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Abstract

During the production of flowers in Arabidopsis thaliana many key de-

cisions are taken in a short lapse of time. The floral primordium has to

be positioned correctly on the inflorescence meristem and it has to grow to

the required dimension before flower organs are themselves positioned and

differentiate.

All these tasks are strictly controlled at a molecular level and the genetic

networks that underlies them have been intensively studied in the last 30

years. Nevertheless we are far from having a comprehensive knowledge on this

process and the genetic mechanism controlling the arise, identity of the floral

primordium and the timing of its developmental phases are widely unknown.

We have identified new genes potentially involved in early flower de-

velopment with two approaches: (i) Analysis of the specific transcriptome

of the earliest stages of flower development and (ii) Co-expression analysis

using APETALA1 and LEAFY, two genes that determine the identity of

the floral meristem, which is the earliest stage of flower development. We

have observed that multiple REM transcription factors are co-expressed with

APETALA1 and LEAFY.

Characterizing insertional mutants for genes potentially involved in early

flower development and REM transcription factors, we have rarely observed

a phenotype in the stages under study. This is consistent with the hypoth-

esis that genes controlling early flower development are often functionally

redundant. We are implementing various methods to overcome functional

redundancy implementing analysis of gene families, multiple RNA interference

and gene targeting strategies.
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Part I

Introduction And Presentation

Of My Work
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Chapter 1

State Of The Art

1.1 Early flower development of Arabidopsis

thaliana

Most of my thesis revolves around the genetic study of early flower

development in Arabidopsis thaliana.

1.1.1 Morphology of early flower development.

In Arabidopsis thaliana flowers are generated at the apex of the inflores-

cence (inflorescence meristem - IM) in a spiral shaped series. Each flower is

separated from the other by an angle of 137.5◦(Guédon et al., 2013). The pro-

cess of early flower development in Arabidopsis has been described in detail by

Smyth, Bowman and Meyerowitz in 1990 using scanning electron microscopy

(SEM) imaging (see figure 1.1). The IM is a meristematic dome-shaped

structure of about 45 µm diameter located at the apex of the inflorescence.

The first visible stage of floral development is the floral meristem (FM) which

comprehends stage 1 and stage 2 of flower development. The FM is, again,

a dome shaped meristematic structure, that buds from the flanks of the

IM and grows in volume for approximately two days until it reaches about

35 µm diameter. Then the third stage of flower development (ST3) begins

and organs differentiation starts. The transition from stage 1 to stage 2 of
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Figure 1.1: Lateral and top (respectively A and B) view of the inflorescence
apex and younger buds after (older buds have been removed to make visible
thee younger buds). The numbers indicate the developmental stage of the
nearby flower. The position of the developing sepals in the stage 3 flower are
indicated by: Ab=Abaxial, Ad=Adaxial L=Lateral (image from Smyth et
al., 1990). The scale bar is 35 µm.

flower development (hereby both referred as floral meristems) is landmarked

by the appearance of the stalk. In this work we will concentrate on the

aforementioned structures.

1.1.2 Interest in early flower development

The mersitematic stages of flower development and the switch to organ

differentiation are a prelude and bottleneck to the development of flower,

fruit and seeds. As pointed out by J. L. Bowman in 2012, flowers, with

their distinctive colors, shapes and perfumes, have attracted interests of

scientists since the birth of genetics and even before (Bowman et al., 2012).

On the other side, the agronomical interest in the control of fruit and seed

development is self-evident.
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In the last three decades, early flower development has been used as

model system for many studies in molecular genetics. For example one of the

first models to describe combinatorial functional and molecular interaction

among homeotic transcription factors has been formulated on flowers and

has been named ABC model of flower development. This model states that

functional and physical interaction among three classes of proteins (A, B and

C) specify the identity of the four flower organs (sepals, petals, stamens and

carpels) (Coen and Meyerowitz, 1991; Melzer and Theißen, 2009). Moreover

the meristematic stages (IM and FM) contain a stem cell pool that gets

progressively lost from ST3 onward when the development of floral organs

start. This stem cell pool has been used to describe the balance between stem

cell maintenance and organ differentiation in plants. It has been shown that

a molecular negative feedback loop determine the maintenance of the right

amount of stem cells in the IM and FM (Fletcher et al., 1999; Brand et al.,

2000). Years later, early flower development has been used to model how

peaks in the concentration of the plant hormone auxin determine the position

of lateral organs through mathematical modeling (Guédon et al., 2013). All

these studies show that early flower development is an established model

system for the scientific research in molecular genetics.

1.1.3 Genetics of early flower development

The genetic of early flower development in Arabidopsis has been subject

of intense studies during the last 25 years (reviewed by (Ó’Maoiléidigh et al.,

2014).

Determination of floral meristem identity

The appearance of the FM is marked by a sharp increase in the expression

levels of the floral meristem identity (FMI) genes. Mutants lacking the func-

tion of the FMI genes produce meristem-like, leaf-like and inflorescence-like

structures instead of flowers (Figure 1.2). The FMI genes are downstream to

the floral integrator genes, such as SUPPRESSOR OF OVEREXPRESSION

OF COSTANS 1 (SOC1). The floral integrators collect the information from
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the flowering time pathways which detect environmental and internal cues

in order to establish the correct timing for the switch from vegetative to

reproductive development.

The First FMI gene to be activated, in a group of cells morphologically

indistinguishable from the IM, is LEAFY (LFY) (Weigel et al., 1992), which

is activated by SOC1 itself (Lee et al., 2008). LFY is a transcription factor

with two DNA binding domain and it is present as a single copy gene with

no homologues in the Arabidopsis genome; LFY is necessary and sufficient to

initiate flower development.

The activation of LEAFY is followed by the activation of the other

flower meristem identity genes LATE MERISTEM IDENTITY1 (LMI1)

APETALA1 (AP1), CAULIFLOWER (CAL), AGAMOUS-LIKE 24 (AGL24)

and SHORT VEGETATIVE PHASE (SVP) (Bowman et al., 1993; Ferrándiz

et al., 2000; Gregis et al., 2006; Saddic et al., 2006; Gregis et al., 2008).

Figure 1.2: Inflorescence of floral meristem identity loss of function mutants.
A. wt Col-0 plant. B. Inflorescence of a lfy-2 mutant, flower are converted
in vegetative structures. C. Inflorescence of an ap1 cal double mutant; the
lumpy cauliflower-like structures is composed by over-proliferating meristems
that do not undergo differentiation. (Images A and C for courtesy of ABRC
(https://abrc.osu.edu/).

The inter-regulatory pathways among the FMI form a tangled, highly

redundant and complex network (Grandi et al., 2012). One of the most widely

known phenotypes of the loss of floral meristem identiy is the one of the double

mutant ap1 cal and of its phenocopy, the triple mutant ap1 svp agl24. In

these mutant floral organs do not differentiate and the system is temporarily
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blocked in a massive over-proliferation of meristematic tissues (see Figure 1.2)

(?). AP1, SVP, AGL24 and CAL are all MADS-box transcription factors

(Parenicová et al., 2003).

The FMI transcription factors AP1, SVP and AGL24 repress the class B

and C floral organ identity genes PISTILLATA (PI), APETALA3 (AP3),

AGAMOUS (AG) preventing early differentiation of floral organs. Toward

the end of stage 2 of flower development the expression of FMI genes SVP,

AGL24 and CAL decreases and the differentiation of floral organs begins.

Maintenance of stem cell pool

The complex molecular mechanisms allowing both the maintenance of a

stem cell pool and the production of new tissues is regulated by a negative

feedback loop. WUSCHEL (WUS), a homeodomain transcription factor

required for the determination of stem cell identity, acts as a positive signal

for stem cell proliferation (Laux et al., 1996; Mayer et al., 1998; Busch et al.,

2010); while CLAVATA3 (CLV3) is a small secreted glycopeptide which acts

together with its receptors CLAVATA1 (CLV1) and CLAVATA2 (CLV2) to

negatively regulate stem cell proliferation (Clark et al., 1996; Fletcher et al.,

1999; Guo and Clark, 2010). WUS and CLV3 regulate each other expression

in a negative feedback loop that prevents both the collapse and overgrowth of

stem cell niches in meristematic tissues (Brand et al., 2000). From floral stage

3, WUS activates the MADS-box floral homeotic class C gene AG, which, in

turn, represses WUS stopping the indeterminate proliferation of the FM and

promoting the development of the inner floral whorls (Lohmann et al., 2001).

1.1.4 Functional Information On Early Flower Devel-

opment

As stated by the central dogma of molecular biology, the flow of genetic

information within a living organism starts form DNA (Crick et al., 1970).

Considering that we are trying to characterize the genetic/molecular pathways

that underlie flower development in Arabidopsis thaliana and that the genetic

information fed to these pathways comes from the genome, a logic question
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is: how much do we know about the information encoded in the the genome

of Arabidopsis? A good estimator of this is the fraction of the genes that

have been functionally characterized with loss of function mutants which, for

Arabidopsis, consists of about one tenth of the genes encoded in the genome

(Lloyd and Meinke, 2012).

Many of the uncharacterized genes have been reported to be target of the

floral meristem identity transcription factors LFY, AP1 and SVP with the

experiment performed by Kaufmann et al. in 2010, Winter et al. in 2011 and

Gregis et al. in 2013 and are thus very likely to be involved in early flower

development. These genes might encode information on widely unknown

processes such as the timing of the progression through developmental phases

of the FM. We can estimate that, even if early flower development has been

intensively studied and characterized, our knowledge of the genetic pathways

that underlie it is limited.

1.1.5 The ap1 cal AP1-GR induction system

Many of the molecular characterization of floral meristem and early flower

development have been carried out implementing the ap1 cal AP1-GR system.

The inflorescence meristem and the early stages of flower developments of

Arabidopsis thaliana have sizes that range from tens to hundreds of microme-

ters and therefore cannot be easily collected in the amount needed for their

molecular characterization. The ap1 cal AP1-GR mutant plants are used

to solve this problem. In the ap1 cal double mutant flower development

is (temporarily) blocked in a massive over-proliferation of inflorescence-like

meristems, leading to a cauliflower curd-like appearance (Figure 1.2 and

1.3A). The ap1 cal AP1-GR inducible system is based on the activation of the

AP1-glucocorticoid receptor fusion protein (AP1-GR) by the synthetic steroid

dexamethasone (DEX) in the ap1 cal double mutant. In the absence of DEX

the GR domain excludes the AP1 transcription factor from the nucleus where

it has to be to perform its physiological function. Induction of AP1 activity

with DEX simultaneously turns all the inflorescence-like meristems of the ap1

cal AP1-GR plants into floral meristems and later to flowers (Figure 1.3B).

9



Figure 1.3: ap1 cal AP1-GR system for synchronous flower induc-
tion. A cauliflower curd like structure at the apex of an ap1 cal double
mutant inflorescence, as shown in Figure 1.2 after treatment with (A.) a
biologically inactive control solution (mock) and (B.) with dexamethasone.
Treatment with dexhametasone causes the release of AP1 into the nucleus and
triggers simultaneous development of multiple flowers (picture from Wellmer
et al., 2006).

These flowers are numerous and synchronized and they can be easily

collected and used to analyze the molecular pathways that underlie early

flower development (Wellmer et al., 2006). Many molecular analysis of

early flower development, such as the transcriptional profiling of these stages

and the genome wide analysis of AP1 binding sites (Wellmer et al., 2006;

Kaufmann et al., 2010; Pajoro et al., 2014), have been carried out using this

system.

1.1.6 Attempts of comprehensive characterization of

early flower developments

The reductionist approach used in molecular genetics, although consis-

tent with the scientific method, have been partly criticized as insufficient

to describe a complex systems, such as a living organism (Sauer et al.,

2007). Studying molecular pathways underlying early flower development

one gene/one pathway at a time is indeed a reductionist approach. A com-

prehensive approach instead addresses a biological system as a whole and

relies on quantitative measurements of multiple components simultaneously,
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these measurements can be supplied today by powerful technologies such as

next generation sequencing.

Many attempts have been made to provide comprehensive quantitative

data and to build mathematical models concerning the molecular pathways

that underlie early flower development. Microarray data for loss of function

mutants of the FMI gene lfy is publicly available at AtgeneExpress (Schmid

et al., 2005). Numerous co-expressed groups of genes have been detected

analyzing the transcriptome of the early developing flower using the ap1 cal

AP1-GR system (Wellmer et al., 2006). Chromatin immunoprecipitation

coupled to high throughput sequencing (ChIP-seq) (Johnson et al., 2007) has

been used to detect the direct target and thus the gene regulatory network

downstream of many of the transcription factors involved in early flower

development, highlighting that SEP3 and AP1 are strongly involved in

transcriptional control of hormonal pathways genes (Kaufmann et al., 2009,

2010) while SVP is controlling meristem development pathways (Gregis et al.,

2013).

Finally, a combined study of gene expression, transcription factors binding

and chromatin accessibility highlighted that gene sets controlled by homeotic

genes involved in flower development are extensively but not completely over-

lapped (Pajoro et al., 2014), thus the molecular network that control flower

devlopment is complex and redundant. Further application of comprehensive

approaches will probably be needed in order to describe consistently early

flower development.

1.2 The REM gene family

Performing a meta-analysis of the Arabidopsis expression data collected

in the NASCarray repository (Craigon et al., 2004), we have observed that

the expression levels of multiple REPRODUCTIVE MERISTEM (REM)

trascription factors and of the FMI genes LFY and AP1 are correlated.

Thus, we have hypothesized that REM transcription factors are involved in

early flower development. Moreover REM transcription factors are poorly

functionally characterized; this makes them perfect candidates for our future
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analysis. We are concentrating on REM34 that is co-expressed with LFY

and AP1 and expressed during early flower development.

1.2.1 A general description of the REM gene family

The REM transcription factor family of Arabidopsis thaliana is com-

posed by 45 genes (Romanel et al., 2009) all containing one or multiple

copies of the B3 DNA binding domain (Swaminathan et al., 2008; Ro-

manel et al., 2009). Moreover, REM genes are phylogenetically diver-

gent and extensively duplicated and are sometimes located in clusters in

the Arabidopsis genome (Swaminathan et al., 2008; Romanel et al., 2009).

The largest cluster is located on chromosome 4 containing 9 REM genes

(REM34, REM35, REM36, REM37, REM38, REM39, REM41 and REM42)

within 30 kilobases. that are closely phylogenetically related (Figure 1.4).

Figure 1.4: Phylogenetic tree of the

whole REM gene family.

The B3 domain was first iden-

tified in maize (McCarty et al.,

1991), is specific to plants (Swami-

nathan et al., 2008), and can bind

DNA cooperatively in vitro (Suzuki

et al., 1997). Five Arabidopsis

transcription factor families contain

the B3 DNA binding domain: the

LAV (LEC2 [LEAFY COTYLEDON

2]/ABI3 [ABSCISIC ACID INSEN-

SITIVE 3], VAL [VP1/ABI3-LIKE]),

RAV (RELATED to ABI3/VP1),

ARF (AUXIN RESPONSE FAC-

TOR) and REM families. The DNA

sequence recognized by the B3 do-

main is different in these five fami-

lies (Swaminathan et al., 2008; Wang

and Perry, 2013; Ulmasov et al., 1997;

12



Ezcurra et al., 2000; Kagaya et al., 1999; Romanel et al., 2009) and in the

REM family it might bind DNA with no sequence specificity (King et al.,

2013).

1.2.2 Function of REM transcription factors in vernal-

ization and ovule development

Only two REM genes have been functionally characterized in Arabidopsis:

VERNALIZATION1/REM5 (VRN1), which is involved in the vernalization

process (Levy et al., 2002; King et al., 2013) and REM20/VDD, which is

essential for the development of the antipodal and synergid cells in the female

gametophyte (Matias-Hernandez et al., 2010; Mendes et al., 2013). The

expression pattern of the 45 REM genes suggests that they are involved in

many other processes throughout the development of Arabidopsis thaliana

but neither their function or mechanism of action have been reported yet.

1.3 New Technologies For Precise Genome

Editing

The functional analysis of a genetic elements often relies on the observation

of the phenotype caused mutation of the genetic element. For example, the

function of the gene LEAFY has been first inferred from the phenotype of the

leafy loss of function mutant in which flowers are converted in inflorescence-

like and leaf-like structures (Weigel et al., 1992).

We are characterizing new genes involved in early flower development.

New, precise and efficient ways of introducing modification in those genes can

highly speed up the characterization process. New technologies of genomic

modification that might introduce specific deletion in the genome are especially

important for the functional characterization of the REM genes which are

often concatenated on the genome, such as REM34 with its closest homologues.

This need can be addressed by the genome editing technologies (reviewed by

Gaj et al., 2013). Since the genome editing technologies are relatively new, I

13



Figure 1.5: Schematic view oh the three main tools for Genome
Editing ZFN, TALEN and CRISPR/Cas9, modified from AddGene.
(https://www.addgene.org/)

will introduce them in detail hereby.

1.3.1 Genome editing tools

The rationale of Genome Editing is that repeatedly introducing a double

strand break (DSB) at a specific locus will eventually cause its mutation.

Nowaday we can introduce targeted DSB in vivo with engineered nucleases.

The engineered nucleases are produced fusing a non-specific DNA cleavage

domain, generally the FokI domain, with a customizable DNA binding domain

(Kim et al., 1996). The DNA binding domains that have been used with

greatest success are:

• Zinc-Finger domains: Zinc-Finger DNA binding domains are small

and easy to transform in living organisms. One single Zinc-Finger

domain individually binds 3 consecutive base pairs in the DNA and are

generally used in arrays of 3 to 6 Zinc-Finger domains, which target

9 to 18 base pairs. Nevertheless engineering the Zinc Finger DNA

binding domain can be challenging because the DNA specificity of

one single Zinc-Finger domain is context-dependent (Ramirez et al.,

14



2008). The OPEN selection method (Maeder et al., 2009) has made

this technology available to the broad scientific community providing

guidelines to develop zinc-finger arrays with new DNA specificity testing

a combinatorial array library of known Zinc-Finger domain. A Zinc-

Finger array fused to the FokI DNA cleavage domain is called Zinc

Finger Nuclease (ZFN) (Figure 1.5A).

• Transcriptional Activator Like Effector (TALE): TALE infec-

tious bacterial transcription factors are a key component of the plant

infection process by Xanthomona bacteria (Boch and Bonas, 2010).

The DNA binding domain of TALE has specific features that makes it

suitable for genome editing. These domains are composed of repetition

of a highly conserved 33-34 amino acid motif; one single repetition/motif

binds one single base pair (Boch et al., 2009) and the 12th and 13th

amino acids residues (RVD) of each repetition determine the targeted

nucleotide. Assembling the 4 different motives that target the four dif-

ferent base pairs in the correct sequence is sufficient to obtain a protein

that binds the desired DNA sequence. The TALE DNA binding domain

thus can be easily engineered to bind almost every DNA sequence.

Nevertheless the repeated nature of the TALE DNA binding domains

makes the cloning process difficult. Moreover a TALE domain is always

considerably larger than a Zinc-Finger array targeting the same sequence.

Fusion proteins of TALE and FokI DNA cleavage domain are called

TALEN (Figure 1.5B).

Moreover, one of the latest tool for genome editing is the bacterial

CRISPR/Cas9 DNA cleavage system (Brouns et al., 2008). This system

has been engineered to specifically cleave DNA in mammals (Cong et al.,

2013) and suitable to be used in virtually any organism. Since the specificity

of this system is based on standard base paring between the target DNA and

complementary CRISPR RNA (Brouns et al., 2008), CRIPSR/Cas9 can be

easily designed to target whichever DNA sequence of interest (Figure 1.5B).

Genome editing is not a mature technology yet but has already been

tested and implemented successfully in several plants such as Arabidopsis,
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Tobacco (Townsend et al., 2009), rice (Miao et al., 2013) and wheat (Wang

et al., 2014). Especially in Arabidopsis, CRISPR trasformed with floral dip

method can introduce mutation in the germ line with a high but variable

efficiency (Fauser et al., 2014; Feng et al., 2014).

The basal tools and concepts for genome editing can be further applied in

order to introduce chromosomal deletions, inversions (Xiao et al., 2013), allele

corrections (Ramirez et al., 2012) and even modifications in the epigenome

(Mendenhall et al., 2013) of a living organism.

1.3.2 Gene targeting with engineered nucleases

As stated by Wikipedia: ’’Gene targeting (also, replacement strategy based

on homologous recombination) is a genetic technique that uses homologous

recombination to change an endogenous gene’’. Since the rationale of reverse

genetics is studying the function of a genomic element through the effects of

variations in its sequence, gene targeting is extremely useful tool in reverse

genetics.

Genetic modification techniques in most plants relies mostly on random

integration of the transformed DNA fragment in the genome and thus are not

suitable for gene targeting. Nevertheless, gene targeting can be achieved in

plants with an extremely low efficiency, ranging from 10−5 to 10−4, introducing

homology regions in the transformed DNA fragment (Offringa et al., 1990).

The efficiency of gene targeting in plants can be raised to 10−2 inducing a

double strand break in the targeted site with I-SceI meganuclease in order

to stimulate repair through homologous recombination (Puchta et al., 1993,

1996). Even if complicated, it is feasible to engineer meganucleases for

targeting a desired DNA sequence other then their natural target (Rosen

et al., 2006) and they were used by Bayer CropScience to induce gene targeting

in Cotton. Moreover, gene targeting was achieved in Tobacco with ZFN,

introducing known mutation that confer herbicide resistance in the genes

SurA and SurB with efficiency higher than 2% (Townsend et al., 2009).

Customizable nucleases such as ZFN, TALEN and the CRISPR/Cas9

system are likely to become the choice for gene targeting in plant and indeeed
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CRISPR/Cas9 have been used to induce repairing of a partially duplicated

reporter gene with homologous recombination with high efficiency (Fauser

et al., 2014; Feng et al., 2014).

Gene targeting in plants have been reviewed by Puchta and Fauser in

2013.
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Chapter 2

Aim Of The Work

Many genes that could be involved in the development of the FM and in

early flower development may be still uncharacterized. This is preventing

the formulation of functional model capable of describing how the plant uses

the information contained in its genome to determine the molecular networks

needed to build and develop correctly a new flower. We aimed at identifying

new genes and genetic pathways involved in this process. Our work addresses

the questions of how can we identify and characterize those genes.

2.1 Tasks

In order to identify new genes or molecular pathways involved early flower

development, we have undertaken two approaches:

• Definition of the precise transcriptome of the IM and of the

first stages of flower development: In order to find new genes

involved in the development of the FM, we defined and analyzed the

transcriptome of wild-type floral meristem and compared it with the

transcriptome of the inflorescence meristem and of the differentiating

flower (flowers at developmental stage 3) .

We have dissected these developmental stages with micrometric preci-

sion at a laser microdissector, analyzed their transcriptome and used

these data to define sets of genes that are differentially expressed among
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these stages. The information contained in those genes is hopefully

contributing to the developmental progression from IM to FM and later

to the differentiating flower. This strategy has allowed us to select for

candidate genes that we are characterizing with loss of function mutants

right now. Moreover we have used the transcriptomic datasets in order

to make hypothesis on cases of functional redundancy and regulatory

pathways active in the stages under study.

• Identification and characterization genes co-expressed with

the two key FMI genes LFY and AP1 : We sought for genes

co-expressed with LFY or AP1 because two genes with a statistical

correlation of mRNA expression levels may have similar function or

be involved in the same biological process (Menges et al., 2007, 2008).

Previously, in collaboration with Dr. Piero Morandini, we have observed

that multiple REM transcription factors are co-expressed with the FMI

genes LFY and AP1.

The function of the REM genes is poorly understood and, often, their

loss of function mutants have no peculiar phenotype (Franco-Zorrilla

et al., 2002; Romanel et al., 2009, 2011). Interestingly, the expression

pattern of Arabidopsis REM genes suggest a strong involvement in

many developmental processes, especially in reproductive development.

We have provided a detailed expression analysis and meta-analysis of

existing data for the genes belonging to this family. We have identified

the REM34 cluster on chromosome 4 as a high profile candidate for in-

volvement in early flower development and we have analyzed insertional

mutants of genes belonging to this cluster. In this part of the work

we started from statistical analysis of comprehensive transcriptomic

datasets and we have progressively focused and reduced our approach

selecting few genes (REM34, REM35 and REM36) for further functional

characterization.

Furthermore we are implementing genome editing and multiple RNA

interference strategies and developing new ones in order to reveal the function

of REM genes.
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Chapter 3

Main Results

3.1 The Transcriptome of Early Flower De-

velopment

We used Laser microdissection coupled to RNA-seq to gain a snapshot

of the transcriptome of the IM, FM and of the differentiating flower. This

part of my work has been carried out in collaboration with Dr. David Horner

and Dr. Matteo Chiara from the Beacon Bioinformatic Group at UNIMI. We

have published this part of my work in Mantegazza et al. (2014a).

3.1.1 Setting of the microdissection of Arabidopsis in-

florescences

In order to collect total RNA from the IM, FM and ST3 of wild type Col-0

plants we dissected with micrometric precision the aforementioned stages

at a Laser Microdissector (Figure 3.1). Setting up the condition for laser

microdissection (LM) of Arabidopsis inflorescences has been a relevant part

of the work of my first year of PhD.

In order to carry out LM, the tissue of interest must be fixed, embedded

in paraplast, sectioned at the microtome and distended onto special slides

before it can be microdissected (Day et al., 2005) To do so we adopted, with

minor changes, a protocol from (Schmidt et al., 2012). The complete protocol
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Figure 3.1: Laser microdissection of Arabidopsis inflorescence Inflo-
rescence apex before and after microdissection of inflorescence meristem (IM),
floral meristem (ST1 and ST2) and flower at developmental stage 3 (ST3)

is described in Mantegazza et al., (2014a). In our experience, the key steps

essential for preservation of RNA integrity are: tissue fixation in EtOH:Acetic

acid 9:1, embedding at 54 ◦C in special Paraplast with low melting temperature

and to distending the tissue section on slides with methanol instead of water.

This guaranteed a RNA Integrity Number (RIN, see Schroeder et al., 2006)

above 6 for all the samples (see section 8.1). We found that pooled material

from 15 inflorescences (Which is the limit for our pipeline of work) guaranteed

over 10 ng of total RNA for each stage for each replicate. This is enough for

subsequent RNA extraction, amplification, retrotranscription and sequencing

with today’s methods (Table 3.1).

3.1.2 Validation of our transcriptomic datasets

After turning reads into quantitative expression data with the Bowtie/Top-

hat/Cufflink pipeline (BTC, see Trapnell et al., 2010) , we have established

a cutoff of 0.5 RPKM (the crossover of false negative and false discovery

distribution, see section 8.2) for expressed genes. We thus detected 16,204

genes expressed in all the tissues, some at highly variable levels. 13,948 of
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Sample Dissected
area (µm2)

RNA conc.
(pg µL−1)

RIN cDNA conc.
(ng µL−1)

IM - I 614,437 555 6.8 248
FM - I 830,466 384 6.6 242
ST3 - I 1,327,581 1167 7 264
IM - II 665,868 929 6.4 306

FM - II 914,178 1,639 7,1 320
ST3 - II 1,311,891 1966 6.9 300

Table 3.1: Microdissected material Dissected Area in µm2, RNA con-
centration in pg µL−1, RNA integrity number and cDNA concentration in
ng µL−1 for each stage in both replicates (I, II) used for sequencing.

these genes (p − value < 10e − 20) overlap with the transcriptome of the

vegetative and transition shoot apical meristem (SAM), , characterized with

a similar method by Torti et al. in 2012.

Then we have decided to test the consistency of our datasets and selected

from scientific literature 13 marker genes that are known to:

1. be differentially expressed at least between two of the developmental

stages under study (IM, FM and ST3),

2. have an enstablished biological function in one or more of these stages.

3. Have an expression pattern defined by publicly available in situ hy-

bridization data in the stages under study.

These marker genes are:

TERMINAL FLOWER 1 (TFL1 ) TFL1 Determines the identity of

the IM, where its mRNA is exclusively expressed (Bradley et al., 1997).

AGAMOUS-LIKE 20 (AGL20 ) AGL20 is a key factor that determines

the IM identity and is also known as SUPPRESSOR OF OVEREX-

PRSSION OF COSTANS 1 (SOC1); Its mRNA is expressed exclusively

in the IM (Samach et al., 2000).

FLOWERING LOCUS (FD) FD promotes flowering acting in the SAM,

its mRNA is expressed in the IM and not in later stages (Abe et al.,

2005).
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AGAMOUS-LIKE 8 (AGL8 ) AGL8 is also known as FRUITFUL

(FUL) and is a regulator of IM development and of fruit development

(Gu et al., 1998); its mRNA is expressed in the IM and not in the FM

or ST3 (Mandel and Yanofsky, 1995).

CLAVATA1 (CLV1 ) CLV1 is a negative regulator of meristem size. Its

mRNA is expressed in the IM and FM and in decreasing levels in the

ST3 (Clark et al., 1996).

SHORT VEGETATIVE PHASE (SVP) SVP is a key factor deter-

mining the identity of the FM (Gregis et al., 2008). It is expressed

distinctively in the FM and not in ST3 (Hartmann et al., 2000).

WUSCHEL (WUS) WUS is essential for the maintenance of the stem cell

pool in IM and FM; its mRNA is expressed in the center of the IM, FM,

and at lower levels in the ST3 where it get repressed by AGAMOUS

(Mayer et al., 1998).

LEAFY (LFY ) LFY determines the identity of the FM and is one of the

first FMI genes to be activated before the FM becomes morphologically

distinguishable from the IM. LFY mRNA is expressed in the FM and

in later stages of flower development (Weigel et al., 1992).

PISTILLATA (PI ) PI is a class B floral homeotic protein, it determines

the identity of petals and stamens and it is expressed starting from ST3,

when the identity of floral organs is determined (Goto and Meyerowitz,

1994).

APETALA1 (AP1 ) AP1 is both a FMI and a class A floral homeotic

protein. It is expressed from FM on (Mandel et al., 1992).

AGAMOUS (AG) AG is a class C floral homeotic transcription factor that

determines the identity of stamens, carpels and later of the developing

ovules. Moreover AG represses WUS blocking the meristem proliferation.

AG is expressed in the ST3 and in later stages of flower development

(Drews et al., 1991).
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Figure 3.2: Normalized expression of selected marker genes The nor-
malized expression levels of 13 selected marker genes confirms the high
specificity of laser microdissection of floral tissues. The expression levels are
shown in RPKM, normalized to a 0-1 scale relative for each gene.

SEPALLATA3 (SEP3 ) SEP3 is a class E floral homeotic protein neces-

sary for the class A, B and C proteins to function. it is expressed from

ST3 of flower development (Mandel and Yanofsky, 1998).

APETALA3 (AP3 ) AP3 is a class B floral homeotic protein that acts

synergistically with PI. AP3, thus, determines the identity of petals

and stamens and, accordingly with its function, is expressed in ST3 and

later stages of flower development (Jack et al., 1992).

The 13 marker genes in our datasets behave as expected by their function

and by the available expression data (Figure 3.2). This confirms that our

dataset are reliable and rules out cross contamination of samples during the

microdissection and amplification.

3.1.3 Characterization and confirmation of differentially

expressed (DE) genes

We have identified differentially expressed genes using Cufflink (Trapnell

et al., 2012). Setting a statistical cutoff of FDR < 0.05 we have detected:
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Figure 3.3: Gene expression levels are confirmed independently by in
situ hybridization (a) Antisense probe targeting AGO5, which is detected
in the inflorescence meristem (IM) and not in the floral meristem (FM),
concordantly with what was expected from RNA-seq results (mean RPKM
in IM=26,72 and in FM=3,69). (b) Antisense probe targeting AT4G31910,
which is detected in the FM and flower at stage 3 (ST3) and not in the IM,
concordantly with what was expected from RNA-seq results (mean RPKM in
IM=1,05; in FM=19,36 and in ST3=11,01). (c) Antisense probe targeting
SWEET1, which is detected exclusively in the ST3 concordantly with what
was expected from RNA-seq results (mean RPKM in IM= ,88; in FM=2,55
and in ST3=19,86). (d) Antisense probe targeting PAP2 which is detected
more intensively in the ST3 compared to the IM and FM, concordantly with
what was expected from RNA-seq results (mean RPKM in IM=7,20; in FM=
7,01 and in ST3=27,12). Scale bar is 50 micrometers.

• 46 genes differentially expressed between IM and FM,

• 171 genes differentially expressed between FM and ST3,

• 178 genes differentially expressed between IM and ST3.

The DE genes are listed in section 8.3.

In order to test for false positives, we selected four previously unchar-

acterized DE genes: AGO5 (AT2G27880), PAP2 (AT4G29080), SWEET1

(AT1G21460) and AT4G31910, and further characterize their expression

patterns with in situ hybridization. We detected AGO5 mRNA in the IM,

PAP2 and SWEET1 mRNA in ST3, and AT4G31910 mRNA in FM and ST3

concordantly with what we expected from RNA-sequencing data.

Then, we have searched for over-represented Gene Onthology (GO) terms

in the DE genes sets in order to detect the main functional differences among

IM FM and ST3. DE genes upregulated in IM or FM with respect to ST3 are

enriched for GO terms of meristem development and maintenance and flower
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development. On the other hand, the DE genes upregulated in ST3 versus IM

or FM are enriched for GO related to specific organ development or response

to endogenous stimulus. These data are consistent with the meristematic

state of IM and FM, and the developmental and differentiation programs

initiated during ST3.

We have searched for over-represented TF family members in the DE genes.

Enrichment of member of a particular TF family is indicative of redundant or

sinergystic action of its members in determining the differences between two

developmental stages. We are particularly interested in redundancy cases,

because they make null mutants ineffective in revealing the function of a

gene.

At least 1 member of 14 TF families defined by Agris DB (Davuluri et al.,

2003) is differentially expressed in the conditions tested. The MADS-box

transcription factor family is overrepresented in almost all DE gene sets,

consistent with its wide-ranging roles in reproductive meristem formation,

development and differentiation (reviewed in Dornelas et al., 2011). Homeobox

and C2C2-YABBY and REM families are overrepresented genes DE between

FM and ST3, suggesting a role in the switch from meristematic state to

differentiation of organs; while SBP and ARF TF families are characteristic

of the IM.

3.1.4 Expression based clustering

In order to detect dynamic changes in the transcriptome, we clustered for

expression levels the 1675 genes with the highest variation in the expression

profile. We have defined six clusters of co-expressed genes. Clusters 4, 5

and 6 group genes that are expressed almost exclusively in one of the three

developmental stages while clusters 1, 2 and 3 display similar but less emphatic

expression patterns to the formers (Figure 3.4). GO terms enriched in the

clusters comprehend all GO terms enriched in the DE genes plus others, such

as transcriptional regulation and metabolic processes.

Moreover, in the clusters we detected strong enrichment of the C2C2-

YABBY transcription factors family in clusters 1 and 6 (genes typical of ST3
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Figure 3.4: Boxplot of normalized expression of genes in the six
clusters Clusters 1, 2 and 3 group genes preferentially expressed respectively
in ST3, IM and FM, clusters 4, 5 and 6 group genes expressed in IM, FM
and ST3 but with sharper changes in expression in respect to the first three
clusters.

and thus of organ differentiation), of SBP family in cluster 2 (IM), of ARF

and Jumonji in cluster 5 (FM) and of the MADS-box family members in

cluster 6 and in clusters 4 and 5 to a lower level.

3.1.5 The ap1 cal AP1-GR system introduces more

artifacts than laser microdissection of wild-type

tissues

Our transcriptomic datasets of gene expression levels in IM, FM and

ST3 should be similar to the one referring to the same stages produced with

the ap1 cal AP1-GR system by Wellmer et al. in 2006 . We have decided

to compare our datasets with the one produced with the ap1 cal AP1-GR

system in order to detect transcriptomic differences between wild type and

the induced ap1 cal AP1-GR plants.

We have quantified the correlation between the transcriptomes of IM,

FM and ST3 in our experiments with the transcriptomes of the time points

after AP1-GR induction analyzed by Wellmer et al. in order to identify

precisely which time point after induction correspond to the FM and which
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correspond to the ST3. The log fold changes of IM vs FM in our datasets

correlated best with 0d vs 1d datasets from Wellem et al., (ρ = 0.32), and

the log fold changes of FM vs ST3 comparison correlates best with 1d vs

2d dataset (ρ = 0.26) from Wellmer et al. Thus, as expected, the FM stage

corresponds to the first day after AP1 induction (d1) and ST3 corresponds

to the second day after AP1 induction in the datasets produced with ap1 cal

AP1-GR system.

We detected a set of genes deregulated exclusively in the ap1 cal AP1-

GR system which are enriched in GO terms including: response to stress,

response to abiotic/endogenous stimulus, transcription regulator activity,

while the genes with higher expression levels in our dataset show more

pertinent functional enrichment, recovering terms including: post-embryonic

development, flower development and multicellular organism development,

and organellar components (see Chapter 6). The strong induction of AP1

activity in the ap1 cal AP1-GR system is therefore activating stress pathways

that may perturb the floral development physiological transcriptional network.

3.2 Signs Of Redundancy During Early Flower

Development

It is commonly accepted that functional redundancy is a key feature of

plant molecular networks. Two transcription factors both homologous and

expressed in the same cell are likely to be redundant (Briggs et al., 2006;

Hauser et al., 2013). We analyzed our datasets in order to detect potential

redundancies and to predict regulatory events.

3.2.1 Homology based redundancy

We compared phylogenetic analyses and expression profiles from our

dataset for the TF families known to play pivotal roles in flower development

such as MADS (Parenicová et al., 2003), HOMEOBOX (Kumar et al., 2007),

WRKY (Rushton et al., 2010), bHLH (Carretero-Paulet et al., 2010), NAC
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(Nakashima et al., 2012), MYB (Yanhui et al., 2006), and WOX (van der

Graaff et al., 2009).

In collaboration with Dr. David Horner we detected potential redundancy

cases by:

1. clustering by expression levels the TF family members that have a

detectable change in expression profile among the three stages ,

2. comparing expression clusters and phylogenetic trees.

Using this method, we have detected known homology cases, such as AP1

and CAL (Bowman et al., 1993), as well as new potential cases, such as

SAW1 and SAW2 which are known to redundantly regulate leaf margin

growth (Kumar et al., 2007). Several additional candidates for functional

redundancy in floral development include AGL6 and FUL, CAL and AGL87,

IDD7 and IDD11 and two basic helix loop helix (bHLH) transcription factors

At2G40200 and At3G56770.

3.2.2 Sub-Family wide redundancy

Always in order to detect functional redundancy cases, we applied the

genome wide subfamily description defined by Friedrich Hauser and Julien

Schroeder in 2013 to our datasets.

The gene subfamily definition that we have used is based on the genome-

wide family definition performed by phytozome (http://www.phytozome.net/)

but it is aimed at detecting potential redundancy rather than at describing

phylogenetic relationships. Hauser et al. obtained this subfamily definition

by ulterior clustering of the gene in the Phytozome families by sequence

similarity (Hauser et al., 2013). The subfamilies should group together genes

that are likely to be redundant if co-expressed.

We combined the genome-wide family definitions with our expression based

clusters and retained as potential redundant two or more genes belonging to

the same subfamily and co-expressed in either:

• clusters 2 and 4 (gene preferentially expressed in the IM),
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Figure 3.5: Many subfamilies are represented in more than one po-
tentially gene in co-expressed genes. UP to 46 subfamilies are repre-
sented by 2 genes in our dataset of co-expressed genes, and we detected up
to 7 genes from the same subfamily in clusters 2 and 4. Genes that are both
co-expressed and in the same subfamilies are potentially redundant with each
other.

• clusters 3 and 5 (genes preferentially expressed in the FM),

• clusters 1 and 6 (genes preferentially expressed in the ST3).

We detected 126 known or new potential redundant genes, 42 in the IM, 26

in the FM and 56 in the ST3. Out of 870 sub-families represented in the

groups, 93 have at least two members in the same group and 15 have at least

three member in the same group (see Figure 3.5).

Our approach correctly detects known redundancy cases, such as AP1 CAL

and AP1 SVP in the FM and adds to them AGL71, which is a good testing

candidate for future testing. Moreover we detect multiple new potential

interesting cases such as

• TARGET OF MONOPTEROS 6 (TMO6) with its homolog AT5G65590

in the FM,

• CLV1 with its homologs AT4G08850 and AT1G16670 in the IM,
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• the receptor protein kinase TMK1 (Chang et al., 1992) with its homolo-

gous AT5G49760 in ST3.

We hypothesized that if functional redundancy is such an important feature

of plant development and if potential redundancy is correctly predicted by the

subfamilies, we should find in co-expressed genes, more functional redundant

genes couples than expected by chance.

We have defined as potentially redundant two genes that are both co-

expressed and belonging to the same subfamily. Then we have sampled

1000 random gene sets of the same dimension of the co-expressed gene set in

order to describe the distribution of genes belonging to the same subfamily

under the null hypothesis. We tested the enrichment of members of the same

subfamily in the co-expressed genes against this distribution. In FM and ST3

there are more potentially redundant genes than expected by chance with

an FDR corrected attained significance level of respectively 2.7 × 10−04 and

8.7 × 10−17.

3.2.3 Large mutant screening

We carried out a large screening of insertional mutant for a selection of

genes that are differentially expressed in the stages under study and/or target

of key transcription factors such as SVP, AP1, SEP3, LFY AP3 and PI. This

screening is ongoing and by now we have screened 26 independent insertional

lines for 22 different genes recovering 13 confirmed homozigous lines (see

Table 3.2). We have screened these homozigous lines for phyllotaxis of the

inflorescence, dimension and number of floral organs and dimension of the

meristems without detecting any effect on flower development.

3.2.4 Inferring of regulatory events

We hypothesized a pipeline for inferring of regulatory network from

expression data and putative promoter sequence of co-expressed genes.

First we defined as putative promoter the 1000 bp upstream of the

transcription start site (TSS) of the genes contained in the 6 expression
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TAIR ID Feature ID Mutant line Confirmed Expr. in
AT1G20910 AT1G20910 SALK 141443.13.85 NO FM
AT1G21460 AT1G21460 SALK 029479 YES ST3
AT1G21460 AT1G21460 0SAIL 883 C04 YES ST3
AT1G25440 AT1G25440 GABI 458H02 NO IM
AT1G26780 MYB117 SALK 025235 NO IM
AT1G68825 RTFL15 SALK 013609.33.75 YES ST3
AT1G68825 RTFL15 SALK 123407 YES ST3
AT1G77080 MAF1 SALK 072871 NO IM-ST3
AT1G77950 AGL67 GABI 340D03 YES ST3
AT1G77950 AGL67 SALK 050367.42.65 NO ST3
AT2G27880 AGO5 GABI 265A07 YES IM
AT2G27880 AGO5 SALK 050544.37.75 NO IM
AT2G37630 AS1 SALK 023987 NO ST3
AT2G45650 AGL6 SALK 095121 NO IM
AT3G03990 AT3G03990 WiscDsLoxHs137 07E YES FM-ST3
AT3G24420 AT3G24420 SALK 126829C YES ST3
AT3G50060 MYB77 WiscDsLox338D05 YES FM-ST3
AT3G50630 KRP2 SALK 130744.55.00 YES IM-ST3
AT4G11400 AT4G11400 SALK 016155.46.60 ETERO FM
AT4G15620 AT4G15620 SALK 057616 YES FM-ST3
AT4G29080 PAP2 SALK 070738.23.50 ETERO ST3
AT4G31910 AT4G31910 SALK 123920.30.15.x NO FM
AT4G37260 MYB73 WiscDsLoxHs064 10A YES IM-FM
AT5G23000 MYB37 GABI 325E06 NO IM
AT5G57340 AT5G57340 SALK 139344.52.30.x NO IM
AT5G60200 TMO6 SALK 201987 YES FM

Table 3.2: List of insertional mutants analyzed in this work.
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based clusters. Then we searched for recurrent motives in the putative

promoters of the co-expressed genes and we retained only the motives similar

(p−value ≤ 10E−6) to the confirmed TFBS of Arabidopsis thaliana (Steffens

et al., 2004). We detected 284 enriched motifs associated with 21 TF families.

We have linked the 144 putative TFs represented in the clusters to the

284 distinct motives hypothesizing that enrichment of particular TF families

in an expression cluster and enriched of corresponding TFBS motives in the

promoter of the genes belonging to a correlated or anti-correlated clusters

might be an evidence for a regulatory event upon binding of the TF to the

promoters.

Moreover, since motif occurrence alone is not predictive for functional TF

binding (Moyroud et al., 2011) and transcription factor are known often to

function in complexes (Smaczniak et al., 2012) and/or to act combinatorially

(Molkentin and Olson, 1996; He et al., 2011; Feller et al., 2011), we have

searched for combinations of TFBS motifs that exhibit significant patterns

of co-occurrence in promoters of co-expressed genes and whose presence

correlates (or anti-correlates) with the expression levels of the corresponding

TF families within the clusters. In the promoter of the genes preferentially

expressed in the IM (clusters 2 and 4), we have detected co-occurrence of:

Combinations MADS, AP2 and MYB binding site motives:

Clusters 2 and 4 contain AGL20 (SOC1, MADS), DREB2A (AP2),

AT5G61590 (AP2), MYB17 (MYB) and TRFL10 (MYB) as well the

bHLH transcription factor bHLH071. 54 putative targets for this regu-

latory module are significantly enriched in GO terms including: tran-

scription factors, ABA signaling, reproductive structure development.

Combination of bZIP and AP2 binding site motives:

Clusters 2 and 4 contain both FD (bZIP) and ERF12 (AP2) genes.

The 204 genes potentially regulated by this module are enriched in GO

terms including: thylakoid, organelle membrane and organelle parts,

consistent with a potential role for this module in photoperiod dependent

floral transition (Abe et al., 2005).

co-occurrence of AP2, MADS and E2F binding motives
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SVP (MADS) and CRF2 (AP2) have the expression pattern of a po-

tential activator or and repressor of the clusters 3 and 5. 60 putative

targets show a weak enrichment for the GO terms mitochondrion and

amine biosynthesis, being little informative on the function of these

genes.

Two putative regulatory modules were associated with ST3; the first

contains a of binding motives combination of MADS, SBP and bHLH TF

families, and a putative regulatory function can be assigned to AGL101

(MADS), SPL8 (SBP), and AT1G05710 (bHLH).

The second predicted regulatory module associated with SP3 includes

candidate binding sites for HOMEOBOX and MADS families represented in

appropriate clusters by AG and AP3 (MADS) and the HOMEOBOX genes

ATHB6 and KNAT4. 20 potential target genes show functional enrichment

for the GO term endomembrane system although these result should be

treated with care as the number of tested genes is low.

3.3 Analysis Of The REM Transcription Fac-

tor Family in Early Flower Development

We have got interested on REM transcription factors since we observed

that REM34 and REM24 are co-expressed with LFY and AP. We have

published most of the following results on REM genes in Mantegazza et al.,

(2014b) in collaboration with Prof. Lucia Colombo and Dr. Morandini from

our same University and Prof. Marcio Alveis Ferreira group at the Federal

University of Rio de Janeiro.

3.3.1 Expression Analysis

In order to describe the expression pattern of REM transcription factors,

we both analyzed the expression profile of these genes ourself with qPCR,

and collected publicly available microarray expression data.
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Figure 3.6: Expression analysis of REM genes(A) REM genes expres-
sion levels measured by microarray, data are shown in log10 transformed
absolute values from AtGeneExpress developmental atlas. (B) REM genes
expression levels measured by quantitative Real-time PCR shown in square
root transformed 2−∆CT values.

In collaboration with Dr Piero Morandini we have collected the data from

the NASCarrays database (ftp://arabidopsis.info/pub/NASCArrays/Data/)

and generated a heat-map of the expression patterns of REM genes. Eleven

REM genes (REM9, REM30, REM31, REM32, REM36, REM38, REM39,

REM40, REM42, REM43 and REM45) have no corresponding probe on the

ATH1 array; moreover the ATH1 array probe 256918 s at does not distinguish

between REM7 and REM8 and 257436 s at does not distinguish between

REM29 and REM33, therefore we refer to measurements from these probes

as REM7/8 and REM29/33. REM genes are preferentially expressed during

flower and seed development according to microarray data. Only REM4 and

REM5/VRN1 are expressed in vegetative tissue; REM10, REM37, REM41

and REM44) are almost undetected (Figure 3.6A).

We have refined the expression data with real-time qPCR, which is

considered to be a gold standard for expression analysis (Wang et al., 2006).
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The raw data that we analyzed were produced from our collaborator Dr.

Camila Patreze from the Federal University of Rio de Janeiro. The qPCR

expression analysis is concordant with microarray expression data and defines

expression patterns of REM genes on a wider quantitative range. We have

confirmed that three groups of REM genes ((i) REM4, REM5, REM7, REM8,

(ii) REM15, REM16, REM17, REM18 REM19 and (iii) REM22, REM23) are

highly expressed during early stages of flower development. Moreover, we

have analyzed the peculiar expression pattern of REM32, which is distictively

expressed during early flower development, of REM39 which is strongly

expressed during early flower development and of REM42 which is distinctively

expressed in seedlings (Figure 3.6B).

3.3.2 Co-expression

In order to infer the function of REM gene family we have quantified the

correlation of the expression levels (Menges et al., 2007, 2008) of REMs and

key flower transcription factors in collaboration with Dr. Piero Morandini.

The rationale of this analysis is that given a statistical correlation in the

expression level of two genes they are likely to be involved in the same

pathway.

We analyzed the correlation among REMs and two groups of genes:

• the FMI genes LFY, AP1 and CAL (Irish and Sussex, 1990; Weigel

et al., 1992),

• the MADS-box floral homeotic genes, APETALA3 (AP3), PISTILLATA

(PI), AGAMOUS (AG) and again AP1 (for review see Krizek and

Fletcher, 2005).

As a positive control we used STK, which directly regulates the expression of

REM20/VDD (Matias-Hernandez et al., 2010). Finally, as negative controls

we used TERMINAL FLOWER 1 (TFL1), whose transcripts accumulate

only in the inflorescence meristem and are excluded from the flower (Ratcliffe

et al., 1999), and SHORT VEGETATIVE PHASE (SVP) which is both a
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FMI gene and a negative regulator of flowering active in vegetative tissues

(Gregis et al., 2008).

The expression levels of REM16, REM17, REM18, REM19, REM22,

REM23, REM24 and REM34 are correlated at r > 0.7 with the expression

levels of LFY and to a lower level with AP1 and CAL. Moreover, the expression

levels of REM1, REM4, REM7, REM8, REM26 and REM29/33 are correlated

to the first group of REMs and more weakly with the FMI genes. A third

group, REM11, REM13, REM20 and REM21 is correlated to STK. We

detected occasional correlation and anti-correlation of REMs and the floral

homeotic genes AP3, PI and AG (0.5 > r > −0.5), no significant correlation

with SVP (0.2 > r > −0.2) and only one gene (REM35) correlates with TFL1

although weakly (r = 0.5627).

3.3.3 Multiple evidences support a potential function

of REM34, REM35 and REM36 in reproductive

meristems

In order to restrict and refine the set of REM genes potentially involved

in early flower development and to select candidates for functional characteri-

zation with insertional mutants, we have screened publicly available ChIPseq

data and defined a set of REM genes that are target of key floral regulators.

Screening the high confidence target datasets for: LFY (Winter et al., 2011),

SVP (Gregis et al., 2013), AP1 (Kaufmann et al., 2010), SEP3 (Kaufmann

et al., 2009), PI and AP3 (Wuest et al., 2012), AG (ÓMaoiléidigh et al.,

2013), AGL15 (Zheng et al., 2009) and AP2 (Yant et al., 2010) we have

observed that the ChIP-seq data are consistent with what expected from the

co-expression analysis. REM17 and REM18 are both targets and coexpressed

with LFY. On the other hand REM34 is both target of and coexpressed with

AP1.

AP3 and PI have multiple binding sites in the REM34, REM35 and

REM36 cluster on chromosome 4. These three genes are linked on chromosome

4 within 10 kb and are part of a bigger linkage cluster containing nine REMs

within 30 kb. Binding of AP3 and PI falls precisely in the short non coding
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Figure 3.7: AP1, AP3, PI and SVP binding sites in the REM34,
REM35, REM36, REM37 cluster on chromosome 4.

Figure 3.8: Many subfamilies are represented in more than one po-
tentially redundant gene in our dataset. Number of subfamilies repre-
sented by more than on gene in the expression clusters.

region between REM35 and REM36, which is 565 bp from the stop codon

of REM36 to the start codon of REM35, and in the small inter-genic region

between REM36 and REM37, which is 687 bp long from the stop codon of

REM37 to the start codon of REM36 (Figure 3.7). REM34, REM35 and

REM36 are upregulated in pi-1 and ap3-3 mutants (Wuest et al., 2012) while

they do not change expression upon binding of AP1 (Kaufmann et al., 2010)

and SVP (Gregis et al., 2013).

Then we characterized by RNA in situ hybridization the expression

profiles of REM23 REM24, REM25, REM34 REM35 and REM36 during

early stages of flower development with in situ hybridization experiments.

We selected REM23, REM24 and REM25 because they are phylogenetically

closely related (Romanel et al., 2009) and because they are co-expressed with

the FMI genes. For the same reasons we have decided to characterize REM34,

REM35 and REM36, which are also direct targets of SVP, AP1, AP3 and PI
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(see above).

REM23, REM24 and REM25 are all expressed in stamens starting from

stage 7/8 of flower development and are not expressed in earlier stages

(Figure 3.8 A-B-C). REM34, REM35 and REM36, instead, are expressed

in the inflorescence meristem, floral meristem and, from later stages on,

exclusively in the inner floral whorls and not in sepals (Figure 3.8 D-E-F).

3.3.4 Mutants

We could not detect peculiar phenotypes in the insertion mutant lines for

REM24 and REM34 and of their closest homologues, REM23 and REM36.

In particular, we detected no variation in floral organ number, identity,

structure, and inflorescence phyllotaxis. qPCR expression analysis revealed

that only rem23 is a confirmed complete knock-out, in the other mutants we

detected mRNA at lower level than in the wild type. We produced:

• multiple mutant combinations of rem24 and rem34 with the mutants

ap1-10 and lfy-2 (co-expressed FMI genes),

• the double mutant rem23 rem24 since REM23 and REM24 are co-

expressed and have highly similar amino acid sequence.

No peculiar phenotypes were detected in the rem24 rem34 and rem23 rem24

double mutants. No suitable mutant lines were found forREM25.

3.4 Ongoing work and tool development in

our studies on the REM34 gene cluster

We have taken the task of studying the complex REM34 genomic region

as a chance to develop new tools dedicated to plant reverse genetics.

The REM34 genomic region is located on chromosome 4. This region

contains 9 recently duplicated REM genes (REM34, REM35, REM36, REM37,

REM38, REM39, REM40, REM41 and REM42) and one unrelated gene

(UBP18) within 30 kb (Swaminathan et al., 2008). It is unlikely to obtain a
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multiple mutant for the REM genes contained in this cluster with current

reverse genetic technologies. Moreover, since the B3 domain in REM genes is

highly divergent (Romanel et al., 2009), it is unlikely to obtain a multiple

knock-down with one single artificial small interfering RNA (siRNA) and

expression of multiple siRNA is complicated and unlikely to deliver consistent

results as the number of genes involved grows. We are testing little explored

technologies and developing new ones in order to remove the function of the

genes in the REM34 cluster from .

The experiments presented in this section are unpublished and ongoing

and they will be reprise in detail in Part III.

3.4.1 Expression of multiple RNA interfering fragments

within one single gene

RNA interference is a process by which RNA fragments can regulate and

inhibit gene expression, generally targeting mRNA for degradation with base

pair complementarity directed specificity (Fire et al., 1998). RNA interference

pathways are conserved in eukaryotes (Saumet and Lecellier, 2006) and since

they allow an extremely simple method to induce inheritable specific gene

silencing, they have been widely used in functional genomic studies and

biotechnologies.

RNAi technology of choiche

We have decided to implement a multiple RNA interference technology

in which we express multiple dsRNA fragments targeting multiple mRNA

within one single transcript (Bucher et al., 2006; Miki et al., 2005).

RNA interference in Arabidopsis can be triggered with double strand RNA

(dsRNA), the easiest way to produce dsRNA in plants is probably to stably

transform a gene that expresses a transcript with high self complementary

which is capable of folding on itself producing an hairpin RNA (Wesley et al.,

2001). The hairpin RNA is fragmented by DICER-LIKE (DCL) proteins

in small dsRNA fragment activating the RNA interference cascade and its

downstream effects.
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Different methods are available to down-regulate multiple genes using an

RNA interference approach in Arabidopsis. For example, multi-gene silencing

can be obtained tranforming Arabidopis with one or multiple DNA fragments

which express multiple hairpin RNA each targeting a single gene.

However, since hairpin RNA are cleaved in smaller fragments of 20-25 base

pairs that are used for targeting, it is possible to assemble together multiple

unrelated genomic fragments in one single hairpin RNA-producing transcript.

These fragments, when cleaved by DCLs will target for degradation the genes

from which they have been amplified (Bucher et al., 2006; Miki et al., 2005).

It is thus possible to knock-down multiple unrelated genes with one single

hairpin RNA. The advantages of this strategy are many:

• Only one construct has to be transformed into the plant,

• Only one promoter and one terminator are needed,

• The expression of only one hairpin RNA gene must be monitored,

• The down-regulation of multiple genes is likely to be more uniform

when compared to other methods.

We are implementing this strategy in order to down-regulate REM34,

REM35 and REM36. Applying Golden Gate cloning (Engler et al., 2008)

to the assembly of the construct we have simplified the cloning procedure

making it easily implementable on virtually every set of genes.

Golden Gate cloning the REM fragments for RNAi

We have searched for three 200 base pairs long regions specific for the

coding sequence of each the genes REM34, REM35 or REM36 and used

BLAST to check the results against Arabidopsis thaliana genome for specificity.

We have PCR amplified the three region adding the BsaI sites in the primers

and performed one single Golden Gate reaction to directionally clone the

REM34, REM35 and REM36 fragments altogether in a pENTRTM vector

previously modified to function as an Golden Gate acceptor, producing

the pENTR-RNAiREM vector. Using with white/blue screening, we have
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Figure 3.9: Schematic view of hairpin RNA producing gene to target RNA
interfenrence on REM34, REM35 and REM36.

estimated an efficiency of the Golden Gate reaction of 88.4%. We have

checked 8 white colonies by PCR and they all produced the expected results.

Then we have used LR reaction to subclone the REM fragments into the

pFGC5941 vector and used it to transform Arabidopsis in which the REM

fragments will be inserted both in reverse and forward orientation separated

by an intron (see Figure 3.9). Right now we are analyzing the transformant

plants.

3.4.2 Plans for efficient deletion of REM34 cluster

We are developing tools for gene targeting in Arabidopsis thaliana in

order to delete REM34, REM35 and REM36 from the genome. Our system

loosely resembles the famous strategy for gene targeting in mice developed

by Thomas and Capecchi in 1987 .

Rationale and DNA parts needed

The technology that we are developing is based on Agrobacterium mediated

transformation of a DNA fragment containing:

• Custom nucleases: we are using TALEN in order to introduce a

double strand break (DSB) in the genomic region to be deleted. We

are using Golden Gate assembled TALEN (Cermak et al., 2011).
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• Positive selection marker:, We are using the bar expression cassette

(see De Block et al., 1987) as positive selection marker flanked by two

homology regions matching genomic regions upstream and downstream

of the DSB site.

• Negative selection marker. We are using the E. Coli gene CodA,

which is capable to convert 5-Fluorocytosine into its toxic metabolite 5-

Fluorouracile in Arabidopsis (Perera et al., 1993) as a negative selection

marker.

Transforming these parts into the plant altogether within one single

construct will simplify downstream analysis. Once these parts are transformed

into the plant, we expect this series of events to happen:

1. The nucleases will induce a DSB specifically in the REM34 cluster,

2. The DSB will be repaired by homologous recombination (HR) or non

homologous end joining (NHEJ) pathways:

• If the DSB is repaired by NHEJ a mutation can be introduced,

this mutation can heavily modify the site targeted by the nucle-

ases making it . This step is irreversible if the target site is not

recognized by the nucleases anymore.

• if the DSB is repaired by the HR pathways two things can happen:

(i) if the sister chromatid or the homologous chromosome are used

as donor, the DSB will be repaired without introducing mutation

and the nucleases can cut again in this locus. (ii) If the homology

regions in the construct are used as donor for HR repair, the bar

gene will substitute the REM34 cluster deleting it from the genome.

We expect this to happen with low efficiency but this reaction

is irreversible, since it will delete from the genome the nuclease

target site.
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3. In the plants where REM34 has been substituted by bar in the cell

lineage that will produce gametes, the targeted deletion is inheritable.

4. When the substitution event is inherited in the T2, the positive selection

marker bar have been de-concatenated form the negative selection

marker CodA and is free to segregate. Plant surviving both selections

are the deleted specimens.

Thus our strategy will allow easy detection of the rare event of specific

deletion .

Molecular cloning of the parts

We have cloned the part needed from multiple sources:

- Homology regions

We have PCR amplified the homology regions from Arabidopsis genome

flanking them with Golden Gates sites.

- Bar expression cassette

We have PCR amplified the Bar expression cassette from the plasmid

set described in (Curtis and Grossniklaus, 2003) flanking it with Golden

Gate sites.

- CodA expression cassette

We have cloned the CodA coding sequence from E. Coli and used golden

gate to flank it with 35S promoter and tNOS terminator.

- TALEN

We have produced custom TALEN targeting REM36 coding sequence

using guidelines and material produced by Cermak et al. in 2011.

- pUBQ10

We are subcloning the TALENs under the pUBQ10 promoter, which

was PCR amplified From Arabidopsis genome.
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Figure 3.10: Cloning Scheme Series of Golden Gate reaction that we are
using to produce the homologous recombination construct.

- T2A polypeptide

We are using the 2A peptide to translationally breakdown two TALEN

coding sequences that are transcribed in the same mRNA as performed

by Zhang et al. in 2010 for ZFN. We have synthesized the 2A sequence

following the sequence guidlines drawn by Kim et al. in 2011.

We are using Golden Gate cloning and its iterative application Golden Braid

(Sarrion-Perdigones et al., 2011) to assemble all these parts in one single

construct, following the single scheme.

1. Assembling of the following modules in GoldenBraid plasmids with

Golden Gate reactions

• Homology Region 1 - bar - Homology region 2

• p35S - CodA t35S

• pUBQ10 - TALEN1 - T2A - TALEN2 - tNOS

2. Assembling with GoldenBraid reactions all the modules within one

single self-sufficient construct that can be Agrobacterium transformed

in plants with GoldenBraid reactions.

Right now we are producing the last module (pUBQ10 - TALEN1 - T2A

- TALEN2 - tNOS). The whole cloning scheme is depicted in Figure 3.10
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Chapter 4

Conclusions And Future

Prospects

We have identified numerous genes potentially involved in early flower

development. The loss of function mutant of those genes do not display a

phenotype in the developmental stages under studies and we believe that this

is caused by functional redundancy. We are implementing computational ap-

proaches to identify redundancy and gene targeting/multiple RNAi strategies

to produce and analyze multiple mutant.

4.1 Transcriptomic Studies Of Native Organs

We believe that in a multicellular organism:

1. the transcripome varies continuously from cell to cell while the organism

advance in its growth stages and respond to external clues (Lovatt et al.,

2014),

2. transcriptome variations are one of the earliest manifestation of the

processes that cause macroscopic changes in an organism (Sul et al.,

2009),

3. a precise analysis of transcriptomic variations are needed to characterize

the molecular regulation of macroscopic events.
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Thus we have used laser microdissection (LM) in order to precisely dissect

the early stages of flower development, a key step in plant life cycle. LM of

early stages of flower development allowed us to study their transcriptome

in wild type tissues grown in their physiological environment (Schmid et al.,

2012).

Setting an efficient protocol for LM can be challenging but we have

shown that with today’s technologies LM can be used to reliably study the

transcriptome of reporductive meristem from as little as 15 inflorescences and

two replicates. After microdissecting the stages of interest and sequencing

and assembling their transcriptomes, we tested the reliability of our results

with multiple controls that returned encouraging outcomes:

1. Above all we were concerned with cross-contamination of samples, since

(i) introduction of infinitesimal quantity of contaminants before the

amplification reaction can have great repercussions on results and (ii) the

LM protocols requires morphological identification of the developmental

stages and thus is susceptible to human error. Controls on the expression

levels of 13 marker genes selected from literature allowed us to confirm

that the transcrptomes in our datasets indeed belong to the stages under

study.

2. Next we have tested our DE genes datasets for false positives. In situ

hybridization allowed us to test the expression of four DE genes (AGO5,

PAP2, AT4G31910 and SWEET1) in a LM independent manner with

consistent results. The expression pattern of these four genes is highly

comparable between the two methods.

3. We were highly concerned about the statistical power of our analysis,

thus about genes which differential expression is decisive in determining

the differences among the stages under study accidentally left out from

the DE gene set (i.e. false negatives). We reasoned that false negatives

may hamper the prediction of redundant gene pairs and the prediction

of regulatory pathways.
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In order to avoid this problem, we have clustered genes for expression

levels bypassing the statistical analysis (Wertheim, 2012).The obtained

gene clusters are enriched in the expected gene ontology terms, confirm-

ing the overall biological validity of this analysis. Anyway genes taken

from the cluster set should be tested for differential expression by in

situ hybridization before moving to single-gene-centered studies, since

the risk of incurring in a false positive may be high in this case.

We have shown that LM-RNAseq is a reliable technology to study the

transcriptome of early flower development in physiological condition.

Moreover, comparing our results with the correspondent datasets produced

with the artificial ap1 cal AP1-GR, we have shown that LM introduces less

perturbations in the system than the AP1-GR technology. We think that

LM can be further applied in defining transcriptomes of mutant organs and

of even more specific tissues as required for molecular network construction.

4.2 From transcriptomes to candidate genes

We have analyzed 13 confirmed homozygous insertional lines of genes

potentially involved in early flower development without detecting any effect

of the mutation on the stages under study. This can be caused by function-

ally redundancy. Functional redundancy often occurs among co-expressed

homologues (Briggs et al., 2006; Hauser et al., 2013). Numerous cases of

confirmed redundant or partially redundant genes in Arabidopsis are listed

by Briggs et al. (2006) and Lloyd et al. (2012)

4.2.1 Hypothesis on functional redundancy

We reasoned that if we found genes with highly similar sequence co-

expressed in our datasets, this might be a strong hint to functional redundancy

during early flower development.

We have used the phantom DB (http://phantomdb.ucsd.edu/) as a source

of gene sets predicted to be redundant by sequence similarity (namely gene

subfamily) and we searched for co-expression patterns in our datasets. We
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detected multiple genes that are co-expressed and potentially redundant

that will be tested in the future with multiple loss of function mutants and

amiRNA.

Another hypothesis for the lack of effect of single mutants on develop-

ment can be functional degeneracy. Degeneracy happens when dissimilar

components perform similar functions under certain conditions (Edelman

and Gally, 2001). All these mechanism are thought to give robustness to

biological systems (Whitacre and Bender, 2010) and are to be taken into

account for future functional studies.

4.2.2 Inferring of gene regulatory circuits

We have built putative regulatory circuits using expression data, the

sequence of putative promoters and known TFBS. We tested these predicted

circuits with confirmed regulatory events, such as SVP, AP1, SEP3 and SOC1

which regulate AG, SEP3, AP3 (Gregis et al., 2008, 2009, 2013; Immink et al.,

2012; Kaufmann et al., 2009, 2010) SEP2 (Immink et al., 2012), SOC1 (Li

et al., 2008), or for the TF AP2 which can directly repress SEP3, SEP2 and

AG probably in FM (Yant et al., 2010) and we found that the TFs and their

known targets are recovered by our approach.

Additionally, we are able to tentatively predict combinations of TFs

(at least at the level of families) that might contribute, in concert, to the

regulation of groups of genes pertinent to diverse aspects of early floral

development. In the future it would be interesting to test the regulatory

interaction that we found and to further test how co-occourence of TFBS

can be used to predict regulatory interaction. We are interested in refining

this approach with new and more predictive methods for TFBS matching

which take into account inter-positional sequence dependence and variable

spacer lengths in searching for binding sites in the genome (Mathelier and

Wasserman, 2013).

Alternatively regulatory circuits can be predicted with network analysis,

which generally requires wider datasets than the one that we have produced

(Zou and Conzen, 2005).
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4.3 Future work on REM genes

Transcriptomic analysis and ChIP-seq data indicate that REM genes are

implicated in many developmental processes but their function is still poorly

understood.

REM are widely expressed throughout development and we conclude

behaving as broad regulator of development with key function in reproduction.

Our refined expression analysis can serve as a starting point for future

functional characterization of this gene family.

The expression level of many REM genes and key floral regulators such

AP1 LEAFY, AP3, PI is strongly correlated. Combining the co-expression

data with publicly available ChIP-seq TF binding data we decided to further

characterize REM34, REM35, REM36 since:

• they are target of AP1, LFY, AP3 and PI,

• they are expressed in the floral meristem and during earliest stages of

flower development,

• REM34 is co-expressed with the FMI genes,

We have defined and presented sets of REM genes likely to be involved in

flower development and we have decided to focus on three of them for further

functional studies.

REM34, REM35 and REM36 are closely related homologues clustered on

chromosome 4 within less than 10 kbp. Single mutants of REM34 and REM35

apparently do not show any difference in flower development and thus we

hypothesized that these genes may be highly redundant. Unfortunately they

are in close linkage and we could not analyse multiple mutant combinations.

In the future it would be interesting to knock-down all of these genes using

a multiple RNA interference approach (Abbott et al., 2002) or to produce

multiple null mutants using genome editing technologies (Miller et al., 2011;

Cong et al., 2013).

Our analyses highlight the difficulties of studying this gene family due to

redundancy and genomic positions, despite the huge amount of information
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that are nowadays available in different databases as well as the enormous

quantity of data arising from the high throughput studies, which all to-

gether clearly suggest that this family should be important for reproductive

development.

4.4 Expected development of REM34 cluster

targeted deletion studies

Even if engineered nucleases are becoming the system of choice for gene

targeting in plants, many questions are still open, such as:

• Which nuclease induces mutations with the highest efficiency and the

highest specificity toward the chosen targeted site,

• in which cell the nuclease should be expressed to obtain the highest

ratio of heritable targeted events,

• how the donor DNA sequence should be designed to cause a high rate

of easily detectable gene targeting events.

With our approach we expect to find a viable mutant in the T2 of the plants

transformed with the deletion inducing construct within a reasonable number

of T2 plants. We will detect the deletion by PCR and then we plan to:

1. select plants in which the REM34 cluster is deleted,

2. sequence the flanking region of the deletion in order to the structure of

the deletion site in the genome,

3. self-cross the plant to obtain plant with homozigous mutation,

4. describe the phenotype and test for complementation with REM34

Possible drawbacks and eventualities of our strategy are:

• Partial integration of the construct in the genome can deconcatenate

the positive and negative selection markers yielding false positives in

the double selection step on the T2 plants,
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• Higher efficiency of the NHEJ pathway can shift the results irreversible

toward small mutation in the targeted site instead of inducing homolo-

gous recombination,

• The system is not suitable for inducing HR in the cell lineage that will

produce gametes and yields only somatic mutation.

Moreover we are right now working on a parallel cloning scheme in which

TALEN are substituted by CRISPR/Cas9. TALEN seems to be more specific

than CRISPR, but TALEN highly repeated sequence causes complication in

the cloning procedure, therefore we thing CRISPR can be more suitable for

bulk application of targeted mutagenesis.

4.5 Final Conclusions

We have improved the knowledge on early flower development transcrip-

tome, characterized a high number of single mutants and laid the basis for

hopefully more successful multiple mutant screening which eventually will

lead to a functional model of the transcriptional network that underlies early

flower development.
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Rüdiger Simon. Dependence of stem cell fate in Arabidopsis on a feedback

loop regulated by CLV3 activity. Science, 289(5479):617--619, 2000.

Georgette C Briggs, Karen S Osmont, Chikako Shindo, Richard Sibout,

and Christian S Hardtke. Unequal genetic redundancies in Arabidopsis--a

neglected phenomenon? Trends in plant science, 11(10):492--498, 2006.

Stan JJ Brouns, Matthijs M Jore, Magnus Lundgren, Edze R Westra, Rik JH

Slijkhuis, Ambrosius PL Snijders, Mark J Dickman, Kira S Makarova,

Eugene V Koonin, and John Van Der Oost. Small CRISPR RNAs guide

antiviral defense in prokaryotes. Science, 321(5891):960--964, 2008.

Etienne Bucher, Dick Lohuis, Pieter MJA van Poppel, Christina Geerts-

Dimitriadou, Rob Goldbach, and Marcel Prins. Multiple virus resistance

at a high frequency using a single transgene construct. Journal of General

Virology, 87(12):3697--3701, 2006.

Wolfgang Busch, Andrej Miotk, Federico D Ariel, Zhong Zhao, Joachim

Forner, Gabor Daum, Takuya Suzaki, Christoph Schuster, Sebastian J

Schultheiss, Andrea Leibfried, et al. Transcriptional control of a plant stem

cell niche. Developmental cell, 18(5):841--853, 2010.

Lorenzo Carretero-Paulet, Anahit Galstyan, Irma Roig-Villanova, Jaime F
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Julio Salinas, and José M Martınez-Zapater. AtREM1, a member of a

new family of B3 domain-containing genes, is preferentially expressed in

reproductive meristems. Plant physiology, 128(2):418--427, 2002.

Thomas Gaj, Charles A Gersbach, and Carlos F Barbas III. ZFN, TALEN, and

CRISPR/Cas-based methods for genome engineering. Trends in biotech-

nology, 31(7):397--405, 2013.

Koji Goto and Elliot M Meyerowitz. Function and regulation of the Ara-

bidopsis floral homeotic gene PISTILLATA. Genes & Development, 8(13):

1548--1560, 1994.

57



Valentina Grandi, Veronica Gregis, and Martin M Kater. Uncovering ge-

netic and molecular interactions among floral meristem identity genes in

Arabidopsis thaliana. The Plant Journal, 69(5):881--893, 2012.

Veronica Gregis, Alice Sessa, Lucia Colombo, and Martin M Kater. AGL24,

SHORT VEGETATIVE PHASE, and APETALA1 redundantly control

AGAMOUS during early stages of flower development in Arabidopsis. The

Plant Cell Online, 18(6):1373--1382, 2006.

Veronica Gregis, Alice Sessa, Lucia Colombo, and Martin M Kater.

AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral

meristem identity in Arabidopsis. The Plant Journal, 56(6):891--902, 2008.

Veronica Gregis, Alice Sessa, Carmen Dorca-Fornell, and Martin M Kater.

The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP

directly repress class B and C floral homeotic genes. The Plant Journal, 60

(4):626--637, 2009.

Veronica Gregis, Fernando Andrés, Alice Sessa, Rosalinda F Guerra, Sara

Simonini, Julieta L Mateos, Stefano Torti, Federico Zambelli, Gian Marco

Prazzoli, Katrine N Bjerkan, et al. Identification of pathways directly

regulated by SHORT VEGETATIVE PHASE during vegetative and re-

productive development in Arabidopsis. Genome biology, 14(6):R56, 2013.

Qing Gu, Cristina Ferrándiz, Martin F Yanofsky, and Robert Martienssen.

The FRUITFULL MADS-box gene mediates cell differentiation during

Arabidopsis fruit development. Development, 125(8):1509--1517, 1998.
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Qiye He, Anäıs F Bardet, Brianne Patton, Jennifer Purvis, Jeff Johnston,

Ariel Paulson, Madelaine Gogol, Alexander Stark, and Julia Zeitlinger. High

conservation of transcription factor binding and evidence for combinatorial

regulation across six Drosophila species. Nature genetics, 43(5):414--420,

2011.
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Reinhard Hehl. AthaMap: an online resource for in silico transcription

factor binding sites in the Arabidopsis thaliana genome. Nucleic acids

research, 32(suppl 1):D368--D372, 2004.

Jai-Yoon Sul, K Wu Chia-wen, Fanyi Zeng, Jeanine Jochems, Miler T Lee,

Tae Kyung Kim, Tiina Peritz, Peter Buckley, David J Cappelleri, Margaret

Maronski, et al. Transcriptome transfer produces a predictable cellular

phenotype. Proceedings of the National Academy of Sciences, 106(18):

7624--7629, 2009.

Masaharu Suzuki, Chien Yuan Kao, and Donald R McCarty. The conserved

B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity.

The Plant Cell Online, 9(5):799--807, 1997.

Kankshita Swaminathan, Kevin Peterson, and Thomas Jack. The plant B3

superfamily. Trends in plant science, 13(12):647--655, 2008.

Kirk R Thomas and Mario R Capecchi. Site-directed mutagenesis by gene

targeting in mouse embryo-derived stem cells. Cell, 51(3):503--512, 1987.

Stefano Torti, Fabio Fornara, Coral Vincent, Fernando Andrés, Karl Nord-
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8.2 Intersection between the background and

genic distribution

Figure 8.1: RPKM values were calculated for genes and intergenic background
regions. The intergenic regions were matched to have the same length
distribution as the genes and no mapping ESTs. For each tissue we binned the
expression levels of all the genes and background regions (bins: RPKM¡=0.01,
0.1, 0.5, 1, 100) and computed the cumulative distribution. (RPKM¡=0.5)
was arbitrarily chosen as the cutoff value for gene expression

8.3 Differentially Expressed Genes

Lists of genes differentially expressed in in all the pairwise comparisons

among inflorescence meristems, floral meristems and flowers at developmental

stage three, with False Discovery Rate smaller than 0.05.

8.3.1 IM vs. FM

TAIR-ID

AT1G62480

AT4G31910

AT1G69120

AT4G15620

AT4G15630

AT2G02100

AT1G71695

AT3G54400

AT1G62500

AT3G16400

AT5G15780

AT5G62230

AT4G15450

AT4G35900
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AT1G21250

AT1G30950

AT5G60910

AT3G25020

AT2G31160

AT3G57920

AT4G24540

AT1G76110

AT2G41820

AT4G27460

AT5G49700

AT4G09760

AT4G39480

AT5G57340

AT5G54510

AT1G66970

AT5G49730

AT1G36060

AT3G55240

AT5G14920

AT5G23000

AT2G45660

AT1G43910

AT5G15960

AT2G27880

AT1G31580

AT5G42530

AT3G23290

AT5G28490

AT3G05650

AT5G03840

AT2G25510

8.3.2 FM vs. ST3

TAIR-ID

AT5G03840

AT1G47990

AT2G22540

AT4G24540

AT2G45410

AT5G54050

AT3G25640

AT2G31160

AT5G28490

AT2G17950

AT3G59270

AT5G44630

AT2G14210

AT5G57785

AT1G49830

AT1G69850

AT2G33880

AT2G38530

AT4G38810

AT5G39850

AT5G18560

AT3G19200

AT2G45400

AT4G36260

AT2G15440

AT1G07480

AT1G31760

AT1G75520

AT5G52310

AT4G01460

AT3G01520

AT3G22550

AT1G75820

AT2G41070

AT5G03150

AT3G58770

AT1G69360

AT2G33860

AT2G21060

AT5G42900

AT3G58040

AT5G56530

AT4G23750

AT3G16770

AT5G15970

AT4G32295

AT2G13550

AT2G37420

AT4G21960

AT4G31620

AT2G24700

AT4G15910

AT5G48500

AT4G18700

AT4G11990

AT1G61570

AT3G01310

AT1G49240

AT1G33590

AT1G30490

AT3G22142

AT2G45190

AT3G53420

AT4G37430

AT1G12780

AT1G21830

AT5G24420

AT3G50630

AT4G37300

AT3G26740

AT3G02170

AT1G78830

AT5G07770

AT2G05380

AT2G07981

AT5G57130

AT5G43700

AT5G47500

AT2G33810

AT2G23170

AT2G08986

AT1G55110

AT4G29700

AT2G30860

AT1G25560

AT2G36270

AT2G02100

AT4G02290

AT2G45470

AT3G30775

AT5G14920

AT1G40104

AT1G09460

AT5G48180

AT3G51670

AT4G32980

AT2G15960

AT1G19570

AT2G42730

AT4G37390

AT1G70830

AT4G30250

AT1G77110

AT5G16000

AT5G47600

AT5G50915

AT1G52000

AT3G16240

AT5G49700

AT4G09030

AT3G54640

AT2G44670

AT1G12240

AT3G04290
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AT5G24780

AT1G74100

AT3G26510

AT3G25560

AT3G63300

AT5G06870

AT1G10070

AT3G63210

AT2G13360

AT3G16470

AT4G21590

AT4G29080

AT5G02380

AT5G05690

AT3G26520

AT4G00180

AT4G37470

AT5G40450

AT5G11060

AT1G52030

AT5G11070

AT4G33150

AT1G68780

AT1G69690

AT1G52400

AT1G72260

AT3G09260

AT3G13400

AT3G28220

AT3G23130

AT3G03270

AT4G31500

AT1G54010

AT3G24450

AT1G02790

AT4G36740

AT3G17580

AT2G34810

AT1G21460

AT3G28790

AT5G17760

AT4G24130

AT2G39010

AT1G52040

AT2G23760

AT1G24260

AT4G18960

AT2G31070

AT4G36870

AT1G30650

AT5G20240

AT3G54340

AT3G14380

AT4G30270

AT3G28980

AT5G57720

8.3.3 IM vs. ST3

TAIR-ID

AT1G61566

AT1G78440

AT5G41050

AT3G54340

AT1G62480

AT1G24260

AT4G21870

AT2G41905

AT1G77110

AT3G28220

AT4G21590

AT1G68480

AT4G18960

AT4G12870

AT3G04290

AT1G52040

AT3G09260

AT3G13400

AT5G24780

AT4G30270

AT2G05380

AT3G26520

AT1G78820

AT2G02100

AT5G20240

AT1G12240

AT3G16470

AT2G34810

AT1G69120

AT4G31910

AT1G21460

AT4G15620

AT1G09460

AT3G16240

AT1G52000

AT2G36270

AT1G52030

AT1G69690

AT1G15330

AT5G11060

AT5G02380

AT4G32980

AT4G29700

AT4G37300

AT1G52400

AT4G00180

AT5G54770

AT3G26510

AT1G78830

AT5G15210

AT1G75500

AT1G54010

AT1G72260

AT1G33590

AT5G41080

AT5G01750

AT1G71695

AT4G25100

AT4G09030

AT3G53420

AT1G23090

AT1G12900

AT3G26740

AT4G36250

AT1G26680

AT5G20250

AT1G52220

AT4G02290

AT2G33810

AT1G15380

AT4G26260

AT5G47500

AT2G35370

AT2G21130

AT4G15630

AT1G20010

AT4G29080

AT3G30775

AT1G08630

AT4G13540

AT1G09570

AT5G10150

AT2G24150

AT4G19410

AT1G49240

AT3G11410

AT4G37390

AT1G19570

AT5G45670
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AT3G61190

AT4G25050

AT1G67090

AT1G31310

AT1G21310

AT5G15780

AT4G30250

AT3G08030

AT2G15880

AT3G14990

AT1G12330

AT2G38540

AT5G65207

AT4G21960

AT5G10300

AT4G19200

AT1G21250

AT5G49120

AT5G48500

AT4G21380

AT3G19290

AT2G33860

AT1G31760

AT4G38810

AT1G14440

AT5G60250

AT1G66970

AT4G01460

AT1G49050

AT1G46264

AT3G57920

AT5G20830

AT1G75170

AT5G15970

AT2G17840

AT3G26120

AT1G62810

AT5G18560

AT5G57340

AT2G13550

AT5G42530

AT3G20340

AT4G35900

AT2G20550

AT1G72070

AT4G27460

AT5G49730

AT3G51810

AT5G52310

AT3G63200

AT1G43910

AT5G23000

AT3G22550

AT5G35770

AT5G54510

AT2G33880

AT5G01310

AT1G76110

AT4G17800

AT3G10450

AT1G69850

AT2G27880

AT1G36060

AT2G42200

AT1G77660

AT3G47220

AT5G19110

AT5G39850

AT1G31580

AT3G05650

AT4G16770

AT2G45650

AT3G21270

AT2G45660

AT3G23290

AT2G14210

AT3G25640

AT2G22540

AT4G29140

AT5G55450

AT1G47990

AT2G24850

AT5G15960

AT2G31160

AT2G25510

AT4G24540

AT5G28490

AT5G03840
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Chapter 9

Experimental procedures for

RNA interference and Genome

editing technologies

In this section we describe the materials and method that we are using to

generate the multiple RNA interference line and the lines with deletions in

the REM34 cluster.

9.1 multiple RNA interference lines

We have have amplified the lacZ fragment from the pUC19 with the

subsequent primers:

The primer tails contain the CACC sequence and BsaI sites. We have

cloned the amplicon in the pENTR-d-TOPO in order to make it a suitable

Golden Gate acceptor, yielding the pENTR-GG-LacZ. Then we have aligned

the coding sequences of REM34, REM35 and REM37 and we manually seleced

three partially conserved region. We have blast searched these sequences in

the Arabidopsis genome and confirmed that they are specific for the genes of

interest.

Forward CACCTGAGACCACGGTTGTGGGTCACAGCTTGTCTGTAAGCG
Reverse AGAGACCGAATTCGCAGCTGGCACGACAGGTTTC
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We then have PCR amplified one of the conserved regions from REM34,

another from REM35 and the third from REM36 with the following primers:

REM34 fw GGTCTCACACCTGAAGTTTCCAAAGGAAAGG
REM34 rev GGTCTCTATCTCTCTCCAACCTCTTC
REM35 fw GGTCTCAAGATTCCAAGTCCAAGGACAAG
REM35 rev GGTCTCGTGTCAACAATAATCTGTTTC
REM36 fw GGTCTCAGACATCATCAAGTCTAGAAGGGAAG
REM36 rev GGTCTCGCCTTAATCATCCCACAAGCACAC

Each primers contains BsaI site designed so that in a single golden gate

reaction all the fragment can be ligated directionally in the pENTR-GG-lacZ,

yielding the pENTR-RNAiREM plasmid. We have sub-cloned the REM34-

REM35-REM36 fragment in the pFGC5941 vector (available at ABRC under

the accession CD3-447) with an LR Gateway reaction (Life technologies)

producing the NOB218-RNAiREM binary vector and used this plasmid for

Agrobacterium mediated transformation of Arabidopsis thaliana.

9.2 Assemply of the Deletion inducing vector

9.2.1 BASTA resistance and homology regions

We have PCR amplified the BASTA resistance cassette from the pMDC123

vector (Curtis and Grossniklaus, 2003) and the two homology regions (HR1

and HR2) from Arabidopsis genome with the following primers:

HR1 fw GGTCTCAGGAGTCCCAAAAAGATCAAAAGAAAAATC
HR1 rev GGTCTCAGGCTGTACCCATCATCTTTTTCTTACACC
Bar-1 fw GGTCTCCCGAAATCAGCTTGCATGCCGGTCG
Bar-1 rev GGTCTCATTTCCCCCCGCCACCAGCGGAC
Bar-2 fw GGTCTCTGAAACGTACACGGTCGACTCGG
Bar-2 rev GGTCTCAAGCCTATCATACATGAGAATTAAGGG
HR2-1 fw GGTCTCATTCGTTGAGGTCTTTATGGATTTTTGG
HR2-1 rev GGTCTCACGGCTCCGTCAAGATAAAGTTAC
HR2-2 fw GGTCTCTGCCGTGAATGAGATAAAGGC
HR-2 rev GGTCTCAAGCGGTGATGAGATAGAATCTGAG

We inserted a point mutation within the PCR primers in the BAR

expression cassette and one in the HR2 region in order to delete internal BsaI
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sites. Each primers contains BsaI site designed so that in a single golden gate

reaction all the fragment can be ligated directionally in the pDGB2alphaR2.

9.2.2 CodA, p35S and t35S

We have PCR amplified the coding sequence of CodA from the genome

of E. Coli, strain K-12 and p35S promoter and t35S terminator from the

pMDC123 vector (Curtis and Grossniklaus, 2003) with the following primers:

p35S1 fw GGTCTCGGGAGACTAGAGCCAAGCTGATCTCC
p35S1 rev GGTCTCAAGTCCTGCCGCGTAGGCCTCTC
p35S2 fw GGTCTCAGACTCATCAAGACGATCTACCC
p35S2 rev GGTCTCTCATTTCGACTAGAATAGTAAATTG
CodA1 fw GGTCTCGAATGTCGAATAACGCTTTACAAAC
CodA1 rev GGTCTCGATTAGACGGTCGTATTTTTGCG
CodA2 fw GGTCTCCTAATCGACGTTCACTGTGATG
CodA2 rev GGTCTCAAAGCTCAACGTTTGTAATCGATGGC
HR2-2 fw GGTCTCAGCTTCGGCCATGCTAGAGTCCG
HR-2 rev GGTCTCGAGCGAGGTCACTGGATTTTGGTTTTAGG

We have inserted a point mutation in the p35S sequence and a silent point

mutation in the coding sequence of CodA with the PCR primers in order to

delete internal BsaI sites. Each primers contains BsaI site designed so that in

one single golden gate reaction all the fragment can be ligated directionally

in the pDGB2alpha1.

9.2.3 TALEN

We are right now working on the production of the vector containing the

TALEN, the pUBI promoter t35S terminator. The TALEN were assembled

according to the protocol published by Cermak et al. 2011 with the following

RVD sequences:

• TALEN1 HD HD NI HD HD NI HD NI NG NG NG HD NG HD NG

HD NG

• TALEN2 NH NH NG NG NG NH NG HD NG HD HD NH NH NG NI

HD NH NI
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we are planning of amplfying these sequences with the following primer:

pUBI fw CGTCTCGGGAGTACCCGACGAGTCAGTA
pUBI rev CGTCTCTCATTAGTGTTAATCAGAAAAACTCAG
TALEN1 fw CGTCTCTAATGGCTTCCTCCCCTCCAAAG
TALEN1 rev CGTCTCTAAAGTTTATCTCACCGTTATT
TALEN2 fw CGTCTCTACCTATGGCTTCCTCCCCTCCAAAG
TALEN2 rev GCGTCTCGAAGCTTAAAAGTTTATCTCACCG
t35S fw CGTCTCAGCTTCGGCCATGCTAGAGTCCG
t35S rev CGTCTCGAGCGAGGTCACTGGATTTTGGTTTTAGG

And moreover we have synthesized the T2A sequence flanked by BsmbI

sites as the two complementary oligo CGTCTCACTTTGGAAGCGGAGA-

GGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATC-

CTGGACCTTGAGACG and CGTCTCAAGGTCCAGGATTCTCCTCG-

ACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCGCTTCCA-

AAGTGAGACG.

Both the primers and the T2A sequences contain BsmbI sites so that in

one single one single golden gate reaction all the fragment can be ligated

directionally in the pDGB2omega2

9.2.4 Golden Gate reaction

All Golden Gate reaction has been carried out in a volume of 20 µl con-

taining:

• 40 ng of each PCR fragment

• 40 ng of undigested destination vector

• 10 U of restriction enzyme (Bsa or BsmbI)

• 1 X T4 ligase buffer

• 3 U of T4 ligase

and was run in an Eppendorf thermocycler with the program:

1. 37 ◦C for 5 minutes,
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2. 15 ◦C for 10 minutes

3. Go to step 1 for 9 times

4. 50 ◦C for 5 minutes

5. 80 ◦C for 5 minutes

and used directly to transform E. Coli or stored at −20 ◦C
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