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Introduction

This thesis deals with nonlinear elliptic problems like the following one{
−LKu = f(x, u) in Ω

u = 0 in Rn \ Ω ,
(0.0.1)

where Ω ⊂ Rn is an open, bounded set, the nonlinear term f satis�es suitable conditions

which will be introduced case by case, while LK is a general non�local operator de�ned

as follows:

LKu(x) =

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, (0.0.2)

for all x ∈ Rn . Let also s ∈ (0, 1), here the kernel K : Rn \ {0} → (0,+∞) satis�es the

following conditions:

mK ∈ L1(Rn), where m(x) = min
{
|x|2 , 1

}
; (0.0.3)

there exists θ > 0 such that K(x) > θ |x|−(n+2s)
for any x ∈ Rn \ {0} . (0.0.4)

A typical model for K is given by K(x) = |x|−(n+2s)
. In this case, it follows that

LK = −(−∆)s and problem (0.0.1) becomes{
(−∆)su = f(x, u) in Ω

u = 0 in Rn \ Ω,
(0.0.5)

where −(−∆)s is the fractional Laplace operator which may be de�ned as

−(−∆)su(x) = c(n, s)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy (0.0.6)

for x ∈ Rn, where c(n, s) is the normalizing constant given by

c(n, s) =
1

2

(∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ

)−1

(0.0.7)

as de�ned in [40] (see this paper and the references therein for further details on

fractional Laplacian).
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Recently, in the literature a deep interest was shown for non�local operators, thanks

to their intriguing analytical structure and in view of several applications in a wide

range of contexts. From the physical point of view, these equations take into account

long-range particle interactions with a power-law decay. When the decay at in�nity

is su�ciently weak, the long-range phenomena may prevail and the non�local e�ects

persist even on large scales (see e.g. [29, 71]).

The probabilistic counterpart of these fractional equation is that the underlying

di�usion is run by a stochastic process with power-law tail probability distribution

(the so-called Pareto or Lévy distribution), see for instance [89, 91]. Since long re-

locations are allowed by the process, the di�usion obtained is sometimes referred to

with the name of anomalous (in contrast with the classical one coming from Poisson

distributions). Physical realizations of these models occur in di�erent �elds, such as

�uid dynamics (and especially quasi-geostrophic and water wave equations), dynam-

ical systems, elasticity and micelles (see among the others [38, 39, 82, 85]). In math-

ematical �nance, these stochastic processes have been applied to American options

for modelling the jump processes of the �nancial derivatives such as futures, options

and swaps, as explained in [37] and references therein. Also, the scale invariance of

the non�local probability distribution may combine with the intermittency and renor-

malization properties of other nonlinear dynamics and produce complex patterns with

fractional features. For instance, there are indications that the distribution of food on

the ocean surface has scale invariant properties (see e.g. [90] and references therein)

and it is possible that optimal searches of predators re�ect these patterns in the ef-

fort of locating abundant food in sparse environments, also considering that power-law

distribution of movements allow the individuals to visit more sites than the classical

Brownian situation (see e.g. [19, 53]).

Nonlinear elliptic problems modeled by−∆u = f(x, u) in Ω

u = 0 on ∂Ω,
(0.0.8)

where Ω ⊂ Rn is an open, bounded set and the perturbation f is a function satisfying

di�erent growth conditions (asymptotically linear, superlinear, subcritical or critical,

for instance), were widely studied in the literature (see, for instance, [5, 22, 67, 86, 92]

and references therein). Mathematically speaking, a motivation for studying problem

(0.0.5) (and more generally (0.0.1)) is trying to extend some important results which

are well-known for the classical case of the Laplacian −∆ to a non�local setting.

After the seminal papers [25, 26, 83] of Ca�arelli and Silvestre, many mathe-

maticians studied non�local problems in di�erent contexts. In particular, there is
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a wide literature regarding problem (0.0.5) with a superlinear term f . We refer to

[11, 16, 17, 31, 60, 75, 80, 81, 88] for a critical case, that is when f(x, u) = g(x, u) +

|u|2
∗−2

u, where 2∗ = 2n/(n − 2s) is the fractional Sobolev exponent and g satis�es

suitable subcritical growth conditions. In [23, 61, 74, 77] the authors take into account

a subcritical growth for the superlinear term f . In all these works weak solutions of

problem (0.0.5) can be seen as critical points of a Euler-Lagrange functional associated

with the problem. Thus, existence results are obtained by using topological and vari-

ational methods, particularly by using the Mountain Pass Theorem and the Linking

Theorem (see [66, 67]).

Inspired by the variational approach used in the papers cited above, in this the-

sis we mainly deal with non�local equations with asymptotically linear right-hand

side. Very few attempts have been made to treat this kind of problems. For this,

we develop a functional analytical setting that is inspired by (but not equivalent

to) the fractional Sobolev spaces, in order to correctly encode the Dirichlet bound-

ary datum in the variational formulation. In Chapter 1 we will introduce this func-

tional setting by starting from the space X, introduced for the �rst time in [76]. In

the recent papers cited above, the authors take into account the homogeneous space

X0 = {g ∈ X : g = 0 a.e. in Rn \ Ω}. In this thesis we will consider instead the linear

space Z de�ned as the closure of C∞0 (Ω) in X. As we will show in Section 1.3, by con-

sidering more regularity on domain Ω the two functional spaces are equal. However, in

general Z is a subset of X0. For this reason, the choice of Z is an improvement and

in all the thesis we will assume Ω is simply a bounded domain of Rn without further

conditions.

Always in this �rst chapter, we will introduce some basic properties of Z which

will be used in the sequel. In particular, we will study the following general eigenvalue

problem for operator −LK{
−LKu+ q(x)u = λa(x)u in Ω

u = 0 in Rn \ Ω ,
(0.0.9)

where q is a bounded, non-negative function on Ω while a is a positive and Lipschitz

continuous function on Ω. We recall that there exists a non�decreasing sequence of pos-

itive eigenvalues λk for which (0.0.9) admits non�trivial weak solutions ek. In this case,

any weak solution ek will be called an eigenfunction corresponding to the eigenvalue

λk whose properties will be studied in Section 1.2. By considering these eigenfunctions

it will be possible to split the functional space Z in two subspaces Pk+1 and Hk (which
is �nite dimensional), as required in the variational approach used along this thesis.

In Chapter 2 we will study problem (0.0.1) with f satisfying a linear growth and
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an asymptotically linear condition. By setting

lim inf
|t|→∞

f(x, t)

t
:= α(x) and lim sup

|t|→∞

f(x, t)

t
:= α(x),

the variational technique used here changes depending on how the functions α, α

behaves with respect to the eigenvalues {λk}k∈N of −LK . When α < λ1, by taking into

account the properties of the �rst eigenvalue it is possible to obtain the existence of a

weak solution of (0.0.1) by a minimization argument. If there exists k ∈ N such that

λk < α 6 α < λk+1, we will prove that the functional associated to (0.0.1) satis�es the

geometric features required by the Saddle Point Theorem by Rabinowitz (see [66, 67])

and the Palais-Smale compactness conditions.

Chapter 3 is devoted to the study of the following nonlinear problem{
−LKu = λa(x)u+ f(x, u) in Ω

u = 0 in Rn \ Ω ,
(0.0.10)

where a is a positive, Lipschitz continuous function on Ω and f is a continuous, bounded

function whose primitive goes to in�nity. Here, problem (0.0.10) is treated in presence

of resonance. That is, the parameter λ belongs to the spectrum of operator −LK . As in
Chapter 2, problem (0.0.10) can be seen as the Euler�Lagrange equation of a suitable

functional and it is possible to get a weak solution by using the Saddle Point Theorem.

In Chapter 4 we will study the following problem{
−LKu+ q(x)u = λu+ f(u) + h(x) in Ω

u = 0 in Rn \ Ω ,
(0.0.11)

where, as introduced in Chapter 1, q is a bounded, non-negative function, while f and

h are su�ciently smooth functions. In this chapter we will consider both resonant and

the non-resonant case, that is the case when λ belongs to the spectrum of the operator

driving the equation and the one when λ does not, respectively. The approach used

to solve these two cases is still variational, as in the previous chapters; however, the

resonant case is more di�cult than the non�resonant one. In order to solve problem

(0.0.11) in a resonant setting we will need a more restrictive condition for f called

the Landesman�Lazer condition, �rstly introduced in [58]. We also require a basic

condition regarding the nodal set of eigenfunctions of −LK . When K(x) = |x|−(n+2s)
,

this condition is a direct consequence of the unique continuation principle proved by

Fall and Felli in [42].

In Chapter 5 we will introduce a Kirchho� type problem driven by a non�local
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integrodi�erential operator, that is
−M

(∫∫
R2n

|u(x)− u(y)|2K(x− y)dx dy

)
LKu

= λf(x, u) + |u|2
∗−2

u in Ω,

u = 0 in Rn \ Ω

(0.0.12)

where M and f are two continuous functions. The approach used here is still varia-

tional, based on the application of the Mountain Pass Theorem (see [66, 67]). Since

the nonlinearity in (0.0.12) is of the critical form, the veri�cation of the Palais-Smale

compactness condition is more complicated, due to a lack of compactness at critical

level L2∗ . To overcome this problem we will use a concentration�compactness principle,

introduced in the fractional framework by Palatucci and Pisante in [65]. Furthermore,

we will give later an alternative proof of the Palais�Smale condition mainly based on

application of the celebrated Brezis & Lieb lemma (see [21]).

Finally, in the appendix we present some detailed motivation for Kirchho� type

problem in non�local setting, starting from some classical models for vibrating strings

The thesis is mainly based on the following works [46, 47, 48, 49, 50].
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Chapter 1

Functional spaces

1.1 Basic properties

In this thesis we will mainly study problems like{
−LKu = f(x, u) in Ω,

u = 0 in Rn \ Ω
(1.1.1)

by using variational methods. For this, the choice of the functional space where to

work plays an important role. A natural space where �nding solutions for them is the

fractional Sobolev space Hs(Rn) (see [1, 40]). Note that in (1.1.1) the homogeneous

Dirichlet datum is given in Rn \Ω and not simply on ∂Ω, as it happens in the classical

case of the Laplacian, consistently with the non�local character of the operator LK .
In order to study (1.1.1) it is important to encode the `boundary condition' u = 0

in Rn \ Ω in the weak formulation. For this the usual fractional Sobolev space is not

enough. The functional space that takes into account this boundary condition will be

denoted by Z and it was introduced in [46] in the following way.

First, we denote by X the linear space of Lebesgue measurable functions from Rn

to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and

the map (x, y) 7→ (g(x)− g(y))
√
K(x− y) is in L2(Q, dxdy) , (1.1.2)

where Q := R2n \ (CΩ × CΩ) with CΩ := Rn \ Ω. The space X is endowed with the

norm de�ned as

‖u‖X =
(∫

Ω

|u(x)|2 dx+

∫∫
Q

|u(x)− u(y)|2K(x− y)dx dy
)1/2

. (1.1.3)

It is immediate to observe that bounded and Lipschitz functions belong to X (see

[74, 76] for further details on space X).
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In many articles, like [60, 61, 62, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], the authors

worked in the following homogeneous space

X0 = {g ∈ X : g = 0 a.e. in Rn \ Ω} . (1.1.4)

Here, we will denote with Z the closure of C∞0 (Ω) in X; this space was introduced

for the �rst time in [46]. As we will see in a forthcoming section, generally space X0

contains Z. However, by assuming more regularity for the domain Ω it is possible to

show that X0 = Z.

In the sequel we will provide and prove some basic results of the space Z which

will be useful along the thesis. In the next lemma we recall the connection between the

space Z and the homogeneous fractional Sobolev spaces.

Lemma 1.1.1. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and (0.0.4).

Then, Z is continuously embedded in Hs
0(Ω) (for a detailed description see [40])

which is the closure of C∞0 (Ω) in the space Hs(Ω) of functions u de�ned on Ω for

which is well de�ned the so-called Gagliardo norm

‖u‖Hs(Ω) =
(∫

Ω

|u(x)|2 dx+

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy

)1/2

.

Proof. We simply observe that by (0.0.4) we get

θ

∫∫
Q

|u(x)− u(y)|2

|x− y|n+2s dx dy 6
∫∫

Q

|u(x)− u(y)|2K(x− y) dx dy (1.1.5)

and so

‖u‖Hs(Ω) 6 c(θ)‖u‖X ,

with c(θ) = max{1, θ−1/2}.

Now, we give a convergence property for bounded sequences in Z.

Lemma 1.1.2. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and (0.0.4).

Then, Z is compactly embedded in Lp(Ω) for any p ∈ [1, 2∗), where 2∗ is the frac-

tional critical Sobolev exponent given by1

2∗ :=


2n

n− 2s
if n > 2s,

+∞ if n 6 2s.
(1.1.6)

1Note that, when s = 1 the exponent 2∗ reduces to the classical critical Sobolev exponent.
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Proof. Let Ω′ be a regular, open subset of Rn such that Ω ⊆ Ω′. For any u ∈ Hs
0(Ω)

we can de�ne

ũ(x) :=

{
u(x) if x ∈ Ω,

0 if x ∈ Ω′ \ Ω.

It is clear that ũ ∈ Hs
0(Ω′). Indeed, if {uj}j∈N is a sequence in C∞0 (Ω) which converges

to u in Hs
0(Ω) then {ũj}j∈N is a sequence in C∞0 (Ω′) which converges to ũ in Hs

0(Ω′).

Moreover, we also have

‖ũ‖Hs(Ω′) = ‖u‖Hs(Ω) .

Thus, Hs
0(Ω′) is isometric embedded in Hs

0(Ω). The conclusion follows by remembering

that Hs
0(Ω′) is compactly embedded in Lp(Ω′) with 1 6 p < 2∗ (see [40, Theorem

6.7]).

We conclude this section with the following result.

Lemma 1.1.3. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and (0.0.4).

Then, Z is a Hilbert space endowed with the following norm

‖v‖Z =
(∫∫

Q

|v(x)− v(y)|2K(x− y)dx dy
)1/2

, (1.1.7)

which is equivalent to the usual one de�ned in (1.1.3).

Proof. We start by claiming that there exists a constant C > 0 such that

‖u‖L2(Ω) 6 C

(∫∫
Q

|u(x)− u(y)|2

|x− y|n+2s dx dy

)1/2

(1.1.8)

for any u ∈ Hs
0(Ω). In fact, since Ω is bounded there is R > 0 such that Ω ⊆ BR and

|BR \ Ω| > 0. So, we get∫∫
Q

|u(x)− u(y)|2

|x− y|n+2s dx dy >
∫
CΩ

(∫
Ω

|u(x)− u(y)|2

|x− y|n+2s dy

)
dx

=

∫
CΩ

(∫
Ω

|u(y)|2

|x− y|n+2s dy

)
dx >

∫
BR\Ω

(∫
Ω

|u(y)|2

|2R|n+2s dy

)
dx =

|BR \ Ω|
(2R)n+2s

‖u‖2L2(Ω)

for any u ∈ Hs
0(Ω) (since u = 0 a.e. in CΩ), which proves our claim. Finally, by

combining (1.1.5) and (1.1.8) we conclude the proof.

Remark 1.1.4. From now on, we will take (1.1.7) as norm on Z, apart from few

cases. Note also that in (1.1.3) and (1.1.7) all the integrals can be extended to all Rn

and R2n, since u = 0 a.e. in CΩ.
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1.2 An eigenvalue problem

This section is devoted to the study of the non-homogeneous eigenvalue problem{
−LKu+ q(x)u = λa(x)u in Ω

u = 0 in Rn \ Ω ,
(1.2.1)

where Ω ⊂ Rn is an open, bounded set, q : Ω→ R is such that q ∈ L∞(Ω) and q(x) > 0

for a.e. x ∈ Ω, a : Ω→ R is a positive Lipschitz continuous function.

More precisely, we consider the weak formulation, which consists in the following

eigenvalue problem

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

∫
Ω

q(x)u(x)ϕ(x)dx

= λ

∫
Ω

a(x)u(x)ϕ(x)dx ∀ ϕ ∈ Z

u ∈ Z.

(1.2.2)

We recall that λ ∈ R is an eigenvalue of problem (1.2.2) provided there exists a non�

trivial solution u ∈ Z of problem (1.2.2) and, in this case, any solution will be called

an eigenfunction corresponding to the eigenvalue λ.

In order to generalize as much as possible, here we equip Z with the following norm

‖g‖Z, q =

(∫∫
R2n

|g(x)− g(y)|2K(x− y) dx dy +

∫
Ω

q(x) |g(x)|2 dx
)1/2

, (1.2.3)

which is equivalent to the usual one de�ned in (1.1.3), as we prove in the following

lemma:

Lemma 1.2.1. Let K : Rn \ {0} → (0,+∞) be a function satisfying assumptions

(0.0.3) and (0.0.4) and let q : Ω→ R satisfy q ∈ L∞(Ω) and q(x) > 0 a.e. x ∈ Ω.

Then, the expression

〈u, v〉Z, q =

∫∫
R2n

(u(x)−u(y))(v(x)−v(y))K(x−y) dx dy+

∫
Ω

q(x)u(x)v(x)dx (1.2.4)

de�nes on Z a scalar product that induces a norm, denoted with ‖ · ‖Z, q , equivalent to
the usual one de�ned in (1.1.3).

Proof. Since the expression (1.2.4) is a sum of two scalar products, it is immediate

to observe that 〈·, ·〉Z, q is a scalar product on Z which induces the norm de�ned in

(1.2.3).

Now, we show that the norm de�ned in (1.2.3) is equivalent to the one given in
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(1.1.3). For this, let v ∈ Z. It is easily seen that

‖v‖2Z, q =

∫∫
R2n

|v(x)− v(y)|2K(x− y) dx dy +

∫
Ω

q(x) |v(x)|2 dx

6
∫∫

R2n

|v(x)− v(y)|2K(x− y) dx dy + ‖q‖L∞(Ω) ‖v‖
2
L2(Ω) 6 C1‖v‖2X ,

(1.2.5)

where C1 = max
{

1, ‖q‖L∞(Ω)

}
> 0.

Moreover, by [74, Lemma 6] we know that there is a constant C2 > 1 such that

‖v‖2X 6 C2

∫∫
R2n

|v(x)− v(y)|2K(x− y) dx dy ,

so that, by recalling that q is bounded and non-negative a.e. on Ω, we get

1

C2
‖v‖2X 6

∫∫
R2n

|v(x)− v(y)|2K(x− y) dx dy

6
∫∫

R2n

|v(x)− v(y)|2K(x− y) dx dy +

∫
Ω

q(x) |v(x)|2 dx = ‖v‖2Z, q .

(1.2.6)

By combining (1.2.5) and (1.2.6) we conclude the proof.

Finally, we note that, since a ∈ L∞(Ω), all the embeddings properties of Z into the

usual Lebesgue space L2(Ω) still hold true in L2(Ω, µ), with µ(·) = a(·)dx , de�ned as

L2(Ω, µ) :=
{
g : Ω→ R s.t. g is measurable in Ω and∫

Ω
a(x)|g(x)|2 dx =

∫
Ω
|g|2 dµ < +∞

}
.

Now, we are ready to introduce the properties of eigenfunctions related to the op-

erator −LK +q. These properties will play a crucial role in the study of asymptotically

linear problems. In particular, we need them to check suitable geometrical features of

the functional associated to the problem. We would also point out that these properties

are the non�local transpositions of well�known results of eigenfunctions of the classical

Laplace operator (see for instance [14, Section 1.7]).

For a detailed proof of the next result we refer to [77, Proposition 9 and Appendix

A] , where the problem (1.2.2) with q ≡ 0 and a ≡ 1 was considered. The proof of [77,

Proposition 9] can be easily adapted in order to get the following proposition:

Proposition 1.2.2. Let Ω be an open, bounded subset of Rn and let K : Rn \ {0} →
(0,+∞) be a function satisfying assumptions (0.0.3) and (0.0.4). Moreover, let q : Ω→
R be a function such that q ∈ L∞(Ω) and q(x) > 0 a.e. x ∈ Ω, let a : Ω → R be a

positive Lipschitz continuous function.

Then,
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(i) problem (1.2.2) admits an eigenvalue λ1 which is positive and that can be char-

acterized as follows

λ1 = min
u∈Z

‖u‖L2(Ω, µ)=1

(∫∫
R2n

|u(x)− u(y)|2K(x− y)dx dy +

∫
Ω

q(x) |u(x)|2 dx
)

or, equivalently,

λ1 = min
u∈Z\{0}

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy +

∫
Ω

q(x) |u(x)|2 dx∫
Ω

a(x) |u(x)|2 dx
, (1.2.7)

where ‖·‖L2(Ω, µ) denotes the L
2�norm with respect to the measure µ(x) = a(x)dx;

(ii) there exists a non�negative function e1 ∈ Z, which is an eigenfunction corre-

sponding to λ1, attaining the minimum in (1.2.7), that is ‖e1‖L2(Ω, µ) = 1 and

λ1 =

∫∫
R2n

|e1(x)− e1(y)|2K(x− y)dx dy +

∫
Ω

q(x) |e1(x)|2 dx;

(iii) λ1 is simple, that is if u ∈ Z is a solution of the following equation∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy +

∫
Ω

q(x) |u(x)|2 dx

= λ1

∫
Ω

a(x)u(x)ϕ(x)dx ∀ϕ ∈ Z,

then u = ζe1, with ζ ∈ R;

(iv) the set of the eigenvalues of problem (1.2.2) consists of a sequence {λk}k∈N with2

0 < λ1 < λ2 6 . . . 6 λk 6 λk+1 6 . . . (1.2.8)

and

λk → +∞ as k → +∞.

Moreover, for any k ∈ N the eigenvalues can be characterized as follows:

λk+1 = min
u∈Pk+1

‖u‖L2(Ω, µ)=1

(∫∫
R2n

|u(x)− u(y)|2K(x− y)dx dy +

∫
Ω

q(x) |u(x)|2 dx
)
,

2As usual, here we call λ1 the �rst eigenvalue of the operator −LK + q . This notation is justi�ed

by (1.2.8). Notice also that some of the eigenvalues in the sequence
{
λk

}
k∈N may repeat, i.e. the

inequalities in (1.2.8) may be not always strict.
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or, equivalently,

λk+1 = min
u∈Pk+1\{0}

∫∫
R2n

|u(x)− u(y)|2K(x− y)dx dy +

∫
Ω

q(x) |u(x)|2 dx∫
Ω

a(x) |u(x)|2 dx
,

(1.2.9)

where

Pk+1 :=
{
u ∈ Z : 〈u, ej〉Z = 0 ∀j = 1, . . . , k

}
(with P1 := Z) ; (1.2.10)

(v) for any k ∈ N there exists a function ek+1 ∈ Pk+1, which is an eigenfunction

corresponding to λk+1, attaining the minimum in (1.2.9), that is ‖ek+1‖L2(Ω, µ) =

1 and

λk+1 =

∫∫
R2n

|ek+1(x)− ek+1(y)|2K(x− y)dx dy +

∫
Ω

q(x) |ek+1(x)|2 dx;

(1.2.11)

(vi) the sequence {ek}k∈N of eigenfunctions corresponding to λk is an orthonormal

basis of L2(Ω, µ) and an orthogonal basis of Z;

(vii) each eigenvalue λk has �nite multiplicity; more precisely, if λk is such that

λk−1 < λk = . . . = λk+h < λk+h+1

for some h ∈ N0, then the set of all the eigenfunctions corresponding to λk agrees

with

span {ek, . . . , ek+h} .

Proof. The proof substantially follows by the general theory of functional analysis and

by the compact embedding of Z in L2(Ω), proved in Lemma 1.1.2..

Now, we point out that Proposition 1.2.2 gives a variational characterization of

the eigenvalues λk of −LK + q (see formulas (1.2.7) and (1.2.9)) . Another interesting

characterization of the eigenvalues is given in the next result. For the proof we refer

to [72, Proposition 5] , where the case q ≡ 0 and a ≡ 1 was treated (again, the general

case can be proved likewise) .

Proposition 1.2.3. Let Ω be an open, bounded subset of Rn and let K : Rn \ {0} →
(0,+∞) be a function satisfying assumptions (0.0.3) and (0.0.4). Moreover, let q :

Ω → R be a function such that q ∈ L∞(Ω) and q(x) > 0 a.e. x ∈ Ω, let a : Ω →
R be a positive Lipschitz continuous function. Let

{
λk
}
k∈N be the sequence of the
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eigenvalues given in Proposition 1.2.2 and let
{
ek
}
k∈N be the corresponding sequence

of eigenfunctions .

Then, for any k ∈ N the eigenvalues can be characterized as follows:

λk = max
u∈span{e1,...,ek}\{0}

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy +

∫
Ω

q(x) |u(x)|2 dx∫
Ω

a(x)|u(x)|2 dx
.

1.3 A density result

Aim of this section is to show that, as we pointed out in the previous sections, Z is the

better and natural space in order to study problem (1.1.1) from a variational point of

view. Indeed, in the classical Laplace setting (i.e. by considering problem (1.1.1) with

−∆ instead of −LK) the natural space where �nding solutions is the Sobolev space

H1
0 (Ω), which is de�ned as the closure of C∞0 (Ω) in the norm of H1(Ω). Moreover, as

we see in the next lemma, in general Z is a subset of the functional space X0 introduced

in (1.1.4).

Before proving our lemma we would note that, since X0 is a space of functions

de�ned in Rn, in this section we denote by C∞0 (Ω) the space

C∞0 (Ω) = {g : Rn → R : g ∈ C∞(Rn) and g = 0 in Rn \ Ω} . (1.3.1)

Lemma 1.3.1. Let Ω be an open subset of Rn. Let K : Rn \ {0} → (0,+∞) be a

function such that (0.0.3) holds true and satisfying

K(x) = K(−x) for any x ∈ Rn \ {0} . (1.3.2)

Let X0 and C∞0 (Ω) be the spaces de�ned as in (1.1.4) and (1.3.1), respectively .

Then, C∞0 (Ω) ⊆ X0 .

Proof. Let ϕ ∈ C∞0 (Ω). By using (1.3.2), it is easy to see that∫∫
R2n

|ϕ(x)− ϕ(y)|2K(x− y) dx dy =∫∫
Suppϕ×Suppϕ

|ϕ(x)− ϕ(y)|2K(x− y) dx dy

+ 2

∫∫
Suppϕ×C(Suppϕ)

|ϕ(x)− ϕ(y)|2K(x− y) dx dy

6 2

∫∫
Suppϕ×Rn

|ϕ(x)− ϕ(y)|2K(x− y) dx dy.

(1.3.3)
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Now, we notice that for any x, y ∈ Rn

|ϕ(x)− ϕ(y)| 6 ‖∇ϕ‖L∞(Rn)|x− y|

and

|ϕ(x)− ϕ(y)| 6 2‖ϕ‖L∞(Rn) ,

thanks to the regularity of ϕ . Accordingly, for any x, y ∈ Rn

|ϕ(x)− ϕ(y)| 6 2‖ϕ‖C1(Rn) min{|x− y|, 1} = 2‖ϕ‖C1(Rn)

√
m(x− y),

where m is de�ned in (0.0.3). Therefore, from (1.3.3) we deduce that∫∫
R2n

|ϕ(x)− ϕ(y)|2K(x− y) dx dy 6 23‖ϕ‖2C1(Rn)

∫∫
Suppϕ×Rn

m(x− y)K(x− y) dx dy

= 23|Suppϕ| ‖ϕ‖2C1(Rn)

∫
Rn
m(ξ)K(ξ) dξ ,

where |Suppϕ| denotes the Lebesgue measure of Suppϕ. Thus, Lemma 1.3.1 follows

by (0.0.3) and by the fact that Suppϕ is bounded.

From Lemma 1.3.1 and by using the equivalence of the norms in Z given by (1.1.3)

and (1.1.7), it easily follows the inclusion Z ⊂ X0. However, under a further and more

restrictive assumption on domain Ω, the two functional spaces Z and X0 are equal.

This equivalence follows by using the next density property of X0, which we mention

here without proof, since it is beyond our purposes (for a detailed proof see paper [49]).

Theorem 1.3.2. [49] Let Ω be an open subset of Rn, with continuous boundary. Let

K : Rn \ {0} → (0,+∞) be a function such that (0.0.3) and (0.0.4) hold true and let

X0 be the space de�ned as in (1.1.4) .

Then, for any u ∈ X0 there exists a sequence uk ∈ C∞0 (Ω) such that uk → u in X0

as k → +∞ . In other words, C∞0 (Ω) is a dense subspace of X0 .

We think that it is an interesting problem to determine the �minimal� regularity

assumptions on the domain Ω under which the density of the smooth functions, com-

pactly supported in Ω, stated in Theorem 1.3.2, holds true. However, we remark that

such property does not hold for any domain Ω, not even when n = 1, as the following

counterexample shows.

Remark 1.3.3. Let Ω := (−1, 0) ∪ (0, 1), s ∈ (1/2, 1), ψ : R→ R be any �xed smooth

function supported in (−1, 1) with ψ(0) = 1, and de�ne

ϕ(x) :=

{
ψ(x) if x ∈ Ω

0 if x 6∈ Ω.
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Then, since integrals disregard sets of measure zero, we have that for any s ∈ (0, 1)

‖ϕ‖Hs(R) = ‖ψ‖Hs(R) < +∞ ,

hence ϕ ∈ Hs(R). Also, ϕ vanishes outside Ω, that is ϕ ∈ X0 .

Now, let η be any smooth function supported in Ω. We have that η(0) = 0 and so,

denoting by f := ϕ−η, by the fractional Sobolev embedding (see e.g. [40, Theorem 8.2]

and [74, Lemmas 6 and 7]), we obtain that

1 = lim
Ω3x→0

f(x) 6 ‖f‖L∞(Ω) 6 C‖f‖Hs(Ω) 6 C‖ϕ− η‖X 6 C̃‖ϕ− η‖X0
,

where C and C̃ are positive constants. Therefore, smooth functions compactly supported

in Ω cannot approximate ϕ in X0.
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Chapter 2

An asymptotically linear

problem

2.1 Introduction

In general, nonlinear elliptic problems like the following one{
−∆u = f(x, u) in Ω

u = 0 on ∂Ω ,

has a variational nature and its solutions can be constructed as critical points of the

associated Euler�Lagrange. For this, the assumptions on the perturbation f have a

direct in�uence on the topological structure of the problem and the variational ap-

proach changes by depending on these assumptions. When the nonlinear term has a

superlinear growth the Mountain Pass Theorem and the Linking Theorem are natural

ways to face problem (0.0.8). While for asymptotically linear problems, namely those

where the nonlinearity grows linearly at in�nity, an application of the Saddle Point

Theorem is most suitable. A natural question is whether or not these topological and

variational methods may be adapted to a non�local framework in order to extend the

classical results known for (0.0.8).

Aim of this chapter is to consider the non�local counterpart of problem (0.0.8) with

an asymptotically linear perturbation. Here, we deal with the following problem{
−LKu = f(x, u) in Ω,

u = 0 in Rn \ Ω
(2.1.1)

where Ω ⊂ Rn is an open and bounded set and LK is the non�local operator formally

de�ned as in (0.0.2). For a �xed s ∈ (0, 1), the kernel K : Rn \ {0} → (0,+∞) satisfy
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conditions (0.0.3) and (0.0.4), introduced in the Introduction. Moreover, in view of our

problem we assume that f : Ω× R→ R is a Carathéodory function such that:

there exist a ∈ L2(Ω) and b > 0 such that |f(x, t)| 6 a(x) + b |t|

for any t ∈ R and a.e. x ∈ Ω.
(2.1.2)

Now, we can state in a precise way problem (2.1.1) by writing it in the variational

form: 

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

=

∫
Ω

f(x, u(x))ϕ(x)dx for any ϕ ∈ Z

u ∈ Z,

(2.1.3)

where Z is the functional space introduced in Chapter 1. Thanks to our assumptions

on Ω, f and K, all the integrals in (2.1.3) are well de�ned if u, ϕ ∈ Z. We also point out

that the odd part of function K gives no contribution to the integral of the left-hand

side of (2.1.3). Indeed, write K = Ke +Ko, where for all x ∈ Rn \ {0}

Ke(x) =
K(x) +K(−x)

2
and Ko(x) =

K(x)−K(−x)

2
.

Then, it is apparent that for all u and ϕ ∈ Z

〈u, ϕ〉Z =

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))Ke(x− y)dxdy.

Therefore, it would be not restrictive to assume that K is even 1.

Now, we are ready to introduce the main result of the chapter. Here, we denote

with λ1, λ2, . . . the eigenvalues of −LK which we already introduced in Section 1.2.

Theorem 2.1.1. Let Ω be an open, bounded subset of Rn. Let K : Rn \{0} → (0,+∞)

satisfy assumptions (0.0.3) and (0.0.4) and let f : Ω × R → R be a Carathéodory

function verifying (2.1.2). Moreover, by setting

lim inf
|t|→∞

f(x, t)

t
:= α(x) and lim sup

|t|→∞

f(x, t)

t
:= α(x) for a.e. x ∈ Ω, (2.1.4)

we assume that one of the two following conditions is satis�ed: either α(x) < λ1 for

a.e. x ∈ Ω, or there exists k ∈ N such that λk < α(x) 6 α(x) < λk+1 for a.e. x ∈ Ω.

Then, problem (2.1.1) admits a weak solution u ∈ Z.
1As we shall see, this fact could hold true also for the next main problems (3.1.2), (4.1.1) and

(5.1.1).
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We notice that, in our framework, no solution of problem (2.1.3) is known from the

beginning, unlike the cases treated in [72, 74, 75, 77, 80, 81], for example, where the

variational problems considered admit the trivial solution u = 0 (indeed, in our case,

f(x, 0) may not vanish and u = 0 may not be a solution).

The proof of Theorem 2.1.1 relies on the Saddle Point Theorem (see, for instance,

[66, 67]). In order to check the geometric assumptions needed for applying this result, we

perform some energy estimates in fractional Sobolev spaces. Indeed, Theorem 2.1.1 is

the fractional analog of a result valid for the classical Laplacian (see, e.g., [63, Theorem

4.1.1]).

It is an interesting question if weak solutions of problem (2.1.3) solve also problem

(2.1.1) in an appropriate strong sense. Some interesting results about this problem can

be found in [79]. Note also that, when f is a �good function�, any weak solution is a

classical solution. This can be seen in the fractional setting (with LK = −(−∆)s) as

follows. Let u be a weak solution of (2.1.1). Then, from [79, Proposition 7] we have the

boundedness of u and by [69, Proposition 1.1] it follows that u is continuous up to the

boundary. Finally, by considering u ∗ ηε and f ∗ ηε, where ηε is a standard molli�er,

it is not di�cult to see that u is regular in the interior of Ω by applying a standard

bootstrap argument (see [18, Theorem 5]).

Also, it is worth pointing out that the solution found in Theorem 2.1.1 is unique,

under a suitable condition on the nonlinearity.

Corollary 2.1.2. Under the same assumptions of Theorem 2.1.1 and if in addition

there exists a k ∈ N such that

λk <
f(x, τ)− f(x, t)

τ − t
< λk+1 for any τ, t ∈ R with τ 6= t and a.e. x ∈ Ω . (2.1.5)

Then the weak solution of problem (2.1.1) is unique.

The chapter is organized as follows. In Section 2.2 we collect some preliminary

estimates on the primitive of f and an useful technical lemma. In Section 2.3 we prove

Theorem 2.1.1 performing the classical Saddle Point Theorem.

2.2 Some preliminary estimates and a technical result

Here we use condition (2.1.2) on f to deduce some preliminary estimates involving its

primitive F with respect to the second variable, that is

F (x, t) =

∫ t

0

f(x, τ)dτ. (2.2.1)
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At �rst we immediately notice that, by integrating (2.1.2), it follows that

|F (x, t)| 6 a(x) |t|+ b
|t|2

2
for any t ∈ R and a.e. x ∈ Ω. (2.2.2)

Moreover, by also exploiting the notations introduced in (2.1.4) we get the following

result.

Lemma 2.2.1. Assume f : Ω × R → R is a Carathéodory function satisfying the

condition (2.1.2). Then, the primitive function F veri�es the following inequalities

lim sup
|t|→∞

F (x, t)

t2
6
α(x)

2
, (2.2.3)

and

lim inf
|t|→∞

F (x, t)

t2
>
α(x)

2
, (2.2.4)

for a.e. x ∈ Ω and for any t ∈ R, where α and α are de�ned as in (2.1.4).

Proof. By (2.1.4), for all ε > 0 there exists R > 0 such that

f(x, t)

t
− α(x) < ε ∀ |t| > R. (2.2.5)

Integrating and recalling (2.2.2) we get

F (x, t) 6 |F (x,R)|+
∫ |t|
R

f(x, τ)dτ

6 a(x)R+ b
R2

2
+
α(x) + ε

2
(t2 −R2) ∀ |t| > R.

(2.2.6)

Therefore

lim sup
|t|→+∞

F (x, t)

t2
6
α(x) + ε

2

for every ε > 0, and so (2.2.3) follows. In analogous way one can prove (2.2.4).

In order to prove the compactness condition necessary to apply the variational

theorem, we will need the following technical lemma.

Lemma 2.2.2. Let Ω be a measurable subset of Rn and let {ϕj}j∈N be a sequence of

functions of L2(Ω). If

ϕj ⇀ ϕ in L2(Ω), (2.2.7)

and there exists two functions ψ1, ψ2 ∈ L2(Ω) such that

ψ1(x) 6 lim inf
j→+∞

ϕj(x) 6 lim sup
j→+∞

ϕj(x) 6 ψ2(x)

a.e. in Ω, then

ψ1(x) 6 ϕ(x) 6 ψ2(x)

a.e. in Ω.
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Proof. We prove that ψ1(x) 6 ϕ(x) (the proof that ϕ(x) 6 ψ2(x) is similar).

Case 1. We �rst consider the case when

lim inf
j→+∞

ϕj(x) > ψ1(x) a.e. in Ω. (2.2.8)

Let βj := (ϕj − ψ1)+ = max {ϕj − ψ1, 0}. By the Fatou Lemma we have

lim inf
j→+∞

∫
Ω

βj(x)η(x)dx >
∫

Ω

lim inf
j→+∞

βj(x)η(x)dx > 0 (2.2.9)

for all η ∈ L2(Ω) with η > 0 a.e. in Ω. Now we have that∫
Ω

(ϕj − ψ1)+(x)η(x)dx =

∫
{x∈Ω:ϕj(x)>ψ1(x)}

(ϕj − ψ1)(x)η(x)dx

=

∫
Ω

(ϕj − ψ1)(x)η(x)dx−
∫
{x∈Ω:ϕj(x)<ψ1(x)}

(ϕj − ψ1)(x)η(x)dx.

(2.2.10)

Moreover, by using Hölder inequality we get∣∣∣∣∣
∫
{x∈Ω: ϕj(x)<ψ1(x)}

(ϕj − ψ1)(x)η(x)dx

∣∣∣∣∣
64

(∫
Ω

(|ϕj(x)|2 + |ψ1(x)|2)dx

)1/2
(∫
{x∈Ω: ϕj(x)<ψ1(x)}

|η(x)|2 dx

)1/2

.

(2.2.11)

Since by (2.2.7) the sequence {ϕj}j∈N is bounded in L2(Ω) (see [20, Proposition III.5]),

the �rst term of the right-hand side of (2.2.11) is �nite, therefore

4

(∫
Ω

(|ϕj(x)|2 + |ψ1(x)|2)dx

)1/2
(∫
{x∈Ω: ϕj(x)<ψ1(x)}

|η(x)|2 dx

)1/2

6C

(∫
{x∈Ω: ϕj(x)<ψ1(x)}

|η(x)|2 dx

)1/2
(2.2.12)

with C a positive constant independent of j. Let gj := η2χ{x∈Ω: ϕj(x)<ψ1(x)}, denoting

with χ the characteristic function on {x ∈ Ω : ϕj(x) < ψ1(x)}, and set

A := {x ∈ Ω : gj(x) 6→ 0 as j → +∞} .

If x ∈ A then we can construct a subsequence such that ϕjk(x) < ψ1(x), so passing to

the limit we get

lim inf
j→+∞

ϕj(x) 6 lim inf
k→+∞

ϕjk(x) 6 ψ1(x).

By comparing the last inequality and (2.2.8) we see that the measure of A is equal to

0 and so it follows that gj(x)→ 0 a.e. in Ω. Since |gj | 6 η2 ∈ L1(Ω), by the Lebesgue

Dominated Convergence Theorem we have

lim
j→+∞

∫
Ω

gj(x)dx = lim
j→+∞

∫
{x∈Ω:ϕj(x)<ψ1(x)}

|η(x)|2 dx = 0. (2.2.13)
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By (2.2.9)�(2.2.13) we get

lim inf
j→+∞

∫
Ω

(ϕj − ψ1)(x)η(x)dx = lim inf
j→+∞

∫
Ω

(ϕj − ψ1)+(x)η(x)dx > 0

and so by (2.2.7) it follows that∫
Ω

(ϕ− ψ1)(x)η(x)dx > 0 ∀η ∈ L2(Ω) (2.2.14)

and from this we get

ϕ(x) > ψ1(x) a.e. inΩ

concluding the proof.

Case 2. Now we assume that

lim inf
j→+∞

ϕj(x) > ψ1(x) a.e. in Ω.

For an arbitrary ε > 0 we set γj := ϕj + ε, therefore

lim inf
j→+∞

γj(x) > ψ1(x) + ε > ψ1(x) a.e. inΩ

and

γj ⇀ ϕ+ ε inL2(Ω).

So, by Case 1 we have

ϕ(x) + ε > ψ1(x) a.e. in Ω

and for the arbitrariness of ε we can conclude the proof.

2.3 Main results

For the proof of Theorem 2.1.1, we observe that problem (2.1.3) has a variational

structure, indeed it is the Euler-Lagrange equation of the functional J : Z → R
de�ned as follows

J (u) =
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy −
∫

Ω

F (x, u(x))dx .

Note that the functional J is Fréchet di�erentiable in u ∈ Z and for any ϕ ∈ Z

〈J ′(u), ϕ〉 =

∫∫
R2n

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

−
∫

Ω

f(x, u(x))ϕ(x) dx .
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Thus, critical points of J are solutions of problem (2.1.3). In order to �nd these critical

points we will divide the proof in two cases. At �rst, when α(x) < λ1 the existence

of the solution of problem (2.1.3) follows from the Weierstrass Theorem (i.e. by direct

minimization). When λk < α(x) 6 α < λk+1 for some k ∈ N, we will make use of

the Saddle Point Theorem (see [66, 67]). For this, as usual for minimax theorems, we

have to check that the functional J has a particular geometric structure (as stated,

in our case, in conditions (I3) and (I4) of [67, Theorem 4.6]) and that it satis�es the

Palais�Smale compactness condition (see, for instance, [67, page 3]).

2.3.1 The �rst case

In this subsection, in order to apply the Weierstrass Theorem we �rst verify that the

functional J satis�es the following geometric feature.

Proposition 2.3.1. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4) and let f : Ω× R→ R be a Carathéodory function verifying (2.1.2). Moreover,

let α(x) < λ1 a.e. in Ω.

Then, the functional J veri�es

lim inf
‖u‖Z→+∞

J (u)

‖u‖2Z
> 0. (2.3.1)

Proof. Let {uj}j∈N be a sequence in Z such that ‖uj‖Z → +∞. Since Z is a re�exive

space (being a Hilbert space, by Lemma 1.1.3), up to a subsequence, there exists u ∈ Z
such that uj/ ‖uj‖Z converges to u weakly in Z. Moreover, by applying Lemma 1.1.2

and [20, Theorem IV.9]

uj
‖uj‖Z

→ u in Lq(Rn) ∀q ∈ [1, 2∗)

uj
‖uj‖Z

→ u a.e. in Rn
(2.3.2)

as j → +∞ and ‖u‖Z 6 1. Now, notice that 2∗ > 2, by (1.1.6). Therefore by (2.2.2)

and the �rst observation in (2.3.2)

|F (x, uj(x))|
‖uj‖2Z

6
a(x) |uj(x)|+ b

|uj(x)|2
2

‖uj‖2Z
→ b

2
|u(x)|2 in L1(Ω). (2.3.3)

So, by (2.3.3) and [20, Theorem IV.9], up to a subsequence, there exists a function

h ∈ L1(Ω) such that
|F (x, uj(x))|
‖uj‖2Z

6 h(x) a.e. in Ω. (2.3.4)
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By (2.3.4) and the generalized Fatou Lemma it follows that

lim sup
j→+∞

∫
Ω

F (x, uj(x))

‖uj‖2Z
dx 6

∫
Ω

lim sup
j→+∞

F (x, uj(x))

‖uj‖2Z
dx. (2.3.5)

Now, we claim that

lim sup
j→+∞

F (x, uj(x))

‖uj‖2Z
6
α(x)

2
|u(x)|2 (2.3.6)

a.e. in Ω. By �xing ε > 0 and x ∈ Ω, by (2.3.2) there exists jε, x > 0 such that∣∣∣∣∣ |uj(x)|2

‖uj‖2Z
− |u(x)|2

∣∣∣∣∣ < ε (2.3.7)

for j > jε, x. Moreover, by (2.2.3) there exists tε, x > 0 such that

F (x, t)

t2
6
α(x)

2
+ ε (2.3.8)

for any |t| > tε. Now, if |uj(x)| > tε, x by (2.3.7) and (2.3.8) it follows that

F (x, uj(x))

‖uj‖2Z
6

(
α(x)

2
+ ε

)
|uj(x)|2

‖uj‖2Z

=

(
α(x)

2
+ ε

)
|u(x)|2 +

(
α(x)

2
+ ε

)(
|uj(x)|2

‖uj‖2Z
− |u(x)|2

)

6

(
α(x)

2
+ ε

)
|u(x)|2 +

(
α+(x)

2
+ ε

)
ε,

(2.3.9)

for j > jε, x, with α+(x) = max {α(x), 0}. Since ‖uj‖Z → +∞, if |uj(x)| 6 tε, x for

j > jε, x su�ciently large, by (2.2.2) we get

F (x, uj(x))

‖uj‖2Z
6
‖a‖L∞(Rn) tε, x +

b

2
t2ε, x

‖uj‖2Z
6

(
α+(x)

2
+ ε

)
ε. (2.3.10)

By combining (2.3.9) and (2.3.10), for j > jε, x we obtain

F (x, uj(x))

‖uj‖2Z
6

(
α(x)

2
+ ε

)
|u(x)|2 +

(
α+(x)

2
+ ε

)
ε,

and so by sending j → +∞ and then ε→ 0 we get (2.3.6), proving our claim. Therefore,

by (2.3.5), (2.3.6) and remembering that α(x) < λ1, we have

lim sup
j→+∞

∫
Ω

F (x, uj(x))

‖uj‖2Z
dx 6

∫
Ω

α(x)

2
|u(x)|2 dx

 <
λ1

2

∫
Ω

|u(x)|2 dx if u 6≡ 0,

= 0 if u ≡ 0,
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so that

lim inf
j→+∞

J (uj)

‖uj‖2Z
=

1

2
− lim sup

j→+∞

∫
Ω

F (x, uj(x))

‖uj‖2Z
dx

>


1

2
− λ1

2

∫
Ω

|u(x)|2 dx if u 6≡ 0,

1

2
if u ≡ 0.

(2.3.11)

Now, by (1.1.7), (1.2.7) and remembering that ‖u‖Z 6 1, we get

λ1

2

∫
Ω

|u(x)|2 dx 6
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy =
1

2
‖u‖Z 6

1

2
(2.3.12)

therefore

lim inf
j→+∞

J (uj)

‖uj‖2Z
>

 0 if u 6≡ 0,
1

2
if u ≡ 0,

and so we have (2.3.1).

Proof of Theorem 2.1.1, when α(x) < λ1

Let us note that the map u 7→ ‖u‖2Z is lower semicontinuous in the weak topology of

Z, while the map u 7→
∫

Ω
F (x, u) is continuous in the weak topology of Z. Indeed,

if {uj}j∈N is a sequence in Z such that uj ⇀ u in Z, then by Lemma 1.1.2 and [20,

Theorem IV.9], up to a subsequence, uj converges to u strongly in Lq(Ω) for any

q ∈ [1, 2∗) and a.e. in Ω and it is dominated in Lq(Ω). Since F is a Carathéodory

function and by (2.2.2) it follows that

|F (x, uj(x))| 6 a(x) |uj(x)|+ b

2
|uj(x)|2 ,

by applying the Lebesgue Dominated Convergence Theorem we have the continuity

of u 7→
∫

Ω
F (x, u). So the functional J is lower semicontinuous and by using also

(2.3.1) to obtain coerciveness we can apply the Weierstrass Theorem in order to �nd

a minimum of J on Z, which is clearly a solution of problem (2.1.3).

2.3.2 The second case

Here, we assume that λk < α(x) 6 α(x) < λk+1 for some k ∈ N. Before proving our

results, we recall some notations introduced in Section 1.2.

In particular, in what follows, ek will be the k-th eigenfunction corresponding to

the eigenvalue λk of −LK for any k ∈ N. That is, ek is a non�trivial weak solution of

the following eigenvalue problem{
−LKu = λku in Ω

u = 0 in Rn \ Ω
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Also, we consider

Pk+1 :=
{
u ∈ Z : 〈u, ej〉Z = 0 ∀j = 1, . . . , k

}
as de�ned in Proposition 1.2.2, while Hk := span {e1, . . . , ek} will denote the linear

subspace generated by the �rst k eigenfunctions of −LK for any k ∈ N. It is immediate

to observe that Pk+1 = H⊥k with respect to the scalar product in Z. Moreover, since Z

is a Hilbert space (thanks to Lemma 1.1.3), we can divide it as Z = Hk ⊕ Pk+1.

Now we prove that the functional J has the geometric features required by the

Saddle Point Theorem.

Proposition 2.3.2. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4) and let f : Ω× R→ R be a Carathéodory function verifying (2.1.2). Moreover,

assume there exists k ∈ N such that λk < α(x) 6 α(x) < λk+1 a.e. in Ω.

Then, the functional J veri�es

lim sup
u∈Hk

‖u‖Z→+∞

J (u)

‖u‖2Z
< 0. (2.3.13)

Proof. Let {uj}j∈N be a sequence in Hk such that ‖uj‖Z → +∞. Since Hk is �nite

dimensional there exists u ∈ Hk such that uj/ ‖uj‖Z converges to u strongly in Z.

Moreover, by applying Lemma 1.1.2 and [20, Theorem IV.9], up to a subsequence

uj
‖uj‖Z

→ u in Lq(Rn) ∀q ∈ [1, 2∗)

uj
‖uj‖Z

→ u a.e. in Rn
(2.3.14)

as j → +∞ and ‖u‖Z = 1. Now, by using (2.2.4) and proceeding as in the proof of

claim (2.3.6), it follows that

lim inf
j→+∞

F (x, uj(x))

‖uj‖2Z
>
α(x)

2
|u(x)|2 , (2.3.15)

a.e. in Ω. So by (2.3.15), the Fatou Lemma and the fact that α(x) > λk we get

lim sup
j→+∞

J (uj)

‖uj‖2Z
6

1

2
−
∫

Ω

α(x)

2
|u(x)|2 dx < 1

2
− λk

2

∫
Ω

|u(x)|2 dx. (2.3.16)

Now, since u ∈ Hk, then we can write

u(x) =

k∑
i=1

uiei(x)
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with ui ∈ R, i = 1, . . . , k. Moreover, since {e1, . . . , ek, . . .} is an orthonormal basis

of L2(Ω) and an orthogonal one of Z (see Proposition 1.2.2�(vi)) and by (1.2.8) and

(1.2.11), we get

‖u‖2Z =

k∑
i=1

u2
i ‖ei‖

2
Z =

k∑
i=1

λiu
2
i 6 λk

k∑
i=1

u2
i = λk

∫
Ω

|u(x)|2 dx. (2.3.17)

So, by (2.3.16), (2.3.17) and the fact that ‖u‖Z = 1, we get (2.3.13).

Also, Proposition 2.3.2 has the following counterpart.

Proposition 2.3.3. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4) and let f : Ω× R→ R be a Carathéodory function verifying (2.1.2). Moreover,

assume there exists k ∈ N such that λk < α(x) 6 α(x) < λk+1 a.e. in Ω.

Then, the functional J veri�es

lim inf
u∈Pk+1

‖u‖Z→+∞

J (u)

‖u‖2Z
> 0. (2.3.18)

Proof. The proof is similar to the proof of Proposition 2.3.1. In this case α(x) < λk+1

for some k ∈ N, so (2.3.11) becomes

lim inf
j→+∞

J (uj)

‖uj‖2Z
>


1

2
− λk+1

2

∫
Ω

|u(x)|2 dx if u 6≡ 0,

1

2
if u ≡ 0.

In place of (2.3.12), by using (1.2.9), we get

λk+1

2

∫
Ω

|u(x)|2 dx 6
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy (2.3.19)

and from this point we can conclude exactly as in the proof of Proposition 2.3.1.

Now, as usual in variational methods, we prove the boundedness of a Palais-Smale

sequence. We recall that {uj}j∈N is a Palais-Smale sequence for J at level c ∈ R if it

veri�es

J (uj)→ c, (2.3.20)

and

sup
{∣∣∣〈J ′(uj), ϕ〉∣∣∣ : ϕ ∈ Z, ‖ϕ‖Z = 1

}
→ 0, (2.3.21)

as j → +∞.

Proposition 2.3.4. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4) and let f : Ω× R→ R be a Carathéodory function verifying (2.1.2). Moreover,
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assume there exists k ∈ N such that λk < α(x) 6 α(x) < λk+1. Finally, let c ∈ R and

let {uj}j∈N be a sequence in Z verifying (2.3.20) and (2.3.21).

Then {uj}j∈N is bounded in Z.

Proof. We argue by contradiction and suppose that {uj}j∈N is unbounded. As usual,

up to a subsequence we can assume ‖uj‖Z → +∞ as j → +∞ and there exists u ∈ Z
such that uj/ ‖uj‖Z converges to u weakly in Z, that is∫∫

R2n

(
uj(x)

‖uj‖Z
− uj(y)

‖uj‖Z

)
(ϕ(x)− ϕ(y))K(x− y) dx dy →∫∫

R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy for any ϕ ∈ Z
(2.3.22)

as j → +∞. Moreover, by applying Lemma 1.1.2 and [20, Theorem IV.9], up to a

subsequence
uj
‖uj‖Z

→ u in Lq(Rn) ∀q ∈ [1, 2∗)

uj
‖uj‖Z

→ u a.e. in Rn
(2.3.23)

as j → +∞. Moreover, by (2.1.2) and the �rst observation in (2.3.23), since 2 < 2∗,

we get
|f(x, uj)|
‖uj‖Z

6
a(x)

‖uj‖Z
+ b

|uj |
‖uj‖Z

→ b |u| in L2(Ω) (2.3.24)

as j → +∞. So
{
f(x, uj)/ ‖uj‖Z

}
j∈N is bounded in L2(Ω) and we can assume that

there exists w ∈ L2(Ω) such that

f(x, uj)

‖uj‖Z
⇀ w in L2(Ω). (2.3.25)

By (2.3.21) we have

〈J ′(uj), v〉 =

∫∫
R2n

(
uj(x)− uj(y)

)(
v(x)− v(y)

)
K(x− y) dx dy

−
∫

Ω

f(x, uj(x))v(x) dx → 0 (2.3.26)

for all v ∈ Z. Moreover, by (2.3.22) with ϕ = v and (2.3.25) we have

〈J ′(uj), v〉
‖uj‖Z

−→
∫∫

R2n

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy

−
∫

Ω

w(x)v(x)dx in L2(Ω). (2.3.27)

So, by combining (2.3.26) with (2.3.27) we get∫∫
R2n

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy −

∫
Ω

w(x)v(x)dx = 0
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for all v ∈ Z and we deduce that u is a weak solution of problem{
−LKu(x) = w(x) in Ω,

u = 0 in Rn \ Ω.
(2.3.28)

Now we claim that

there exists m ∈ L∞(Ω) such that α(x) 6 m(x) 6 α(x) a.e. in Ω

and w = mu.
(2.3.29)

If x ∈ Ω so that u(x) > 0, then uj(x)→ +∞ and so, by using (2.1.4), it follows that

lim inf
j→+∞

f(x, uj(x))

‖uj‖Z
= lim inf

j→+∞

f(x, uj(x))

uj(x)

uj(x)

‖uj‖Z
> α(x)u(x) (2.3.30)

and in the same way

lim sup
j→+∞

f(x, uj(x))

‖uj‖Z
6 α(x)u(x). (2.3.31)

On the other hand, if x ∈ Ω so that u(x) < 0, then uj(x) → −∞ and we get the

reversed sign inequality, with

lim inf
j→+∞

f(x, uj(x))

‖uj‖Z
6 α(x)u(x) (2.3.32)

and with

lim sup
j→+∞

f(x, uj(x))

‖uj‖Z
> α(x)u(x). (2.3.33)

Finally, when x ∈ Ω so that u(x) = 0, by (2.1.2) we have

|f(x, uj(x))|
‖uj‖Z

6
a(x)

‖uj‖Z
+ b
|uj(x)|
‖uj‖Z

→ 0 (2.3.34)

as j → +∞. So, by (2.3.25), (2.3.30)�(2.3.34) and Lemma 2.2.2, we get

α(x)u(x) 6 w(x) 6 α(x)u(x) if u(x) > 0,

α(x)u(x) 6 w(x) 6 α(x)u(x) if u(x) < 0 and

w(x) = 0 if u(x) = 0.

Now, we set

m(x) :=


w(x)

u(x)
if u 6= 0,

0 if u = 0,
(2.3.35)

and we observe that m is measurable and bounded, since λk < α(x) 6 m(x) 6 α(x) <

λk+1 a.e. in Ω, and w = mu. This establishes (2.3.29).
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So, by (2.3.28) and (2.3.29) we have proved that u is a weak solution of problem{
−LKu(x) = m(x)u(x) in Ω,

u = 0 in Rn \ Ω.
(2.3.36)

Now, we can write u = u1+u2, where u1 ∈ Hk and u2 ∈ Pk+1. Multiplying the equation

in (2.3.36) by u1 and u2, we obtain∫
Ω

m(x) |u1(x)|2 dx+

∫
Ω

m(x)u1(x)u2(x)dx =

∫∫
R2n

|u1(x)− u1(y)|2K(x− y)dxdy,∫
Ω

m(x) |u2(x)|2 dx+

∫
Ω

m(x)u1(x)u2(x)dx =

∫∫
R2n

|u2(x)− u2(y)|2K(x− y)dxdy

so that∫∫
R2n

|u1(x)− u1(y)|2K(x− y) dx dy −
∫

Ω

m(x) |u1(x)|2 dx

=

∫∫
R2n

|u2(x)− u2(y)|2K(x− y) dx dy −
∫

Ω

m(x) |u2(x)|2 dx.
(2.3.37)

Now we apply (2.3.17) to the function u1 ∈ Hk and we conclude that∫∫
R2n

|u1(x)− u1(y)|2K(x− y) dx dy 6 λk

∫
Ω

|u1(x)|2 dx. (2.3.38)

Also, by (1.2.9) and the fact that u2 ∈ Pk+1∫∫
R2n

|u2(x)− u2(y)|2K(x− y) dx dy > λk+1

∫
Ω

|u2(x)|2 dx. (2.3.39)

Therefore, by (2.3.37), (2.3.38) and (2.3.39) and by considering that

λk −m(x) 6 λk − α(x) < 0 and λk+1 −m(x) > λk+1 − α(x) > 0 (2.3.40)

we get

0 >
∫

Ω

(λk −m(x)) |u1(x)|2 dx >
∫

Ω

(λk+1 −m(x)) |u2(x)|2 dx > 0, (2.3.41)

so that all integrals are zero. But by (2.3.40) we get u1 = u2 = 0 and so u ≡ 0.

Now, by (2.3.21)

0← 〈J
′(uj), uj〉
‖uj‖2Z

= 1−
∫

Ω

f(x, uj(x))

‖uj‖Z
uj(x)

‖uj‖Z
dx, (2.3.42)

where, since
{
f(x, uj)/ ‖uj‖Z

}
j∈N is bounded in L2(Ω) and by using the �rst observa-

tion in (2.3.23) and (2.3.25), the right-hand side veri�es∫
Ω

f(x, uj(x))

‖uj‖Z
uj(x)

‖uj‖Z
dx =

∫
Ω

f(x, uj(x))

‖uj‖Z

(
uj(x)

‖uj‖Z
− u(x)

)
dx

+

∫
Ω

f(x, uj(x))

‖uj‖Z
u(x)dx→

∫
Ω

w(x)u(x)dx.

(2.3.43)

as j → +∞. So by (2.3.42) and (2.3.43), it follows that

∫
Ω

w(x)u(x)dx = 1 and we get

a contradiction since u ≡ 0.
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Proof of Theorem 2.1.1, when λk < α(x) 6 α(x) < λk+1

At �rst, we prove that J satis�es the geometric structure required by the Saddle Point

Theorem. By Proposition 2.3.3 it follows that for any M > 0 there exists R > 0 such

that if u ∈ Pk+1 and ‖u‖Z > R then J (u) > M . If u ∈ Pk+1 with ‖u‖Z 6 R, by

applying (1.2.9), (2.2.2) and Hölder inequality we have

J (u) > −
∫

Ω

F (x, u(x))dx > −
∫

Ω

a(x) |u(x)| dx− b

2

∫
Ω

|u(x)|2 dx

> −‖a‖L2(Ω) ‖u‖L2(Ω) −
b

2
λ−1
k+1 ‖u‖

2
Z > −CR

for some constant CR = C(R,Ω) > 0. So, we get

J (u) > −CR ∀u ∈ Pk+1. (2.3.44)

By Proposition 2.3.2 we can choose T > 0 in such way that for any u ∈ Hk with

‖u‖Z = T we have

sup
u∈Hk
‖u‖Z=T

J (u) < −CR 6 inf
u∈Pk+1

J (u), (2.3.45)

We have thus proved that J has the geometric structure of the Saddle Point Theorem

(see [67, Theorem 4.6]). Now it remains to check the validity of the Palais-Smale con-

dition. Let {uj}j∈N be a sequence in Z that satis�es (2.3.20) and (2.3.21). Since, by

Proposition 2.3.4, {uj}j∈N is bounded and Z is a re�exive space (being a Hilbert space,

by Lemma 1.1.3), up to a subsequence, there exists u ∈ Z such that uj converges to u

weakly in Z, that is∫∫
R2n

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy →∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy for any ϕ ∈ Z
(2.3.46)

as j → +∞. Moreover, by applying Lemma 1.1.2 and [20, Theorem IV.9]

uj → u in Lq(Rn) ∀q ∈ [1, 2∗)

uj → u a.e. in Rn
(2.3.47)

as j → +∞. By (2.3.21) we have

0←〈J ′(uj), (uj − u)〉 =

∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy

−
∫∫

R2n

(uj(x)− uj(y))(u(x)− u(y))K(x− y) dx dy

−
∫

Ω

f(x, uj(x))(uj(x)− u(x))dx.

(2.3.48)
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Now, since {uj}j∈N is bounded in L2(Ω), by (2.1.2) also {f(x, uj)}j∈N is bounded in

L2(Ω) and so, by (2.3.47) and Hölder inequality, we get∣∣∣∣∫
Ω

f(x, uj(x))(uj(x)− u(x))dx

∣∣∣∣ 6 ‖uj − u‖L2(Ω)

(∫
Ω

|f(x, uj(x))|2 dx
)1/2

→ 0

(2.3.49)

as j → +∞. By (2.3.46) with ϕ = u, (2.3.48) and (2.3.49) it follows that∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy →
∫∫

R2n

|u(x)− u(y)|2K(x− y) dx dy

so that

‖uj‖Z → ‖u‖Z (2.3.50)

as j → +∞. Finally we have that

‖uj − u‖2Z = ‖uj‖2Z + ‖u‖2Z − 2

∫∫
R2n

(uj(x)− uj(y))(u(x)− u(y))K(x− y) dx dy

→ 2 ‖u‖2Z − 2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy = 0

as j → +∞, thanks to (2.3.46) and (2.3.50). Thus, we have proved the Palais-Smale

condition and we can make use of the Saddle Point Theorem in order to obtain a

critical point u ∈ Z of J .

2.3.3 Proof of Corollary 2.1.2

We conclude this chapter by proving a uniqueness result for problem (2.1.3). For this

we need the further condition (2.1.5) for the nonlinearity f .

Let u1, u2 ∈ Z be two solutions of problem (2.1.3). Then w := u1−u2 is a solution

of the following problem{
−LKw(x) = f(x, u1(x))− f(x, u2(x)) in Ω,

w = 0 in Rn \ Ω.
(2.3.51)

Now, by setting

m(x) :=


f(x, u1(x))− f(x, u2(x))

u1(x)− u2(x)
if u1(x) 6= u2(x),

0 if u1(x) = u2(x),
(2.3.52)

we get that w is a solution of problem (2.3.36). Moreover, by (2.1.5), m is a measurable

function that veri�es λk < m(x) < λk+1 a.e. in Ω. As seen in the proof of Proposition

2.3.4, problem (2.3.36) has a unique solution u ≡ 0 and so we get u1 = u2 concluding

the proof.
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Chapter 3

A problem at resonance

3.1 Introduction

In this chapter we consider the non�local counterpart of semilinear elliptic partial

di�erential equations of the type{
−∆u = λu+ f(x, u) in Ω

u = 0 on ∂Ω ,
(3.1.1)

namely {
−LKu = λa(x)u+ f(x, u) in Ω

u = 0 in Rn \ Ω .
(3.1.2)

Here, Ω ⊂ Rn is an open, bounded set, λ is a real parameter and LK is the non�local

operator de�ned as in (0.0.2) with the kernel K : Rn \{0} → (0,+∞) satisfying (0.0.3)

and (0.0.4) for a �xed s ∈ (0, 1). Moreover, the perturbation f : Ω × R → R is a

function such that

f ∈ C(Ω× R,R); (3.1.3)

there exists a constant M > 0 such that |f(x, t)| 6M for any (x, t) ∈ Ω×R; (3.1.4)

F (x, t) =

∫ t

0

f(x, τ)dτ → +∞ as |t| → +∞ uniformly for x ∈ Ω. (3.1.5)

While, a : Ω→ R is such that

a is a positive Lipschitz continuous function in Ω . (3.1.6)

One of the motivations for studying (3.1.2) is trying to extend some important

results, which are well known for the classical case of the Laplacian −∆ (see, e.g., [67,

Chapter 4]), to a non�local setting. The conditions we consider on a and f are classical
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in the nonlinear analysis (see, e.g., conditions (p1), (p2) and (p7) in [67, Theorem 4.12])

and, roughly speaking, they state that problem (3.1.2) is a suitable perturbation from

the following non-homogenous eigenvalue problem{
−LKu = λa(x)u in Ω

u = 0 in Rn \ Ω .
(3.1.7)

We recall that there exists a non-decreasing sequence of positive eigenvalues λk for

which (3.1.7) admits non�trivial solutions, as showed in Section 1.2 (with q ≡ 0).

Finally, note that, thanks to (3.1.5), the nonlinearity f cannot be the trivial func-

tion. As a model for f we can take the functions

f(x, t) = M > 0 or f(x, t) = b(x) arctan(t) ,

with b ∈ Lip(Ω) and b > 0 in Ω . In the �rst case u ≡ 0 does not solve (3.1.2), while in

the second one the trivial function is a solution of (3.1.2) . In general, the function u ≡ 0

in Rn is a solution of problem (3.1.2) if and only if f(·, 0) = 0 . This is an important

di�erence with respect to the other works in the subject, such as [72, 74, 75, 77, 80, 81],

where the trivial function is always a solution.

Such as in the previous chapter, the objective here is to �nd solutions for (3.1.2) via

variational methods. For this, �rstly we need the weak formulation of (3.1.2), which is

given by the following problem

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy = λ

∫
Ω

a(x)u(x)ϕ(x) dx

+

∫
Ω

f(x, u(x))ϕ(x) dx ∀ϕ ∈ Z

u ∈ Z ,

(3.1.8)

where Z is the functional space introduced in Chapter 1.

The main result of the present chapter can be stated as follows:

Theorem 3.1.1. Let Ω be an open, bounded subset of Rn. Let K : Rn \{0} → (0,+∞)

be a function satisfying (0.0.3) and (0.0.4) and let f : Ω × R → R and a : Ω → R be

two functions verifying (3.1.3)�(3.1.5) and (3.1.6), respectively. Moreover, assume that

λ is an eigenvalue of the non-homogeneous linear problem in (3.1.7).

Then, problem (3.1.2) admits a weak solution u ∈ Z.

In the classical case of the Laplacian −∆ the counterpart of Theorem 3.1.1 is given

in [67, Theorem 4.12]: in this sense Theorem 3.1.1 may be seen as the natural extension

of classical results to the non�local fractional setting.

This chapter is organized as follows. In Section 3.2 we will give some notations

and we will state and prove some technical lemmas useful along the chapter. While in
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Section 3.3 we will prove Theorem 3.1.1 by making use of the classical Saddle Point

Theorem.

3.2 Some technical lemmas

In this section we prove some technical lemmas, which will be useful in order to ap-

ply the Saddle Point Theorem to problem (3.1.8) . For this, we recall some notations

introduced in Section 1.2.

Here, by denoting with µ(·) = a(·)dx , we de�ne

L2(Ω, µ) :=
{
g : Ω→ R s.t. g is measurable in Ω and∫

Ω

a(x)|g(x)|2 dx =

∫
Ω

|g|2 dµ < +∞
}
.

By (3.1.6) it follows that a ∈ L∞(Ω) and so all the embeddings properties of Z into

the usual Lebesgue space L2(Ω) still hold true in L2(Ω, µ).

In what follows, without loss of generality, we will �x λ = λk with k ∈ N such that

λk < λk+1 and we will denote by Hk the linear subspace of Z generated by the �rst k

eigenfunctions of −LK , i.e.

Hk := span {e1, . . . , ek} ,

while Pk+1 will be the space de�ned in (1.2.10) . Here ej and λj , j ∈ N , are the

eigenfunctions and the eigenvalues of −LK , as de�ned in Proposition 1.2.2 .

It is immediate to observe that Pk+1 = H⊥k with respect to the scalar product in Z.

Thus, since Z is a Hilbert space (thanks to Lemma 1.1.3), we can write it as a direct

sum as follows

Z = Hk ⊕ Pk+1 .

Moreover, since {e1 , . . . , ek , . . . } is an orthogonal basis of Z , it follows that

Pk+1 = span {ej : j > k + 1} .

Also we will set

E0
k := span {ej : λj = λk} and E−k := span {ej : λj < λk} . (3.2.1)

Note that with this notation, if u ∈ Hk, then we can write it as

u = u0 + u− , with u0 ∈ E0
k and u− ∈ E−k .

Now, we are ready to introduce and prove some technical estimates from the prop-

erties of eigenvalues and eigenfunctions of −LK .
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Lemma 3.2.1. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and (0.0.4)

and let a : Ω→ R verify (3.1.6) .

Then, for any u ∈ Pk+1∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy − λk
∫

Ω

a(x)|u(x)|2 dx >

(
1− λk

λk+1

)
‖u‖2Z .

Proof. If u ≡ 0, then the assertion is trivial. Now, let u ∈ Pk+1\{0} . By the variational
characterization of λk+1 given in (1.2.9) we get that

‖u‖2L2(Ω, µ) 6
1

λk+1
‖u‖2Z .

As a consequence of this and taking into account that λk is positive (since λk > λ1 > 0),

we obtain∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy − λk
∫

Ω

a(x)|u(x)|2 dx > ‖u‖2Z −
λk
λk+1

‖u‖2Z

=

(
1− λk

λk+1

)
‖u‖2Z ,

concluding the proof.

Note that, if λk = λk+1, then Lemma 3.2.1 is trivial. The interesting case is when

λk < λk+1 .

Lemma 3.2.2. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and (0.0.4)

and let a : Ω→ R verify (3.1.6) .

Then, there exists a positive constant M∗, depending on k, such that∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy − λk
∫

Ω

a(x)|u(x)|2 dx 6 −M∗‖u−‖2Z

for all u ∈ Hk, where u = u− + u0, u− ∈ E−k and u0 ∈ E0
k .

Proof. Of course, if u ≡ 0, then the assertion is trivial. Hence, assume that u ∈ Hk\{0} .
Let h ∈ N be the multiplicity of λk (h is �nite thanks to Proposition 1.2.2-(vii)), that

is suppose that

λk−h−1 < λk−h = · · · = λk < λk+1 . (3.2.2)

With this notation, u can be written as follows

u = u− + u0 ,

with

u− ∈ E−k = span {e1, . . . , ek−h−1} and u0 ∈ E0
k = span {ek−h, . . . , ek} .
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Notice that u0 is a linear combination of eigenfunctions corresponding to the same

eigenvalue λk−h = · · · = λk, hence it is also an eigenfunction corresponding to λk.

Hence, by (1.2.2),

‖u0‖2Z = λk‖u0‖2L2(Ω,µ).

Also, u− and u0 are orthogonal both in Z and in L2(Ω, µ), therefore

‖u‖2Z − λk‖u‖2L2(Ω, µ) = ‖u−‖2Z + ‖u0‖2Z − λk
(
‖u−‖2L2(Ω, µ) + ‖u0‖2L2(Ω, µ)

)
= ‖u−‖2Z − λk‖u−‖2L2(Ω, µ) .

(3.2.3)

Now, note that u− ∈ E−k = span {e1, . . . , ek−h−1} . Hence, by this and Proposition 1.2.3

we get

‖u−‖2Z 6 λk−h−1‖u−‖2L2(Ω, µ) . (3.2.4)

Finally, (3.2.3) and (3.2.4) yield

‖u‖2Z − λk‖u‖2L2(Ω, µ) = ‖u−‖2Z − λk‖u−‖2L2(Ω, µ)

6 ‖u−‖2Z −
λk

λk−h−1
‖u−‖2Z

=

(
1− λk

λk−h−1

)
‖u−‖2Z ,

which gives the desired assertion with

M∗ :=
λk

λk−h−1
− 1 .

Note that M∗ > 0, thanks to (3.2.2) .

Finally, in the next two results we discuss some properties of the function F de�ned

as in (3.1.5) .

Lemma 3.2.3. Let f : Ω× R→ R satisfy (3.1.3)�(3.1.5) .

Then, there exists a positive constant M̃ , depending on Ω, such that∣∣∣∣∫
Ω

F (x, u(x)) dx

∣∣∣∣ 6 M̃‖u‖Z

for all u ∈ Z .

Proof. Using the de�nition of F and (3.1.4), it is easy to see that∣∣∣∣∫
Ω

F (x, u(x)) dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

∫ u(x)

0

f(x, t) dt dx

∣∣∣∣∣ 6M

∫
Ω

|u(x)| dx ,

so that, by H®lder inequality and Lemma 1.1.2 we get∣∣∣∣∫
Ω

F (x, u(x)) dx

∣∣∣∣ 6M |Ω|1/2 ‖u‖L2(Ω) 6 M̃‖u‖Z (3.2.5)
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for all u ∈ Z, where M̃ is a positive constant depending on Ω. Hence, the assertion is

proved.

Lemma 3.2.4. Let f : Ω× R→ R satisfy (3.1.3)�(3.1.5) .

Then,

lim
u∈E0

k

‖u‖Z→+∞

∫
Ω

F (x, u(x)) dx = +∞ .

Proof. We argue by contradiction and suppose that there exists a positive constant C

and a sequence {uj}j∈N ⊂ E
0
k such that

tj := ‖uj‖Z → +∞ (3.2.6)

and ∫
Ω

F (x, uj(x))dx 6 C . (3.2.7)

Let vj := uj/‖uj‖Z . Of course, {vj}j∈N is bounded in Z. Hence, since E0
k is �nite

dimensional, there exists v ∈ E0
k such that vj converges to v strongly in Z. Note also

that v 6≡ 0, since

‖v‖ = lim
j→+∞

‖vj‖ = 1 .

Furthermore, recalling Lemma 1.1.2,

vj → v in Lq(Rn) for any q ∈ [1, 2∗) (3.2.8)

and, by applying [20, Theorem IV.9], up to a subsequence (still denoted by vj)

vj → v a.e. in Rn (3.2.9)

as j → +∞ .

Now, we de�ne i(r) := inf
x∈Ω, |t|>r

F (x, t) for r > 0. By (3.1.5) it follows that

lim
r→+∞

i(r) = +∞. (3.2.10)

Note that

inf
x∈Ω, t∈R

F (x, t) is �nite. (3.2.11)

Indeed, by (3.1.5) it follows that for any H > 0 there exists R > 0 such that

F (x, t) > H for any |t| > R and any x ∈ Ω. (3.2.12)

Moreover, if |t| 6 R, by (3.1.4) we have

|F (x, t)| 6M |t| 6MR =: CR, (3.2.13)
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for any x ∈ Ω . Hence, by (3.2.12) and (3.2.13) we can conclude that

F (x, t) > −CR for any (x, t) ∈ Ω× R ,

which implies (3.2.11) .

As a consequence of (3.2.11), we may de�ne

ω∗ := −min

{
−1, inf

x∈Ω, t∈R
F (x, t)

}
.

Notice that ω∗ > 0 and F (x, t) > −ω∗ for any x ∈ Ω and any t ∈ R. Now, we �x h > 0

and set Ωj, h = {x ∈ Ω : |tjvj(x)| > h}. Thus, we get∫
Ω

F (x, tjvj(x))dx =

∫
Ωj, h

F (x, tjvj(x))dx+

∫
Ω\Ωj, h

F (x, tjvj(x))dx

> |Ωj, h| i(h)− ω∗ |Ω| .
(3.2.14)

Since v 6≡ 0, there exists a set Ω] with
∣∣Ω]∣∣ > 0 and a constant δ > 0 such that

|v(x)| > δ a.e. x ∈ Ω]. Then, by (3.2.9) and Egorov Theorem, there exists a measurable

set Ω∗ ⊆ Ω] such that |Ω∗| > |Ω]|/2 > 0 and the limit in (3.2.9) is uniform in Ω∗. In

particular, if j is large enough,

sup
x∈Ω∗

|vj(x)− v(x)| 6 δ

4

and therefore |vj(x)| > 3δ/4 a.e. x ∈ Ω∗ . So, by (3.2.6), for h �xed above there exists

jh such that |tjvj(x)| > h for any j > jh and a.e. x ∈ Ω∗. As a consequence of this, we

have that Ω∗ ⊆ Ωj, h for j > jh. Finally, by (3.2.7) and (3.2.14), we have

C >
∫

Ω

F (x, tjvj(x))dx > |Ω∗| i(h)− ω∗ |Ω|

for j > jh. Passing to the limit as h→ +∞ and taking into account (3.2.10), we get a

contradiction. This proves the assertion.

3.3 An existence result

This section is devoted to the proof of Theorem 3.1.1, which is the main result of

the present chapter. At this purpose, �rst of all we observe that problem (3.1.8) has

a variational structure, indeed it is the Euler�Lagrange equation of the functional

J : Z → R de�ned as follows

J (u) =
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω

a(x)|u(x)|2 dx−
∫

Ω

F (x, u(x)dx ,

(3.3.1)
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where F was introduced in (3.1.5).

Note that the functional J is Fréchet di�erentiable in u ∈ Z and for any ϕ ∈ Z

〈J ′(u), ϕ〉 =

∫∫
R2n

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω

a(x)u(x)ϕ(x) dx−
∫

Ω

f(x, u(x))ϕ(x) dx .

Thus, critical points of J are weak solutions of problem (3.1.2). In order to �nd

these critical points, in the sequel we will apply the Saddle Point Theorem by Rabi-

nowitz (see [66, 67]). For this, as in the previous chapter, we have to verify that the

functional J satis�es both the appropriate geometric conditions (see (I3) and (I4) of

[67, Theorem 4.6]) and the Palais�Smale compactness condition (see [67, p. 3]).

3.3.1 Geometry of the functional J

In this subsection we will prove that the functional J has the geometric features

required by the Saddle Point Theorem.

Proposition 3.3.1. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4). Moreover, let λ = λk < λk+1 for some k ∈ N and let f and a be two functions

satisfying (3.1.3)�(3.1.5) and (3.1.6), respectively.

Then

lim inf
u∈Pk+1

‖u‖Z→+∞

J (u)

‖u‖2Z
> 0. (3.3.2)

Proof. Since u ∈ Pk+1, by Lemmas 3.2.1 and 3.2.3 we have

J (u) >
1

2

(
1− λk

λk+1

)
‖u‖2Z − M̃‖u‖Z .

Hence, dividing both the sides of this expression by ‖u‖2Z and passing to the limit as

‖u‖Z → +∞, we get (3.3.2), since λk < λk+1 by assumption.

Proposition 3.3.2. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4). Moreover, let λ = λk < λk+1 for some k ∈ N and let f and a be two functions

satisfying (3.1.3)�(3.1.5) and (3.1.6), respectively. Then

lim
u∈Hk

‖u‖Z→+∞

J (u) = −∞ .
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Proof. Since u ∈ Hk, we can write u = u− + u0, with u− ∈ E−k and u0 ∈ E0
k . Also,

J (u) can be written as follows

J (u) =
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy − λk
2

∫
Ω

a(x)|u(x)|2dx

−
∫

Ω

(
F (x, u0(x) + u−(x))− F (x, u0(x))

)
dx−

∫
Ω

F (x, u0(x)) dx.

(3.3.3)

First of all, note that, by (3.1.4), H®lder inequality and Lemma 1.1.2, it follows

that∣∣∣ ∫
Ω

(
F (x, u0(x) + u−(x))−F (x, u0(x))

)
dx
∣∣∣ =

∣∣∣∣∣
∫

Ω

∫ u0(x)+u−(x)

u0(x)

f(x, t)dt dx

∣∣∣∣∣
6M

∫
Ω

∣∣u−(x)
∣∣ dx 6M |Ω|1/2 ‖u−‖L2(Ω)

6M‖u−‖Z ,

(3.3.4)

where M denotes a positive constant depending on Ω . Thus, by (3.3.3), (3.3.4) and

Lemma 3.2.2, we get

J (u) 6 −M∗‖u−‖2Z +M‖u−‖Z −
∫

Ω

F (x, u0(x)) dx. (3.3.5)

Beware that the �rst norm in the right hand side of (3.3.5) is squared, while the second

one is not. Moreover, by orthogonality we have

‖u‖2Z = ‖u0‖2Z + ‖u−‖2Z .

Then, as ‖u‖Z → +∞, we have that at least one of the two norms, either ‖u0‖Z or

‖u−‖Z , goes to in�nity.

Suppose that ‖u0‖Z → +∞ (in this case ‖u−‖Z can be �nite or not). Then, (3.3.5),

the fact that u0 ∈ E0
k and Lemma 3.2.4 show that J (u) → −∞ as ‖u‖Z → +∞ and

so, Proposition 3.3.2 follows.

Otherwise, assume that ‖u0‖Z is �nite. In this setting, of course,

‖u−‖Z → +∞ . (3.3.6)

and, by Lemma 3.2.3,

∫
Ω

F (x, u0(x)) dx is also �nite.

Moreover, by (3.3.5) and (3.3.6), we have that J (u)→ −∞ as ‖u‖Z → +∞ . This

completes the proof of Proposition 3.3.2 .

3.3.2 The Palais�Smale condition

In this subsection we discuss a compactness property for the functional J , given by

the Palais�Smale condition.
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First of all, as usual when using variational methods, we prove the boundedness of

a Palais�Smale sequence for J . We say that {uj}j∈N is a Palais�Smale sequence for J
at level c ∈ R if

|J (uj)| 6 c, (3.3.7)

and

sup
{
|〈J

′
(uj), ϕ〉| : ϕ ∈ Z, ‖ϕ‖Z = 1

}
→ 0 as j → +∞ (3.3.8)

hold true.

Proposition 3.3.3. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4). Moreover, assume that λ = λk < λk+1 for some k ∈ N and let f and a be two

functions satisfying (3.1.3)�(3.1.5) and (3.1.6), respectively. Finally, let c ∈ R and let

{uj}j∈N be a sequence in Z verifying (3.3.7) and (3.3.8) .

Then, the sequence {uj}j∈N is bounded in Z.

Proof. Let uj = u0
j + u−j + u+

j , where u
0
j ∈ E0

k, u
−
j ∈ E−k and u+

j ∈ Pk+1. In order

to prove Proposition 3.3.3, we will show that the sequences
{
u0
j

}
j∈N,

{
u−j
}
j∈N and{

u+
j

}
j∈N are bounded in Z .

First of all, by (3.3.8), for large j, we get

‖u±j ‖Z >
∣∣∣〈J ′(uj), u±j 〉∣∣∣

=

∣∣∣∣∫∫
R2n

(
uj(x)− uj(y)

)(
u±j (x)− u±j (y)

)
K(x− y) dx dy

−λk
∫

Ω

a(x)|u±j (x)|2 dx−
∫

Ω

f(x, uj(x))u±j (x) dx

∣∣∣∣ .
(3.3.9)

While, by (3.1.4), the H®lder inequality and Lemma 1.1.2∣∣∣∣∫
Ω

f(x, uj(x))u±j (x) dx

∣∣∣∣ 6 M̃‖u±j ‖Z , (3.3.10)

with M̃ positive constant.

Finally, taking into account that
{
e1, . . . , ek . . .

}
is a orthogonal basis of Z and of

L2(Ω, dµ) , dµ = a(·)dx , we get that

〈J
′
(uj), u

±
j 〉 =

∫∫
R2n

|u±j (x)− u±j (y)|2K(x− y) dx dy

− λk
∫

Ω

a(x)|u±j (x)|2 dx−
∫

Ω

f(x, uj(x))u±j (x) dx .

(3.3.11)

Now, by Lemma 3.2.1 (applied with u = u+
j ∈ Pk+1) and (3.3.9)�(3.3.11) we get(

1− λk
λk+1

)
‖u+

j ‖
2
Z − M̃‖u+

j ‖Z 6 ‖u+
j ‖Z ,
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which shows that the sequence
{
u+
j

}
j∈N is bounded in Z.

Moreover, again by (3.3.9)�(3.3.11) and Lemma 3.2.2 (applied to u−j ∈ E−k ⊂ Hk),
it follows that

‖u−j ‖Z > −〈J ′(uj), u−j 〉 >M∗‖u−j ‖
2
Z − M̃‖u−j ‖Z ,

and so also
{
u−j
}
j∈N is bounded in Z.

It remains to show that the sequence
{
u0
j

}
j∈N is bounded in Z . At this purpose,

we point out that u0
j ∈ E0

k and so, by (3.2.1), u0
j is an eigenfunctions corresponding

to λk. Accordingly, by (1.2.2),

1

2

∫∫
R2n

|u0
j (x)− u0

j (y)|2K(x− y) dx dy =
λk
2

∫
Ω

a(x)|u0
j (x)|2 dx .

Therefore, by (3.3.7) and orthogonality, we see that

c > |J (uj)|

=

∣∣∣∣12
∫∫

R2n

(
|u+
j (x)− u+

j (y)|2 + |u−j (x)− u−j (y)|2
)
K(x− y) dx dy

−λk
2

∫
Ω

a(x)
(
|u+
j (x)|2 + |u−j (x)|2

)
dx−

∫
Ω

(
F (x, uj(x))− F (x, u0

j (x))
)
dx

−
∫

Ω

F (x, u0
j (x)) dx

∣∣∣∣ .
(3.3.12)

By Lemma 1.1.2 and the H®lder inequality we get that there exists a positive constant

C, possibly depending on Ω, such that∣∣∣∣λk ∫
Ω

a(x)
(
|u+
j (x)|2 + |u−j (x)|2

)
dx

∣∣∣∣ 6 λk‖a‖L∞(Ω)

(
‖u+

j ‖
2
Z + ‖u−j ‖

2
Z

)
6 2C ,

(3.3.13)

and∣∣∣∣∫
Ω

(
F (x, uj(x))− F (x, u0

j (x))
)
dx

∣∣∣∣ 6 ∫
Ω

∣∣∣∣∣
∫ u0

j (x)+u−j (x)+u+
j (x)

u0
j (x)

f(x, t)dt

∣∣∣∣∣ dx
6M

∫
Ω

(
|u−j (x)|+ |u+

j (x)|
)
dx

6M∗
(
‖u−j ‖Z + ‖u+

j ‖Z
)
6 C ,

(3.3.14)

since the sequences
{
u−j
}
j∈N and

{
u+
j

}
j∈N are bounded in Z and (3.1.4) holds true.
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Here M∗ is a positive constant. Hence, by (3.3.12)�(3.3.14) it is easy to see that∣∣∣∣∫
Ω

F (x, u0
j (x)) dx

∣∣∣∣ 6 |J (uj)|

+

∣∣∣∣12
∫∫

R2n

(
|u+
j (x)− u+

j (y)|2 + |u−j (x)− u−j (y)|2
)
K(x− y) dx dy

−λk
2

∫
Ω

a(x)
(
|u+
j (x)|2 + |u−j (x)|2

)
dx

−
∫

Ω

(
F (x, uj(x))− F (x, u0

j (x))
)
dx

∣∣∣∣
6 c+

1

2

(
‖u+‖2Z + ‖u−‖2Z

)
+ 2C 6 C̃

where C̃ is a positive constant independent of j. Here we have used again the fact that

the sequences
{
u−j
}
j∈N and

{
u+
j

}
j∈N are bounded in Z .

Hence, the integral

∫
Ω

F (x, u0
j (x)) dx is bounded. As a consequence, being u0 ∈ E0

k,

by Lemma 3.2.4 it follows that also the sequence
{
u0
j

}
j∈N is bounded in Z, concluding

the proof of Proposition 3.3.3 .

Now it remains to check the validity of the Palais�Smale condition, that is we

have to show that every Palais�Smale sequence {uj}j∈N for J at level c ∈ R strongly

converges in Z, up to a subsequence. This will be done in the next result.

Proposition 3.3.4. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (0.0.3) and

(0.0.4). Moreover, assume that λ = λk < λk+1 for some k ∈ N and let f and a be two

functions satisfying (3.1.3)�(3.1.5) and (3.1.6), respectively. Let {uj}j∈N be a sequence

in Z satisfying (3.3.7) and (3.3.8).

Then, there exists u∞ ∈ Z such that uj strongly converges to some u∞ in Z .

Proof. Since, by Proposition 3.3.3, {uj}j∈N is bounded in Z and Z is a re�exive space

(being a Hilbert space, by Lemma 1.1.3), up to a subsequence, there exists u∞ ∈ Z
such that uj converges to u∞ weakly in Z, that is∫∫

R2n

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy →∫∫
R2n

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y) dx dy

(3.3.15)

for any ϕ ∈ Z , as j → +∞. Moreover, by applying Lemma 1.1.2 and [20, Theo-

rem IV.9], up to a subsequence

uj → u∞ in Lq(Rn) for any q ∈ [1, 2∗)

uj → u∞ a.e. in Rn
(3.3.16)
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as j → +∞.

By (3.3.8) we have

0← 〈J ′(uj), uj − u∞〉 =

∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy

−
∫∫

R2n

(
uj(x)− uj(y)

)(
u∞(x)− u∞(y)

)
K(x− y) dx dy

− λk
∫

Ω

a(x)uj(x)(uj(x)− u∞(x))dx

−
∫

Ω

f(x, uj(x))(uj(x)− u∞(x))dx

(3.3.17)

as j → +∞ . Now, by using the H®lder inequality, (3.1.4) and (3.3.16), we get∣∣∣∣λk ∫
Ω

a(x)uj(x)(uj(x)− u∞(x))dx+

∫
Ω

f(x, uj(x))(uj(x)− u∞(x))dx

∣∣∣∣
6
(
λk‖a‖L∞(Ω)‖uj‖L2(Ω) +M |Ω|1/2

)
‖uj − u∞‖L2(Ω) → 0

(3.3.18)

as j → +∞. Hence, passing to the limit in (3.3.17) and taking into account (3.3.15)

and (3.3.18), it follows that∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy →
∫∫

R2n

|u∞(x)− u∞(y)|2K(x− y) dx dy ,

that is

‖uj‖Z → ‖u∞‖Z (3.3.19)

as j → +∞.

Finally, we have that

‖uj − u∞‖2Z = ‖uj‖2Z + ‖u∞‖2Z

− 2

∫∫
R2n

(
uj(x)− uj(y)

)(
u∞(x)− u∞(y)

)
K(x− y) dx dy

→ 2‖u∞‖2Z − 2‖u∞‖2Z = 0

as j → +∞, thanks to (3.3.15) and (3.3.19). Hence, uj → u∞ strongly in Z as j → +∞
and this completes the proof of Proposition 3.3.4 .

3.3.3 Proof of Theorem 3.1.1

In this subsection we will prove Theorem 3.1.1, as an application of the Saddle Point

Theorem [67, Theorem 4.6] .

At �rst, we prove that J satis�es the geometric structure required by the Saddle

Point Theorem. For this note that by Proposition 3.3.1 for any H > 0 there exists
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R > 0 such that, if u ∈ Pk+1 and ‖u‖Z > R , then

J (u) > H . (3.3.20)

While, if u ∈ Pk+1 with ‖u‖Z 6 R, by applying (3.1.4), the H®lder inequality and

Lemma 1.1.2 we have

J (u) > −λk
2

∫
Ω

a(x)|u(x)|2dx−
∫

Ω

F (x, u(x))dx

> −λk
2
‖a‖L∞(Ω)‖u‖2L2(Ω) −M

∫
Ω

|u(x)| dx

> −λk
2
‖a‖L∞(Ω)‖u‖2Z −M∗‖u‖Z

> −λk
2
‖a‖L∞(Ω)R

2 −M∗R =: −CR .

(3.3.21)

Here M∗ is a positive constant. Hence, by (3.3.20) and (3.3.21) we get

J (u) > −CR for any u ∈ Pk+1 . (3.3.22)

Moreover, by Proposition 3.3.2, there exists T > 0 such that, for any u ∈ Hk with

‖u‖Z = T , we have

J (u) < −CR . (3.3.23)

Thus, by (3.3.22) and (3.3.23) it easily follows that

sup
u∈Hk,
‖u‖Z=T

J (u) < −CR 6 inf
u∈Pk+1

J (u) ,

so that the functional J has the geometric structure of the Saddle Point Theorem (see

assumptions (I3) and (I4) of [67, Theorem 4.6]).

Since J satis�es also the Palais�Smale condition by Proposition 3.3.4, the Saddle

Point Theorem provides the existence of a critical point u ∈ Z for the functional J .

This concludes the proof of Theorem 3.1.1 .
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Chapter 4

Problems with a parameter

4.1 Introduction

Aim of the present chapter is to provide some existence results for the following non�

local problems {
−LKu+ q(x)u = λu+ f(u) + h(x) in Ω

u = 0 in Rn \ Ω ,
(4.1.1)

where Ω ⊂ Rn is an open, bounded set, λ is a real parameter, s ∈ (0, 1), LK is the

non�local operator formally de�ned as in (0.0.2), whose kernel K : Rn \{0} → (0,+∞)

satis�es conditions (0.0.3) and (0.0.4). Moreover, we suppose that in equation (4.1.1)

the function f : R→ R veri�es the following assumptions:

f ∈ C1(R) (4.1.2)

there exists a constant M > 0 such that |f(t)| 6M for any t ∈ R , (4.1.3)

while q, h : Ω→ R are such that

q ∈ L∞(Ω), q(x) > 0 a.e. x ∈ Ω (4.1.4)

and

h ∈ L2(Ω), (4.1.5)

respectively.

When f ≡ 0 and h ≡ 0 problem (4.1.1) becomes the following eigenvalue problem{
−LKu+ q(x)u = λu in Ω

u = 0 in Rn \ Ω .
(4.1.6)
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We recall that there exists a non-decreasing sequence of positive eigenvalues λk for

which (4.1.6) admits a solution which we already introduced in Section 1.2 (with a ≡ 1).

Along this chapter we consider both the resonant and the non-resonant case, that

is the case when λ belongs to the spectrum of the operator driving the equation and

the one when λ does not, respectively. As for the resonant setting we would like to note

that we are able to treat this case only requiring some extra conditions on the terms f

and h . Precisely, denoting by

fl = lim
t→−∞

f(t) and fr = lim
t→+∞

f(t) ,

we assume that

fl and fr exist, are �nite and such that fl > fr (4.1.7)

and

fr

∫
Ω

ϕ−(x)dx− fl
∫

Ω

ϕ+(x)dx <

∫
Ω

h(x)ϕ(x)dx < fl

∫
Ω

ϕ−(x)dx− fr
∫

Ω

ϕ+(x)dx

for any ϕ ∈ Eλ \ {0} ,
(4.1.8)

where ϕ+ = max{ϕ, 0} and ϕ− = max{−ϕ, 0} denote the positive and the negative

part of the function ϕ, respectively, while Eλ is the linear space generated by the

eigenfunctions related to λ (for a precise de�nition of Eλ we refer to Section 4.4).

We would remark that these extra conditions on f and h are exactly the same

required in the resonant setting, when dealing with the classical Laplace operator (see

[14, Section 4.4.3]). Moreover, we would point out that in (4.1.7) the limits fl and fr

have to be di�erent, but the case fl < fr would work as well, with some modi�cations

in the main arguments. Assumption (4.1.8) is the classical Landesman�Lazer condition,

�rstly introduced in [58], which represents one of the natural su�cient condition given

in order to obtain an existence result in a resonant setting.

As a model for f we can take the function

f(t) =


1

1 + t2
if t > 0

1 if t < 0 .

We would also like to note that, in this case, f does not satisfy the assumptions re-

quired in Chapter 3, where always an asymptotically linear problem at resonance driven

by a general non�local operator was considered. Indeed, in Chapter 3 the asymptoti-

cally linear case when the primitive of f goes to in�nity was considered.
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The main result of the present chapter concerns the existence of weak solutions for

problem (4.1.1) . For this, �rst of all, we have to write the weak formulation of (4.1.1) ,

given by the following problem

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy +

∫
Ω

q(x)u(x)ϕ(x)dx

= λ

∫
Ω

u(x)ϕ(x)dx+

∫
Ω

f(u(x))ϕ(x)dx+

∫
Ω

h(x)ϕ(x)dx ∀ϕ ∈ Z

u ∈ Z,
(4.1.9)

where Z is the functional space introduced in Chapter 1. Before stating our existence

result, we would like to note that, in general, the trivial function u ≡ 0 is not a solution

of problem (4.1.1) . On the other hand, if h ≡ 0 and f(0) = 0 , then u ≡ 0 solves the

problem.

Now, we can state our main result as follows:

Theorem 4.1.1. Let Ω be an open, bounded subset of Rn. Let K : Rn \{0} → (0,+∞)

be a function satisfying (0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be three

functions verifying (4.1.2)�(4.1.5).

Then, problem (4.1.1) admits a weak solution u ∈ Z provided either

• λ is not an eigenvalue of problem (4.1.6), or

• λ is an eigenvalue of problem (4.1.6) and conditions (4.1.7) and (4.1.8) hold true.

The proof of Theorem 4.1.1 is based on variational techniques. Precisely, we will �nd

solutions of problem (4.1.1) as critical points of the Euler�Lagrange functional naturally

associated with the problem. To this purpose we will perform the Saddle Point Theorem

by Rabinowitz, see [67, Theorem 4.6] . Hence, as in the previous chapters, we have to

study both the compactness properties of the functional associated with the problem

and also its geometrical structure. In doing this we need to consider separately the

case when the parameter λ is an eigenvalue of −LK + q and the case when it does not,

namely the resonant and the non-resonant situation.

The resonant setting is more di�cult to be treated than the non-resonant one. In-

deed, the resonant assumption a�ects both the compactness property and the geometry

of the functional. For this reason, the extra assumptions (4.1.7)�(4.1.8) will be crucial

both in proving the compactness and in showing the geometric properties possessed by

the Euler�Lagrange functional associated with problem (4.1.1) .

Theorem 4.1.1 extends the result obtained in [14, Theorem 4.4.11 and Theorem 4.4.17]

(see also [14, Chapter 4] and references therein) in the case of the classical Laplacian

operator to a general non�local framework.
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The chapter is organized as follows. In Section 4.2 we will discuss the variational

formulation of the problem, while Sections 4.3 and 4.4 will be devoted to the proof of

Theorem 4.1.1, respectively in the non-resonant case and in the resonant one.

4.2 Variational formulation of the problem

For the proof of our main result, stated in Theorem 4.1.1, we �rst observe that prob-

lem (4.1.1) has a variational structure. Indeed, the weak formulation of problem (4.1.1),

given in (4.1.9), represents the Euler-Lagrange equation of the functional J : Z → R
de�ned as follows

J (u) =
1

2

∫∫
R2n

|u(x)− u(y)|2K(x− y) dx dy +
1

2

∫
Ω

q(x) |u(x)|2 dx

− λ

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (u(x))dx−
∫

Ω

h(x)u(x)dx ,

(4.2.1)

where F (t) =

∫ t

0

f(τ) dτ .

Note that the functional J is well de�ned thanks to Lemma 1.2.1, the de�nition of F ,

assumptions (4.1.3)�(4.1.5) and since Z ⊆ L2(Ω) ⊆ L1(Ω) (being Ω bounded and by

Lemma (1.1.2)). Moreover, J is Fréchet di�erentiable at u ∈ Z and for any ϕ ∈ Z

〈J ′(u), ϕ〉 =

∫∫
R2n

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy +

∫
Ω

q(x)u(x)ϕ(x)dx

− λ
∫

Ω

u(x)ϕ(x)dx−
∫

Ω

f(u(x))ϕ(x)dx−
∫

Ω

h(x)ϕ(x)dx .

Thus, critical points of J are weak solutions of problem (4.1.1), that is solutions of

(4.1.9).

At �rst, we need some notation. In what follows we will denote by

λ1 < λ2 6 . . . 6 λk 6 . . .

the sequence of the eigenvalues of −LK + q (see problem (4.1.6)) , while ek will be the

k-th eigenfunction corresponding to the eigenvalue λk . Moreover, we will set

Pk+1 :=
{
u ∈ Z : 〈u, ej〉Z, q = 0 ∀j = 1, . . . , k

}
as de�ned in Proposition 1.2.2, while

Hk := span {e1, . . . , ek}

will denote the linear subspace generated by the �rst k eigenfunctions of −LK + q for

any k ∈ N.
In order to prove Theorem 4.1.1 we need some preliminary lemmas.
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Lemma 4.2.1. Let q : Ω→ R satisfy (4.1.4).

Then, the following inequality holds true

‖u‖2Z,q 6 λk‖u‖2L2(Ω)

for all u ∈ Hk and any k ∈ N.

Proof. Let u ∈ Hk. Then, we can write

u(x) =

k∑
i=1

uiei(x)

with ui ∈ R, i = 1, . . . , k.

Since {e1, . . . , ek, . . .} is an orthonormal basis of L2(Ω) and an orthogonal one of Z

(see Proposition 1.2.2�(vi)), by (1.2.8) and (1.2.11), we get

‖u‖2Z, q =
k∑
i=1

u2
i ‖ei‖

2
Z, q =

k∑
i=1

λiu
2
i 6 λk

k∑
i=1

u2
i = λk‖u‖2L2(Ω) ,

which gives the desired assertion.

Lemma 4.2.2. Let q : Ω→ R satisfy (4.1.4).

Then, the following inequality holds true

‖u‖2Z,q > λk+1‖u‖2L2(Ω)

for all u ∈ Pk+1 and any k ∈ N.

Proof. If u ≡ 0, then the assertion is trivial, while if u ∈ Pk+1 \ {0} it follows from the

variational characterization of λk+1 given in (1.2.9) .

To conclude this section we prove the following result:

Lemma 4.2.3. Let f : R → R and h : Ω → R be functions verifying (4.1.2)�(4.1.3)

and (4.1.5), respectively.

Then, there exists a positive constant C̃ such that∣∣∣∣∫
Ω

F (u(x))dx+

∫
Ω

h(x)u(x)dx

∣∣∣∣ 6 C̃ ‖u‖Z, q

for all u ∈ Z .

Proof. By (4.1.3), (4.1.5), the de�nition of F , the Hölder inequality, Lemma 1.2.1 and

[74, Lemma 6], we get∣∣∣∣∫
Ω

F (u(x))dx+

∫
Ω

h(x)u(x)dx

∣∣∣∣ 6M

∫
Ω

|u(x)| dx+ ‖h‖L2(Ω) ‖u‖L2(Ω)

6M |Ω|1/2 ‖u‖L2(Ω) + κ̃ ‖h‖L2(Ω) ‖u‖Z, q
6 C̃ ‖u‖Z, q ,

(4.2.2)
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for a suitable C̃ > 0 (here |Ω| denotes the measure of Ω and κ̃ is a positive constant).

This gives the desired assertion.

Due to the variational nature of the problem, in order to �nd weak solutions for

problem (4.1.1), in the following we will look for critical points of the functional J
de�ned in (4.2.1) . In doing this we need to study separately the resonant case and

the non-resonant one, that is the case when the parameter λ is an eigenvalue of the

operator −LK +q and the one where λ is di�erent from these eigenvalues, respectively.

We will treat the non-resonant case in the forthcoming Section 4.3 and the resonant

one in the next Section 4.4 .

4.3 The non-resonant case

In this section we will prove Theorem 4.1.1 in the case when the parameter λ appearing

in problem (4.1.1) is not an eigenvalue of the operator −LK + q . As we said before,

the idea is to �nd critical points of the functional J , given in formula (4.2.1) . To this

purpose, we will consider two di�erent cases:

• λ < λ1: in this setting the existence of a solution for problem (4.1.1) follows from

the Weierstrass Theorem (i.e. by direct minimization);

• λ > λ1: in this framework we will apply the Saddle Point Theorem (see [66, 67])

to the functional J . As usual, for this we have to check that the functional J
has a particular geometric structure (as stated, e.g., in conditions (I3) and (I4) of

[67, Theorem 4.6]) and that it satis�es the Palais�Smale compactness condition

(see, for instance, [67, page 3]).

4.3.1 The case λ < λ1

In this subsection, in order to apply the Weierstrass Theorem, we �rst verify that the

functional J satis�es some geometric features. For this we need a preliminary lemma.

Lemma 4.3.1. Let λ < λ1 and let K : Rn \ {0} → (0,+∞) satisfy assumptions

(0.0.3) and (0.0.4). Moreover, let f : R → R, q, h : Ω → R be functions satisfying

conditions (4.1.2)�(4.1.5).

Then, the functional J veri�es

lim inf
‖u‖Z, q→+∞

J (u)

‖u‖2Z, q
> 0.
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Proof. By the variational characterization of λ1 given in (1.2.7), we get

λ1‖u‖2L2(Ω) 6 ‖u‖
2
Z, q

for any u ∈ Z (of course, if u ≡ 0, this inequality is trivial).

Hence, as a consequence of this and Lemma 4.2.3, we get

J (u) =
1

2
‖u‖2Z, q −

λ

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (u(x))dx−
∫

Ω

h(x)u(x)dx

>


1

2

(
1− λ

λ1

)
‖u‖2Z, q − C̃ ‖u‖Z, q if λ > 0

1

2
‖u‖2Z, q − C̃ ‖u‖Z, q if λ 6 0 ,

so that, dividing by ‖u‖2Z, q and passing to the limit as ‖u‖Z, q → +∞, we get the

assertion, since λ < λ1 by assumption.

Proof of Theorem 4.1.1 in the non-resonant case, when λ < λ1

Let us note that the map

u 7→ ‖u‖2Z, q

is lower semicontinuous in the weak topology of Z, while the map

u 7→
∫

Ω

F (x, u(x))dx

is continuous in the weak topology of Z. Indeed, if {uj}j∈N is a sequence in Z such

that uj ⇀ u in Z, then, by Lemma 1.1.2 and [20, Theorem IV.9], up to a subsequence,

uj converges to u strongly in Lν(Ω) and a.e. in Ω and it is dominated by some function

κν ∈ Lν(Ω) for any ν ∈ [1, 2∗). Here and in the following 2∗ is the fractional critical

Sobolev exponent introduced in Section 1.1 and de�ned as in (1.1.6). Then, by (4.1.2)

and (4.1.3) it follows

F (uj(x))→ F (u(x)) a.e. x ∈ Ω

as j → +∞ and

|F (uj(x))| 6M |uj(x)| 6Mκ1(x) ∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N . Hence, by applying the Lebesgue Dominated Convergence

Theorem applied in L1(Ω), we have that∫
Ω

F (uj(x)) dx→
∫

Ω

F (u(x)) dx
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as j → +∞, that is the map

u 7→
∫

Ω

F (x, u(x))dx

is continuous from Z with the weak topology to R.
Moreover, again by Lemma 1.1.2, also the map

u 7→ λ

2

∫
Ω

|u(x)|2 dx+

∫
Ω

h(x)u(x) dx

is continuous in the weak topology of Z . Hence, the functional J is lower semicontin-

uous in the weak topology of Z.

Furthermore, Lemma 4.3.1 gives the coerciveness of J . Thus, we can apply the

Weierstrass Theorem in order to �nd a minimum u of J on Z . Clearly, u is a weak

solution of problem (4.1.1).

4.3.2 The case λ > λ1

In this subsection we can suppose that λk < λ < λk+1 for some k ∈ N. This is due to
the fact that the sequence of eigenvalues λk of the operator −LK + q diverges to +∞
as k → +∞ (see Proposition 1.2.2�(iv)) .

In this framework we will look for critical points of the functional J using the

Saddle Point Theorem. First of all, we need some preliminary lemmas.

Lemma 4.3.2. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : Rn \ {0} → (0,+∞)

satisfy assumptions (0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be functions

satisfying (4.1.2)�(4.1.5).

Then, the functional J veri�es

lim sup
u∈Hk

‖u‖Z, q→+∞

J (u)

‖u‖2Z, q
< 0 .

Proof. Let u ∈ Hk. By Lemma 4.2.1, Lemma 4.2.3 and the fact that λ > 0 (being

λ > λk > λ1 > 0) we get

J (u) =
1

2
‖u‖2Z, q −

λ

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (u(x))dx−
∫

Ω

h(x)u(x)dx

6
1

2

(
1− λ

λk

)
‖u‖2Z, q + C̃ ‖u‖Z, q .

So, dividing by ‖u‖2Z, q and passing to the limit as ‖u‖Z, q → +∞, we get the assertion,

since λ > λk.
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Note that Lemma 4.3.2 holds true for any λ ∈ (λk, λk+1] for some k ∈ N and this

will be used in the resonant case of problem (4.1.1), that is in the case when λ = λk+1 .

Lemma 4.3.3. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : Rn \ {0} → (0,+∞)

satisfy assumptions (0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be functions

satisfying (4.1.2)�(4.1.5).

Then, the functional J veri�es

lim inf
u∈Pk+1

‖u‖Z, q→+∞

J (u)

‖u‖2Z, q
> 0 .

Proof. Let u ∈ Pk+1 . In this case, by Lemma 4.2.2, Lemma 4.2.3 and the positivity of

λ, we have

J (u) >
1

2

(
1− λ

λk+1

)
‖u‖2Z, q − C̃ ‖u‖Z, q ,

so that, dividing by ‖u‖2Z, q and passing to the limit as ‖u‖Z, q → +∞, we get the

assertion, being λ < λk+1 .

With these preliminary results we can prove that the functional J has the geometric

structure required by the Saddle Point Theorem, according to the following result:

Proposition 4.3.4. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : Rn \ {0} → (0,+∞)

satisfy assumptions (0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be functions

satisfying (4.1.2)�(4.1.5).

Then, there exist two positive constants C and T such that

sup
u∈Hk

‖u‖Z, q=T

J (u) < −C 6 inf
u∈Pk+1

J (u) .

Proof. By Lemma 4.3.3 it follows that for any H > 0 there exists R > 0 such that if

u ∈ Pk+1 and ‖u‖Z > R then J (u) > H.

On the other hand, if u ∈ Pk+1 with ‖u‖Z, q < R, by applying Lemma 4.2.3, the

Hölder inequality, Lemma 1.2.1 and [74, Lemma 6] we have

J (u) > −λ
2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (u(x))dx−
∫

Ω

h(x)u(x)dx >

> −κ̄ ‖u‖2Z, q − C̃ ‖u‖Z, q
> −κ̄R2 − C̃R =: −C ,

thanks to the fact that λ > 0 (being λ > λk > λ1 > 0 by (1.2.8)). Also, here κ̄ is a

positive constant.
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So, we get

J (u) > −C for any u ∈ Pk+1 . (4.3.1)

Moreover, by Lemma 4.3.2 there exists T > 0 such that for any u ∈ Hk with

‖u‖Z, q > T we have

sup
u∈Hk

‖u‖Z, q=T

J (u) 6 sup
u∈Hk

‖u‖Z, q>T

J (u) < −C . (4.3.2)

Thus, Proposition 4.3.4 follows from (4.3.1) and (4.3.2) .

Roughly speaking, Proposition 4.3.4 says that J has the geometric structure re-

quired by the Saddle Point Theorem.

Finally, we have to show that J satis�es the Palais�Smale condition. To this pur-

pose, �rst of all we prove that every Palais�Smale sequence for J is bounded in Z .

Proposition 4.3.5. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : Rn \ {0} → (0,+∞)

satisfy assumptions (0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be functions

satisfying (4.1.2)�(4.1.5). Let c ∈ R and let {uj}j∈N be a sequence in Z such that

J (uj) 6 c, (4.3.3)

and

sup
{
|〈J

′
(uj), ϕ〉| : ϕ ∈ Z, ‖ϕ‖Z, q = 1

}
→ 0 (4.3.4)

as j → +∞.

Then, the sequence {uj}j∈N is bounded in Z.

Proof. We argue by contradiction and we suppose that the sequence {uj}j∈N is un-

bounded in Z. As a consequence, up to a subsequence, we can assume that

‖uj‖Z, q → +∞ as j → +∞ . (4.3.5)

Thus, there exists u ∈ Z such that uj/ ‖uj‖Z, q converges to u weakly in Z, that is

∫∫
R2n

(
uj(x)

‖uj‖Z, q
− uj(y)

‖uj‖Z, q

)
(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫
Ω

q(x)
uj(x)

‖uj‖Z, q
ϕ(x)dx

→
∫∫

R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫
Ω

q(x)u(x)ϕ(x)dx

(4.3.6)

as j → +∞, for any ϕ ∈ Z.
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Hence, by applying Lemma 1.1.2 and [20, Theorem IV.9], up to a subsequence

uj
‖uj‖Z, q

→ u in Lν(Rn) for any ν ∈ [1, 2∗)

uj
‖uj‖Z, q

→ u a.e. in Rn
(4.3.7)

as j → +∞. Here 2∗ is the exponent de�ned as in (1.1.6) .

Furthermore, by (4.1.3), (4.1.5) and the Hölder inequality it follows that

1

‖uj‖Z, q

∣∣∣∣∫
Ω

f(uj(x))ϕ(x) dx+

∫
Ω

h(x)ϕ(x) dx

∣∣∣∣
6

1

‖uj‖Z, q

(
M ‖ϕ‖L1(Ω) + ‖h‖L2(Ω) ‖ϕ‖L2(Ω)

)
→ 0

(4.3.8)

as j → +∞ , for any ϕ ∈ Z , thanks to (4.3.5) .

So, by (4.3.6)�(4.3.8) we have

〈J ′(uj), ϕ〉
‖uj‖Z, q

→
∫∫

R2n

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

+

∫
Ω

q(x)u(x)ϕ(x) dx− λ
∫

Ω

u(x)ϕ(x)dx

(4.3.9)

as j → +∞ , for any ϕ ∈ Z .

Hence, by combining (4.3.4), (4.3.5) and (4.3.9) we get∫∫
R2n

(
u(x)−u(y)

)(
ϕ(x)−ϕ(y)

)
K(x−y) dx dy+

∫
Ω

q(x)u(x)ϕ(x) dx = λ

∫
Ω

u(x)ϕ(x) dx

for all ϕ ∈ Z and we deduce that u is a weak solution of problem (4.1.6).

Let us now prove that u 6≡ 0 in Z. Assume, by contradiction, that u ≡ 0 in Z. By

(4.3.4) with ϕ = uj/ ‖uj‖Z, q we get∫∫
R2n

|uj(x)− uj(y)|2

‖uj‖Z, q
K(x− y) dx dy +

∫
Ω

q(x)
|uj(x)|2

‖uj‖Z, q
dx− λ

∫
Ω

|uj(x)|2

‖uj‖Z, q
dx

−
∫

Ω

f(uj(x))
uj(x)

‖uj‖Z, q
dx−

∫
Ω

h(x)
uj(x)

‖uj‖Z, q
dx → 0

(4.3.10)

as j → +∞. Moreover, by (4.1.3), (4.1.5) and (4.3.7), since u ≡ 0 , we get∣∣∣∣∣
∫

Ω

f(uj(x))
uj(x)

‖uj‖Z, q
dx+

∫
Ω

h(x)
uj(x)

‖uj‖Z, q
dx

∣∣∣∣∣
6M

‖uj‖L1(Ω)

‖uj‖Z, q
+
‖h‖L2(Ω) ‖uj‖L2(Ω)

‖uj‖Z, q
→ 0

(4.3.11)

as j → +∞.
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Hence, by combining (4.3.10) and (4.3.11) it follows that∫∫
R2n

|uj(x)− uj(y)|2

‖uj‖Z, q
K(x− y) dx dy +

∫
Ω

q(x)
|uj(x)|2

‖uj‖Z, q
dx− λ

∫
Ω

|uj(x)|2

‖uj‖Z, q
dx→ 0

so that, dividing by ‖uj‖Z, q , we get

1− λ
‖uj‖2L2(Ω)

‖uj‖2Z,q
→ 0 as j → +∞ .

This gives 1 = 0 , again by (4.3.7) and the fact that u ≡ 0 in Z . Of course, this is a

contradiction and so u 6≡ 0 in Z .

In this way we have constructed a non�trivial function u solving (4.1.6), but this

contradicts the non-resonance assumption λk < λ < λk+1 . Thus, the sequence {uj}j∈N
is bounded in Z and this ends the proof of Proposition 4.3.5 .

Now, we can prove the following result, whose proof is quite standard and, di�er-

ently from Proposition 4.3.5, it is not a�ected by the resonant/non-resonant assump-

tions:

Proposition 4.3.6. Let λ ∈ R . Let K : Rn \ {0} → (0,+∞) satisfy assumptions

(0.0.3) and (0.0.4) and let f : R → R, q, h : Ω → R be functions satisfying (4.1.2)�

(4.1.5). Let {uj}j∈N be a bounded sequence in Z such that (4.3.4) holds true.

Then, there exists u∞ ∈ Z such that, up to a subsequence,

‖uj − u∞‖Z, q → 0 as j → +∞.

Proof. Since {uj}j∈N is bounded by assumption and Z is a re�exive space (being a

Hilbert space, by [74, Lemma 7]), up to a subsequence, there exists u∞ ∈ Z such that

uj converges to u∞ weakly in Z, that is∫∫
R2n

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫
Ω

q(x)uj(x)ϕ(x)dx→∫∫
R2n

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫
Ω

q(x)u∞(x)ϕ(x)dx

(4.3.12)

as j → +∞ , for any ϕ ∈ Z . Moreover, by applying Lemma 1.1.2 and [20, Theo-

rem IV.9], up to a subsequence

uj → u∞ in Lν(Rn) for any ν ∈ [1, 2∗)

uj → u∞ a.e. in Rn
(4.3.13)

as j → +∞ . Again 2∗ is de�ned as in (1.1.6) .
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By (4.3.4) we have

0← 〈J ′(uj), uj − u∞〉 =

∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy

+

∫
Ω

q(x) |uj(x)|2 dx−
∫∫

R2n

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y) dx dy

−
∫

Ω

q(x)uj(x)u∞(x)dx− λ
∫

Ω

uj(x)
(
uj(x)− u∞(x)

)
dx

−
∫

Ω

f(x, uj(x))
(
uj(x)− u∞(x)

)
dx−

∫
Ω

h(x)
(
uj(x)− u∞(x)

)
dx

(4.3.14)

as j → +∞ .

Also note that, by the de�nition of norm in Z (see formula (1.1.7)), since {uj}j∈N
is bounded in Z , then {uj}j∈N does in L2(Ω) . Hence, by using the Hölder inequality,

(4.1.3), (4.1.5) and (4.3.13), we get∣∣∣∣λ ∫
Ω

uj(x)(uj(x)− u∞(x))dx+

∫
Ω

f(x, uj(x))(uj(x)− u∞(x))dx

+

∫
Ω

h(x)(uj(x)− u∞(x))dx

∣∣∣∣
6
(
λ ‖uj‖L2(Ω) +M |Ω|1/2 + ‖h‖L2(Ω)

)
‖uj − u∞‖L2(Ω) → 0

(4.3.15)

as j → +∞.

Then, by (4.3.12), (4.3.14) and (4.3.15) we obtain∫∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy +

∫
Ω

q(x) |uj(x)|2 dx

→
∫∫

R2n

|u∞(x)− u∞(y)|2K(x− y) dx dy +

∫
Ω

q(x) |u∞(x)|2 dx ,

that is

‖uj‖Z, q → ‖u∞‖Z, q (4.3.16)

as j → +∞.

Finally, we have that

‖uj − u∞‖2Z, q = ‖uj‖2Z, q + ‖u∞‖2Z, q

− 2

∫∫
R2n

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y) dx dy − 2

∫
Ω

q(x)uj(x)u∞(x)dx

→ 2 ‖u∞‖2Z, q − 2

∫∫
R2n

|u∞(x)− u∞(y)|2K(x− y) dx dy − 2

∫
Ω

q(x) |u∞(x)|2 dx = 0

as j → +∞, again thanks to (4.3.12) and (4.3.16). This concludes the proof.
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Proof of Theorem 4.1.1 in the non-resonant case, when λ > λ1

For the proof it is enough to observe that, by Proposition 4.3.4 the functional J
satis�es the geometric assumptions required by the Saddle Point Theorem, while by

Propositions 4.3.5 and 4.3.6 it veri�es the Palais�Smale compactness condition. Hence,

as a consequence of the Saddle Point Theorem, J possesses a critical point u ∈ Z ,

which, of course, is a weak solution of problem (4.1.1) .

4.4 The resonant case

In this section we study problem (4.1.1) in presence of a resonance, namely when λ is

an eigenvalue of the operator −LK+q. This kind of problem is harder to solve than the

non-resonant one and we have to impose further conditions on the nonlinearities in the

equation. Namely, we have to assume the extra conditions (4.1.7) and (4.1.8) on f and

h . Also, we use the fractional counterpart of a well-known property of the eigenvalues

in the standard case of the Laplacian (see [41, 54]), that is all the eigenfunctions are

almost everywhere di�erent from zero. In the non�local framework this result, recalled

in the following theorem, is a direct consequence of the unique continuation principle

proved by Fall and Felli in [42, Theorem 1.4].

Theorem 4.4.1. [42] Let Ω be a bounded domain of Rn. Let e be an eigenfunction

corresponding to the eigenvalue λ of problem (1.2.1).

Then, by setting the nodal set N as

N = {x ∈ Ω : e(x) = 0} ,

it follows that N has a zero Lebesgue measure.

Without loss of generality, in the sequel we assume that for some k, m ∈ N

λk < λ = λk+1 = . . . = λk+m < λk+m+1 , (4.4.1)

that is we suppose that λ is an eigenvalue of −LK + q with multiplicity m .

As in the non-resonant framework, here the idea is to apply the Saddle Point The-

orem. Hence, also in this case, we have to check that the functional J satis�es the

Palais�Smale condition and possesses a suitable geometric structure. The resonant as-

sumption (4.4.1) a�ects both these problems (i.e. the compactness and the geometric

structure of the functional), making the proof more di�cult than in the non-resonant

setting.

Let us start by proving the compactness condition. If compared with the non-

resonant case, in the resonant one the di�erence lies in the proof of the boundedness of
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the Palais�Smale sequence. Indeed, in order to show that the Palais�Smale sequence is

bounded in Z , here we have to use di�erent arguments, since the ones used in the non-

resonant case are based mainly on the fact that the parameter λ is not an eigenvalue

of the operator −LK + q . Precisely, we will argue by contradiction and we will use

the Landesman�Lazer condition (4.1.8), which will be fundamental for our arguments.

Also, it will be crucial for our proof the property stated in Theorem 4.4.1.

Proposition 4.4.2. Let λ be as in (4.4.1) for some k,m ∈ N . Let K : Rn \ {0} →
(0,+∞) satisfy assumptions (0.0.3) and (0.0.4). Moreover, let f : R→ R, q, h : Ω→ R
be functions satisfying (4.1.2)�(4.1.5), (4.1.7) and (4.1.8). Let c ∈ R and let {uj}j∈N
be a sequence in Z such that (4.3.3) and (4.3.4) hold true.

Then, the sequence {uj}j∈N is bounded in Z.

Proof. First of all, let us write uj = wj + vj , with wj ∈ Eλ and vj ∈ E⊥λ , where

Eλ := span {ek+1, . . . , ek+m}

is the linear space generated by the eigenfunctions related to λ = λk+1 (see assump-

tion (4.4.1)) .

In order to prove Proposition 4.4.2, it is enough to show that both the sequences

{wj}j∈N and {vj}j∈N are bounded in Z .

Let us prove �rst that the sequence {vj}j∈N is bounded in Z . For this, note that,

since wj ∈ Eλ, then
−LKwj + q(x)wj = λwj

in the weak sense, that is for any ϕ ∈ Z∫∫
R2n

(
wj(x)− wj(y)

)(
ϕ(x)− ϕ(y)

)
dx dy +

∫
Ω

q(x)wj(x)ϕ(x) dx

− λ
∫

Ω

wj(x)ϕ(x) dx = 0 .

(4.4.2)

Moreover, by linearity, for any ϕ ∈ Z∫∫
R2n

(
uj(x)− uj(y)

)(
ϕ(x)− ϕ(y)

)
dx dy =

∫∫
R2n

(
wj(x)− wj(y)

)(
ϕ(x)− ϕ(y)

)
dx dy

+

∫∫
R2n

(
vj(x)− vj(y)

)(
ϕ(x)− ϕ(y)

)
dx dy

(4.4.3)

and ∫
Ω

q(x)uj(x)ϕ(x) dx =

∫
Ω

q(x)wj(x)ϕ(x) dx+

∫
Ω

q(x)vj(x)ϕ(x) dx . (4.4.4)
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Hence, as a consequence of (4.4.2)�(4.4.4) and (4.3.4) we get that for any ϕ ∈ Z

0← 〈J ′(uj), ϕ〉 =∫∫
R2n

(
wj(x)− wj(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy +

∫
Ω

q(x)wj(x)ϕ(x)dx

+

∫∫
R2n

(
vj(x)− vj(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy +

∫
Ω

q(x)vj(x)ϕ(x)dx

− λ
∫

Ω

uj(x)ϕ(x) dx−
∫

Ω

f(uj(x))ϕ(x) dx−
∫

Ω

h(x)ϕ(x) dx

=

∫∫
R2n

(
vj(x)− vj(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy +

∫
Ω

q(x)vj(x)ϕ(x)dx

− λ
∫

Ω

vj(x)ϕ(x) dx−
∫

Ω

f(uj(x))ϕ(x) dx−
∫

Ω

h(x)ϕ(x) dx

(4.4.5)

as j → +∞ .

Now, assume by contradiction that ‖vj‖Z, q → +∞ as j → +∞ . Arguing exactly

as in the proof of Proposition 4.3.5 one shows that vj/ ‖vj‖Z, q converges weakly in Z

to an eigenfunction v relative to λ.

Of course v ∈ Eλ \ {0}, being an eigenfunction. On the other hand, since

vj ∈ E⊥λ = span{e1, . . . , ek, ek+m+1, . . . },

then v ∈ E⊥λ . This leads to a contradiction since v 6≡ 0 and v ∈ Eλ ∩E⊥λ = {0}. Then,
{vj}j∈N is bounded in Z .

Now, it remains to prove that {wj}j∈N is bounded in Z . Also in this case we argue

by contradiction and assume that

‖wj‖Z, q → +∞ (4.4.6)

as j → +∞ .

Since Eλ is �nite dimensional, there exists w ∈ Eλ such that, up to a subsequence,

wj/ ‖wj‖Z, q converges to w strongly in Z as j → +∞. Moreover, by applying Lemma

1.1.2 and [20, Theorem IV.9], up to a subsequence

wj
‖wj‖Z, q

→ w in Lν(Rn) for any ν ∈ [1, 2∗)

wj
‖wj‖Z, q

→ w a.e. in Rn
(4.4.7)

as j → +∞. The exponent 2∗ is given in (1.1.6) .

Note also that, since w ∈ Eλ , for any ϕ ∈ Z we get∫∫
R2n

(
w(x)− w(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy +

∫
Ω

q(x)w(x)ϕ(x)dx

= λ

∫
Ω

w(x)ϕ(x) dx ,

(4.4.8)
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that is w is an eigenfunction of problem (4.1.6) . Hence, by Theorem 4.4.1, the func-

tion w is almost everywhere di�erent from zero, say

w(x) 6= 0 for any x ∈ Ω \ N , (4.4.9)

where N ⊂ Ω has zero Lebesgue measure.

So, by using (4.4.6), (4.4.7), the fact that {vj}j∈N is bounded1 in Z and (4.4.9), for

a.e. x ∈ Ω we get

uj(x)= wj(x) + vj(x) = ‖wj‖Z, q
wj(x)

‖wj‖Z, q
+ vj(x)→

{
+∞ for a.e. x ∈ {w > 0}
−∞ for a.e. x ∈ {w < 0}

(4.4.10)

as j → +∞.

Let us de�ne the function f∞ : Ω→ R as

f∞(x) :=

{
fr if x ∈ {w > 0}
fl if x ∈ {w < 0},

where fl and fr were introduced in (4.1.7). Note that f∞ is well de�ned, thanks to

(4.4.9) .

By (4.1.2), (4.4.10) and the de�nition of f∞ it follows that

f(uj(x))→ f∞(x) a.e. x ∈ Ω ,

while, by (4.1.3), the fact that Ω is bounded and the Lebesgue Dominated Convergence

Theorem we have

f(uj)→ f∞ in Lν(Ω) for any ν ∈ [1,+∞) (4.4.11)

as j → +∞.

Hence, by combining (4.4.5) with ϕ = w, (4.4.8) with ϕ = vj and (4.4.11) , we

obtain ∫
Ω

f∞(x)w(x)dx+

∫
Ω

h(x)w(x)dx = 0,

namely, writing w(x) = w+(x)− w−(x) and taking into account the de�nition of f∞,∫
Ω

h(x)w(x)dx = fl

∫
Ω

w−(x)dx− fr
∫

Ω

w+(x)dx.

This contradicts assumption (4.1.8). Thus, the sequence {wj}j∈N has to be bounded

in Z and this concludes the proof of Proposition 4.4.2.

1We stress that the boundedness in Z imply the convergence of vj to some v in L1(Rn) and a.e. �

in particular, |v(x)| 6= +∞ for a.e. x ∈ Ω .
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As a consequence of Proposition 4.3.6 and Proposition 4.4.2, the functional J has

the Palais�Smale compactness property.

Finally, we prove that the functional J has the geometric feature required by the

Saddle Point Theorem. As we said above, the resonance assumption a�ects also the

proof of the particular geometric structure of the functional J , making it more di�cult

than in the non-resonant setting. Indeed, here we can not use the arguments performed

in the non-resonant framework, but we have to argue in a di�erent way. For this, we

will make use of Theorem 4.4.1 and of the Landesman�Lazer condition (4.1.8), which

will be both crucial in the proof of the following proposition:

Proposition 4.4.3. Let λ be as in (4.4.1) for some k,m ∈ N . Let K : Rn \ {0} →
(0,+∞) satisfy assumptions (0.0.3) and (0.0.4). Moreover, let f : R→ R, q, h : Ω→ R
be functions satisfying (4.1.2)�(4.1.5), (4.1.7) and (4.1.8).

Then, the functional J veri�es

inf
u∈Pk+1

J (u) > −∞. (4.4.12)

Proof. In order to prove Proposition 4.4.3, we argue by contradiction and assume that

there exists a sequence
{
uj
}
j∈N in Pk+1 such that

J (uj)→ −∞, (4.4.13)

as j → +∞.

First of all, note that, by (4.4.1) and the orthogonality properties of {e1, . . . , ek, . . . }
(see Proposition 1.2.2-(vi)), we can write Pk+1 as follows

Pk+1 = Eλ ⊕ Pk+m+1

(recall that Eλ := span{ek+1, . . . ek+m}) .
Then, for any j ∈ N the function uj can be written as

uj = wj + vj , (4.4.14)

with wj ∈ Eλ and vj ∈ Pk+m+1 , so that wj and vj are orthogonal both in Z and in

L2(Ω) , again thanks to Proposition 1.2.2-(vi).

From now on we proceed by steps.

Claim 1. The following assertion holds true:

‖wj‖Z, q → +∞

as j → +∞ .
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Proof. First of all, since wj ∈ Eλ, note that∫∫
R2n

|wj(x)− wj(y)|2K(x− y)dx dy +

∫
Ω

q(x) |wj(x)|2 dx = λ

∫
Ω

|wj(x)|2 dx.

So, as a consequence of this, of (4.4.14), of the orthogonality of the wj and vj , of

Lemma 4.2.2 (here applied in Pk+m+1) and of the positivity of λ , we get

J (uj) =
1

2
‖uj‖2Z, q −

λ

2

∫
Ω

|uj(x)|2 dx−
∫

Ω

F (uj(x))dx−
∫

Ω

h(x)uj(x)dx

=
1

2
‖wj‖2Z, q +

1

2
‖vj‖2Z, q −

λ

2
‖wj‖2L2(Ω) −

λ

2
‖vj‖2L2(Ω) −

∫
Ω

F (uj(x))dx

−
∫

Ω

h(x)uj(x)dx

>
1

2

(
1− λ

λk+m+1

)
‖vj‖2Z, q −

∫
Ω

F (uj(x))dx−
∫

Ω

h(x)uj(x)dx

>
1

2

(
1− λ

λk+m+1

)
‖vj‖2Z, q − C̃ ‖uj‖Z, q

>
1

2

(
1− λ

λk+m+1

)
‖vj‖2Z, q − C̃ ‖vj‖Z, q − C̃ ‖wj‖Z, q ,

(4.4.15)

also thanks to Lemma 4.2.3 . So, by combining (4.4.13) and (4.4.15) we get

1

2

(
1− λ

λk+m+1

)
‖vj‖2Z, q − C̃ ‖vj‖Z, q − C̃ ‖wj‖Z, q → −∞ (4.4.16)

which implies necessarily that

‖wj‖Z, q → +∞ as j → +∞ ,

since λ = λk+1 < λk+m+1 by (4.4.1) . Hence, Claim 1 is proved.

Now, since Eλ is �nite dimensional, there exists w ∈ Eλ such that, up to a subse-

quence,

wj/ ‖wj‖Z, q → w strongly in Z (4.4.17)

as j → +∞ . Note that w 6≡ 0 , since ‖w‖ = 1 . Also, w is an eigenfunction of prob-

lem (4.1.6) and so, by Theorem 4.4.1 w is almost everywhere di�erent from zero, say

w(x) 6= 0 for any x ∈ Ω \ N , (4.4.18)

where N ⊂ Ω has zero Lebesgue measure.

Moreover, by applying Lemma 1.1.2 and [20, Theorem IV.9], up to a subsequence,

we also have
wj

‖wj‖Z, q
→ w in Lν(Rn) for any ν ∈ [1, 2∗)

wj
‖wj‖Z, q

→ w a.e. in Rn
(4.4.19)
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as j → +∞. Again here and in the sequel 2∗ is the exponent given in (1.1.6) .

Now, assume that ‖vj‖Z, q 6= 0 for j su�ciently large. We will discuss the case when

‖vj‖Z, q = 0 later on.

Again by applying Lemma 1.1.2 and [20, Theorem IV.9] we can say that there exists

v ∈ Z such that, up to a subsequence

vj
‖vj‖Z, q

→ v in Lν(Rn) for any ν ∈ [1, 2∗)

vj
‖vj‖Z, q

→ v a.e. in Rn
(4.4.20)

as j → +∞.

Now, let us continue with some claims.

Claim 2. The following assertion holds true:

‖wj‖Z, q
‖vj‖Z, q

→ +∞

as j → +∞ .

Proof. If {‖vj‖Z, q}j∈N was bounded, then Claim 2 would follow by Claim 1 . Assume

that ‖vj‖Z, q → +∞ as j → +∞ . Writing (4.4.16) as follows

‖vj‖Z, q

(
1

2

(
1− λ

λk+m+1

)
‖vj‖Z, q − C̃ − C̃

‖wj‖Z, q
‖vj‖Z, q

)
→ −∞ ,

we would get necessarily that Claim 2 holds true, by assumption (4.4.1) . This concludes

the proof of Claim 2 .

Claim 3. The following assertion holds true:

F (uj(x))

‖wj‖Z, q
→ w(x)f∞(x) a.e. x ∈ Ω

as j → +∞ , where f∞ : Ω→ R is the function de�ned as

f∞(x) :=

{
fr if x ∈ {w > 0}
fl if x ∈ {w < 0} ,

(4.4.21)

with fl and fr given in (4.1.7) and w as in (4.4.17) .

Proof. To prove this we �rst observe that

lim
t→−∞

F (t)

t
= fl and lim

t→+∞

F (t)

t
= fr. (4.4.22)
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We prove the identity for fr, since the one for fl is alike. If fr 6= 0, we can use de

l'Hôpital Theorem and get (4.4.22). On the other hand, when fr = 0 , for any ε > 0

there exists T > 0 such that |f(t)| < ε for t > T . So, by (4.1.3) for t > T it follows

that ∣∣∣∣F (t)

t

∣∣∣∣ =

∣∣∣∣∣1t (
∫ T

0

f(τ) dτ +

∫ t

T

f(τ) dτ
)∣∣∣∣∣ 6M

T

t
+ ε

(t− T )

t
.

Passing to the limit as t→ +∞ and as ε→ 0 we obtain (4.4.22) in this case too.

By (4.4.14), Claims 1 and 2, (4.4.18), (4.4.19) and (4.4.20) for a.e. x ∈ Ω we get

uj(x) = wj(x) + vj(x)

= ‖wj‖Z, q

(
wj(x)

‖wj‖Z, q
+
‖vj‖Z, q
‖wj‖Z, q

vj(x)

‖vj‖Z, q

)

→

{
+∞ for a.e. x ∈ {w > 0}
−∞ for a.e. x ∈ {w < 0},

(4.4.23)

as j → +∞. In particular, �xed any x ∈ Ω, we have that uj(x) 6= 0 for large j.

Now, again by (4.4.14) and Claim 1, we can write

F (uj(x))

‖wj‖Z, q
=

(
vj(x)

‖wj‖Z, q
+

wj(x)

‖wj‖Z, q

)
F (uj(x))

uj(x)
. (4.4.24)

By (4.4.22) and (4.4.23)

F (uj(x))

uj(x)
→

{
fr for a.e. x ∈ {w > 0}
fl for a.e. x ∈ {w < 0} ,

that is
F (uj(x))

uj(x)
→ f∞(x) a.e x ∈ Ω (4.4.25)

as j → +∞ , where f∞ is given in (4.4.21) (this function is well de�ned, thanks to

(4.4.18)).

Moreover, by Claim 2 and (4.4.20) it follows that

vj(x)

‖wj‖Z, q
=
‖vj‖Z, q
‖wj‖Z, q

vj(x)

‖vj‖Z, q
→ 0 a.e. x ∈ Rn (4.4.26)

as j → +∞ . So, by combining (4.4.24)�(4.4.26) and by using also (4.4.19), we get the

assertion of Claim 3.

Claim 4. The following assertion holds true:

F (uj)

‖wj‖Z, q
→ wf∞ in L1(Ω)

as j → +∞ , where w is as in (4.4.17) and f∞ is de�ned as in (4.4.21) .
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Proof. Since
{
uj/ ‖uj‖Z, q

}
j∈N

is bounded in Z, as usual by applying Lemma 1.1.2

and [20, Theorem IV.9], up to a subsequence, it converges strongly in L1(Ω) and there

exists κ ∈ L1(Ω) such that for any j ∈ N

|uj(x)|
‖uj‖Z, q

6 κ(x) a.e. x ∈ Ω. (4.4.27)

Moreover, by the orthogonality properties of vj and wj we get

‖uj‖Z, q
‖wj‖Z, q

= 1 +
‖vj‖Z, q
‖wj‖Z, q

,

so that, by Claim 2 it follows that for any j ∈ N

‖uj‖Z, q
‖wj‖Z, q

6 C

for some positive constant C .

As a consequence of this, (4.4.27) and (4.1.3) we get a.e. x ∈ Ω

|F (uj(x))|
‖wj‖Z, q

6M
|uj(x)|
‖wj‖Z, q

= M
‖uj‖Z, q
‖wj‖Z, q

|uj(x)|
‖uj‖Z, q

6 C̄κ(x) ∈ L1(Ω)

for a suitable positive constant C̄ . Then, the Lebesgue Dominated Convergence The-

orem and Claim 3 yield the assertion of Claim 4 .

Claim 5. The following assertion holds true:

lim
j→+∞

(∫
Ω

F (uj(x))

‖wj‖Z, q
dx+

∫
Ω

h(x)
uj(x)

‖wj‖Z, q
dx

)
< 0 .

Proof. First of all, note that

uj
‖wj‖Z, q

=
wj + vj
‖wj‖Z, q

=
wj

‖wj‖Z, q
+

vj
‖vj‖Z, q

‖vj‖Z, q
‖wj‖Z, q

→ w in L2(Ω) ,

as j → +∞ , thanks to (4.4.14), (4.4.19), (4.4.20) and Claim 2 .

As a consequence of this and by Claim 4 and (4.4.21) we have

lim
j→+∞

(∫
Ω

F (uj(x))

‖wj‖Z, q
dx +

∫
Ω

h(x)
uj(x)

‖wj‖Z, q
dx

)

=

∫
Ω

f∞(x)w(x)dx+

∫
Ω

h(x)w(x)dx

= fr

∫
Ω

w+(x)dx− fl
∫

Ω

w−(x)dx+

∫
Ω

h(x)w(x)dx < 0 ,

(4.4.28)

since (4.1.8) holds true. This ends the proof of Claim 5 .
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Now, we can conclude the proof of Proposition 4.4.3 . Indeed, arguing as (4.4.15)

and using (4.4.1), we get

J (uj) >
1

2

(
1− λ

λk+m+1

)
‖vj‖2Z, q −

∫
Ω

F (uj(x))dx−
∫

Ω

h(x)uj(x)dx

> −‖wj‖Z, q

(∫
Ω

F (uj(x))

‖wj‖Z, q
dx+

∫
Ω

h(x)
uj(x)

‖wj‖Z, q
dx

)
,

so that, by Claim 1 and Claim 5, we deduce

J (uj)→ +∞ as j → +∞ ,

which contradicts (4.4.13). Hence, Proposition 4.4.3 holds true in the case when ‖vj‖Z, q 6=
0 for j large enough.

Finally, it remains to consider the case when ‖vj‖Z, q = 0 for j su�ciently large (up

to a subsequence). In this setting, using the same arguments as above, the proof can

be repeated in a simpler way. For the sake of clarity and for reader's convenience we

prefer to give full details.

Since ‖vj‖Z, q = 0 for j su�ciently large, it easily follows that

vj → 0 in Z (4.4.29)

as j → +∞ . Hence, by Lemma 1.1.2 and [20, Theorem IV.9] up to a subsequence

vj → 0 in Lν(Rn) for any ν ∈ [1, 2∗)

vj → 0 a.e. in Rn
(4.4.30)

as j → +∞.

As a consequence of this and by (4.4.14), (4.4.19) and Claim 1, we get that

uj
‖wj‖Z, q

=
wj

‖wj‖Z, q
+

vj
‖wj‖Z, q

→ w in Lν(Rn) for any ν ∈ [1, 2∗) , (4.4.31)

so that
uj(x)

‖wj‖Z, q
→ w(x) a.e x ∈ Ω

as j → +∞ , and, for any j ∈ N and a.e. x ∈ Ω

|uj(x)|
‖wj‖Z, q

6 κν(x) (4.4.32)

for some κν ∈ Lν(Ω) .

Also, again by (4.4.14), Claim 1, (4.4.19) and (4.4.30), we deduce that a.e. x ∈ Ω

uj(x) = wj(x) + vj(x) = ‖wj‖Z, q
wj(x)

‖wj‖Z, q
+ vj(x)→

{
+∞ if x ∈ {w > 0}
−∞ if x ∈ {w < 0},

(4.4.33)
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as j → +∞ , thanks to (4.4.18) .

Hence, by (4.4.22) and (4.4.33), also in this case we get

F (uj(x))

uj(x)
→ f∞(x) a.e. x ∈ Ω (4.4.34)

as j → +∞, where f∞ is the function de�ned in (4.4.21) .

Now, we have that

F (uj(x))

‖wj‖Z, q
=

(
vj(x)

‖wj‖Z, q
+

wj(x)

‖wj‖Z, q

)
F (uj(x))

uj(x)
→ w(x)f∞(x) a.e. x ∈ Ω , (4.4.35)

as j → +∞ , thanks to (4.4.14), (4.4.19), (4.4.30) and (4.4.34) .

Furthermore, by (4.1.3) and (4.4.32) we get that a.e. x ∈ Ω and for any j ∈ N

|F (uj(x))|
‖wj‖Z, q

6M
|uj(x)|
‖wj‖Z, q

6M κ1(x) ∈ L1(Ω) ,

so that, using also (4.4.35), we obtain

F (uj)

‖wj‖Z, q
→ wf∞ in L1(Ω) (4.4.36)

as j → +∞ .

Now, with (4.1.8), (4.4.31) (here used with ν = 2 < 2∗) and (4.4.36), arguing as in

Claim 5, we can show that

lim
j→+∞

(∫
Ω

F (uj(x))

‖wj‖Z, q
dx+

∫
Ω

h(x)
uj(x)

‖wj‖Z, q
dx

)
< 0 .

Thus, the conclusion of Proposition 4.4.3 follows as in the previous case. This ends

the proof of Proposition 4.4.3 .

Finally, we are ready to prove Theorem 4.1.1, in the resonant case.

Proof of Theorem 4.1.1 in the resonant setting

First of all, let us check the geometric structure of the functional J . For this, let

I = inf
u∈Pk+1

J (u) .

By Proposition 4.4.3 and the fact that J 6≡ +∞, we have that I ∈ R . Moreover, by

Lemma 4.3.2, there exists R > 0 such that for any u ∈ Hk with ‖u‖Z, q > R it holds

true that

J (u) < −|I| 6 I .
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Then, as a consequence of this, we get

sup
u∈Hk

‖u‖Z, q=R

J (u) 6 sup
u∈Hk

‖u‖Z, q>R

J (u) < I = inf
u∈Pk+1

J (u) ,

that is J has the geometry required by the Saddle Point Theorem (see [67, Theo-

rem 4.6]).

Finally, by Proposition 4.3.6 (which holds true for any λ ∈ R) and Proposition 4.4.2,
the functional J satis�es the Palais�Smale condition.

Hence, we can make use of the Saddle Point Theorem in order to obtain a critical

point u ∈ Z of J . This concludes the proof of Theorem 4.1.1 in the resonant case.
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Chapter 5

A Kirchho� type problem

5.1 Introduction

The purpose of this chapter is to investigate the existence of non-negative solutions for

a Kirchho� type problem driven by a non�local integrodi�erential operator, that is −M
(
‖u‖2Z

)
LKu = λf(x, u) + |u|2

∗−2
u in Ω,

u = 0 in Rn \ Ω
(5.1.1)

where n > 2s with s ∈ (0, 1), 2∗ = 2n/(n − 2s), λ is a positive parameter, Ω ⊂ Rn is

an open, bounded set, M and f are two continuous functions whose properties will be

introduced later and LK is the non�local operator de�ned as in (0.0.2) whose kernel

K : Rn \ {0} → (0,+∞) still satis�es conditions (0.0.3) and (0.0.4).

The particularity of this kind of problem is due to the non�local behaviour of the

term M
(
‖u‖2Z

)
. For this, the equation in (5.1.1) is no longer a pointwise identity, so

the treatment of this problem presents such mathematical di�culties which make the

study particularly interesting.

This kind of problem has been widely studied in recent years: we refer to [2, 34, 44,

45, 59] for Kirchho� problems involving the classical Laplace operator, to [8, 10, 13, 35]

for the p-Laplacian case and to [93] for a Kirchho� operator with critical exponent.

In [2, 44] the approach used is mainly based on the variational method joined with

a concentration compactness argument, as in the present chapter. In particular in

[44], the authors use a truncation argument to control the non�local term M . Also in

[34, 59] a variational method is still used, but the main di�erence compared with the

previous papers is that the critical Kirchho� problem is set in all RN , resulting in lack

of compactness of the embedding of H1(RN ) into Lp(RN ). In [8, 10, 13, 35, 93] the
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so-called degenerate case was taken into account in the elliptic case: in such a case,

the function M veri�es M(0) = 0, while in this chapter M is bounded below by a

positive constant, that is substantially the non-degenerate case. While non-degenerate

problems have been widely studied, only few attempts have been made to cover also

the degenerate case 1.

Inspired by the above articles, in this chapter we would like to investigate the

existence of a non�trivial solution for problem (5.1.8), by extending the results dealt

with in [44] for the classical Laplacian case

In view of our problem, we suppose that M : R+
0 → R+ veri�es the following

conditions:

M is an increasing and continuous function; (5.1.2)

there exists m0 > 0 such that M(t) > m0 = M(0) for any t ∈ R+ . (5.1.3)

A typical example for M is given by M(t) = m0 + tb with b > 0.

Also, we assume that f : Ω× R→ R is a continuous function that satis�es:

lim
|t|→0

f(x, t)

t
= 0 uniformly in x ∈ Ω; (5.1.4)

there exists q ∈ (2, 2∗) such that lim
|t|→∞

f(x, t)

tq−1
= 0 uniformly in x ∈ Ω; (5.1.5)

there exists σ ∈ (2, 2∗) such that for any x ∈ Ω and t > 0

0 < σF (x, t) = σ

∫ t

0

f(x, τ)dτ 6 tf(x, t) .
(5.1.6)

We would observe that conditions (5.1.4)�(5.1.5) give a subcritical growth for f since

q < 2∗. While assumption (5.1.6) represents the well�known Ambrosetti�Rabinowitz

superlinear condition (see [6]), with also the restriction σ < 2∗.

Moreover, since we intend to �nd non-negative solutions, we assume this further

condition for f

f(x, t) = 0 for any x ∈ Ω and t 6 0. (5.1.7)

An example of a function satisfying the conditions (5.1.4)�(5.1.7) is given by

f(x, t) =


0 if t 6 0,

a(x)tq−1 if 0 < t < 1,

a(x)tq1−1 if t > 1,

with 2 < q1 < q, a ∈ L∞(Ω) and a(x) > 0 for any x ∈ Ω.

1After this thesis was concluded, we complete the study of problem (5.1.1) in [9], by covering also

the degenerate case.

74



Now, before stating our main result we recall the weak formulation of (5.1.1), given

by the following problem
M(‖u‖2Z)

∫∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

= λ

∫
Ω

f(x, u(x))ϕ(x) dx+

∫
Ω

|u(x)|2
∗−2

u(x)ϕ(x)dx ∀ϕ ∈ Z

u ∈ Z.

(5.1.8)

Thanks to our assumptions on Ω, M , f and K, all the integrals in (5.1.8) are well

de�ned if u, ϕ ∈ Z.

Theorem 5.1.1. Let s ∈ (0, 1), n > 2s and Ω be a bounded open subset of Rn. Assume

that the functions K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω× R→ R satisfy

conditions (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7).

Then there exists λ∗ > 0 such that problem (5.1.1) has a non�trivial weak solution

uλ for all λ > λ∗. Such solution also veri�es

lim
λ→∞

‖uλ‖Z = 0. (5.1.9)

The chapter is organized as follows. In Section 5.2 we introduce a truncated problem

whose weak solution will be a weak solution of the original problem (5.1.1). Section 5.3

is devoted to the study of our main results, by proving �rst some technical lemmas and

the existence of a solution for the truncated problem.

5.2 A truncated problem

In order to prove Theorem 5.1.1 we need to control the non�local termM
(
‖u‖2Z

)
. For

this, inspired by the truncation argument used in [3, 44], we �rst study an auxiliary

truncated problem. Clearly, here we are assuming that M is unbounded, otherwise

the truncation on M is not necessary. Given σ as in (5.1.6) and a ∈ R such that

m0 < a <
σ

2
m0, by (5.1.2) there exists t0 > 0 such that M(t0) = a. Now, by setting

Ma(t) :=

{
M(t) if 0 6 t 6 t0,

a if t > t0,

we can introduce the following auxiliary problem{
−Ma(‖u‖2Z)LKu = λf(x, u) + |u|2

∗−2
u in Ω,

u = 0 in Rn \ Ω
(5.2.1)

with f and λ de�ned as in Problem (5.1.1). By (5.1.2) we note also that

Ma(t) 6 a for any t > 0. (5.2.2)
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As we show in the sequel, the proof of Theorem 5.1.1 is based on a careful study of the

weak solution of problem (5.2.1). For this, we �rst prove the following result.

Theorem 5.2.1. Let s ∈ (0, 1), n > 2s and Ω be a bounded open subset of Rn. Assume

that the functions K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω× R→ R satisfy

conditions (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7).

Then there exists λ0 > 0 such that problem (5.2.1) has a non�trivial weak solution,

for all λ > λ0 and for all a ∈ (m0,
σ

2
m0).

5.3 Variational formulation and main results

For the proof of Theorem 5.2.1, we observe that problem (5.2.1) has a variational

structure, indeed it is the Euler-Lagrange equation of the functional Ja, λ : Z → R
de�ned as follows

Ja, λ(u) =
1

2
M̂a(‖u‖2Z)− λ

∫
Ω

F (x, u(x))dx− 1

2∗

∫
Ω

|u(x)|2
∗
dx .

where

M̂a(t) =

∫ t

0

Ma(τ)dτ.

Note that the functional Ja, λ is Fréchet di�erentiable in u ∈ Z and for any ϕ ∈ Z〈
J ′a, λ(u), ϕ

〉
= Ma(‖u‖2Z)

∫∫
R2n

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω

f(x, u(x))ϕ(x) dx−
∫

Ω

|u(x)|2
∗−2

u(x)ϕ(x)dx .

(5.3.1)

Thus critical points of Ja, λ are weak solutions of problem (5.2.1). Unlike previous

chapters, the nonlinearity appearing on the right-hand side of main problems (5.1.1)

and (5.2.1) is not asymptotically. For this, here we change variational theorem by

applying the Mountain Pass Theorem (see [67, 86]) to prove Theorem 5.2.1. Thus, as

usual, we have to check that Ja, λ posses a suitable geometric structure (as stated e.g.

in [86, Theorem 6.1]) and it satis�es the Palais�Smale condition (see for instance [86,

page 70]).

To prove all these properties, we need appropriate lower and upper bounds for f

and its primitive. Now, assumptions (5.1.4) and (5.1.5) give subcritical growths. That

is, for any ε > 0 there exists cε = c(ε) > 0 such that

|f(x, t)| 6 2ε |t|+ qcε |t|q−1
for any (x, t) ∈ Ω× R (5.3.2)

by considering also (5.1.7) and so for the primitive

|F (x, t)| 6 ε |t|2 + cε |t|q for any (x, t) ∈ Ω× R. (5.3.3)
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Finally, (5.1.6) implies that F (x, t) > c(x)tσ for all (x, t) ∈ Ω × [1,∞), where c(x) =

F (x, 1) is in L∞(Ω) by (5.3.3), with ε = t = 1. In conclusion, for any (x, t) ∈ Ω× R+

F (x, t) > c(x)tσ − C(x), C(x) = max
t∈[0,1]

∣∣F (x, t)− c(x)tσ
∣∣. (5.3.4)

Again C ∈ L∞(Ω) by (5.3.3).

5.3.1 Geometry for auxiliary functional

Here we �rst prove that the functional Ja, λ has the geometric features required by the

Mountain Pass Theorem.

Lemma 5.3.1. Let K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω × R → R be

three functions satisfying (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7).

Then, for any λ > 0 there exist two positive constants ρ and α such that

Ja, λ(u) > α > 0, (5.3.5)

for any u ∈ Z with ‖u‖Z = ρ.

Proof. Fix λ > 0. By (5.1.3) and (5.3.3) we get

Ja, λ(u) >
m0

2
‖u‖2Z − ελ

∫
Ω

|u(x)|2 dx− cελ
∫

Ω

|u(x)|q dx− 1

2∗

∫
Ω

|u(x)|2
∗
dx.

So, by using a fractional Sobolev inequality (see [40, Theorem 6.5]), there is a positive

constant C = C(Ω) such that

Ja, λ(u) >
(m0

2
− ελC

)
‖u‖2Z − cελC ‖u‖

q
Z − C ‖u‖

2∗

Z .

Therefore, by �xing ε such that m0 > 2ελC, since 2 < q < 2∗, the result follows by

choosing ρ su�ciently small.

Lemma 5.3.2. Let K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω × R → R be

three functions satisfying (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7).

Then, for any λ > 0 there exists an e ∈ Z with e > 0 a.e. in Rn, Ja, λ(e) < 0 and

‖e‖Z > ρ, where ρ is given in Lemma 5.3.1.

Proof. Fix λ > 0 and take u0 ∈ Z such that ‖u0‖Z = 1 and u0 > 0 a.e. in Rn. Now,
let t > 0. By using (5.2.2) and (5.3.4), we get

Ja, λ(tu0) 6 a
t2

2
− tσλ

∫
Ω

c(x) |u0(x)|σ dx+ λ ‖C‖L1(Ω) −
t2
∗

2∗

∫
Ω

|u0(x)|2
∗
dx.

Since 2 < σ < 2∗, passing to the limit as t → +∞, we get that Ja, λ(tu0) → −∞, so

that the assertion follows by taking e = t∗u0, with t∗ > 0 large enough.
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5.3.2 The Palais�Smale condition

In this subsection we discuss a compactness property for the functional Ja, λ, given by

the Palais�Smale condition at a suitable level. For this, we �x λ > 0 and we set

ca, λ := inf
γ∈Γ

max
t∈[0,1]

Ja, λ(γ(t))

where

Γ := {γ ∈ C([0, 1], Z) : γ(0) = 0, Ja, λ(γ(1)) < 0} .

Clearly, ca, λ > 0 by Lemma 5.3.1. We recall that {uj}j∈N is a Palais�Smale sequence

for Ja, λ at level ca, λ if

Ja, λ(uj)→ ca, λ, (5.3.6)

and

sup
{∣∣〈J ′a, λ(uj), ϕ

〉∣∣ : ϕ ∈ Z, ‖ϕ‖Z = 1
}
→ 0, (5.3.7)

as j → +∞. Also, we say that Ja, λ satis�es the Palais�Smale condition at level ca, λ if

any Palais�Smale sequence {uj}j∈N at level ca, λ admits a convergent subsequence in

Z.

Before proving the relatively compactness of the Palais�Smale sequences, we intro-

duce an asymptotic condition for the level ca, λ. This result will be crucial not only to

get (5.1.9), but above all to overcome the lack of compactness due to the presence of

a critical nonlinearity.

Lemma 5.3.3. Let K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω × R → R be

three functions satisfying (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7).

Then

lim
λ→+∞

ca, λ = 0.

Proof. Fix λ > 0 and let e ∈ Z be the function given by Lemma 5.3.2. Since Ja, λ
satis�es the Mountain Pass geometry, it follows that there exists tλ > 0 verifying

Ja, λ(tλe) = max
t>0
Ja, λ(te). Hence,

〈
J ′a, λ(tλe), e

〉
= 0 and by (5.3.1) we get

tλ ‖e‖2ZMa(t2λ ‖e‖
2
Z) = λ

∫
Ω

f(x, tλe(x))e(x) dx+ t2
∗−1
λ

∫
Ω

|e(x)|2
∗
dx . (5.3.8)

Now, by construction e > 0 a.e. in Rn. So, by (5.1.6), (5.2.2) and (5.3.8) it follows

a ‖e‖2Z > t2
∗−2
λ

∫
Ω

|e(x)|2
∗
dx,

which implies that {tλ}λ∈R+ is bounded.
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Fix now a sequence {λj}j∈N ⊂ R+ such that λj → +∞ as j → +∞. Clearly

{tλj}j∈N is bounded. Hence, there exist a subsequence of {λj}j∈N and a constant β > 0

such that tλj → β as j → +∞. So, by using also (5.2.2) and (5.3.8) there exists D > 0

such that

λj

∫
Ω

f(x, tλje(x))e(x) dx+ t2
∗−1
λj

∫
Ω

|e(x)|2
∗
dx = tλjMa(t2λj ‖e‖

2
Z) 6 D (5.3.9)

for any j ∈ N.
We claim that β = 0. Indeed, if β > 0 then by (5.3.2) and the Dominated Conver-

gence Theorem,∫
Ω

f(x, tλje(x))e(x) dx→
∫

Ω

f(x, βe(x))e(x) dx as j → +∞.

By remembering that λj → +∞, we get

lim
j→+∞

λj

∫
Ω

f(x, tλje(x))e(x) dx+ t2
∗−1
λj

∫
Ω

|e(x)|2
∗
dx = +∞

which contradicts (5.3.9). Thus, we have that β = 0. Now, we consider the following

path γ∗(t) = te for t ∈ [0, 1] which belongs to Γ. By using (5.1.6) and Lemma 5.3.1 we

get

0 < ca, λ 6 max
t∈[0,1]

Ja, λ(γ∗(t)) 6 Ja, λ(tλe) 6
1

2
M̂a(t2λ ‖e‖

2
Z). (5.3.10)

By (5.1.2) and by remembering that β = 0 we have

lim
λ→+∞

M̂a(t2λ ‖e‖
2
Z) = 0,

and so by using also (5.3.10) we can conclude the proof.

Now, as usual we �rst prove the boundedness of a Palais�Smale sequence for Ja, λ
at level ca, λ.

Lemma 5.3.4. Let K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω × R → R be

three functions satisfying (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7). For any λ > 0, let

{uj}j∈N be a sequence in Z verifying (5.3.6) and (5.3.7).

Then {uj}j∈N is bounded in Z.

Proof. Fix λ > 0. By (5.3.6) and (5.3.7) there exists C > 0 such that

|Ja, λ(uj)| 6 C and

∣∣∣∣〈J ′a, λ(uj),
uj
‖uj‖Z

〉∣∣∣∣ 6 C, (5.3.11)

for any j ∈ N. Moreover, by (5.1.3), (5.1.6), and (5.2.2) it follows that

Ja, λ(uj)−
1

σ

〈
J ′a, λ(uj), uj

〉
>

1

2
M̂a(‖uj‖2Z)− 1

σ
Ma(‖uj‖2Z) ‖uj‖2Z >

(
1

2
m0 −

1

σ
a

)
‖uj‖2Z

(5.3.12)
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So, by combining (5.3.11) with (5.3.12) and by remembering that m0 < a <
σ

2
m0, we

can conclude the proof.

We are now ready to prove the Palais-Smale condition. As usual in elliptic equations

with critical nonlinearities, the main di�culty relies in the veri�cation of the compact-

ness property of the associated functional. This is due to the lack of compactness at crit-

ical level. To overcome this problem, we need the following concentration-compactness

principle proved by Palatucci and Pisante in [65, Theorem 5] in a non�local setting.

Theorem 5.3.5. [65] Let Ω ⊆ Rn be an open, bounded subset and let {uj}j∈N be a

sequence in Hs
0(Ω) weakly converging to u as j → +∞ and let µ, ν be two positive

measures in Rn such that∣∣∣(−∆)s/2uj

∣∣∣2 dx ∗⇀ µ and |uj |2
∗
dx

∗
⇀ ν inM(Rn).

Then, there exist a (at most countable) set of distinct point {xi}i∈J , positive numbers

{νi}i∈J , {µi}i∈J and a positive measure µ̃ with Supp µ̃ ⊂ Ω such that

ν = |u|2
∗
dx+

∑
i∈J

νiδxi ,

and

µ =
∣∣∣(−∆)s/2u

∣∣∣2 dx+ µ̃+
∑
i∈J

µiδxi , νi 6 S−2∗/2µ
2∗/2
i ,

with S the best constant of the fractional Sobolev embedding.

Before applying Theorem 5.3.5 we �rst need a sort of integration by parts. For the

estimate of each terms deriving by the integration, we will exploit Theorem 5.3.5 and

also the following result proved in [17, Lemmas 2.8 and 2.9].

Lemma 5.3.6. [17] Let Ω ⊆ Rn be an open, bounded subset and let {uj}j∈N be a

bounded sequence in Hs
0(Ω). Let ψ ∈ C∞0 (Rn) be a radial cut�o� function and de�ne

ψδ(x) := ψ(x/δ).

Then

lim
δ→0

lim
j→∞

∣∣∣∣∫
Rn
uj(x)(−∆)s/2uj(x)(−∆)s/2ψδ(x)dx

∣∣∣∣ = 0

and

lim
δ→0

lim
j→∞

∣∣∣∣∫
Rn

(−∆)s/2uj(x)

∫
Rn

(uj(x)− uj(y))(ψδ(x)− ψδ(y))

|x− y|n+s dxdy

∣∣∣∣ = 0.

Lemma 5.3.7. Let K : Rn \ {0} → (0,+∞), M : R+
0 → R+ and f : Ω × R → R

be three functions satisfying (0.0.3) and (0.0.4) and (5.1.2)�(5.1.7). Let {uj}j∈N be a

bounded sequence in Z verifying (5.3.6) and (5.3.7).
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Then there exists λ0 > 0 such that for any λ > λ0 the functional Ja, λ satis�es the

Palais�Smale condition at level ca, λ.

Proof. By Lemma 5.3.3 there exists λ0 > 0 such that

ca, λ <

(
1

θ
− 1

2∗

)[
θm0 S

c(n, s)

]n/2s
(5.3.13)

for any λ > λ0, where c(n, s) is given in (0.0.7) and S is the best constant of the

fractional Sobolev embedding (see [1, Theorem 7.58]) de�ned as

S = inf
v∈Hs(Rn)

v 6=0

‖v‖2Hs(Rn)

‖v‖2
L2∗ (Rn)

. (5.3.14)

Fix now λ > λ0 and let {uj}j∈N be a sequence in Z verifying (5.3.6) and (5.3.7).

Since by Lemma 5.3.4 the sequence {uj}j∈N is bounded in Z, by applying also Lemma

1.1.2 and [20, Theorem 4.9], up to a subsequence, there exists u ∈ Z such that uj

converges to u weakly in Z, strongly in Lr(Ω) with r ∈ [1, 2∗) and a.e. in Ω. Also, in

particular there exists h ∈ Lr(Ω) such that

|uj(x)| 6 h(x) for any j ∈ N and a.e. x ∈ Ω.

We point out the above inequality and convergences are also veri�ed in all Rn, since
uj = 0 = u a.e. in Rn\Ω; in particular we shall assume that h(x) = 0 for a.e. x ∈ Rn\Ω.
Moreover, up to a subsequence, there is α > 0 such that ‖uj‖Z → α, so by using (5.1.2)

it follows that Ma(‖uj‖2Z)→Ma(α2) as j → +∞.

Now, we claim that

‖uj‖2Z → ‖u‖
2
Z as j → +∞, (5.3.15)

which clearly implies that uj → u in Z as j → +∞. By Lemma 1.1.1 we know that

{uj}j∈N is also bounded in Hs
0(Ω). So, by Phrokorov's Theorem we may suppose that

there exist two positive measures µ and ν on Rn such that∣∣∣(−∆)s/2uj

∣∣∣2 dx ∗⇀ µ and |uj |2
∗
dx

∗
⇀ ν (5.3.16)

in the sense of measures. Moreover, by Theorem 5.3.5 we obtain an at most countable

set of distinct points {xi}i∈J , positive numbers {νi}i∈J , {µi}i∈J and a positive measure

µ̃ with Supp µ̃ ⊂ Ω such that

ν = |u|2
∗
dx+

∑
i∈J

νiδxi , (5.3.17)
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and

µ =
∣∣∣(−∆)s/2u

∣∣∣2 dx+ µ̃+
∑
i∈J

µiδxi , νi 6 S−2∗/2µ
2∗/2
i , (5.3.18)

with S the constant given in (5.3.14).

Our goal is to show that the set J is empty. We argue by contradiction and suppose

J 6= ∅. Then we �x i ∈ J and for any δ > 0 we set ψδ(x) := ψ((x − xi)/δ) where

ψ ∈ C∞0 (Rn, [0, 1]) is such that ψ ≡ 1 in B(0, 1) and ψ ≡ 0 in Rn \ B(0, 2). Since for

a �xed δ > 0 the sequence {ψδuj}j∈N is bounded in Z uniformly in j, by (5.3.7) it

follows that
〈
J ′a, λ(uj), ψδuj

〉
→ 0 as j → +∞. From this, by applying also (0.0.4) we

get

oj(1) + λ

∫
Ω

f(x, uj(x))ψδ(x)uj(x)dx+

∫
Ω

|uj(x)|2
∗
ψδ(x)dx

> θMa(‖uj‖2Z)

∫∫
R2n

(
uj(x)− uj(y)

)(
ψδ(x)uj(x)− ψδ(y)uj(y)

)
|x− y|n+2s dxdy,

(5.3.19)

as j → +∞.

By [40, Proposition 3.6] we know that for any v ∈ Z∫∫
R2n

|v(x)− v(y)|2

|x− y|n+2s dxdy = c(n, s)−1

∫
Rn

∣∣∣(−∆)s/2v(x)
∣∣∣2 dx,

with c(n, s) the dimensional constant de�ned in (0.0.7) and, by taking derivative of the

above equality, for any v, w ∈ Z we obtain∫∫
R2n

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s dxdy = c(n, s)−1

∫
Rn

(−∆)s/2v(x)(−∆)s/2w(x)dx.

(5.3.20)

Furthermore, for any v, w ∈ Z we have

(−∆)s/2(vw)(x) = v(x)(−∆)s/2w(x) + w(x)(−∆)s/2v(x)− 2Is/2(v, w)(x), (5.3.21)

where the last term is de�ned, in the principal value sense, as follows

Is/2(v, w)(x) = P.V.

∫
Rn

(v(x)− v(y))(w(x)− w(y))

|x− y|n+s dy.

Thus, by (5.3.20) and (5.3.21) the integral in the right�hand side of (5.3.19) becomes∫∫
R2n

(
uj(x)− uj(y)

)(
ψδ(x)uj(x)− ψδ(y)uj(y)

)
|x− y|n+2s dxdy

= c(n, s)−1

∫
Rn
uj(x)(−∆)s/2uj(x)(−∆)s/2ψδ(x)dx

+ c(n, s)−1

∫
Rn

∣∣∣(−∆)s/2uj(x)
∣∣∣2 ψδ(x)dx

− 2c(n, s)−1

∫
Rn

(−∆)s/2uj(x)

∫
Rn

(uj(x)− uj(y))(ψδ(x)− ψδ(y))

|x− y|n+s dxdy.
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From this, by using (5.3.16) and Lemma 5.3.6 we get

lim
δ→0

lim
j→∞

[∫∫
R2n

(
uj(x)− uj(y)

)(
ψδ(x)uj(x)− ψδ(y)uj(y)

)
|x− y|n+2s dxdy

]
= c(n, s)−1µi.

(5.3.22)

Moreover, by (5.3.2) and the Dominated Convergence Theorem we get∫
B(xi,δ)

f(x, uj(x))uj(x)ψδ(x)dx→
∫
B(xi,δ)

f(x, u(x))u(x)ψδ(x)dx

as j → +∞. So by sending δ → 0 we observe that

lim
δ→0

lim
j→∞

∫
B(xi,δ)

f(x, uj(x))uj(x)ψδ(x)dx = 0. (5.3.23)

Furthermore, by (5.3.16) it follows that∫
Ω

|uj(x)|2
∗
ψδ(x)dx→

∫
Ω

ψδ(x)dν as j → +∞

and by combining this last formula with (5.3.19), (5.3.22) and (5.3.23), using also(5.3.16),

we obtain

νi > θMa(α2)c(n, s)−1µi,

recalling that Ma(‖uj‖2Z) → Ma(α2) as j → +∞. By using (5.1.3) we conclude that

νi > θm0 c(n, s)
−1µi and by using also the inequality in (5.3.18), since νi > 0 we get

νi >

[
θm0 S

c(n, s)

]n/2s
. (5.3.24)

Now we shall prove that the above expression cannot occur and so, since i ∈ J was

arbitrary, the set J is empty. By (5.3.6) and (5.3.7) we have

lim
j→+∞

(
Ja, λ(uj)−

1

σ

〈
J ′a, λ(uj), uj

〉)
= ca, λ. (5.3.25)

Moreover, by (5.1.3), (5.1.6), (5.2.2) and remembering that m0 < a <
σ

2
m0 we have

Ja, λ(uj)−
1

σ

〈
J ′a, λ(uj), uj

〉
>

1

2
M̂a(‖uj‖2Z)− 1

σ
Ma(‖uj‖2Z) ‖uj‖2Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

>

(
1

2
m0 −

1

σ
a

)
‖uj‖2Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

>

(
1

σ
− 1

2∗

)∫
Ω

ψδ(x) |uj(x)|2
∗
dx,

(5.3.26)
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since also 0 6 ψδ 6 1. By combining (5.3.25) and (5.3.26), using also (5.3.16), we get

ca, λ >

(
1

σ
− 1

2∗

)∫
Ω

ψδ(x)dν,

from which, by sending δ → 0 and by using (5.3.24), it follows that

ca, λ >

(
1

σ
− 1

2∗

)[
θm0 S

c(n, s)

]n/2s
,

which clearly contradicts (5.3.13). Thus, J is empty and by (5.3.16) and (5.3.17) it

follows that uj converges to u in L2∗(Ω). So, by (5.3.7) with ϕ = uj , (5.3.2) and the

Dominated Convergence Theorem we have

lim
j→+∞

Ma(‖uj‖2Z) ‖uj‖2Z = λ

∫
Ω

f(x, u(x))u(x)dx+

∫
Ω

|u(x)|2
∗
dx. (5.3.27)

Moreover, by remembering that uj ⇀ u in Z, Ma(‖uj‖2Z) → Ma(α2) and by using

(5.3.2) and the Dominated Convergence Theorem, (5.3.7) we have

Ma(α2) 〈u, ϕ〉Z = λ

∫
Ω

f(x, u(x))ϕ(x) dx−
∫

Ω

|u(x)|2
∗−2

u(x)ϕ(x)dx , (5.3.28)

for any ϕ ∈ Z. So, by combining (5.3.27) and (5.3.28) it follows that

Ma(‖uj‖2Z) ‖uj‖2Z →Ma(α2) ‖u‖2Z as j → +∞,

from which we conclude the proof of claim (5.3.15).

Before concluding the proof of our main results we will give an alternative proof

of Lemma 5.3.7. This new approach does not need of Lemmas 5.3.5 and 5.3.6. In-

deed it is mainly based on the celebrated Brezis & Lieb lemma (see [21]). In our

factional framework the application of this lemma is di�erent compared to the clas-

sical case, since we do not have derivatives of solutions in Z, but a sort of integro�

di�erentiation (see (1.1.7)). The idea for this approach is given by paper [9] where we

studied problem (5.1.1) in a degenerate setting. In the degenerate case the proof based

on a concentration�compactness principle does not work.

An alternative proof of Lemma 5.3.7. Take λ > 0 and let {uj}j∈N ⊂ Z be a

sequence in Z verifying (5.3.6) and (5.3.7).

Since by Lemma 5.3.4 the sequence {uj}j∈N is bounded in Z, by applying also

Lemma 1.1.2 and [20, Theorem 4.9], there exists uλ ∈ Z such that, up to a subsequence,

it follows that

uj ⇀ uλ in Z and in L2∗(Ω), ‖uj‖Z → αλ,

uj → uλ in Lq(Ω) and in L2(Ω), ‖uj − uλ‖L2∗ (Ω) → `λ,

uj → uλ a.e. in Ω, |uj | 6 h a.e. in Ω,

(5.3.29)
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with h ∈ L2(Ω) ∩ Lq(Ω). Furthermore, by (5.1.2) and (5.1.3) we have Ma(‖uj‖2Z) →
Ma(α2

λ) > 0 as j → +∞.

We �rst assert that

lim
λ→+∞

αλ = 0. (5.3.30)

Otherwise lim sup
λ→+∞

αλ = α > 0. Hence there is a sequence, say k → λk ↑ +∞ such that

αλk → α as k → +∞. Now, by (5.1.3), (5.1.6), and (5.2.2) it follows that

Ja, λk(uj)−
1

σ

〈
J ′a, λk(uj), uj

〉
>

1

2
M̂a(‖uj‖2Z)− 1

σ
Ma(‖uj‖2Z) ‖uj‖2Z >

(
1

2
m0 −

1

σ
a

)
‖uj‖2Z

and letting j → +∞ and k → +∞ we get from Lemma 5.3.3 that

0 >

(
1

2
m0 −

1

σ
a

)
α2 > 0

since m0 < a <
σ

2
m0, which is the desired contradiction and proves the assertion

(5.3.30).

Moreover, ‖uλ‖Z 6 lim
j→+∞

‖uj‖Z = αλ since uj ⇀ uλ in Z, so that (5.3.30) implies

at once by the fractional Sobolev inequality

lim
λ→+∞

‖uλ‖L2∗ (Ω) = lim
λ→+∞

‖uλ‖Z = 0. (5.3.31)

By (5.3.2), (5.3.29) and the fact that |uj |2
∗−2

uj ⇀ |uλ|2
∗−2

uλ in L2∗
′

(Ω), where

2∗
′

= 2n/(n+ 2s) is the Hölder conjugate of 2∗, we have

Ma(α2
λ) 〈uλ, ϕ〉Z = λ

∫
Ω

f(x, uλ(x))ϕ(x)dx+

∫
Ω

|uλ(x)|2
∗−2

uλ(x)ϕ(x)dx

for any ϕ ∈ Z. Hence, uλ is a critical point of the C1(Z) functional

Jαλ(u) =
1

2
Ma(α2

λ)‖u‖2Z − λ
∫

Ω

F (x, u(x))dx− 1

2∗
‖u‖2

∗

L2∗ (Ω). (5.3.32)

In particular, (5.3.7) and (5.3.29) imply that as j → +∞

oj(1) = 〈J ′a, λ(uj)− J ′αλ(uλ), uj − uλ〉 = Ma(‖uj‖2Z)‖uj‖2Z +Ma(α2
λ)‖uλ‖2Z

− 〈uj , uλ〉Z
[
Ma(‖uj‖2Z) +Ma(α2

λ)
]
− λ
∫

Ω

[
f(x, uj)− f(x, uλ)

]
(uj − uλ) dx

−
∫

Ω

(
|uj |2

∗−2uj − |uλ|2
∗−2uλ

)
(uj − uλ)dx (5.3.33)

= Ma(α2
λ)
(
α2
λ − ‖uλ‖2Z

)
− ‖uj‖2

∗

L2∗ (Ω) + ‖uλ‖2
∗

L2∗ (Ω) + oj(1)

= Ma(α2
λ)‖uj − uλ‖2Z − ‖uj − uλ‖2

∗

L2∗ (Ω) + oj(1).
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Indeed, by (5.3.2) and (5.3.29),

lim
j→+∞

∫
Ω

[
f(x, uj(x))− f(x, uλ(x))

]
(uj(x)− uλ(x)) dx = 0.

Moreover, again by (5.3.29) and the Brezis & Lieb lemma (see [21]), as j → +∞

‖uj‖2Z = ‖uj−uλ‖2Z+‖uλ‖2Z+oj(1), ‖uj‖2
∗

L2∗ (Ω) = ‖uj−uλ‖2
∗

L2∗ (Ω)+‖uλ‖
2∗

L2∗ (Ω)+oj(1).

Finally, we have used the fact that ‖uj‖Z → αλ. Therefore, we have proved the main

formula

Ma(α2
λ) lim

j→+∞
‖uj − uλ‖2Z = lim

j→+∞
‖uj − uλ‖2

∗

L2∗ (Ω). (5.3.34)

By (5.1.3), (5.1.6), (5.2.2) and remembering that m0 < a <
σ

2
m0 we have

Ja, λ(uj)−
1

σ

〈
J ′a, λ(uj), uj

〉
>

1

2
M̂a(‖uj‖2Z)− 1

σ
Ma(‖uj‖2Z) ‖uj‖2Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

>

(
1

2
m0 −

1

σ
a

)
‖uj‖2Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

>

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx.

So, using (5.3.29) and the Brezis & Lieb lemma, we attain as j → +∞

cλ + oj(1) = Ja, λ(uj)−
1

σ

〈
J ′a, λ(uj), uj

〉
>

(
1

σ
− 1

2∗

)
‖uj‖2

∗

L2∗ (Ω)

=

(
1

σ
− 1

2∗

){
`2
∗

λ + ‖uλ‖2
∗

L2∗ (Ω)

}
+ oj(1).

Thus, by Lemma 5.3.3 and (5.3.31) we also obtain

lim
λ→+∞

`λ = 0. (5.3.35)

Denote by S̃ the main fractional Sobolev constant, that is

S̃ = inf
v∈Z
v 6=0

‖v‖2Z
‖v‖2

L2∗ (Ω)

.

By (5.3.34) and the notation in (5.3.29), for all λ ∈ R+

`2
∗

λ > S̃ Ma(α2
λ) `2λ > S̃ m0 `

2
λ, (5.3.36)

by (5.1.3). This last inequality, together with (5.3.35), yields at once that there exists

λ0 > 0 such that `λ = 0 for all λ > λ0.
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Hence, for any λ > λ0

lim
j→+∞

‖uj − uλ‖2
∗

L2∗ (Ω) = 0.

Thus, uj → uλ in Z as j → +∞ for all λ > λ0 by (5.3.34), being Ma(α2
λ) > 0 by

(5.1.3).

5.3.3 Proofs of Theorems 5.1.1 and 5.2.1

In this subsection we conclude the proofs of our main theorems. We �rst show that

the auxiliary problem (5.2.1) admits a non�trivial weak solution. Then we will see the

same weak solution solves also the main problem (5.1.1).

Proof of Theorem 5.2.1. Lemmas 5.3.1, 5.3.2 and 5.3.7 guarantee that for any λ >

λ0 the functional Ja, λ satis�es all the assumptions of the Mountain Pass theorem.

Hence, for any λ > λ0 there exists a critical point u ∈ Z for the functional Ja, λ at

level ca, λ. Since Ja, λ(u) = ca, λ > 0 = Ja, λ(0) we conclude that u 6≡ 0.

Proof of Theorem 5.1.1. By Theorem 5.2.1, for any λ > λ0 let uλ be a weak solu-

tion of problem (5.2.1). Now, we claim that

there exists λ∗ > λ0 such that ‖uλ‖Z 6 t0 for any λ > λ∗ , (5.3.37)

where t0 is given as at the beginning of Section 5.2. We argue by contradiction and

suppose that there is a sequence {λj}j∈N ⊂ R such that
∥∥uλj∥∥Z > t0. Since uλj is a

critical point of the functional Ja, λj , by using also (5.1.3), (5.1.6) and (5.2.2) it follows

that

ca, λj >
1

2
M̂a(

∥∥uλj∥∥2

Z
)− 1

σ
Ma(

∥∥uλj∥∥2

Z
)
∥∥uλj∥∥2

Z

>

(
1

2
m0 −

1

σ
a

)∥∥uλj∥∥2

Z
>

(
1

2
m0 −

1

σ
a

)
t20,

which contradicts Lemma 5.3.3 sincem0 < a <
σ

2
m0. So, by (5.3.37) we getMa(‖uλ‖2Z) =

M(‖uλ‖2Z) which implies that uλ is a weak solution of problem (5.1.1) for any λ > λ0.

Moreover, arguing as above we have

ca, λ >

(
1

2
m0 −

1

σ
a

)
‖uλ‖2Z ,

and so, sincem0 < a <
σ

2
m0 and by Lemma 5.3.3, it follows that lim

λ→+∞
‖uλ‖Z = 0.
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5.3.4 Existence of non-negative solutions

In this subsection we study the sign of weak solutions of problem (5.1.1). For this, we

�rst introduce the following technical lemma.

Lemma 5.3.8. Let K : Rn \ {0} → (0,+∞) satisfy (0.0.3) and (0.0.4). Let u ∈ Z.
Then the absolute value of u, denoted by |u|, is in Z.

Proof. We �x a > 0. Since u ∈ Z, by costruction there exists w ∈ C∞0 (Ω) such that

‖u− w‖X <
a

2
. (5.3.38)

Now, for any ε > 0 and x ∈ Rn, we set vε(x) :=
(
ε2 + w2(x)

)1/2 − ε. We observe that

vε = 0 = w in Rn \Ω and it is a smooth function by construction. Hence, vε ∈ C∞0 (Ω).

Also, we have vε(x)→ |w(x)| for a.e. x ∈ Rn as ε→ 0. Since |vε| 6 |w| for any ε > 0,

by the Dominated Convergence Theorem, vε → |w| in L2(Rn) as ε→ 0.

On the other hand,

|∇vε| =
|w| |∇w|

(ε2 + w2)
1/2

6 |∇w| ,

uniformly in ε. Therefore, by the boundedness and Lipschitz regularity of w it follows

that
|vε(x)− |w(x)| − vε(y) + |w(y)| |2K(x− y)

6 2
(
|vε(x)− vε(y)|2 + | |w(x)| − |w(y)| |2

)
K(x− y)

6 C min
{

1, |x− y|2
}
K(x− y) ∈ L1(Rn × Rn).

thanks to (0.0.3). Thus, by the Dominated Convergence Theorem we get vε → |w| in
X as ε→ 0, in particular

‖vε − |w|‖X <
a

2
(5.3.39)

for ε su�ciently small, say ε 6 ε̄, with ε̄ = ε̄(a) > 0.

By (5.3.38) and (5.3.39) it is easy to see that

‖|u| − vε̄‖X 6 ‖|u| − |w|‖X + ‖|w| − vε̄‖X 6 ‖u− w‖X + ‖|w| − vε̄‖X < a.

This concludes the proof.

Corollary 5.3.9. Let all the assumptions of Theorem 5.1.1 be satis�ed and assume

(5.1.7) in addition.

Then problem (5.1.8) has a non-negative solution uλ for all λ > λ∗, where λ∗ is

the parameter given in Theorem 5.1.1.
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Proof. We �x λ > λ∗. Let uλ ∈ Z be a solution of problem (5.1.8), given by Theorem

5.1.1. By Lemma 5.3.8 we have u−λ ∈ Z. So, by (5.1.8) with ϕ = u−λ we get

M(‖uλ‖2Z)

∫∫
R2n

(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))K(x− y)dx dy

= λ

∫
Ω

f(x, uλ(x))u−λ (x) dx+

∫
Ω

∣∣u−λ (x)
∣∣2∗ dx. (5.3.40)

Now, we observe that

(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))

= −u+
λ (x)u−λ (y)− u−λ (x)u+

λ (y)− (u−λ (x)− u−λ (y))2 6 −
∣∣u−λ (x)− u−λ (y)

∣∣2 ,
for a.e. x, y ∈ Rn. Moreover, by (5.1.7) we get f(x, uλ(x))u−λ (x) = 0 for a.e. x ∈ Rn.
Thus, by (5.3.40) and being M > 0 by (5.1.3), it follows that

0 > −M(‖uλ‖2Z)

∫∫
R2n

∣∣u−λ (x)− u−λ (y)
∣∣2K(x− y)dx dy >

∥∥u−λ ∥∥2∗

L2∗ (Ω)

which implies u−λ ≡ 0.
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Appendix A

Some motivation for a fractional

Kirchho� equation

The goal of these last pages is to give some motivation for the problem studied in

Chapter 5. For this, we would like �rst to recall some basic facts on the classical Kirch-

ho� equation: our explanations will be oversimpli�ed, and even crude in some parts,

and we will not attempt a rigorous mathematical justi�cation of all the asymptotics

that we are going to discuss heuristically.

We will consider the one-dimensional case for simplicity. For this we take the phys-

ical model of an elastic string constrained at the extrema. For concreteness, the string

will be represented by the graph of a function u : [−1, 1] × [0,+∞) → R, and the

end-point constraint reads u(−1, t) = u(1, t) = 0 for any t > 0. As usual we will

write u = u(x, t), where x is the space variable and t is the time.

For further use, we can indeed identify this �nite string with an in�nite string, that

is constrained outside (−1, 1), i.e. consider the function u : [−1, 1] × [0,+∞) → R,
with u(x, t) = 0 for any x ∈ R \ (−1, 1) and any t > 0.

Then, the acceleration utt of the vertical displacement u of the vibrating string

(that from now on will be assumed suitably small with respect to the length of the

string) must be compensated, by Newton's law, by the elastic force of the string and by

the external force �eld f : so we obtain the classical equation for the vibrating string:

utt = Muxx + f.

If we look for stationary solutions, i.e. solutions u(x) that do not depend on time, the

equation boils down to

Muxx + f = 0. (A.0.1)
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To a �rst approximation, for homogeneous strings, the elastic tension termM is simply

a positive constant m0. Several corrections to the model were proposed in order to take

into account some discrepancies between the theory and the experimental data, since

�it is well known that the classical linearized analysis of the vibrating string can lead to

results which are reasonably accurate only when the minimum (rest position) tension

and the displacements are of such magnitude that the relative change in tension during

the motion is small�, see [32].

A classical modi�cation of the above model is then to suppose that the tension

increases if so does the length of the string. This ansatz is coherent with the common

experience that a taut string reacts more strongly than a slack one. It is conceivable

then to make the above ansatz quantitative and suppose, for simplicity, that the tension,

for small deformations of the string, takes (at least for small elongations of the string)

the linear form

M(`) = m0 + 2b`, (A.0.2)

where b > 0 is constant and ` is the increment in the length of the string with respect

to its rest position (in which the string has length 2), i.e.

` =

∫ 1

−1

√
1 + u2

x dx− 2. (A.0.3)

For small deformations,
√

1 + u2
x = 1 +

u2
x

2 up to higher order terms, and so

` =
1

2

∫ 1

−1

u2
x dx.

By plugging this into (A.0.2) we obtain

M = m0 + b

∫ 1

−1

u2
x dx = m0 + b

∫
R
u2
x dx,

where we used the notation for which u is de�ned to vanish outside (−1, 1). By inserting

this into (A.0.1), one obtains the classical version of the Kirchho� equation

M

(∫ +∞

−∞
u2
x dx

)
uxx + f = 0, (A.0.4)

with M(t) = m0 + bt. As a historical remark, we mention that the equation was

�rst introduced in [55, 56] and then, probably independently, proposed in [32, 33]; see

also [64] for a comparison between the theory and the experimental data.

We observe that the �rst term in (A.0.4) can be interpreted in a variational way,

as arising from an energy of the form

1

2
M̂

(∫ +∞

−∞
u2
x dx

)
, (A.0.5)
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where M̂ is a primitive of M .

With this respect, the Kirchho� equation of non�local type that we studied orig-

inates from the idea that the energy in (A.0.5) does not depend on the H1 norm of

the function that parameterizes the graph of the string, but rather on its Hs norm,

namely we replaced (A.0.5) with

1

2
M̂

(∫
R2

(u(x)− u(y))2

|x− y|1+2s
dx dy

)
,

or even with more general kinds of fractional norms. In this sense, while the �non�local�

feature of the tension in the classical Kirchho� equation surfaces from the average of a

�local� object (namely u2
x), in the equation we took into account the �non�local� aspect

of the tension arises from an object which is �non�local� as well. In general, we think

it could be interesting to study even more general models in which the tension of the

string is related to �non�local� measurments of the modi�cation of the string from its

rest position. Some of these models may be variational in nature (as the one considered

here), some others may be not.

Now, we present another way of obtaining the model we study from the classical

Kirchho� equation. Following [24], for σ ∈ (0, 1), we consider the σ-length of the string

as follows. Let E := {(x1, x2) ∈ R2 s.t. x2 < u(x1)} be the subgraph of u. We assume

that the oscillation of the string does not exceed a size of order ε, i.e. |u| < ε and

so ∂E ⊂ {(x1, x2) ∈ R2 s.t. |x2| < ε}. Then we de�ne the length of the string in the

set Q := [−1, 1]× [−ε, ε] as

`σ(u) := I(E ∩Q,R2 \ E) + I(Q \ E,E \Q),

where, for any couple of disjoint measurable sets X, Y ⊂ R2 we set

I(X,Y ) :=

∫
X×Y

dx dy

|x− y|2+σ
.

It is known that (up to a suitable rescaling) `σ tends to the classical length of the

string as σ → 1 (see [7, 30]). Of course, the fractional length of the string at rest here

is simply `σ(0), and so the di�erence between the fractional length of the string and

its original value is

`σ := `σ(u)− `σ(0).

So it is conceivable to replace in the model the dependence from the classical length

with the dependence of this �non�local� version of length, i.e. to substitute (A.0.2) with

M(`σ) = m0 + 2b`σ. (A.0.6)
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Moreover, `σ may be computed in terms of u thanks to the following geometric obser-

vation. Let

E+ := {(x1, x2) ∈ R2 s.t. 0 < x2 < u(x1)},

E− := {(x1, x2) ∈ R2 s.t. u(x1) < x2 < 0},

W+ := R× (0,+∞),

W− := R× (−∞, 0)

and Q± := Q ∩W±.

Then

`σ(u)

= I((Q− \ E−) ∪ E+, (W+ \ E+) ∪ E−) + I((Q+ \ E+) ∪ E−,W− \Q)

= I(Q− \ E−,W+ \ E+) + I(Q− \ E−, E−)

+I(E+,W+ \ E+) + I(E+, E−)

+I(Q+ \ E+,W− \Q) + I(E−,W− \Q)

and

`σ(0) = I(Q−,W+) + I(Q+,W− \Q).

Moreover

I(Q−,W+)− I(Q− \ E−,W+ \ E+)

= I(Q− \ E−, E+) + I(E−,W+ \ E+) + I(E−, E+)

and

I(Q+,W− \Q)− I(Q+ \ E+,W− \Q) = I(E+,W− \Q).

As a consequence

`σ = I(Q− \ E−, E−) + I(E+,W+ \ E+)

+I(E−,W− \Q)− I(Q− \ E−, E+)

−I(E−,W+ \ E+)− I(E+,W− \Q).

By collecting all the terms involving E+ and E− and using that I(X,Y ) = I(Y,X) we

obtain

`σ = I(E+,W+ \ E+)− I(E+,W− \ E−)

+I(E−,W− \ E−)− I(E−,W+ \ E+). (A.0.7)
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We now write separately the �rst two terms. For typographical convenience we use the

notation of writing the integrating variables next to their integral sign. Also, we set

u+ := max{u, 0} and u− := max{−u, 0}: notice that u± > 0 and u = u+ − u−. In this

way, E+ = {(x1, x2) ∈ R2 s.t. 0 < x2 < u+(x1)}, E− := {(x1, x2) ∈ R2 s.t. −u−(x1) <

x2 < 0},

I(E+,W+ \ E+)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

∫ +∞

u+(y1)

dy2

(
|x1 − y1|2 + |x2 − y2|2

)−(2+σ)/2

and

I(E+,W− \ E−)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

∫ −u−(y1)

−∞
dy2

(
|x1 − y1|2 + |x2 − y2|2

)−(2+σ)/2
.

Thus, we set ψ = ψ(x1, y1, z2) :=
(
|x1−y1|2 + |z2|2

)−(2+σ)/2
, we make the substitution

z2 := y2 − x2 and we get

I(E+,W+ \ E+)− I(E+,W− \ E−)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

[∫ +∞

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

−∞
dz2

]
ψ.

(A.0.8)

Now we observe that ∫ 0

−∞
dz2 ψ =

∫ +∞

0

dz2 ψ,

since ψ is even in z2. Therefore[∫ +∞

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

−∞
dz2

]
ψ

=

[∫ 0

u+(y1)−x2

dz2 +

∫ +∞

0

dz2 −
∫ 0

−∞
dz2 −

∫ −u−(y1)−x2

0

dz2

]
ψ

=

[∫ 0

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

0

dz2

]
ψ,

hence (A.0.8) becomes

I(E+,W+ \ E+)− I(E+,W− \ E−)

= −
∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ.

(A.0.9)

At this point, we make the crude approximation∫ ε′

0

dz2 ψ ' ψ
∣∣∣
z2=0

ε′ = |x1 − y1|−(2+σ)ε′, (A.0.10)
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when ε′ is of the order of ε. As a matter of fact, such approximation is not fully

justi�ed when x1 and y1 are in a neighborhood of size much smaller than ε, due to

the singularity of the kernel: since this appendix is mainly motivational, and should

not be interpreted in a strictly rigorous mathematical language, we neglect this subtle

point and just take the ansatz that (A.0.10) is reasonable for most of the points of

integration x1 and y1 and see what happens. Similarly, we observe that, for s := σ+1
2 ,

at least formally and in the principal value sense

‖u‖2Hs(R) =

∫
R
dx1

∫
R
dy1
|u(x1)− u(y1)|2

|x1 − y1|1+2s

=

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1) + |u(y1)|2 − u(y1)u(x1)

|x1 − y1|2+σ

= 2

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1)

|x1 − y1|2+σ
,

(A.0.11)

thanks to the symmetric role played by x1 and y1.

From (A.0.10) we obtain the approximation[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ

' |x1 − y1|−(2+σ)
(
u+(y1)− u−(y1)− 2x2

)
= |x1 − y1|−(2+σ)

(
u(y1)− 2x2

)
.

Therefore, up to terms that we neglected,∫ u+(x1)

0

dx2

[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ

=

∫ u+(x1)

0

dx2|x1 − y1|−(2+σ)
(
u(y1)− 2x2

)
= −|x1 − y1|−(2+σ)

(
|u+(x1)|2 − u+(x1)u(y1)

)
.

Consequently, (A.0.9) becomes

I(E+,W+ \ E+)− I(E+,W− \ E−)

=

∫
R
dx1

∫
R
dy1
|u+(x1)|2 − u+(x1)u(y1)

|x1 − y1|2+σ
.

(A.0.12)

Notice also that a re�ection of the vertical variable transforms the set E+ of the

function u into the set E− for the function −u, and also (−u)+ = u−. Hence the

95



symmetric version of (A.0.12) reads

I(E−,W− \ E−)− I(E−,W+ \ E+)

=

∫
R
dx1

∫
R
dy1
|u−(x1)|2 + u−(x1)u(y1)

|x1 − y1|2+σ
.

(A.0.13)

Moreover, since, at any point x1 either u+(x1) = 0 or u−(x1) = 0, we see that

|u(x1)|2 = |u+(x1)|2 + |u−(x1)|2.

Accordingly, by plugging (A.0.12) and (A.0.13) into (A.0.7) and we obtain the approx-

imation

`σ =

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1)

|x1 − y1|2+σ
=

1

2
‖u‖2Hs(R),

where in the last step we used (A.0.11). By inserting this expression into (A.0.6) we

obtain the approximated tension

M = m0 + 2b‖u‖2Hs(R).

Hence, a non�local model for the vibrating string may be obtained from (A.0.1), by

considering the above tension and by replacing the local spatial second derivative with

the non�local operator −(−∆)s: in this way we obtain the non�local equation

−M
(
‖u‖2Hs(R)

)
(−∆)su+ f = 0.

96



Bibliography

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975).

[2] C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of non-

local elliptic problems with critical growth, Di�erential Equations & Applications,

2, no. 3, 409�417 (2010).

[3] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a

quasilinear elliptic equation of Kirchho� type, Comput. Math. Appl., 49, 85�93

(2005).

[4] C.O. Alves and D.G. de Figueiredo, Nonvariational elliptic systems via

Galerkin methods, Function Spaces, Di�erential Operators and Nonlinear Anal-

ysis - The Hans Triebel Anniversary Volume, Ed. Birkhauser, Switzerland, 47�57

(2003).

[5] A. Ambrosetti and A. Malchiodi, Nonlinear analysis and semilinear elliptic

problems, Cambridge Studies in Advanced Mathematics, 104, Cambridge Univer-

sity Press (2007).

[6] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical

point theory and applications, J. Funct. Anal., 14, 349�381 (1973).

[7] L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of

nonlocal perimeter functionals, Manuscripta Math., 134, no. 3-4, 377�403 (2011).

[8] G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions

of polyharmonic Kirchho� systems, Math. Models Methods Appl. Sci., 22, no. 2,

1150009, 36 pp. (2012).

[9] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchho� problems in-

volving a fractional elliptic operator and a critical nonlinearity, submitted paper,

available online at http://arxiv.org/abs/1410.6762 .

97



[10] G. Autuori and P. Pucci,Kirchho� systems with dynamic boundary conditions,

Nonlinear Anal., 73, no. 7, 1952�1965 (2010).

[11] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian

in RN , J. Di�erential Equations, 255, no. 8, 2340�2362 (2013).

[12] G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear

elliptic equations, NoDEA Nonlinear Di�erential Equations Appl., 20, no. 3, 977�

1009 (2013).

[13] G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear

Kirchho� systems, Arch. Ration. Mech. Anal., 196, no. 2, 489�516 (2010).

[14] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners,

Springer, Berlin (2011).

[15] G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for

second-order elliptic integro-di�erential equations, Indiana Univ. Math. J., 57,

no. 1, 213�246 (2008).

[16] B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some criti-

cal problems for the fractional Laplacian operator, J. Di�erential Equations, 252,

6133�6162 (2012).

[17] B. Barrios, E. Colorado, R. Servadei and F. Soria, A crit-

ical fractional equation with concave-convex power nonlinearities, to ap-

pear in Ann. Inst. H. Poincaré Anal. Non Linéaire., available on line at

http://arxiv.org/abs/1306.3190 .

[18] B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-

di�erential operators and its application to nonlocal minimal surfaces, to ap-

pear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), available on line at

http://arxiv.org/abs/1202.4606 .

[19] F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, and G. M.

Viswanathan, Optimizing the encounter rate in biological interactions: Lévy ver-

sus Brownian strategies, Phys. Rev. Lett., 88, no. 9 (2002).

[20] H. Brezis, Analyse fonctionelle. Théorie et applications, Masson, Paris (1983).

[21] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and

convergence of functionals, Proc. Amer. Math. Soc., 88, 486�490 (1983).

98



[22] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations

involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, no. 4, 437�477

(1983).

[23] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the

square root of the Laplacian, Adv. Math., 224, no. 5, 2052�2093 (2010).

[24] L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,

Comm. Pure Appl. Math., 63, no. 9, 1111�1144 (2010).

[25] L. Caffarelli and L. Silvestre, An extension problem related to the fractional

Laplacian, Comm. Partial Di�erential Equations, 32, no. 7-9, 1245�1260 (2007).

[26] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-

di�erential equations, Comm. Pure Appl. Math., 62, no. 5, 597�638 (2009).

[27] L. A. Caffarelli and L. Silvestre,On the Evans-Krylov theorem, Proc. Amer.

Math. Soc., 138, 263�265 (2010).

[28] L. A. Caffarelli and L. Silvestre, Regularity results for nonlocal equations

by approximation, Arch. Rational Mech. Anal., 200, 59�88 (2011).

[29] L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold

dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195,

1�23 (2010).

[30] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments

for nonlocal minimal surfaces, Calc. Var. Partial Di�erential Equations, 41, no.

1-2, 203�240 (2011).

[31] A. Capella, Solutions of a pure critical exponent problem involving the half-

Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10, no. 6, 1645�

1662 (2011).

[32] G. F. Carrier, On the nonlinear vibration problem of the elastic string, Quart.

Appl. Math., 3, 157�165 (1945).

[33] G. F. Carrier, A note on the vibrating string, Quart. Appl. Math., 7, 97�101

(1949).

[34] S.-J. Chen and L. Li,Multiple solutions for the nonhomogeneous Kirchho� equa-

tion on RN , Nonlinear Anal. Real World Appl., 14, no. 3, 1477�1486 (2013).

99



[35] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic

Kirchho� equations, Nonlinear Anal., 74, 5962�5974 (2011).

[36] G. M. Constantine and T. H. Savits, A Multivariate Faa di Bruno Formula

with Applications, Trans. Amer. Math. Soc., 348, 503�520 (1996).

[37] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman

& Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton,

FL, (2004).

[38] A. Córdoba and D. Córdoba, A maximum principle applied to quasi-

geostrophic equations, Comm. Math. Phys., 249, 511�528 (2004).

[39] W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves:

a rigorous approach, Nonlinearity, 5, 497�522 (1992).

[40] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the frac-

tional Sobolev spaces, Bull. Sci. Math., 136, no. 5, 521�573 (2012).

[41] D.G. De Figueiredo and J.P. Gossez, Strict monotonicity of eigenvalues and

unique continuation, Comm. Partial Di�erential Equations, 17, no. 1-2, 339�346

(1992).

[42] M.M. Fall and V. Felli, Unique continuation property and local asymptotics

of solutions to fractional elliptic equations, Comm. Partial Di�erential Equations,

39, no. 2, 354�397 (2014).

[43] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger

equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142,

no. 6, 1237�1262 (2012).

[44] G. M. Figueiredo, Existence of a positive solution for a Kirchho� problem type

with critical growth via truncation argument, J. Math. Anal. Appl., 401, no. 2,

706�713 (2013).

[45] G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a

Kirchho� equation with subcritical or critical growth, Di�erential Integral Equa-

tions, 25, no. 9-10, 853�868 (2012).

[46] A. Fiscella, Saddle point solutions for non�local elliptic operators,

to appear in Top. Methods Nonlinear Anal., available on line at

http://arxiv.org/abs/1210.8401 .

100



[47] A. Fiscella, R. Servadei and E. Valdinoci, A resonance problem for non�

local elliptic operators, Z. Anal. Anwendungen., 32, 411�431 (2013).

[48] A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems

driven by fractional Laplacian operators, submitted paper, available on line at

http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=12-128 .

[49] A. Fiscella, R. Servadei and E. Valdinoci, Density properties

for fractional Sobolev spaces, submitted paper, available on line at

https://www.ma.utexas.edu/mp_arc/c/14/14-37.pdf .

[50] A. Fiscella and E. Valdinoci, A critical Kirchho� type problem involving a

nonlocal operator, Nonlinear Anal., 94, 156�170 (2014) .

[51] G.B. Folland, Real Analysis. Modern techniques and their applications, J.Wiley,

New York (1984).

[52] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston (1985).

[53] N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl,

K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle,

J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wear-

mouth, E. J. Southall, and D. W. Sims, Environmental context explains Lévy

and Brownian movement patterns of marine predators, Nature, 465, 1066�1069

(2010).

[54] D. Jerison and C.E. Kenig, Unique continuation and absence of positive eigen-

values for Schrödinger operators, Ann. of Math. (2) 121, no. 3, 463�494 (1985).

[55] G. R. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, Leipzig,

B. G. Teubner (1876).

[56] G. R. Kirchhoff, Vorlesungen über mathematische Physik. Band 1: Mechanik,

Leipzig, B. G. Teubner (1883).

[57] S. G. Krantz and H. R. Parks, A primer of real analytic functions, Second

edition, Birkhäuser Boston Inc., Boston (2002).

[58] E.M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic

boundary value problems at resonance, J. Math. Mech., 19, 609�623 (1969/1970).

[59] S. Liang and S. Shi, Soliton solutions to Kirchho� type problems involving the

critical growth in RN , Nonlinear Anal., 81, no. 9-10, 31�41 (2013).

101



[60] G. Molica Bisci, Fractional equations with bounded primitive, Appl. Math. Lett.,

27, 53�58 (2014).

[61] G. Molica Bisci and R. Servadei, A bifurcation result for nonlo-

cal fractional equations, to appear in Anal. Appl., available on line at

http://www.ma.utexas.edu/mp_arc/c/12/12-145.pdf .

[62] G. Molica Bisci and R. Servadei, Lower semicontinuity of func-

tionals of fractional type and applications to nonlocal equations

with critical Sobolev exponent, submitted paper, available on line at

http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=13-24 .

[63] D. Mugnai, Lecture Notes, Università di Perugia, available on line at

http://www.dmi.unipg.it/ mugnai/download/corso0.pdf .

[64] D. W. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust.

Soc. Am., 32, no. 12, 1529�1538 (1960).

[65] G. Palatucci and A. Pisante, Improved Sobolev embeddings, pro�le decom-

position, and concentration-compactness for fractional Sobolev spaces, Calc. Var.

Partial Di�erential Equations, 50, no. 3-4, 799-829 (2014).

[66] P.H. Rabinowitz, Some minimax theorems and applications to nolinear partial

di�erential equations, Nonlinear Analysis: a collection of papers in honor of Erich

R®the, Academic Press, New York, (1978), 161�177.

[67] P.H. Rabinowitz, Minimax methods in critical point theory with applications to

di�erential equations, CBMS Reg. Conf. Ser. Math., 65, American Mathematical

Society, Providence, RI (1986).

[68] X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonex-

istence results, C. R. Math. Acad. Sci. Paris, 350, 505�508 (2012) .

[69] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian:

regularity up to the boundary, J. Math. Pures Appl., 101, no. 3, 275�302 (2014).

[70] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,

Arch. Ration. Mech. Anal., 213, no. 2, 587�628 (2014).

[71] O. Savin and E. Valdinoci, Γ-convergence for nonlocal phase transitions, Ann.

Inst. H. Poincaré Anal. Non Linéaire, 29, 479�500 (2012).

102



[72] R. Servadei, The Yamabe equation in a non�local setting, Adv. Nonlinear Anal.,

2, 235�270 (2013).

[73] R. Servadei, A critical fractional Laplace equation in the resonant case, to appear

in Topol. Methods Nonlinear Anal., 43, no. 1, 251�267 (2014).

[74] R. Servadei and E. Valdinoci, Mountain Pass solutions for non�local elliptic

operators, J. Math. Anal. Appl., 389, 887�898 (2012).

[75] R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non�local critical

equations in low dimension, Commun. Pure Appl. Anal., 12, no. 6, 2445�2464

(2013).

[76] R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational

inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29, no. 3, 1091�

1126 (2013).

[77] R. Servadei and E. Valdinoci, Variational methods for non�local operators of

elliptic type, Discrete Contin. Dyn. Syst., 33, no. 5, 2105-2137 (2013).

[78] R. Servadei and E. Valdinoci, On the spectrum of two di�erent fractional

operators, Proc. Roy. Soc. Edinburgh Sect. A., 144, 831�855 (2014).

[79] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional

Laplace equation, Publ. Mat., 58, no. 1, 133�154 (2014).

[80] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional

Laplacian, to appear in Trans. Amer. Math. Soc.

[81] R. Servadei and E. Valdinoci, Fractional Laplacian equa-

tions with critical Sobolev exponent, preprint, available online at

http://www.math.utexas.edu/mp_arc-bin/mpa?yn=12-58 .

[82] M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Strange kinetics,

Nature, 363, 31�37 (1993).

[83] L. Silvestre, Regularity of the obstacle problem for a fractional power of the

Laplace operator, PhD Thesis, University of Texas at Austin (2005), available on-

line at http://math.uchicago.edu/∼luis/preprints/luisdissreadable.pdf

[84] L. Silvestre, Hölder estimates for solutions of integro-di�erential equations like

the fractional Laplace, Indiana Univ. Math. J., 55, 1155�1174 (2006).

103



[85] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observation of anomalous

di�usion and Lévy �ights in a two-dimensional rotating �ow, Physic. Rew. Lett.,

71, 3975�3978 (1993).

[86] M. Struwe, Variational methods, Applications to nonlinear partial di�erential

equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Gren-

zgebiete, 3, Springer Verlag, Berlin�Heidelberg (1990).

[87] P.R. Stinga and J.L. Torrea, Extension problem and Harnack's inequality

for some fractional operators, Commun. Partial Di�er. Equations, 35, no. 10-12,

2092�2122 (2010).

[88] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Lapla-

cian, Calc. Var. Partial Di�erential Equations, 36, no. 1-2, 21�41 (2011).

[89] E. Valdinoci, From the long jump random walk to the fractional Laplacian Bol.

Soc. Esp. Mat. Apl. SeMA, 49, 33�44 (2009).

[90] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A.

Prince, and H. E. Stanley, Lévy �ight search patterns of wandering albatrosses,

Nature, 381, 413�415 (1996).

[91] G. M. Viswanathan, E. P. Raposo, and M. G. E. Da Luz, Lévy �ights and

superdi�usion in the context of biological encounters and random searches, Phys.

Life Rev., 5, 133�150 (2008).

[92] M. Willem, Minimax theorems, Progress in Nonlinear Di�erential Equations and

their Applications, 24, Birkhäuser, Boston (1996).

[93] Z. Yang, Finite-dimensional attractors for the Kirchho� models with critical ex-

ponents, J. Math. Phys., 53, no. 3, 15 pp. (2012).

104


