N0.

• We say that P P P pnX;Y q is a bounded polynomial if

}P } “ sup
xPBX

}P pxq} ă `8.

• We denote by pP pnX;Y q , } ¨ }q the normed linear space of all n-homogeneous

bounded polynomials from X into Y . When the target space is the

scalar field, we use the shortened notation P pnXq “ P pnX;Kq.

For a given n-homogeneous polynomial P , the n-linear mapping M that

gives rise to P is not uniquely determined. In particular, the symmetrized

n-linear mapping leads to the same polynomial: for every M P L pnX;Y q,

we have xM “yM s. However, the following fundamental result holds.

Proposition 1.1.7 (Polarization formula, [17], [51]). Let X,Y be vector

spaces and n P N. For every P P P pnX;Y q, there exists a unique symmetric

n-linear mapping qP P Ls pnX;Y q such that P pxq “ qP px, . . . , xq. It satisfies

the formula

qP px1, . . . , xnq “
1

2nn!

ÿ

εj“˘1

ε1 ¨ ¨ ¨ εnP

˜

a`
n
ÿ

j“1

εjxj

¸

,

where a P X can be chosen arbitrarily. Moreover, if X,Y are normed linear

spaces and P is bounded, then qP is also bounded and we have

}P } ď
›

›

›

qP
›

›

›
ď
nn

n!
}P } .

On the other hand, for every m ą n and a, x1, . . . , xm P X, the following

holds:
ÿ

εj“˘1

ε1 ¨ ¨ ¨ εmP

˜

a`
m
ÿ

j“1

εjxj

¸

“ 0.

Most of the time we will be concerned with the restrictions of the polynomi-

als whose domain is a Banach space X to a suitable subspace Y ãÑ X with

a Schauder basis teju
8
j“1 (resp. a finite-dimensional Banach space). In this

case it is possible, and very useful, to rely on the concrete representation of

(the restriction of) the polynomial using the monomial expansion in terms

of the vector coordinates.
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Definition 1.1.8. Let n P N. For a multi-index α P Nn0 we denote its order

by |α| “
řn
j“1 αj . We denote the set of multi-indices of order d P N0 by

Ipn, dq “
 

α P t0, . . . , dun : |α| “ d
(

.

In order to treat infinite dimensional Banach spaces, we extend the definition

also to the case when n “ 8, setting

Ip8, dq “

"

α P t0, . . . , duN : |α| “
8
ÿ

j“1

αj “ d

*

.

For n, d P N we denote I`pn, dq “ tα P Ipn, dq : αj ą 0, j “ 1, . . . , nu and

I`pdq “
Ťd
n“1 I

`pn, dq.

For n P N we denote

Npnq “ tρ P Nn : ρ1 ă ρ2 ă ¨ ¨ ¨ ă ρnu .

For n P N we have |Ipn, dq| “
`

n`d´1
n´1

˘

.2

A given pkjq
d
j“1 P t1, . . . , nu

d determines a unique α P Ipn, dq by the relation

α “ p|tj : kj “ 1u|, |tj : kj “ 2u|, . . . , |tj : kj “ nu|q . (1.1)

Conversely, a given α P Ipn, dq determines a unique kpαq “ pk1pαq, . . . , kdpαqq,

k1pαq ď ¨ ¨ ¨ ď kdpαq, such that p1.1q holds.

Given x “ px1, . . . , xnq P Kn and α “ pα1, . . . , αnq P Ipn, dq we use the

standard multi-index notation

xα “
n
ź

l“1

xαll “
d
ź

j“1

xkjpαq.

The case n “ 8 is similar and corresponds to multi-indices whose domain

is N. More precisely, for a fixed Schauder basis teju
8
j“1 of X, with a dual

basis tx˚j u
8
j“1 Ă X˚, α P Ip8, dq and x “

ř8
j“1 xjej ,

xα “
ź

αl‰0

xαll “
ź

αl‰0

xx˚l , xy
αl .

Note that x ÞÑ xα P PpdKnq for any α P Ipn, dq.

2It represents the number of distributions of d identical balls into n distinct boxes.
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Given α “ pα1, . . . , αnq P Ipn, dq, we denote α! “ α1! ˆ ¨ ¨ ¨ ˆ αn!. We also

use the corresponding multinomial coefficient by

ˆ

d

α

˙

“

ˆ

d

α1, . . . , αn

˙

“
d!

α1! ¨ ¨ ¨αn!
“
d!

α!
.

We also put a partial ordering on multiindices defined as follows. If α “

pα1, . . . , αnq P Ipn, dq, β “ pβ1, . . . , βnq P Ipn, pq, p ď d, and αj ě βj

holds for all j P t1, . . . , nu then we say that α ě β, and we also denote

α´ β “ pα1 ´ β1, . . . , αn ´ βnq P Ipn, d´ pq.

Proposition 1.1.9 (Multinomial formula). Let X,Y be vector spaces, d P

N, P P P
`

dX;Y
˘

and x1, . . . , xn P X. Then

P px1 ` ¨ ¨ ¨ ` xnq “
ÿ

αPIpn,dq

ˆ

d

α

˙

qP pα1x1, . . . ,
αn xnq .

The next proposition asserts that the abstract definition of homogeneous

polynomials coincides on Kn with the classical definition that uses coordi-

nates. Note that in this case all homogeneous polynomials are automatically

bounded.

Proposition 1.1.10. Let n, d P N and Y be a vector space over K. A

mapping P : Kn ÝÑ Y is a d-homogeneous polynomial if and only if there

exist tyαuαPIpn,dq Ă Y such that P pxq “
ř

αPIpn,dq x
αyα. Moreover, each yα

is uniquely determined by

yα “

ˆ

d

α

˙

qP pα1e1, . . . ,
αn enq ,

where teju
n
j“1 is the canonical basis of Kn.

In the special case Y “ K, this reduces to the familiar formula

P pxq “
ÿ

αPIpn,dq

aαx
α,

where the coefficients aα P K.

Proposition 1.1.11. Let X be a normed linear space with a Schauder ba-

sis teju
8
j“1, Y a vector space, d P N and P P P

`

dX;Y
˘

. Denote X0 “
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spanteju
8
j“1. Then there is a unique collection of vectors tyαuαPIpn,dq Ă Y

such that the formula

P pxq “
ÿ

αPIpn,dq

xαyα (1.2)

holds for every x P X0. The coefficients yα are given by

yα “

ˆ

n

α

˙

qP pα1e1,
α2 e2, . . . q .

Conversely, any tyαuαPIpn,dq Ă Y uniquely determines a polynomial P P

P
`

dX0;Y
˘

by formula p1.2q.

Definition 1.1.12. Let X,Y be vector spaces and n P N0.

• A mapping P : X ÝÑ Y is called a polynomial of degree at most

n if there are Pk P P
`

kX;Y
˘

, k “ 0, . . . , n, such that P “
řn
k“0 Pk. If

Pn ‰ 0, we say that P has degree n and we use the notation degP “ n.3

• We denote by Pn pX;Y q the space of all polynomials of degree at

most n. We denote by P pX;Y q “
Ť8
n“0 P

npX;Y q the space of all

polynomials.

Suppose X,Y are normed linear spaces, n P N0.

• A mapping P : X ÝÑ Y is called a bounded polynomial of degree

at most n if there are Pk P P
`

kX;Y
˘

, k “ 0, . . . , n, such that P “
řn
k“0 Pk.

• We denote by Pn pX;Y q the space of all bounded polynomials of degree

at most n. We denote by PpX;Y q “
Ť8
n“0 P

npX;Y q the space of all

bounded polynomials.

1.2 Differentiability

In this section we briefly list some facts concerning the derivative of poly-

nomials.

3Note that degP is well-defined, as the homogeneous summands of a polynomial are

uniquely determined.
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Fact 1.2.1. Let P P PpdX;Y q, v P X. The directional derivative

BP

Bv
pxq “ lim

λÑ0

P px` λvq ´ P pxq

λ

is easily shown to be a polynomial in x which satisfies the formula

BP

Bv
pxq “ d ¨ qP pv,d´1 xq P Ppd´1X;Y q.

By induction, for a fixed α P Ip8, pq, p ď d, where αi “ 0 pi ą kq and

y1, . . . , yk P X, we get

BpP

Bα1y1 . . . Bαkyk
pxq “

d!

pd´ pq!
qP pα1y1, . . . ,

αk yk,
d´p xq P Ppd´pX;Y q. (1.3)

Fact 1.2.2. Let X be a Banach space with a Schauder basis teju
8
j“1, Y be

a Banach space, P P PpdX;Y q. There is a unique set of vectors yρα P Y, α “

pα1, . . . , αkq P Ip8, dq, ρj P N, 1 ď ρ1 ă ρ2 ă ¨ ¨ ¨ ă ρk,

yρα “
1

α1! ¨ ¨ ¨αk!

BdP

Bα1eρ1 . . . B
αkeρk

p0q, (1.4)

such that the formula

P

˜

8
ÿ

j“1

xjej

¸

“
ÿ

αPIp8,dq

ÿ

1ďρ1ă¨¨¨ăρk

xα1
ρ1 ¨ ¨ ¨x

αk
ρk
yρα (1.5)

holds for every finitely supported vector x P X. In the special case Y “ R
the coefficients are just real numbers aρα.

1.3 Symmetric and sub-symmetric polynomials

This section is motivated by the following fact: the concept of sub-symmetric

polynomials on RN can be used to capture the essential information on the

behaviour of a given general polynomial.

Definition 1.3.1. A Schauder basis teju
8
j“1 of a Banach space X is called

symmetric if there exists K ą 0 such that for any bijection σ : NÑ N, the

formal linear operator Iσp
ř8
j“1 ajejq “

ř8
j“1 aσpjqej is an isomorphism of X

such that }Iσ}
›

›I´1
σ

›

› ă K.
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A Schauder basis teju
8
j“1 of a Banach space X is called spreading invari-

ant if there exists K ą 0 such that for any increasing mapping σ : N Ñ N,

the formal linear operator Iσp
ř8
j“1 ajejq “

ř8
j“1 ajeσpjq is an isomorphism

into a subspace of X such that }Iσ}
›

›I´1
σ

›

› ă K.

A spreading invariant and unconditional basis is called sub-symmetric.

We remark that a symmetric basis is automatically unconditional.

A subset U of a Banach space X with a Schauder basis teju
8
j“1 is called

symmetric (resp. spreading invariant) if for any bijection σ : N Ñ N (resp.

for any increasing mapping σ : NÑ N), IσpUq Ă U .

Definition 1.3.2. Let teju
8
j“1 be a Schauder basis of a Banach space X,

U Ă X be symmetric (resp. spreading invariant) and f : U Ñ Y be a

function. If

f

˜

8
ÿ

j“1

ajej

¸

“ f

˜

8
ÿ

j“1

ajeσpjq

¸

,
8
ÿ

j“1

ajej P U,

for any bijection σ : N Ñ N (resp. for any increasing mapping σ : N Ñ N),

then we say that f is symmetric (resp. sub-symmetric) on U .

These notions will typically be applied to functions whose domain is a Ba-

nach space with a symmetric (resp. spreading invariant) basis or a subspace

of a space with a Schauder basis consisting of finitely supported vectors.

We use the same terminology also for functions acting on X “ Rn, with

the fixed and linearly ordered linear basis teju
n
j“1. In this case the notion

of subsymmetric is reduced to the identity fpxq “ fpyq being valid for

every pair x “ px1, . . . , xnq, y “ py1, . . . , ynq of elements of Rn such that

the sequences formed by all non-zero coordinates of x and y coincide (e.g.

x “ p2, 0, 0, 1.5, π, 0q y “ p0, 2, 1.5, 0, 0, πq).

Definition 1.3.3.

• For a given d P N denote

Jpdq “

#

α “ pα1, . . . , αkq : k P N, αj P t1, . . . , du,
k
ÿ

j“1

αj “ d

+

.4

4For the sake of completeness, we also set Jp0q “ tHu.
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• Given α “ pα1, . . . , αkq P Jpdq we let

Pα

˜

8
ÿ

j“1

xjej

¸

“
ÿ

1ďρ1ă¨¨¨ăρk

xα1
ρ1 ¨ ¨ ¨x

αk
ρk
, (1.6)

for all finitely supported
ř8
j“1 xjej P c00, and set PH “ 1. Clearly,

Pα is a subsymmetric polynomial. Polynomials which satisfy (1.6) are

called standard or elementary.5

• Further, we denote sd “ Ppdq, i.e.

sdpxq “
8
ÿ

j“1

xdj

for all finitely-supported vectors x “
ř

xjej . Each sd is a symmetric

polynomial and it is called a power sum symmetric polynomial.

Remark 1.3.4. The standard polynomials form a linear basis of the fi-

nite dimensional linear space of all d-homogeneous subsymmetric (and not

necessarily bounded) polynomials on spanteju.

More precisely, we have the following well-known fact.

Fact 1.3.5. Let X be the linear span of a Schauder basis teju
8
j“1 (resp. X “

Rn) and Y a vector space. If a polynomial P P PdpX;Y q is subsymmetric,

then, for fixed α “ pα1, . . . , αkq, the constants yρα do not depend on the

choice of ρ “ ρ1 ă ¨ ¨ ¨ ă ρk. In particular, the following equality holds

P

˜

8
ÿ

j“1

xjej

¸

“

d
ÿ

k“0

ÿ

αPJpkq

Pα

˜

8
ÿ

j“1

xjej

¸

yα (1.7)

for all finitely supported
ř8
j“1 xjej P X (resp. for all x P Rn).6

We will also rely on a finite dimensional version of the above result.

5This terminology applies also to the case when X “ Rn.
6The coefficients yα are given by yα “

`

d
α

˘

qP pα1e1, . . . ,
αn enq, where α P Ipdq.
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1.4 Spreading models

Definition 1.4.1. Given a set X, we let Xpnq be the set of all subsets of

X of cardinality n. We say that a system of k disjoint sets tSiu
k
i“1 forms a

partitioning of Xpnq whenever Xpnq “
Ťk
i“1 Si.

Proposition 1.4.2 (Ramsey). Let k, n P N. Then for every partitioning

tSiu
k
i“1 of Npnq there exists i P t1, . . . , ku and an infinite set M Ă N such

that M pnq Ă Si.

This result can be reformulated in the following ways:

• Let n be a natural number. Let ψ be a mapping from Npnq to some

finite set C. Then there is an infinite subset M of N such that ψ is

constant on M pnq.

• If a coloring (with a finite number of colors) of sets of natural numbers

of a given length n is defined, then there is an infinite subset M of N
such that all subsets of M of length n have the same color.

Proposition 1.4.3 (Ramsey). Let k, n,m P N. Then there exists M “

Mpk, n,mq such that, for every partitioning tSiu
k
i“1 of t1, . . . ,Mupnq, there

exists i P t1, . . . , ku and a subset A Ă t1, . . . ,mu, |A| “ m, such that Apnq Ă

Si.

We will now list some basic facts concerning the spreading model construc-

tion for a Banach space X, which leads to a Banach space with a sub-

symmetric basis which captures the asymptotic behaviour of infinite se-

quences in X.

Definition 1.4.4. Let K ě 1. We say that a sequence txnu
8
n“1 in a normed

linear space is K-spreading if

›

›

›

›

›

k
ÿ

j“1

ajxmj

›

›

›

›

›

ď K

›

›

›

›

›

k
ÿ

j“1

ajxnj

›

›

›

›

›

whenever k P N, a1, . . . , ak are any scalars and mj , nj P N are such that

m1 ă m2 ă ¨ ¨ ¨ ă mk, n1 ă n2 ă ¨ ¨ ¨ ă nk.



12 Chapter 1

Remark 1.4.5. From Rosenthal’s `1-theorem it follows that anyK-spreading

sequence in a Banach space X is either equivalent to the canonical basis of `1

or it is weakly Cauchy: indeed, the linear operator T : spantxnju ÝÑspantxju

such that T
`

xnj
˘

“ xj is bounded and hence w ´ w uniformly continuous.

Proposition 1.4.6 ([13]). Let tenu be a K-spreading sequence in a Banach

space X. Then tenu is a basic sequence if and only if it is not weakly con-

vergent to a non-zero element of X. If moreover tenu is weakly null, then

tenu is an unconditional basic sequence.

Remark 1.4.7.

• A symmetric basis is automatically unconditional and in fact sub-

symmetric (see [60]).

• If tenu Ă X is a sub-symmetric basis that is K-spreading, then the

sequence tfnu Ă X˚, biorthogonal to tenu, is a sub-symmetric basic

sequence that is 2CK-spreading, where C is the unconditional basis

constant of tenu.

Definition 1.4.8. Let txnu be a sequence in a Banach space X. We say

that a sequence tenu in a Banach space Y is a spreading model of the

sequence txnu if for every ε ą 0 and k P N there is N P N such that

p1´ εq

›

›

›

›

›

k
ÿ

j“1

ajej

›

›

›

›

›

ď

›

›

›

›

›

k
ÿ

j“1

ajxnj

›

›

›

›

›

ď p1` εq

›

›

›

›

›

k
ÿ

j“1

ajej

›

›

›

›

›

for all N ď n1 ă n2 ă ¨ ¨ ¨ ă nk and all scalars a1, . . . , ak.

If εk “
1
2k

, Nk “ 2k we call txnju
8
j“1 a characteristic subsequence of

txnu
8
n“1.

Theorem 1.4.9 (Brunel, Sucheston, [19]). Let X be a Banach space and

suppose that txnu Ă X is a bounded sequence such that txnunPN is not

relatively compact. Then txnu has a subsequence with a spreading model.

The proof is based on a repeated use of the finite Ramsey theorem, and can

be found in e.g. in [36], p. 294.
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Proposition 1.4.10. Let X be a Banach space and txnu Ă X a weakly null

sequence with a spreading model tenu. Then tenu is a sub-symmetric basic

sequence with the unconditional basis constant at most 2.

The relation (1.8) below is the fundamental result of the theory of spreading

models. It can be obtained from the previous results by passing to subse-

quences and diagonalizing.

Proposition 1.4.11 (Brunel, Sucheston, see [13]). Let tεnu
8
n“1 be a se-

quence of positive real numbers decreasing to zero, tNpkqu8k“1 be an increas-

ing sequence of natural numbers and txnu
8
n“1 be a normalised basic sequence

in a Banach space X. Then there exists a subsequence tynu
8
n“1 of txnu

8
n“1

and a Banach space pY, |||¨|||q with a spreading invariant basis tenu
8
n“1, such

that, for all k P N and all scalars aj, j “ 1, . . . , Npkq,

p1´ εkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Npkq
ÿ

j“1

ajej

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

›

›

Npkq
ÿ

j“1

ajynj

›

›

›

›

›

›

ď p1` εkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Npkq
ÿ

j“1

ajej

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (1.8)

whenever k ď n1 ă ¨ ¨ ¨ ă nNpkq.

The following additional result will be made use of later on. We prefer

to omit the standard proof of the estimate (1.9) concerning sub-symmetric

polynomials, which can be obtained by modifying the proof of Theorem

1.4.9, by working simultaneously with the original norm }¨} and P , and

keeping in mind that d-homogeneous polynomials form a closed set in the

topology of uniform convergence on the unit ball.

Theorem 1.4.12. Let X be a Banach space, P P PpdXq and let Y be the

Banach space whose existence is guaranteed by Proposition 1.4.11. Then

there exists a sub-symmetric polynomial R P PpdY q such that, for all k P N,

we have

R

¨

˝

Npkq
ÿ

j“1

ajej

˛

‚´ εk ď P

¨

˝

Npkq
ÿ

j“1

ajynj

˛

‚ď R

¨

˝

Npkq
ÿ

j“1

ajej

˛

‚` εk, (1.9)

whenever k ď n1 ă ¨ ¨ ¨ ă Npkq,
řNpkq
j“1 ajynj P BX .
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It is clear that in general a basic sequence may admit many non-isomorphic

spreading models. We say that Y is a spreading model of X provided Y

results as a spreading model built on some normalised basic sequence in X.

The Ramsey theorems and the theory of spreading models allow us to infer

the following useful result.

Theorem 1.4.13. Let d, n P N and ε ą 0. There exists N “ Npd, n, εq such

that, for every P P Ppd`N1 q, }P } ď 1, there exists A Ă t1, . . . , Nu, |A| “ n,

and a subsymmetric polynomial Q P P
`

dY
˘

such that }PæY ´Q} ă ε, where

Y “ spantekukPA and teku
N
k“1 is the canonical basis of `N1 .

Proof. Given P P P
`

d`N1
˘

with }P } ď 1, there are aα,ρ P R such that

P “
ř

αPI`pdqRα, where

Rα pxq “
ÿ

ρPNpk,Nq

aα,ρx
α1
ρ1 ¨ ¨ ¨x

αk
ρk

(1.10)

for α P I`pk, dq. By combining formulas (1.3), (1.4), (1.5) and the Polariza-

tion formula, we see that each aα,ρ is such that |aα,ρ| ă
`

d
α

˘

›

›

›

qP
›

›

›
ď dd.

We show that, for any n P N, ε ą 0, K ą 0 and α P I`pdq, there is

N “ Nαpn, ε,Kq such that, for any polynomial R P P
`

d`N1
˘

of the form

p1.10q, with |aα,ρ| ď K, and for all ρ P Npk,Nq, there is A Ă t1, . . . , Nu,

|A| “ n, and c P R such that }RæY ´ cP
n
α } ă ε, where Y “spantekukPA.

It is clear that we may take

Npn, d, εq “ Nαv

´

. . . Nα2

´

Nα1

´

n,
ε

v
, dd

¯

,
ε

v
, dd

¯

. . . ,
ε

v
, dd

¯

,

where α1, . . . , αv is an enumeration of I`pdq.

So fix α P I`pk, dq, n P N, ε ą 0 and K ą 0. Let δ “ ε
2n! and M “

“

K
δ

‰

. By Ramsey’s theorem there is N P N such that, for every 2pM ` 1q-

colouring of k-subsets (i.e. subsets of cardinality k) of t1, . . . , Nu, there is

A Ă t1, . . . , Nu, |A| “ n, such that all k-subsets of A have the same colour.

Now, given R P P
`

d`N1
˘

of the form p1.10q with |aα,ρ| ď K for all ρ P

Npk,Nq, we put mpρq “
“aα,ρ

δ

‰

P t´M ´ 1,´M, . . . ,Mu.

Note that |aα,ρ ´ δmpρq| ă δ. Each ρ P Npk,Nq uniquely determines a

k-subset of t1, . . . , Nu and vice versa, therefore the function m induces a

2pM ` 1q-colouring of the k-subsets of t1, . . . , Nu. Let A Ă t1, . . . , Nu,
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|A| “ n, be such that there is m0 P N satisfying mpρq “ m0 for all ρ Ă A.

Then
ˇ

ˇ

ˇ

ˇ

ˇ

R

˜

ÿ

jPA

xjej

¸

´ δm0P
n
α

˜

ÿ

jPA

xjej

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď δ
ÿ

ρĂA

ˇ

ˇxα1
ρ1 ¨ ¨ ¨x

αk
ρk

ˇ

ˇ ď δ

ˆ

n

k

˙

ă ε

whenever
›

›

›

ř

jPA xjej

›

›

›
ď 1. [\

1.5 Algebras

In this thesis we are going to work with algebras A of polynomials on a Ba-

nach space X, i.e. subsets of PpXq that are closed with respect to addition,

pointwise multiplication, and scalar multiplication.

Definition 1.5.1. Given an algebra A Ă PpXq, we say that the set B Ă A

generates the algebra A if A is the smallest algebra containing B, i.e. it is

the intersection of all algebras containing B.

It is easy to see that B generates A if and only if for every p P A there

is a finite set tb1, . . . , blu Ă B and a polynomial P P P
`

Rl
˘

such that

p “ P pb1, . . . , blq.

Definition 1.5.2. Let X be a Banach space.

• We denote by AnpXq the algebra generated by polynomials from
n
Ť

i“0
PnpXq.

• The space of subsymmetric d-homogeneous polynomials on RN will be

denoted by Hd

`

RN
˘

.

• We denote by Sk
`

RN
˘

the algebra of subsymmetric polynomials gen-

erated by the set of polynomials
k
Ť

l“0

Hl

`

RN
˘

.
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Remark 1.5.3.

• Given α “ pα1, . . . , αkq P Ipdq and N ě k, we let

PNα

˜

N
ÿ

j“1

xjej

¸

“
ÿ

1ăρ1ă¨¨¨ăρk

xα1
ρ1 ¨ ¨ ¨x

αk
ρk

(1.11)

and set PNH “ 1. For N ě d, the polynomials PNα , for α P Ipdq, form

a linear basis of Hd

`

RN
˘

.

• As we pointed out, if k ď N , then HkpRN q has a linear basis consisting

of PNα , α P Jpkq (see (1.11)). In other words, P P HkpRnq has the

unique standard form

P px1, . . . , xN q “
ÿ

αPJpkq

aαP
N
α px1, . . . , xN q, aα P R. (1.12)

• The spaces of subsymmetric polynomials HkpRkq and HkpRN q, N ą k,

are canonically isomorphic, as their linear bases can be indexed with

the same set Jpkq.

The following result is the key lemma for proving plenty of results in [41].

Unfortunately, as we mentioned in the introduction, the theory of algebraic

bases developed there is not entirely correct. Fortunately, the core of this

theory, Lemma 1.5.4, can be proved otherwise. Its proof is treated in Chap-

ter 2.

Lemma 1.5.4. For every n P N, there exists an ε ą 0 such that, for every

m ěMpnq,

sup
m
ř

i“1
|xi|ď1

|ppx1, . . . , xmq ´ sn`1px1, . . . , xmq| ě ε,

for every p in the algebra SnpRmq, generated by subsymmetric polynomials

of degree at most n.

The above quantitative lemma implies the following fundamental criterion.
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Theorem 1.5.5. Let X be an infinite dimensional Banach space, n P N and

P P PpnXq be a polynomial with the following property: for every N P N
and ε ą 0 there exists a normalized finite basic sequence teju

N
j“1 such that

sup
řN
j“1 |aj |ď1

ˇ

ˇ

ˇ

ˇ

ˇ

P

˜

N
ÿ

j“1

ajej

¸

´

N
ÿ

j“1

anj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

Then P R An´1pXq.

Proof. Denote by Sn p`m1 q the algebra generated by all sub-symmetric poly-

nomials on `m1 of degree at most n. By Lemma 1.5.4, there are m P N and

ε ą 0 such that }Q ´ sn} ě 3ε for all Q P Sn´1 p`m1 q. Let P P PpnXq

be the polynomial whose existence is guaranteed by the assumptions of the

theorem. We claim that P R An´1pXq.

By contradiction, suppose that there exist P1, . . . , Pk P Pn´1pXq and r P

P
`

Rk
˘

such that, for R “ r ˝ pP1, . . . , Pkq, we have }P ´ R} ă ε. Put

K “ 1 ` maxj }Pj} and let 0 ă η ď 1 be such that |rpuq ´ rpvq| ă ε,

whenever u, v P KB`k8 , }u ´ v}`k8 ă η. Using Theorem 1.4.13 recursively

kn times, we find N P N such that, for any linearly independent teju
N
j“1 Ă

SX , there exist A Ă t1, . . . , Nu, |A| “ m, and sub-symmetric polynomials

Q1, . . . , Qk P Pn´1pY q such that }PjæY ´Qj} ă η, j “ 1, . . . , k, where

Y “spantejujPA with `1-norm.

Let teju
N
j“1 be the linearly independent set from the assumptions of the

theorem and A Ă t1, . . . , Nu, Q1, . . . , Qk P Pn´1pY q as above. Note that

since teju is normalized, }RæY ´ PæY }Y ď }RæY ´ PæY }X ă ε. Put Q “

r ˝ pQ1, . . . , Qkq. Then Q P Sn´1 p`m1 q and }Q ´ sn} ď }Q´RæY } `

}RæY ´ PæY } ` }PæY ´ sn} ă 3ε, which is a contradiction.

[\

1.6 Tensor products

This section is aimed at collecting basic definitions and elementary facts

concerning tensor products. Tensor products offer an important point of

view on polynomials and multilinear mappings.

Definition 1.6.1. Let X1, . . . , Xn be vector spaces over K.
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• By Λ we denote the vector space of all formal linear combinations
řN
k“1 ak

`

xk1 b ¨ ¨ ¨ b x
k
n

˘

, ak P K, xkj P Xj .

• By Λ0 we denote the linear subspace of Λ spanned by the vectors

apx1 b ¨ ¨ ¨ b xnq ´ px1 b ¨ ¨ ¨ b axk b ¨ ¨ ¨ b xnq

and

px1b¨ ¨ ¨bpxk`ykqb¨ ¨ ¨bxnq´px1b¨ ¨ ¨bxkb¨ ¨ ¨bxnq´px1b¨ ¨ ¨bykb¨ ¨ ¨bxnq,

where k P t1, . . . , nu, xj , yj P Xj , a P K.

• The quotient space Λ
Λ0

is called tensor product of X1, . . . , Xn and

will be denoted by

X1 b ¨ ¨ ¨ bXn “

n
â

j“1

Xj .
7

Remark 1.6.2.

• By the definition of Λ0, each z P X1 b ¨ ¨ ¨ bXn has a representation

z “
k
ÿ

j“1

xj1 b ¨ ¨ ¨ b x
j
n.

An element of X1b¨ ¨ ¨bXn that admits a representation x1b¨ ¨ ¨bxn

is called elementary tensor.

• Given φj P X
1
j ,

8 the function

k
ÿ

j“1

aj

´

xj1 b ¨ ¨ ¨ b x
j
n

¯

ÞÑ

k
ÿ

j“1

ajφ1px
j
1q ¨ ¨ ¨φnpx

j
nq (1.13)

is a linear form on the vector space Λ.

We can infer a useful criterion for distinguishing vectors in a tensor product.

7This definition is motivated by the will to linearize multilinear mappings.
8This denotes the algebraic dual of Xj .
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Proposition 1.6.3. Let X1, . . . , Xn be vector spaces and Aj Ă X 1j be subsets

that separate the points of Xj, j “ 1, . . . , k. Then
řk
j“1 ajx

j
1 b ¨ ¨ ¨ b x

j
n “ 0

in X1 b ¨ ¨ ¨ bXn if and only if

k
ÿ

j“1

ajφ1px
j
1q ¨ ¨ ¨φnpx

j
nq “ 0

for every choice of φj P Aj.

Definition 1.6.4. Byb we define the n-linear mappingb : X1ˆ¨ ¨ ¨ˆXn ÝÑ
Ân

j“1Xj such that bpx1, . . . , xnq “ x1 b ¨ ¨ ¨ b xn.

Theorem 1.6.5 (Universality of tensor products – algebraic setting). Let

X1, . . . , Xn, Y be vector spaces. For every n-linear mapping M P L pX1, . . . , Xn;Y q

there exists a unique linear operator LM P L pX1 b ¨ ¨ ¨ bXn;Y q such that

M “ LM ˝ b:

X1 ˆ ¨ ¨ ¨ ˆXn

b

��

M // Y

X1 b ¨ ¨ ¨ bXn

LM
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The operator LM satisfies

LM px1 b ¨ ¨ ¨ b xnq “Mpx1, . . . , xnq. (1.14)

LM is therefore called the linearization of M .

Theorem 1.6.6. Let X1, . . . , Xn be vector spaces. For M P L pX1, . . . , Xn;Kq
and z “

řk
j“1 x

j
1 b ¨ ¨ ¨ b x

j
n P X1 b ¨ ¨ ¨ bXn put

xM, zy “
k
ÿ

j“1

M
´

xj1, . . . , x
j
n

¯

“

k
ÿ

j“1

LM

´

xj1 b ¨ ¨ ¨ b x
j
n

¯

“ LM pzq.

Then xL pX1, . . . , Xn;Kq , X1 b ¨ ¨ ¨ bXny forms a dual pair.

We will now introduce an important example of natural norm on tensor

products of Banach spaces (see [57]).

Definition 1.6.7. Let X1, . . . , Xn be normed linear spaces.

• The projective tensor norm π on X1 b ¨ ¨ ¨ bXn is defined by the

formula

πpzq “ sup t|xM, zy| : M P L pX1, . . . , Xn;Kq , }M} ď 1u , z P X1b¨ ¨ ¨bXn.
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• The projective tensor product, denoted by X1bπ ¨ ¨ ¨bπXn, is the

completion of the normed linear space pX1 b ¨ ¨ ¨ bXn, πq.

Proposition 1.6.8. Let X1, . . . , Xn be normed linear spaces. Then, for any

z P X1bπ ¨ ¨ ¨bπXn there exist bounded sequences
!

xjl

)8

j“1
Ă Xl, l “ 1, . . . , n,

such that z “
ř8
j“1 x

j
1 b ¨ ¨ ¨ b x

j
n is an absolute convergent series and

πpzq “ inf

#

8
ÿ

j“1

›

›

›
xj1

›

›

›
¨ ¨ ¨

›

›xjn
›

› : z “
8
ÿ

j“1

xj1 b ¨ ¨ ¨ b x
j
n

+

.

Furthermore, πpx1b¨ ¨ ¨bxnq “ }x1} ¨ ¨ ¨ }xn} for every xj P Xj , j “ 1, . . . , n.

This implies that b : X1 ˆ ¨ ¨ ¨ ˆ Xn ÝÑ X1 bπ ¨ ¨ ¨ bπ Xn is a bounded n-

linear mapping of norm 1. It follows that the projective norm is defined so

that the universality property of the tensor product remains valid also in

the topological sense:

Theorem 1.6.9 (Universality of the tensor product – topological setting).

Let X1, . . . , Xn, Y be normed linear spaces. For every M P L pX1, . . . , Xn;Y q

there exists a unique LM P L pX1 bπ ¨ ¨ ¨ bπ Xn;Y q such that M “ LM ˝ b:

X1 ˆ ¨ ¨ ¨ ˆXn

b

��

M // Y

X1 bπ ¨ ¨ ¨ bπ Xn

LM

77

The operator LM satisfies p1.14q and the mapping M ÞÑ LM is an isometry

of the spaces L pX1, . . . , Xn;Y q and L pX1 bπ ¨ ¨ ¨ bπ Xn;Y q.

Note that, if Y “ K, we obtain the following (simple but important) duality

relation.

Theorem 1.6.10. Let X1, . . . , Xn be normed linear spaces. Then

pX1 bπ ¨ ¨ ¨ bπ Xn;Y q˚ “ L pX1, . . . , Xn;Kq .

Whenever n “ 2, observe that L pX1, X2;Kq “ L pX1;X˚2 q. This leads to

an equivalent dual representation.

Fact 1.6.11. Let X,Y be normed linear spaces. Then

pX bπ Y q
˚
“ L pX;Y ˚q ,

where the evaluation is given by xL, xb yy “ Lpxqpyq.
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We conclude this section by introducing symmetric tensor products, which

turn out to have a close relationship with polynomials.

Definition 1.6.12. Let X be a normed linear space.

• The symmetrization bs : Xˆ¨ ¨ ¨ˆX ÝÑ Xb¨ ¨ ¨bX is a symmetric

n-linear mapping given by

bspx1, . . . , xnq “
1

n!

ÿ

ηPSn

b
`

xηp1q, . . . , xηpnq
˘

“
1

n!

ÿ

ηPSn

xηp1qb¨ ¨ ¨bxηpnq,

where Sn is the set of all permutations of t1, . . . , nu.

We also use the notation bspx1, . . . , xnq “ x1 bs ¨ ¨ ¨ bs xn and bnx “

bpnxq “ xb ¨ ¨ ¨ b x.

The Polarization formula yields that bnsX “spantbnx : x P Xu.

• The space bnsX is called symmetric tensor product and the ele-

ments of bnsX are called symmetric tensors.

When bnsX is equipped with the projective norm inherited from its super-

space bnπX, its completion becomes a closed subspace bnπ,sX of bnπX. Then

the linearization σnX : bnπX ÝÑ bnπ,sX of bs is a projection of norm 1. Thus

the following result holds.

Theorem 1.6.13 (Universality of the symmetric tensor product). Let X,Y

be normed linear spaces. For every symmetric M P Ls pnX;Y q there exists

a unique LM P L
`

bnπ,sX;Y
˘

such that M “ LM ˝ bs “ LM ˝ σ
n
X ˝ b.

Xn

b

zz
bs

��

M

""
bnX

σnX

// bnsX
LM // Y

X

bn

OO

xM

<<

The mapping M ÞÑ LM is an isometry of the spaces Ls pnX;Y q and L
`

bnπ,sX;Y
˘

.

Corollary 1.6.14. Let X,Y be normed linear spaces. Then the spaces

P pnX;Y q and L
`

bnπ,sX;Y
˘

are canonically isomorphic.
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In particular,
`

bnπ,sX
˘˚
“ P pnXq

in the isomorphic sense, where the evaluation is given by xP,bnxy “ P pxq.

More generally,

``

bnπ,sX
˘

bπ Y
˘˚
“ L

`

bnπ,sX;Y ˚
˘

“ P pnX;Y ˚q

in the isomorphic sense, where the evaluation is given by xP,bnx b yy “

P pxqpyq.

1.7 Weak continuity and polynomials into `1

We will now provide the reader with a list of various notions of weak conti-

nuity, which play a key role in our investigations, some of which have been

introduced and studied by R. M. Aron and his co-authors, e.g. in [3], [6]

and [8]; see also [30].

Definition 1.7.1. Let X be a normed linear space, Y a Banach space and

U Ă X a convex set.

• By C pU ;Y q we denote the space C pU ;Y q endowed with the locally

convex topology τb of uniform convergence on CCB9 subsets of U .10

• By Cw pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that are w ´ }¨} continuous on CCB subsets of U .

• By Cwu pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that are w´}¨} uniformly continuous on CCB subsets of

U .11

• By Cwsc pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that are w´ }¨} sequentially continuous on CCB subsets

9A CCB set is a closed, convex and bounded subset of a normed linear space X.
10Note that if U is closed (for instance U “ X), then the topology on C pU ;Y q is the

topology of uniform convergence on bounded subsets of U .
11f P Cwu pU ;Y q if and only if for any CCB set V and any ε ą 0 there are δ ą 0

and φ1, . . . , φk P BX˚ such that }fpxq ´ fpyq} ă ε whenever x, y P V are such that

|φjpx´ yq| ă δ for j “ 1, . . . , k.
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of U , i.e. that map weakly convergent sequences in CCB subsets of U

to convergent sequences in Y .

• By CwsC pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that are w´}¨} sequentially Cauchy-continuous on CCB

subsets of U , i.e. that map weakly Cauchy sequences in CCB subsets

of U to convergent sequences in Y .

• By CK pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that map CCB subsets of U to relatively compact sets in

Y .

• By CwK pU ;Y q we denote the linear subspace of C pU ;Y q consisting of

all mappings that map CCB subsets of U to relatively weakly compact

sets in Y .

Remark 1.7.2.

• When the range space is the scalar field, we simply omit it, e.g.

Cwsc pUq “ Cwsc pU ;Kq.

• If we substitute CCB sets in the above definitions with bounded sets,

Cwsc pU ;Y q (resp. CwsC pU ;Y q) are just w´}¨} sequentially continuous

(resp. w ´ }¨} sequentially Cauchy-continuous) mappings on U .

• If X˚ is separable, it is well-known that pBX , wq is metrizable, thus

Cwsc pU ;Y q “ Cw pU ;Y q and CwsC pU ;Y q “ Cwu pU ;Y q.

• Cw pU ;Y q, Cwu pU ;Y q, Cwsc pU ;Y q, CwsC pU ;Y q and CK pU ;Y q are

closed subspaces of C pU ;Y q.

• If Y is any Banach space and U is any convex subset of a normed

linear space X, the following inclusions hold true:

ĂCK pU ;Y q Ă CwK pU ;Y q

Cwu pU ;Y q Ă Cw pU ;Y q Ă Cwsc pU ;Y q

Ă CwsC pU ;Y q Ă
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Corollary 1.7.3 ([6]). Let X be a normed linear space, Y a Banach space

and n P N. Then

Lw p
nX;Y q “ Lwu p

nX;Y q ,

Lwsc p
nX;Y q “ LwsC p

nX;Y q ,

Pw p
nX;Y q “ Pwu p

nX;Y q ,

Pwsc p
nX;Y q “ PwsC p

nX;Y q .

From this and the relations shown earlier we obtain the following inclusions:

ĂPK pX;Y q Ă PwK pX;Y q

Pwu pX;Y q “ Pw pX;Y q Ă Pwsc pX;Y q “ PwsC pX;Y q

ĂLwK pX;Y q

Lwu pX;Y q “ LK pX;Y q “ Lw Ă Lwsc pX;Y q “ LwsC pX;Y q

Remark 1.7.4. It is not sufficient to check the w ´ }¨} continuity of poly-

nomials only at the origin,12 as shown by the following example by Aron in

[4].13

Let P P P
`

3`2
˘

be defined as P pxq “ x1
ř8
n“2 x

2
n. Then the restriction of P

to any bounded set is weakly continuos at the origin, but P is not weakly

sequentially continuous. Indeed, e1 ` e1
w
ÝÑ e1 but P pe1 ` enq “ 1 and

P pe1q “ 0.

Let X,Y be Banach spaces. Recall the duality relationship treated in the

previous section:

ppbnπ,sXq bπ Y q
˚ “ Lpbnπ,sX;Y ˚q “ PpnX;Y ˚q. (1.15)

As special cases, we of course have pbnπ,sXq
˚ “ PpnXq, pX bπ Y q

˚ “

LpX;Y ˚q. Recall a result by Bessaga and Pe lczyński ([36] p. 206). Let

X be a Banach space, c0 ãÑ X˚. Then X contains a complemented copy of

`1 (and hence X˚ actually contains a complemented copy of `8). Applying

this result to the duality relation (1.15) we get the next (probably known)

result.

12Unlike the }¨} ´ }¨} continuity.
13See also [5].
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Theorem 1.7.5. Let X be a Banach space. The following are equivalent

for n P N.

1. PKp
nX; `1q “ PpnX; `1q,

2. c0 ­ãÑ PpnXq.

Proof. Suppose 2 fails. Since pbnπ,sXq
˚ “ PpnXq, `1 is complemented in

bnπ,sX by the Bessaga- Pe lczyński theorem. Hence `1 is a range of a bounded

linear operator from bnπ,sX and 1 fails by the universality of the projective

symmetric tensor product. On the other hand, if 1 fails, then there is a

non-compact bounded linear operator T : bnπ,sX Ñ `1.

Setting B “ T pBbnπ,sXq, we claim that B contains B`1 (up to isomorphism).

Indeed, since B is not relatively compact, B is not weakly compact ([36] p.

277). By the Eberlein-Šmulyan theorem, there exists a bounded sequence

txnu Ď B with no weakly convergent subsequences, which cannot be weakly

Cauchy either (Schur). Thus, by Rosenthal’s `1-theorem, txnu admits a

subsequence equivalent to the usual `1-basis, which proves the claim.

Finally, using the lifting property of `1 ([36] p. 238), `1 is a complemented

subspace of bnπ,sX, whence 2 fails by duality. [\

We will need two principles for passing to suitable sequences in the domain.

The first one is based on an improvement of the classical result that `2 is a

linear quotient of any Banach space containing a copy of `1.

Lemma 1.7.6. Let X be a Banach space, `1 ãÑ X, p ě 2. Then there exists

T P LpX; `pq and a basic sequence tfju in X equivalent to `1 basis such that

T pfjq “ ej is the unit basis in `p.

Proof. It suffices to prove the result for p “ 2, since then we can compose

T with the formal identity Id : `2 Ñ `p, which is a bounded linear operator.

Let L : `2 ãÑ L1 be an isomorphic embedding, teju be the basis of `2. By

Pe lczyński-Hagler, [46] p. 253, there is an isomorphic embedding M : L1 ãÑ

X˚. So tyj “M ˝Lpejqu is a weakly null sequence in X˚, which is equivalent

to the `2 basis. There is a normalized sequence tf̃ju P X
˚˚ biorthogonal

to M ˝ Lpejq. By Goldstine’s theorem we replace f̃j by fj P BX so that

xfj , yky “ 0, k ď j, xfj , yjy “ 1. Since tyju is weakly null, we can pass

to subsequences so that tfj , yju is a biorthogonal system. Since M˚pXq Ă
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L8 and tLpejq,M
˚pfjqu is a biorthogonal system in L1, L8, by the DPP

property of L1, tM˚pfjqu does not contain a weakly Cauchy subsequence.

By Rosenthal’s `1-theorem, we may assume without loss of generality that

it is an `1-basis. By the lifting property of `1, tfju is an `1-basis. Finally,

R “ L˚ ˝M˚ : X˚˚ Ñ `2 is a quotient mapping such that Rpfjq “ ej . So

T “ R æX : X Ñ `2 is the desired operator. [\

In particular, let X be a Banach space, `1 ãÑ X. Then there is a P P

Pp2X; `1q such that it takes a sequence tfju in X, equivalent to an `1-basis,

into teju a unit basis in the range `1.

Proposition 1.7.7. Let X be a Banach space, `1 ãÑ X, k P N, k ě 2.

Then there exists a polynomial P P PpkXq and a basic sequence tfju in X

equivalent to an `1-basis such that

P

˜

8
ÿ

j“1

ajfj

¸

“

8
ÿ

j“1

akj . (1.16)

In particular, P is not weakly continuous at the origin and

Pwu

´

kX
¯

‰ P
´

kX
¯

.

Proof. Let T and tfju be as above and let tgju be the sequence of the coor-

dinate functionals on `k. Letting P pxq “
ř8
j“1 pgj pT pxqqq

k proves p1.16q.

Assume by contradiction that P is weakly continuous, so given ε ą 0 there

exist φ1, . . . , φn P X
˚ and δ ą 0 such that |φjpxq| ă δ, j “ 1, . . . , n, implies

|P pxq| ă ε. We have that φj ærfjsP `8. By a simple argument there exist

pairwise distinct indices m, l, r such that

|φjpfmq ´ φjpflq|, |φjpfmq ´ φjpfrq| ă δ, j “ 1, . . . , n.

So choosing ε ą 0 small enough and letting x “ fm ´
1
2fl ´

1
2fr clearly

witnesses the contradiction. [\

We will need a modification of a well-known principle for dealing with non-

weakly sequentially continuous polynomials of minimal degree, which has

been used many times in the literature (see e.g. [20] for its most general

formulation). In our case, we replace the non-wsc property by the non-

compactness and add the assumption `1 ­ãÑ X.



1.7 Weak continuity and polynomials into `1 27

Lemma 1.7.8. Let X,Y be Banach spaces, `1 ­ãÑ X, PpkX;Y q “ PKp
kX;Y q

for all k ă n and P P PpnX;Y qzPKp
nX;Y q. Then there is a weakly null

sequence tyku
8
k“1 such that tP pykqu

8
k“1 is not relatively compact.

Proof. By Rosenthal’s `1-theorem, there is a δ ą 0 and a weakly Cauchy

sequence txku
8
k“1 such that

}P pxkq ´ P pxlq} ą δ, k ‰ l P N. (1.17)

By a simple application of the multilinearity of qP ,

P pxk ´ xlq “ P pxkq `
n´1
ÿ

j“1

˜

n

j

¸

p´1qj qP
`

jxl,
n´j xk

˘

` p´1qnP pxlq.

By assumption, all polynomials of degree less than n are compact, so for

any fixed k, passing to a subset of indices Nk Ă Nk´1, N0 “ N, there exist

the limits

yjk “ lim
lPNk

qP
`

jxl,
n´j xk

˘

, j “ 1, . . . , n´ 1.

Let M be the diagonal set of Nk, k P N. Next, fix for each k P M , an mk

such that for all j P t1, . . . , n´ 1u

›

›

›
yjk ´

qP
`

jxl,
n´j xk

˘

›

›

›
ă

δ

20nn`1
, l ě mk, l PM.

Then
›

›

›

›

›

P pxk ´ xlq ´

˜

P pxkq `
n´1
ÿ

j“1

˜

n

j

¸

p´1qjyjk ` p´1qnP pxlq

¸›

›

›

›

›

ă
δ

20
,

whenever l ě mk, l PM .

Whence,

›

›

›

›

›

P pxk ´ xlq ´ P pxkq ´ p´1qnP pxlq ´

˜

n´1
ÿ

j“1

˜

n

j

¸

p´1qjyjkq

¸
›

›

›

›

›

ă
δ

20
,

for l ě mk, l PM .

Thus

}P pxk ´ xlq ´ P pxp ´ xrq} ě }P pxkq´p´1qnP pxlq´P pxpq`p´1qnP pxrq}´
δ

10
,
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whenever k, p P N, l, r PM , l ě mk and r ě mp.

Suppose that k, l, p P N are given and denote

z “ p´1qnP pxkq ` P pxlq ´ p´1qnP pxpq.

Using (1.17), there is an rk,l,p P N such that }P pxrq ´ z} ě
δ
2 for all r ě rk,l,p.

Whence

}P pxk ´ xlq ´ P pxp ´ xrq} ě
δ

2
´

δ

10
ą
δ

4
,

whenever k, p P N, l, r PM , l ě mk and r ě maxtmp, rk,l,pu.

Now it suffices to find lk PM such that lk ě maxtmk, r1,l1,k, . . . , rk´1,lk´1,ku

and put yk “ xk´xlk . Then tyku is weakly null and tP pykqu is a δ
4 -separated

sequence. [\

Proposition 1.7.9 ([44]). Let X be a Banach space, Y “ `p, 1 ď p ă 8,

or Y “ c0 and suppose there is a non-compact operator T P LpX;Y q. Then

there are S P LpX;Y q and a normalized basic sequence txnu Ă X such that

Spxnq “ en, n P N, where tenu is the canonical basis of Y . If X does not

contain `1, then txnu may be chosen to be weakly null. If X “ `1, then S is

in fact onto.

Definition 1.7.10. Let 1 ď p, q ď 8. We say that a sequence txju
8
j“1 in a

Banach space over K has an upper p-estimate (resp. lower q-estimate)

if there exists C ą 0 such that for every n P N and every a1, . . . , an P K
›

›

›

›

›

n
ÿ

j“1

ajxj

›

›

›

›

›

ď C

˜

n
ÿ

j“1

|aj |
p

¸
1
p

, (1.18)

respectively
›

›

›

›

›

n
ÿ

j“1

ajxj

›

›

›

›

›

ě C

˜

n
ÿ

j“1

|aj |
q

¸
1
q

,

where the right-hand side is replaced by maxj“1,...,n |aj | if p “ 8 or q “ 8.

Fact 1.7.11. Let X be a Banach space and 1 ď p, q ď 8. A sequence

txju
8
j“1 Ă X has an upper p-estimate if and only if the linear operator

T : `p ÝÑ X,T pejq “ xj is bounded. A sequence txju
8
j“1 Ă X has a lower

q-estimate if and only if the linear operator T : spantxju ÝÑ `q, T pxjq “ ej

is bounded. In case p “ 8 we replace `p by c0 and analogously for q “ 8.
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Corollary 1.7.12 ([38]). Let X be a Banach space such that X˚ is of type

p ą 1, 1
p `

1
q “ 1 and let txku

8
k“1 Ă X be a semi-normalized basic sequence.

Then for each s ą q there is a subsequence txnku
8
k“1 such that there exists

a bounded linear operator T : X ÝÑ `s satisfying T pxnkq “ ek, where teku

is the canonical basis of `s. Furthermore, there is a subsequence txnku
8
k“1

such that for each n P N, n ą q, there is P P PpnXq such that P pxnkq “ 1

for all k P N.

Definition 1.7.13 ([47]). Let 1 ď p ď 8. We say that a Banach space X

has the Sp-property (resp. the Tp-property) if every normalized weakly

null sequence has a subsequence with an upper p-estimate (resp. lower q-

estimate).

The S8 property is equivalent to saying that every normalized weakly null

sequence contains a subsequence equivalent to the basis of c0.

Theorem 1.7.14 ([54]). Let X,Y be Banach spaces and P P P pnX;Y q. If

n ă p ă 8, then P takes sequences with an upper p-estimate into sequences

with an upper p
n -estimate.

Corollary 1.7.15 ([40]). Let X be a Banach space which enjoys the Sp-

property, 1 ă p ď 8. If n ă p, then

PnpXq “ PnwsCpXq.

The next result holds true, as `p and c0 have properties Sp and S8 respec-

tively.

Corollary 1.7.16 ([16], [54]). Let Γ be any set, 1 ă p ă 8 and n P N,

n ă p. Then

Pn p`pq “ Pnwu p`pq ,

P pc0q “ Pwu pc0q .

Conversely, if n ě p, then
ř8
j“1 x

n
j P P p

n`pq zPwsc p
n`pq.

Theorem 1.7.17 ([56]). Let X be a normed linear space. The following are

equivalent:

(i) X has the Dunford-Pettis property.
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(ii) LwKpX;Y q Ă LwsCpX;Y q for every Banach space Y .

(iii) LwKp
nX;Y q Ă LwsCp

nX;Y q for every Banach space Y and every n P

N.

(iv) PwKpX;Y q Ă PwsCpX;Y q for every Banach space Y .

The following result is a generalization of a well-known result (due to Aron

and co-authors), which holds true for polynomials.

Theorem 1.7.18 ([20]). Let X,Y be Banach spaces, `1 ­ãÑ X and U Ă X

be a convex subset with non-empty interior. Then CwpU ;Y q “ CwscpU ;Y q.

Theorem 1.7.19 ([20]). Let X,Y be Banach spaces, `1 ­ãÑ X and U Ă X

be a convex subset with non-empty interior. Then CwupU ;Y q “ CwsCpU ;Y q.



Chapter 2

A corrigendum in the

finite-dimensional setting

2.1 Contextualization

The main result of this thesis relies on [41], more precisely on the finite-

dimensional quantitative Lemma 1.5.4 (Lemma 2 in the paper), which is also

the principal tool for obtaining the results in [41] and which was obtained as

a by-product of a new theory of algebraic bases for algebras of sub-symmetric

polynomials on Rn.

Unfortunately, the arguments in [41] contain a serious gap, which was re-

cently spotted by our colleague Michal Johanis. More precisely, the power

series on top of page 213 should have been correctly centered at the point
`

x0
1, . . . , x

0
n

˘

, rather than at the origin. It is not clear to us at the present

moment if this problem can be fixed, so the theory of algebraic bases devel-

oped in [41] remains to be only a conjecture.

In this chapter we give a different proof of the above-mentioned lemma.

As a result, all the infinite dimensional applications stated in [41], as well

as in several papers by various authors which have relied on our previous

work (e.g. [28], [29]), remain valid. In fact, the strongest results concerning

polynomial algebras are contained in the paper [21], which is also based on

the lemma in question.

Let us now proceed with the corrected proof of Lemma 1.5.4.

31
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2.2 Sub-symmetric polynomials on Rn

Given k, n P N, k ď N and α P I`pk, dq, we define PNα P P
`

dRN
˘

by

PNα pxq “
ÿ

1ďρ1ă¨¨¨ăρkďN

xα1
ρ1 ¨ ¨ ¨x

αk
ρk
. (2.1)

For N ě d, the polynomials PNα , for α P J`pdq, form a linear basis of the

space of subsymmetric d-homogeneous polynomials on RN . An important

special case of these polynomials are the power sum symmetric polynomials

sNn pxq “ PN
pnqpxq “ xn1 ` ¨ ¨ ¨ ` x

n
N .

Our main result concerns the properties of subsymmetric polynomials. How-

ever in its proof we need to work also with partial derivatives of the poly-

nomials PNα and for this reason we consider also the polynomials PNα given

by the formula p2.1q, where α P Ipk, dq, k ď N , using the convention that

x0 “ 1 for every x P R.

We denote by Hn,K
`

RN
˘

the subspace of Pn
`

RN
˘

generated by the poly-

nomials PNα , α P
Ťn
d“0

ŤK
k“1 Ipk, dq.

For formal reasons, we also put PNα “ 0 if k ą N and PNH “ 1, both even

for N “ 0, further Ip0, 0q “ tHu and R0 “ t0u. Note that these definitions

are consistent with p2.1q, using the convention that a sum over an empty

set is zero and a product over an empty set is equal to 1.

The following fact describes an important relation between the restriction of

PMα to the first N coordinates and PNα . Note that for M ą N we consider

canonically RN as a subspace of RM .

Fact 2.2.1. Let M,N, k, d P N0, N ă M and α P Ipk, dq be such that

αm ą 0 and αm`1 “ ¨ ¨ ¨ “ αk “ 0 for some 0 ď m ď k. Then

PMα pxq “
k
ÿ

j“m

˜

M ´N

k ´ j

¸

PNpα1,...,αjq
pxq

for every x P RN . Conversely

PNα pxq “
k
ÿ

j“m

p´1qk´j

˜

M ´N ` k ´ j ´ 1

k ´ j

¸

PMpα1,...,αjq
pxq

for every x P RN .
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Proof. The first relation follows from the following (recall that x P RN , i.e.

xN`1 “ ¨ ¨ ¨ “ xM “ 0 as per the aforementioned convention):

PMα pxq “

ÿ

1ďρ1ă¨¨¨ăρkďM

xα1
ρ1 ¨ ¨ ¨x

αm
ρm

“

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρk ď M
ρm ď N

xα1
ρ1 ¨ ¨ ¨x

αm
ρm

“

k
ÿ

j“m

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρk ď M
ρj ď N ď ρj ` 1

xα1
ρ1 ¨ ¨ ¨x

αm
ρm

“

k
ÿ

j“m

˜

M ´N

k ´ j

¸

PNpα1,...,αjq
pxq.

The second relation can be proved by induction on k ´m. For k ´m “ 0

it follows immediately from the first one. For the induction step we use the

first relation together with the inductive hypothesis to obtain

PNα pxq “ PMα pxq ´
k´1
ÿ

j“m

˜

M ´N

k ´ j

¸

PNpα1,...,αjq
pxq

“ PMα pxq ´
k´1
ÿ

j“m

˜

M ´N

k ´ j

¸

j
ÿ

l“m

p´1qj´l

˜

M ´N ` j ´ l ´ 1

j ´ l

¸

PMpα1,...,αlq
pxq

“ PMα pxq ´
k´1
ÿ

l“m

¨

˝

k´1
ÿ

j“l

p´1qj´l

˜

M ´N

k ´ j

¸˜

M ´N ` j ´ l ´ 1

j ´ l

¸

˛

‚PMpα1,...,αlq
pxq

and the result now follows from the identity

k
ÿ

j“l

p´1qj´l

˜

M ´N

k ´ j

¸˜

M ´N ` j ´ l ´ 1

j ´ l

¸

“ 0.

Adding or removing a couple of zero summands, this is equivalent to

M´N
ÿ

p“0

p´1qk´l´p

˜

M ´N

p

¸˜

M ´N ` k ´ l ´ p´ 1

M ´N ´ 1

¸

“ 0,

which is the Fréchet formula for the polynomial

t ÞÑ

˜

M ´N ` k ´ l ´ t´ 1

M ´N ´ 1

¸

of degree M ´N ´ 1 (see [39] or [45] for a more recent proof). [\
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It is very important to notice that the previous fact covers all the special

cases like N ă k ďM , k ąM , N “ 0, m “ 0 or k “ 0. Observe also that in

particular in the subsymmetric case (i.e. α P I`pdq) we have PMα æRN “ PNα .

Hence for sub-symmetric polynomials the superscript N can be dropped.

We will use this simplification for the polynomials sNn “ sn.

The next fact deals with the situation when we fix the first N coordinates

of PMα .

Fact 2.2.2. Let N, d P N0, M,k P N, N ă M , k ď M , α P Ipk, dq and y P

RN . Then the polynomial px1, . . . , xM´N q ÞÑ PMα py1, . . . , yN , x1, . . . , xM´N q

belongs to Hd,mintk,M´Nu
`

RM´N
˘

.

Proof.

PMα py1, . . . , yN , x1, . . . , xM´N q

“

k
ÿ

j“0

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρk ď M
ρj ď N ď ρj`1

yα1
ρ1 ¨ ¨ ¨ y

αj
ρj x

αj`1

ρj`1´N
¨ ¨ ¨xαkρk´N

“

ÿ

0 ď j ď k
k ´ pM ´Nq ď j ď N

PNpα1,...,αjq
pyqPM´N

pαj`1,...,αkq
px1, . . . , xM´N q.

[\

Let k, d P N, α P Ipk, dq, k ď N , x P RN and 1 ď l ď N . Then

BPNα
Bxl

pxq “
B

Bxl

¨

˚

˚

˚

˝

k
ÿ

j“1

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρk ď N

ρj “ l

xα1
ρ1 ¨ ¨ ¨x

αk
ρk

˛

‹

‹

‹

‚

“

k
ÿ

j “ 1
αj ą 0

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρj´1 ă l
l ă ρj`1 ă ¨ ¨ ¨ ă ρk ď N

xα1
ρ1 ¨ ¨ ¨x

αj´1
ρj´1 x

αj´1
l x

αj`1
ρj`1 ¨ ¨ ¨x

αk
ρk

“

k
ÿ

j “ 1
αj ą 0

αjP
l´1
pα1,...,αj´1q

px1, . . . , xl´1qx
αj´1
l PN´l

pαj`1,...,αkq
pxl`1, . . . , xN q.

These partial derivatives have the following useful property:

Fact 2.2.3. Let k, d,N P N, α P Ipk, dq, k ď N . Then
řN
l“1

BPNα
Bxl

belongs to

Hd´1,k
`

RN
˘

.
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Proof.

N
ÿ

l“1

BPNα
Bxl

“

N
ÿ

l“1

k
ÿ

j “ 1
αj ą 0

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρj´1 ă l
l ă ρj`1 ă ¨ ¨ ¨ ă ρk ď N

xα1
ρ1 ¨ ¨ ¨x

αj´1
ρj´1 x

αj´1
l x

αj`1
ρj`1 ¨ ¨ ¨x

αk
ρk

“

k
ÿ

j “ 1
αj ą 0

αj

N
ÿ

l“1

ÿ

1 ď ρ1 ă ¨ ¨ ¨ ă ρk ď N
ρj “ l

xα1
ρ1 ¨ ¨ ¨x

αj´1
ρj´1 x

αj´1
l x

αj`1
ρj`1 ¨ ¨ ¨x

αk
ρk

“

k
ÿ

j “ 1
αj ą 0

αjP
N
pα1,...,αj´1,αj´1,αj`1,...,αkq

pxq.

[\

We note that this fact does not hold with I`pk, dq and the space of sub-

symmetric polynomials in place of Ipk, dq and Hd´1,k
`

RN
˘

: this is the sole

reason for considering the larger spaces Hn,K
`

RN
˘

.

For each x P RN we naturally identify DPNα pxq with the vector

ˆ

BPNα
Bx1

pxq, . . . ,
BPNα
BxN

pxq

˙

P RN .

Fact 2.2.4. Let M,N, k, d P N, M ą N , α P Ipk, dq, k ď N and x P RN .

Then DPNα pxq is a linear combination of vectors

DPMβ pxqæRN “

˜

BPMβ
Bx1

pxq, . . . ,
BPMβ
BxN

pxq

¸

P RN ,

where β P Ykm“1Ipm, dq.

Proof. Let 1 ď m ď k be such that αm ą 0 and αm`1 “ ¨ ¨ ¨ “ αk “ 0. Fix

1 ď l ď N . If αj ą 0, then m ě j and hence, by Fact 2.2.1:

PN´l
pαj`1,...,αkq

pxl`1, . . . , xN q “

k
ÿ

s“m

csP
M´l
pαj`1,...,αsq

pxl`1, . . . , xN , 0, . . . , 0q,

where cs “ p´1qk´s

˜

M ´N ` k ´ s´ 1

k ´ s

¸

.
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Therefore, using Fact 2.2.2 and the fact that αs`1 “ ¨ ¨ ¨ “ αk “ 0, if

m ď s ď k we obtain

BPNα
Bxl

“

k
ÿ

j “ 1
αj ą 0

αjP
l´1
pα1,...,αj´1q

px1, . . . , xl´1qx
αj´1
l ¨

¨

k
ÿ

s“m

csP
M´l
pαj`1,...,αsq

pxl`1, . . . , xN , 0, . . . , 0q

“

k
ÿ

s“m

cs
BPM
pα1,...,αsq

Bxl
pxq,

from which the statement follows. [\

We will also make use of the following version of the Lagrange multipliers

theorem.

Theorem 2.2.5. Let G Ď Rn be an open set, f P C1pGq, F P C1
`

G;RM
˘

and assume that F has a constant rank. If the function f has a local ex-

tremum with respect to M “ tx P G : F pxq “ 0u at a P M , then Dfpaq

is a linear combination of DF1paq, . . . , DFmpaq, where F1, . . . , Fm are the

components of the mapping F .

Proof. Let k “ rank F pxq for x P G. Since DF is continuous, we may

without loss of generality assume that DF1pxq, . . . , DFkpxq are linearly in-

dependent for each x P G. From the Rank theorem it follows that there

are C1-smooth functions gj of k variables, j “ k ` 1, . . . ,m and a neigh-

bourhood U of a such that Fjpxq “ gj pF1pxq, . . . , Fkpxqq for each x P

U , j “ k ` 1, . . . ,m (see e.g. [62], Proposition 8.6.3.1). Notice that

gjp0, . . . , 0q “ gj pF1paq, . . . , Fkpaqq “ Fjpaq “ 0, j “ k`1, . . . ,m. Therefore

M X U “ tx P U : F1pxq “ 0, . . . , Fkpxq “ 0u and we may use the classical

version of the Lagrange multipliers theorem. [\

Now we are ready to prove the key lemma.

Lemma 2.2.6. For every n,K P N there are N P N and u, v P RN such

that P puq “ P pvq for every P P Hn,K
`

RN
˘

but sn`1puq ‰ sn`1pvq.
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Proof. The proof is based on the observation that

N
ÿ

l“1

Bsn`1

Bxl
pxq “ pn` 1qsnpxq,

which, together with Fact 2.2.3, leads to an inductive proof.

For each fixed k P N we prove the statement by induction on n.

So fix K P N and denote

Mpnq “
ď

1ďdďn

ď

1ďkďK

Ipk, dq.

The space Hn,K
`

RN
˘

is generated by a constant function and polynomials

PNα , α PMpnq.

For n “ 1 the functions PNα , α P Mpnq are linear, so there is N P N large

enough such that
Ş

αPMpnq ker PNα contains a non-zero element u. Then it

suffices to take v “ 2u.

The inductive step from n ´ 1 to n will be proven by contradiction. So

assume that for each N ě K and each u, v P RN satisfying PNα puq “ PNα pvq

for all α PMpnq we have sn`1puq “ sn`1pvq.

Now let

FN : RN ÝÑ R|Mpnq|

be the mapping whose components are the polynomials PNα , α P Mpnq, in

some fixed order and let AN pxq be its Jacobi matrix at x P RN , i.e.

AN pxq “
ˆ

BPNα
Bxl

pxq

˙

ˆ

α P Mpnq

l “ 1, . . . ,M

˙ .

Note that the number of rows of the matrix of functions AN does not depend

on N . Thus there is N ě K and y P RN such that

rankAN pyq “ r “ max
M ě K

x P RM

rankAM pxq.

By the inductive hypothesis, there are M ą N and g, h P RM´N such that

P pgq “ P phq for all P P Hh´1,K
`

RM´N
˘

but snpgq ‰ snphq. If we denote by

AM pxqæN the matrix consisting of the first N columns of the matrix AM pxq,
then

r “ rankAN pyq ď rankAM pyqæN ď rankAM pyq ď r,
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where the first inequality follows from Fact 2.2.4.

Let wM1 , . . . wMr be the rows of AM such that wM1 æN pyq, . . . w
M
r æN pyq are

linearly independent. Using the continuity of the entries of AM it is easy to

see that there is a neighbourhood U Ď RM of y such that, for each x P U ,

the vectors wM1 æN pxq, . . . w
M
r æN pxq are linearly independent: therefore they

form a basis of the space spanned by the rows of AMæN . Clearly the same

holds for wM1 pxq, . . . , w
M
r pxq and AM pxq.

Fix an arbitrary z P U and put

S “
 

x P U : PMα pxq “ PMα pzq, α PMpnq
(

.

By our assumption, sn`1 is constant on S and so Theorem 2.2.5 implies that

Dsn`1pzq is a linear combination of the rows of AM pzq. It follows that, for

each z P U , the vectorDsn`1pzq is a linear combination of wM1 pzq, . . . , w
M
r pzq.

Next, we put

u “ y ` c
M´N
ÿ

j“1

gjeN`j , v “
M´N
ÿ

j“1

hjeN`j

for some suitable c ‰ 0 so that u, v P U . Notice that, since Hn´1,K
`

RM´N
˘

is generated by homogeneous polynomials, we still have P pcgq “ P pchq for

all P P Hn´1,K
`

RM´N
˘

but snpcgq ‰ snpchq. For a fixed α P Mpnq and

1 ď l ď N consider the polynomial

P pxq “
BPMα
Bxl

py1, . . . , yN , x1, . . . , xM´N q.

Then, by Fact 2.2.2, we have P P Hn´1,K
`

RM´N
˘

and so P pcgq “ P pchq.

Therefore

wMj puqæN “ wMj pvqæN , j “ 1, . . . , r. (2.2)

We have Dsn`1puq “
řr
j“1 λjw

M
j puq and Dsn`1pvq “

řr
j“1 µjw

M
j pvq for

some λj , µj P R and of course the same holds when we restrict to the first

N coordinates of all of these vectors.

But since Dsn`1puqæN “ pn`1qpyn1 , . . . , y
n
N q “ Dsn`1pvqæN , combined with

p2.2q and the fact that wM1 puqæN , . . . , w
M
r puqæN are linearly independent, we

obtain µj “ λj , j “ 1, . . . , r.
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Eventually, from Fact 2.2.3 and Fact 2.2.2 it follows that

x ÞÑ
M
ÿ

l“1

wMj

˜

y `
M´N
ÿ

j“1

xjeN`j

¸

l

P Hn´1,K
`

RM´N
˘

, j “ 1, . . . , r.

Therefore

pn` 1qsnpuq “

M
ÿ

l“1

Bsn`1

Bxl
puq “

r
ÿ

j“1

λj

M
ÿ

l“1

wMj puql

“

r
ÿ

j“1

λj

M
ÿ

l“1

wMj pvql “

M
ÿ

l“1

Bsn`1

Bxl
pvq

“ pn` 1qsnpvq.

Since snpuq “ snpyq ` snpcgq and snpvq “ snpyq ` snpchq, we get snpcgq “

snpchq, which is a contradiction. [\

2.3 The corrected proof

Corollary 2.3.1. For every n P N there exist N P N and ε ą 0 such that

for every M ě N

sup
xPB

`M1

|ppxq ´ sn`1pxq| ě ε

for every p from the algebra generated by the sub-symmetric polynomials on

RM of degree at most N .

Proof. Applying Lemma 2.2.6 to K “ n we obtain N P N and u, v P B`N1
such that P puq “ P pvq for every P P Hn,n

`

RN
˘

but sn`1puq ‰ sn`1pvq.

We put ε “ 1
2 |sn`1puq ´ sn`1pvq|. Let M ě N . Since all sub-symmetric

polynomials from Pn
`

RN
˘

are contained in Hn,n
`

RN
˘

, from the remark

after Fact 2.2.1 it follows that in particular P puq “ P pvq for every sub-

symmetric P P Pn
`

RM
˘

. We conclude that ppuq “ ppvq for every p from the

algebra generated by the sub-symmetric polynomials from Pn
`

RM
˘

. The

statement now easily follows. [\
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The main theorem

3.1 Introduction

Generally speaking, with a single exception when PpXq “ PwupXq, there

are no results giving a characterization of the uniform closure PpXq
τb

in

any infinite-dimensional space. The refinement of the problem is finding

the characterization of AnpXq and this is wide open as well. The results

in this section focus on the natural question when AnpXq “ An`1pXq (the

inclusion Ă always holds). We are going to use the theory of sub-symmetric

polynomials previously developed together with the asymptotic approach

to polynomial behaviour to obtain rather general results showing that the

inclusion Ą is almost never satisfied.

We begin by formulating a positive result.

Theorem 3.1.1 ([2], [8]). Let X, Y be Banach spaces, Then Pf pX;Y q
τb
“

CwupBX ;Y q.

Proposition 3.1.2. Let X be a Banach space such that it does not contain

`1 and P pnXq “ Pwsc p
nXq. Then

A1pXq “ A2pXq “ ¨ ¨ ¨ “ AnpXq.

Proof. The following chain of equalities holds true:

Pw p
nXq “

Cor. 1.7.3
Pwu p

nXq “
Teo. 1.7.18

Pwsc p
nXq “

hyp.
P pnXq .

41
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Thus

P pnXq “ Pwu p
nXq Ă Cwu p

nXq “
Teo. 3.1.1

Pf pX;Y q
τb
Ă
easy

A1pXq.

Since A1pXq is an algebra, AnpXq Ă A1pXq, from which the result follows.

[\

All our results, which we are now going to present, go in the opposite direc-

tion and rely on the useful criterion investigated in Theorem 1.5.5.

3.2 The proof

Theorem 3.2.1. Let X be a Banach space, and m be the minimal integer

such that there is a non-compact P P PpmX; `1q. Then n ě m implies

PpnXq Ć An´1pXq.

Proof. If `1 ãÑ X then it suffices to combine Theorem 1.5.5 and Proposition

1.7.7. For the rest of the proof we assume that `1 ­ãÑ X. Denote tfju
8
j“1 the

canonical basis in `1, P “ pPkq
8
k“1 P Pp

mX; `1q, Pk P Pp
mXq.

We claim that by performing some adjustments to P , we may assume in

addition that there exists a weakly null normalized basic sequence txnu
8
n“1 Ď

X such that P pxjq “ fj for each j.

To this end, note that by Lemma 1.7.8 there exists a weakly null sequence

tyku
8
k“1 in X such that tP pykqu

8
k“1 is not relatively compact, i.e. it contains

a separated subsequence, which we call again tP pykqu
8
k“1. By [1] p. 22, by

passing to a subsequence, we may assume that tyku is a normalized basic

sequence. As `1 is a Schur space, tP pykqu
8
k“1 contains no weakly null sub-

sequences. By Rosenthal’s `1 theorem, tP pykqu
8
k“1 contains a subsequence,

again tP pykqu, equivalent to the `1-basis. By a well-known result (according

to Bill Johnson, who has pointed out to us some very closely related other

results), every sequence in `1, which is equivalent to the `1-basis, contains a

further subsequence which spans a complemented subspace. Since we have

been unable to find this result explicitly in the literature, let us indicate

the idea of proof. Supposing that tzku is the `1-basic sequence in `1, we

may assume, by passing to a subsequence, that zk is pointwise convergent

to u0 P `1 and that there exists a sequence of disjoint block vectors tuku
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such that
ř

k |zk ´ u0 ´ uk| ă 8. The case when u0 “ 0 is well-known [36]

Prop. 4.45, so let us assume the contrary. Moreover, we may assume that

the the norms of u0 restricted to the supports of uk form a fast decreasing

sequence. Then, by the classical results [36] Thm. 4.23, Prop. 4.45, we have

that the sequence tuku
8
k“0 is equivalent to the `1-basis, which is moreover

complemented in `1. Hence, u0, z1 ´ u0, z2 ´ u0 . . . is also equivalent to a

complemented `1 basis in `1. To finish, it suffices to find a suitable projection

in this latter space, which takes pa0, a1, . . . q Ñ p
ř8
k“1 ak, a1, a2, . . . q.

Hence there exists a weakly null and normalized basic sequence txku “

tynku Ď tynu such that P pxkq “ gk, where tgku is a equivalent to an `1 basis

which spans a complemented subspace in `1. Hence, composing P with

the appropriate projection in `1, we substitute `1 with its complemented

subspace rgks
8
k“1, and the claim follows.

Let tφju
8
j“1 be a bounded sequence in X˚, biorthogonal to txju

8
j“1. We

are mostly going to be interested in the behaviour of P restricted to Y “

spantxj : j P Nu ãÑ X. For the sake of convenience, set Ytj:jěk`1u :“

spantxj : j ě k ` 1u. Note that we have P pλxjq “ λmfj . Formula (1.5)

for the restriction of P to Y can be rewritten, by collecting the appropriate

finitely many terms, into the following formula, which holds for all finitely

supported vectors x “
ř

ajxj P Y :

Pk

˜

8
ÿ

j“1

ajxj

¸

“
ÿ

p ` q ` r “ m

α P Ipk ´ 1, pq

pa1, . . . , ak´1q
αaqkS

α,q,r
k

¨

˝

8
ÿ

j“k`1

ajxj

˛

‚, (3.1)

where Sα,q,rk P PprYtj:jěk`1uq. Note that, by the minimality assumption on

m, for a fixed 0 ‰ β “ pβ1, . . . q P Ip8, tq, t ď p ă m where βi “ 0, i ą k´1,

we have that

Bt

Bβ1x1 . . . Bβk´1xk´1
P “

ˆ

Bt

Bβ1x1 . . . Bβk´1xk´1
Pj

˙

: X Ñ `1

is a compact pm ´ tq-homogeneous polynomial with range in `1. So, for a

fixed β of the aforementioned type,

lim
jÑ8

›

›

›

›

Bt

Bβ1x1 . . . Bβk´1xk´1
Pj

›

›

›

›

“ 0.
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For y “
řk´1
i“1 aixi P rx1, . . . , xk´1s and l ą k ´ 1,

Bt

Bβ1x1 . . . Bβk´1xk´1
Plpy `

8
ÿ

j“l

ajxjq

“
ÿ

p ` q ` r “ m

α ě β

α P Ipk ´ 1, pq

α!

pα´ βq!
paiq

α´βaql S
α,q,r
l

¨

˝

8
ÿ

j“l`1

ajxj

˛

‚.

We claim that for a fixed 0 ‰ β “ pβ1, . . . q P Ip8, tq, t ď m where βi “ 0,

i ą k ´ 1, q, r such that t` q ` r “ m, we have that

lim
lÑ8

›

›

›
Sβ,q,rl

›

›

›

Ytj:jěl`1u

“ 0. (3.2)

For the proof of the claim by contradiction, choose a maximal β P Ipk´1, tq

which fails (3.2). Hence, for any (if it exists) α P Ipk´ 1, pq, p ą t, q, r such

that p` q ` r “ m,

lim
lÑ8

›

›Sα,q,rl

›

›

Ytj:jěl`1u
“ 0. (3.3)

Passing to a suitable subsequence of l Ñ 8 (for simplicity assuming it is

still indexed by N) we conclude that there exists a normalized sequence of

vl P Ytj:jěl`1u such that bα,q,r “ limlÑ8 S
α,q,r
l pvlq exist for all α, q, r, and

there is at least one non-zero term (with α “ β) among them. Moreover, if

α P Ipk´ 1, pq, where p ą t, then bα,q,r “ 0. That means that, for a suitably

chosen y “
řk´1
i“1 aixi P rx1, . . . , xk´1s and al P R, we have

lim
lÑ8

Bt

Bβ1x1 . . . Bβk´1xk´1
Plpy ` alxl ` vlq “

ÿ

q`r“m´t

β!aql b
β,q,r ‰ 0,

which contradicts the minimality of m.

Fix an arbitrary sequence δk Œ 0. By passing to a fast enough growing

subsequence of txju we can disregard in (3.1) all terms with p ě 1, so that

(using the short notation Sq,rk “ S0,q,r
k )

sup
}
ř8
j“1 ajxj}ď1

›

›

›

›

›

›

Pk

˜

8
ÿ

j“1

ajxj

¸

´
ÿ

q`r“m

aqkS
q,r
k

¨

˝

8
ÿ

j“k`1

ajxj

˛

‚

›

›

›

›

›

›

ď δk. (3.4)
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Let tεknu
8
n“1, ε

k
n Œ 0, be decreasing sequences of real numbers and tNkpjqu

8
j“1

be an increasing sequence of natural numbers. To start with, by applying

Theorem 1.4.11, we may assume that txnu
8
n“1 is a characteristic sequence

of its spreading model E with a sub-symmetric basis tenu
8
n“1.

By a repeated application of Theorem 1.4.11, there are nested subsequences

N Ą M1 Ą M2 Ą ¨ ¨ ¨ of index sets so that the following holds: for a

subsequence txnunPMk
of txnu

8
n“1, there is a sub-symmetric polynomial

Rq,rk P PprEq, r and q such that, for all scalars aj , j “ 1, . . . , NkpKq,

Rq,rk

¨

˝

NkpKq
ÿ

j“1

ajej

˛

‚´ εkK ď Sq,rk

¨

˝

NkpKq
ÿ

j“1

ajxnj

˛

‚ď Rq,rk

¨

˝

NkpKq
ÿ

j“1

ajej

˛

‚` εkK ,

(3.5)

provided K ď n1 ă ¨ ¨ ¨ ă nNkpKq, nj PMk and
›

›

›

řNkpKq
j“1 ajxnj

›

›

›
ď 1.

By (1.7),

Rq,rk

˜

8
ÿ

j“1

ajej

¸

“
ÿ

αPJprq

aq,r,kα Pα

˜

8
ÿ

j“1

ajej

¸

(3.6)

for all finitely supported vectors.

By passing to a suitable diagonal sequence M “ tmiu
8
i“1 of the system

tMku
8
k“1 and keeping in mind that the set tRq,rk uk,q,r in PpEq is uniformly

bounded, we may also assume that there exist finite limits

bq,rα “ lim
kÑ8

aq,r,kα , k PM. (3.7)

We consider the sub-symmetric polynomial W q,r P PprEq defined by

W q,r

˜

8
ÿ

j“1

ajej

¸

“
ÿ

αPJprq

bq,rα Pα

˜

8
ÿ

j“1

ajej

¸

. (3.8)

We claim that W q,r “ 0, unless r “ 0. Assuming the contrary, there is a

finitely supported vector v “
řT
i“1 viei such that

ÿ

q`r“m,rě1

W q,rpvq “ δ ‰ 0.

We may assume without loss of generality that δ ą 0. Hence, for a sliding

finitely supported block vector wj “
řT
i“1 vi`jxmi`j , by (3.5), (3.6), and



46 Chapter 3

(3.7), we get that

lim inf
j

ÿ

q`r“m,rě1

Sq,rl pwjq ą
δ

2
(3.9)

holds for all l PM large enough. But this contradicts again the minimality

assumption on m. Indeed, we denote by U a w˚-cluster point of tP px`wkq :

k P Nu in the dual Banach space PmpX; `1q. In particular, for every x there

is a subsequence L Ă N such that

Upxq “ lim
jÑ8,kPL

P px` wjq.

Let U “ U0 ` U1 ` ¨ ¨ ¨ ` Um “ pU0
k ` U1

k ` ¨ ¨ ¨ ` Umk q
8
k“1 be the unique

splitting of U into a sum of j-homogeneous summands U j . Then by (3.9)

m´1
ÿ

i“0

U ikpakxkq ě
ÿ

q`r“m,rě1

aqkW
q,rpvq ě

δ

2
,

a contradiction with the minimality of m.

This verifies the claim that W q,r “ 0, unless r “ 0.

Combining all the previous results, we conclude that there is an infinite

increasing sequence M Ă N and c ‰ 0, such that the following holds: for

any ρ ą 0 and N P N, there is a finite set tt1, . . . , tNu ĂM such that
›

›

›

›

›

Pk

˜

N
ÿ

i“1

ajxti

¸

´ camk

›

›

›

›

›

ă ρ, k P tt1, . . . , tNu.

It is now clear that the polynomial Q P Ppm`lXq, l ě 0, defined as

Qpxq “
8
ÿ

j“1

φljpxqPjpxq,

satisfies the condition laid out in Theorem 1.5.5, whence

Q P Ppm`lXqzAm`l´1pXq.

[\

3.3 Corollaries

In this section we present several previously known results in this area, all

implied by Theorem 3.2.1 together with the positive results of [2], [8] and

[6] below.
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Corollary 3.3.1 ([6], see Theorem 3.1.1). Let X, Y be Banach spaces

and suppose that X does not contain a subspace isomorphic to `1. Then

Pwup
nX;Y q “ Pwscp

nX;Y q.

The next result was first formulated in [41].

Theorem 3.3.2. Let X be a Banach space, `1 ãÑ X. Then

A1pXq Ř A2pXq Ř ¨ ¨ ¨

Proof. Combine Proposition 1.7.7 and Theorem 1.5.5. [\

Corollary 3.3.3 ([41]). Let X be a Banach space admitting a non-compact

linear operator T P LpX; `pq, p P r1,8q. Then, letting n “ rps, we obtain

AnpXq Ř An`1pXq Ř ¨ ¨ ¨ . (3.10)

Proof. By Proposition 1.7.9, we may assume that T pBXq contains the unit

vectors in `p. It then suffices to compose T with the polynomial P P

Ppn`p; `1q, given by formula pxjq Ñ pxnj q, to obtain a non-compact n-

homogeneous polynomial from X into `1. It remains to apply Theorem

3.2.1. [\

Corollary 3.3.4. Let X “ Lppr0, 1sq, 1 ď p ď 8, or X “ `8 or X “ CpKq,

where K is a non-scattered compact. Then

A1pXq Ř A2pXq Ř ¨ ¨ ¨

Proof. If 1 ă p ă 8, `2 is isomorphic to a complemented subspace of

Lppr0, 1sq ([36] p. 210), therefore we may use Corollary 3.3.3. The spaces

L1pr0, 1sq, `8, L8pr0, 1sq and CpKq, K non-scattered, contain `1 ([36]), there-

fore Theorem 3.3.2 applies. [\

Corollary 3.3.5. Given 1 ď p ă 8, we have the following:

A1p`pq “ ¨ ¨ ¨ “ An´1p`pq Ř Anp`pq Ř An`1p`pq Ř ¨ ¨ ¨

where n´ 1 ă p ď n.
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Proof. By [6] we know that Pnp`pq “ Pnwup`pq whenever n ă p. So, using

Theorem 3.1.1, we obtain that An´1p`pq “ A1p`pq. The rest follows readily

from Corollary 3.3.3. [\

Corollary 3.3.6. Let X be a Banach space, q ą 1, 1
p `

1
q “ 1. Assume that

X˚ has type q. Then for n ą p we have

A1pXq Ř AnpXq Ř An`1pXq Ř ¨ ¨ ¨ .

Proof. By Corollary 1.7.12, there is a normalized basic sequence tyku
8
k“1

in X˚ which has the upper q-estimate. Thus, T : `q Ñ X˚, T pekq “ yk,

is a non-compact bounded linear operator. Since T is weakly compact,

T ˚ : X Ñ `p is a non-compact operator. An appeal to Lemma 3.3.3 finishes

the argument. [\

Corollary 3.3.7 ([29]). Let X be a Banach space with an unconditional

FDD, `1 ­ãÑ X, and suppose that n is the least integer such that there exists

a P P PpnXq which is not weakly sequentially continuous. Then

A1pXq “ ¨ ¨ ¨ “ An´1pXq Ř AnpXq Ř An`1pXq Ř . . . .

Proof. It was shown in [29], by using the averaging technique from [9] as in

[28], that under these assumptions c0 ãÑ PpnXq. [\

3.4 Some open problems

In this section we list the main remaining open problems, which we have so

far failed to solve, in spite of trying several approaches.

Problem 3.4.1. Give a description of PpXq for a general separable Banach

space X.

This problem is open even for X “ `2!

Problem 3.4.2. Suppose that X does not contain `1 and PpXq ‰ PwscpXq.

Is there a non-compact bounded linear operator from X into `p for some

1 ď p ă 8?

An important remaining problem is the following.
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Problem 3.4.3. Let X be a separable Banach space not containing `1 and

let n P N be the smallest integer such that P pnXq ‰ Pwsc p
nXq. Is then

A1pXq “ ¨ ¨ ¨ “ An´1pXq Ĺ AnpXq Ĺ An`1pXq Ĺ ¨ ¨ ¨?

The answer to this problem is positive provided the following problem has

a positive answer (see [44]).

Problem 3.4.4. Let X be a separable Banach space not containing `1 and

let n ě 2 be an integer such that P pnXq ‰ Pwsc p
nXq. Does then the space

P pnXq contain c0?

Note that the opposite implication follows from Theorem 1.7.5.

Observe that if the dual X˚ contains a subspace isomorphic to c0 or a

superreflexive space, then we can conclude that (3.10) holds for some n.

Indeed, in this case either `1 ãÑ X or, by using the James-Gurarii theorem

([36] p. 450), X admits a non-compact linear operator into some `p. This

leaves us with two possibilities. If X fails (3.10) for every n P N, then either

X˚ is `1-saturated or it contains a Tsirelson-like subspace Y , in the sense

that Y contains no copy of `1, c0 or a superreflexive space.

Problem 3.4.5. Let X be a Banach space such that X˚ is `1-saturated. Is

then PpXq “ PwscpXq?
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Chapter 4

Some results on smooth

functions

In this chapter we solve several open problems from the literature regarding

the behavior of smooth functions on Banach spaces.

4.1 Non-complete Ck-smooth renormings

We begin with a problem posed in various papers, e.g. in [12] or [10], con-

cerning the existence of a non-complete Ck-smooth renorming of a Banach

space which admits a Ck-smooth equivalent norm, where k ě 2. The non-

complete Ck-smooth renorming plays an important role in some applications

regarding the so-called smooth negligibility and the existence of Ck-smooth

diffeomorphisms between certain subsets of the given Banach space X, see

e.g. [31]. Our result can be used to simplify some parts of the theory of

these mappings, in particular the techniques which bypass the use of the

non-complete norm, used in [10], are no longer needed. We begin with an

auxiliary result.

Theorem 4.1.1. Let X be a Banach space with w˚-sequentially compact

dual ball. If c0 – Y ãÑ X then Y contains a further subspace c0 – Z ãÑ Y

such that Z is complemented in X.

Proof. If c0 ãÑ X then X˚ has a quotient `1. By the lifting property, we

also have `1 ãÑ X˚ is a complemented subspace, and moreover, the basis

51



52 Chapter 4

teju of c0 and tfju of `1 in X˚ form a biorthogonal system. Since BX˚ is

w˚-sequentially compact, by passing to a subsequence we get that fj Ñ f in

w˚-topology. So tg2ju “ tf2j ´ f2j`1u is w˚-null, and also equivalent to an

`1-basis, which is still biorthogonal to te2ju, again a c0 basis sequence. Thus

T : X Ñ X, T pxq “
ř

g2jpxqe2j is a projection, and c0 is a complemented

subspace of X. [\

In fact, a more general version of the above result was shown by Schlumprecht

in his PhD thesis [58]. The condition on X is quite common, e.g. all weak

Asplund spaces or WLD spaces have it ([26], [35], [36]).

Theorem 4.1.2. Let X be an infinite dimensional Banach space admitting

a Ck-smooth norm, k ě 2. Then X admits a decomposition X “ Y ‘ Z

where Y is infinite dimensional and separable. In particular, X admits a

non-complete Ck-smooth renorming.

Proof. By Corollary 3.3 in [24] we have that either c0 ãÑ X or X is super-

reflexive. Either way, using the previous Theorem 4.1.1 (or the existence

of PRI on superreflexive spaces), X “ Y ‘ Z where Y is infinite dimen-

sional and separable. But since every separable Banach space injects into

c0, it admits a non-complete C8-smooth norm. It follows that X admits a

Ck-smooth noncomplete norm. [\

We point out that for k “ 1 the existence of a (nonequivalent) C1-smooth

norm on a given C1-smooth Banach space (or even any Asplund space) X

remains open.

4.2 Separating polynomials

In this section we present a theorem which solves a problem posed in [11],

concerning an assumption used by these authors in the proof of their main

result. Before we pass to the description of our result, let us recall that

for every real Banach space X one may construct its complexified version

XC, which is (as a real Banach space) isomorphic to X ‘X. The complex

norm on XC is not uniquely determined, but this fact plays no role in our

argument. We refer to the paper [52] for details.
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Theorem 4.2.1. Let X be a real Banach space which admits a real analytic

separating function whose complex extension exists and is Lipschitz on some

strip around X, i.e. on X ` 2rBXC Ă XC, for some r ą 0. Then X is

superreflexive and admits a separating polynomial.

Proof. By contradiction. Let f : BX Ñ R be a separating real analytic and

Lipschitz function with fp0q “ 0, dfp0q “ 0 and infSX f ą 1, and such that

the complex extension f̃ : BX ` rBXC Ñ C exists and is K-Lipschitz, r ą 0.

Denote S “ BX ` rBXC Ă XC. This implies that f̃ is bounded by K ` r on

S.

By the Cauchy formula [55] Thm. 10.28 (for the second derivative of f̃)

d2f̃paqrhs “
2

2πi

ż

γ

f̃pa` ζhq

ζ3
dζ (4.1)

holds for every a, h P BX , and the path γptq “ reit, t P r0, 2πs. Noting that

the denominator in the Cauchy formula is in absolute value r3, we obtain

that d2fpaq is uniformly bounded on BX . Hence df is Lipschitz on BX .

By a result of Fabian, Whitfield and Zizler in [37], Theorem 3.2 in [24] X

is superreflexive. By a result of Deville, Thm 4.1 in [24] X has a separating

polynomial. [\

4.3 Extension of uniformly differentiable functions

In the last part of this section we give a solution to an extension problem,

posed in the monograph of Benyamini and Lindenstrauss [14] p. 278, con-

cerning uniformly differentiable functions on the unit ball of a Banach space

X. Suppose that f : BX Ñ R is a uniformly differentiable function in the in-

terior of the unit ball BX . Is there a uniformly smooth extension of f whose

domain is the whole X, or at least some neighbourhood of BX? A weaker

version of this problem (if we expect a positive solution, i.e. the existence

of some extension) would be to require that the extension coincides with f

at least in some open neighbourhood of the origin. We will show that even

the weaker version of the problem has a negative solution. Our solution is

based on the application of the theory of W-class of Banach spaces, which

was developed in a series of papers [42], [43], [25] and [20] (this class was
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denoted by C-class in the first three papers), which provides a link between

uniform smoothness and weak continuity.

Definition 4.3.1. Let X,Y be normed linear spaces, U Ă X open, f Ă

CkpU ;Y q and k P N. We say that f is Ck,`-smooth on U if dkf is uniformly

continuous on U .

Definition 4.3.2. Let λ P p0, 1s. We say that a Banach space X is a

Wλ-space (or that it belongs to the class Wλ) if

C1,`pBXq Ă CwsC pλBXq

(in the sense of restriction).1 We say that a Banach space is a W-space (or

that it belongs to the class W) if it is a W-space for some λ P p0, 1s.

Remark 4.3.3.

• Clearly, if X is a Wλ-space, then it is a Wξ-space for every 0 ă ξ ă λ.

Conversely, if X is a Wξ-space for every 0 ă ξ ă λ, then X is a

Wλ-space.

• Every Schur space is trivially a W1-space.

• If X is a W-space, then C1,`pXq Ă CwsCpXq.

• It was shown in [20] that every CpKq (K scattered) space is a W1-

space. In particular, c0 in the supremum norm is also a W1-space (this

was shown in [42]).

• Being a W-space is invariant under isomorphism, but the precise value

of λ may change.

Proposition 4.3.4. For every m P N,m ě 2, there is an equivalent renorm-

ing of c0 such that pc0, } ¨ }mq belongs to W 1
m

-class, but it does not belong to

W 1
m´1

-class.

1X is a Wλ-space if every uniformly differentiable function f : BX Ñ R takes weakly

Cauchy sequences in λBX to convergent sequences.
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Proof. The renorming } ¨ }m of c0 is determined by its closed unit ball Bm Ă

c0,

Bm “ convtt˘meju
8
j“1 YBc0u.

Clearly,

Bc0 Ă Bm Ă mBc0 . (4.2)

Note that if x “ pxjq P Bm then cardtj : |xj | ě 1 ` 1
mu ď m2. Indeed,

suppose

x “
n
ÿ

k“1

akmek ` a0p

8
ÿ

j“1

bjejq “
8
ÿ

j“1

xjej , where
n
ÿ

k“0

ak “ 1 and ak ě 0.

Letting A “ tk : ak ě
1
m2 u, clearly cardpAq ď m2. Now |xj | “ |a0bj `

ajm| ď a0 ` maj ă 1 ` 1
m , unless j P A. Choose φm : R Ñ R`0 a C8-

smooth even convex function, φm
“

´1´ 1
m , 1`

1
m

‰

“ 0, φmptq ą 0, t ą

1` 1
m , and such that both φm, φ

1
m are 1

m22m`1 -Lipschitz. Let now Φmpxq “
ř8
j“1 φmpxjq. It is clear from the previous discussion that Φm depends on

at most m2-coordinates in a neighbourhood of any interior point in Bm.

Hence it is a uniformly differentiable symmetric function such that both

Φm, dΦm are 1
2m`1 -Lipschitz. But Φmptejq ą 0 for every t ą 1 ` 1

m , j P N,

hence Φm restricted to 1
m´1Bm does not take weakly null sequences into null

sequences. [\

Example 4.3.5. There is a Banach space X and a uniformly differentiable

function f : BX Ñ R which cannot be extended to a uniformly differen-

tiable function on any λBX , λ ą 1, preserving its original values in some

neighbourhood of 0.

Proof. Let X “ ‘`2
ř8
m“2pc0, } ¨ }mq, Pm : X Ñ pc0, } ¨ }mq be the canonical

projections onto the direct summands. Let fpxq “
ř8
m“2 Φm ˝ Pmpxq. The

functions f and df are 1-Lipschitz, so f is uniformly differentiable (even with

a Lipschitz derivative). It is also clear that (4.2) implies that Φm cannot be

extended to p1` 1
m´1qBm, preserving its values on 1

m´1Bm. Since m can be

chosen arbitrary large, the result follows. [\
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