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Introduction

The Universe is overspread by a multitude of galaxies, presenting the more different
ages, overall colors and shapes. Some of them, under favorable conditions, are perceiv-
able to the naked eye, as the central region of our own Milky Way, M33 in the Triangulus
constellation, or our neighbour M31 in the Andromeda constellation in the north hemi-
sphere, and the two Milky Way’s satellite galaxies, the Magellanic Clouds, in the south
hemisphere. Hundreds of galaxies are instead within the reach of a small telescope. In
1995 the Hubble Space Telescope took the picture of an impressive number of galaxies
(∼ 3000) by focusing on a minute (less than a 20-millionth of the entire sky) and appar-
ently empty region of the sky in the Ursa Mayor constellation. Later on HST collected
other similar and more resolved images of the deep space, revealing the existence of a
multitude of galaxies and galaxy types even at very large redshifts.

This galaxy zoo can be largely divided into two classes: early type galaxies, char-
acterized mainly by old, passively evolving stellar populations, and late type galaxies
that show evidence for recent star formation. This dichotomy is displayed in the lo-
cal Universe under many aspects (Chapter 1), for example the morphology of galaxies
(Sandage, 1975): younger galaxies usually exhibit a spiral shape with tightly wound
gas-rich spiral arms surrounding the central bulge region, while older ones are usually
elliptical objects, suggesting the loss of the spiral arm component as a result of evolution
or of close encouters (or merging) with other galaxies. The distinction is also evident in
the galaxy colors (de Vaucouleurs, 1962): older galaxies, being mainly composed by very
old and evolved stars, reflect the color of the prominent star population itself, and are
redder than young galaxies. The latter, being gas rich, are forges of newborn and young
blue stars, which confer them bluer color.

The population and gas content of the two main types of galaxies also affect their
spectral characteristics (Morgan & Mayall, 1957; Madgwick et al., 2002), which decline
into different continuum shapes and emission features (which are typical of young galax-
ies and nearly absent in the older galaxies, leaving the place to the absorption features),
as well as their clustering properties (Davis & Geller, 1976; Giovanelli et al., 1986; Guzzo
et al., 1997; Norberg et al., 2002; Phleps et al., 2006; Coil et al., 2006; Meneux et al., 2008,
2009; Zehavi et al., 2011): blue galaxies have a more filamentary distribution than red
ones, and trace the underlying dark matter distribution with a smaller proportionality
parameter, or bias. All the evidence listed here are already present at high redshifts
(Brown et al., 2003; Daddi et al., 2003; Coil et al., 2008; Abbas et al., 2010; de la Torre et
al., 2011; Coupon et al., 2012) and provide fundamental constraints on galaxy formation
and evolution models.

xiii



xiv Introduction

Motivation

The two-class distinction, as specified, is of course a simplification: if the class distinc-
tion can be seen as the result of an evolutionary transition, many intermediate galaxy
types could be identified from the youngest to the latest galaxy population. Indeed the
distribution of galaxy colours can be observed to be bimodal, with two distinct peaks,
one in the red and one in the blue (Strateva et al., 2001; Bell et al., 2004; Baldry, 2004;
Weiner et al., 2005; Faber et al., 2007; Franzetti et al., 2007). Between these classes lie
galaxies with intermediate colours, which are associated to an evolutionary phase called
green valley: these share in fact the characteristics pertaining to both red and blue classes
and are the ones thought to be caught, during the transition from a period of active star
formation to quiescence (Bell et al., 2004; Baldry, 2004; Faber et al., 2007; Brammer et al.,
2009).

Spectroscopy provides a deeper insight into the physics of galaxies, with respect to
average colours, determined from broad-band photometry (Chapter 2). For example,
selecting red galaxies solely on broad-band colours, does not result in a sample of dead,
passive early-type objects but also contains a non-negligible fraction of star forming
galaxies and/or dusty starbursts ones (Cimatti et al., 2002; Gavazzi et al., 2003; Franzetti
et al., 2007; Graves et al., 2007). Conversely, the high information content of the spectro-
scopic data sets makes it difficult, in general, to compress and classify all the information
contained in a galaxy spectrum in a compact and efficient way. Thus, it’s in general very
complex to classify this huge variety of galaxies, whose diversity, based not only by dif-
ferent stages of evolution, but also by their mass, their environment and their possible
encounters, can be captured in a more complete (even if not exhausting) way by look-
ing at their spectral characteristics. Statistical methods have been successfully used to
reduce such complexity by identifying specific features, such as emission line intensities
or continuum break strengths (e.g. Madgwick et al. 2003, Colless et al. 2001).

Other alternative methods have been developed to obtain fast spectroscopical classi-
fications; for example, the Support Vector Machine (SVM), a supervised method based
on kernel algorithms (Cristianini & Shawe-Taylor, 2000; Shawe-Taylor& Cristianini, 2004)
able to recognize structures or patterns within the data, has been siccessfully used to
perform class separation (Woźniak et al., 2004; Zhang & Zhao, 2004; Huertas-Company
et al., 2008), as star-galaxy separation (Solarz, Pollo & Takeuchi, 2012) or AGN-regular
galaxy separation (Małek, Solarz & Pollo, 2013).

Also neural networks, computational models capable of machine learning and pat-
tern recongnition, have been employed for stellar classification (Gulati et al., 1994a,b;
von Hippel et al., 1994) ad star/galaxy separation (Odewanh et al., 1992), also joint to
Principal Component Analysis (Singh, Gulati and Gupta, 1998), and for spectral classi-
fication of galaxies (Sodré & Cuevas, 1997). Learning Vector Quantization (LVQ) was
applied to the classification of astronomical objects classification (Zhang & Zhao, 2003).
Bayesian Belief Networks (BBN), Multilayer Perceptron (MLP) networks and Alternat-
ing Decision Trees (ADtree) were compared for their ability to separate quasars from
stars (Zhang & Zhao, 2007). Support vector machines (SVMs) have also been success-
fully applied to automatic classification (Zhang & Zhao, 2003, 2004). Decision trees, e.g.
REPTree, Random Tree, Decision Stump, Random Forest, J48, NBTree and ADTree were
investigated to classify active objects from non-active objects (Zhang & Zhao, 2007). In
Radom Forest methods, where votes for class membership are polled from a large ran-
dom ensamble of tree classifiers, has had many successful applications in astronomy
(Albert et al., 2008; Gao, Zhang & Zhao, 2009).
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The key tool: Principal Component Analysis

Another important method to identify the essential information from complex multi-
dimensional datasets is represented by Principal Component Analysis (PCA). Through
this mathematical-statistical tool, each galaxy spectrum can be linearly decomposed into
fundamental components corresponding to a set of representative templates. The PCA
naturally determines the minimum number of templates required to describe the sam-
ple, given the noise properties of the spectra. These templates show the features of the
spectra that have the most discriminating power (the Principal Components). For as-
tronomical spectra, the Principal Components have been shown to characterize well the
spectral shape, and the presence of strong emission lines, allowing the sample to be
divided into classes. Often these classes correspond to physical characteristics of the
galaxy and can distinguish star-forming, post-starburst and passive galaxies (Connolly
et al., 1995; Ferreras et al., 2006; Rogers et al., 2007, 2010).

The PCA has been applied to classify galaxies from the Sloan Digital Sky Survey
(SDSS, York et al. 2000) (Yip et al., 2004; Dobos et al., 2012) and the 2 degrees Field Galaxy
Redshift Survey (2dFGRS, Colless et al. 2001. The effectiveness of the method was con-
firmed well before in the separation of broad absorption line QSOs from a full QSO sam-
ple (Francis et al., 1993), in stellar classification (Murtagh & Heck, 1987; Storrie-Lombardi
et al., 1994), in the classification of spectral energy distributions for stars (Singh, Gu-
lati and Gupta, 1998), or in the classification of other galaxy spectra (Folkes et al., 1996;
Sodré & Cuevas, 1997; Bromley et al., 1998; Galaz & de Lapparent, 1998; Ronen, Aragon-
Salamanca and Lahav, 1999).

In particular, Folkes, Lahav and Maddox in 1996 investigated low signal-to-noise
spectra with the PCA technique and reconstructed the underlying physical information
using only 3 components. Combining the results of the PCA with a neural network
approach they successfully classified a group of simulated spectra into different mor-
phological classes.

Furthermore, Connolly and Szalay in 1995 carried out a classification of ten template
galaxy energy distributions in terms of an orthogonal basis, to estimate the number of
significant spectral components that comprise a particular galaxy type, finding a corre-
lation between their spectral classification and those determined from published mor-
phological classifications.

The application of classification methods to observed galaxy spectra presents some
challenges. Spectra can be affected by spurious noise features, as positive or negative
line residuals due to poor sky subtraction. This is the case of the spectra observed with
VIMOS spectrograph at the ESO Very Large Telescope, prior to August 2010, where the
fringes, produced by interference of bright sky lines with the CCD surface, resulted in
the artefacts listed above. Other features can be the result of zero-order images of bright
objects from adjacent spectra. All these features may have been corrected to some extent
in the processed spectra, or be still present in the spectra. The many disguises these
artefacts can take make it difficult to accurately classify spectral features (Roweis, 1997;
Everson & Sirovich, 1995).

My work

I will show here that through the application of PCA I can accomplish the task of cleaning
the spectra of noise artefacts while simultaneously obtaining a classification by means of
a handful of parameters (Chapter 4).

This study is the first performed on the data of the new VIMOS Public Extragalactic
Redshift Survey (VIPERS), the largest redshift survey program currently underway at
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the European Southern Observatory Very Large Telescope (VLT) (Guzzo et al., 2014).
VIPERS is designed to map in detail large-scale structure over an unprecedented volume
of the z ∼ 1 Universe (see Chapter 3).

In my thesis I have developed a specific PCA aimed at analysing and classifying the
spectra collected by the survey. I will show that the technique is capable of compress-
ing the majority of the observed spectral features into a small number of components,
allowing an objective classification of the vast majority of the spectra in the sample.

The reasons for doing this on a survey like VIPERS are manyfold. First, it represents a
way to objectively classify the survey spectra according to their spectral features. I shall
show, in Chapter 5, how true this is by analysing both theoretical models and galaxy
templates obtained from observed spectra. I will also show a comparison with a couple
of other classification methods, to quantify the completeness and contamination of PCA
classification with respect to those robust and widely used methods.

A further, important motivation for using a PCA classification is the possibility to ho-
mogeneously define sub-populations of galaxies, to be used for cosmological and evo-
lutionary studies. For example, the analysis of galaxy sub-samples with different bias
factors could provide a way to reduce the impact of cosmic variance on the measured
cosmological parameters (e.g. McDonald & Seljak 2009). A PCA classification can also
separate active and passive galaxies, helping to see the effects of environment on galaxy
evolution. Furthermore, the classification could be used to help identify, in the VIPERS
redshift range, the progenitors of specific populations of galaxies observed in the local
Universe as the Luminous Red Galaxy sample of the SDSS (see for example Wake et al.
2006, Tojeiro & Percival 2010, Tojeiro et al. 2011), or for an analysis of correlation func-
tions in the framework of redshift space distortions (Tojeiro et al., 2012).

A problem with PCA is in general that interesting but rare features can become lost
in higher order eigen coefficients. I will address this problem in Chapter 7 using a Linear
Discriminat Analysis (LDA); since the LDA can be used as a complementary classifica-
tion scheme to PCA, first I searched for the direction, in data space, associated to the
maximum variation of two given data features: the intensity of 4000Å break and the
[OII] line strength. Thus I defined a separation between data groups, on the basis of
the strength of these two parameters for each galaxy. I will apply this LDA to the first
3 VIPERS Principal Components, using the intensity of 4000Å break and of [OII] as a
fiducial class separator, and will define different loci for the passive-active-intermediate
galaxies.

Then I will exploit LDA to implement a complementary separation between regular
galaxies and AGNs, using the existing VIPERS AGN list as a training set: since the pecu-
liarities of this kind of object are not reflected in the 3 principal components, I will apply
the LDA to the entire set of (2486) components of the VIPERS dataset.

Another way to exploit to our favour the fact that PCA loses rare object’s features, is
to compare, in an automatic way, each PCA cleaned spectrum with the original observed
one. In Chapter 6 I will show the preliminary results, attempting to develop a technique
to perform an automatic χ2 comparison between each cleaned spectrum and its observed
counterpart, to pick up the members of a very peculiar and hard to select class: the
Narrow Line AGNs.

In the Appendices, I will show a technical application of the PCA, that performs an
automatic cleaning of the VIPERS spectra. I applied the PCA to the same set of spectra,
without bringing them to rest frame. This enables finding the principal components
of the only features that many spectra at different redshift have in common: the sky
signal. From the sky components and with some ad-hoc adjustments (related to VIPERS
survey), I developed an automatic technique, able to produce a mask for every strong
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sky artefact, and to realistically replace the masked portion of spectrum, again through
a peculiar rest-frame PCA.





CHAPTER 1

The galactic zoo

1.1 The blue-red dichotomy

Galaxies can be easily divided into two main classes: the early-type galaxies, composed
mainly by an old red stellar population, and late-type ones, showing a bluer color due
to the presence of young stars, and also star formation regions. This dichotomy is evi-
dent in the majority of the characteristics of galaxies, from their color, to their shape or
their spectra, and this holds true up to high redshifts. Of course the separation of galax-
ies into two groups is not sharp: a number of objects, sharing characteristics with both
early and late type object, are identified as green valley transition objects. We know that
the total stellar mass density of galaxies on the red sequence has roughly doubled over
the last 6-8 Gyrs (e.g. Bell et al. 2004), while that of blue galaxies has remained roughly
constant. Since new stars form primarily in blue galaxies, this suggests that galaxies are
being transformed from the blue to the red population. Thus, we can state that the color
of a galaxy is determined mainly by its star formation history, assuming dust extinc-
tion is properly taken into account, and that the color distribution of galaxies reflects a
distribution in their current specific star-formation rates.

Other explanations could be given to the observed bimodality. A natural one is that
the two normal distributions represent different populations of galaxies that are pro-
duced by two different sets of processes. In other words, formation processes give rise to
two dominant populations that have different average colors and/or color dispersions.
An evidence that the color bimodality can be due to this comes from the clustering anal-
ysis of Budavari et al. (2003): when the galaxy population was divided into four color
bins, the two reddest bins showed similar clustering strengths, as did the two bluest
bins, with a sharp transition in properties between them. This can be explained, if the
dominant effect is the fraction of galaxies that are part of the red or blue normal distri-
butions, rather than the average color of the galaxies. Galaxies that are part of the red
distribution are more strongly clustered.

Finally, there are also several processes related to the environment that may be re-
sponsible for the observed bimodality, by transforming galaxies from late to early types,
and by truncating their star formation rates. Some of these processes are typical of cluster
environment, like galaxy Harassment and Ram-pressure stripping: galaxy Harassment
happens when a galaxy encounters another one at high speed velocity, such that the col-
liding galaxy is impulsively heated; as a consequence, the galaxies become less bound
and more vulnerable to disruptions by further encounters and by tidal interaction with
the global cluster potential; when a galaxy is instead moving through the intracluster
medium, it experiences a pressure that may strip the gas initially associated to the galaxy.
Other processes are typical of groups environment, like merging and interactions. An-
other process that increases the fraction of red galaxies in both groups or clusters is the

1



2 1.2 The morphology of galaxies

strangulation process (Balogh, Navarro and Morris, 2000), that consists of the removal
of the hot gas reservoir of infalling galaxies, so that their star formation halts after their
cold gas is consumed.

1.2 The morphology of galaxies

Galaxy morphologies became evident when large and effective telescopes began to be
used to observe the sky. In the late 18th century, the english astronomer William Her-
schel built metal reflectors which he used to sweep the sky for anything out of the ordi-
nary, such as the objects called “nebulae”. Herschel, and those who followed him, saw
different kinds of nebulae: those that appeared to lie within the band of light called the
Milky Way (galactic nebulae), and those which were found mainly away from the Milky
Way (non-galactic nebulae). The non-galactic nebulae seen by Herschel had a variety
of interesting shapes, ranging from round to highly elongated, and showed varying de-
grees of central brightness. In particular, now we know that each galaxy is composed
mainly by these major components: a central ellipsoidal very luminous region, where
the most of star formation occurs, a disk (in younger galaxies), where stars, gas and dust
gravitate around the bulge, in rings with differential velocity motions, and a dark mat-
ter halo, which gave birth to the galaxy, surrounding it and extending over as twice as
the luminous matter radius. The bulges are created during a formative evolution phase,
where rapid, violent processes, such as hierarchical clustering and merging, led to their
formation. Within the disk, the material is slowly arranged through the collective inter-
action of instabilities, during a secular evolution phase which leads to the formation of
structures, as bars, ovals, spirals, rings and triaxial dark matter halos. Older galaxies,
where the gas content has been consumed by stars and the angular momentum has been
lost, display the shape of an ellipsoid with variable ellipticity from case to case. Albeit
those objects represent the goal in the evolution of a galaxy, sometimes they may form
as the result of a merger of galaxies. The spiral galaxies can exhibit a variable number
of spiral arms, that can go from very wrapped to very loose. Finally galaxies can also be
very irregularly shaped.

The morphology of galaxies has a clear correlation with galaxy colors: this has been
known for a long time from photoelectric measurements (de Vaucouleurs, 1961), but also
lately, for example in the SDSS survey, it was shown a clear bimodality in the distribution
of colors that correlates with morphology, at a high degree of significance (Strateva et al.,
2001): the red peak includes mainly elliptical and early spiral galaxies (barely sketched or
very tightened spiral arms), while the blue one includes mainly open spiral and irregular
galaxies. This can of course suggest that the morphology of a galaxy is an indicator of
its stage of evolution.

1.3 The role of Active Galactic Nuclei

In some galaxies the central region is observed to outshine all the billions of stars in
the galaxy itself. The spectrum is not like that observed from stars, and the emission is
observed to be bright at all wavelengths. The luminosity varies on very short timescales,
less than a day, and this means that the size of the central region is less than one light-day
across (six times the distance from the Sun to Neptune). The most efficient conversion
of matter to energy is the accretion by a black hole, and so we infer that it is a Super
Massive Black Hole (SMBH) which is causing that emission.

The high energy and radio emission is direct, coming from the central regions around
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Figure 1.1: Explicative picture of the AGN unified model (Lessons of Professor Margaret M. Han-
son, University of Cincinnaty, www.physics.uc.edu)

the black hole itself. In the optical and infrared wavebands the emission is not direct
- the light has been absorbed and then is re-radiated (possibly at a new wavelength)
by clouds of gas and dust, which surround the central “engine”. Perpendicular to the
accretion disk, two relativistic jets remove high energy plasma from the AGN, through
to the magnetic field; the jets can extend up to more than 10 kpc from the central black
hole. This is what is called an Active Galactic Nucleus (AGN).

Actually, most of the galaxies host a supermassive black hole at their center, but if
the black hole is quiescent, i.e. it is not accreting matter, then the galactic nucleus is not
active and the object is not classified as an AGN.

There are a whole menagerie of AGNs, depending on their brightness, their incli-
nation w.r.t. the line of sight, presence or absence of jets and their observed spectrum,
and the classification schemes used have been built up over the years (see §6 for a more
detailed description). The lower luminosity AGN are called Radio Galaxies and Seyfert
Galaxies; there are two types of Seyfert galaxies: Seyfert I show broad and narrow lines,
while Seyfert II only exhibit narrow lines, due to the presence of a torus of dust and
electrons in the line of sight direction. The more powerful AGNs are called Quasars
(from Quasi-Stellar Objects or QSO, as they looked like stars in early telescopes), and
blazars. Not all AGNs are strong radio sources, but many are, and they were discovered
because they were radio bright objects, which looked like stars but were at much larger
distances. As they are so bright that they can be seen across the Universe, they are a
useful cosmological tool to measure the evolution of the Universe.

According to the AGN unification paradigm 1.1, all the different features an AGN can
display, can be explained as a consequence of the inclination of the object with respect
to the line of sight: a Seyfert I is an AGN whose disk is nearly perpendicular to the line
of sight, a Seyfert II is near to parallel, so that the broad line features are hidden by the
torus, a Quasar or a Blazar are orientated such that the relativistic jet is directed towards
the observer.

www.physics.uc.edu)
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1.4 Hints of galaxy evolution

Galaxies were born within cold dark matter halos: baryonic matter collapsed into the
potential wells of dark matter, which began to accumulate, before the electromagnetic
decoupling, from small primordial overdensities. From that moment, in about 1 billion
years, the protogalactic clouds formed, and the protogalaxies, still made up of gas and
dark matter, gave birth to the first generation of stars. After a few million years, the su-
pernovae generated by the first generation stars seeded the galaxies with the first heavy
elements, and heated the surrounding gas. This heating slowed the collapse of the gas,
and the outer gaseous region of the galaxy settled down into a rotating disk, with a
spheroidal hotter and denser bulge at its center. This happens when the protogalactic
cloud has low gas density and high spin, thus, less star formation and fast rotation. If
the protogalactic cloud is gas rich, and has little or absent angular momentum, this re-
sults in a quicker cooling and a faster star formation before the gas has time to settle in
a disk: this may lead to originating an elliptical galaxy. These elliptical galaxies, having
experienced an enhanced intial phase of star formation, look redder than the spiral ones,
or late-type ones, since their population is dominated by older, more evolved red stars,
and contain much less gas than the spiral ones. Actually an elliptical galaxy can also
form from a merger of two spiral galaxies, or from the evolution of a spiral galaxy, that
loses its gas rich spiral arms, consuming the gas to create stars, which gradually become
old and red.

From the beginning the galaxies go on storing matter through interactions, fusion of
structures, and accreting matter, flowing along the filaments towards the dark matter
halos. According to the passive galaxy evolution paradigm, excluding temporarily the
interactions and mergers that can largerly affect the evolutionary history of a galaxy, af-
ter the star forming-gas consuming phase, which implies bluer colors, due to the young
stellar population, the evolution of a galaxy, which ends up composed mainly by old
stars, or early-type galaxy, is mainly driven by the evolution of the single stars them-
selves, and the aging of a stellar population naively implies redder colors.



CHAPTER 2

Aims of the work

2.1 Galaxy classification methods overview

2.1.1 Photometric classification

A galaxy can be classified on the basis of its photometric properties, e.g. its brightness
profile, its luminosity, its scale radius, or its spectral energy distribution (SED). With a
modern telescope it’s possible to register the image of a galaxy on the focal plane of a
telescope as a matrix of pixels. Then the number of counts in each pixel can be converted
to physical units of specific flux, from which the surface brightness of the object can be
inferred. Galaxies typically have surface brightnesses with a regular behaviour, with a
peak at the center decreasing towards the outer regions. If one considers the isophotes
of a galaxy, i.e. the level curves at a constant surface brightness, it is possible to define
the physical dimension of a galaxy; in facts, the isophotes are usually fitted by simple
ellipses, at least in presence of spheroidal or thin disk galaxies. From the surface bright-
ness profile Σ(r) it is also possible to characterize the structure of galaxies and classify
them. Elliptical galaxies are characterized by a de Vaucouleurs profile

Σ(r) = Σ0 exp
[
−
( r
r0

) 1
4
]
,

while the spiral ones have a de Vaucouleurs profile for the bulge and a surface brighness
for the disk which follows

D(r) = D0 exp
(
− r

r0

)
,

where r0 identifies the radius at which the luminosity is half of the central one, and Σ0

and D0 the central surface brightnesses.
Integrating Σ(r), one obtains the total flux F , and from F the total bolometric lumi-

nosity of the galaxy. In general, for the spiral galaxies, the central surface brightness is
nearly constant, while in the elliptical it is strictly related to the luminosity. Since the
color of the light emitted by a galaxy is dominated by the more luminous stars in it,
in a late-type spiral galaxy the emitted light is blue, since the more luminous stars are
the blue principal sequence stars; in an elliptical galaxy the more luminous stars are the
rarefied red giant, which determine the red color of these kind of galaxies. A photomet-
ric visual classification of galaxies on the basis of their rest-frame colors can be easily
accomplished: the observed color of a galaxy is given by the difference of magnitudes
in two different bands; this quantity must first be corrected to evaluate the true intrin-
sic colors of the stars. In particular, to recover the intrinsic color, the extinction due to
interstellar absorption, the Earth atmospheric absorption and the signal loss inside the
observing instrumental system, must be corrected to the observed color. Then the color

5



6 2.1 Galaxy classification methods overview

of each galaxy in the sample can be plotted against another color, typically (B-V) vs.
(U-B), which easily separates red from blue galaxies into two distinct blobs (see Fig. 5.6).

2.1.2 SED fitting

Galaxies emit electromagnetic radiation over the full possible frequency (wavelength)
range. Analysis of this radiation is the main means through which to study distant
galaxies and thus learn about their formation and evolution. The distribution of energy
over wavelength/frequency is called the Spectral Energy Distribution (SED).

Integrated spectral energy distributions (SEDs) are the primary source of information
about the properties of unresolved galaxies. SED fitting can be used effectively to derive
a range of physical properties of galaxies, such as redshift, stellar masses, star formation
rates, dust masses, and metallicities. Indeed, the different physical processes occurring
in galaxies, all leave their imprint on the global and detailed shape of the spectrum, each
dominating at different wavelengths. Detailed analysis of the SED of a galaxy should
therefore, in principle, allow us to fully understand the properties of that galaxy. SED
fitting is thus the attempt to analyze a galaxy SED and to derive one or several physical
properties simultaneously, from fitting models to an observed SED.

Galaxies emit across the electromagnetic spectrum. Excluding those galaxies domi-
nated by an accreting supermassive black hole at their nucleus (the AGNs), the ultravi-
olet to infrared spectra of all galaxies arises from stellar light, either directly, or repro-
cessed by the gas and dust of the surrounding interstellar medium (ISM). Thus the UV-
to-IR spectral energy distribution or SED contains a large amount of information about
the stars of a galaxy, such as the stellar mass to light ratio, and the surrounding ISM,
such as the total dust mass. However, to extract such information, models are necessary
in order to connect physical properties of the galaxy with the observed SED.

In its simplest sense, a galaxy is a population of stars ranging from numerous, low-
luminosity, low-mass stars, to the bright, short-lived, massive OB stars. On closer exami-
nation, these stars are distributed in both metallicity content and age, ranging from when
the galaxy first formed to those newly born. The method of creating a model synthetic
galactic spectrum through the sum of the spectra of its stars is called stellar population
synthesis or SSP (Tinsley, 1972). A simplification for the modelling of galactic SEDs is
that the emitted light can be represented through a sum of spectra of simple stellar pop-
ulations (SSPs) with different ages and element abundances. Here a SSP is an idealized
single-age, single-abundance ensemble of stars whose distribution in mass depends on
both the initial distribution and the assumed age of the ensemble.

Once obtained the model SEDs, there are different statistical methods to fit a spec-
trum with them, and the main results of the SED fitting are, for example, as hinted
above, the determination of the photometric redshift of a galaxy, the inferring of its stel-
lar masses, of its attenuation by dust or its dust emission, or its star formation rate.

2.1.3 Morphological classification

The fact that the bimodality in the galaxy distribution (see Chapter 1) is manifest in many
parameters in a similar way, is not surprising: in fact the galaxy parameters related to
structural and stellar population, as explained above, are known to be well correlated.
This is actually the basis of classification schemes such as the Hubble Sequence (Hubble,
1926; Sandage, 1961). Hubble introduced the classification scheme illustrated in the Fig.
2.1, also called Hubble tuning fork, which separates most galaxies into elliptical, normal
spiral, and barred spiral categories, and then sub-classifies these categories with respect



Aims of the work 7

Figure 2.1: Hubble-Sandage morphological classification scheme

to properties such as the amount of flattening, for elliptical galaxies, and the nature of the
arms, for spiral galaxies. The galaxies that do not fit into these categories are classified
separately as irregular galaxies. In particular, the diagram is roughly divided into two
parts: elliptical galaxies and spiral galaxies. Hubble gave the ellipticals numbers from
zero to seven, which characterize the ellipticity of the galaxy - E0 is almost round, E7
is very elliptical. The spirals were assigned letters from a to c, which characterize the
compactness of their spiral arms. Sa spirals, for example, are tightly wound whereas
Sc spirals are more loosely wound. Also it is worth noting that the sizes of the round
central regions in spirals - the bulges - increase in size the more tightly the spiral arms
are wound. There are indications pointing to a very close connection between the bulges
of certain galaxies (Hubble types S0, Sa and Sb) and elliptical galaxies.

The spiral galaxies are sub-divided into two groups - normal spirals and barred spi-
rals. The most important difference between these two groups is the bar of stars that
runs through the central bulge in barred spirals. The spiral arms in barred spirals usu-
ally start at the end of the bar instead of from the bulge. Barred spirals have a B in their
classification. An SBc is thus a loosely wound barred spiral galaxy. S0, or lenticular
galaxies, are in the transition zone between ellipticals and spirals and bridge these two
types. Hubble found that some galaxies are difficult to put in the context of the tuning
fork diagram. Those include irregular galaxies which have odd shapes, dwarf galaxies
which are very small, and giant elliptical galaxies which are very large elliptical galaxies
residing in the centers of some clusters of galaxies. For a time the Hubble tuning fork
was thought to be an evolutionary sequence - that galaxies might evolve from one type
to another progressing from left to right across the tuning-fork diagram. Hence E, S0,
Sa and SBa galaxies were called early-type, while Sc and SBcwere called late-type. As-
tronomers still use this nomenclature today, though the initial concept was later found to
be an over-simplification. Galaxy evolution is a far more complex process than Hubble
imagined, involving the conditions of the galaxy’s initial collapse, collisions with other
galaxies, and the ebb and flow of internal star birth.
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Figure 2.2: Model galaxy spectra from latest-type (top) to earliest-type (bottom), with absorption
lines indication. In the red region of blue spectra the type of stars responsible for the shape of the
continuum and absorption lines are marked.

2.1.4 Spectroscopic classification

Galaxy can be also classified on the basis of their spectroscopic properties. In facts, as
explained above, each galactic spectrum has a shape and features that reflects its aver-
age stellar poulation, together with the gas and dust components. In particular, a galaxy
spectrum can be ideally decomposed into two main components: the continuum and
the line features. The line features in turn can be separated into absorption and emission
feature, which have a different physical origin one from the other. The continuum com-
ponent is caused by a combination of a range of blackbody emitters (the stars) spanning
a given range of temperatures, producing a nearly flat (see later in the section) overall
spectrum.

In an elliptical (typically early-type) galaxy, the spectrum shows a strong “step” at
4000Å, in the galaxy’s own reference frame (Fig. 2.2), called 4000Å break; the position of
the break, in wavelength, is marked by the presence of the two strong absorption lines
of Ca II, produced by the atmospheres of old stars. The spectrum, to the red side of the
break, is almost twice as bright as the blue side: this effect arises because of an accu-
mulation of absorption lines of mainly ionized metals at the left of the break, and by a
deficiency of hot, blue stars. As the opacity increases with decreasing stellar tempera-
ture, the 4000 angstrom break gets larger with older ages, and it is largest for old and
metal-rich stellar populations, behaving as an indicator for the age of a galaxy. There are
absorption features superimposed on the continuum: they are due to the absorption of
the atoms (metals) and the molecules in stellar atmospheres, that absorbe specific wave-
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Figure 2.3: Cartoon showing the superposition of stellar black body spectra, to produce the galaxy
spectral continuum. In the absence of the 4000Å break, due to increase in opacity of stellar at-
mospheres, the slope would be increasing steadily towards the bluer wavelengths, producing the
typical spiral or late-type continuum.

lengths, and can be also due to cold, interstellar gas clouds in the interstellar medium,
which can extract energy from the passing radiation at key frequencies. The presence of
absorption features implies the presence of old stellar populations, which are typically
found in elliptical galaxies and in the bulges of spiral galaxies. Key features include the
Calcium H and K lines (found at 3934Å and 3969Å), the G-band (4304Å), and Magne-
sium (5175Å) and Sodium (5894Å) lines.

Besides the continua and absorption features there are also emission features, which
are much more intense and frequent in the late-type galaxy spectra (Fig. 2.2): these are
due to gas being heated and then re-radiating energy at specific wavelengths. Young
stars form within gas clouds, which they then ionize, remaining often embedded in their
cloud. Emission features thus pertain to very hot gas and hot young OB type stars, so
they are typical of the disks of spiral galaxies, and of irregular galaxies. Key emission
features include the [OII] doublet (3737A), [OIII] (4959A and 5007A), and the Balmer
series (6563A, 4861A, 4340A, 4103A, ...).

The continuum of a late-type galaxy shows very weak or totally absent 4000Å break.
Thus, the continuum has an opposite slope with respect to an elliptical galaxy one, and
reflects only the typical shape of the composition of various blackbody spectra, which
is not perfectly flat: the radiation of hotter stars have higher black body peak intensities
and shorter wavelength ranges, viceversa for the colder stars, producing a decreasing
slope of the continuum towards the red region of the spectrum (Fig2.3).

From spectroscopy it is possible to associate an accurate distance to a galaxy: from
the evaluation of the redshift of the position of (at least two) known features of the spec-
trum, it is possible to infer the cosmological recession velocity of a galaxy (neglecting its
peculiar motions inside its cluster); hence, given the cosmology, the distance is obtained
on the basis of the Hubble law.

In large spectroscopic surveys, the redshift-inferred spatial distribution of galaxies, in
clusters, is always affected by the neglection of the peculiar motions, besides the Hubble
flow; the resulting observed distribution is subject to the so-called redshift space distortions
effect. The precise evaluation of the parameter which describes such distortions, is still
challenging, and it’s a key step to understand the conflicting interactions between dark
matter and cosmic expansion, described by the cosmic growth function of structures. An
accurate evaluation of f is crucial for modern cosmology: in fact it will be able to dis-
criminate between a Dark Energy dominated Universe scenario, and one in which a
Modification of Einstein’s laws of gravity can explain the present evidence of acceler-
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ated expansion (Guzzo et al., 2008). The EUCLID satellite is forecast for 2017, with this
precise aim (http://www.euclid-ec.org/).

2.2 Principal components spectroscopic classification

Spectroscopy provides the deeper insight into the physics of galaxies, but the high infor-
mation content of the data set makes it difficult in general to compress and classify all
the information contained in a galaxy spectrum in a compact and efficient way.

The main goal of my thesis was to develop a classification method, able to encom-
pass the most important spectral features of a survey sample, with a fast and efficient
statistical approach. Amongst many statistical methods, an important one that can be
used to identify the essential information from complex multi-dimensional datasets is
represented by Principal Component Analysis (PCA). This method is the basis of my
classification routine, which I refined, further on, through the addition of another statis-
tical tool, the Linear Discriminant Analysis (LDA) . Besides the classification goal, I also
applied the PCA, and, separately, the LDA, to try to select a peculiar sample of galaxies,
and the PCA itself has been applied to build a cleaning mask for the sky features of the
spectra in a survey.

2.2.1 Principal Components Analysis

The Principal Component Analysis is a non-parametric way, to extract the majority of
information from a noisy dataset, composed of objects which are not completely different
one from another. The key characteristic of the PCA in this case is, in fact, the ability to
describe a large sample, through a reduced number of components, which is guaranteed
by the fact that the objects in the sample share many common features (e.g. different
measurements of the same quantity, a collection of objects in a catalogue, etc...). This
holds true for a sample of galaxy spectra, that are generated by a common underlying
physical mechanism, i.e. the radiative physics in the galaxies.

PCA finds the linear transformation that changes the frame of reference from the
observed or natural one, to a frame of reference that highlights the structure and corre-
lations in the data. This is done through a rotation of the parameter space, such that the
axes are aligned along the directions of maximum variance of the data. This transforma-
tion may be found by diagonalizing the data correlation (or covariance) matrix, whose
eigenvectors effectively represent the axes of the new coordinate system. In the specific
case of galaxy spectra, I started from a correlation matrix (the mean has not been sub-
tracted to the data, as in the case of the covariance matrix), such that the first eigenvector
represents the mean of the spectra, and the other eigenvectors residuals form this mean.
This way the information content of the first eigenvectors is maximized.

The basis of the principal components one obtains will be made up by orthogonal
(i.e. uncorrelated) vectors or eigenvectors which are linear combinations of the original
variables. The PCA has the advantage to describe a set of measurements exploiting
dimensions of the problem which are uncorrelated, and that can be easily ordered by
decreasing importance. This allows us to retain just a (small) subset of components,
describing the data using a basis of only a few eigenvectors.

My goal is to reduce the complexity of a sample of spectra by expressing them through
just a handful of the principal components. In particular, one may write an observed
spectrum as a data vector containing N fluxes fλ, where λ indexes the N wavelength
bins. My sample contains M spectra, and one can write the sample correlation between

http://www.euclid-ec.org/
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wavelength bins as a matrix,

Cλ1,λ2
=

1

M − 1

M∑
i=1

f iλ1
f iλ2

, (2.1)

where i indexes the spectra in the sample and λ1 and λ2 index wavelength bins. The cor-
relation matrix can be decomposed into a set of orthonormal eigenvectors, or eigenspectra
eiλ and eigenvalues Λi,

Cλ1,λ2
=

M∑
i=1

eiλ1
Λie

i
λ2
. (2.2)

The eigenspectra are ordered with decreasing eigenvalue such that the most common
features within the spectra are contained in the first few eigenspectra.

The eigenspectra form an orthogonal basis or eigensystem and any spectral energy
distribution, fλ, can be expressed as a sum of the M eigenspectra with linear coefficients
ai:

fλ =

M∑
i=1

aie
i
λ. (2.3)

Since the higher eigenspectra carry little statistical information about the spectra, I may
truncate the sum to use only the first K � M components. I refer to this as the recon-
structed spectrum f̂λ,

f̂λ =

K∑
i=1

aie
i
λ, (2.4)

The correlation matrix, as defined in (2.1), will have dimension given by the number
of wavelength bins (2486x2486 in my particular case, as will be clearer later). In the
literature, it is also common to define the correlation matrix such that the dimension is
the number of spectra (Connolly et al., 1995). This is clearly inefficient when the number
of spectra is greater than the number of wavelength bins.

An additional result obtainable by the PCA projection of eq. (2.4) is a measure of the
signal-to-noise ratio for each spectrum, as

S

N
(fλ) =

√√√√∑
λ

( f̂λ
nλ

)2
(2.5)

where nλ is the normalized noise spectrum, relative to the spectrum fλ. Given the
noise spectrum nλ, the normalized noise spectrum is given by nλ = nλ/

√∑
f2λ .

2.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis is, together with PCA, a widely used technique for di-
mensionality reduction and data classification. The primary difference between the two
approaches is that, while the latter is useful for feature classifications, the former is suit-
able to do data classification: PCA changes the shape and location of the data to rotate
them in a space where the overall variance is maximized; LDA instead just draws a sep-
aration region, which “points” in the direction that maximizes the difference between
classes, thus providing better class separability. To perform that, anyway, LDA needs to
base itself on a training set, composed by data that have been already roughly separated
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into distinct classes, by a different method. Relying on this preliminary class distinction,
LDA finds its own best separator between the different classes, supplementing the fidu-
cial separation.
The mathematical process requires the computation of the mean µ of the data a, within
the training classes; in the simplest case, which is the one of interest for me, I deal with
2 classes, thus two means, namely µ1 and µ2. The covariance matrices C1 and C2 of the
two classes are then computed in the usual way. The vector w, which represents the
direction of maximum variance between the two classes, is then given by

w = C−1 ·∆ (2.6)

where C = C1 + C2 and ∆ = µ1 − µ2. The data can be projected on the separator w

p = w · aT (2.7)

and put into a histogram, where the boundary line l between the two classes, that hope-
fully are separated into two distinct histograms, is set by

l = w · µ1 + µ2

2
. (2.8)



CHAPTER 3

The Data

3.1 Extragalactic spectra from the V.I.P.E.R.S. survey

The PCA classification developed in this thesis has been applied to the spectra of the
ongoing VIMOS Public Extragalactic Redshift Survey (VIPERS) (Guzzo et al., 2014), of
which we analyze here the first public data release (PDR-1) (Garilli et al., 2013).

VIPERS has been designed to collect∼105 redshifts to the same depth of VVDS-Wide
and zCOSMOS (Lilly et al., 2009) (iAB <22.5), but over a significantly larger volume and
with high sampling (40%). The general aim of the VIPERS project is to build a sample
of the global galaxy population that matches in several respects those available locally
(z <0.2) from the 2dFGRS (Colless et al., 2001) and SDSS projects, thus allowing com-
bined evolutionary studies of both clustering and galaxy physical properties, in a com-
parable statistical footing. Building upon the experience and results of previous VIMOS
surveys, VIPERS arguably provides the most detailed and representative picture to date
of the whole galaxy population and its large-scale structures, when the Universe was
about half of its current age.
The survey is providing the community with an unprecedented spectroscopic database
at 0.5< z <1.5, covering a total area of ∼ 24 deg2 within the CFHTLS-Wide W1 and
W4 fields, including extensive information on galaxy physical properties. The latter is
made possible by combining the spectral information with the CFHTLS five-band mag-
nitudes on which the survey is based (Goranova et al., 2009), plus additional ancillary
data in the UV and infrared bands, enabling to derive SED information and automatic
galaxy/AGN/stellar classification (Marchetti et al. 2013, Davidzon et al. 2013) . The set
of data used in this paper has been made public with the VIPERS Public Data Release
1 (PDR-1). Several aspects of the survey construction and the data are also discussed in
detail in Guzzo et al. (2014): it is conceived with primary the goal of studying Redshift
Space Distortions (RSD), but it provides raw material for studies of large scale structures
and galaxy evolution. VIPERS was designed to maximize the number of galaxies ob-
served at z> 0.5, while the contamination by stars reaches about 30% in some fields. The
desired redshift range was determined through a color-color selection in the (r-i) vs (u-g)
plane,

(r − i) > 0.5(u− g) OR (r− i) > 0.7, (3.1)

which removes galaxies at z< 0.5 and produces a sample complete at the 98% level
for z> 0.6 (Fig. 3.1). The magnitude limit is set as 17.5≤ iAB ≤22.5, after correcting for
galactic extinction. The resulting redshift distribution is then the one of Fig. 3.2.

The Target Sampling Rate (TSR) for the VIPERS measurements, defined as the ratio
of the targeted galaxies over the potential targets is around 40% (Figs. 3.3, 3.5), while
the Spectroscopic Success Rate, i.e. the ratio of the reliably measured redshifts over the

13



14 3.1 Extragalactic spectra from the V.I.P.E.R.S. survey

Figure 3.1: Colour selection of the VIPERS galaxies with iAB <22.5, in the (r− i) vs (u− g) plane.
The red filled circles represent the z >0.5 objects, while the blue empty one are the z <0.5 ones.
The green line is the cut expressed by eq.3.1 (Guzzo et al., 2014).
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Figure 3.2: VIPERS Spectroscopic redshift distribution after the selection of eq.3.1 (Guzzo et al.,
2014).

Figure 3.3: Representation of the pointings on the sky, for both fields W1 and W4. The colors
indicate the Target Sampling Rate (TSR) as illustrated by the color gradient in the bottom plot. The
black quadrants correspond to the loss of the data, due to a failure in the insertion of the mask
Guzzo et al. (2014).
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Figure 3.4: Representation of the poitings on the sky, for both fields W1 and W4. The colors
indicate the Spectroscopic Success Rate (SSR) as illustrated by the color gradient in the bottom
plot. The black quadrants correspond to the loss of the data, due to a failure in the insertion of the
mask (Guzzo et al., 2014).

number of target galaxies, is larger than 80% for the majority of observed quadrants
(Figs. 3.4, 3.5).

I anticipate here that the incompleteness of the data may slightly affect my PCA clas-
sification, in this direction: since some galaxy types (in particular emission line galaxies)
are more easily assigned a redshift than other galaxy types, in the final active-passive or
blue-red classification, this may have a non-negligible impact.

The data of the first VIPERS Public Data Release (PDR-1) are available at http:
//vipers.inaf.it (∼ 55.000 redshifts and related informations).
Redshifts and quality flags are measured with the PANDORA EZ (Easy Z) package (Gar-
illi et al., 2010): VIPERS is the first VIMOS redshift survey for which the data reduction
is fully automated. The redshift and flags are assigned by the PANDORA pipeline, and
have been checked and re-fined, for every spectrum, by members of the VIPERS team,
ensuring the reliability of the assignments. The quality flag indicates the confidence of
the redshift measurement in a similar manner as used in the VVDS (Le Fèvre et al., 2005)
and zCosmos catalogues (Lilly et al., 2009). The flag takes the form ±XY.Z. Negative
values are reserved for spurious, undetected or unidentified serendipitous sources. The
first digit X indicates the class of object: it is blank for normal galaxies; 1 for broad-line
AGNs, and 2 for untargeted sources serendipitously measured. The second digit Y in-
dicates the confidence of the redshift measurement. Secure redshift measurements with
nearly 95% confidence are assigned Y = 4. Measurements with 90 % confidence limit
are assigned Y=3. Y=2 measurements have been shown to correspond to a confidence
limit of about 80%. Y=1 sources are highly uncertain at the 50% confidence level, and
Y=0 is given when a redshift could not be assigned. For this reason, these two classes
are not considered in the present analysis, to guarantee a clean and reliable sample. Fi-
nally, Y=9 is given to redshift measurements that are based upon only a single emission
line feature. The flag also has a decimal part that indicates the agreement between the
photometric redshift estimate and the spectroscopic redshift, but I do not use it here.
Throughout this work I will apply the word “flag” the Y digit (or to the XY digits, in
case of AGNs).

The total number of VIPERS spectra available for this first study before any quality
cut is 57204.

http://vipers.inaf.it
http://vipers.inaf.it
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Figure 3.5: Target Sampling Rate (TSR, lower dark grey histogram) and Spectroscopic Success
Rate (SSR, two upper light grey histograms), as a function of galaxy magnitudes. The TSR is
independent of galaxy magnitudes, indicating that there is no bias in terms of apparent luminosity
in the process of assigning galaxy targets to slits. About efficiency in measuring redshifts, the two
top histograms correspond to the SSR when all measured redshifts (flag ≥ 1) are considered and
when reliable redshifts (flag ≥ 2) are used.(Guzzo et al., 2014).
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Figure 3.6: Large scale structure distribution of VIPERS PDR-1 catalogue in the W1 (top) and
W4 (bottom) fields, where the position of each galaxy is projected along the declination direction
(Guzzo et al., 2014).
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Figure 3.7: Comparison of the two VIPERS fields with the SDSS main sample and the SDSS LRG
sample (Guzzo et al., 2014).
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Figure 3.8: Zoom into the cone diagram of the W1 field. The reddish points mark early-type galax-
ies, the green intermediate ones, and the blue the late-types. This plot evidences the tendency of
early-types to distribute along the main structures of the underlying matter distribution, contrarily
to the bluer objects, which prefer the lower density regions (Guzzo et al., 2014).
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The most impressive result from the PDR-1 sample is given by the maps of the 3D
galaxy distribution, in the range 0.5< z <1.2, in Fig. 3.6: this represents an unprece-
dented combination, in size and sampling, of the galaxy population of the Universe at
its half-of-present size. Fig. 3.7 shows a comparison of VIPERS with the SDSS main and
Luminous Red Galaxy (LRG) sample: while SDSS LRG sample is an excellent statistical
probe on the largest scales, VIPERS is much more efficient in unveiling the details of the
underlying nonlinear structure. Fig. 3.8 finally, reveals the power of VIPERS measure-
ments, in correlating galaxy properties with the surrounding large-scale structures, in
particular the clustering of galaxies as a function of galaxy properties: the redder points,
marking early-type galaxies according to their U−B rest-frame colors, lie along the “pil-
lars” of structure, while the blue-green points, representing star-forming or intermediate
type galaxies, occupy low-density regions. This proves that the colour-density relation
for galaxies is already standing at these redshifts (Cucciati et al., 2006).

On the PDR-1 sample, I applied a further selection, which excludes low-quality spec-
tra as defined above, but includes sources classified explicitly as broad-line AGN and
secondary sources observed by chance. I note that there is no harm in including pecu-
liar spectra as AGN in the overall PCA. Being rare cases (∼5% of the total in VIPERS,
between Narrow and Broad line objects), these have no effect on the evaluation of the
Principal Components characterizing the main galaxy sample (see Chapter 4). At the
same time, as we will discuss in Chapter 6 and 7, it is possible to identify AGN-like
spectra by the PCA as “outliers” or through an LDA analysis, among the more standard
galaxy spectra. This may lead also to detection of more AGN-like spectra, which do not
appear explicitly classified as such.

3.2 Data Manipulation

The spectra are observed over a fixed wavelength range. Thus, they must be shifted and
mapped to a common rest frame wavelength scale, to match all the common features,
that will be recognized by the PCA. I have defined a rest-frame wavelength scale, rang-
ing in 3500Å < λ < 5500Å, to get the maximum coverage of signal in all redshift bins.
The redshift range is 0.4 < z < 1.0, which encompasses a large fraction of the redshift
range of the survey, excluding the very far and very near objects. The final sample, after
these cuts, includes 42,036 spectra (∼ 73% of the total in PDR-1). The wavelength bin-
ning we chose to adopt in this work increases logarithmically, and in such a way that the
last interval in the reddest region has a width of 1Å. This results in a total number of
bins of 2486. This wavelength scale ensures that every VIPERS spectrum is oversampled
in the rest frame. All the spectra are shifted by a factor of (1 + z)−1, to bring them to rest-
frame, and resampled with a linear interpolation on to the previously defined rest-frame
grid (this resampling does not preserve the flux density, but since the interpolation grid
as a much finer scale than the observed one, the effect on the analysis will be negligi-
ble). The variance is given, for each spectrum, by the square of the relative VIPERS noise
spectrum, and it is processed in the same fashion as the spectra.

Obviously, as in Marchetti et al. 2013, resampling a spectrum on to the rest-frame
grid can leave gaps at the start or end of the scale, depending on the redshift (Fig. 3.9).
And again, additionally, noise spikes due mainly to sky fringing may have been man-
ually edited, producing a gap in the corresponding wavelength range (again Fig. 3.9).
Nevertheless, the iterative algorithm used here (Marchetti et al., 2013) repairs the spectra
before finding the principal components.
An important consideration before moving to the real analysis is how to normalize each
spectrum. The apparent flux of any source introduces an arbitrary scaling factor, that
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Figure 3.9: Vipers spectrum after the rest-frame moving, displaying an evident gap in the larger
wavelength region, and a couple of manual linear interpolations in place of large noise spikes.

should be normalized out to build a homogeneous sample to feed the PCA algorithm.
Amongst many possible normalizations, we choose to normalize each spectrum by a
scalar-product normalization, such that for a spectrum fλ, the normalized spectrum be-
comes

fλ = fλ/
√∑

f2λ. (3.2)

The choice is dictated by the fact that normalizing by scalar product offers advan-
tages for our classification over other possible normalizations (Connolly et al., 1995): a
normalization based on morphology would rely on a model distribution of morpholog-
ical types in given sample, and may lead to the accidental suppression of a common
galaxy type within the first principal components of the sample; a normalization by
the integrated flux will give similar results as one done by scalar product, in terms of
principal components, but this second one (that we prefer) produces unit vectors rep-
resenting the spectra, and unit principal components. This means that the coefficients
of the decomposition of each SED on the principal components lie on the surface of an
N-dimensional hypersphere (if we consider N principal components), and thus can be
parametrized by using only N-1 parameters (see §4.1).



CHAPTER 4

Principal Component Analysis of VIPERS data

4.1 Repairing the spectra

As hinted at the end of Chapter 3 , a spectrum can be corrupted by instrumental arte-
facts, as well as poorly subtracted sky features, or contamination of light from a nearby
object. As a matter of fact, VIMOS has its own specific features: it is possible that a slit
in the mask got contaminated by a zero-order image from the adjacent slit above, or that
residuals may persist after the subtraction of sky lines. In some cases, such artefacts
have been removed from the spectra by the reduction pipepline, or manually, and have
been replaced by linear interpolations, creating what I call “gaps” in the spectra, i.e. re-
gions where flux data was lost (Fig. 4.1). Fig. 3.9, in the previous Chapter, illustrates the
same spectrum of Fig. 4.1, with the region that has been removed, around 4700-4800Å
in rest-frame, and replaced with an unrealistic inclined straight line, besides another in-
terpolation before a hole in the red region of the spectrum, due to the transport of the
spectrum to rest-frame. These modifications must be properly taken into account when
applying a PCA decomposition, to avoid treating some bad features, gaps, poor inter-
polations or noise artefacts as physical peculiarities, that will influence the shape of the
eigenspectra, and hence the whole analysis.

To account for that, I assigned a weight to each spectral bin, according to the usual
definition:

wfλ =
1

n2λ
. (4.1)

Here I used the square of the statistical VIPERS noise n (properly brought to rest-
frame and resampled on the common binning) as the variance, as already specified in
Chapter 3. With the definition above, each wavelength bin of each single spectrum has
its own weight.

This weight is set to 0 whenever there is a 0-flux gap or a gap due to manual editing:
the latter have been located by simple comparison of the observed spectra to the edited
ones in the VIPERS database. This weight mask is essential to derive accurate eigen-
spectra from data containing gaps. In fact, with a naive application of PCA to these
“gappy” spectra, it is no longer possible to construct a set of orthogonal eigenspectra
(Connolly & Szalay, 1999), and the PCA would likely lose some fetures or treat the gaps
as real properties of the spectra, if many gaps happend to gather in the same wavelength
region. We have therefore developed an algorithm to simultaneously repair those gaps
in the spectrum and thus compute orthogonal eigenspectra.

At the start of the repairing routine, the gaps in the spectra are indeed simply re-
placed by “horizontal” linear interpolations. Although, for gaps at the start or end of
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Figure 4.1: An observed frame VIPERS spectrum, presenting a huge unsubtracted sky spike
around 8800Å (blue), and the edited version of the same spectrum, with linear interpolations in
place of the noise spikes (green).
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Figure 4.2: A VIPERS spectrum presenting a gap on the blue side, due to rest-frame shifting. The
missing data is reconstructed through an iterative routine. The first five steps (zoomed in the box)
go from the first (bottom line) to the fifth iteration (top line).
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the spectrum, I find that it is sufficient to simply leave the flux to 0. I then proceed in an
iterative manner.

First, I create a data matrix containing all the rest-frame spectra in the rows

M =

 f1λ1
· · · f1λn

...
. . .

...
fNλ1

· · · fNλn

 (4.2)

then the correlation matrix (no mean subtraction) is constructed from the spectra

Cλ1,λ2
=

1

n− 1

n∑
i=1

f iλ1
f iλ2

(4.3)

and the eigenspectra ei are computed, from the diagonalization of the correlation
matrix:

Cλ1,λ2 =

n∑
i=1

eiλ1
Λie

i
λ2
. (4.4)

We keep only the 3 most significant eigenspectra to perform the following repairing
steps. The choice of the number of eigenspectra, as discussed later in this Chapter, and
justified by the tests I performed on the routine (§4.3), is dictated by the need to be able
to describe all the spectra in the sample, while avoiding the noise, which, as I will show,
is reflected by the eigenspectra from the fourth on.

Once determined the number of principal components, I compute the set of eigenco-
efficients, {ai}, for each spectrum, fλ, i.e., the projection of every single spectrum on the
3-eigenspectra basis, by means of a least squares minimization routine. In this case the
objective function to be minimized is given by,

χ2 =
∑
λ

wλ(f
(i)
λ −

∑
j

ajejλ)2. (4.5)

where f (i) is the single spectrum data vector on the ith iteration, ejλ is the set of eigen-
spectra and wλ is the weight vector. Thus, at the end of the process, I am left with a set of
3 principal eigencoefficients for every spectrum. Those coefficients could be computed,
in principle, through a mathematical projection, but I will show later that this would pro-
duce some unphysical reconstructions. To avoid this, I will introduce a penalty term in
the coefficients determination process, optimizing the minimization through a non lin-
ear solver, the Levenberg-Marquardt algorithm implemented in the Python Scientifical
Library (SCIPY)1.

4.2 A new PCA approach

After the application of the PCA machinery described above, I found that, in some cases,
the best-fitting coefficients, used to combine the 3 principal components, did not result
into physical spectra. For example, it may happen that the continuum of the repaired
spectrum goes negative in some region, or strong emission lines could be inverted with
respect to their expected appearance.

1www.scipy.org

www.scipy.org
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These poor results are usually found for very noisy spectra, or for spectra that are
more than 50% masked (i.e. for which the weight vector w is composed by more than
50% by zeros): in fact, when many spectra have been masked in the same range of wave-
lengths, the PCA process becomes unable to find the information to repair those gaps. In
our VIPERS sample, there are 57 spectra that are missing more than 50% of the wavelegth
coverage, while instead the average gap fraction for the sample is ∼ 10%.

The other possibility, that outcomes in an unphysical reconstruction, is that some
peculiar piece of information needed to recover a spectrum is not reflected within the
chosen eigenspectra (see §2.3).

These problems, in the majority of the interested cases, cause the PCA to fail to re-
produce simultaneously the continuum and the line features of these spectra. This likely
leads to the inversion of some lines; indeed, the pixels representing the spectral contin-
uum have more weight than those in the lines, being present in larger fraction, and the
PCA routine reproduces the former as accurately as possible, but at the expense of the
line features: in facts, the routine combines the eigenspectra to return a repaired spec-
trum, which is as much fitted to the global shape of the observed one as possible; and
of course, being the global shape much more related to the continua than to the line
features, the PCA may combine the eigenspectra with some negative coefficient, such a
way that the resulting continuum is respected, but the resulting line features come out
negative or shorter than expected.

To avoid these degenerate solutions, we introduced a check within the wavelength
range of the line features that mostly suffer from this problem in our routine: [OII],
Hβ and [OIII]. Whenever the least-square repairing routine finds an inverted line (i.e.
a negative line in my case) as a solution for the fitting problem, I add an exponential
penalty term to the χ2 in the minimization routine:

χ2 = χ2 + c ∗
∑
l

e(Dl−D0)/D0 (4.6)

where c =2486 is the number of bins in a spectrum, Dl is the difference between the
continuum and the line peak for each line l, and D0 =0.005 is the threshold above which
the penalty is applied. The value of D0 has been chosen such a way to impede the PCA
to reverse emission lines, whilst avoiding this penalty to be applied by small real dips
within the elected wavelengths, for example in red galaxy spectra. In this way, whenever
the PCA finds a negative solution for a real emission line, during the phase of repairing,
the χ2 gets raised and the routine is therefore forced to find a set of eigencoefficients
corresponding to a more physically realistic reparation. The specific choice of this shape
for the penalty has been the result of a number of tests using different functions, given
the freedom allowed by the problem.

After finding the best-fitting coefficients, {âi}, I find a global repairing of the spec-
trum as,

yλ =
∑
j

âjejλ. (4.7)

Then I replace the gaps (and only the gaps) in the original spectrum with portions
of the projection. In Fig. 4.2 we show an example of different stages of repairing. At
each iteration the spectra are renormalized by their scalar products (the normalization
changes at every iteration, because the gaps are updated on every loop). The routine
progresses as shown in the diagram of Fig (4.3). When the repairing is complete (see
$4.3), the eigenspectra that I obtain are the ones representing the fully repaired sample.
The first 4 eigenspectra are depicted in Fig. 4.8. Although we make use of the first 3 only,
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Figure 4.3: Flow chart of the PCA repairing process.

I plotted the fourth to show how it already displays the presence of noise, as a bump in
the red wavelength part. At this stage I can project each spectrum on to the eigenbasis
according to the set of 3 eigencoefficients ai.

The convergence of the routine is safely reached, for each of the spectra, within the
twentieth iteration of the process: after this, any further refinement of the value of the
eigencoefficients for the repairing does not change the repairing significantly, as shown
in §4.3.

4.3 Testing the PCA routine

To test my routine I created a synthetic sample of galaxy spectra. The spectra were
generated using two sets of templates: a subset of the Bruzual&Charlot (B-C hereafter)
(Bruzual & Charlot, 2003) model spectra (which do not contain emission lines), to obtain
realistic early-type galaxies, and the 12 Kinney-Calzetti templates (K-C hereafter) (Kin-
ney et al., 1996; Calzetti et al., 1994) (the plots of these model spectra can be found in
Kinney et al. (1996)), covering from pure bulges to starburst galaxies, to give a total of 45
template spectra. I computed the first five eigenspectra of these templates to define an
orthogonal basis spanning all the range of galaxy types.

Then I constructed mock spectra, that are similar to the templates, by generating
Gaussian distributed numbers as eigencoefficients. This Gaussian distribution is cen-
tered on the first 5 eigencoefficients of the starting template set, with variance given by
the relative eigenvalues. This way I generated 450 mock spectra around each template
giving a total sample of 20,250 spectra, that reduces to about 16,000 once spectra present-
ing unphysical features (i.e. inverted emission lines) are removed.
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Figure 4.4: Top: a synthetic spectrum with synthetic noise added. The shaded region would be
masked and reconstructed. Middle: qualitative comparison between the original spectrum before
the noise has been added (blue) and its reconstruction through the PCA routine (red). Bottom:
residuals between the mock and its reconstruction. The possible differences between the intensities
of the real and the recovered emission lines are acceptable for our classification system, since it is
more sensitive to the continua of the spectra than to the line features.
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Figure 4.5: The root mean square difference between the eigencoefficients and themselves at the
previous iteration, for the repairing of the synthetic spectra. The RMS difference steadily decreases
on subsequent iterations.

I next degrade the spectra with synthetic noise to simulate the VIPERS data. Each
synthetic spectrum is assigned the same data variance and weight mask of a randomly
selected VIPERS galaxy. The synthetic noise spectra are generated from a Gaussian real-
ization, with the associated VIPERS variance, as illustrated in the top panel of Fig. 4.4,
and the mask is applied to reproduce the synthetic gaps. In this way, I produce an artifi-
cial data set, of which the expected shape is known, that can be used to test the fidelity
of the reconstruction procedure.

I apply the PCA repairing routine with three eigenspectra, since 3 is the number I
reasonably expect to be sufficient to describe the majority of the sample. Then I project
the spectra on them, to clean from noise and be able to compare the recovered spectra to
the noise-free synthetic ones.

Apart from slight differences in the intensity of the emission lines (as anticipated in
§4.2) the reconstruction is qualitatively good, even where the region to be repaired was
a line feature (Fig.4.4: middle-bottom, Fig. 4.5 for a more quantitative check) . The fit
can be improved by adding more components to the PCA, but, as was anticipated, and
will be discussed later, the 4th eigenspectrum is already affected by noise for the VIPERS
sample, and the reconstruction obtained with three is sufficient for the classification sys-
tem.

The PCA routine has been run on the synthetic spectra for a large number of itera-
tions, that I arbitrarily chose to be a large number, 50. By looking at the root mean square
difference between the eigencoefficients at each iteration (Fig. 4.5) I see that the routine is
converging: in particular, the differences between the eigencoefficients become steadily
smaller. The effects of this on the repairing is actually negligible after five iterations, so
I halt the code when the difference between the eigencoefficients at consecutive loops
is ≤ 10−3: although the threshold can be set in more rigorous ways (Yip et al., 2004), I
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Figure 4.6: Difference between the coefficent and itself at the previous iteration (for the 3 coeffi-
cients) for the last objects reaching the convergence for at least one of the 3 coefficients.

chose this value empirically, as the threshold beneath which any further refinement has
a negligible effect on the repairing.

I also found that the repairing for every single spectrum has surely reached the 10−3

difference threshold within the 12th iteration for a1, at the 17th for a2 and at the 14th for
a3 (as illustrated in Fig.4.6), so in this case 17 iterations are enough to repair and recover
the original spectra for the synthetic spectra. To be on the safe side, we decide to take 20
iterations.

4.4 PCA decomposing the sample

Here I’ll show the results of the application of the PCA routine to the VIPERS sample. As
anticipated in sections §4.2 and §4.3, I must decide on a stopping point for the repairing
routine and the number of eigenspectra to use.

As suggested by the tests on mock spectra, I halt the repairing procedure after 20
iterations. I may also estimate the relative error in the coefficients after each iteration, by
measuring the root mean square difference between the value at iteration i and iteration
20. Fig. 4.7 shows that this error is oscillating at the level of 10−4 alredy by the 10th

iteration.
We use three eigenspectra in the repairing procedure to reconstruct the spectra inside

the gaps. This number should be chosen to be large enough such that the repairing
can reproduce the signal without adding spurious noise, although the results are not
strongly dependent on the exact number used.

As said, after the convergence of the repairing process, I obtain the complete eigen-
spectra for the VIPERS sample. The first four eigenspectra ordered by significance are
shown in Fig. 4.8. The first three VIPERS eigenspectra, as quantified later in this section,
contain the large majority of information on the sample, particularly the first one, which
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Figure 4.7: The RMS error on coefficients for VIPERS spectra. Plotted is the root mean square dif-
ference of the coefficients of the decomposition after 20 iterations, and themselves at the ith itera-
tion. For a particular spectrum the difference actually starts oscillating around 0 with decreasing
amplitude after the 5-10th iteration on average.

mirrors the average of all the spectra, while the others represent the residuals from the
mean. In particular, the shape of the continuum of the first eigenspectrum is comparable
to the one of an early-type galaxy, while it contains also emission lines typical of a star-
forming galaxy. The second one instead can be associated to a late-type spectrum, while
the third can be thought of as an intermediate galaxy SED.

The fourth one, at λ < 4500Å, adds information about the intensity of the [OII] emis-
sion line and the continuum resembles the one of a blue galaxy, but redward of 4700 Å it
shows an unphysical bump that is not expected in a galaxy continuum. We attribute this
to the fact that, redwards of λobs > 8000Å , VIPERS spectra are affected by systematic
effects arising from the coupled effect of detector fringing and strong sky emission lines
(Guzzo et al., 2014); in fact, if I project the spectra onto 4 eigenspectra, for the VIPERS
spectra for which this fringing problem was not already fixed (pre-refurbishment spec-
tra), the value of the 4th coefficient is on average higher (in module) than for post-
refurbishment spectra (Fig. 4.9).

For low signal-to-noise objects the repairing of this region is probably more affected
by systematic uncertainties that can heavily influence the PCA reconstruction. Thus, to
effectively repair the spectra without spurious features, I use only the first three eigen-
spectra.

The physical shape of the first 3 eigenspectra is offered by the fact that VIPERS spectra
are low resolution (R=210): this leads to the incapability to resolve some doublets, like
[OII], but also guarantees that the eigenspectra are not forced to catch the line width vari-
abilities (except for broad line AGNs), resulting into P-cygni like profiles (Beals, 1953).

To justify quantitatively the choice of using the first 3 eigenspectra, I compute a sim-
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Figure 4.8: The first four VIPERS eigenspectra computed after repairing. From top to bottom the
power is decreasing (the first eigenspectrum is at the top, the fourth at the bottom). The first
eigenspectrum mirrors the average of all the spectra, while the second and the third are residuals
form the average. Some of the most common spectral features present in the eigenspectra are
highlighted in the first eigenspectrum. Systematic effects in the spectra begin to be visible in the
fourth spectrum at λ > 5000Å.



Principal Component Analysis of VIPERS data 33

Figure 4.9: Values of the coefficient of the 4th eigenspectrum, in a 4 eigenspectra decomposi-
tion, for pre-refurbishment spectra (affected by strong fringing effect redwards of 4700 Å) (red
dots) and post-refurbishment ones (finging fixed) (blue dots). For the pre-refurbishment objects,
the contribution of the 4th eigenspectrum is in general more important, as expected, since the
4th eigenspectrum continuum is affected by noise at the same wavelengths of pre-refurbishment
spectra.
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Figure 4.10: Average difference between observed and recostructed [OII] fluxes (divided by ob-
served fluxes) as a function of number of eigenspectra. The best line reconstructions seem to be
obtained beyond 9 eigenspectra.
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Figure 4.11: Projection of an example spectrum over 3, 4 and 5 eigenspectra. The continuum
projection positions progressively too high w.r.t. the observed continuum, as the number of eigen-
spectra increases. Furthermore, for 5 eigenspectra (blue line) the reconstruction also lacks of the
Hβ line.

ple estimate of the power enclosed in each eigenspectrum

P (ei) =
Λi∑tot
i=1 Λi

, (4.8)

where Λi are the eigenvalues of the correlation matrix. I find that the first three eigen-
spectra hold ∼ 90.6% of the total power; the first contains ∼ 87.3%, the second ∼ 2.5%,
the third ∼0.7%, and from the fourth on the power content starts to decrease rapidly
with respect to the first three, see Table 4.1. The variance in each component is a mea-
sure of the information content and I can conclude that three eigenspectra are enough
to describe the sample in a statistical sense. However, I will show that this measure of
information does not translate directly to the physical information contained in spectral
features, as anticipated in §4.1. For example, I found that the slope of the continuum
is well described by just a few eigenspectra, but this is not true for the line features (at
least for the more intense ones) (Fig.4.10). The information on the lines in some cases is
contained into higher-order components, that I neglect to avoid the noise, even though I
recognize that this information is essential for understanding the physical properties of
galaxies. But, as shown in the example Fig. 4.11, alredy adding the 4th eigenspectrum to
the reconstruction, the resulting continuum starts to detach from the observed one; and
since the shape of the continuum is the major contibution to the classification (see later in
Chapter 5 ), I want it to be as adherent as possible to the observations. Furthermore, due
to the twisting of the continuum, the shortest emission lines may happen to be canceled
in the reconstruction.
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Figure 4.12: Two repaired and cleaned VIPERS spectra (red) superposed to themselves after the
only repairing process (cyan). Our projection method is statistically able to recover the realistic
emission and absorption features together with the slope of the continuum. As shown in the
figure, in some cases the intensity of the line features is not fully realistically recovered. This is a
consequence of the combination of “cleaning”, operated by the description of the spectra through
the first three eigenspectra, which do not reflect the noise of the sample, and least-square fitting
with introduction of penalty terms in the regions of the lines.
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Power of the first three eigenspectra ∼ 90.56%
First eigenspectrum ∼ 87.30%
Second eigenspectrum ∼ 2.54%
Third eigenspectrum ∼ 0.71%
Fourth eigenspectrum ∼ 0.17%

Table 4.1: The power contained in the first four eigenspectra.

4.5 Cleaning the spectra from noise

After the repairing process, by projecting the VIPERS spectra on to the basis of three
final eigenspectra I can achieve the goal of cleaning the spectra from noise, as illustrated
in Fig. 4.12. This result is guaranteed by the fact that the first three eigenspectra are
affected very little by noise. The same simplification offered by the PCA in using only
three components makes it impossible, though, in my specific case, to naively apply
Eq. (2.4) to recover properly VIPERS spectra. In fact, as for the repairing process, the
projection on to only a few components is not guaranteed to reproduce spectral features
matching the data. And again, as for the repairing, the projection can invert lines or
add lines not present in the data. These errors arise because additional components are
needed to recover all the lines accurately. I find that about 5% of spectra show unphysical
line feaures once projected on to 3 components only. The situation, as said, could be
improved by adding more components to the projection; however, this will re-introduce
noise and artefacts, again degrading spectral features.

I can arrive at a compromise by assigning greater importance to the physical recover-
ing of emission lines. This is precisely what was done in §4.1 where penalty terms were
added in the least-squares minimization procedure to find the best-fitting, but physi-
cal repairing. I adopt this routine again in the final step to project each spectrum. The
safeguard of the physicality of spectra is constrained imposing that the continuum is
positive and the [OII], Hβ and [OIII] lines are not inverted. By comparison of the equiv-
alent width of the [OII]-[OIII]-Hβ lines in the repaired and projected spectra to the same
features in the original spectrum, I find that the lines, on average, are recovered with a
precision of ∼ 80% (Fig.4.10 for the case of [OII]). This is in agreement with the results
found by Yip et al. (2004) for the majority of SDSS spectra in their analysis with 3 eigen-
spectra. For the reconstruction of the problematic emission line spectra only, they chose
instead to use 10 eigenspectra, obtaining an error on the recovering of the lines of order
15-25%. Finally, the final quality of the repairing in my analysis, after the penalty has
been applied, doesn’t show any clear correlation to the portion of gaps in a spectrum,
even if larger gaps easily increase the possibility of unphysical reconstructions at first
step.



CHAPTER 5

Isolating populations of galaxies

5.1 PCA spectral classification

The Principal Component Analysis on spectra in a sample produces a set of 3 eigenspec-
tra (Fig.4.8), of which every spectrum can be expressed as a linear combination, accord-
ing to a set of eigencoefficients. These eigen-coefficients, namely a1, a2 and a3, form an
optimal basis in which to classify the spectra. In particular the a1 coefficient, being re-
lated to the first eigenspctrum, is an indicator of the “redness” of the continuum, while
the a2, being related to the second eigenspectrum, is an indicator of the “blueness”. So
these two parameters together contain important information on the shape of the contin-
uum, but also on the presence of line features, containing both those eigenspectra pretty
strong lines. The a3 eigencoefficient is instead related to the third eigenspectrum, which
shows a fairly flat (though very slightly “bluish”) continuum, and evident emission lines,
so, for fixed continua shapes, it may be a stronger and more continuum-disentangled in-
dicator of the intensity of line features.

To further reduce the parameter space of the eigencoefficients to a non-degenerate
basis, and express them in a more convenient form, we compute the related Karhunen-
Loève angles (φ-θ hearafter) (Connolly et al., 1995; Karhunen, 1947; Loève, 1948), so de-
fined:

φ = tan−1
(a2
a1

)
(5.1)

θ = cos−1 a3 (5.2)

These two angles, φ and θ, fully parametrize the three dimensional space, because,
owing to the normalisation constraint, the coefficients fall on the surface of a 3D sphere.
A more detailed discussion of the respective roles of φ and θ is presented, later on in the
Chapter, in §5.3.

5.1.1 Comparison to template spectra

I am interested in exploiting the φ-θ parameters in order to classify the spectra on the
basis of their position on a θ − φ scatter plot.

To pin down the location of the different galaxy types on the φ − θ plane, I will take
advantage of the same group of B-C model spectra from which I picked the templates
used to test the repairing routine (keeping also the blue galaxy representatives, although
these are not fully realistic because of the lack of emission lines). I then project them on
the three VIPERS eigenspectra and obtain their relative φ-θ angles. The distribution of
the φ-θ parameters for the VIPERS sample, together with the one for the B-C models, is
shown in Fig. 5.1. The VIPERS points are coloured according to colour scale displayed

37
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Figure 5.1: The φ versus θ plot, for VIPERS repaired and cleaned galaxies, with the position
of Bruzual-Charlot and Kinney-Calzetti model galaxies overplotted. The colour gradient of the
points from red to blue through green represents the U − B rest frame color of each galaxy in
the sample. The sequence of circle markers represents the B-C models ranging from the reddest
(early-type) to the bluest (late-type) continuum slopes (see Fig. /reffig:move). The Kinney-Calzetti
templates (star markers) are labelled with galaxy type. The early type galaxies are positioned with
the early-type B-C templates, while the starburst templates are found in the middle (see Fig. /ref-
fig:sequence for an idea of how mean spectra look like for starburst galaxies). The sharp edges in
the distribution on the right hand side arise from constraints applied in the PCA reconstruction.
Finally, the arrows show the effects of dust extinction for the two sets of models, withA(V )=1 mag
and RV =3.52.



Isolating populations of galaxies 39

3500 4000 4500 5000 5500

wavelength [Å]
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Figure 5.2: The B-C spectra corresponding to the circles in Fig. 5.1: red templates (bottom) lie in
the low-φ region, with intermediate templates instead occupying the range −0.2 < φ < 0 (middle
boxes), and bluer ones lying at the top of the φ-θ plot.
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at the right side of the figure, in agreement with their rest frame (U-B) color, and with
what is suggested by the positions occupied by the B-C points on the same plot. The
earliest-type models lay on the bottom, and they position upper and upper in φ as they
become bluer, while the reason of their peripherical position on the plot depends mainly
by their complete lack of emission lines, and will be clarified later.

Thus, analyzing the φ-θ plot, I can state that the redder galaxies lie towards negative
values of φ and quite small values of θ, while, as φ and θ increase, the galaxies become
bluer (Fig. 5.2), as suggested by the U − B rest-frame color of VIPERS galaxies. Since
an increase in φ is equivalent to an increase in a2, this means that the bluer galaxies are
represented by larger values of a2 (and viceversa for the redder ones). This was expected,
since the shape of the second eigenspectrum is the one that most resembles the spectrum
of a blue galaxy. I do not consider now the first eigencoefficient a1, because, being related
to the first eigenspectrum, which is the average of all the spectra, it is not a significant
discriminator by itself. Let us remark again, though, that I am basing this interpretation
on a set of model spectra that do not present emission lines, although they do trace the
continuum of blue galaxies in some cases. So they give a general idea of the arrangement
of different spectral types on the φ-θ plot, but they are not apparently able to span the
full distribution.

To get still more quantitative information on how galaxies spread on the φ-θ plane, I
performed the same comparison with a model, by using the Kinney-Calzetti templates
(Fig. 5.1). These are the same I used in §4.3 to build the synthetic spectra for the test,
together with the B-C red-intermediate spectra.

From Fig. 5.1 it’s clear that the K-C templates provide confirmation that the earliest
type galaxies are at the bottom of the φ-θ plot, as suggested by the bulge and elliptical
K-C templates. Additionally, the K-C-Sa and K-C-Sb spiral galaxies fall near to the re-
gion of intermediate B-C models, consistent with them presenting a certain level of star
formation. The starburst galaxies, instead, follow a branch which is nearly orthogonal to
the trend followed by red and intermediate galaxies. Finally, the K-C-Sc template occu-
pies the highest position in φ in the plot, due to the steepness of its continuum, and it is
more shifted towards lower values of θ with respects to B-C models: this fact, together
with the appearance of a starburst branch winding up towards smaller values of the θ
parameter, suggests that the intensity of emission lines gets stronger, at least at fixed val-
ues of φ, for smaller value of θ. This hypothesis will take more shape in section §5.2. So I
can state that the two φ-θ parameters are related to the age and to the star-formation-rate
in a rather complex way: an age sequence can be observed moving along the direction
of the ridge of normal galaxies, marked by the B-C models trend at the right edge of
the φ-θ plot, while an instantaneous star formation sequence can be observed on the
perpendicular direction.

The peculiar shape of the φ-θ cloud obtained for the spectra, presenting sharp bound-
aries in the bottom and right region of the plot, deserves some further insight.

The sharp boundaries are a direct consequence of the application of the least-square
penalty terms, introduced in the projection of the sample over the eigenspectra basis,
together with the limits imposed by our two-components parametrization. These two
boundaries impose limits on forbidden regions beyond which the reconstructions would
be unphysical, with negative continua or inverted emission lines, due to the possible lack
of information of the chosen components, if the penalty was not applied. Consequently,
spectra with no emission lines are found right at these edges of the cloud of points, as
demonstrated by the same position of the B-C models.
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Figure 5.3: The set of 38 SDSS templates by Dobos et al. (2012) as projected on the VIPERS eigen-
spectra. The templates roughly follow the evolutionary track marked by the right edge of the φ-θ
plot, apart from 3 templates that present stronger emission lines in the red part.

5.1.2 Comparison to SDSS LRGs

I compare here the distribution of VIPERS galaxies to SDSS galaxies on the φ-θ plot. To
this purpose, I used a set of 38 SDSS templates computed through a PCA projection by
Dobos et al. (2012). The templates were first re-binned on the same wavelength scale
of VIPERS data, and normalized through their scalar product. They were then simply
projected onto the VIPERS first 3 eigenspectra with the same routine discussed earlier.

The SDSS templates fall in the region at the right edge of the plot, following the same
track found for the other datasets. In particular, the majority of them can be found near to
the right sharp edge, because their PCA projection over the VIPERS first 3 eigenspectra
was finding unphysical solutions for the line features and needed the χ2 penalty to be
applied. The colour gradient, from red to blue, gives a qualitative idea of the colour
of the relative template (Fig. 5.3). Only a group of three spectra seem to detach from
the main branch, positioning in a region of slightly smaller θ. The reason for that, as
expected, is that those spectra present slightly stronger emission lines, mainly in the red
part, than all the other SDSS templates. This is another tip that PCA proves actually
much more sensitive to the slope of the spectra than to emission lines, in positioning the
objects on the φ scale. In fact, although the blue SDSS templates present strong emission
lines, their slope is flatter than many VIPERS blue galaxies, causing the templates to
hardly produce related large numbers in φ.

5.1.3 Dust extinction

A natural question I can now ask about my classification regards the effects of dust ex-
tinction on the position in the φ-θ plot. Indeed, the precence of dust may represent an
important interference in relating the observed color of a galaxy to its proper spectral



42 5.2 The group-finding analysis

type, and the φ-θ plot, neglecting the comparison to the models, has been visually stag-
gered, for the moment, on the basis of the galaxy colours. Since the dust attenuates the
radiation originated by the source, it may produce a reddening in the observed overall
color of a galaxy; and since blue light is much more affected by this effect than red one,
I expect the reddening is expected to be more conspicuous for later-type galaxies, that
may be taken for earlier-type objects by the simple recording of their color.

To determine how this effect may affect the φ-θ distribution, I applied an extinc-
tion law to the model templates. Since my purpose is only to check the direction to
which extinction moves the galaxies in the φ-θ plot, I choose to apply the same sim-
ple Cardelli-Clayton-Mathis extinction laws (Cardelli, Clayton and Mathis, 1989) to all
galaxy types, over the optical-near infrared wavelength range (3000Å ≤ λ ≤ 9000Å),
which contains the rest frame range I am considering for my VIPERS data. The param-
eter RV [= A(V )/E(B − V )], with A(V )=1 mag, is set to 3.52. The resulting extinction
effects on the B-C and Kinney-Calzetti models are then represented by the arrows shown
in Fig. 5.1.

Once the B-C models have been corrected for dust-extinction, they all shift towards
the bottom of the φ-θ plot (Fig. 5.1), in the same direction marked by the B-C curve.
This is consistent with a reddening of the continuum. For the Kinney-Calzetti templates,
and in particular for the starburst spectra, I find that dust extinction causes a larger shift
within the φ-θ plot than for B-C spectra, probably due to the fact that young or starburst
galaxies have a higher gas content, which is yet source of extinction; this explains also
why the points in that region of the φ-θ plot display a broader distribution w.r.t. to the
points n other regions: because of the higher gas content of the galaxies represented in
that region, extinction causes larger shifts, both in the intensity of emission lines and in
the slope of the continua.

5.2 The group-finding analysis

In this section I will better explore the diversity of the same VIPERS spectra represented
on the φ-θ plot.

To do that, I choose to apply a k-means group-finding algorithm, a mathematical
tool that is able to partition a space of objects, conveniently distributed in this space on
the basis of their peculiar features, into maximally diverse classes (Ascasibar & Sánchez
Almeida, 2011).

In general, one has n data points that have to be partitioned into data classes. The
goal is to assign a cluster to each data point. K-means is a clustering method that aims
to find the positions µi,i=1...k of the clusters that minimize the distance from the data
points to the cluster. K-means clustering finds the set of points for which

Σki=1Σx∈cid(x, µi) (5.3)

is minimized, where ci is the set of points beloning to the i− th cluster and d(x, µi) is
the square of the Euclidean distance:

d(x, µi) = ||x− µi||2 (5.4)

This problem is not trivial, so the K-means algorithm only “hopes” to find the global
minimum, possibly getting stuck in different solutions for the same data point.

The k-mean algorithm is used to solve the k-means clustering problem, and works
according to the following diagram:
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Figure 5.4: φ-θ plot of VIPERS repaired and cleaned galaxies, labelled with numbers 1-15, that
represent the diversity of spectral types. The primary locus is traced by markers 1-8, and we find
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0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f λ
+

co
n
st

.

9

10
11
12
13
14

15

[OII][OII] [OIII][OIII]

HβHβHγHγ

HδHδ

Figure 5.5: Representative average spectra obtained by grouping the VIPERS spectra through a
group-finding algorithm into 15 classes in the (θ, φ) plane, as labelled in Fig. 5.4. We average the
repaired and cleaned spectra (i.e. considering only the three principal components). In the top
frame, we show that spectra 1-8 follow a sequence from early to late types, with the continuum
becoming progressively bluer and with stronger [OII] emission. Note that the spectrum labelled
as 1, i.e. the reddest one, still presents a hint of emission lines (although pure red spectra exist in
the sample), since it is an average spectrum. In the bottom frame, spectra 9-13 represent starburst
galaxies with flatter continua and strong emission lines. Mean spectra 14-15 effectively seem to
pertain to none of the two branches, showing a mixture of blue and red galaxy properties.
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The number of clusters should match the data. An incorrect choice of the number of
clusters could invalidate the whole process. An empirical way to find the best number
of clusters is to try K-means clustering with different number of clusters and measure
the resulting sum of squares, or simply randomly partitioning the dataset.

The group-finding algorithm is suitable to be applied to the φ-θ distribution of points.
Through this method, the φ-θ plot is divided into an arbitrary number of groups, and

galaxies are associated with any of these groups, on the basis of their distance, in the θ−φ
coordinates, from the center of every group, i.e.: each galaxy is associated to the nearest
group center. It is necessary, as said, to specify the number of groups beforehand, and I
chose 15, since, after some tests, this number appears to be sufficient to span all features
visible by eye, without repetitions.

The positions of the classes I have identified are marked in Fig. 5.4. These points
visually trace out essentially two branches, that can be thought of as the skeleton of the
data cloud, and that immediately recall the two traces suggested by the model spectra.
The first branch, marked by the numbers 1-8, shows a sequence very similar to what we
can imagine as the prosecution of the B-C red and intermediate models discussed previ-
ously, encompassing, though, also the galaxy types 3-4-5-6, that before seemed already
more likely pertaining to the starburst branch. In particular, the K-C Sc template would
appear to lie between the 7 and 8 classes. A second branch, whose primary direction is
marked by 9-13, including group 15, lies almost perpendicular and passes through the
K-C starburst 1-2. Group 14 marks an intermediate position.

The mean spectrum that represents each class is plotted in Fig. 5.5. In particular, in
the top panel of Fig. 5.5, it becomes clear that moving from 1 to 8 means an increase in
the intensity of emission lines and a change in the slope of the continuum, from redder
to bluer. In the bottom panel of Fig. 5.5, mean spectra from 9 to 13, pertaining to the
perpendicular “starburst” branch, show only an increase in the intensity of emission
lines, particularly evident also by looking carefully at the Hγ, Hδ and Hβ emission,
while the slope of the continuum is substantially unchanged.

In general consecutive numbers here label very similar average spectra in almost
all cases, apart from spectra 14-15, which do not resemble the prosecution of spectrum
13. Actually, because of its position on the plot, 15 is instead very similar to 11. Mean
spectrum 14 instead, lying beyond the imaginary starburst branch in Fig. 5.4, actually
doesn’t follow the trend of that branch, but shows a redder continuum, in agreement
with its φ position on the φ-θ plot, though presenting important emission lines. It looks
more similar to mean spectra 3 and 7 respectively, but for the intensity of emission lines,
since it exhibits stronger line features. The combination of red continua and strong emis-
sion lines shown by mean spectrum 14, makes it hardly includable in any of the two
branches; it maybe perhaps associated to a post-starburst phase, or, more naively, to
the bad reconstruction (by definition) of the non-regular spectra; the latter hypothesis,
though, is not fully founded, since I don’t find in this region any clustering of this kind
of objects, which conversely spread out all over the φ-θ cloud (including the 14 region).

Deepening the insight into the two branches, the 1-8 branch can be associated to the
integrated star formation of the spectra: the position of a galaxy on the branch is an
indicator of how much star formation the object has undergone, from its formation to
the time of the observation. Conversely, the starburst branch gives an indication on the
instantaneous star formation: the nearer to the 1-8 branch, the lowest instantaneous star-
formation, viceversa for the opposite extreme objects. Furthermore, moving leftwards,
not only the intensity of the emission lines increases, but the ratio of Hγ/Hβ is man-
tained almost constant. Since this ratio is an indicator of the presence of attenuation,
due to the presence of dust, which is typical of gaseous, star forming regions, it’s clear
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Figure 5.6: The rest frame U − B, B − V colours of VIPERS galaxies. Red points have PCA
parameter φ < −0.1 and blue points have φ > 0.01 (intermediate values of φ are coloured grey).
The line dividing the two samples optimally separates φ > 0 from φ < 0 in colour space with a
contamination of ∼ 13%.

that moving leftwards on the starburst branch, i.e. raising the intensity of the starburst,
indeed means leaving the dust attenuation unchanged (of course, for the optical emis-
sion that it’s still detectable). Thus even if there is more dust attenuation in the starburst
branch than in the perpendicular one (Fig. 5.1), this attenuation seems almost indepen-
dent from the intensity of the starburst within the starburst branch: this means that the
position on the starburst branch is not dominated by extinction, but it’s fully dependent
by the amount of star formation.

This analysis reinforces the intuition that, while moving upwards in the φ direction
in the φ-θ plot can be associated to a change in the slope and the intensity of the lines,
moving from right to left in the θ direction also means a strengthening in the intensity of
the emission lines.

The shape of the mean spectra for the different groups and the position of the same
groups on the φ-θ plot reinforce the evidence that galaxies can be to split into two nearly
orthogonal spectral sequences, of which one reflects the evolutive phases of a normal
galaxy (though not being an evolutionary track), while the other describes the starburst
phases. This suggests a route for building a physical classification of the spectra based
on the φ-θ parameters.

5.3 Comparison to other classification methods

It’s interesting to compare side by side the PCA classification against more familiar ones:
one example is the classification based on rest-frame broad-band photometric colours. In
Fig. 5.6 I plot the VIPERS rest-frame U−B andB−V for each galaxy (Bolzonella et al., in
prep, Fritz et al., in prep.). I divide the sample into red and blue classes using the angle
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Figure 5.7: Histogram for the distribution of φ, with the φ=-0.1 threshold I chose to define the red
sample.

φ. Based on the comparison to the model spectra and the discussion of the previous
sections, a reasonable definition of the red class can be φ <-0.1 (Fig. 5.7), with the very
blue galaxies confined at φ >0.01. In this way, I cleanly exclude intermediate types.

For comparison, I construct a red-blue classification using the U − B and B − V
colours, that matches as well as possible the PCA selection. This is shown in Fig. 5.6,
where the two classes defined through the φ-θ angle are plotted in blue and red and
the intermediate types in grey. I clearly note that the PCA selection is correctly cap-
turing the bimodal distribution. Conversely, I want to verify how a crude color-color
selection performs, with respect to that based on the spectral information “compressed”
into the PCA parameters. I therefore separate photometrically red and blue classes by
tracing a line perpendicular to the axis connecting the centres of the two clouds, (Fig.
5.6). This axis is defined by computing, through the simplest two-dimensional PCA, the
two eigenvectors of the distribution of points on the colour plane: the first eigenvec-
tor marks the principal direction of the data, while the second is orthogonal to the first
one. Here the total number of eigenvectors is only two, since the correlation matrix of a
two-dimensional distribution has dimension 2. The position of the line is set such that
there is an approximately equal number of contaminating galaxies on the red and blue
sides. With respect to the PCA classification, I find that: (1) in selecting red galaxies, the
color-color selection has a∼ 14% contamination of spetroscopically blue galaxies and an
∼ 88% completeness; (2) for photometrically blue galaxies, the contamination of objects
that spectroscopically are classified as “red” is ∼ 12% and the completeness is ∼ 86%.

I also perform a comparison between PCA and a time-evolving passive-active sepa-
ration (Fig. 5.8), derived in Fritz et al. (2014), after converting our AB magnitudes into
Vega magnitudes (Blanton et al., 2003), for which the relation holds.

The comparison of PCA versus this selection, gives the response: in selecting red
galaxies, the PCA selection has a ∼20% contamination and a ∼86% completeness with
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Figure 5.8: PCA based (red and blue points) and redshift-color separation of red and blue galaxies
(black line)

respect to the photometric one; while for blue galaxies I obtain a ∼6% contamination
with a ∼92% completeness.

It is encouraging that in these simple cases of classifying galaxies as red or blue, the
two methods produce very similar results. The strength of the PCA approach though
is that it encodes additional information about spectral features that is not available in
the broad band photometry. Moreover, photometric filters have a sensitivity of order
∼1000Å, and they are not sensitive to details smaller than this wavelength range. PCA
instead, even if it’s “filtering” the entire spectrum to a two-parameters representation, is
still sensitive to the large scales (shape of the continuum), and to the smaller ones, as the
line features. Thus, with only two parameters, I mantain the capability to distinguish ef-
fects pertaining to differents scales in λ, as for example the instantaneous star formation,
from the time integrated one (as shown in §sec:groupfinding).

A further step deepen the understanding of the φ-θ distribution, has beem to colour
the φ-θ scatter plot with a a gradient based on the 4000Å break strength (Fig. 5.9), and
one based the [OII] line equivalent width (whenever the measurements of these two
quantities are meaningful) (Fig. 5.10), the values of which are present in the VIPERS
database. In Fig. 5.9 I notice that the φ-θ coefficients separate the different intensities
of the 4000Å break in near-to-horizontal lines, parallel to the θ axis. This means, as
expected, that the θ parameter is the less sensitive to this feature, which, conversely,
results almost totally gathered into the φ parameter. One has to keep in mind, though,
that even if it contains the majority of information on the continuum slope, of course φ
is also linked to the intensities of the line features. On the other hand, Fig. 5.10 reveals
that the intensity of the [OII] line is marked in a more complicated way on the φ-θ plot,
since the information on the line intensities is for sure recorded by θ (see Marchetti et al.
2013), but it is also generally linked, for a standard galaxy, to the shape of the continuum,
which slope, as shown in Fig. 5.9, is more confined to the φ parameter. By looking at Fig.
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Figure 5.9: φ-θ plot with colour gradient based on the D4000 Å break intensity.

Figure 5.10: φ-θ plot with colour gradient based on the OII line equivalent width.
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Figure 5.11: SED-type distribution contours on KL plot, at 95% and 50% levels.

5.5, and in particular at average spectra 3-14 and 6-15, the only thing I can state is that,
again, at fixed continuum, smaller values of θ seem to represent stronger emission lines.

This was expected indeed, for what anticipated at the beginning of this Chapter: in
facts the φ parameter comes from a combination of the two parameters related to the
first two eigenspectra, presenting respectively a typical red continuum with emission
lines, and a typical blue continuum with emission lines; this makes it sensitive to both
the continua and the line intensities variations. On the other hand, θ is linked only to the
third eigenspectrum, characterized by a rather flat slope of the continuum with emission
lines, causing it to be pretty dull to continuum slope variations.

In the end, I also want to show how different Spectral Energy Distribution classes are
displayed by the φ-θ plot. For this purpose I employ the SED template number assigned
to each VIPERS spectrum. VIPERS data have in fact been assigned a number from 1
to 4 representing the template SED which fits best each of them. The four classes, en-
compassing many SED templates each, represent elliptical-Sa, early spirals, late spirals,
irregular or starburst spectra.

The distribution of the SED types on the KL plot is showed in Fig. 5.11.

5.4 Galaxy evolution in the PCA parameters

Since the KL parameters, as stated earlier, contain informations on both the continua and
the emission features of the spectra, I am interested in checking if they evolve with time,
i.e. if φ and θ show an evolution comparable with what we expect, for both blue and
red galaxies. In particular, I assume here that galaxies undergo a passive evolution, with
blue galaxies becoming redder (also in terms of shape of the continuum) and exhibit
lower emission lines, and red galaxies becoming redder and redder, as the time passes.
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Figure 5.12: R band rest frame magnitude for VIPERS PDR-1. The red line marks the MR lumi-
nosity cut.

As a first stage, I apply a naive step luminosity cut in the absolute R-band magnitude
MR, to mimick an evolution as a function of redshift, to the spectra I consider for this
analysis (5.12). It’s important, though, to point out here that I found, indeed, that chang-
ing the cut to a simple horizontal one, would impact the analysis in a negligible way).
Then I divide the red galaxies from the blue ones, excluding the spectra that lay in the
green transition zone, as shown at the beginning of §5.3. I already explained that this is a
spectral PCA-based subdivision that mimics a blue-red separation based on a color-color
diagram.

At last, I divide the redshift space into redshift bins, characterized by approximately
the same number of objects, and average the values of φ and θ relative to the red and
the blue spectra within each bin (Figs. 5.13, 5.15, 5.14, 5.16). The errorbars, which would
simply depict the statistical standard deviation from the average, are shorthest than or
comparable to the size of the datapoints, thus I don’t plot them in the figures.

The average values of φ in each redshift bin show an increasing (though very slightly)
trend towards highest redshifts, which is clearer for the red sample (Fig. 5.15). For the
blue one the position of the point in the range 0.6< z <0.7 suggests a slight decrease,
but the general trend is clearly increasing, even if, again, within a very short interval of
values in θ. Since the φ parameter, as said, encloses the large majority of the informa-
tion on the continua and part of the information on the line intensities, the trend in φ
goes in the expected direction, at least for the red sample: at increasing z the continua
are getting bluer and lines are getting stronger. This is in agreement with the prediction
that at larger redshift there are more blue galaxies that in the nearer Universe, where the
galaxies are older, thus more evolved and more red.
The interpretation of the behaviour of θ is instead, again, more complicated. The θ pa-
rameter shows a constant increase as a function of redshift only for the red sample, while
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Figure 5.13: Average value of φ for the blue galaxies in different redshift bins

Figure 5.14: Average value of θ for the blue galaxies in different redshift bins
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Figure 5.15: Average value of φ for the red galaxies in different redshift bins

Figure 5.16: Average value of θ for the red galaxies in different redshift bins
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Figure 5.17: Median of the φ values as a function of age for VIPERS spectra (green dots), compared
to the predicted evolution of a galaxy formed at z=1 (yellow line) and one formed at z=2 (blue line).

for the blue one it seems to be nearly constant in a narrow redshift range. Since θ has
to do with the intensities of the line features, and in particular for highest θ the lines
are getting weaker, this would suggest that the lines are weaker at larger redshifts, in
contrast with the expected evolution and with the prediction of φ. But θ, as described in
§5.3, cannot be interpreted as a pure indicator of the line intensities: in fact the small in-
formation on the continuum which is carried by θ, is in general more important than the
one on the lines contained in θ itself, because of the pixel content of each. Viewed in this
perspective, i.e. that θ is an indicator of the continuum more than of the line intensities
(especially for the red galaxies, which contain very few emission lines), the increase in θ
for increasing z represents an evolution of the continua in agreement with the expected
galaxy evolution. For the blue sample, the effect of the opposite trends expected within θ
for the emission lines and the continuum (increasing θ means weaker emission lines but
bluer slope) is stronger, causing θ to exhibit a slightly oscllating beahviour in redshift,
due to stronger presence of emission features than for the red sample. The line informa-
tion contained in θ, instead, becomes dominant only for fixed slopes of the continuum,
i.e. for fixed values of φ. Thus, as said, it is only within small stripes of φ values that
smaller θs represent larger emission lines.
In any case, for both the samples, but surely more for the blue one, the trend of the
φ-θ parameters as a function of redshift may have been very slightly smoothed by the
repairing-cleaning process, that for some objects can recover a slightly shorter line fea-
ture, primarily for the χ2 penalized spectra in the PCA process.

This trend obtained for the median of spectra in the φ-θ space, can be qualitatively
compared with the evolution predicted by models, in particular with the one predicted
by the B-C model. This comparison will only be qualitative, since it’s hard to quantify
it due to the reduced size of data uncertainties. To visually perform the comparison,
I plotted the median values of φ and θ for the red and blue galaxies altogether, and
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Figure 5.18: Median of the θ values as a function of redshift for VIPERS spectra (black dots),
compared to the predicted evolution of a galaxy formed at z=1 (yellow line) and one formed at
z=2 (blue line).

overplotted the predicted B-C evolution for a galaxy born at z=2 and one born at z=1
(Figs.5.17,5.18). The VIPERS points, being the median of φs and θs pertaining to galaxies
of many different ages, lie approximately between the two models. At small redshifts,
the φ of data suggest a median of galaxies which are less red than predicted by the
models, which is expected, since the models do not contain emission lines, while the real
data do, and models are not as blue as some spectra in the data, and this contributes in
increasing the values φ.

The trend of θ for the data also seems to suggest, in agreement to φ, that real ob-
jects are bluer (or less red) than models (considering as prominent the link of θ to the
continua).

For high redshifts both the data parameters seem to indicate an evolution in agree-
ment with a population of younger galaxies, being nearest to the top line than to the
bottom one. This behaviour is indeed a general trend for θ, while φ lies in the middle of
the two models for intermediate redshifts. The trend for high redshift is also evidenced
by a plot of the fraction of passive to active galaxies in the VIPERS sample (Fig. 5.19):
according to the PCA-φ based blue-red separation, the population starts to be composed
primarily of passive galaxies at z <0.8, while at z ∼1 (the extremity of my data distribu-
tion) it seems to be dominated by active galaxies.

To improve the resemblance of the data to the models, I also masked the emission
lines in the data and performed the comparison again; unfotunately, the continua of the
data are sometimes “recognized” by the PCA and repaired, so that the mask is patched
with an emission line in the right place. Moreover, the data contain “bluer” galaxies
(bluer shape) than the ones represented by the models. These two effects produce a
similar distribution as Figs. 5.17 and 5.18 for the data points as a function of redshift/age,
suggesting, again, that the major contribution to the value of the parameters is the shape
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Figure 5.19: Fraction of passive to active VIPERS galaxies (according to PCA φ division) as a
function of age.

of the continuum, more than the presence or absence of emission lines.



CHAPTER 6

Narrow Line AGN identification as PCA byproduct

6.1 PCA reconstruction of peculiar spectra

One of the limitations of the PCA reconstruction of spectra is that a spectral type that is
represented by a few galaxies, only will be poorly (or even will be not) represented by
the principal eigenspectra. Rare features will not be included in the main eigenspectra,
but only in higher-order ones. This is for example the case of AGNs (as QSOs or Seyfert
galaxies; it can be also the case of normal galaxies which have been assigned a wrong
redshift). Their representation, in terms of the first three components only, will not be
realistic. This will force them to resemble an intermediate, blue, or starburst galaxy. An
example of this is shown in Fig. 6.1, where a broad-line AGN is reconstructed using
only three eigenspectra. The continuum is approximately fitted, but the broad emission
features do not have counterparts in the three basis vectors used, and are thus fitted
with normal emission lines. Another interesting example, depicted in Fig. 6.2, is the
projection of a NL AGN over the PCA eigenspectra: it noticeable that the reconstruction
is more fitted to the observed spectrum for almost all the wavelengths, apart from the
region of the [OIII] doublet and the [OII], where the reconstruction is not able to repro-
duce the strong intensity of the emission lines, typical of these kind of spectra. This effect
sometimes arises also for normal starburst galaxies in my PCA reconstruction, but for the
NL AGNs, this seems to be always the case. I have directly verified in my tests that AGN
features start to emerge only when principal components up to orders & 50 are included.
This is due to the fact that AGNs are actually a minority in the VIPERS catalogue (they
are expected to be ∼ 5% of the total), so their peculiar features are treated as “noise”
(i.e. uncommon features) by the PCA. For these reasons, as already hinted, the AGNs
do not group as a separate population of outliers in the φ-θ plot computed with three
or higher-order eigenspectra, but fall on the main locus in apparently random positions.
For this reason PCA reconstruction of the AGN spectra will be better performed on an
AGN-only sample, when a larger sample of AGNs only will be available. Nevertheless,
the poor reconstruction of all the AGN-like galaxies can be exploited to pick them up
authomatically in the sample, on the basis of the discrepancy of the reconstructions from
the observations.

6.2 NL and BL AGNs characteristics

The AGNs, as already described in Chapter 1, are galaxies hosting an accreting black
hole at their center. This is the common engine of their activity, but these objects present
many diversifications, that have been tentatively assigned to a set of main groups and
subgroups.

57
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Figure 6.1: Example of a BL AGN in the VIPERS sample (blue) projected on to the PCA eigen-
spectra basis (green). The PCA reconstruction was not able to preserve the peculiarities of this
rare spectrum, forcing it to resemble a typology of galaxy which is much more common within the
VIPERS sample.
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Figure 6.2: Example of a NL AGN in the VIPERS sample (blue) projected on to the PCA eigen-
spectra basis (green). The PCA reconstruction recovers pretty well the global characteristics of the
spectrum, but for the intensity of the Hβ, [OIII], and slightly of the [OII] emission lines.
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Seyfert 1s are normal spiral or elliptical galaxies characterized by a compact, star-
like nucleus, and a nuclear emission line spectrum, characterized by broad (a few thou-
sands km s−1) permitted lines and narrow (a few hundreds km s−1) high excitation lines.
Seyfert 2s, instead, have a narrow emission line spectrum, similar to the one of Seyfert
1s, but they are lacking both the compact nucleus and the broad emission lines. Finally,
Quasars (or QSOs) are simply high luminosity Seyfert 1 nuclei; their luminosity is so
high that the host galaxy is difficult to detect. Seyferts and QSOs contain a compact nu-
clear continuum source ionizing a broad line region, surrounded by an optically thick
torus of dust. Depending on the orientation of this torus with respect to the line of sight,
the central object is seen or hidden; when it is hidden, we see only the narrow, extended
emission line region typical of a Seyfert 2.

Many spiral galaxies contain a starburst region at their center, that would make their
spectra similar to the one of a Seyfert 2 . But the spectra of narrow line Seyferts and
starbursts are easily distinguishable by their main emission line ratios, on which the
diagnostic, or BPT, diagrams are based (see §6.3). Nonetheless, diagnostic diagrams
built with these emission line ratios revealed a third type of emission line spectra called
Liners (Low Ionization Nuclear Emission line Region). Some of these objects are most
probably low luminosity Active Galactic Nuclei (AGNs); some others must be related
to a cooling flow phenomenon, occuring in clusters of galaxies, or are produced in the
collision and merging of gas rich galaxies.

Seyferts and QSOs can further be divided into radio loud or radio quiet objects. Ra-
dio loud objects are always hosted by an alliptical E-type galaxy. Most radio galaxies
have a double lobe structure; the high radio luminosity sources have edge-brightened
lobes; they are called FR II radio sources (for Fanaroff-Riley type II). The low luminosity
sources are called FR Is. FR II radio galaxies have the nuclear emission line spectrum of
Seyferts; when they have broad emission lines they are called Broad Line Radio Galax-
ies (BLRGs); when they have the emission line spectrum of a Seyfert 2, they are called
Narrow Line Radio Galaxies (NLRGs). All radio quasars have the samle morphology as
FR II. FR Is have a weak low excitation emission line spectrum, very similar to Liners, or
they have no detectable emission at all.

The lobes of radio galaxies (FR Is and FR IIs) are powered by a relativistic jet; when
the angle between the jet axis and the line of sight is small, the jet is Doppler boosted
by a large factor, and the whole spectrum (from radio to gamma-ray) is dominated by
a compact, highly polarized, highly variable, superluminal, almost featureless contin-
uum. These objects are called Blazars; they are divided into two subclasses: the Highly
Polarized Quasars (HPQs) which show broad emission lines, and the BL Lacertae ob-
jects (BLLs) with no or weak broad emission lines. The parent population of the HPQs
is made of the FR IIs, while the parent population of the BLLs is made of the FR Is.

As hinted, the most popular explanation for the AGN powerhouse involves accre-
tion of gas onto a supermassive, perhaps spinning black hole (BH). Different regimes of
accretion have been invoked to constitute the basis of a unified picture of AGNs. The
predictions of the theory are that rotationally supported thin disks would form at lower
accretion rates (M<MEdd), while supercritical (M≥MEdd) accretion flows are expected
to form thick disks supported by radiation pressure. A very subcritical flow may not be
able to cool and, instead of forming a thin disk, it would puff up, giving rise to an ion
torus supported by gas, rather than by radiation pressure. This is, very schematically,
the generally accepted Unified Scheme of AGNs.
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6.2.1 Seyfert II galaxies (NLAGNs)

Seyfert 2s are characterized by a spectrum having both strong high- and low- ionization
emission lines. To explain both high and low ionization lines, the narrow-line region
(NLR) must be composed of a mixture of dust-free, metal depleted clouds, with a radius-
independent range in densities, distributed over a range of distances from the nucleus.
To encompass the observed range of line intensities relative to Hβ, it is necessary to vary
the spectral energy distribution incident on the clouds, by adding a varying contribution
of a hot blackbody to a steep X-ray power-law. The width of the narrow emission lines
correlates with the Hubble types in Seyferts, earlier types having broader lines. There is
also a correlation between line width and nuclear stellar velocity dispersion, suggesting
that gravitational motion plays an important role in the narrow line velocity field.

6.2.2 Seyfert I galaxies and QSOs (BLAGNs)

In addition to a narrow-line emission spectrum, Seyfert 1s have broad permitted lines
(HI, HeI, He II and Fe II in the visible domain). Bright QSOs have relatively weak nar-
row lines. The relative amount of narrow-line emission decreases with luminosity: this
suggests either that the ionizing flux to the narrow-line region is proportionately smaller
in objects with a high-luminosity broad-line component, or else that there is proportion-
ately less low-density gas in the higher luminosity Seyferts. The broad emission lines
observed in AGNs have a FWHM which is typically in the range 5000-10000 km s−1
and show different kinds of profiles that usually are not Gaussian or even symmetrical.
The half-width at zero intensity of Hβ can be extremely large, reaching 35 000 km s−1 in
some cases. Hβ/Hα and He Iλ5876/Hβ ratios increase from the core to the wings of the
lines, indicating that the broad-line region is not a thin spherical shell. Seyfert 1 BLRs
have sizes of the order of a few light-days to light-months ( ∼100 light-days). It is now
widely believed that accretion of gas into a central supermassive BH lies at the heart of
the phenomenon; the accretion flow takes the form of a geometrically thin disk which
is the source of the X-ray, UV and optical continuum emission which ionizes circumnu-
clear gas in both the broad-line and narrow-line regions; the BLR is made of an assembly
of small clouds, photoionized by the continuum emission of the disk.

6.3 NL AGNs separation methods

When interpreting the emission-line spectra, it is important to be able to distinguish
emission produced by star-forming regions from AGNs. The conventional means for
distinguishing between gas ionized by stars and nonthermal processes, are diagnostic
line diagrams, also called BPT (Baldwin, Phillips and Terlevich, 1981) diagrams. They
make use of reddening-corrected fluxes of the following lines: [OII], Hβ, [OIII](5007),
[OI], [Hα], [NII], [SII]. The appropriate ratios of these lines can clearly separate extra-
galactic [HII] regions from AGNs.

AGN are characterized by the existence of a partially ionized zone. In this partly
ionized region, ionized atoms as H and free electrons coexist with neutral atoms of other
elements, as well as with ions having an ionization potential similar to that of H. The
dominant forms of O, S, and N in the partly ionized zone are O0, S+ and N0, while
smaller fractions of N+ and O0 are also present. Hot free electrons produced in this re-
gion by X-ray photoionization will increase the strengths of lines produced by collisional
excitation.
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Important lines such [OI], [SII] , [NII] are of this type. Therefore, intensities of those
lines are larger with respect to Hα in narrow-line AGNs than in H II region-like objects,
because collisional excitation of these lines is more important in objects with extended
partly ionized zones.

Since the ionization potential of O0 matches the ionization potential of H very well,
one should expect a large difference between the [OI]-Hα ratio of the H II region-like
objects and that of narrow-line AGNs. The effect is also important for S[II]/Hα but the
fact that S+ can also exist within the H+ zone of HII regions somewhat attenuates the
difference between the two classes of objects.

Finally, O++ is produced predominantly by UV photons well inside the partly ion-
ized zone, and close to the ionizing source. The relatively larger numbers of photons
that can ionize O+ to O++ in the power-law type spectra generally make OIII/Hβ larger
in the AGNs than in all, but the highest HII region-like objects.

As recently pointed by Lamareille (2010), we can also use the “blue” emission lines
(i.e. [OII], [OIII]λ5007 and Hβ) to perform the spectral classification for higher redshift
galaxies (i.e. with no observable Hα and [NII]λ6584 “red” lines), but with a slightly
lower accuracy.

For galaxies at intermediate redshift, the Mass-Excitation (MEx) (Juneau et al., 2011)
diagnostic is able to identify AGNs in galaxies in the absence of near-infrared spec-
troscopy, necessary to use traditional nebular line diagrams at z>0.4. Combining [OIII]5007/Hβ
and stellar mass this method successfully distinguishes between star formation and
AGN emission.

6.4 NL AGNS PCA-based finding

Since, as explained before, the NL AGNs have a PCA reconstruction which traces well
the majority of the spectrum, but for the Hβ and [OIII] emission lines, it is easier, in prin-
ciple, to select these objects by comparing their projection to the observed spectrum. For
the BL AGNs this would be harder, since the discrepancy between observed and pro-
jected spectrum spans over all the wavelengths, and a pick-up method for those objects
would easlily collect many merely noisy spectra together with the BL AGNs.

I want thus to select NL AGNs, without the support of a training sample, but solely
on the basis of the χ2 of the difference of the observed and the projected spectrum. In
particular I expect to have a small χ2 (∼ 1) regarding the continuum, and in particular
the regions left and right of the Hβ-[OIII] doublet, and a high χ2 (> 1) within the region
of the Hβ-[OIII] doublet. I defined the χ2 for the i-th spectrum as

χ2
i =

Σλ(Pi,λ −Oi,λ)2

Σλσ2
i,λ

, (6.1)

where Pi is the projected spectrum, Oi is the observed one, and σ is the relative
statistical noise spectrum, as stored in the VIPERS database. I decided to pick up all
the objects at different χ2 thresholds (>1,2,3,4,5) in the region of Hβ-[OIII] doublet, but
within a parent sample, selected to help the NL AGN finding.

Since I expect the projection of NL AGNs to fit well the observed spectra, outside the
[OIII] region, the parent sample contains all the objects with χ2 <2 in those wavelengths.
Furthermore, I choose the objects with a good signal-to-noise ratio (S/N>5), where I
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Figure 6.3: Example of an early-type spectrum, that can be mistaken for a NL AGN by the auto-
matic NL finding routine, on the basis of the χ2 on the Hβ and [OIII] emission lines.

defined the S/N as

(S/N)i =
Oi
σi

(6.2)

and decide to start avoiding the redder objects in the sample, selecting φ >-0.1; in
facts, many spectra may be in general affected by strong noise spikes in the region of the
χ2 test we analyze for the NLAGNs (Fig. 6.3); for the redder spectra in particular, these
noise spike would produce a very high χ2 value in the test and would thus strongly
contaminate the NL candidates’ sample, appearing as NL candidates, even if there are
no emission lines at all in the interested region. So I prefer to neglect early-type objects,
even if a NLAGN my also lie in one of those, and such a candidate will be lost in this
analysis.

Finally, I chose the flag interval 3≤flag≤10, to avoid too noisy or unsecure redshift
objects (flag 0,1 and 2) and the already well known BL AGNs of the sample (flag 10-19).

6.4.1 Comparison to BPT diagrams

The results of the PCA based NL AGN identification have been compared to both the
Lamareille and the Juneau criteria. The χ2 threshold for the difference of the line intensi-
ties of [OII] and Hβ have been varied from 1. to 5. Figs.6.4 and 6.5 show the distribution
of the PCA NL candidates (large purple dots) over the distribution of the VIPERS spec-
tra for which a reliable measurement of the relevant emission lines is available (small
green dots). The solid lines, in both figures, isolate the region of the NL AGNs (above
the upper lines) from the one of the regular/starburst emission line galaxies. The purple
dots in both figures refer to the χ2=1 threshold.

A quantitative analysis of the completeness of the PCA NL sample vs. the Lamareille
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Figure 6.4: Comparison between Lamareille and PCA-based NL AGN separation (with threshold
χ2=1). The Lamareille criterion selects all points above the upper black lines.

and the selections have been performed. The results are shown in Figs. 6.6, 6.7: I notice
that the completeness of our selection can be very high (∼ 99%) for both the test samples,
but we are left with an important contamination from regular galaxies, which is not ac-
ceptable for both comparisons, even if for the Lamareille criterion is at least beyond 50%.
For the Juneau criterion the contamination of our selection method is almost 60% for ∼
80% completeness, and the contamination is higher than 50% even for a completeness of
∼ 30%.

Even accounting for the fact that the Lamareille and Juneau test samples are not a
highly secure sample of NLAGNs, the results suggest that this method is promising, but
has to be refined: it is capable to find high purity samples of NLAGNs, but highly im-
complete, or to find high completeness sample, but of course at the expenses of purity.
A possible improvement, to be implemented in the near future, may be to use a more
realistic noise indicator than the statistical noise spectra present in the VIPERS database,
to compute the χ2 of the difference in the regions of interest for this analysis. A more re-
alistic indicator of this quantity has been computed, again on the basis of a PC analysis,
as described in the Appendix A, and will be soon implemented in the NLAGN identifi-
cation algorithm. A comparison of the candidates of this method to a highly secure set
of VIPERS NLAGNs will be also performed in the next future.

6.5 Wrong redshift assignments

The machiner described to obtain a sample of candidate NL AGNs, can in principle be
used to select, with ad hoc adjustments, also other peculiar objects, or to pick up rapidly
the spectra whose redshift assignment is incorrect. Those spectra are expected to have
a poor reconstruction, if compared with the observed shape, displaying a high global
χ2 value. Unfortunately, if the observed spectrum is very noisy, as it will almost always
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Figure 6.5: Comparison between Juneau and PCA-based NL AGN separation (with threshold
χ2=1). The Juneau criterion selects all points above the upper curved black line.
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Figure 6.6: Contamination of PCA NL AGN selection with respect to Lamareille and Juneau ones,
for different selecting χ2 thresholds.
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Figure 6.7: Completeness of PCA NL AGN selection with respect to Lamareille and Juneau ones,
for different selecting χ2 thresholds.

be the case for a wrong redshift assignment, the χ2 will be comparable to the χ2 of
a noisy spectrum with right redshift assignment, frustrating the advantage of the bad
reconstruction.

An alternative route is to try to link the wrong redshift spectra to a particular or
particularly high value of an eigencoefficient. This have been tested by taking a good
redshift spectrum and moving it to the wrong redshift. This causes the spectrum to
show a highest spread of its 100 eigencoefficients, with respect to the right assigment,
but not as high as to be detached “blindly” by the rest of the sample. I tested this over
a dozen of spectra, obtaining the same result. So, I expect that a wrong redshift assign-
ment will not show off an easily detectable peculiar kit of coefficients. Moreover, if there
was a particularly high coefficient related to the wrong redshift spectrum, this would be
different from one spectrum to the other, depending on the assigned redshift: this will
also make it difficult to select those objects on the basis of their eigencoefficients.

Thus, the more promising route is still to select those objects on the basis of the χ2 of
their reconstruction, tuning carefully the wavelength range for the χ2 test. This, together
with improvements on the NL AGN selection, will be addressed in the next future.





CHAPTER 7

Linear Discriminant Analysis on PCA parameters

The data I will perform the Linear Discriminant Analysis on, are just the two coefficients
φ and θ of the PCA decomposition obtained so far. The aim of this exercise is to separate
active and passive galaxies, on the basis of spectroscopic data derived quantities, as φ
and θ are.

The Linear Discriminant Analysis (or LDA) was originally developed by R. A. Fis-
cher. LDA is a classification method that looks for a linear combination of variables (in a
sample) that best separated two classes of objects. To capture the notion of separability,
Fisher defined a function named “score”, defined as:

S(β) =
βTµ1 − βTµ2

βTCβ
(7.1)

where the βs are the coefficients of the linear model describing each sample

Z = β1x1 + β2x2 + ...+ βnxn, (7.2)

C is the overall covariance matrix of the data

C =
1

n1 + n2
(n1C1 + n2C2) (7.3)

and µ1 and µ2 are the mean vectors of the two classes, defined a priori in the sam-
ple on the basis of a fiducial/partial classification. Thus, the score function can also be
written as

S(β) =
Z1 − Z2

Variance of Z within groups
(7.4)

Given the score function, the goal is to estimate the linear coefficients that maximize
it, and this can be obtained by solving the following equation:

β = C−1(µ1 − µ2) (7.5)

Then, each new point is projected onto the maximally separating direction, and clas-
sified as pertaining to the first class c1 if

βT
(
x−

(µ1 + µ2

2

))
> log

p(c1)

p(c2)
(7.6)

and viceversa for the second class c2. p is the probability associated to each class.

67
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Figure 7.1: Starting step of LDA passive-active: the separation (green segments) is first performed
into each single bin of θ, then the middle point of each segment (purple dots) is determined, and
then they will be linearly interpolated

Since the LDA needs to lean on a pre-exhisting, even possibly partial subdivision
into two classes, I decide to adopt two distinct training sets per time, each based on a
different spectral feature.

First I use the intensity of the 4000Å break, and, separately, the equivalent width of
[OII] line as a training set. The way these two quantities display on the φ-θ plot was
already shown in Figs.5.9 and 5.10 respectively.

In particular, since a 4000Å break value∼ 1.5 is considered a reasonable boundary re-
gion between active and passive galaxies (Garilli et al., 2013) (see also Fig. 5.9), I choose
two different training samples, to define an intermediate (though narrow) region. The
first considers as starburst galaxies all the objects with 4000Å break<1.2, while the other
uses 4000Å break<1.5 as a threshold. The objects that would fall within the two separa-
tors will thus be considered as transition objects.

I will apply the same idea to the [OII] equivalent width, although with a broader
range of values. Since a good separator between active and passive galaxies can be
represented by a value of 5 Å for the [OII] equivalent width (Mignoli et al., 2009), the
two [OII] separators are fixed at 5 Å and 25Å (this value is large, to leave more space to
the intermediate objects in the classification).

Let’s keep in mind that not all the objects in the KL plot have a well defined or well
measured 4000Å break and/or the [OII] equivalent width, and that the advantage of this
LDA, applied to φ and θ, is just to be able to classify also those objects, for which a simple
separation on the basis of the 4000Å break or [OII] would not be possible.

7.1 Active-passive galaxy separation

For both the boundaries of both the training sets I use, I first divide the KL plot into
bins of 0.1 in θ, each overlapping by half to the previous and the following. Then I run
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Figure 7.2: LDA active/passive separation: above the coninuous line, based on 4000Å break>1.2,
the objects are active (blue dots), below the dashed line, based on 4000Å break>1.5, the objects are
passive (red dots); the middle region contains transition objects (yellow dots).

Figure 7.3: LDA active/passive separation: above the coninuous line, based on [OII]EW>25Å, the
objects are active (blue dots), below the dashed line, based on [OII]EW<5Å, the objects are passive
(red dots); the middle region contains transition objects (yellow dots).
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Figure 7.4: φ-θ LDA classification based on D4000 (black lines) matched with the one based on
OII (green lines): the points in common to both the intermediate regions of the two methods are
painted in yellow, the ones classified as intermediate by [OII] but as active by D4000 are cyan, the
ones classified as intermediate for D4000 but as passive for [OII] are coloured orange.

the LDA over each bin for all the training samples, resulting into different segments,
not necessarily crossing each other (see Fig. 7.1). At this point I calculate the average
value for each of these segments, and join the middle points through a simple linear
interpolation. The resulting division I obtain for the D4000 training set is shown in Fig.
7.2. The continuous line represents the LDA passive-active division based on 4000Å
break>1.2, the dashed represents the one based on 4000Å break>1.5.

The classification based on the [OII] equivalent width is instead displayed by Fig. 7.3.
Here again, the continuous line refers to a separation based on an equivalent width of
25Å, the dashed line to the one at 5Å. The fact that the 2 lines coincide in the left region
of the plot, suggests that in that range of θ the φ-θ plot is not particularly sensitive to
variations in the [OII] intensity. This is also evident form Fig. 5.10, where the points are
all coloured bluish, and the effect may also be strengthened by the paucity of objects in
the low φ-low θ region.

On the basis of this analysis, within each classifier, one could safely consider the ob-
jects below the dashed lines as passive galaxies, while the objects above the continuous
lines are active. The middle yellow region represents the smooth passage between the
active and the passive phase.

Since the [OII] equivalent width marks a separation between active and passive
galaxies which is not completely overlapping to the one of D4000 (at least in the right
region of the φ-θ plot), I finally overlap the two classifications, as shown in Fig. 7.4: this
match defines a sort of “confusion” stripe within the φ-θ plot, approximately between
the black dashed line and the green continuous line. Here the two LDA classifications
agree in classifying the objects as transition ones in a smaller stripe (yellow dots), while
the cyan points are considered active objects by D4000 and intermediate only by [OII];
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Figure 7.5: LDA normalized histograms for peculiar and regular VIPERS spectra, using all the
PCA coefficients form PCA, and the AGN flags form VIPERS as a training set.

viceversa the orange points are intermediate for the [OII] but passive for the D4000. By
this joint analysis I can conclude that all the points above the upper lines in the plot
can be safely classified as passive, and all the points below the lower lines are passive.
All the objects within these external lines can be considered intermediate or transition
objects.

7.2 LDA AGN finding

The LDA can be used to separate distinct classes of objects in a sample; so in principle
it can also distinguish between regular and peculiar spectra, even complementing a pre-
exhisting identification, as may be te case for the AGN VIPERS catalogue. I will use the
LDA to complement this catalogue with some more spectra, that for some reason may
have escaped this formerly-performed AGN selection. I explained that PCA is not able
to reconstruct the peculiar galaxies or AGN spectra, because the information contained
into the first 3 eigenspectra encloses only galaxies from early type to regular-starburst,
passing through late type. The AGN or peculiar spectra characteristics, because of the
paucity of those spectra in our sample, are treated as noise and thus confined into higher
order eigenspectra. Therefore, a LDA analysis of VIPERS spectra, using the first 3 co-
efficients of the PCA and the AGN VIPERS flags as a training set, may not be possibly
helping in separating AGNs from regular galaxies.

On the other hand, I can still exploit the PCA results for this purpose. In fact, the
first 3 coefficients do not contain information on peculiar spectra, but the whole set of
PCA coefficients certainly would, since projecting every spectrum onto the whole set of
eigenspectra shall result in a perfect recovery of the original spectrum with all its noise
and peculiar features. So, for the purpose of identifying peculiar spectra, I take, as data,
the entire set of 3 components’ PCA repaired and not-yet-projected spectra, and project
them on the full 2486 final eigenspectra basis. In this way I still have noise, since I pro-
jected over all the eigenspectra, but for the same reason I am contemporarily saving
the majority of the peculiar spectra characteristics, whilst avoiding the presence of gaps
(since I project the already repaired spectra on the already gaps-free eigenspectra).



72 7.2 LDA AGN finding

For this analysis I used, as a training set, the sample of objects that have been flagged
as AGNs in VIPERS: this sample contains mainly broad line AGNs (BL) and some nar-
row line AGN (NL).

The LDA analysis based on this training set can be represented by two well distin-
guished histograms (normalized to 1) (Fig. 7.5). The AGN spectra are expected to be at
the left of the separation line, obtained through the equatoins of §2.2.2 while the regulars
on the right. Nevertheless, when carefully examined, I find that an overlap of the regular
(blue) histogram to the AGN (black) one does exist, and just this overlap should enclose
the spectra that may have escaped the VIPERS AGN classification, at least on the left of
the separation line l, precisely where we expect the AGNs to be.

Fig. 7.61 shows the stack of the spectra of this portion of regular galaxies’ histogram,
overlapping to AGN’s one, as divided into 4 bins. Apart from the jaggies, their shape
follow that of a BL AGN spectrum (Fig. 7.6). Nevertheless, when I look individually
at the single spectra in the overlap region, I notice that the sample appears composed
mainly by pretty noisy spectra, though with an AGN-like global resemblance, with the
exception of some unequivocal (∼ 20) broad-line AGN spectra (misflagged for some rea-
son as regular galaxies by the pre-exhisting classification) and a couple of clean narrow
line spectra, that are probably narrow line AGNs with particularly strong emission lines
(these kind of objects, as already specified in the previous Chapter, share almost all the
continuum characteristics with a regular galaxy, and are poorly represented in the train-
ing sample, so they are very unlikely to be segregated in this analysis, unless thay have
extremely strong features). The predominance of the low signal-to-noise spectra to the
AGN like ones in the overlap region, may explain the irregular shape of the lines in the
stacked spectra. I specify that the effect of catching very noisy spectra in the AGN se-
lection was indeed expected: in facts, the LDA separates the peculiar spectra not only
on the basis of their similarity to the training sample objects, but also on the basis of
their difference from the regular sample; thus some noisy spectra, for which very few
characteristics of a regular spectrum are recognized, may have interpreted as peculiar
objects.

Moreover, it’s important to point out that the overlap of the histograms is mutual:
the AGN histogram overlaps to the regular one also at the right of the separation line,
meaning that the LDA separation of AGNs, operated through the PCA parameters of
the repaired spectra, still needs some refinement, as explained below.

Concentrating on the AGN histogram (the black one), I know that, by construction,
it should contain all and only the galaxies flagged as AGNs in the training set. Thus,
first, it’s interesting to see if there is a trend in the shape of the spectra, if one virtually
moved along the abscissa of the histogram. So, dividing the AGN histogram into 3 large
bins, and stacking all the spectra within each bin, I can notice that the average shape
of the spectra shows continua and line intensities that seem to go from later to earlier
type, moving from left to right (Fig. 7.7). As hinted above, I also see from Fig. 7.5 that
one bin of the AGN’s histogram lies at the right of the separation line, as if the LDA
classified those objects as regular galaxies. This particular bin in facts contains the 2
AGN spectra at the bottom of Fig. 7.7: these 2 spectra present an important gap in their
bluest region: this means that the PCA has attempted to repair them with the first 3
eigenspectra; the result of the repairing is not realistic though, since those 3 eigenspectra
are not enough to describe an AGN spectrum, and the resulting weird global shape of the

1The spectra depicted in Figs.7.6, 7.7 and 7.8 are the observed ones, brought to rest-frame and binned to a
common wavelength scale, not the repaired ones.
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Figure 7.6: Stack of VIPERS spectra within 4 different bins of the LDA regular histogram, in the
region that overlaps to the AGN histogram.
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Figure 7.7: Stack of VIPERS spectra within 3 different bins of the LDA AGN histogram.
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Figure 7.8: Stack of VIPERS spectra within 200 different bins in a 50000 bins regular galaxies LDA
histogram.

repaired spectrum prevents the LDA to classify it as an AGN. The bin is thus inclosed by
the regular “sector”, in a region of the histogram that, as I will show, contains still some
noisy spectra, whose shape is not securely distinguishable from a broad line AGN (see
Fig. 7.7 and later discussion).

The regular galaxies histogram has in facts also been analyzed extensively; there is
also a portion of it that overcomes the AGN histogram on the left side: once analyzed
singly, these all appeared to be extremely noisy spectra.

For the other regular histogram spectra, that lay at the right of the separation line,
I decided to analyze the objects contained in the more central and crowded region of
the histogram, at 200 bins per time. The resulting stacks within each group show a
weak increase in the intensity of the emission lines, but for the first two plots, which still
resemble AGN spectra(Fig. 7.8), for the reason explained above: there may be a relation
to the repairing of gaps using normal spectra, combined also to the presence of broad
line AGNs in the regular histogram, that are nonetheless classified as regulars by the
LDA probably on the basis of their repairings.

There are also other bins at the right of the denser part of the regular’s histogram
I considered so far: these contain again mainly quite noisy spectra, but with slightly
clearer features than the ones at the extreme left of the AGN histogram.

If now I restrict our analysis to the high SNR spectra, i.e. only to spectra whose as-
signed flag is 3 or 4, except for all the spectra flagged from 10 to 19 (AGN flag), I can
obtain an even better separation between peculiar and regular galaxies (Fig. 7.9): the
separation line gets re-defined, and the AGN flagged spectra histogram now lies en-
tirely on the left side of l, while there is still some superposition of the regular spectra
histogram to the AGN one, containing the suspect AGN-like misflagged spectra. Re-
stricting to the best flags, though, I lose some of the misflagged “regular” spectra that
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Figure 7.9: LDA separation between peculiar and regular galaxies, using the high signal to noise
(flags 3 and 4) sample only.

were clearly AGN-like in the previous analysis, since in some cases they were originally
flagged with a flag different from 3 and 4.

To better illustrate the performance of my binary classifier I slightly vary the thresh-
old l, and plot the corresponding True Positive-False Positive rates as a function of the
threshold, to produce the receiver operating characteristic (or ROC curve) of the classi-
fier. I retain as True Positives all the bins of the AGN histogram falling at the left if the
threshold l, and as False Positives all the regular histogram’s bins falling at the left. The
resulting ROC curve, presented in Fig.7.10, shows that the LDA classifier has a very high
sensitivity, since the sensitivity ROC curve (red line) passes very near to the top-left re-
gion of the plot, meaning there is almost no false negatives and almost no false positives.
The black dashed line instead depicts the so-called line of no discrimination, representing
a completely random guess.

From this global analysis I can conclude that an LDA separation of AGN objects is
certainly able to complement a pre-existing one, as proved for the VIPERS sample, by
carefully checking the objects in the regular-spectra histogram that lay in the vicinities
of the separation line, not only in the region overlapping to the AGN histogram, but also
in that region pertaining to the regulars one, as proved by Fig. 7.6 and by the first two
plots of Fig. 7.8. I can also state that for the regular’s histogram, the presence of AGNs
rarefies moving rightwards and the line intensities get stronger. Finally, in general, at
the edges of the entire plot, the objects are more noisy; in particular ar the left edge of
the AGN histogram the objects do not display clear features, while at the right edge of
the regular’s one, despite the high noise interference, the main spectral features, being
stronger, are still recognizable.

I just remind here that the whole search of the AGN component of the sample, has
been performed over the 0.4< z <1. range: this is because that is the more convenient
range for the PCA repairing and classification of VIPERS spectra, but it is also a region
which is usually scarcely populated by AGNs themselves. So this kind of analysis could
be surely improved in the future by extending the redshift range of the sample to be
PCAnalyzed.
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Figure 7.10: ROC curve for the LDA AGN-regular separator. The red line is the proper ROC
sensitivity curve, while the black dashed line represents the response of a random guess.

I used this LDA peculiar separator to distinguish (mainly Broad Line) AGN objects
from regular spectra. Indeed, if one could dispose of a secure (still not complete) sample
of NL AGNs, to use as a trining set for the LDA, the LDA could be used to implement
also a NL AGN separation, which is usually much more difficult to implement in a com-
plete and secure way with other methods.

Aside to all this analysis, LDA could be also be developed to identify which eigen-
spectra are more important to describe the spectral continua, and which one are more
relegated to the description of line features.





Conclusions and future directions

In this PhD thesis work I have developed an objective spectral classification system for
the ongoing VIPERS survey using the Principal Component Analysis. Then I applied
this to a subset consisting of 42036 galaxy spectra in the redshift range 0.4 < z < 1.0.
My implementation of a principal component analysis addresses the non-uniform char-
acterstics of the dataset, that can impede the measurement and classification of spectral
features; these include many effects: the variation of wavelength coverage in the rest
frame has been taken into account by resampling all the spectra on a common wave-
length grid, after bringing them to rest-frame. The noise properties and instrumental
artefacts, together with the presence of gaps or manual interpolations, have been statisti-
cally corrected by applying the PCA to this rebinned rest-frame sample. The PCA I have
developed here exploits an iterative algorithm that converges to a robust estimate of the
eigenspectra templates (the first 3 eigenvectors of the PCA, or principal components):
the novelty is represented by the impementation of a check that produces automatically
realistic spectra, statistically repaired from the gaps and cleaned from noise.

From this statistical reconstruction of the sample, I have obtained a classification sys-
tem, based upon three coefficients, a1, a2 and a3, that are found by projecting the spectra
on to the first three principal components. For the determination of the coefficients, for
each spectrum, I have used a specific recipe to preserve the physicality of spectral lines
such that both the continuum and line features are reconstructed accurately. The first
three eigencoefficients thus provide a high-fidelity reconstruction of each spectrum, for
a broad range of galaxy types.

The information enclosed in the three eigencoefficients can be compressed in the φ-θ
angles representation: φ = tan−1(a2/a1) and θ = cos−1 a3. This is a key step for my
spectral classification: in a θ–φ plane, galaxies of different colour concentrate in differ-
ent regions, according to the relative importance of the three eigenspectra. These same
eigenspectra, at least in terms of the continuum, mirror the shape of realistic red, blue
and intermediate galaxies.

To explore the physical meaning of the different positions on the θ–φ diagram, I have
projected a set of Bruzual-Charlot model spectra on the same VIPERS eigenspectra and
looked at their distribution on the same plot. I also added a set of 12 Kinney-Calzetti tem-
plates, as to verify the appearance of starburst galaxies over the same plane. An analysis
with a group-finding algorithm, capable to divide space into maximally diverse classes,
showed clear evidence of two different branches, following respectively the trend of the
Bruzual-Charlot and Kinney-Calzetti models. The I have also dust extincted the models,
to know in which direction the reddening for spectra moves the points in the φ-θ cloud.
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Then to better explore the physical meaning of the different positions on the φ-θ di-
agram, I have also coloured it with a gradient based on the 4000 Å break and one based
on the [OII] equivalent width, finding that the θ parameter, at least in the region of 4000
Å break > 1.3, is pretty insensitive to the continuum shape of the spectra, while, only at
fixed values of φ, it is an indicator of the intensity of the emission lines, whereas in gen-
eral it’s also a very weak indicator of the continuum slope. φ instead is a strong indicator
of the continuum shape, and it also contains some information on the line intensities.

A comparison of this classification method with two more common photometric se-
lections showed that the PCA approach is comparable to a rest-frame color-color and
also to a color-redshift plot in discriminating red from blue galaxies, whereas being more
sensitive than photometry to intermediate spectral types, being based on spectra.

Finally, I have searched for evidence of evolution in the φ-θ parameters, and I have
found that, for the red galaxies, mainly φ and slighty θ show weak trends in agreement
that go in the direction of the expected evolution; for blue galaxies instead, due to a
stronger competition of effects within each parameter (the lines and the continua), the
evolution is smoothed and it’s slightly oscillating near to z ∼0.7. The trend of evolution
of the global population, excluding intermediate type objects, is found in agreement to
the model evolution of a population of galaxies formed at z ∼ 1 − 2, but for the near
redshifts, where the population appears slightly less “red” than the models. For the
highest redshift avaiable for my data, instead, the evolution is well reflected by a model
evolution of a young population, of which the VIPERS sample seems to be more largely
composed at high redshifts.

I have subsequently applied a Linear Discriminant Analysis to the φ-θ coefficients, to
define a quantitative boundary between early-type or passive galaxies, and late type or
active ones, based on an interval of two 4000 Å break intensities of the spectra, joint with
another LDA based on two [OII] equivalent widths. This LDA analysis brought to the
definition of a separation region, which is composed of intermediate type objects.

Some peculiar spectra will not be well represented in the PCA eigenspectra, due to
the rareness of their features in the sample. For instance, I have found that the eigen-
spectra do not fit AGN spectra well. However, in principle, interesting outlying spectra
can be identified based upon poor χ2 values for their PCA fit; on the basis of that I be-
gan studying the implementation of a new approach to separate NL AGNs, which looks
promising but still needs to be refined and strengthened.

Then I applied the LDA to the VIPERS spectra, repaired with three eigencoefficients
but projected over all of them (2486): I have done this to implement an AGN-regular
spectra subdivision, based on the pre-existing VIPERS AGN flag system, which marks
the AGN objects with peculiar flags. This LDA routine proved able to complement the
original AGN identification with more peculiar objects.

Aside from all this analysis, I have also developed an automatic conservative mask-
ing of VIPERS noisy features, on the basis of an observed-frame PCA, able to assign a
sky spectrum to each observed spectrum, and to mask and substitute the masked region
with a realistic patch. The resulting masks are satisfactory, and the masking procedure,
merged with the exhisting manual mask, it will be added to the reduction pipeline of
VIPERS.

In future analysis also the LDA active-passive separation will be applied on the
full VIPERS sample and refined, also testing a Quadratic Discriminant Analysis (QDA),
which is able to handle and separate more than two classes per time.
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I will also apply the LDA peculiar separator to a redshift range, which is expected
to be more populated by AGNs, and also to find specific types of AGNs, such as the
Narrow Line AGNs, provided I can use a clean and reliable sample of them, to use as a
training set.

LDA will also be developed to define which eigencomponents are important to de-
scribe the continuum and which other to describe the line features.

A refinement of the PCA based NL AGN finder will instead be obtained by com-
paring the PCA candidates to a more secure set of NL than the Lamareille one, and by
improving my same definition of χ2 itself.

The χ2 test separation, will also be implemented to the aim of finding automatically
spectra that have been assigned a wrong redshift.

On the other hand, the same whole principal component analysis can be extended
to include additional photometric parameters, whose information content is not already
encompassed by the spectra, like photometric measurements in wavelength bands not
included in the PCA spectral range, dust content, morphology or mass, provided I find
an efficient way to weight them properly with respect to the spectral information it-
self. This will be useful to produce a “classification” cube or hypercube, and see which
parameters are correlated, at least for the majority of galaxies, and to eventually find
outliers into this global classification.

Such a spectral based PCA classification can also be applied to the studi of Large
Scale Structures, to cleanly separate different populations of galaxies, and to implement
a multi-population redshift distortions analysis, which should produce a lower error
in the determination of the growth function of structures. Also, in the field of gaaly
evolution, it can be developed to select a peculiar population of galaxies, such a the
Luminous Red Galaxies in VIPERS: this way one could have a check of the expected
passive evolution of those objects, by looking for the progenitors of SDSS LRGs into the
VIPERS LRG sample.





Appendix A

Automatic PCA-based spectral cleaning

The PCA on the spectra, presented so far, is aimed at giving a statistical repairing and
cleaning of observed spectra in a survey; for this reason, as explained, it is necessary that
all the spectra have been brought to rest frame and on a common wavelength grid: this
way all the features in the different spectra can be matched, producing spectral-shaped
eigenspectra, which can be used to give realistic reconstructions.

Of course in every survey the objects are observed at different redshifts, which would
cause the galactic features to mix up in a classical PCA reconstruction, if not brought to
rest frame. On the other hand, if the galaxy features would get lost in an observed frame
sample, the sky features of a given survey, clearly all pertaining to the Earth atmosphere,
would sum up in an observed-frame PCA, whilst the spectral ones would be confined to
high order eigenspectra, and interpreted as “noise”.

Since, for a survey, one is interested in retaining the majority of measurements, trying
to avoid the sky artefacts, in this technical appendix I will present a PCA based technique
I developed, to estimate the shape and intensity of the sky signal within each spectrum
in a survey, and to properly mask it.

This is a totally different approach from the PCA presented in the previous Chapters.
In facts, the previous rest-frame PCA has been used to repair the spectra whenever they
were “manually” edited, or where they presented zero-flux regions due to the rest-frame
moving process. Then they were projected over the rest-frame eigenspectra to provide a
statistical cleaning of the entire spectrum from all the noise features.

Here instead, I am taking the unedited spectra at their observed frame, and using the
PCA machinery to edit them in a more conservative way on the basis of the sky signal,
obtained from the spectra themselves; a similar approach has already been tested and
applied to the SDSS data by Wild & Hewett (2005), providing a dramatic improvement
in the quality of spectra, originally affected by strong OH sky emission lines.

Furthermore, I also want to replace the PCA-masked regions I will obtain with this
analysis, with something better than a strainght line, whenever is possible.
Again, I will apply this routine to the VIPERS complete spectral sample, excepted for
stars and AGN: the basis technique developed here will be suitable to any spectral sur-
vey, but the refinements I will apply to it, mainly in relation to the zero-orders masking,
are strictly related to the VIPERS sample.
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Figure 7.11: An example of continuum subtraction from an observed spectrum.

The sky eigenspectra

The first step of this analysis is to obtain the sky eigenspectra, i.e. the principal eigen-
spectra of the observed frame sample. To do this I take all the galaxy spectra available in
the sample, with the only exclusion of Flag 0 objects (no redshift assignment) and of Flag
10-19 objects (AGNs); the mask I will obtain will be applicable to every other spectrum
in the survey.

In the observed-frame PCA, the spectra continua and features will not add coher-
ently; however, I will still find a smooth signal representing the superposition of all
spectra, with offsets drawn from the redshift distribution. This signal is statistically due
to the sky. Thus, to isolate it, I subtract the continuum of each spectrum before comput-
ing the eigenspectra (Fig. 7.11). To estimate the continuum I apply a Gaussian smoothing
to the spectra, with standard deviation 50 pixels (i.e. 50 × 7.1 = 355Å). Although more
precise continuum subtraction schemes could be implemented, this step does not seem
to limit the usefulness of the eigenspectra later on.

Then I construct the data matrix and compute the corresponding correlation matrix
and eigenspectra in the usual way (but in observed frame), without least-square routines
or penalty terms, since I don’t need to repair anything at this stage fo the work.
Since I know that the VIPERS spectra presented some problems of fringing for the red-
dest regions of the spectra, and that this problem has been corrected after a given date, I
decided to divide the sample into pre- and post-refurbishment data, and to have a look
at the different eigenspectra.
The number of eigenspectra to be retained, to describe the sky without including spectral
features, has been found to be of 3, as in the case of rest-frame PCA for spectra.

In facts, from Figs 7.12, 7.13 and 7.14, and from different tests, projecting the spectra
on the 3 terns of eigenspectra, it is clear that the post-refurbishment-only eigenspectra
are the ones which contain the majority of sky features. For the other two terns, to be
able to catch a comparable number of sky features in the spectra, I would need more
than 3 eigenspectra, risking to include some spectral features.
Once determined the sky eigenspectra, I project every spectrum onto them, to get the
statistical sky spectrum associated to each galaxy spectrum.
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Figure 7.12: PCA first 3 eigenspectra for the observed frame pre-refurbishment data.
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Figure 7.13: PCA first 3 eigenspectra for the observed frame post-refurbishment data.
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Figure 7.14: PCA first 3 eigenspectra for the entire set of observed frame data.

Automatic masking the spectra

The aim of the observed-frame PCA is to define a mask for each spectrum, in correspon-
dence to the more intense and common noise, fringing and sky residual features.

Identifying the common sky features

Each spectrum is projected onto the most significant three eigenspectra. Since these
eigenspectra are templates for common artefacts in the spectra, I obtain an estimate of
the residuals of contamination in each spectra. I take the liberty to call these projections
simply sky spectra (even if they represent sky residuals after a previous sky subtraction).

On the basis of the sky spectra I have to decide which features should be masked.
The most natural approach is to define the mask in correspondence to the spikes of each
sky spectrum. I first define the standard deviation as a function of each continuum-
subtracted spectrum. This is used to define the threshold. The contamination is worse
at λ > 7500Å, I thus adopt a different threshold in the blue and red wavelength ranges.
Pixels in the spectrum are flagged when the difference is larger than the threshold.

This machinery is able to identify almost every important residual sky feature in the
spectra, with some exceptions. In fact, there are some features, in particular the one
around 6300Å, which, due to residual fringing, sometimes are placed at slightly shifted
positions from one spectrum to another. For these objects the projection on the three
sky eigenspectra, which displays those features at a given wavelength, returns a sky
spectrum with a negligible spike in that region, preventing the automatic masking to
detect it. For this reason I introduced a complementary masking procedure, based on
the spikes of the corresponding VIPERS noise spectrum. Again, I define the mask in
correspondence to the spikes and the dips of each noise spectrum. Also in this case,
since the constamination is worse at λ > 7500Å, I use a different threshold in the two
parts of the noise spectra.
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Finding the zero-order spikes

The observed-frame PCA mask approach is able to identify the strong residual sky fea-
tures in every spectrum. But of course, the sky is not the only source of noise which can
corrupt the signal. For a fraction of VIPERS spectra there is also contamination from a
zero-order image of a bright object (typically a star), corresponding to the spectrum ly-
ing on the VIMOS frame directly above the one we are considering. This appears in the
form of a large spike at random wavelength positions, and cannot clearly be captured by
the sky eigenspectra. Fortunately, the solution to this problems comes by itself, since the
device introduced to mask the sky fringing residuals is also automatically able to catch
the 0-orders, which are once more clearly reflected in the noise spectra.

Real features safeguard

I need to make sure that the mask positions do not coincide with or were very close to
the expected position of known emission lines (3728, 4861, 4959, 5007, 6562Åfor regula
galaxies, more for AGNs). For this reason a safety window, to the sides of the center
of any expected emission line, has been assigned a 4 pixels length in total (28Å). In the
case where a 0-order candidate fell into the window, the mask was not applied and that
portion of spectrum was left in its original shape. This has been done to preserve as
much as possible the measurements of the spectral emission features.

Mask repairing

Beyond defining a mask for all the spectra within a survey, I also want to provide with
the most likely shape I would expect the spectra to have, in the regions of the mask, if
there were no noise. A horizontal straight line, at the level of the rest of the spectra, is
usually a good indicator of the intensity of the continuum. But I am interested in giving
a more realistic aspect to the spectra, after the mask has been applied. For this reason I
approach two different methods: a subtraction of the sky specrum to each spectrum, in
the region(s) of the mask, or the replacement with a rest-frame PCA reconstruction.

For both the cases, since I used continuum subtracted spectra, I have first to add the
continua back.

Sky residuals subtraction

The first attempt to give a representative, for the portion of masked spectrum, was to
apply a noise subtraction to the spectra. All the noise spectra have been subtracted to
the corresponding galaxy spectrum, only in the regions of the mask. This gives a good
patch in the majority of the cases, but sometimes the “cleaning” is not realistic, or it goes
in the direction of further degrading the spectrum. In fact, the noise spectra represent
the more probable noise that should have contaminated the spectrum, on the basis of the
3 sky eigenspectra, and of the projection of the single spectrum on them; this procedure
surely gives a reliable indication of the regions where there are important sky features,
but the precise entity of those features is not always well recovered. For this reason it is
preferable to adopt another approach to fill in the mask regions.

PCA reconstruction

Since, from the work done on the rest frame spectra, I dispose of the PCA reconstructed
spectra, another possibility to fill in the mask is using the PCA reconstruction. Of course,
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since the rest-frame PCA has been done on a restricted sample of objects in redshift, the
reconstruction is not available for every spectrum. Furthermore, the wavelength range
for each rest-frame spectrum is quite limited (3500-5500 Å), to lower the appearence of
rest-frame-moving gaps in the spectra. So, also for any observed-frame spectrum which
has its counterpart in the rest-frame PCA, not all the wavelengths are available.

For this reason, I decided to run a new rest-frame PCA, aimed at the mask substitu-
tion. This PCA has been run over all the spectra for which the mask has been created, and
for a wavelength range able to contain all the spectral features, for spectra from z=0.4 to
z=1.4. The more extreme redshifts have been excluded, because including them would
have meant to enlarge significantly the wavelength range for a very reduced number
of spectra, which, bacause of their paucity, would have not been well recovered in any
case. Of course, running this PCA on the same rest-frame grid, chosen for the previous
Chapters one, would have been very challenging in terms of computational resources.
In fact, to have an optimal sampling of the spectra on the rest frame grid, I had defined
a very dense logarithmic binning (see Chapter3).

For the current problem instead, once obtained the reconstructions, I will interpolate
back to the observed frame grid. Thus, in this case, the high accuracy of the rest-frame
sampling is not really crucial: for this reason I adopted a linear pixel separation which
is more rarefied than in all the previous work, and in particular it’s approximately the
same as the observed spectra (7Å). This way I can perform a rest-frame PCA over all the
spectra without computational impediment, and use the resulting reconstructions to fill
in the mask regions. A little caveat to keep in mind is that, in the edge regions of some
spectra, the reconstruction I obtain is not always a perfect indicator of the expected con-
tinuum; in fact, to be able to reconstruct all the spectra, I had to choose a large rest-frame
redshift range, and there are few spectra at those redshifts that can provide information
at that wavelengths.

So, for the objects at redshift lower than 0.4 or higher than 1.4, I decided to fill in
the mask with a horizontal line, at the same level of the average value of the spectrum.
This average has been computed within a short wavelength range near to the interested
masked region. Indeed, in some particular circumstances, e.g. when the spectrum is
very steep, this technique produces fake step bumps in the cleaned spectrum; thus, for
those objects, I simply connected the 2 points at the left and right edge of the mask (this
last approach may instead produce fake shark fin spikes in the spectra with a flatter con-
tinuum). For Flag 0 and AGN objects, then, the reconstruction within the mask must be
taken with a grain of salt, since the PCA reconstruction for AGNs is twisted and for the
Flag 0 is impossible, missing their redshifts (for the latter, we used a simple straight line).

The plots shown in the pages of Appendix B give the comparisons between the PCA-
only built mask and reconstruction (top and second row), and a reliable manual editing
of the spectra (third row). The difference between automatic and manual mask is plotted
in the mfourth row, while in the bottom row the merged mask and relative cleaning is
depicted.

In Appendix B I show examples spanning the range in quality flags and redshift.
Eight examples were selected randomly for flags 0-19. All examples are from the VIPERS
pointing W4P017 which is pre-refurbishment, but the mask is completely equivalent for
post-refurbishment spectra.

As expected, in the majority of cases the PCA-mask agrees with the manual editing.
In some cases, the PCA masks in regions where the eye would not, because there are
some spikes in the noise spectrum, not evident in the galaxy spectrum. In some cases
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some obvious spikes are not masked, because of their vicinity to emission features, or
because they are not reflected in the noise eigenspectra, or they do not overcome the
second-order threshold. But in general the authomatic masking is quite reliable. The
mask substitution instead is more realistic than in the case of manual editing, but for
some sporadic case, near to the edges of the spectrum.

Automatic cleaning vs. manual editing

The automatic masking and cleaning procedure presented here is generally helpful and
conservative but not unfailing. Spurious and rare features that can be easily captured by
the human eye may escape the PCA machinery. On the other hand, the manual cleaning
can miss some residuals or, conversely, can mask too much, causing the loss of a large
amount of spectral information, or even replace the masked region with some unphysi-
cal patching. For these reasons, and disposing of many careful manual editings for the
spectra, I decided to merge the automatic mask with the manual one for every spectrum,
and to produce spectra that are cleaned within the resulting merging of the two masks.
In particular, to prevent the final mask to include too many consecutive pixels, I imposed
that every manual mask composed by more than 70 consecutive masked pixels, was not
merged to, but simply replaced with the automatic mask in that region.

The resulting cleaned spectra will be released along with the observed ones, and the
automatic cleaning machinery will be added to the VIPERS reduction pipeline.





Appendix B

In this Appendix I present some PCA-mask examples from epoch 1 (pre-refurbishment)
spectra: there are 8 examples for each of the flags.

In each plot, the top plot shows the original spectrum (solid black line) in the ob-
served frame. The fit with the sky eigenspectrum is shown by the cyan line. The place-
ment of the mask is shown by the step function between 0 and 1 × 10−17. The second
plot shows the spectrum after automatic cleaning. Vertical dashed yellow lines give the
location of four common emission lines (3728, 4861, 4959, 5007, 6562Å). The third plot
shows the result of manual cleaning by expert members of the VIPERS team. The fourth
displays the difference between the manual and the PCA mask. The bottom plot shows
the result of the merging of human and PCA mask with relative fillings.
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Figure 7.15: Eight example spectra with flag 9
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Figure 7.16: Continued... Eight example spectra with flag 9
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Figure 7.17: Eight example spectra with flag 4
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Å
−

1
]

Manual mask-PCA mask

5500 6000 6500 7000 7500 8000 8500 9000 9500

wavelength[Å]
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0.5
1.0
1.5
2.0
2.5
×10−17

Manual/PCA merge

0.5
1.0
1.5
2.0
2.5

×10−17 z=0.518300,flag=4

0.5
1.0
1.5
2.0
2.5

×10−17

PCA

0.5
1.0
1.5
2.0
2.5

×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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Figure 7.18: Continued... Eight example spectra with flag 4
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Figure 7.19: Eight example spectra with flag 3
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Å
−

1
]

Manual mask-PCA mask

5500 6000 6500 7000 7500 8000 8500 9000 9500

wavelength[Å]
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Figure 7.20: Continued... Eight example spectra with flag 3
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Figure 7.21: Eight example spectra with flag 2
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Å
−

1
]

×10−17

PCA

−0.5
0.0
0.5
1.0
1.5
2.0

×10−17

Manual

wavelength[Å]
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Figure 7.22: Continued... Eight example spectra with flag 2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
×10−17 z=1.100300,flag=2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
×10−17

PCA

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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Figure 7.23: Eight example spectra with flag 1
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Figure 7.24: Continued... Eight example spectra with flag 1
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Figure 7.25: Eight example spectra with flag 0
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−0.5
0.0
0.5
1.0
1.5

×10−17

Manual/PCA merge

0.0

0.5

1.0

×10−17 z=9.999900,flag=0

0.0

0.5

1.0

×10−17

PCA

0.0

0.5

1.0

×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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Figure 7.26: Continued... Eight example spectra with flag 0
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Å
−

1
]

Manual mask-PCA mask

5500 6000 6500 7000 7500 8000 8500 9000 9500

wavelength[Å]
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Figure 7.27: Eight example spectra with flag 10-19

−1
0
1
2
3

×10−17 z=1.419500,flag=13

−1
0
1
2
3

×10−17

PCA

−1
0
1
2
3

×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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−1
0
1
2
3

×10−17

Manual/PCA merge

0
1
2
3
4
5
6
7

×10−17 z=1.142600,flag=19

0
1
2
3
4
5
6
7

×10−17

PCA

0
1
2
3
4
5
6
7

×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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Figure 7.28: Continued... Eight example spectra with flag 10-19
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0.0
0.2
0.4
0.6
0.8
1.0
1.2
×10−17

Manual/PCA merge

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
×10−17 z=1.463500,flag=13

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
×10−17

PCA

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
×10−17

Manual

−1.0
−0.5

0.0
0.5
1.0

F
lu

x[
er

g·
cm
−

2
s−

1
Å
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